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Abstract

The industrial automation world is an extremely complex framework,
where state-of-the-art cutting edge technologies are continuously being re-
placed in order to achieve the best possible performances.

The criterion guiding this change has always been the productivity. This
term has, however, a broad meaning and there are many ways to improve
the productivity, that go beyond the simplistic products/min ratio.

One concept that has been increasingly emerging in the last years is the
idea of interoperability: a flexible environment, where products of different
and diverse vendors can be easily integrated togheter, would increase the
productivity by simplifying the design and installation of any automatic
system.

Connected to this concept of interoperability is the Industrial Internet of
Things (IIoT), which is one of the main sources of the industrial innovation at
the moment: the idea of a huge network connecting every computer, sensor
or generic device so as to allow seamless data exchange, status updates and
information passing.

It is in this framework that Time Sensitive Networks are placed: it is
a new, work-in-progress set of communication standards whose goal is to
provide a common infrastructure where all kinds of important data for an
industrial automation environment, namely deterministic and non determin-
istic data, can flow.

This work aims to be an initial step towards the actual implementation
of the above-mentioned technology. The focus will therefore be not only on
the theoretical aspects, but also on a set of practical tests that have been
carried out in order to evaluate the performances, the required hardware and
software features, advantages and drawbacks of such an application.

Keywords: Time Sensitive Networks (TSN), Industrial Internet of Thi-
ngs, Industry 4.0, industrial communication



Abstract

Il mondo dell’automazione industriale è un ambiente estremamente com-
plesso, dove nuove e innovative tecnologie vengono continuamente impiegate
al fine di ottenere le migliori prestazioni possibili.

Il criterio guida di questo cambiamento è sempre stato la produttiv-
ità. Questo termine ha tuttavia un largo significato, e ci sono molti modi
di incrementare la produttività, che vanno oltre il semplicistico rapporto
prodotti/min.

Un concetto emergente negli ultimi anni è quello di interoperabilità:
creare un ambiente flessibile, caratterizzato da una facile integrazione di
dispositivi di diversi produttori, aumenterebbe la produttività semplificando
il lavoro di progetto e installazione di qualsiasi sistema automatico.

Collegato al concetto di interoperabilità c’è l’Industrial Internet of Things
(IIoT), che è una delle principali fonti di innovazione industriale al momento:
l’idea di una grande rete che mette in comunicazione calcolatori, sensori e
ogni generico dispositivo per permettere un continuo scambio di dati, aggior-
namenti e passaggio di informazioni.

È in questo contesto che si collocano le reti TSN: si tratta di un nuovo
(ancora in via di sviluppo) gruppo di standard di comunicazione che mirano
a fornire un’infrastruttura comune dove tutte le tipologie di dati di interesse
industriale, soprattutto quelli deterministici e non deterministici, possono
circolare.

Questo lavoro di tesi si propone di essere un passo iniziale verso la conc-
reta implementazione della sopracitata tecnologia. Pertanto l’attenzione sarà
concentrata non solo sugli aspetti teorici, ma anche su una serie di test pratici
che sono stati svolti per valutare le prestazioni, l’hardware e il software richi-
esti, i vantaggi e gli svantaggi di una tale applicazione.

Parole chiave: Time Sensitive Networks (TSN), Industrial Internet of
Things, Industria 4.0, comunicazione industriale
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Chapter 1

Introduction

Overview on the main communication techniques in
industrial automation

Automatic machines are the core of any industrial plant: they are designed
in such a way to be able to work autonomously for as long as possible. The
idea is to let the machine work whitout any need of human intervention,
which definitely increases productivity, lowers the costs for the staff and the
risks associated with any industrial environment.

This means, though, that every action, every step of the productive pro-
cess must be integrated togheter, creating a system that pertains several
different domains: mechanical, electrical, electronic, pneumatic and so on.
Also, devices belonging to the same automatic machine, that handles the
same productive process, may be placed dozens of meters apart and still
need to communicate or be coordinated with the highest of the precisions,
in order to maximize the efficiency.

Flexibility and interoperability also play an important role in modern
automation. Market’s needs often require to be able to quickly change the
configuration of the machine, the format of the product or also to build even
more complex systems out of several automatic machines. It is fundamental,
therefore, to start from the design to take into account all the features and
the future challenges that the system is going to face, and provide it with
the necessary technology to to survive the test of time and make it a reliable
and durable product.

As we said, industrial plants are made of numerous different devices that
work in the same environment and generally tend to modify it. Automatic
machines, in particular, are characterized by a high level of planning and
design of the tasks for every device by which they are composed, which
implies an extreme level of synchronization.

Clearly this couldn’t be done if the devices were all mute and unable to
communicate one with the other. There has to exist at least one channel of
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communication through which they can pass information, data, status and
many other working parameters.

The trivial example is represented by the system bus, which is a link
connecting all the devices of an automatic machine, starting from the main
drives up to the last sensor, to the main control logic, i.e. the PLC. In this
particular -yet very close to our framework- example, the communication
channel works as a collector of all the operating data from the environment
(sensors measurements, control inputs from the HMI, other signals of various
kinds) and passes them to the computing unit so that it can compute the
control signals for the next cycle; then those control signals flow through the
same link to the different destinations in the plant.

In an industrial environment there exists another whole level of commu-
nication, that is called Enterprise Resource Planning. ERP is a software sys-
tem that utilizes a centralized database that contains all the necessary data
in one location. The data are generated from the transactions produced by
every process enabled by the ERP system. This database is shared across
multiple departments to support multiple functions. The shared information
allows for easy metric reporting and faster implementations of tasks, such as
orders, marketing and bookkeeping. In essence, an ERP system automates
processes across departments and helps to streamline common functions such
as inventory management, order fulfillment, and order status.

These two systems coexist in most of the productive plants and basically
define two different sets of information models, source and destination de-
vices; but they are both needed in order for the whole plant to work properly
and to increase the efficiency. As a result, a massive load of information has
to be sent and delivered, every second, throughout the whole factory.

One major problem of this approach is that, potentially, a single device
may have to communicate to a large set of other devices, possibly not of the
same type and even produced by different vendors. Therefore it is required
that all the devices act following some sorts of routine or protocol, both
hardware and software, when interacting with another device of the system.
This in oder to ensure that every datum that is sent into the network can
be decripted and understood by everyone who is interested in it.

That’s not an easy task because, as we said, the automation industry is
a mix of all kinds of technologies and devices; however several entities and
organizations have already begun to develop standards and protocols useful
not only in the automation field. Among the most important ones there are
the International Organization for Standardization (ISO), the Institute of
Electrical and Electronic Engineers (IEEE) and the OPC Foundation. Their
work deals with different aspects of the industrial communication that we
will study more in detail in the next chapters.

Going back to the examples of ERP and the system bus, it is important
to highlight that there is a fundamental difference between these two com-
munication models. It consists in the kind of data and in the guarantees
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that such data have or do not need to have.
As we discussed before, an automatic machine relies on the strong syn-

chronization between its elements. To do that, the signals to and from the
main control unit must be delivered as fast as possible. Mere speed, though,
is not the most important feature required: determinism is. We are talking
about a deterministic message when the message has guaranteed delivery
times, with bounded and limited jitter. This means that we are able to
compute and guarantee, a priori, that every instance of the message will not
break the deadlines that have been assigned to it in terms of latency and
intermessage latency (i.e. the time that passes between the send and the
delivery and the time that passes between two consecutive deliveries). De-
terminism does not imply speed nor efficiency, but rather that even in the
worst possible case we are sure about the limits of some functional parame-
ters; it is achieved by reducing the randomness that naturally characterizes
the physical processes.

On the other hand, the kind of data that an ERP system deals with does
not have any needed guarantees about the delivery times. If the information
about the productivity of a certain machine, that has to be stored in order
to keep track of the performances of the plant, gets delivered to the server
with a delay of some milliseconds due to network’s congestion, it is not a big
deal. Instead, if the photocell sensor fails to send in time to the PLC the
information about the product passing in front of it, the actions linked to
this event do not get triggered, the machine loses its synchronization and as
a consequence the product has to be discarded, since it hasn’t been treated
properly.

The previous are two simple examples that aim at passing the idea that
some messages, and in particular their temporal characteristics, are neces-
sary for the correct behavior of the plant, while for other messages it does
not really matter: delays certainly affect the quality of service but do not
compromise in any way the operations. We usually refer to the first kind
of messages as time sensitive messages, while the second class is called best
effort : we try to achieve the best possible performance, but without any
guarantee.

So we have seen that a large amount of data has to flow accross the plant,
some with “constraints” on their delivery time and some without. The major
problem is that if we use a single standard switched network as a mean for
all these messages to flow, it is highly unlikely that we can guarantee the
delivery time of any message. This result is mostly due to the quantity and
the nature of the best effort data: they are in fact messages with very variable
dimensions and rate, and they are generally many orders of magnitute more
numerous with respect to the time sensitive messages. The danger is that at
some point the network will become congested because too high a number
of messages has been sent in a small amount of time, and the resources of
the network cannot satisfy all the requests in the usual amount of time. The
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victims, namely the messages that are going to face an inevitable delay, can
be anyone, and there is really no way to predict when or where this scenario
will take place. Time sensitive messages will be enqueued in some router
along their path towards the destination, behind some best effort messages
that got there first; and they will have to wait for the queue to get empty
before they can leave it and reach the destination. As one can imagine, it is
easy to lose control over what happens and leave things to randomness.

The most widespread solution to this problem is to use two, or more,
separate networks, each one dedicated to a particular category among the
ones described before. So we have a whole network where only enterprise
information flows towards the different departments of the plant, and we
have the local networks in the automatic machines that let every component
have a “protecte” communication channel with its PLC, namely the system
buses. System buses are different from a generic network because we need
to add some features to make them real-time compatible: those features in
general involve reducing the efficiency, the performances or the degrees of
freedom in order to gain something in the determinism area.

The advantage of this approach is obviously that we can avoid distur-
bances on the time sensitive messages by simply eliminating any other mes-
sage from the network. But this is also kind of a drawback: the fact that
we use separate networks in the same plant prevents us from being able to
communicate from any device to any other device. Solutions to bridge the
two networks in a way that does not affect the properties of the buses exist
but are expensive and pretty impractical. In a world where the idea that
“everything is connected” and “everything is online” is progressively emerg-
ing with the Industrial Internet of Things and Industry 4.0, this perspective
seems a bit limiting and old.

That’s where Time Sensitive Networks come into play.

A new technology with new possibilities

Time Sensitive Networks is the name of a series of standards that are being
developed by the Institute of Electrical and Electronic Engineers that aim at
a better integration of all the traffic classes in the industrial communication
framework.

The key idea is to exploit some new mechanisms and routing strategies in
order to re-gain control over what happens in large and possibly congested
networks. As we said earlier, the fact that usually standard networks are
flooded with huge amounts of messages makes it very hard to predict and
compute worst case delivery times for any message. Therefore we have to
apply a classical tradeoff: we need to lose something in terms of performances
in order to be able to impose from the outside some boundary to the latency.

That’s what has been done in fielbuses, in order to guarantee that every
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message flowing in the link will be delivered in time. The real innovation
about TSN is that we can choose, a priori, which entities are going to be
limited and which ones are going to be left free, subject to the randomness
of the network.

The potential of this concept is huge: first of all, it allows us to keep the
vital functions of the network for the time sensitive messages, granting that
every sensor measurement or control signal will reach its intended destination
before its deadline. Moreover, and that’s the great innovation, it allows us
to use one, unique, large-scale network as a mean for all the messages in a
plant or factory. Connecting every single device with rest of the industrial
world makes the communication system cutting edge and compliant with the
new trends of Industry 4.0.

Compared to the classical fieldbuses, these new techniques bring some
remarkable advantages. Increased throughput, performances and efficiency,
but most importantly a level of interoperabilty never seen before in this
area, as this technology will be completely vendor-independent, and therefore
render every device capable by construction of communicating effortless with
any other device. At least on the physical level; that’s because every device
also needs to know which is the format of the data that it is reading. TSN
only provides a layer 2 common infrastructure, meaning that we are able to
physically transmit every message from any device to any other device. But
how the messages are built and read it is up to the sender and the receiver,
respectively.

Let’s give a trivial example. Let’s suppose that a drive needs to send to
a PLC its measurements about the current position of the shaft, picked up
by its integrated encoder. If the drive records, for some reason, the value
using the ASCII standard and the PLC reads the message considering the
received value as an unsigned integer, the two values will never correspond,
making the message itself useless, even if delivered right on time.

The scenario just depicted normally does not occur because the commu-
nication networks of automatic machines are very limited in size, allowing to
know precisely which devices need to intercommunicate and to adjust conse-
quently their communication protocols. But the degrees of freedom offered
by TSN allow, as we said, to potentially put in communication literally ev-
erything. At this point it becomes tough to take into account all the possible
devices that could share information and provide them all with a suitable
protocol. As a matter of fact, in the previous example it was not specified
which PLC was the destination of the position, indeed because we could con-
nect a sensor of a certain automatic machine with the PLC of another one;
maybe it is the PLC of the downstream machine that has to take as input the
flow of incoming products and needs to know their position on the conveyor
belt. Or maybe it could even be the enterprise server, which is supposed to
record the operational parameters of every device in the plant, allowing for
a more sofisticated and complete statistical analysis and data tracking. In
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this last case, then, the message is not supposed to meet deadlines in terms
of latency but it does not really matter: as long as we have configured the
network in the right way, it will be treated as deterministic or as best effort
according to the specific needs of the receiver.

The OPC Foundation has been active for some time on this field, produc-
ing standard protocols for industrial communication. It has also contributed
to the TSN topic, among other organizations such as Kalycito and Fraun-
hofer, by developing some testbeds involving deterministic data expressed
in a standardized and universal format. Particular reference to [1], where a
practical test exposed at the 2018 Hannover Fair is described.

Figure 1.1: TSN testbed at the Hannover Fair, 2018

They tested the real time communications between two industrial PCs
directly connected through an ethernet cable. They were able to verify that
adopting TSN could grant bounded and deterministic jitters in terms of
latencies for the messages, while using the standard network’s services the
value of the jitter could become quite unpredictable and not controllable.

Putting aside, for the moment, the discussion about ERP and the higher
levels of the automation pyramid, let’s just consider the productive process,
made by one or more coordinated automatic machines. What could be some
possible use cases of an actual implementation of TSN in this limited area?

The main application in certainly a real-time machine-to-machine com-
munication (M2M). M2M communication -two machines communicating with-
out human interaction- is reinventing manufacturing by enabling data to be
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shared across different control and analytical applications to derive superior
operational efficiencies. TSN enhances M2M communication by connect-
ing previously unconnected proprietary controllers. This is made possible
through a network of TSN machines (TSN-compliant end points) connected
through TSN-enabled switches. M2M communication can enable remote
management, operation of equipment/devices through cellular point-to-point
connections.

Figure 1.2: machine-to-machine communication

Figure 1.2 shows a production cell with a supervisory PLC coordinating
communication across four different TSN machines. Another example of
M2M communication can be PLCs communicating with other controllers,
conveyor belts, and other control equipment (at the same network layer) to
regulate or monitor the production of a product.

TSN could also be exploited in robotic applications. An industrial robot
is a programmable, mechanical device used in place of a person to perform
dangerous or repetitive tasks with a high degree of accuracy. Based on the
operating environment, industrial robots can be classified as fixed (robotic
arms), mobile (autonomous guide vehicles) and collaborative (pick and place
robots). A key challenge in robotics is the absence of a standard commu-
nication protocol. Robotic manufacturers must support many customized
protocols, which can lead to increased integration times and costs. Since
modern robotics integrates artificial intelligence (AI), machine vision, and
predictive maintenance into one system, there is a need for sensors and ac-
tuators to stream high bandwidth data in real time. A common solution is
to use a specific channel for real-time control (similar to the system buses)
and a separate one for higher bandwidth communications (TCP/UDP), just
like we highlighted before. For applications that generate high bandwidth
traffic (100 MB/s to 1 GB/s), using two separate communication channels
becomes inefficient. TSN provides a shared communication channel for high
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bandwidth traffic and real-time control traffic.
Lastly, motion control applications have strict delay requirements to en-

sure that real-time data transmissions can support workload demands. Mo-
tion control spans various industrial market segments (discrete industries,
process industries, power industry, etc.) and supports dedicated applications
such as PLC controllers. Other use cases include controlling the velocity or
position of a mechanical device, hydraulic pumps, linear actuators, or elec-
tric motors. As the automation industry consolidates its operations, motion
controllers need to process more workloads, resulting in a greater need for
increased bandwidth and information transparency between different levels
in the factory.

For example, next generation PLC machines require response times to
be in the low microsecond range. TSN was developed to accommodate these
development and represents the next step in the evolution of dependable and
standardized industrial communication technology. TSN standards allow the
specification of Quality of Service, which enables time-sensitive traffic to ef-
ficiently navigate through networks. According to a "Markets and Markets"
research report, the market for motion control is expected to reach 22.84
billion dollars by 2022. The main drivers for this adoption will be metal and
machinery manufacturing, as industry leaders look to improve speed and
accuracy along with increased production.

Even though the perspectives just presented seem appealing and simple
to implement, TSN is not immune from drawbacks. First of all, we can
currently guarantee the real-time properties of the messages only for limited-
sized networks, where no more than 7/8 elements stand between host and
destination. This does not mean that we cannot implement that large and
unique network for the whole plant that we described before, but rather that
real-time messages will be constrained in a local area, while the other kind
of messages will have no boundaries. The technical details will be presented
in the next chapters.

But, most importantly, the main issue about TSN right now is that it is
still an experimental, work-in-progress technology, both in terms of standards
definition and hardware support. For this reason most of the work that has
been done in this field is related to the theoretical aspects rather than on
the development of actual tests and practical solutions. The web has a fair
amount of presentations, brochures -even academic papers- describing what
we have briefly summarized in the first pages and exploring the theoretical
possibilities and implications of this technology; it lacks, though, guides,
tutorials or examples on how to perform actual tests starting from the basic
elements.
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The internship and its main objectives

This thesis work has been realized in collaboration with Marchesini Group.
Marchesini is an automation company operating in the field of packaging for
pharmaceutical and cosmetic products. It is based in Pianoro (BO) but has
several other productive plants in Italy.

One of the main characteristics of Marchesini is the trend to develop
internally all the necessary tools useful for the design and production of
automatic machines. It is so for the operating system, based on a Linux
distribution, for the software development environment and for the program-
ming language. All this features contribute to make Marchesini’s machines
performing, durable and unique. It is particularly important, for these rea-
sons, to study and comprehend well the necessary requirements, both on the
hardware and software sides, for every new technology, in order to be able
to integrate it in the company’s ecosystem. That was also the case for TSN.

Nobody had ever done anything related to Time Sensitive Networking in
the company, but Stefano Gualmini, R&D coordinator and the co-supervisor
of this thesis, was interested in deepening the topic. He had previously seen
TSN at automation fairs and exhibitions and wanted to explore the possi-
bilities opened by this new technology, considering a future implementation
in Marchesini itself.

So the starting goal for this project was to acquire some knowledge in
the matter by simply searching the internet for basic information; then,
depending also on the results of the research part, start to think about how to
build a testbed in order to evaluate the performances and the implementation
details. As we already mentioned, it was important to focus on the hardware
and software requirements of the system, in order to be able to replicate
sooner or later the technology, independently from vendors that may offer,
even now, commercial -but specific- solutions.

I began my internship on Semptember 1st, 2020. The first part was held
in Casalecchio (BO), at a subsidiary company of Marchesini which usually
deals with the training of the new employees. This in order to get started
on the complex ecosystem adopted in Marchesini that we outlined before.

In October I was transferred at the company’s headquarters in Pianoro,
more precisely in the R&D department. Here I started researching and
studying the material concerning TSN, as well as figuring out a possible setup
to build in order to test them. During this month I also laid the foundations
for the simulation environment on Matlab/Simulink that we will present in
the final chapter.

Eventually, in November, I moved to Imola (BO) where a software house
of Marchesini is located. With the help of Marco De Vietro, we built and
configured a simple setup implementing the time sensitive features that we
later tested. After three weeks of testing, since I had already finished the
mandatory hours of the internship, I completed the simulation part at home.
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Outline

So far we’se seen that the topic of communication in industrial automation
is quite vast and complex. In a generic plant there are two main kinds of
data that have to flow: time sensitive and best effort. The current solution
adopted in order to grant proper delivery times to the time sensitive data is
to use two separate networks, one for the time sensitive flows and the other
for the rest. The two networks differ from one another and thus are not
interchangeable; fieldbuses need additional features to make it possible to
meet the deadlines.

Time Sensitive Networking could allow a successful integration of these
two networks, aligning the communication infrastructure with the new para-
digms of Industry 4.0 and Industrial Internet of Things. In the last pages
a brief description has been provided of what TSN means and what are the
main advantages and possibilities; the details and particularities, along with
the proper terminology and naming systems, have been intentionally left out.

This work represents an initial step towards a better understanding of
the principles behind such a technology, aimed at a possible future imple-
mentation. Its structure is the following.

After this introductive chapter we’ll be presenting the main theorical
concepts supporting the claims of TSN, such as the communication model,
known as stack, and the principles of industrial communication such as the
OPC UA protocol. Eventually we will get in the deep about TSN, describing
the mechanisms and strategies that make it work.

In the third chapter we are going to describe the tests that have been
carried out. The chapter includes the software and hardware features of the
setup, along with the results obtained in several different scenarios.

The fourth chapter is dedicated to the simulation. As we will see, a
simulation environment could come in hand when we need to evaluate the
performances of large networks, which would be too expensive to replicate
in real life. The simulation library will be first validated by comparing its
results with the experimental ones, and then will be exploited to test some
innovative scheduling algorithms that are very useful in the configuration
process of a time sensitive network. For this reason the topic is placed after
the tests.

In the last chapter we conclude the thesis with a summary of the work
done and an additional presentation on the numerous future developments
of the work related to TSN.
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Chapter 2

Background

2.1 The network stack and the Internet

Today’s Internet is arguably the largest engineered system ever created by
mankind, with hundreds of millions of connected computers, communication
links, and switches; with billions of users who connect via laptops, tablets,
and smartphones; and with an array of new Internet-connected devices such
as sensors, game consoles, picture frames, and even washing machines.

In this section we are going to provide a description of the basic elements
and mechanisms that make it work. Since it is also a particular case of a
computer communication network, we are going to highlight the necessary
features and characteristics that a communication network should have in
order to function properly, with particular attention to those relevant for
TSN.

2.1.1 The internet’s jargon

The Internet is a computer network that interconnects hundreds of mil-
lions of computing devices throughout the world. It can be viewed as an
infrastructure that provides services to distributed applications running on
different devices. All of these devices are called hosts or end systems; as
of July 2011, there were nearly 850 million end systems attached to the In-
ternet, not counting smartphones, laptops, and other devices that are only
intermittently connected to the Internet.

End systems are connected together by a network of communication links
and packet switches. There are many types of communication links, which
are made up of different types of physical media, including coaxial cable,
copper wire, optical fiber, and radio spectrum. Different links can transmit
data at different rates, with the transmission rate of a link measured in
bits/second. When one end system has data to send to another end system,
the sending end system segments the data and sends them into the network.
The resulting packages of information, known as packets in the jargon of
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computer networks, are then sent through the network to the destination
end system, where they are reassembled into the original data.

So a packet is basically just a sequence of bits that are grouped toghether
to make sense and actually transmit pieces of information. The information
that each packet carries around is not only related to what the sender has to
communicate to the receiver, though. Since the packet is moved in the net-
work, additional data need to be added to it in order for the switches to be
able to sort all the incoming packets and send them in the right directions.
Therefore, standards define a particular structure, namely some fields that
necessarily compose a packet, each one filled with relevant information; the
first chunk of bits that gets sent is called header, and tells the reader the de-
tails of the packets, such as its lenght, protocol used, source and destination,
and possibly some other fields useful to perform error detection.

The following picture shows an example of an IPv4 packet structure.

Figure 2.1: Structure of a packet

A packet switch takes a packet arriving on one of its incoming communi-
cation links and forwards that packet on one of its outgoing communication
links.

The sequence of communication links and packet switches traversed by
a packet from the sending end system to the receiving end system is known
as a route or path through the network.

End systems, packet switches, and other pieces of the Internet run proto-
cols that control the sending and receiving of information within the Internet.
The Transmission Control Protocol (TCP) and the Internet Protocol (IP)
are two of the most important protocols in the Internet. The IP protocol
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specifies the format of the packets that are sent and received among routers
and end systems. The Internet’s principal protocols are collectively known
as TCP/IP.

The typical model for computers communicating on a network is request-
response. In the request-response model, a client computer or software
requests data or services, and a server computer or software responds to
the request by providing the data or service. This model is also named
“client/server” communication model.

A different way for devices to communicate on a network is called publish-
subscribe, or pub-sub. In a pub-sub architecture, a central source called a
broker (also sometimes called a server) receives and distributes all data. Pub-
sub clients can publish data to the broker or subscribe to get data from it, or
both. Clients that publish data send it only when the data changes (report
by exception, or RBE). Clients that subscribe to data automatically receive
it from the broker/server, but again, only when it changes. The broker does
not store data; it simply moves it from publishers to subscribers. When
data comes in from a publisher, the broker promptly sends it off to any
client subscribed to that data.

2.1.2 The network’s core

In a network application, end systems exchange messages with each other.
Messages can contain anything the application designer wants; messages may
also perform a control function.

To send a message from a source end system to a destination end sys-
tem, the source breaks long messages into smaller chunks of data known
as packets. Between source and destination, each packet travels through
communication links and packet switches.

Packets are transmitted over each communication link at a rate equal to
the full transmission rate of the link. So, if a source end system or a packet
switch is sending a packet of L bits over a link with transmission rate R
bits/sec, then the time to transmit the packet is L/R seconds.

Most packet switches use store-and-forward transmission at the inputs
to the links. Store-and-forward transmission means that the packet switch
must receive the entire packet before it can begin to transmit the first bit
of the packet onto the outbound link. Let’s consider, for instance, a simple
network made by two end systems and a router in between, which takes as
input a stream of data from one end system and redirects such stream to the
other end system; as we mentioned, data streams are composed by several
different packets, which in turn are made by an appropriate number of bits.

Because the router employs store-and-forwarding, the router cannot trans-
mit the bits it has received at any given moment; instead it must first buffer
(i.e. "store”) the packet’s bits. Only after the router has received all of the
packet’s bits it can begin to transmit (i.e., "forward") the packet onto the
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outbound link.
As a consequence, if we refer to R as the bitrate or the link and to L as

the number of bits of each packet, we are able to compute the total delay
(i.e. the time that passes between the sending of the first bist and the arrival
of the last one): 2L/R. If the switch instead forwarded bits as soon as they
arrive (without first receiving the entire packet), then the total delay would
be L/R since bits are not held up at the router. But routers need to receive,
store, and process the entire packet before forwarding.

Each packet switch has multiple links attached to it. For each attached
link, the packet switch has an output buffer (also called an output queue),
which stores packets that the router is about to send into that link. The
output buffers play a key role in packet switching. If an arriving packet needs
to be transmitted onto a link but finds the link busy with the transmission of
another packet, the arriving packet must wait in the output buffer. Thus, in
addition to the store-and-forward delays, packets suffer output buffer queuing
delays. These delays are variable and depend on the level of congestion in
the network. Since the amount of buffer space is finite, an arriving packet
may find that the buffer is completely full with other packets waiting for
transmission. In this case, packet loss will occur: either the arriving packet
or one of the already-queued packets will be dropped.

Another duty that switches are charged of is packet forwarding. In the
Internet, every end system has an address called an IP address. When a
source end system wants to send a packet to a destination end system, the
source includes the destination’s IP address in the packet’s header (see Fig.
2.1). As with postal addresses, this address has a hierarchical structure.
When a packet arrives at a router in the network, the router examines a
portion of the packet’s destination address and forwards the packet to an
adjacent router. More specifically, each router has a forwarding table that
maps destination addresses (or portions of the destination addresses) to that
router’s outbound links. When a packet arrives at a router, the router ex-
amines the address and searches its forwarding table, using this destination
address, to find the appropriate outbound link. The router then directs the
packet to this outbound link. the Internet has a number of special routing
protocols that are used to automatically set the forwarding tables. A routing
protocol may, for example, determine the shortest path from each router to
each destination and use the shortest path results to configure the forwarding
tables in the routers.

In the following picture an example of what we have just described is
depicted. We have two end systems connected to the network, which is
made by several interconnected switches. An end system may wish to send
to another end system pieces of information by means of packets. Packets
travel through a series of switches (not necessarily the same switches) from
their source towards their destination. Inside each switch the header of the
packet is analyzed in order to compute the address of the next destination

26



and its associated output port; other operations may be performed, such as
error detection.

Figure 2.2: An example of a network

End systems (PCs, smartphones, Web servers, mail servers, and so on)
connect into the Internet via an access Internet Service Provider. The access
ISP can provide either wired or wireless connectivity, using an array of access
technologies including DSL, cable, FTTH, Wi-Fi, and cellular. But connect-
ing end users and content providers into an access ISP is only a small piece
of solving the puzzle of connecting the billions of end systems that make
up the Internet. To complete this puzzle, the access ISPs themselves must
be interconnected. This is done by creating what is called a network of
networks.

2.1.3 A network’s parameter: delay

Ideally, we would like Internet services to be able to move as much data as
we want between any two end systems, instantaneously, without any loss of
data. Unfortunately, this is an impossible goal, one that is unachievable in
reality; we have already seen a mechanism that causes packets to be delayed,
i.e. the store-and-forward policy implemented in routers.

As a matter of fact, computer networks necessarily constrain throughput
(the amount of data per second that can be transferred) between end systems,
introduce delays between end systems, and can actually lose packets due to
the physical laws of reality.

Recall that a packet starts in a host (the source), passes through a series
of routers, and ends its journey in another host (the destination). As a
packet travels from one node (host or router) to the subsequent node (host
or router) along this path, the packet suffers from several types of delays
at each node along the path. The most important of these delays are the
nodal processing delay, queuing delay, transmission delay, and propagation
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delay; together, these delays accumulate to give a total nodal delay. The
performances of many Internet applications are greatly affected by network
delays.

In this subsection we are going to define better these kinds of delay,
which represent a useful parameter in the evaluation process of a network’s
performances.

Let’s consider for instance a generic router of a network, which has some
input ports that feed it incoming packets, and as many output ports through
which it can redirect said packets. We can brake the overall delay in some
smaller delays, taking place at each router along the way: so, in general,
the longer the path toward the destination, the longer the packet will be
constrained to wait. Let’s then try to figure out the possible kinds of delays
at the router of the example.

When the packet arrives at router A from the upstream node, router A
examines the packet’s header to determine the appropriate outbound link
for the packet and then directs the packet to this link. In this example, the
outbound link for the packet is the one that leads to router B. A packet
can be transmitted on a link only if there is no other packet currently being
transmitted on the link and if there are no other packets preceding it in
the queue; if the link is currently busy or if there are other packets already
queued for the link, the newly arrived packet will then join the queue.

The time required to examine the packet’s header and determine where
to direct the packet is part of the processing delay. The processing delay
can also include other factors, such as the time needed to check for bit-level
errors in the packet that occurred in transmitting the packet’s bits from the
upstream node to the router under examination. Processing delays in high-
speed routers are typically on the order of microseconds or less. After this
nodal processing, the router directs the packet to the queue that precedes
the link to the next node in the network.

At the queue, the packet experiences a queuing delay as it waits to be
transmitted onto the link. The length of the queuing delay of a specific
packet will depend on the number of earlier-arriving packets that are queued
and waiting for transmission onto the link. If the queue is empty and no
other packet is currently being transmitted, then our packet’s queuing delay
will be zero. On the other hand, if the traffic is heavy and many other
packets are also waiting to be transmitted, the queuing delay will be long. It
is quite intuitive that the number of packets that an arriving packet might
expect to find is a function of the intensity and nature of the traffic arriving
at the queue. Queuing delays can be on the order of microseconds up to
milliseconds in practice.

Assuming that packets are transmitted in a first-come-first-served man-
ner, as it is common in packet-switched networks, our packet can be transmit-
ted only after all the packets that have arrived before it have been transmit-
ted. We denote the length of the packet by L bits, and denote the transmis-
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sion rate of the link from our router to the downstream router by R bits/sec.
For example, for a 10 Mbps Ethernet link, the rate is R = 10 Mbps; for a
100 Mbps Ethernet link, the rate is R = 100 Mbps. The transmission delay
is L/R. This is the amount of time required to push (that is, transmit) all
of the packet’s bits into the link. Transmission delays are typically on the
order of microseconds to milliseconds in practice.

Once a bit is pushed into the link, it needs to propagate to the next router
or host. The time required to propagate from the beginning of the link to its
end is the propagation delay. The bit propagates at the propagation speed of
the link. The propagation speed depends on the physical medium of the link
(that is, fiber optics, twisted-pair copper wire, and so on) and is in general
a little smaller than the speed of light. The propagation delay is therefore
the distance between two routers divided by the propagation speed. That
is, the propagation delay is d/s, where d is the distance between router A
and router B and s is the propagation speed of the link. Once the last bit of
the packet propagates to node B, it and all the preceeding bits of the packet
are stored in router B. The whole process then continues with router B now
performing the forwarding. In wide-area networks, propagation delays are
on the order of milliseconds.

There’s a big difference between transmission delay and propagation de-
lay. Transmission delay is the rate at which we are able to inject bits into
the link, whereas the propagation delay is the time that those bits take to
cross the link from the beginning to the end. The first parameter is hence
a function of the packet’s size, while the second is a funcion of the distance
between the two consecutive nodes. In contrast, transmission delay does not
depend on the distance nor does propagation time depend on the number of
bits.

In summary, we can compute the nodal delay as the summation of four
contributions.

dnodal = dprocessing + dtransmission + dpropagation + dqueueing (2.1)

The first three terms of the equation mostly depend on the hardware
capabilities of the system and on its configuration, as we have explained so
far. The most complicated and interesting component of nodal delay is the
queuing delay. Unlike the other three delays, the queuing delay can vary from
packet to packet. For example, if 10 packets arrive at an empty queue at the
same time, the first packet transmitted will suffer no queuing delay, while
the last packet transmitted will suffer a relatively large queuing delay (while
it waits for the other nine packets to be transmitted). For these reasons
this kind of delay is quite unpredictable, and currently object of studies and
papers.

Here, for explanation purposes, we are going to provide a few examples
about the behavior of the queueing delay, based on some simple assumptions.
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First of all, in order to avoid instabilities, we need to make sure not to
saturate the network: if we indicate the transmission capacity of the port
with R and we assume that packets of the same size (L bits) arrive with
constant frequency (a entities per second), we must grant that the ratio
aL/R is smaller than 1. Namely, that the sending capabilities of the port
are more powerful than the size of the incoming data stream, otherwise the
buffer associated with the port will keep growing up to the point it will have
to discard some packets.

Furthermore, if we now consider a scenario where the ratio aL/R is
smaller than 1 and the packets have all the same size, the behavior of the
queueing delay depends on how the packets arrive to the router. If in fact
packets arrive with a constant rate and equal interarrival times, each one
will have very low waiting times as the previous packet, which has arrived
a long time ago, has already finished its transmission. On the other hand,
if packets arrive in bursts, each one separated from the last one from the
proper amount of time in order to guarantee the non-saturating property
that we discussed before, the waiting time will vary greatly from packet to
packet. First ones to arrive, in a single burst, will have low (yet increasing)
waiting times, while the last one will have to wait a time almost equal to the
transmission time of all the previous packets.

In an actual network we cannot assume that packets have all the same
size, nor can we attribute some pattern to their interarrival times, so the
matter gets more and more complicated. Through this examples, though, it
is already possible to sense that there could exist some techniques aimed at
the successful reduction of the waiting times of packets in routers: in partic-
ular for this case, avoid bursts of messages and keep the sending frequency
as constant as possible.

In addition, real queues preceeding an output port have a limited size,
which greatly depends on the router’s capacity and cost. Because the queue
capacity is finite, packet delays do not really approach infinity as the traffic
intensity (aL/R) approaches 1. Instead, a packet can arrive to find a full
queue. With no place to store such a packet, a router will drop that packet;
that is, the packet will be lost. From an end-system viewpoint, a packet loss
will look like a packet having been transmitted into the network core but
never emerging from the network at the destination. The fraction of lost
packets increases as the traffic intensity increases. Therefore, performance
at a node is often measured not only in terms of delay, but also in terms
of the probability of packet loss. It will be then duty of the end systems
to detect that packet loss has occurred, through some network mechanisms,
and fix the problem, most likely by sending again the packet.

At this point we can compute the parameter called end-to-end delay, i.e.
the time that it takes to a packet to travel through the network from its
source to its destination. Specifically it is the lowest possible value that this
parameter can assume, according to the configuration of the network and its
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hardware resources. Assuming that a path composed by N switches exists
between source and destination of a certain packet

dend−to−end =
N∑
i=1

(dprocessing,i + dtransmission,i + dpropagation,i) (2.2)

As we mentioned, this is the value we obtain in a totally uncongested
network, where packets are sent out as soon as they arrive to a node. As
the traffic size increases, we are going to feel the effects on the queueing
delay at each node, that won’t be constant in time nor easily predictable.
A possible strategy we could implement to reduce the end to end delay is
not to reduce the single nodal delays, but to actually change the routes of
the packets in order to achieve an overall higher (and better) network uti-
lization. This solution involves the exploitation of optimization algorithms
that will compute the otpimal route that packets need to follow in order not
to stress some routers but, rather, to take maybe longer paths but through
little-used routers. This way we could balance the overall load on the net-
work’s elements and reduce on average the end to end delay. This is a very
advanced topic, though, that requires good knowledge of optimization prob-
lems and numerical computations; it will find more space in the last chapter,
where we are going to discuss some interesting new techniques of network’s
organization.

In addition to delay and packet loss, another critical performance measure
in computer networks is end-to-end throughput. It is the rate, instantaneous
or average, of bits that an end systems manages to successfully transfer to
another end system. Throughput and delays are inversely correlated: if
packets suffer delays due to congestion in the network, their arrival rate to
the destination will decrease, and so will the throughput.

Throughput may also suffer from the bottleneck effect. If, along the way,
there is a transmission link which has a low transmission capacity or needs
to be used by several different flows, then the overall througput will not be
greater than the particular throughput of that link.

2.1.4 Layered architecture

So far we have seen that the Internet, and communication networks in gen-
eral, are extemely complex systems. Packets, switches, routers, applications,
communication protocols are all elements that have to be defined, handled
and coordinated in order for the whole ensemble to work as intended.

The most important feature about communication networks is that they
are built following a layered architecture. This means that we have a hierar-
chical structure, divided in levels, each one providing certain services to the
levels above and exploiting the services provided by the levels below.

That’s the main idea; it may be even more complicated, at first, but it
leads to a definitely better organization of all the components involved and
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brings some additional degrees of freedom that come in hand throughout the
life of the network. A layered architecture allows us to discuss a well-defined,
specific part of a large and complex system. This simplification itself is of
huge value by providing modularity, making it much easier to change the
implementation of the service provided by the layer. As long as the layer
provides the same service to the layer above it, and uses the same services
from the layer below it, the remainder of the system remains unchanged
when a layer’s implementation is changed: changing the implementation of
a service is in fact very different from changing the service itself.

So, to provide structure to the design of network protocols, network de-
signers organize protocols -and the network hardware and software that im-
plement the protocols- in layers; what we are interested in is the service that
a layer offers to the layers above and below, the so-called service model of a
layer. A protocol layer can be implemented in software, in hardware, or in
a combination of the two.

Figure 2.3: Comparison between two protocol stacks

In the late 1970s, the International Organization for Standardization
(ISO) proposed that computer networks be organized around seven layers,
called the Open Systems Interconnection (OSI) model. The OSI model took
shape when the protocols that were to become the Internet protocols were
in their infancy, and the inventors of the original OSI model probably did
not have the Internet in mind when creating it. Because of its early impact
on networking education, the seven-layer model continues to be a reference
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point both in networking textbooks and in real applications. The seven lay-
ers of the OSI reference model, shown in Fig. 2.3 (b), are: application layer,
presentation layer, session layer, transport layer, network layer, data link
layer, and physical layer.

Figure 2.3 (a) anticipates that the Internet protocol stack consists of five
layers: the physical, link, network, transport, and application layers.

The application layer is where network applications and their application-
layer protocols reside. The Internet’s application layer includes many pro-
tocols, such as the HTTP protocol (which provides for Web document re-
quests and transfers), SMTP (which provides for the transfer of e-mail mes-
sages), and FTP (which provides for the transfer of files between two end
systems). For instance, certain network functions, such as the translation of
human-friendly names for Internet end systems like www.google.it to a 32-bit
network address, are also done with the help of a specific application-layer
protocol, namely, the domain name system (DNS). An application-layer pro-
tocol is distributed over multiple end systems, with the application in one
end system using the protocol to exchange packets of information with the
application in another end system.

The Internet’s transport layer transports application-layer messages be-
tween application endpoints. In the Internet there are two transport pro-
tocols, TCP and UDP, either of which can transport application-layer mes-
sages. TCP provides a connection-oriented service to its applications. This
service includes guaranteed delivery of application-layer messages to the des-
tination and flow control (that is, sender/receiver speed matching). TCP
also breaks long messages into shorter segments and provides a congestion-
control mechanism, so that a source throttles its transmission rate when the
network is congested. The UDP protocol provides a connectionless service to
its applications. This is a simpler service that provides no reliability, no flow
control, and no congestion control, but it is definitely lighter with respect to
TCP.

The Internet’s network layer is responsible for moving network-layer
packets known as datagrams from one host to another. The Internet trans-
port-layer protocol (TCP or UDP) in a source host passes a transport-layer
segment and a destination address to the network layer. The network layer
then provides the service of delivering the segment to the transport layer in
the destination host. The Internet’s network layer includes the famous IP
Protocol, which defines the fields in the datagram as well as how the end
systems and routers act on these fields. There is only one IP protocol, and
all Internet components that have a network layer must run the IP protocol.
The Internet’s network layer also contains routing protocols that determine
the routes that datagrams take between sources and destinations. The In-
ternet has many routing protocols and, although the network layer contains
both the IP protocol and numerous routing protocols, it is often simply re-
ferred to as the IP layer, reflecting the fact that IP is the glue that binds the
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Internet together.
The Internet’s network layer routes a datagram through a series of routers

between the source and destination. To move a packet from one node (host or
router) to the next node in the route, the network layer relies on the services
of the link layer. In particular, at each node, the network layer passes the
datagram down to the link layer, which delivers the datagram to the next
node along the route. At this next node, the link layer passes the datagram
up to the network layer. The services provided by the link layer depend on
the specific link-layer protocol that is employed over the link. For example,
some link-layer protocols provide reliable delivery, from transmitting node,
over one link, to receiving node. Note that this reliable delivery service is
different from the reliable delivery service of TCP, which provides reliable
delivery from one end system to another. Examples of link layer protocols
include Ethernet, WiFi, and the cable access network’s DOCSIS protocol.
As datagrams typically need to traverse several links to travel from source
to destination, a datagram may be handled by different link-layer protocols
at different links along its route. For example, a datagram may be handled
by Ethernet on one link and by PPP on the next link. The network layer
will receive a different service from each of the different link-layer protocols.

While the job of the link layer is to move entire frames from one network
element to an adjacent network element, the job of the physical layer is to
move the individual bits within the frame from one node to the next. The
protocols in this layer are again link dependent and further depend on the
actual transmission medium of the link. For each transmitter-receiver pair,
the bit is sent by propagating electromagnetic waves or optical pulses across
a physical medium. The physical medium can take many shapes and forms
and does not have to be of the same type for each transmitter-receiver pair
along the path. Examples of physical media include twisted-pair copper
wire, coaxial cable, multimode fiber-optic cable, terrestrial radio spectrum,
and satellite radio spectrum. Physical media fall into two categories: guided
media and unguided media. With guided media, the waves are guided along
a solid medium, such as a fiber-optic cable, a twisted-pair copper wire, or a
coaxial cable. With unguided media, the waves propagate in the atmosphere
and in outer space, such as in a wireless LAN or a digital satellite channel.

The least expensive and most commonly used guided transmission medi-
um is twisted-pair copper wire. For over a hundred years it has been used
by telephone networks. Twisted pair consists of two insulated copper wires,
each about 1 mm thick, arranged in a regular spiral pattern. The wires
are twisted together to reduce the electrical interference from similar pairs
close by. Typically, a number of pairs are bundled together in a cable by
wrapping the pairs in a protective shield. A wire pair constitutes a single
communication link. Unshielded twisted pair (UTP) is commonly used for
computer networks within a building, that is, for LANs. Data rates for LANs
using twisted pair today range from 10 Mbps to 10 Gbps. The data rates
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that can be achieved depend on the thickness of the wire and the distance
between transmitter and receiver. Modern twisted-pair technology, such as
category 6a cable, can achieve data rates of 10 Gbps for distances up to
a hundred meters. In the end, twisted pair has emerged as the dominant
solution for high-speed LAN networking.

Like twisted pair, coaxial cable consists of two copper conductors, but
the two conductors are concentric rather than parallel. With this construc-
tion and special insulation and shielding, coaxial cable can achieve high data
transmission rates. Coaxial cable is quite common in cable television sys-
tems. Coaxial cable can be used as a guided shared medium. Specifically, a
number of end systems can be connected directly to the cable, with each of
the end systems receiving whatever is sent by the other end systems.

An optical fiber is a thin, flexible medium that conducts pulses of light,
with each pulse representing a bit. A single optical fiber can support tremen-
dous bit rates, up to tens or even hundreds of gigabits per second. They are
immune to electromagnetic interference, have very low signal attenuation up
to 100 kilometers, and are very hard to tap. These characteristics have made
fiber optics the preferred long-distance guided transmission media, particu-
larly for overseas links. Fiber optics is also prevalent in the backbone of
the Internet. However, the high cost of optical devices, such as transmit-
ters, receivers, and switches, has blocked their deployment for short-distance
transport, such as in a LAN or into the home in a residential access network.

Figure 2.4: An example of the active layers in a transmission

Protocol layering has conceptual and structural advantages. As we have
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seen, layering provides a structured way to discuss system components and
modularity makes it easier to update system components. It is worth men-
tioning, however, that some researchers and networking engineers are strongly
opposed to layering. One potential drawback of layering is that one layer may
duplicate lower-layer functionalities. For example, many protocol stacks pro-
vide error recovery on both a per-link basis and an end-to-end basis; in this
case, though, being able to detect an error in the single link is much cheaper
than having to rend again the whole packet from source to destination, so
this duality may increase the performances.

A second potential drawback is that functionality at one layer may need
information (for example, a timestamp value) that is present only in another
layer; this violates the goal of separation of layers.

2.1.5 Link to TSN

In this section we have covered all the notions necessary to have a basic
understanding of what computer networks are and how they work. We have
noted that they are organized in layers, which give us a structured and
modular way of analysis. We have also commented on the fact that the
performances usually depend on a large number of factors, most of which
are not under direct control nor even predictable with sufficient accuracy.

TSN exploits the layered structure of the networks since, as we will see,
deals with a layer 2 particular implementation. According to what we have
said, this means that, in our considerations, we do not need to worry about
what happens in the higher levels and we only need to use what we get from
the physical network.

Another relevant aspect concerning TSN is the delay, which we have
analyzed in subsection 2.1.3. It is important to understand why it exists in
the system and is inevitable, how it is generated and what is its behavior
with the major dependencies.

Eventually, not stricly connected to TSN itself but to the possible im-
plications, it is worth keeping in mind the two communication models for
hosts in a network, namely client/server and publisher/subscriber, with the
associated features.

2.2 New trends in the automation world

2.2.1 Introduction to Industry 4.0

Industry 4.0 is a recent, strategic initiative whose goal is the transformation
of industrial manufacturing through digitalization and exploitation of poten-
tials of new technologies. An Industry 4.0 production system is thus flexible
and enables individual and customizable products.
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These requirements can be met only by radical advances in current man-
ufacturing technology. Most of their technical aspects are addressed by the
application of the generic concepts of Cyber-Physical Systems (CPS) and In-
dustrial Internet of Things (IIoT) to the industrial production systems. The
Industry 4.0 "execution system" is therefore based on the connections of CPS
building blocks. These blocks are embedded systems with decentralized con-
trol and advanced connectivity that are collecting and exchanging real-time
information with the goal of identifying, locating, tracking, monitoring and
optimizing the production processes.

Industry 4.0, as the first government-led initiative and inspiration for
other similar initiatives, comes from Germany, at the beginning of the last
decade.

Then, the concept of Industrial Internet has been brought up in North
America by the General Electric company in late 2012; it is seen as a tight
integration of physical and digital worlds that combines big data analytics
with the Internet of Things, and assumes a much broader application area
with respect to Industry 4.0.

In France, the concept "Industrie du futur" was introduced as a core of
the future French industrial policy. It is based on cooperation of industry
and science and built on five pillars: cutting edge technologies, support to
the French companies, training, international cooperation and promotion.

China also joined this trend with its "Made in China 2025" program, in
2015, which was largely inspired by the german Industry 4.0.

Figure 2.5: Characteristics of the four industrial revolutions

2.2.2 Core idea of Industry 4.0

The basic concept was first presented at the Hannover fair in the year 2011.
Since its introduction, Industry 4.0 is in Germany a common discussion topic
in research, academic and industry communities at many different occasions.
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The main idea is to exploit the potentials of new technologies and concepts
such as:

- availability and use of the internet and IoT

- integration of technical processes and business processes in the compa-
nies,

- digital mapping and virtualization of the real world

- "Smart" factory including "smart" means of industrial production and
"smart" products

- the concept of lean manufacturing, a production method invented by
Toyota and aimed at the optimal reduction of production costs end
efforts

Figure 2.6: Smart factory

Figure 2.6 shows the Industry 4.0 smart factory. The core process is digi-
tal to physical conversion in a reconfigurable manufacturing system. Recon-
figurable manufacturing systems are the latest advance in the development
of a manufacturing system. First step were fixed production lines with the
machines dedicated to the performance of specific tasks so only one prod-
uct could be produced. Next step were flexible production systems with
programmable machines that allowed production of a variety of different
products but offered no flexibility in the production capacity. The results
of the latest development are reconfigurable manufacturing systems able to
adapt their hardware and software components to follow ever-changing mar-
ket requirements of type and quantity of the products.
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Machines in Industry 4.0 factory are Cyber-Physical Systems, namely
physical systems integrated with ICT components. They are autonomous
systems that can make their own decisions based on machine learning al-
gorithms and real-time data capture, analytics results, and recorded suc-
cessful past behaviors. Typically, programmable machines are used, with a
large share of mobile agents and robots able of self-organization and self-
optimization.

Products in such factory are also "smart", with embedded sensors that
are used via wireless networks for real-time data collection, for localization,
for measuring product state and environment conditions. Smart products
also have control and processing capabilities. Thus they can control their
logistical path through the production and even control/optimize the produc-
tion workflow that concerns them. Furthermore, smart products are capable
of monitoring their own state during the whole life cycle. This enables ac-
tive, condition-based maintenance that is especially important for products
embedded in larger systems .

In Industry 4.0, the production elements have, beside their physical rep-
resentation, also virtual identity, a data object that is stored in the data
cloud. Such virtual identity can include a multitude of data and information
about the product, from documents, to 3-D models, individual identifiers,
current status data, history information and measurement/test data.

Important elements of the Industry 4.0 concept are also interoperability
and connectivity. A continuous flow of information between the devices and
components, Machine-To-Machine interaction (M2M), manufacturing sys-
tems and actuators should be established. Hereby the machines, products
and factories can connect and communicate via the Industrial IoT (mostly
based on wireless network). Another important topic is Human-To-Machine
(H2M) collaboration that is necessary as some production tasks are too un-
structured to be fully automatized. A lot of research effort is currently also
invested in so called collaborative robotics. Here human workers and espe-
cially designed compliant robots work together in the execution of complex
and unstructured work tasks at the manufacturing production line. Such
tasks were done completely manually before. Advanced user interfaces are
developed for new forms of M2H communication. They often include tele-
operation and are based on augmented reality environments. Between the
Industry 4.0 manufacturing technologies, 3D printing is often mentioned as
one of the key technologies. In combination with rapid prototyping methods
including 3D modelling, a direct digital thread can be established from de-
sign to production, facilitating a shorter time from the idea to the product.
Until now, however, additive manufacturing processes cannot always reach
the same quality as a conventional industrial process and some new materials
still need to be developed.

Software tools are crucial for operating of the Industry 4.0 smart factory.
Figure 2.7 depicts the well known pyramid structure of support software of
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modern production systems.

Figure 2.7: Automation pyramid

On the business level, the already mentioned Enterprise Resource Plan-
ning (ERP) tool is implemented. ERP supports enterprise-wide planning
such as business planning, supply chain management, sales and distribution,
accounting, human resource management and similar. Usually commercially
available solutions are implemented but they do not support fast adaptation
in production planning due to the unplanned events.

The second level in the traditional automation pyramid is Manufacturing
Execution System (MES). It supports production reporting, scheduling, dis-
patching, product tracking, maintenance operations, performance analysis,
workforce tracking, resource allocation and similar. It covers aspects such as
management of the shop floor and communication with the enterprise (busi-
ness) systems. Again, most of the software solutions available on the market
are centralized and not distributed to the shop floor elements.

The next operative level is process level control based on Supervisory
Control and Data Acquisition (SCADA) control system architecture followed
by controllers on machine/device level such as Programmable Logic Con-
trollers (PLCs), robot controllers and other controllers. The last level of the
automation pyramid is a machine/device level. In opposition to the top two
layers, this level has a naturally distributed control level.

ERP and MES tools represent basic software in the company and are
used since the nineties. Both systems have typically a modular structure
but are centralized in their operation and thus have limited capability for
dynamic adaptation of the production plan.

Another important issue is information integration among ERP, MES
and other software tools used in the company; problems such as database
integration need to be solved and communication protocols need to be de-
fined.
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In the end, it can be concluded that for the Industry 4.0 the classical
automation structure does not feature the best solution as it is not flexible
enough for adapting to the dynamic changes in the order flow and at the
shop floor. Distributed MES solution, where most of the functions are de-
centralized, is expected to be more suitable for the reconfigurable production
systems (Fig. 2.8): for full support of reconfigurable systems, a continuous
flow of information (vertical and horizontal integration) between all elements
should be realized.

Figure 2.8: IT support

This industry concept is not limited just to the production system but
it includes the complete value chain (from suppliers to the customers of
one enterprise towards the "Connected World" of all enterprises) and all
enterprise’s functions and services. It is clear that it is not easy to fulfill these
criteria, therefore only some "islands" of the Industry 4.0 concept currently
exist.

2.2.3 OPC UA

OPC Unified Architecture (OPC UA) is a vendor-independent communi-
cation protocol for industrial automation applications. It is based on the
client/server (or even publisher/subscriber) model and allows seamless com-
munication from the individual sensors and actuators up to the ERP system
or the cloud. The protocol is platform-independent and features built-in
safety mechanisms. Since OPC UA is flexible and completely independent,
it is recognized as the ideal communication protocol for the implementation
of Industry 4.0.

The OPC Foundation provides specifications for data exchange in indus-
trial automation. There is a long history of COM/DCOM-based specifica-
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tions, most prominent OPC Data Access (DA), OPC Alarms and Events
(A&E), and OPC Historical Data Access (HDA), which are widely accepted
in the industry and implemented by almost every system targeting industrial
automation.

The OPC Unified Architecture was born out of the desire to create a
true replacement for all existing COM-based specifications without losing
any features or performance. Additionally it must cover all requirements for
platform-independent system interfaces with rich and extensible modeling
capabilities being able to describe also complex systems.

The OPC UA specification is broken into several parts. [UA1] gives an
overview and [UA2] explains the security model. [UA4] defines the abstract
services, [UA3] the address space model and [UA5] the information model of
OPC UA. [UA6] defines the mapping of the abstract services to a concrete
technology.

OPC UA specifies an abstract set of services in [UA4] and the mapping to
a concrete technology in [UA6]. OPC UA does not specify an API but only
the message formats for data exchanged on the wire. A communication stack
is used on client- and server-side to encode and decode message requests and
responses. Different communication stacks can work together as long as they
use the same technology mapping.

Figure 2.9: OPC UA client

An OPC UA client consists of a Client Implementation using an OPC UA
communication stack. The Client Implementation accesses the communica-
tion stack using the OPC UA API. Note that the API is not standardized. It
may vary for different programming languages and potentially for different
communication stacks. Several communication stacks may exist for different
operating systems, programming languages and mappings. The clientside
communication stack allows the client to create request messages based on
the service definitions. The client-side communication stack communicates
with a server-side communication stack. The OPC Foundation standard-
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ized only this communication. Thus, everybody can develop his or her own
communication stack with its own API as well.

The server-side communication stack delivers the request messages to the
Server Implementation via the OPC UA API. Since the OPC UA API realizes
the abstract service specifications, it may be the same as on the client-
side. The Server Implementation implements the logic needed to return the
appropriate response message. The OPC UA Sever Implementation gets its
data from some underlying system. For example, this can be a configuration
database, a set of devices or some OPC server.

Figure 2.10: OPC UA meta model

The address space model defined in [UA3] is the meta model of OPC
UA. The base concept of the meta model is a node. Several node classes
are defined specializing the base node class (see Figure 2.10). Each node has
a fixed set of attributes depending on the node class. Some attributes are
mandatory and some are optional. For example, each node class has a node
id uniquely identifying the node while the description attribute is optional.

Relationships between nodes are realized by references. References are
no nodes and do not contain any attributes, thus they are a very simple
construct. However, each reference is associated to a reference type. Al-
though the meta model already defines a reference type hierarchy and uses
those references as inherent part of the meta model (e.g. for defining a type
hierarchy), the reference hierarchy is extensible.

The specializations of the base node class represent different concepts of
the meta model. An object is a simple node that is typed by an object type.
The attributes of the node only contain data describing the object. However,
objects are used to represent real-world objects, software objects, etc. These
data are stored in several variables referenced by the object. A variable has
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a special attribute called value containing the data. Like objects, variables
have types, called variable types

Unlike all other attributes, the value attribute has no data type assigned
to it. The data type may differ for different variables and therefore each
variable points to a data type node representing a data type. Data types are
extensible, i.e. each server can define additional data types. Method nodes
represent methods in the address space. They contain information on how
to call the method (input parameters) and what will be returned (output
parameters). View nodes represent an excerpt of the address space. A view
typically restricts the data to the needs of a special user group or task and
hides unnecessary data. Clients can browse through the address space in the
context of a view.

In summary, the OPC UA meta model allows to define an information
model by defining object, variable and data types as well as reference types.
The specification already defines the base information model in [UA5] already
containing several base types. Vendors can extend this model to create their
own information model.

OPC UA is strictly related to the new trends of Industrial Internet of
Things and Industry 4.0 and all the other topics discussed so far as it provides
an effcient communication protocol for all the devices that may need to
exchange information in an industrial environment.

2.3 Time Sensitive Networks

Figure 2.11: Main TSN standards

The third section is finally dedicated to a proper and detailed introduc-
tion to Time Sensitive Networks.
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By "TSN" we denote a set of network standards being developed by the
Institute of Electrical and Electronic Engineers. These standards describe a
series of mechanisms and strategies, that can be implmemented in a com-
munication network, whose goal is to gain some deterministic control and
organization capabilities over the traffic flows in the network itself.

With particular reference to the ISO/OSI model discussed in section 2.2
(see also Figure 2.3), these rules are related to the layer 2, i.e. the network
layer.

Fig. 2.11 shows the main standards involved. The second and third
columns of the table birefly present the topic of the standard. It can be seen
that these mechanisms are quite different one with the others and involve
as many different aspects of network communication. It must also be noted
that most of the standards are still under direct development by the IEEE
organization, and therefore they are likely to be subject to various updates
in the future as the current versions are not the final ones.

As we mentioned, the final purpose of a time sensitive network is to
provide a higher degree of determinism about the delivery times of certain
messages, without changing too much the topology or the features of the
network. This means that, by adding some higher level mechanisms and
by properly configuring them, we are able to guarantee the maximum value
of the latency of the time sensitive packets. Another important property is
that we can choose a priori which packets are going to be subject to said
constraints and which ones are going to be free, with a perfect integration
of the two in one single network.

The standards shown in Fig. 2.11 are the rigorous way to approach the
topic, but conceptually we can group them in three big key elements: time
synchronization, traffic scheduling and system configuration.

Figure 2.12: Key elements of TSN

Later in this section we are going to address these three elements, along
with the related standards and solutions, providing a general idea of what a
time sensitive enabled network features and how it works and can be config-
ured.

We are not going to enter in the details about the actual implementation,
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as they mostly depend on the hardware and software platforms that host
the time sensitive network; furthermore these details will be addressed in a
complete way for our configuration in the chapter dedicated to the practical
tests.

2.3.1 Time synchronization

Time synchronization is one of the main building blocks of a working time
sensitive network.

All the elements of a network, and in general all the devices that are able
to receive and send messages, are equipped with at least one clock, in order
to be able to measure the passing of time. The problem is that, even if all
the clocks start at the exact same time, an inevitable drifting phenomenon
will occur; namely that, due some inaccuracies in the measurements, rel-
ative errors between the clocks will be generated and added up, until the
measurement offset becomes visible and potentially harmful.

Since what we are trying to build is a time sensitive network with a
high temporal accuracy required, it only makes sense that the nodes of our
network need to be synchronized in order to work properly. The exact reasons
why this is necessary are going to be more clear after the next subsection,
where we are going to see how we benefit from the fact that the clock share
the same concept of time.

The idea of time synchronization, and in particular of distributed clocks
in a connected system, is not a new feature of TSN. Standards and protocols
already existed, which provided the same service that we need.

One simple example is the Network Time Protocol (NTP). Active from
the mid-eighties, it allows clock synchronization between computer systems
over packet-switched, variable-latency data networks. The clocks that em-
ploy this protocol generally have an offset of a few hundreds of milliseconds
with respect to the Coordinated Universal Time (UTC).

Even though NTP is quite simple and already implemented, it cannot
be used in a time sensitive framework, and the reason is obviously its inac-
curacy. As we said the mean value of the offset is about some hundreds of
milliseconds, which is far too high for our purposes; the jitter of this delay
is also a problem, as it is extremely variable and depends on several factors,
and we can never be really sure about the maximum value of the offset itself.
In addition, there is no need to be synchronized with the the world reference
clock (UTC in this case): for a restricted set of devices such as the one we
find in a production plant, the reference clock could be anyone, and whether
this reference clock is in sync with the UTC does not really matter.

Approaching our solution, the IEEE 1588 standard describes the Preci-
sion Time Protocol (PTP), a precursor of the one actually implemented in
time sensitive networks. Its main drawback is that it does not feature that
level of interoperability that is requested in the new standards.
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So, with reference to Fig. 2.11, we are going to describe the IEEE 802.1
As-Rev and its gPTP (generalized Precision Time Protocol). As we said,
and as it is also reported in the table, the standard is strictly reated to the
previous IEEE 1588.

The first important feature of this procol is the so-called Best Master
Clock Algorithm. It is a routine executed at the start, when the protocol is
invoked, which allows to select between the available devices the one with the
best characteristics to be the master, i.e. the reference clock in the system;
all the other clocks, as a consequence, will be slaves. Each clock will send a
message to the network to detect other clocks, and then perform a data set
comparison. This compares data strings from each device and determines
which clock is best to maintain the timing network. Usually the relevant
parameters that are compared are the quality of the time source, namely its
accuracy and jitter, and the position of the clock; it is best in fact to select
a clock that is physically put in the middle of the network, so as to be able
to reach everyone of the slaves virtually in similar times.

Of course it is possible to choose manually the master clock, but this
routine provides a way to automatize the choice, also with generally better
results in terms of performances.

The BMCA has also some fault tolerance features as, if the current best
master happens to have a fault and to not be available anymore, it can be
executed again to find the second best master clock and to avoid the scenario
where the networks lacks a reference time.

Figure 2.13: Principle scheme of PTP
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Figure 2.12 shows how gPTP works. The grandmaster clock periodically
issues a sync packet containing a timestamp reflecting when the packet left
the grandmaster clock. The grandmaster may also issue a follow up packet
containing the timestamp for the sync packet. The use of a separate follow up
packet allows the grandmaster to accurately timestamp the sync packet on
networks where the departure time of a packet cannot be known accurately
in the initial sync message. Clocks that use a separate follow up packet are
known as two-step clocks. Some master clocks, known as one-step clocks,
can provide an accurate timestamp in the sync message itself, avoiding the
need for a second follow-up message.

A slave clock receives the grandmaster’s sync packet and timestamps
the packet’s arrival time using its own clock. The difference in the sync
packet’s departure timestamp and the sync packet’s arrival timestamp is
the combination of the slave clock’s offset from the master and the network
propagation delay. By adjusting its clock by the offset measured at this point,
the slave clock can reduce the time difference between it and the master to
the network propagation delay only.

Under the assumption that propagation delay is symmetrical, the slave
clock can compute it and compensate for it. This is done by issuing a delay
request packet that is timestamped on departure from the slave. The master
clock receives and timestamps this delay request packet, and the arrival
timestamp is sent back to the slave clock in a delay response packet. The
difference between these two timestamps is used to calculate the network
propagation delay. This delay request-response mechanism can measure the
end-to-end path delay between the master and slave clocks and can operate
over paths that include non-time aware switches.

IEEE 802.1 As-Rev introduces support for multiple concurrent timescales
and other faul tolerant features, which make it the most advanced standard
for industrial operations.

As one may guess, the performances suffer some degradation effects as the
network becomes bigger and bigger. Currently the best guaranteed perfor-
mance that can be achieved is an offset lower than 1 microsecond, provided
that the maximum distance from the master clock to any slave is not greater
than seven nodes. This makes sense, as the accuracy of the timestamps and
the delay requests inevitably decreases if the synchronization packets have
to travel through lots of nodes before arriving at the destination. However,
for limited-sized networks, a 1 microsecond delay is more than acceptable to
perform some real time tasks successfully.

2.3.2 Time aware shaper

The most important and fundamental mechanism that Time Sensitive Net-
works are based upon is the so-called Time Aware Shaper (TAS).

TAS is a kind of mask for the output interface of a single port of any
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device in the system. It allows us to control the output packet that will use
the communication link with a timely precision and some other features.

The 802.1Qbv standard describes this mechanism and other features con-
nected with it. Figure 2.13 shows the principle scheme of a Time Aware
Shaper.

Figure 2.14: Time Aware Shaper

The Time Aware Shaper basically consists in a list of named queues, all
connected to the transmission selection block that actually sends the packets
into the communication medium. Between the output of each queue and the
transmission selection block there is a gate, namely a controlled mechanism
that allows to block the packets or let them pass.

The packets that need to be sent out through the port implementing TAS
are first enqueued in one of the named queues. In particular, the PCP (a
field of the VLAN identifier present in the Ethernet header) is inspected in
order to figure out which queue is to be assigned to the packet. The queues
are in fact divided in classes, each one connected to a particular value of the
PCP field so that all the packets reporting the same number get enqueued
in the same class. Queue classes generally are made by just one queue, but
it is possible for multiple queues to be assigned to the same class.

In the example we have 8 queue classes, from class 0 to class 7, each one
linked with a specific queue.

Queues generally work following a First In First Out model. This means
that when a packet arrives at the queue it gets past the queue only if no
one else is currently enqueued; otherwise it is put in the last position of the
queue, with the the packets arrived before it having a higher exit priority.

The gates connecting the outputs of the queues to the transmission se-
lection block are controlled by means of the Gate Driver, which has the duty
of opening or closing the access. The Gate Driver is in turn driven by a
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so-called Gate Control List. As we can appreciate from the figure, the GCL
is a table containing all the relevant information needed to drive the gates:
every line defines a time window, and it is characterized by a duration and
by a binary number. The duration indicates the time after which the line has
to be updated with the next one in the list, while the binary number repre-
sents a bitmask of the combination of open and closed gates for the queues.
Usually the GCL has a limited number of lines, that are cyclically repeated;
therefore the summation of the durations of the time windows gives the cycle
time of the whole operation.

In the example of Fig. 2.13 we have four time windows, each one char-
acterized by its own duration, from T1 up to T4. The bitmask of the first
entry of the GCL has an integer value of 127, but that’s not relevant: what’s
important is the combination of zeros and ones whose purpose is to tell to
the Gate Driver which gates to close and which gates to open. Specifically,
from the initial moment of the cycle, for a time offset of T1, all the gates
but the one associated with the class 7 queue will be open, while the last
one will be closed. This because the bit number seven has value zero, while
bits from zero to six have value one.

Similarly, when the second window is activated, namely from time T1 to
time T1+T2 after the cycle’s start, no queue will be open. This means that
every packet in every queue will have to wait this whole window without
being transmitted. Even though this window does not make much sense for
now, the GCL represented in the example can actually be employed in a time
sensitive network; the reason why it is important to have this pause between
two windows will be more clear later.

Eventually we have one window of duration T3 where only queue 7 is
open and the last window of duration T4 equal to the first one.

As we said, this TAS just described is the main tool to be used in a
time sensitive network because it has some interesting properties. The first
property is that we can separate packets in different queues by means of their
PCP field. As it is also depicted in Fig. 2.13, the natural distinction would
be between time sensitive and best effort packets.

Recall that we have two main kinds of data flowing in the network. Some
of them have deadlines concerning their delivery time that have to be met,
while for the others it is not vital to respect any particular constraint, but
nonetheless it is important to try and achieve the best possible performance.
We call the first kind of data TSN, while the second kind is named best
effort.

So the obvious thing we could do would be to tag in different ways the
TSN packets and best effort packets in order for them to be sorted in different
queues. Then, by correctly switching the gate configuration we would be able
to decide whether to send as output a TSN packet or a best effort one.

That’s pretty much the main idea behind time sensitive networks. Let’s
go back and take another look at the schedule in Fig. 2.13, considering now
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that queue 7 is dedicated to TSN data while all the others are dedicated to
best effort data. Analyzing again the GCL we can see that the third window
is completely dedicated to TSN, while the first and the fourth are dedicated
to best effort data. Clearly it is not possible to send seven packets at the
same time in the communication link, therefore another mechanism will have
to be employed in order to choose the most suitable packet, but that’s not
relevant right now. In this way we managed to successfully separate TSN
packets from the best effort ones, which can also be seen as a disturbance,
and to dedicate one transmission window to the transmission of just TSN.

This is not trivial at all, especially if we consider the rates and speeds
involved in this kinds of processes. Usually, even with multiple queues like
in this case, we would have lots of best effort packets mixed with a few TSN
packets, most likely distributed with a random pattern among the queues.
In this scenario, even if we precisely knew the position of each packet in the
queues, it would be very tough to come up with some strategy that grants
us similar levels of control without completely changing the system.

Let’s now consider the second window, when all the gates are closed and
no packet is allowed to leave its queue. This window is called Guard Band,
and it is useful to maximize the performances in terms of jitter, at the cost
of a little waste in the bandwidth. Current output interfaces in fact do not
support preemption of packets. This means that if a packet has already
started its transmission, the source cannot stop it, and continue later, until
it is concluded. Preemption would be quite complex to implement and has to
be supported both on the sending and receving ends; devices must be aware
that there is a chance that the packet they are receiving can be interrupted
and resumed later. An easier alternative to preemption is blocking every
possible packet before a TSN window, so as to be sure that no packet is
transmitting at the start of the window. This way we are sure that TSN
packets will leave the devices right at the start of their associated window, if
they are available, without the need to abruptly truncate the previous best
effort packet, which would certainly cause it to be discarded. Obviously the
drawback is that we lose something in terms of available bandwith, as we
are forbidding the system to send anything during that window.

Figure 2.15: The use of a Guard Band

Ethernet frames have a maximum dimension in terms of bytes that they
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cannot exceed. This dimension is 1500 bytes plus 26 bytes for the header,
for a total of 1526 bytes, i.e. 12208 bits. Then, in order to be sure that every
previously transmitted packet has finished its transmission even in the worst
scenario, we arrange Guard Bands 12208 bits long: namely their duration
is the time needed to send in the link that number of bits, which of course
depends on the transmission capacity of the interface. For instance, in a
system with 100 Mb/s capacity, the duration of the Guard Bands will be
slightly higher than 120 microseconds, while for 1 Gb/s systems it will be
ten times lower.

It is clear that the more the cycle is filled with TSN windows, the more
we are going to need guardbands and so the more bandwidth we are going
to waste. Also, the switching itself between a configuration and another one
requires computational overhead for the system, that is not free, i.e. some
bandwidth is going to be wasted anyway. Therefore particular attention must
be paid in the generation of the GCL, in order to avoid this from happening;
for instance it would be good practice trying to organize the traffic so that all
the TSN packets pass in one single window, rather than with sparse windows
throughout the whole cycle time.

In a time sensitive network every device, hosts and routers, is supposed
to implement a Time Aware Shaper on every output port; or at least on
every port in which we want both TSN and best effort packets to flow. If
for some output ports we do not implement a TAS, those ports will only be
used to carry best effort data since, as we have said, we couldn’t guarantee
the delivery times.

Therefore we have also to assign an appropriate GCL to every port of
every device. The operation of producing a suitable GCL, that from now
on will be called schedule, for every node in the system is called scheduling.
The scheduling problem is a quite complex topic, which will be detailed in
section 2.4; here we are going to give a simple idea of what it means and
what are the main issues.

Let’s consider a generic network where, among the other nodes, a talking
host sends packets to a listening host; packets have to flow through one
router before arriving to their destination. The schedules we are interested
in are the one of the talking device and the one for the output port of
the router. Following the argument presented about the guardbands, we can
draft two schedules similar to the one in Fig. 2.14, namely with one dedicated
window for TSN packets preceeded by a guardband, and best effort windows
elsewhere. We cannot, though, pick the exact same schedules for both the
devices: we first need to consider the talking host and define a suitable
window that is activated when the TSN packets are available; then we have
to take into account the transmission delay and, therefore, activate the TSN
window of the router from the moment the packets get to the router until
the moment that they have all left. Once we know the offset and duration of
the TSN windows for both the schedules, we can compute the appropriate
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offsets for the guardbands and compute accordingly the offsets for the best
effort windows.

Clearly the matter gets more and more complicated if we consider more
nodes or more complex patterns of packets; it is also important to have
extreme accuracy in the computation of the trajectories and of the related
activation times for the windows, in order to fully exploit the control capa-
bility provided by the TAS and so to maximize the performances.

It is also worth noting that, in order to be able to compute an effective
schedule, all the features of the TSN packets have to be known a priori:
frequency, path, dimensions and so on.

This example is useful to give the idea that the scheduling problem for
a time sensitive network is a complex task, not conceptually but rather
from an implementative point of view. This problem is the subject of many
studies and academic papers, and tipically its solution involves optimization
methods and algorithms belonging to the operative research field.

At this point we can also see why it is so important that all the devices
in the network are correctly synchronized, namely why we need Precision
Time Protocol. The Time Aware Shaper, as the name itself says, is a tool
that strongly relies on the measure of the time that the device on which it is
implemented has. In particular, the coordination with the other devices in
the system is the element that ultimately allows TSN packets to meet their
assigned deadlines. If, for instance, the clock of a node along the path has a
delay of even some fraction of a millisecond with recpect to the master clock,
TSN packets will arrive during the guardband window or even before, and
as a consequence they will be constrained to wait unnecessarily. This would
in fact reduce the efficiency of our network.

2.3.3 System’s configuration

The last important feature of a time sensitive network is a generalized and
centralized configuration system. As we have seen, time sensitive networks
require a little bit more of effort for the configuration step with respect to a
classical network: TSN flows need to be registered, a proper schedule must be
computed and distributed to all the nodes, which have to behave according
to the time aware shaper model.

The standard IEEE 802.1 Qcc deals with this problem and presents some
mechanisms related to its solution. The idea is to rely upon a centralized
tool that implements in software the configuration steps needed to get the
network ready. The following figure shows the main acting elements.
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Figure 2.16: System’s configuration

The standards define two application programs that run in the system:
the Centralized User Configuration (CUC) and the Centralized Network Con-
figuration or Controller (CNC).

As the name suggests, the CNC controls the TSN bridges in the net-
work. The CNC is an application that can be run on any hardware and has
two primary responsibilities. First, it is responsible for determining routes
and scheduling the TSN flows through the bridged network. Second, it is
responsible for configuring the TSN bridges for TSN operation.

On the other hand, CUC is more of an interface of the system with the
user, and it is run on the end devices rather than on the core devices in the
network. The CNC communicates with the CUC to receive the communica-
tions requirements that the network must provide. The CNC considers all
the requests, computes the route for each communication flow, schedules the
end-to-end transmission for each TSN flow, and finally uploads the computed
schedule to each TSN bridge. As part of the schedule computation, the CNC
provides a unique identifier for each TSN flow. This unique identifier is used
by the TSN bridges to differentiate one TSN flow from another. The unique
identifier includes the destination MAC address and the VLAN ID and the
class. With these three items, the TSN bridges can identify the TSN flow
and transmit the flow according to the correct schedule.

These two elements are supposed to be a simple and integrated interface
for the user to interact with. By means of their cooperation the setup of the
network can be automatized as much as possible, without the need for the
end user to know the details.

The presentation made by Cisco [7] in 2017 describes the typical workflow
in setting up a time sensitive network. First of all, through the tools CUC
and CNC, we need to issue a request to invoke the Link Layer Discovery
Protocol, in order for the network to its configuration with all the nodes and
connections.
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Then the engineer has to register in the CUC the details of the TSN
flow that he’s interested in: dimension, frequency, path and so on. At this
point the CNC will compute a suitable schedule capable of meeting the
requirements requested by the engineer concerning the TSN flows. Note
that this step may fail as there may not exist a feasible solution for the
sheduling problem.

Figure 2.17: The computed schedule

The user may also want to see the computed schedule before starting
the network. Figure 2.17 shows the result with all the relevant information
concerning the two TSN flows, 1 and 2.

Eventually, if the expected performances are satisfactory, the schedule
will be distributed and the TSN packets will start to flow in the network.

What has just been presented is the ideal goal described in the standards.
In practice the situation is quite different as a general, vendor-independent
system configuration tool does not exist yet. Commercial solutions do exist,
but are clearly limited as they do not offer that level of interoperability
and flexibility seeked in the standards. They do furthermore depend on the
specific hardware provided by the individual producers (Cisco, for example).

2.3.4 Credit-based shaping

So far we have seen that the Time Aware Shaper is the main mechanism to
be used in order to control the output flow of a port in a more deterministic
way.

It is not mandatory, though, to employ only the TAS in our output
interfaces. Let’s consider for instance the example in Fig. 2.14: during
the first and the fourth time windows, seven queues are open at the same
time, but it is not possible for seven different packets to be sent in the
communication medium simultaneously. Therefore an additional mechanism,
able to choose the most suitable packet in these kinds of situations, is needed.

In this subsection we are going to describe the Credit-based shaper, which
can be such a tool, even if it is more related to the original concept of time
sensitive networks rather than a current optimal solution.

The idea of time sensitive networks wasn’t born as it is, but it is de-
rived from what is called Audio/Video bridging (AVB). The first developers
weren’t interested in obtaining bounded and deterministic delivery times,
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but rather to get an effective synchronization on the transmission of audio
and video data over communication networks.

The problem was that, when transmitting a video over internet for ex-
ample, the end receiver needed to receive audio packets along with their
corresponding video packets in order to be able to reconstruct the media
with the perfect synchronization between the two tracks. It was therefore
important to avoid bursts of consecutive packets all belonging to the same
class, and rather to get a good mix of the two types. Then, the first attempts
to build traffic shaping mechanisms in the output interface of the network’s
nodes were made, leading to what is now the Time Aware Shaper.

Even now, in some documents, TSN and AVB are two interchangeable
acronyms, like for instance in the datasheet of components such as the Net-
work Interface Controller, in order to indicate or not the hardware’s support
for that technology.

As we said, Credit-based shaping is a possible solution to the AVB prob-
lem because it exploits dynamic priorities; its reference standard is IEEE
802.1 Qav. We define two traffic classes, typically named class A and class
B, and we assign to each one of them a different output queue. Note that
this mechanism can be used alone or in parallel with anoter one, e.g. in
two of the best effort queues of the TAS in Fig. 2.14. Each class has a
dynamic priority parameter that is called credit; since it is a priority, every
time that the parameter of A or B is positive and greater than the one of the
other class, its packet is eligible for transmission if no one else is currently
transmitting.

Queues’ priorities are dynamic, therefore change in time. In particular
we also need to define two extra parameters for each class: a sendSlope and
a idleSlope. Then, as the names suggest, the credit of each class will be
decreased with a rate equal to sendSlope whenever packets from its queue
are occupying the communication medium, while it will be increased with a
rate idleSlope when another queue is transmitting. Also, whenever a queue
is empty, its credit is reset to zero.

So the idea is quite simple: we are basically using a negative feedback in
order to obtain balance in the sending rates of the two queues, by lowering
the priority as long as a queue is transmitting. Therefore there won’t exist
a queue which always has the highest priority, but they will swap this role.
The following figure shows one example of the behavior of the credit for one
queue, along with the number of packets in the queue and the transmission
permissions.
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Figure 2.18: Example of CBS for one queue

The four slope parameters for the two queues are usually dimensioned
according to the available bandwidth at the port. The equation is the fol-
lowing

αsend,A + αidle,A = BW (2.3)

We have one degree of freedom on one parameter, and then the other is
automatically defined according to eq. 2.3. Furthermore, for queue B, the
slopes are swapped, namely the idleSlope is the sendSlope of queue A and
so on.

As a result we are able, by employing this mechanism, to avoid bursts of
packets belonging to the same class, which allows us to obtain a good syn-
chronization beetween the flows. In Audio Video Bridging this is extremely
useful and solves the problem of long transmissions on a single medium.

For time sensitive applications, though, Credit-based Shaping is not the
most suitable mechanism, as it is not possible to exactly control the output
flow of a port. So it has been presented not as an alternative to the TAS, but
rather as an example of another traffic shaping mechanism that can possibly
be used in parallel with the Time Aware Shaper. It has also been useful to
the initial developements of proper Time Sensitive Networks.

Lastly, the next chapter will present some tests about the Credit-based
shaper.
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2.4 The scheduling problem

In the previous parts of this chapter we have listed the main features of a
Time Sensitive Network described in the standards: time synchronization,
gating mechanisms and system’s configuration. However, these three key
features only are not sufficient for a time sensitive network to be properly
working. The missing element is indeed a suitable schedule.

As we have seen, so far we have described the basic tools that allow us to
completely control the traffic patterns in a network; how to use these tools
may be clear for an easy and simple network, but a general and effective
technique to handle all possible scenarios hasn’t been provided.

This because TSN standards themselves do not include sections dedicated
to a specific method to solve this problem, leaving its solution for the great
part to the users or to the vendors of TSN technology. That is also the
reason why this topic is treated in a different section.

By definition, the scheduling problem has the goal of producing a suitable
Gate Control List for every output port in the network so that the final
deadlines for TSN packets are met each and every cycle. Recall from section
2.3.2 that a Gate Control List is made by a number of lines equal to the
fixed number of windows in a period, and each line contains the duration
and the combination of open and closed gates for that window. The input
data for this problem are the network’s features such as its topology, number
of nodes, transmission rates, computation times, ad so on and so forth; also,
the complete set of TSN data has to be known a priori, with each packet
generally characterized by a source, a destination, a size and a period.

Typically the solution of this problem is computed offline, before starting
the operations of the network; then, by means of the configuration tools that
we have seen in the related subsection, the schedule is distributed among the
nodes and becomes effective until another updated schedule is produced.

So basically, like every other scheduling, our problem is a resource allo-
cation problem: we have a limited set of resources, (i.e. nodes and cables in
our network) and a set of tasks that need those resources. Each task needs
to use a subset of resources for a certain amount of time, one at a time in
a fixed order, and occupies them so as no one else can use them when it is
using them. Since the resources are limited, in general we cannot satisfly
immediately all the requests, but we have to come up with strategies aimed
at a correct ordering of the tasks. In the end, a solution is acceptable if
the deadlines of every TSN packet are met, namely if every packet manages
to reach its destination within its maximum latency. Furthermore, among
the possibly many acceptable solutions, it is common practice to select a
criterion which allows us to choose the best solution that minimizes or max-
imizes our evaluation criterion; this allows to make a more reasoned choice
and usually to obtain better performances. Therefore scheduling problems
can be found, most of the time, as optimization problems.
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A common example of scheduling problem is the one concerning the
processes that need to be run on the CPU, especially in a real time operating
system, which is a common feature in the automation world: every process
needs to perform some computations within a short period of time, and the
amount of operations that the CPU can execute is limited. So the scheduler
has to compute the precise order in which processes get to use the CPU,
similarly to how packets use the Ethernet cables in our framework.

The scheduling of a Time Sensitive Network, like any other scheduling
problem, is classified as a NP-hard problem, which implies that the time
complexity of an algorithm is not polynomial. This means that the time
required from a computer, to compute an acceptable (maybe optimum) so-
lution, increases expoentially with the number of tasks and in general with
the complexity of the problem. This, in addition to the variety of possible
ways to approach a solution, is probably the main reason why the topic is
not described in the standards. Instead it is widely treated in the academic
world, where numerous papers and work do exist which go in the deep of
such an optimization problem.

For this thesis project several scheduling algorithms have been studied,
and two of them are going to be described in the next paragraphs. Further-
more, a large part of the chapter concerning to the simulation is dedicated
to the implementation and evaluation of a scheduling algorithm.

One last thing worth mentioning is the fact that with the term scheduling
we actually mean two separate "programs", i.e. the actual scheduling of
the gate controllers and the routing. Routing is the set of rules that the
packets follow in order to correctly reach their destination: usually a routing
algorithm gives an ordered set of nodes which compose the path for a given
packet towards its destination. The most common kind of routing algorithm
gives the shortest path between two any given nodes in a connected network
(Dijkstra’s is a famous example), but there are also other kinds of algorithms
that aim at minimizing the congestion, e.g. redirecting some packets through
less congested and possibly longer paths.

So scheduling and routing can become a big, unique problem, which be-
longs to a specific class of scheduling problems. These problems are way
more complex with respect to the two individual problems considered sep-
arately but allow for more degrees of freedom in the solutions. The other
class of scheduling problem is instead composed by the routing and schedul-
ing problems solved separately, which means that the computational load is
lighter but the solution space is restricted with respect to the previous case.

We conclude this presentation part about scheduling with what we ex-
pect to have as a solution of the problem and some considerations about it.
The structure of the schedule that we expect to find will probably be similar
to the one presented in Fig. 2.14, as it has been highlighted. Our target
schedule will feature some TSN windows, and each one is supposed to be
preceeded by a so-called guardband (with all the gates closed) in order to
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guarantee the property that the transmission medium is free at the start of
the TSN window. So we will have at least three windows: one for TSN data,
one guardband and the remaining for best effort packets. In general, the
number of TSN windows will depend on the characteristics of the problem
but, even if the schedules had the same structure, the offset and duration of
each window would be very different and specific to the port. Also, for rea-
sons already widely explained, the number of needed guardbands will affect
the overall throughput of our system; therefore in the optimization problem
some additional constraint is necessary to guarantee that TSN windows get
scheduled as close as possible, in order to increase the throughput.

We proceed now to the description of two scheduling algorithms, namely
the ILP-Based Joint Routing and Scheduling algorithm [13] and the No-wait
packet scheduling algorithm [14].

2.4.1 ILP-Based Joint Routing and Scheduling

As we said earlier, this is an optimization problem that aims at solving at the
same time both the scheduling and the routing problems for a time sensitive
network.

First of all we need to name the set of inputs for our problem. We define
the following entities:

– V, the set of nodes in the network. Some of them are going to be
connected one with the other.

– E is the set of edges that represent the connections betweeen nodes; if
node i and node j have a connections then there will be an element in
E which is (i,j)

– D is the set of swithing delay information. It contains the delays that
packets suffer from their traveling through the network

– F is the set of real time tasks. If we assume that it is made by a number
K of tasks, each task fk belonging to F will be characterized by:

• sk, the source of the flow

• dk, the destination of the flow

• ctk, the cycle time of the flow

• rslk, the required slot lenght, namely the duration of its TSN
windows necessary to let the packets flow

• mlk, the maxmimum latency for the packets allowed by the ap-
plication

Then we need to express the needs of our schedule as constraints for
the optimization problem. There are four kinds of constraints that we are
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going to take into account: routing constraints, scheduling along a path
constraints, resource constraints and application constraints.

We start with the routing constraints and we define a help binary variable
xijk, which is equal to one if the flow k uses the edge (i,j) on its path, and
it is equal to zero otherwise. Using this variable we express the routing
constraints, namely that packets need to be generated in their sources and
travel through the network towards their destination

∀fk ∈ F :∑
j∈V |(sk,j)∈E

xskjk −
∑

j∈V |(j,sk)∈E

xjskk = 1 (2.4)

∀fk ∈ F,∀i ∈ V − [sk, dk] :∑
j∈V |(i,j)∈E

xijk −
∑

j∈V |(j,i)∈E

xjik = 0 (2.5)

∀fk ∈ F,∀i ∈ V :∑
j∈V |(i,j)∈E

xijk ≤ 1 (2.6)

The last equation expresses the constraint that a flow shall pass through
one link at most once in a period.

Later we define the constraints of the scheduling along a path. We define
here what we call scheduling variables:

– tijk is an integer which defines the beginning of a time slot on link (i,j)
of flow fk; it belongs to the interval [0; ctk-1]

– oijk is a positive integer variable that states an offset of a time slot as
a number of full cycles of length ctk

In this way we can express the position of a time slot on link (i,j) as tijk
+ oijk*ctk. As a consequence we have:

∀fk ∈ F,∀(i, j) ∈ E :

tijk + oijk ≤ xijk ∗M
(2.7)

∀fk ∈ F,∀i ∈ V − [sk, dk] :∑
j∈V |(i,j)∈E

(tijk + oijk ∗ ctk) −
∑

j∈V |(j,i)∈E

(tjik + ojik ∗ ctk)

≥ msdi ∗
∑

j∈V |(i,j)∈E

xijk

(2.8)
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M in the first equation is a big arbitrary constant, and it is useful to put
the scheduling variables to zero if the flow does not use link (i,j). The second
equation, instead, expresses the constraint that the scheduled windows on
two consecutive nodes along the path do have to take into account the worst
case delay of the link that connects them, namely msdi.

The resource constraints have to make sure that any two scheduled TSN
windows do not overlap one with the other, granting that we do not re-
quire from the system any more resources than it has. We define the binary
variable aijkluv

∀(fk, fl) ∈ F × F |l > k,∀(i, j) ∈ E

∀(u, v) ∈ {u ∈ N|u ≤ lcm(ctk, ctl)

ctk
} × {v ∈ N|v ≤ lcm(ctk, ctl)

ctl
}

(tijl + v ∗ ctl)− (tijk + u ∗ ctk)
≥ rslk −M ∗ (3− aijkluv − xijk − xijl)
(tijk + u ∗ ctk)− (tijl + v ∗ ctl)
≥ rsll −M ∗ (2 + aijkluv − xijk − xijl)

(2.9)

The binary variable is useful to activate one constraint or the other. In
particular, we are imposing that for any two given windows on the same
port, either the first ends before the start of the second or the other way
around, therefore without any overlapping.

The last set of constraints concerns the deadlines imposed by the appli-
cation to the TSN flows.

∀fk ∈ F :∑
j∈V |(i,dk)∈E

(tjdkk + ojdkk ∗ ctk) −
∑

j∈V |(sk,j)∈E

(tskjk + oskjk ∗ ctk)

≤ mlk − rlsk

(2.10)

Equation 2.10 limits the latency of the actual transmission of packets
with the constraint imposed by the application.

Eventually we need to provide a suitable cost, namely a scalar function,
that depends on the parameters of our solutions, which is going to be mini-
mized.

min
∑
fk∈F

(
∑

j∈V |(j,dk)∈E

(tjdkk + ojdkk ∗ ctk)−
∑

j∈V |(sk,j)∈E

(tskjk + oskjk ∗ ctk))

(2.11)

The cost function of equation 2.11 is the sum of the latencies of all the
TSN flows. Reducing the latency is good practice as it introduces some fault
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tolerant properties in the system; as it may be intuitive, finishing the time
sensitive tasks as soon and as quickly as possible is far better than having
the them circulating in the network for a long time, even if they meet the
deadlines. Then this cost function can be updated with specific coefficients
for the latency of each packet in order to wheight them differerently according
to an arbitrary, and decided by the user, set of priorities.

To summarize, what we have just described is a proper integer linear
program, namely an optimization problem which has a linear cost function
and whose solution must be an integer. In partcular, equations from 2.4
to 2.10 express the constraints of the problem which in turn represent the
physical and logical characteristics of a scheduling problem; equation 2.11,
instead, expresses the cost associated to each particular solution, which has
to be minimized. Furthermore, while the constraints equations need to be
kept pretty much the same, the cost function can be adapted and chosen
according to the specific needs of the application; in general, changing the
cost function means changing also the optimal solution that the algorithm
will provide.

Since ILP problems are quite popular, specific software tools already exist
whose purpose is just to solve efficiently these kinds of instances. In [13], in
particular, the Gurobi software is used; Gurobi is a commercial optimization
solver, able to work with integer linear programs, quadratic programs and
other kinds of similar optimization problems. A brief and deeper explanation
on how the software works was not provided, but the results concerning some
test cases were shown. In particular comparisons were made with simpler
problems or simpler versions of this one, e.g. with routing and scheduling
solved separately: the results were in fact better with the presented joint
routing and scheduling integer linear program, which was able to achieve
lower latencies and higher network utilizations.

The main drowback of this approach, however, is that its overall capacity
is quite limited and, in turn, the time and resources required to compute the
optimal solution are very high. We mentioned that a scheduling problem
is a NP-hard problem and therefore quite difficult to solve. In the paper
a powerful computing unit with 128 GB of RAM was employed for over a
couple of hours, just to compute the solutions for a very restricted set of
tasks; the simulated scenario had up to 30 packets scheduled for each cycle.
This makes sense as all the combinations of possible solutions are virtually
infinite, but becomes quite limiting if we want to apply it to a practical
scenario.

For these reasons we are now going to consider a different kind of solution
for our problem, namely a heuristic algorithm, which does not grant an
optimal solution but allows to solve more complex problems.
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2.4.2 No-wait packet scheduling

This subsection is dedicated to the presentation of the no-wait packet schedul-
ing algorithm [14] for the solution of the scheduling problem in a time sensi-
tive network. We have seen that an optimal solutions could lead to excessive
execution times and resources required; the presented algorithm, being a
heuristic solution, is able to reduce the computational complexity and to
make tractable and solvable larger problems with respect to the previous
case.

The algorithm is actually derived from an already existing approach to
some scheduling frameworks, which is the job shop scheduling. Job shop
scheduling is a well known solution for the organization of jobs for the ma-
chines of a factory, because it has some interesting features that make it
particularly suitable for this framework.

Recall that we have a known set of TSN packets which have to travel in
the network and need to use the limited set of resources, namely switches
and cables; the goal is to assign slices of time to each packet in each switch
and cable in its path, so that it can successfully reach its destination within
the end of the cycle.

Conceptually the algorithm is quite simple, and it is based upon two
guiding principles that we need to follow while building the schedule: each
packet has to be scheduled as soon as possible, and also it never has to wait
along its path, as the name suggests. This means that, ideally, as soon as a
packet is generated, it finds a free "hallway" that directly connects its source
to its destination: this property is achieved by means of a correct positioning
of TSN windows on all the nodes in its path.

The function that performs this task is called "TimeTabling". We start
from an ordered sequence which contains all the TSN flows that we need
to schedule; aferwards, starting from the beginning and then proceeding in
order, we "place" every packet in the network assuming that it leaves the
source right at the start of the period. By "placing a packet" we mean
to schedule the appropriate TSN windows in each node of the path: these
windows must have a duration necessary to let the whole packet pass, and
so it will be proportional to the size; they also need to be delayed taking
into account the transmission, propagation and computation times that will
inevitably affect the latency of the packet. When a window in a port is
dedicated to a certain packet, the port is occupied and therefore cannot
be used by another packet. If, somewhere along the path, we find that at
least one port is occupied and so the packet that we are placing would be
constrained to wait, we need to restart the scheduling of the packet itself,
assuming that it leaves the source a little while later. This because we need
to satisfy the property that no packet is ever constrained to wait, for any
reason. So we have to pospone the departure of packets as long as we do
not find their path occupied by some previously placed TSN packets. Hence
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the intitial order that we use to place packets has a sort of priority role:
the first packets to be placed will in fact be able to leave instantaneously,
while the last ones will be, in general, constrained to leave after a while,
because the network is already partially occupied by other instances. Once
we have finished placing all the packets in the sequence, we can first of all
check whether or not they all fit in the assigned period; if they do, we can
also compute other two outputs for the timetabling algorithm which are the
critical flow and the span. The critical flow is the one flow, among the list of
TSN flows, which arrives at destination last; the span is in turn the arrival
time of the critical flow.

Algorithm 1: TimeTablin algorithm
function TimeTabling(sequence);
for each task in sequence do

start time = 0 ;
while start time < cycle time do

if every node in task’s route is free then
put TSN windows;

else
start time = start time + delta;
break;

end
end

end
critical flow = last flow to finish;
span = arrival time of critical flow;
generation = start time of each flow;
return critical flow, span, generation
The proposed no-wait packet scheduling algorithm consists in an iterative

research, among all the possible sequences of tasks, of the one that minimizes
the span. We have a function that, given one sequence, computes critical
flow and span, namely the timetabling; what we have to do is iteratively
change the input sequence of the timetabling to find the best possible span.
In particular the paper descibes a tabu search based on neighborhoods: we
take the current solution and the current critical flow, and then we create a
neighborhood of that solution by swapping every flow preceeding the critical
flow with the critical flow itself and by placing the critical flow before every
flow preceeding it in the current sequence. These two kinds of operations
are named respectively swapping and insertion, and allow to obtain a neigh-
borhood made by up to 2n-2 sequences, where n stands for the number of
tasks. Once we have a new neighborhood, we analyze every component of
the neighborhood (by means of the timetabling) and select the one which
has the best span as the current solution. The "tabu" part comes into play
whenever we find a solution which has the same critical flow as the previous
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ones; we have in fact to record in a list a certain number of flows, which
correspond to the critical flows of the last current solutions. The proposed
algorithm requires not to consider a solution as the current one if its critical
flow belongs to the tabu list, unless it has the best span encountered so far.
The dimension of the tabu list has to be decided by the user and it is a useful
parameter to tune the algorithm.

Another parameter that the user needs to chose is the number of insuc-
cessful iterations. The algorithm is in fact programmed to stop if it reaches
a certain number of consecutive neighborhoods visited without improving
the currently best solution. This measure is adopted because searching all
the possible sequences, namely all the permutations of n tasks, is virtually
impossible.

Algorithm 2: No-wait packet scheduling algorithm
function NWPS(TaskSet, limit);
initial solution = randomOrdering(TaskSet);
[critical flow, span, generation]=TimeTabling(initial solution);
best solution = initial solution;
current solution = initial solution;
while insuccessful iterations < limit do

neighborhood = generateNeigh(current solution, critical flow);
for each solution in neighborhood do

[critical flow, span, generation]=TimeTabling(solution);
end
current solution = best in neighborhood;
if current solution better than best solution then

best solution = current solution;
insuccessful iterations = 0;

else
insuccessful iterations = insuccessful iterations + 1;

end
end
return best solution
A remark about this no-wait packet scheduling algorithm (which holds

also for the ILP-Based joint routing and scheduling problem) is that its
output is just an ordered sequence of tasks, each one characterized by a
starting time; this specified starting time is the appropriate offset in the
period at which the packet should leave its source in order to avoid any
kind of waiting, according to the no-wait scheduling. Even if there is a on-
to-one correspondence, that is not equal to a proper schedule, as the one
shown in Fig. 2.14. In order to obtain a regular schedule, some additional
processing needs to be made: we need to reconstruct the paths of packets
and place the TSN windows where they need to be placed; then we need to
schedule guardbands before every TSN window, so as to grant the fact that
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the cable is free at the beginning of everyone of them; eventually we have to
fill the remaining parts of the period with best effort windows. All of that
must be compatible with the format of the time aware shaper, namely the
gating mechanism must be able to correctly read the information that we
are providing to it. As we said, this post-processing operation is quite trivial
and less time consuming with respect to the actual execution of the no-wait
packet scheduling, but it is still necessary make the system work.

In the end, No-wait packet scheduling is a good scheduling algorithm
as it tries to schedule every packet as soon as possible; this compression of
the schedules reduces the number of guardbands, therefore increasing the
throughput for best effort data. Furthermore, the fact that TSN tasks are
the first to be dealt with in any cycle grants us some fault tolerant proper-
ties, as we have time to compensate for possible inaccuracies in the model.
Eventually, it would be very easy to change the schedules, after an initial
computation, to take into account some additional tasks required by the ap-
plication: instead of recomputing all the schedules from the beginning, it
suffices to simply add the new flows at the end of the current sequence. As
a result, new windows will be placed in the system without affecting those
already placed in the previous computations. That’s another reason why we
try to minimize the span, i.e. to have more time available to possibly place
other tasks.

In the third chapter the no-wait packet scheduling algorithm will be im-
plemented and tested in simulations: some additional considerations about
its effectiveness, advantages and disadvantages will be presented and sup-
ported by the obtained results.
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Chapter 3

Tests

This chapter is dedicated to the description of the tests about Time Sensitive
Networks that have been carried out in order to evaluate performances and
implementation details.

3.1 Introduction to the tests

As we mentioned in the first pages of this thesis, the topic of Time Sensi-
tive Networking is well treated in the academic world and in general in the
web from a theoretical point of view. The documentation available is very
useful in order to understand the working principles of this new technology
with its implications, advantages and drawbacks. Some of it has been di-
rectly accessed and is thus present in the bibliography section after the final
chapter.

On the other hand, what is actually missing is a set of reference works
concerning the actual implementation of a time sensitive network. This is
mainly due to the fact that the standards themselves, defining the mech-
anisms and tools needed to successfully implement them in a flexible way,
are yet to be finished. Therefore the information necessary to start the pro-
duction of software and hardware components from the main producers is
incomplete or not up to date.

There are, though, a few works reporting and describing practical tests
which require quite common hardware and software components, that are
therefore feasible and suitable for the purposes of this thesis. They are not
meant to be employed in an actual industrial environment, but rather to be
educative and illustrative demos about TSN.

One example can be found on the Kalycito’s web page [9]. This company
has long been active in this field, and has provided a brief tutorial on how to
setup two computers to have a deterministic communication, also support-
ing OPC UA. It is based on the tests performed at the automation fair in
Hannover in 2018, described in the whitepaper also available in the webpage.
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But the most useful contribution to this thesis has been provided by
Intel, which also has a long term committment to the developement of TSN
tools. On the web page is available a detailed presentation concerning TSN,
with its features and possible use cases [10]. Moreover, the page refers to the
Intel’s account on GitHub, where a series of demos is present [11].

The GitHub page is organized in three branches, two of them dating
back to April 2019 and the master one created in October 2020, while I
was researching the topic. The newest branch is actually not complete and
is waiting to be provided in the next future with the suitable code and
explanatory guide; not to mention that the required hardware is brand new
and not too easy to find on short notice. Hence we focused on the second
branch, the one named "apollolake-i".

This branch is in turn divided in four demos, and has a very detailed
and in-depth guide which is supposed to cover all the steps, from getting the
hardware to evaluating the results. For this reason we chose to follow the
instructions of the guide and recreate the tests from Intel, with the side goal
of understanding the mechanisms and the implementation details adopted
in order to make the test work.

The topology of the tests is quite simple: two devices connected with an
Ethernet cable on one of their ports, with possibly a router in between; one
of them acts as a talker, namely sends information, and the other one as a
listener. Both devices are equipped with an Intel processor belonging to the
Apollolake family, with an I210 as Network Interface Controller (NIC); they
are also supposed to run a version of the Linux operating system, which the
usual tool of choice in any experimental work such as this one, thanks to
its flexibility and configurability. The following picture shows the required
setup for the tests.

Figure 3.1: Setup for the tests

As we said, the test allows the presence of a switch connecting board A
and board B. However the switch had to be TSN-compatible, and we did
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not have one; so we tested the simpler configuration shown in Fig. 3.1.
The four mentioned demos, that make the test, have the following topics:

– Precision time protocol

– Credit-based shaping

– Time aware shaper

– TSN with OPC UA

Every demo has a dedicated folder from which the necessary code can
be downloaded. The user guide contains the information about how to use
the provided code; in particular the user can choose whether to use pre-
made scripts or to insert manually all the configuration commands from the
Linux’s terminal. Clearly the second option is the one that provides more
insight on what has been done, so that’s the one that has been adopted; also,
the Linux’s packets could be installed manually, as we did, or by means of a
Yocto project, a special file containing the configuration software needed.

3.2 Setup

Figure 3.2: Setup for the tests
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The previous picture shows the setup that we built to perform the tests.
On the desk there are two identical industrial PCs by Siemens, model

127E, which satisfy the hardware requirements of the test, namely they have
a Intel processor belonging to the family of the Apollolakes and have a I210
NIC.

They have two ethernet ports each, which are used to establish a direct
connection and to access the Internet; the second ports of the devices are
mutually connected via the ethernet cable, while the first ones are both
connected to the switch on the left, which is in turn connectet to the network
and provides both with information from the Internet.

The router is also useful to carry the VNC packets. VNC is a graphi-
cal desktop-sharing system used to remotely control another computer; we
launched a server application in the PC that was not connected to the mon-
itor, and then we launched a client application on the other one in order to
be able to see both desktops on one screen. By selecting the first port as
the access point for the client, we made all the VNC packets flow through
the router, namely a longer path but not interfering with the time sensitive
communications on the direct link. The desktops have been assigned differ-
ent colors, blue and red, in order to better distinguish them, and they are
both visible on the monitor in Fig. 3.2. In particular, the PC with the blue
desktop on the left has been named "pc-a", while the other, on the right and
with red desktop, "pc-b".

The operating system installed on both PCs is Linux Debian; we installed
four different versions of the kernel, for reasons that will be more clear later.
The kernel versions are the following:

– 4.19

– 4.19-rt

– 5.08

– 5.09

Right after the boot it was possible to access the GRUB’s menu’ and
select the desired version for the kernel. If nothing had been done, after a
timeout the operating system would be launched with the latest used version
of the kernel. The following picture shows the terminal’s output of pc-a about
its running kernel version.
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Figure 3.3: pc-a and its kernel version

Then we setup the IP addresses of the four ports on out system. We
organized them in the following way (note that the names in the system
for the ethernet ports were eno1 and eno2 for the first and the second port
respectively):

1. pc-a

- eno1: 192.168.31.32

- eno2: 192.168.3.32

2. pc-b

- eno1: 192.168.31.33

- eno2: 192.168.3.33

As we said, we used eno2 on both the devices for the time sensitive com-
munications, while eno1 was connected to the router for internet connection
and for the VNC application.

The last configuration step described in the user guide was related to
the CPU optimization, namely some settings that allow the CPU to perform
better exploiting all of its hardware capabilities, especially in a real-time
framework. In particular we had to check that the so-called C-states of the
CPU were disabled: it is a power setting available in the BIOS that limits
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the energy consumption when the CPU is idle, but reduces its resposive-
ness and overall performance. This option is normally enabled, but since
these PCs had already been used in the factory, in order to maximize the
performance they had already been optimized in this sense. Then we also
increased the operating frequency to the maximum allowable value, elimi-
nating the safety margin. As a result, by requesting the information about
the cpu, the terminal showed this output:

Figure 3.4: Working frequencies of the cores

With a frequency of 1.80 GHz per core, we reached the maximum value.
Before that, the working frequency was about the half with respect to the
maximum.

Eventually, as the last common feature to all the demos, we installed
Wireshark on the PCs, but most importantly on the receiver device. Wire-
shark is an open-source packet sniffer: it is an application that is capable of
detecting the activity at the specified port of the system and has some tools
useful to analyze it. We employed it mainly to measure the incoming pack-
ets through the direct connection between the two PCs, where time sensitive
data were supposed to flow, and to view the results by means of plots.

Figure 3.5 shows the activity measured by Wiresark, installed on pc-b, on
eno1, i.e. the packets incoming from pc-a related to the VNC server, carrying
the information about its desktop. In particular we activated Wireshark,
then launched the client VNC application which established the connection
with the other PC, opened a few windows and eventually closed the client
application. What we see on the graph is reasonable with what has been
done, namely at the start there is nothing flowing on the cable, then the
amount of packets transmitted each second is extremely dependent on what
we were doing on the other desktop. After closing all the communications,
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the packets’ rate goes back to zero.

Figure 3.5: A typical graph of Wireshark

3.3 Precision Time Protocol for Linux

The first test performed was related to the Precision Time Protocol. It is
a protocol that alllows a set of devices to come to an agreement about the
measure of the time in each one of them, in a distributed way; refer to section
2.3.1 for a more detailed explanation about PTP. In the user guide this is
the first demo described after the setting up chapter.

In Linux there exists a user space utility that is called ptp4l, which stands
for Precision Time Protocol for Linux. It implements the PTP in an auto-
matic way, and it only needs to be activated by a command on the terminal
or, more simply, by means of a script. We downloaded the latest version of
source code from the internet, compiled it and put it in the /opt folder.

As a result of its activation, the two physical clocks of the devices are
going to be synchronized with the best accuracy. The problem is that what
we are interested in is the synchronization between the two system clocks,
which are the ones actually used by the operating system. The difference
is that the hardware clock is maintained by an actual clock, powered by a
battery; this implies that this clock persists a reboot. However, accessing the
hardware clock requires an I/O operation, and therefore can be expensive
in terms of performance; for this reason it is seldom used other than at the
start of the operating system. As a consequence, there is actually an offset
between the system clock and the hardware clock, which means that ptp4l
alone is not sufficient to achieve a true and useful synchronization.
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So, from the package management interface of Debian, we installed the
utility phc2sys. It is a program which is usually supposed to be used alongside
ptp4l in order to synchronize two clocks on the same device, namely the
system clock and the hardware clock.

At this point the process should be clear. We have four clocks in the
system, and we want the time measurements of the two system clocks to be
as close as possible. In order to do so, we first need to synchronize the two
hardware clocks, from the master device to the slave device. Then, in each
device, we need to synchronize the physical clock with the system clock, but
in two opposite ways: in the master device we have to make the physical
clock follow the system clock, while in the slave device it is the system clock
the one who follows (the physical clock). In this way we create a chain
connecting the master clock to every possible slave clock belonging to any
node of the network.

The two utilities need to be invoked from the terminal using the follow-
ing commands. Therefore, every time that we needed to synchronize the
devices we would open two terminal windows, named respectively "ptp4l"
and "phc2sys".

In the master node:

/opt/linuxptp/ptp4l -i eno2 -A -2 -m & (3.1)

/opt/linuxptp/phc2sys -s CLOCK_REALTIME
-c eno2 -O 0 -w -m &

(3.2)

The first part of the commands is there to reach the folder where the
source code of the utilities is stored; then, the flags of 3.1 stand for:

– i: the interface’s name on which to send PTP packets

– A: to select delay mechanism automatically. Start with end-to-end
(E2E) and switch to peer-to-peer (P2P) when a peer delay request is
received

– m: show the output directly in the terminal

while for 3.2:

– s: specify the source of time, in this case the system clock is called
CLOCK_REALTIME

– c: specify the target, in this case the physycal clock at the port eno2

– O: specify the offset between master and slave to be 0 seconds
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– w: wait until the ptp4l is in synchronized state

– m: show the output directly in the terminal

Instead, in the slave node the following commands need to be entered:

/opt/linuxptp/ptp4l -i eno2 -A -2 -s -m & (3.3)

/opt/linuxptp/phc2sys -s eno2
-c CLOCK_REALTIME -O 0 -w -m &

(3.4)

The flags have the same meaning as the ones in 3.1 and 3.2. There are,
however, two important differences:

– in 3.3 the -s flag specifies that that device is the slave. Note that we
could have avoided specifying a slave at all, enabling the Best Master
Clock Algorithm to select autonomously which device is most suitable
to assume this role

– in 3.4 CLOCK_REALTIME and eno2 are switched, meaning that the
relationship between the physical clock and the system clock is in-
verted, i.e. in this case the system clock follows the physical clock

In the next pages we are going to show the outputs of these commands.
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Figure 3.6: Master’s ptp4l

Figure 3.7: Master’s phc2sys
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Figure 3.8: Slave’s ptp4l

Figure 3.9: Slave’s phc2sys
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In the first screenshot we can see that the node recognizes that it is the
master, after seeing that the only other node in the network has bee launched
in slave mode. For all the simulations we set pc-a to be the master and pc-b
to be the slave. Then it stops producing outputs because there is nothing
to tell to the user; sync packet will be periodically sent in the network to let
the slaves mode adjust their time.

In the second screenshot, the output ot the phc2sys utility continuosly
shows the measured offset between the system clock and the physical clock.
Recall that in this case the system clock is the "master". We can see that
roughly every second the estimates are updated. In particular we are in-
terested in the column of numbers righ after the word "offset"; that’s the
measure, in nanoseconds, of the delay between the two clocks in the moment
when the check was performed.

The same holds for the third and fourth image, where the same outputs
for the slave node are shown. In particular it is clear that the starting values
of the two clocks are very different, as the initial offset is quite big; then,
though, thanks to PTP, the physical clocks start to converge and reach a
sort of "consensus".

According to what we have said we can finally compute the overall de-
lay between one system clock and the ohter as the summation of the three
relative delays shown in the figures above. It is possible to qualitatively ap-
preciate that this value, in steady state, is always less than one microsecond,
since the measures are shown in nanoseconds.

This is a good result as it provides a simple and efficient way to synchro-
nize the clocks.

For the tests we created two scripts, named "master_synchronization"
and "slave_synchronization" and contanining 3.1, 3.2 and 3.3, 3.4 respec-
tively, to be launched whenever necessary. Recall that it is not mandatory
to specify a priori which is the master node, and therefore it is sufficient to
create one general script and let the nodes decide by themselves who is to
assume the role of master.

As far as the tests on this particular feature are concerned, we couldn’t
repeat the ones described in the user guide (in the first demo) as they required
access to the pins of the NIC, and since ours was integrated in the chipset
it wasn’t possible.

However we managed to arrange a simple and simplistic way to determine
whether or not there had been improvements from the use of PTP, by means
of the Linux date command, which prints the current date with nanosecond
precision. After a weekend where both the PCs had been turned of and
disconnected from any time source, we invoked the date command on both
the PCs virtually at the same time, i.e. pressing the enter key on the two
keyboards (see Fig. 3.2) as simultaneously as possible, before and after
calling the PTP. This is just a qualitative way to assess the effects of PTP as
the two commands cannot be entered at the exact same time. The following
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figures show the results.

Figure 3.10: Test in the master

Figure 3.11: Test in the slave

As it can be seen, before invoking the PTP the delay between the two
system clocks is about 0.8 seconds, while with the PTP enabled it becomes
less than 2 milliseconds. The previously analyzed outputs show that in
general it does not exceed 1 microsecond, so the difference is due to the
noisy conditions of the experiment. However we can still appreciate the fact
that a better synchronization has bee achieved.

We also exploited Wireshark to measure the amount of packets sent be-
tween one host end the other by the PTP;, the measured rate is approxi-
mately of 1 packet per second, which matches the updating frequency of the
delays, according to what is shown in figures from 3.6 up to 3.9.

Other tests have been later performed on other machines (not our two
industrial PCs), with the support of an oscilloscope, in order to precisely
evaluate the performances: other than confirming the 1 microsecond accu-
racy, the tests revealed that even in case the PTP is turned off for a relatively
short period of time, the measured drifting between the clocks is rather slow,
allowing a fault tolerant behavior.

3.4 Time aware shaper

Following the order used in the second chapter to present the main features
of TSN, we are going in this section to describe the characteristics and results
of the tests performed about the time aware shaper; in the user guide from
Intel, the next tests belong to the third demo.
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Recall that the time aware shaper is a mechanism that allows us to divide
the time in slices, and assign each time slice to one specific queue among the
set of available output queues in the output interface of the device; we can
also control the access of the traffic classes to the queues in order to separate
packets with different PCP tags in the header. With this tool, and a proper
scheduling, we can guarantee the delivery times of time sensitive packets in
a network where -potentially- a huge amount of best effort data is flowing.
Refer to section 2.3.2 for a more detailed description; for clarity, we report
again the principle scheme of a time aware shaper.

Figure 3.12: The time aware shaper

The time aware shaper, in Linux, is implemented as a qdisc, which stands
for queueing discipline. It is a feature of the particular Linux’s implementa-
tion of the network stack.

3.4.1 Linux’s output interface

As an operating system, Linux has inside its kernel some functionalities to
handle incoming and outgoing flows of information. Figure 3.13 shows a
scheme for the output interface.

The overall system that is in charge of these activities is called Traffic
Control, and has a userspace utility, which can be invoked by means of the
command tc. tc provides mechanisms to control the way packets are sent
and received, it provides a set of functionalities such as shaping, scheduling,
policing and dropping network traffic.

The main element of this Linux packet scheduler are the queuing disci-
plines (Qdisc), which are network traffic disciplines to create queueing rules
for reception and transmission. There are ingress and egress Qdisc for re-
ception and transmission respectively. The egress Qdisc provides shaping,
scheduling and filter capabilities for data transmission from the network
protocol layers. On the other hand, the ingress Qdisc provides filter and
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Figure 3.13: Linux’s output interface

dropping features for the reception of packets; ingress Qdiscs, however, are
not important for our purposes and therefore will not be considered.

For the egress Qdisc there are two basic types of disciplines: classless
Qdisc and classful Qdisc. The classless Qdisc is simple and does not contain
another Qdisc, so there is only one level of queuing; the classless Qdisc only
determines if the packet is classified, then delayed or sent. The classful Qdisc
can contain another Qdisc, so there could be several levels of queues; in this
case, there may be different filters to determine from which Qdisc packets
will be transmitted. We are going to focus mainly on classful Qdiscs.

Qdisc can be then used to shape the outgoing traffic in a more determin-
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istic way. For a classless Qdisc, the default discipline is the PFIFO_FAST,
which corresponds to a classic fifo queue: the first packet to arrive is the first
to be served as soon as one packet can leave the queue.

In Fig.3.13 it can be seen that the kernel space is organized in queues,
whose access is handled by the chosen queueing discipline. We mentioned
that the tc utility can be used to configure the traffic control system. For
instance, by entering the following command in the terminal

tc -s qdisc show dev eth0 (3.5)

the output will be the currently working queueing discipline at the port
named eth0 (in our system the ports were named eno1 and eno2).

Figure 3.14: Default queueing discipline

The previous picture has been taken on another PC running Debian, and
we can see that the default queueing discipline is the PFIFO_FAST (in this
case the system’s name for the output port was enp0s3).

3.4.2 Relevant qdiscs

After introducing the traffic control utility in Linux and the concept of queue-
ing discipline, we can in this subsection focus on the most important Qdisc
for our purposes.

As we mentioned earlier, the time aware shaper mechanism is imple-
mented by means of a particular queueing discipline called TAPRIO, which
stands for time aware priority. So, in order to correctly initiate a time sensi-
tive application, we need to configure the traffic control system of Linux to
use this specific Qdisc, via the tc utility.

In this subsection, in order to make a proper comparison between differ-
ent strategies about how to handle the outgoing packets, we are also going
to describe another queueing discipline, named MQPRIO. It stands for mul-
tiple queues priority, and it is characterized by the same traffic separation
as TAPRIO but it does not allow the user to choose which queue gets to
send its packets out: instead it is based on a fixed priority model, where the
queue with the highest priority, which has at least one packet enqueued, gets
to send it out.

Going back to TAPRIO, the following is the required command needed
to correctly configure it in the system.
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tc qdisc replace dev eth0 parent root handle 100 taprio
num_tc 3
map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2
queues 1@0 1@1 2@2
base-time 1528743495910289987
sched-entry S 01 300000
sched-entry S 02 300000
sched-entry S 04 400000
clockid CLOCK_TAI

(3.6)

As we can see the command itself is quite complicated and has a lot of
fields to be filled, therefore it has been broken down to several rows in order
to ease the explanation of every single part.

In the first row, as we already mentioned, we need to invoke the tc utility;
in particular what we want to do is to replace the currently active queueing
discipline with one of our choice, i.e. taprio. eth0 is the name of the output
port on which we want to act (in our system we used eno2), while the handle
is a simple number useful to identify the Qdisc.

The second row defines the number of queue classes that the system is
going to create; in this case we want to have three different classes. TAPRIO
supports up to 16 queue classes, and each one of them has to be assigned at
least one physical queue on the Network Interface Controller, so it is good
practice to first check in the configuration file how many hardware queues
are available.

Then we need to specify the mapping that exists between the traffic
classes of Linux and the previously defined queue classes. To this end,
TAPRIO uses the priority field of the sk_buff (socket buffer, SKB) structure.
The SKB is the internal kernel data structure for managing packets. Since
the SKB is a kernel structure, it cannot be directly set from user space. One
way of setting it from user space is to use the SO_PRIORITY socket option
by the sending application so that every packet sent by that specific socket
will belong to the same traffic class. sk_buff is a 4-bits field carried around
by packets; the 16 possible combinations are therefore associated to 16 dif-
ferent traffic classes. In the third row we need to insert, for each ordered
traffic class, the corresponding queue class that we choose to be linked with
it. So in this case we have 16 numbers that can range from 0 to 2, namely
the three queue classes that we defined in the previous row. In particular we
choose to assign traffic class 2 to queue class 1, traffic class 3 to queue class
0 and all the other traffic classes to queue class 2.
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Next we need to link the queue classes to the hardware classes provided
by the NIC. In this assignment we have to make sure that every queue class
has at least one hardware queue and not to leave gaps in the process. Again
we have to proceed following the order of the classes and this paradigm,
which can be a little confusing at first: in general we will always have a
structure like this "count@offset". Count indicates the number of hardware
queues assigned to that specific class, while offset is the numeric identifier of
the first queue assigned; the other ones will be the next in order.

So in the example we assign one queue to queue class 0, starting from
the offset 0 (namely the first hardware queue); then we assign to queue class
1 the next available queue (i.e. the one at offset 1); eventually we choose to
assign to queue traffic 2 the two remaining queues, which start from offset
2.

"Base-time" indicates the start time for the activation of TAPRIO. The
measure is expressed in nanoseconds and is referred to the clock specified in
the last row; in this case it says CLOCK_TAI, which is the International
Atomic Time. We want to highlight that this parameter is extemely impor-
tant because it is the starting time for the scheduling cycles. In order for the
system to work properly, it is crucial that all the nodes have synchronized
clocks (issue handled by PTP) but also that they have the same start time
for the cycles (or at least an integer multiple of the cycle time). Not having
an agreement on this parameter would make every other packet’s synchro-
nization mechanism useless, as it would be the same as if the clocks weren’t
synchronized; the implications have been largely discussed in section 2.3.1.
This is also the reason why it needs to be specified in nanoseconds.

Eventually, the last three rows that we haven’t described yet are used
to enter the schedule for the time aware shaper. The first part is fixed and
indicates that that row is an entry of the schedule; then we have two integers.
The first one is the bitmask related to the open-closed combination of the
gates, reported as an integer, while the second one is the duration, always
in nanoseconds, of the time window. First of all we can compute the cycle
time of the schedule as the summation of all the time windows: in this case
we have 1 millisecond cycles.

After that, we can extract from each row the information about which
queue classes are going to be open and which ones are going to be closed in
that window. In the example we cofigure TAPRIO so as to have one 300
microseconds window where only the first class has access to the communi-
cation medium, followed by another 300 microseconds window for the second
queue class and eventually a 400 micoseconds window for traffic class 2.

Note that this number does not match with the queue identifier, since we
need ones when the queue is open and zeros when it is closed, and therefore
the two are completely unrelated. It would be more clear if we translated
the integers in binary form, as we do next:
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– 01 = 001

– 02 = 010

– 04 = 100

It is also important to note that any combination of this 3-bits sequence
is supported. This means that any number from 00 to 07 can be entered as
a legit bitmask, and then its associated binary form will have to be looked
at. Four of the five combinations that have not been listed above involve
multiple queues being open at the same time; the most important combina-
tion, though, is 00. It is in fact the one that allows us to close all the gates
and to block every enqueued packet from going out, implementing therefore
the so-called guardbands that have been described in section 2.3.2. They are
basically used in place of a preemptive mechanism before a time sensitive
window, in order to let all the best effort transmissions terminate in time;
this way we are able to guarantee that the communication medium is free at
the start of every TSN window.

Once we have specified all of the listed parameters for the system, the
traffic control utility installs TAPRIO in the output interface of the desired
port and the schedule is going to be active. Of course the number of entries
and their content are a degree of freedom of the user, which has to carefully
produce them, either by hand or using some algorithm, as discussed in section
2.4.

Next we are going to describe MQPRIO, which is another kind of priority-
based queueing discipline. It is simpler with respect to TAPRIO as it does
not feature the gates system, but the packets to be sent out whenever the
communication medium is free are chosen by directly considering the highest
priority queue.

The following command, which is also derived from the tc utility, is
needed to install MQPRIO on one output port.

tc qdisc add dev eth0 parent root handle 100 mqprio
num_tc 3
map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2
queues 1@0 1@1 2@2
hw 0

(3.7)

We can see that it needs much less information, compared with TAPRIO
(3.6); this because it is a simpler queueing discipline. First of all there is no
need of a schedule, as the behavior of the interface does not depend on time.
Furthermore the information about the start time and the reference clock are
unnecessary, since devices do not need to be coordinated and synchronized.
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Both TAPRIO and MQPRIO have been tested and in the next subsec-
tion will be presented invidividually and in comparison one with the other;
even now, though, we could imagine that the fact that MQPRIO is simpler
on paper implies a common tradeoff, i.e. that its performances cannot be
as good as the ones we would expect from TAPRIO, which also needs ad-
ditional support features such as PTP. In particular one issue that is not
addressed by MQPRIO is preemption: TAPRIO allows to schedule idle peri-
ods (i.e. guardbands) in place of packet preemption to get the same results,
but MQPRIO does not have anything preventing best effort packets from
delaying the transmission of time senstivie packets.

Eventually in this subsection we need to introduce one last queueing
discipline, that is ETF (Earliest Tx Time First). Right in the manual, we
find that ETF allows applications to control the instant when a packet should
be dequeued from the traffic control layer into the netdevice. If offload is
configured and supported by the network interface card, it will also control
when packets leave the network controller.

ETF achieves that by buffering packets until a configurable time before
their transmission time (i.e. txtime, or deadline), which can be configured via
an option that is called delta. The qdisc manages to order packets by their
txtime so that they will be dequeued following the (next) earliest txtime first.
It relies on the SO_TXTIME socket option and the SCM_TXTIME CMSG
in each packet field to configure the behavior of time dependent sockets.

As we said, ETF is supposed to work alongside its hardware version
which has to be implemented in the Network Interface Controller and is
called Launch Time feature. The I210 NIC is one of the few NICs that
currently support this feature and for this reason is the most suitable for
TSN applications. Therefore, by employing these two mechanisms, we are
able to further improve the accuracy, both from the kernel’s side and the
network device’s side, with which packets leave the system. Note also that
ETF is not an alternative to TAPRIO or MQPRIO, but something to be
used in parallel.

We report below an example of command needed to install ETF in the
output port. The structure is the same as the ones seen before but with
the fields needed for etf; in particular in the last row we activate the offload
mode, meaning that the NIC supports Lauch Time.

tc qdisc replace dev eth0 parent root 1 etf
clockid CLOCK_TAI
delta 300000
offload

(3.8)
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3.4.3 Intel’s code

The software employed in the tests has some "general" components that be-
long to the Linux’s framework, such as its queueing disciplines; these features
have been presented in the previous subsection and are also described in the
manual. There are, though, "particular" components as well, namely some
userspace applications created by Intel specifically for these tests. They are
meant to be compiled and invoked by the user to ease the configuration of
the system and to actually send and receive packets. We analyzed the code
provided and extracted the particular features and implementation details
that we are going to list below, and that have already been partially covered.

We downloaded from GitHub two programs, named scheduler.py and
sample-app-taprio.c. As we said they are meant to be executed by the user
in order to perform the test and automatize the process of configuration of
the system.

In general, in order not to have to modify the code, these programs need
to be called with several arguments, some of which are text files where, for
instance, the schedule can be specified. This is the case for the scheduler.py,
the python program that has to be called to start the test. The name itself
can be a bit misleading as it does not generate the schedule, but it deals
with the configuration of the queuing disciplines according to a schedule
that the user must provide. This program in fact takes as input the name
of the interface on which the user wants to set the qdisc, plus two text files:
one for the schedule itself and one for the mapping of the traffic classes
with the queue classes. In the main, if the schedule file is a proper file,
the program starts to build the command to install TAPRIO (similar to
3.6), otherwise it gets ready to install MQPRIO. Then the program creates
another command to install the ETF qdisc. All the information about these
queueing disciplines is provided by means of the two text files, which have
to be created according to some "protocol" in order for the program to read
them correctly. For instance the mapping file has four columns: in the first
we have to put the traffic classes, in the second the corresponding queue
classes, in the third the word "ETF" (if we want to install it) and in the
fourth its pre-fetching time.

We want to highlight that this is a sort of local protocol, which means
that we have to generate the text files following its rules but it is not specified
in the general standards of TSN; it applies only to the scheduler.py. It would
be in fact possible to configure by hand the queueing disciplines, using the
commands discussed in the previous subsection.

The second program is sample-app-taprio.c. This program is more com-
plex as it is responsible for handling the TSN packets and can be used both
to send them and to receive them. With one input flag it is possible to specify
whether the particular instance should be working as a talker or as a listener;
then, according to the choice, the program launches a different thread which
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creates either a receiving socket or a sending socket. In the receiving case all
is left to specify is the output port through which the program should listen
and some other less relevant parameters about the plots. In the sending case,
instead, it is necessary to provide, first of all, the IP address of the receiving
device; then, also a text file which specifies details about the generation of
TSN packets and their traffic class must be added. We can in fact create a
generation pattern which will be cyclically repeated, with a certain number
of packets sent per cycle at the specified time windows; then we have also to
assign the packets a specific traffic class.

As we mentioned in the previous subsection, it is possible to tag the
generated packets and assign them to a specific traffic class by using the
SO_PRIORITY option when creating a socket.

Figure 3.15: A piece of code from sample-app-taprio.c

Figure 3.15 shows the portion of code in sample-app-taprio.c that uses
the SO_PRIORITY socket option to specify the desired priority for all the
packets leaving the socket just created. This means that an instance of this
application is able to generate only one type of TSN data, namely packets
belonging to one traffic class. In order to have multiple TSN data streams
it is necessary to invoke as many instances of sample-app-taprio.c.

When called in transmit mode, the program is also able to timestamp the
packets, so that on the receiving side it is possible to compute the latency,
namely the time it takes to one packet to travel from source to destina-
tion. Another important measure computed in the destination, namely in
the device where the program is called in receiving mode, is the interpacket
latency: it is the time that passes between two consecutive arrivals of packets
belonging to the same traffic class. Actually, as we will see later, interpacket
latency is the main parameter considered for the evaluation of the results.

The code and a more accurate description of it is available of the GitHub
account of Intel [11].

3.4.4 TAPRIO

Here we finally describe in deep the test carried out about the time aware
shaper, exploiting the TAPRIO queueing discipline in Linux.

Recall also that we followed the user guide provided by Intel [11], and
this is the third demo; refer to Figure 3.2 for the hardware configuration.
We had two devices, one sender and one receiver, which were supposed to
exchange TSN and best effort packets via the same communication medium.
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The objective of the test was to verify that the TSN mechanism named
Time Aware Shaper is in fact able to handle large amounts of packets and
at the same time guarantee the delivery times of the time sensitive ones,
especially in congested situations. To this end, some additional software had
to be installed in order to perform the test. In particular, from the package
handler, we installed the utility iperf3, which we later used to create the
best effort traffic. Iperf3 has client and server functionality, and can create
data streams to measure the throughput between the two ends in one or
both directions. Typical iperf output contains a time-stamped report of the
amount of data transferred and the throughput measured.

The following picture shows the problem that we are were trying to solve.

Figure 3.16: A piece of code from sample-app-taprio.c

We used the ping utility, which simply sends periodically a packet to the
specified IP address, reporting also the time taken to reach the destination
and come back. In this trivial test we first called the ping when no one else
was actually using the ethernet cable to communicate with pc-b, and after
a while we called the already mentioned utility iperf3 to generate a large
amount of packets, also directed to pc-b. As we can see, the round trip time
for the ping packets, which at the beginning had -even if affected by a high
variance- a low mean value, becomes ten times bigger.

This happens because the output interface of the device is flooded with
packets that are supposed to be sent through the same port. Conflicts arise
between said packets due to the fact that the hardware resources of the port
cannot satisfy all the requests, and therefore the port itself acts a bottleneck.
The generic ping packet arrives at the output port where the PFIFO_FAST
queueing discipline is installed; it is put in a queue where, possibly, many
other packets have arrived before and so it has to wait a long time before
having the chance to leave the device.
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So in the test we recreated a similar scenario, where we had large amounts
of generic packets and a few important packets (like the ping packets in the
previous example) directed towards pc-b, with the goal of keeping the latency
of the important packets bounded despite the traffic.

We also want to highlight that these conflicts are "local" to the output
port of pc-a: once packets leave it, they are already ordered and do not have
to wait anymore before reaching their destination. This is mainly due to the
simple configuration adopted in our test; in a generic network all the devices
experience conflicts, most of all routers, as they have multiple input ports and
they have to handle the parallel flows from each one of them. This is also the
reason why the most relevant parameter that we measured was interpacket
latency rather than pure latency. In this case latency is not affected by
the conflicts as when packets leave the port they have already been solved.
Interpacket latency, instead, directly depends on the conflicts because, if a
packet is constrained to wait, its interarrival time from the previous one is
going to increase. Again, these remarks apply to this particular case: in
general latency is affected by conflicts as well. For instance, when a packet
needs to wait in a router along its path toward the destination its latency
increases. But in our configuration this cannot happen. We will return to
this topic later and in the next chapter.

In order to simplify even more the test, we created several scripts to be
executed either in pc-a or in pc-b, containing the commands that we ex-
plained before. First of all we used PTP to synchronize the clocks of the
devices, setting pc-a as the master node and pc-b as the slave node. Then
we activated the listening applications in the listening device, namely pc-b,
for best effort data (iperf3 in server mode) and for the TSN packets (sample-
app-taprio.c in receiving mode). In pc-a we first activated iperf3 in client
mode, which acted as the best effort talker; next we invoked the scheduler.py
program in order to properly configure TAPRIO and ETF on eno2. Even-
tually we called sample-app-taprio.c in transmit mode to produce and send
TSN packets; we defined two instances of this program in order to send two
different traffic classes of TSN data. After a while we killed all the involved
processes and invoked the last script, which interpreted the data files pro-
duced by sample-app-taprio.c in order to plot the results about interpacket
latency. A .pcap file was also available to be opened with Wireshark in order
to see all the activity at eno2 in pc-b.

The details about the TSN flows are the following. Through the con-
figuration file for sample-app-taprio.c we set 1 millisecond cycles where two
streams of time sensitive packets were sent twice per cycle. In particular
they were arranged like this within the millisecond:

– 100 microseconds: generate a packet with traffic class 5

– 200 microseconds: generate a packet with traffic class 3
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– 600 microseconds: generate a packet with traffic class 5

– 700 microseconds: generate a packet with traffic class 3

In the TAPRIO queueing discipline we mapped the traffic classes in the
following way:

– traffic class 5 to queue class 0

– traffic class 3 to queue class 1

– all the other traffic classes to queue class 3

The schedule that we installed with TAPRIO had to be compatible with
the traffic patterns and, since this was a simple configuration, was made by
hand.

– from 0 to 100 microseconds: open queue class 3 (bitmask 08)

– from 100 to 200 microseconds: open queue class 0 (bitmask 01)

– from 200 to 300 microseconds: open queue class 1 (bitmask 02)

– from 300 to 600 microseconds: open queue class 3 (bitmask 08)

– from 600 to 700 microseconds: open queue class 0 (bitmask 01)

– from 700 to 800 microseconds: open queue class 1 (bitmask 02)

– from 800 to 1000 microseconds: open queue class 3 (bitmask 08)

The three lists reported are defined in three configuration files: the last
two are needed to complete the tc command, similar to 3.6. The first one
is particular to the applicaton as it defines the generation pattern of time
sensitive data. By looking at them we can see that packets belonging to
the same traffic class are generated at regular intervals of half a millisecond,
and the system is configured so that to send them out as soon as they are
available.

Thus the expected result is to have interarrival times for packets of the
same class of 500 nanoseconds. We could also expect a rate decrease for
the best effort data and in general of the global rate at the port: we are
in fact dedicating specific time windows to the transmission of one packet
at a time, therefore wasting some bandwidth. To this end, we must also
note that we did not provide for guardbands in the schedule as TAPRIO
itself is able to make up for them; before the transmission of every packet it
computes the time it takes for it to be completely transmitted and, if there
isn’t enough, does not even start it. In this way, at the beginning of every
new time window, the communication medium is free.

The next picture shows the output of the script that we created to setup
TAPRIO, which employed scheduler.py.
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Figure 3.17: Output of the tc script

We can see the mapping of all the traffic classes to the queue classes, and
below the time windows of the schedule, with the associated durations and
bitmasks.

As we mentioned, sample-app-taprio.c is programmed, when it is in re-
ceiving mode, to keep logs about the temporal information of all the incom-
ing TSN packets; another program provided by Intel deals with the analysis
of these logs and plots the results as a histogram. On the horizontal axes
we have different values of interpacket latency and on the vertical axix we
have, in logaritmic scale, the number of samples that have that value on
interpacket latency, with nanosecond accuracy

Figure 3.18: Histogram of the interpacket latency

93



Figure 3.19: Zoom of Fig.3.18

Before getting to the analysis of these results, we report the graph by
Wireshark of the measured activity at the input port of pc-b. On the hori-
zontal axis we have the time of the measurement while on the vertical axis
we have the average rate of information in packets per second. Below there
is a sort of legend, as we can filter the packets according to some criteria: in
this case we are able to tell the TSN packets from the others as they have
a VLAN tag and we plot their rate in red; the blue line, instead, represents
all the packets. So the best effort rate is the blue line minus the red one.

Figure 3.20: Wireshark’s graph
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We want to higlight that we repeated several times the same exact test,
and every time the results were very close to the ones reported in Figures
3.18, 3.19 and 3.20.

The first two figures show the histogram for interpacket latency, where the
time in the horizontal axis is reported with nanosecond accuracy: we can see
that TSN packets have interpacket latencies very close to the expected value
of half a millisecond, i.e. 500000 nanoseconds. The deviation, probably due
to noise, from the exact value does not exceed a few dozen of nanoseconds,
which is absolutely acceptable for any kind of application. In addition it can
be noticed that said deviations can have both plus and minus signs, namely
there are samples with interpacket latency greater or even smaller that half
a millisecond. This is due to the fact that if a packet is slightly late and both
the previous and the next are right on time, the first interpacket latency is a
bit greater than 500 milliseconds while the second is a bit smaller; therefore
it is reasonable to expect a "triangular" shape for the histogram. This also
implies that the vast majority of packets has an extremely high accuracy.

Let’s from now on focus on the Wireshark’s graph (Fig. 3.20), which is
extremely meaningful as it gives a general overview of what happens in the
system.

We can see that at the start the communication medium is occupied by
best effort data, as the red line shows that the TSN’s rate is zero. Further-
more we can spannometrically assess that the global output rate of the port
saturates the capacity of the ethernet cable. In the iperf3 utility we in fact
set the size of best effort data to be 1500 bytes which is, as we recall, the
maximum allowable dimension for an ethernet packet. We did this to put
ourselves in the worst scenario, where best effort data could possibly occupy
the communication medium, and therefore constraining all the other packets
to wait, as long as possible. So if we compute 1500*8*82000, which is the
initial bitrate, we get 984 million bits per second, i.e. almost the one Gigabit
per second of the cable.

In this initial part, but also in the next one, the rate itself of the best
effort data has some fluctuations: this is due to the fact that the system tries
to send out as many packets as it can but in the meantime it has to perform
other tasks such as schedule processes, execute them and so on. Therefore
there is no guarantee on the rate’s value.

Approximately 15 seconds from from the start we invoked the tc utility to
setup TAPRIO. We can see that for a couple of seconds the transmission of
all kinds of packets is interrupted; this behavior is reasonable as the system
in this period is updating its output interface, replacing the current queueing
discipline with a new one.

After the transient, the transmissions resume but with a clear difference:
the rate is now limited with respect to the one we had before. That’s one
of the main drawbacks that we mentioned: the fact that we are dedicating
some specific time windows to the transmission of single packets reduces the
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time available to all the others to be sent, therefore decreasing the overall
capacity of the port. The behavior of the best effort packets is the same as
before, only restricted to limited windows within the cycle. The plot makes
sense also because, qualitatively, the rate is almost halved, according to the
schedule we provided where almost half of the period (4/10) was dedicated
to TSN data.

After 40 seconds from the start, TSN packets begin to flow in their ded-
icated time windows, and thei rate is consequently contant at 4000 packets
per second, namely twice per millisecond for each stream, as intended.

In conclusion, the tansmission of the selected kinds of packets is not af-
fected at all by the other types of traffic that may use the same medium,
allowing a deterministic communication. This is the purpose of Time Sensi-
tive Networks.

3.4.5 MQPRIO

This subsection is dedicated to the test performed with the MQPRIO que-
ing discipline, descibed in section 3.4.2. We said that this is not a TSN-
compatible mechanism, but we used it to provide a comparison with respect
to the TAPRIO qdisc used in the previous subsection.

The features of the test are the similar to the previous one, so refer to
the related subsection for the traffic patterns details. This time, though, we
did not provide a schedule and installed MQPRIO instead of TAPRIO; we
also disabled the ETF queueing discipline, which was useful to provide more
determinism to the actual transmission time of packets.

First we executed the test without the interfering presence of the best
effort packets, so with the TSN data alone; these were the results.

Figure 3.21: First test with MQPRIO

96



The performances of the system shown in Fig. 3.21 are, even though
definitely worse with respect to the case with TAPRIO, not that bad con-
sidering the requirements of an industrial application. The vast majority of
packets has an interpacket latency between 450 and 550 microseconds, and
the more we get close to half a millisecond the more samples we have.

However this kind of solution is not suitable to be used, because in this
test the TSN packets are the only ones flowing in the ethernet cable, which
is therefore way more oversized than it needs to be.

In order to have a proper comparison with TAPRIO, we must recreate
the same operating conditions, i.e. we need to add the best effort packets.

Figure 3.22: Second test with MQPRIO

Figure 3.23: Wireshark of the second test with MQPRIO
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This second test shows that MQPRIO is way more sensitive to the pres-
ence of disturbances: if in fact TSN packets were the only ones in the sys-
tem, then the performances could even be acceptable, but if instead there
is interfering traffic the interpacket latency loses competely its deterministic
properties. We can see that now we have a meaningful number of samples
with up to 150 microseconds of difference from the nominal value of 500.
On the other hand, from Fig. 3.23, we can gather that the output capacity
of the port remains unchanged: we do not lose the two setup seconds and
most importantly we do not have any further limitation on the bandwidth.
Recall that the blue line represents the sum of TSN packets plus best effort
packets. At the start we have the usual number of roughly 82000 best effort
packets per second; then, when TSN data start to flow, the overall number
of packets increases and it is sligthly smaller that 86000.

What happens is that, since the system does not have dedicated windows,
the communication medium is occupied by a packet as soon the previous one
has finished its transmission: in this way the number of bits that actually
go out every second remains constant at the maximum value allowed by the
hardware capabilities. As we said, the queueing discipline chooses the next
packet according to the priority of the queue where it is waiting, and queues
are filled according to the traffic priority, so TSN packets have a higher
priority with respect to the others. The problem in this case is that if a best
effort packet is in transmission in the moment that a TSN one is created
and has to to be sent out, the time sensitive packet needs to wait until the
end of the current transmission. Furthermore, recall that this is the worst
possible scenario in terms of waiting times as the dimension of the best effort
packets is the biggest allowed for ethernet packets. So, in order to be able to
always send something, we lose the capability of sending out immediately the
TSN packets as soon as they are produced; therefore they are constrained to
wait and their interpacket latency isn’t deterministic anymore, as Fig. 3.22
shows.

A side note about Figure 3.23: when the TSN packets start to flow it
may seem that the overall output capacity of the port has increased, but
that’s not true. TSN packets are way smaller with respect to best effort
ones, so with the same amount of bits/second the number of TSN packets
is higher than the number of best effort packets. Therefore the measure of
packets/second increases, while the bit/seconds does not. Confirming this,
the new value of packets/second is a bit smaller than 82000+4000, which
means that less best effort packets flow every second, and in their place the
4000 TSN packets do.

Eventually we report the results of a test conducted with the default
queueing discipline, namely PFIFO_FAST. The system is expected to be-
have even worse with respect to MQPRIO, as it is not able to tell apart the
time sensitive packets from the others.
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Figure 3.24: Test with PFIFO_FAST

What happens in this case is that TSN packets get lost in the first-in-first-
out queue of the output interface, among the numerous best effort packets;
therefore, whenever the system has to choose which packet to send out next,
it can only take the first entry of the queue, which is probably a best effort
packet.

Eventually a comparison between Figures 3.22 and 3.23 with Figures 3.18,
3.19 and 3.20 is extremely helpful and meaningful in order to comprehend
the features, advantages and drawbacks of these queueing disciplines, in
particular TAPRIO. We can see that with TAPRIO we can guarantee in
all circumstances the interpacket latency value, at the cost of a waste of
bandwidth and an increased complexity in the system, due to the fact that
we need to compute a priori a suitable schedule (which could become non-
trivial in large networks). With MQPRIO, instead, system’s configuration
is easier and we do not lose bandwidth; also, we can still shape the traffic so
that TSN packets have a higher priority with respect to the others, and can
therefore circulate with approximately the intended patterns even if the best
effort queues are filled with pakets. But we cannot guarantee anymore an
effective bound on the interpacket latency; for this reason MQPRIO cannot
be employed in a time sensitive network.

3.4.6 Hardware limit

After presenting the main features of MQPRIO, in this subsection we go
back to TAPRIO and present another test about it. This time we changed
the schedule and the traffic patterns in order to explore the limits of the
hardware, namely the maximum performances allowed by the physical capa-
bilities of our system.
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In particular we chose to send out the two traffic classes traffic class, num-
ber 3 and number 5, ten times each milliseconds; therefore we modified the
previous schedule dividing each window by five, obtaining 200 microseconds
cycles. The traffic pattern was the following:

– 100 nanoseconds: generate a packet with traffic class 5

– 25 microseconds: generate a packet with traffic class 3

– 100 microseconds: generate a packet with traffic class 5

– 125 microseconds: generate a packet with traffic class 3

The schedule was the following:

– from 0 to 25 microseconds: open queue class 0 (bitmask 01)

– from 25 to 50 microseconds: open queue class 1 (bitmask 02)

– from 50 to 100 microseconds: open queue class 3 (bitmask 08)

– from 100 to 125 microseconds: open queue class 0 (bitmask 01)

– from 125 to 150 microseconds: open queue class 1 (bitmask 02)

– from 150 to 200 microseconds: open queue class 3 (bitmask 08)

Clearly the mapping og the queues was the same. Next we show the
results.

Figure 3.25: Second test with TAPRIO
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Figure 3.26: Zoom of Fig. 3.25

Figure 3.27: Wireshark of the second test with TAPRIO

Figures 3.25 and 3.26 show results comparable with the ones obtained in
the first and nominal test. However from Figure 3.27 we can see that the
Wireshark’s graph indicates that the sending rates of the TSN packets is not
constant at all: even from the user’s point of view, the system seemed to
struggle in the execution of all the tasks in parallel. We can in fact see that
the red line approximates the 20000 packets per second which would be the
target value, but it seldom manages to reach it: this may be due to the fact
that the custom program from Intel is not optimized to work in such heavy
conditions, while the already existing utility iperf3 had no problems in this
sense.
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However we can see something not very much reasonable happening in
the output port as well. As soon as the TSN packets start to flow, the best
effort number decreases apparently without any reason. Again, this may be
due to the fact that the task that we are requiring the system to execute
is heavier than it can handle. Confirming this, also the responsiveness and
reactivity of the system through the desktop experienced slowdowns during
the test, which then disappeared as soon as the involved tasks were killed.

In any case 20 packets every millisecond is a lot of information to be
sent by a single device, so we can still conclude that the TAPRIO queue-
ing discipline could be successfully employed in an industrial environment,
provided that all the other features that we mentioned have been taken care
of. To this end, we can also see this subsection as an introduction to section
3.6, which is supposed to list all the problems and inconsistencies that we
encountered in the execution of these tests, which so far may have seemed
simple and straightforward but actually were not so immediate.

3.5 Credit-based shaper

This section is dedicated to the test performed concerning the credit based
shaper, presented in section 2.3.4. Recall that CBS is neither a necessary
feature nor a sufficient one in order to correctly build a time sensitive net-
work; it is not present on the standards (see Fig. 2.11), and can be employed
at most in parallel to actual TSN mechanisms such as the time aware shaper.
This because, similarly to MQPRIO (even if they are in fact two different
traffic shaping mechanisms), they do not have the necessary properties in
terms of determinism and granted upper bounds on the transmission times.

So the reasons why we have this section in a work concerning TSN are
basically two. First of all, as we said, the CBS techology is a forerunner of
what is now called Time Sensitive Networking, as it was the first to deal
with strategies to shape the traffic in a more deterministic way. Second, it
was part of the Intel’s project about TSN: the second demo in the user guide
described a simple test, similar to the ones that we already presented, and
also provided some code on its GitHub account. In particular, this demo
was presented as the second one, namely before the one concerning the time
aware shaper; however, for the reasons that we just mentioned, we report
the result of this test as the final topic, just for the sake of completeness.

The test is based upon additional software components provided by Ope-
nAvnu, which is another organization active in the field of Time Sensitive
Networking. These programs implement a stream reservation protocol, based
on a time-varying credit. This stream reservation is aimed at keeping con-
stant the sending rate of packets, spacing them out as much as possible in
order to avoid bursts.

In the next picture we report again the working principle of CBS, with
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the typical behavior of the credit for a class.

Figure 3.28: Credit based shaper

Then we report the results of the tests: we employed the iperf3 utility to
generate disturbing best effort traffic, and then set up a time sensitive traffic
class, firstly without any traffic shaping mechanism. The required rate was
of 8000 packets per second.

Figure 3.29: Wireshark of the first test with CBS

In the following test, instead, we activated the stream reservation feature
and linked it to the time sensitive packets.
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Figure 3.30: Wireshark of the second test with CBS

As usual, the blue line indicates the rate of best effort packets while the
red one the rate of important time sensitive data. It is clear that whitout a
traffic shaping mechanim, the rate of packets is subject to the non determi-
istic behavior of the port, which causes the sending rate to have several and
large oscillations around the target value. In Fig. 3.29 this behavior can be
observed.

On the other hand, if we adopt credit based shaping, we can see that the
frequency of the time sensitive packets is consistently fixed at 8000 packets
per second. This test uses in addition the ETF queueing discipline, described
in the previous section, to speed up the sending process.

We want to highlight that a constant sending rate does not imply bounded
transmission times nor bounded and deterministic interpacket latencies. Con-
sider for instance Fig.3.23, where the results of the test performed using the
MQPRIO qdisc are shown: the sending rate of the TSN packets is constant
because the priority system of the queueing discipline manages to send them
out with a relatively low delay with respect to the time they are generated.
However, as we can see from Fig. 3.22, the interpacket latencies for the
same packets are all but deterministic, with values ranging from 350 to 650
microseconds. We could expect a similar behavior for these packets as well,
even though we were not provided with a piece of code able to actually com-
pute latencies; this is not in fact the ultimate purpose of credit based shaping
and, therefore, the reason why it is not part of the TSN mechanisms.

3.6 Troubleshooting

Approaching to the end of the chaper dedicated to the tests performed, we
are going in this section to list every problematic feature and implementation
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issue that we encountered in the execution of the tests.
So far, the relevant topics have been presented in such a way to be more

comprehensible and logically ordered, without following the actual order in
which they were made. Also, the results and procedures employed to get
them may have seemed simple and straightforward, but in reality we had to
study in deep the code and its features to solve some issues and actually get
to the end.

Some of these problems are local to the code provided by Intel, therefore
only meaningful to the execution of the tests, while some other problems
are more global and thus more relevant, especially in relation to a future
implementation in an industrial environment.

The user guide was partially useful, as it couldn’t contain every single
piece of information necessary to complete the tests. So we arranged our so-
lutions by researching the internet for similar problems or by directly looking
at the code in order to correct the mistakes and inconsistencies.

3.6.1 Kernel’s version

The first important issue that we are going to address is related to the version
of the kernel of the Linux’s operating system installed on the two industrial
PCs.

Recall from the first section of this chapter that the two 127E PCs were
running a Debian distribution, with the possibility of choosing between four
versions of the kernel. We started, in fact, performing the tests with the
oldest one, namely the 4.19. We were able to correctly verify the effective-
ness and the accuracy of the precision time protocol, but we encountered a
warning when executing the code from Intel. In particular, after the call to
the scheduler.py program, the terminal would give as output the following
warning: "taprio qdisc not found". On the other hand, the tests involving
MQPRIO worked as intended on the 4.19.

After some research we figured out that the problem was the support,
from the operating system, to the specific queueing discipline. Being a newly
implemented feature, TAPRIO is not supported by the old versions of the
kernel, in particular in the ones before the 5.3. Not only that: TAPRIO is
linked to a kernel module that has to be loaded when the tc utility is invoked,
and before that it has to be made available in the configuration files of the
kernel.

In the Linux’s system files it is possible to find the configuration file of
the kernel, which contains the information about the enabled modules. By
accessing it, it is possibible to verify the support to a queueing discipline. In
particular, the kernel module for TAPRIO is named sch_taprio. It can be
found in the queueing section, as the figures in the next page show.
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Figure 3.31: Configuration file for kernel 5.8

Figure 3.32: Configuration file for kernel 5.9

We gathered that in our compiled 5.8 kernel the sch_taprio module was
available but not enabled, therefore the same tc instruction did not work with
this kernel as well; it would have needed to be set and recompiled in order
for it to work. So we decided to install another kernel, namely the 5.9, where
the same module was already enabled. It was also necessary to update the
traffic utility iproute2 to the latest version. We can see the enabled support
to other mentioned queueing disciplines such as ETF and MQPRIO, which
are quite recent as well even if not as much as TAPRIO.

We accessed, just to check, the configuration file of the 4.19 version and
the previous option about sch_taprio was completely missing.
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After successfully setting the TAPRIO qdisc we invoked the lsmod utility
in order to see the currently loaded kernel modules, and the output correctly
showed the sch_taprio module among the most recently activated.

Figure 3.33: Currently loaded kernel modules

The user guide is not very much clear about this compatibility problem,
which in contrast represents a relevant issue for a possible implementation
of a time sensitive network: it is mandatory to use a new version of the
operating system in order to set TAPRIO.

Of course TAPRIO is just one realization of the general concept of time
aware shaper, which can be implemented in other ways and in other operating
systems. However it is currently the best solution to build an output interface
which provides so much freedom in the shaping of the traffic, i.e. compatible
with the standards, in particular considering the lack of information about
it on the internet.

3.6.2 Topology of the test

The next topic is not related to an actual issue as much as it is a consideration
about the test itself and the mechanisms needed.

Recall that the system is made by a talker device and by a listener device,
directly connected by an ethernet cable. Large amounts of information pack-
ets are produced in the talker device and, as a consequence, conflicts about
which packet should be sent first are created. The time aware shaper mecha-
nism is needed to solve said conflicts and to build a sequence of packets that
flow towards the listening device. In general it is supposed to exploit the syn-
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chronization between devices to minimize, thanks to coordinated schedules,
the latencies of the TSN packets. However, as we have already highlighted,
the conflicts are present only in the talking device and nowhere else; there-
fore an actual synchronization between the devices is not needed. Also, the
main parameter used to evaluate the results is the interpacket latency, which
is measured by the same clock, i.e. the one in the listening device. Thus,
whether it was synchronized with the other one or not, it did not really
matter.

As a consequence, even though the user guide suggested to do it, we
performed a test without first invoking the PTP and we got the same exact
result, as we expected. We are not showing the usual histogram, but instead
the output shown by the sample-app-taprio.c program.

Figure 3.34: Output of sample-app-taprio.c

The program is supposed to print the latency and interpacket latency
of every newly arrived TSN packet. As we can see the interpacket latency
is quite consistently of 500 microseconds, which is the expected value; the
pure latency, though, has negative values, which does not really make sense.
This is due to the fact that there is a relatively big offset between the two
system clocks used to register the departure and arrival times. In this case it
seems that pc-a’s clock is late with respect to pc-b’s, therfore the difference
between the two measures is still negative even though the arrival indubitably
happens after the departure.

Another feature that could be added to the system was a TSN-compatible
switch; the user guide describes the already presented TAPRIO tests also in
a configuration containing a TSN switch between the talker and the listener.
TSN swtches are normal switches that implement a time aware shaper. The
reasoning is then the same that we have already done: conflicts may arise
due to the fact that numerous packets can arrive at the switch at the same
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time via different ports and require to be sent through the the same port;
the time aware shaper is the tool used to solve this conflicts by means of a
suitable schedule that takes into account the a priori known incming traffic
patterns.

So we would have needed to provide a schedule, which in this case was
extremely simple thanks to the topology of the test, to the switch and then
repeat the procedure that we presented before. We had some options about
TSN-compatible switches from different vendors but we did not end up buy-
ing one, mostly because of their cost: the tests would have been, for sure,
more complete with a switch in the middle but, as we said, the main mecha-
nisms of TSN could be evaluated even without a switch. Furthermore it was
not actually necessary for the switch to be TSN-compatible: we said that
the conflicts are already solved in the talker device and, since the network
is very simple, the switch wouldn’t have conflicts at all. Therefore a time
aware shaper isn’t necessary and so a normal switch could work.

As a result we performed the same test on the eno1 port, the one con-
nected to the switch, creating a 3-hops path between the devices. As we
expected, the results were the same. The only difference was due to the
fact that the switch had a limited capacity (100 Mb/s) and therefore acted
as a bottleneck, further downsizing the maximum throughput of out talker
device. But, as long as the physical contraints were met, the test worked
exactly as the one without a switch (and as the one with a TSN switch
described in the user guide).

Figure 3.35: Test with the switch

An important remark about the two cases just reported. It was the par-
ticular and simple configuration of our system that allowed us to not employ
some of the previously described TSN mechanisms such as time synchroniza-
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tion and time aware shaping. In general, in a generic network, they both
need to be used by every node, in order to support every single time sensitive
flow from every possible source to every possible destination.

3.6.3 Crash of VNC

Here we are going to describe some issues directly connected with the use of
the TAPRIO queueing discipline. The objective is to highlight that, as part
of the TSN features, the new technlogies may still present some compatibility
issues with the ecosystem that need fixing.

Our initial configuration wasn’t the one shown in Fig. 3.2: we simply
had one computer connected to the monitor and to the network, which was
pc-b, and the other only connected to the first by means of one ethernet
cable on eno2. We needed internet connection occasionally on one PC, so
we chose to have it on pc-b and to keep the network as simple as possible by
only employing two elements. As a consequence, all the packets that needed
to be exchanged between pc-a and pc-b, other than the ones for the test,
had to flow on the only connection. That included the PTP packets and,
most importantly, the packets of VNC, which allowed us to see the desktop
of pc-a on the monitor connected to pc-b.

We were able to successfully perform the tests about PTP and MQPRIO
with this configuration but we noticed that as soon as we installed TAPRIO
on pc-a, namely the server for the VNC application, its desktop experienced
slowdowns and losses of responsiveness, up to a complete block. So we
couldn’t manage to start the talking process to send the data, because we
couldn’t control the system anymore.

At first we thought that this issue affected the whole system, but actually
it was a matter of communication of the VNC packets between client and
server. In some way, the change of the system’s output interface prevented
the VNC to establish a stable channel of communication, which made it
difficult to send the information about the desktop from pc-a to pc-b and
the commands in the opposite direction, and eventually it would kill the
process. Consider for instance Fig. 3.20, where the output activity for pc-
a is shown by means of a Wireshark’s graph. Recall that right after the
call to the tc utility to set TAPRIO, the system had a couple of seconds
of pause needed to reset its output interface; during this interval no packet
was allowed to leave the device, and that includes the VNC packets. This
phenomenon must have interfered with the VNC application and caused the
problem.

So, the main reason why we added the switch in our configuration was
to provide an alternative path that could be used by VNC to carry its pack-
ets, otherwise we would have needed an additional monitor, togheter with
another keyboard and another mouse, in order to be able to directly access
to pc-a. Since the tc utility and TAPRIO act on the single port, enabling
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the queueing discipline on an output port does not affect the behavior of
the other port. As a result we were able to successfully install TAPRIO and
still manage to see and control the desktop of pc-a and send commands to
it through eno1.

As we already mentioned in the previous subsection, the switch that we
used did not have any relevant feature, in particular concerning TSN. We
could have added another direct link between the PCs, but in this way we
would have lost the connection to the internet. It was not strictly necessary
for the tests but we used it, first of all, to download the Intel’s software from
GitHub, and then to download or update the other software components
needed for the test; not to mention all the research work about the issues
that we are describing in this section, most of which wouldn’t have been
solved without external help from the community. So we connected the eno1
ports of the two PCs to the switch, and then we used another port of the
switch for the internet cable. In this way both the PCs had direct access to
the network, which facilitated any possible update or download of code.

In conclusion we discovered that TAPRIO may cause some compatibilty
issues with the processes that use its output port. As far as VNC is con-
cerned, probably a patch could fix this problem, but the important takehome
message is that this queueing discipline is quite "invasive", as we have seen,
and the correct behavior of other programs must be ensured before employing
it.

3.6.4 Intel’s code

So far we have covered the most important and general issues about our tests.
From now on, instead, we are going to focus on the problems related to the
code provided by Intel (in particular the sample-app-taprio.c application),
which still needed to be solved in order to perform the tests correcly. In fact,
though, they are less important, but we are going to briefly describe them
for the sake of completeness.

A phenomenon that we have already had the chance to experience is
the loss of packets from the talker. Consider for instance Fig.3.27, which
is related to the test where twenty packets for each milliseconds were sup-
posed to be sent out. We can see that the sender struggles to keep up with
this sending rate and sometimes it fails in producing the packet; therefore
the actual rate is slightly lower than 20000 packets per second; a similar
thing happened even in the nominal test, when the number of packets per
millisecond was four.

If a packet is not produced, the related instance of its TSN flow is miss-
ing; therefore the measured time between the previous arrival and the next
one becomes twice the time it is supposed to be. We could observe this be-
havior by enlarging the horinzontal axis in the resulting histogram: we had
a number of samples with 1 millisecond of interpacket latency.
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In the nominal case, however, the number of lost packets was very low
compared to the total number of packets, less than 1%. Then, increasing
the required frequency, this percentage increases as well, as shown in Figure
3.27.

This situation occured both with TAPRIO and with MQPRIO as queue-
ing disciplines, so it is probably due to the sample-app-taptio.c program,
which is the application that has to create and send the packets: apparently,
if called several times with a high operating frequency, it could happen that
a few packets got lost in the system and did not actually leave the device.
Furthermore, with lower frequencies and higher cycle times, we did not ex-
perience at all this phenomenon.

A second issue that we encountered with this application occurred when-
ever we wanted to launch the application in the listening mode. The process
would get instantly killed with the error "free(): double free detected in
tcache2" printed on the terminal. This was an actual bug on the writing of
the code for the program, as it used the function popen to open a process and
then invoked the free function on the opened process without any apparent
reason. Therefore the system couldn’t execute the action, would give the
error and kill the process. It seemed unusual to find such a kind of error, but
we searched the code for every possible call of free, we found the wrong one,
deleted it and recompiled the program. This particular line was in a portion
of the code which was supposed to be executed only when the program was
called in the listening mode, so we weren’t able to detect the problem at the
start, but only after a while. However in the end we could observe that the
change had been effective and the process wouldn’t get killed.

We also noticed that the sample-app-taprio.c, in talking mode, wasn’t
able to actually send the messages unless the iperf3, that we used to generate
the best effort traffic utility had been called before, at least once after the
last reboot. It did not make much sense as the two things seemed unrelated.

What happened was that the program relied on the ARP system call,
which consists in a table where the MAC adresses of the neighbour nodes
are stored; the problem was that the entries of the table are reset at every
boot, and they are compiled whenever there is a communication between the
PC and the related node of the network. So, at the start, the sample-app-
taprio.c program would look at the table, wouldn’t find any MAC address
corresponding to its target IP address and as a consequence would stop.
The problem was partially solved if we first called the iperf3 utility because
it updated the arp table automatically. Actually even a simple ping was
enough to update the table.

So we decided to update manually the arp table on pc-a with the MAC
address of pc-b. Recall that we organized the commands in a series of scripts
to be called; right before invoking the scheduler.py program, which dealt with
the installation of TAPRIO or MQPRIO, we inserted the following command:
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arp -s pc-b e0:dc:a0:65:01:c5 (3.9)

where pc-b was the name in the system associated with the IP address
of eno2 on pc-b, i.e. 192.168.3.33, while the following was its MAC address.
In this way, since this script had to be launched before sample-app-taprio.c,
the arp table was always updated when it was needed.

We actually found a similar problem on the receiving end. The sample-
app-taprio.c couldn’t get the incoming messages unless the tcpdump utility
was active. We used tcpdump to listen to the port and produce the .pcap file
that could later be opened with Wireshark, so again the two thigs did not
seem directly related. However, apparently, the program relied on tcpdump
to listen the time sensitive packets. Since we thought that this issue was in
a way similar to the first one, and due to a lack of time, we did not dig any
futher trying to solve it.

3.7 Summary

This section concludes the chapter dedicated to the presentation of the tests
about TSN with a brief overview of the objectives and the results obtained;
in the end we are going to provide a clear list of all the requirements and
features needed to perform the test, and in general to implement a time
sensitive network.

There aren’t, on the internet, a lot of tutorials and demostrations con-
cerning an actual implementation of time sensitive networks, so in the be-
ginning it was difficult to find something helpful to start with. Luckily, Intel
has provided a complete set of tests about TSN, along with a detailed user
guide. We chose to follow and repeat these tests since they basically imple-
mented what we had in mind as a first topology: two devices, in the most
simple of networks, exchanging TSN information. Furthermore the required
hardware and operating system (Linux) were compatible with what we had.

We explained in the second chapter that TSN is a set of standards defin-
ing some mechanisms and strategies, both hardware and software, that can
be implemented in a network to obtain determinism in the transmission
times of packets, which otherwise would be subject to a lot of random ef-
fects and disturbances. The abovementioned standards can be grouped in
three main sets: time synchronization, time aware traffic shaping and system
configuration.

The tutorial from Intel allows the user to test the first two key elements
of TSN, namely time synchronization and time aware traffic shaping. System
configuration cannot be correctly evaluated because the topology of the test
is trivial and also because the current solutions are still vendor-dependent
and not so much generalized.
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So we started by installing the software component that allowed two
or more nodes in a network to reach consensus on the time measured of
the individual system clocks: this software implemented the Precision Time
Protocol. We correctly measured that, among the two nodes that we had
available, the maximum offset between the two system clocks did not exceed
half of a microsend, which is an oustanding result. The protocol is already
implemented and can be enabled by means of a user-friendly utility in Linux;
in particular it is provided with a Best Master Clock Algorithm wich auto-
matically selects the best candidate on the network to assume the role of
master. This feature allows, for instance, the user to create the same script
and call it at the boot in every node of the network; as a result, after about 20
seconds, the whole network will be completely synchronized with the highest
of accuracies. Precision Time Protocol is probably the most useful feature
discovered in this work, at least at the moment, due to the fact that the
time sensitive networks technology is currently waiting for the standards to
be finished and for the vendors’ support to be updated.

We then discovered that the main mechanism upon which time sensitive
network are based, namely the time aware shaper, could be implemented
in Linux by means of a queueing discipline, which is basically the criterion
adopted by the operating system to sort the packets present in its output
interface. We verified that, if propery installed and configured, this mecha-
nism could actually grant limited transmission time and, most importantly,
interpacket latency in the communication between our two PCs, especially in
presence of disturbance traffic on the same port. We also made comparisons
with other queueing disciplines and traffic shaping mechanisms, and were
able to successfully prove that, in order to reach the level of determinism
seeked in the standards, the time aware shaper is a necessary feature, as any
other method is way too sensitive to disturbances and random effects. We
experienced, though, compatibility problems and issues deriving from the
direct use of this new queueing technolgy, which means that it is not that
trivial to employ and the ecosystem as well has to evolve to fully integrate
a time aware shaper.

As we said, the last key element is completely missing from the test, and
in particular the part related to the scheduling of the gates in the network.
In our case this task could be performed by hand, due to the very simple
nature of the tests.

In conclusion we can state that the results obtained were satisfying and
useful to better understand the features of Time Sensitive Networking.

3.7.1 Requirements

In order to perform our tests we had to get ourselves two computers with
the following hardware features:
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– Network Interface Controller Intel I210: this device is needed as it is
one of the few supporting TSN. In particular it supports the hardware
offload mode for the Earliest Transmission-Time First queueuing dis-
cipline, which allows to have determinism in the actual sending times
of packets

– processor belonging to the Intel Apollolake family. In particular our
model was a E3940 cpu, with the possibility of performing some opti-
mization operations to maximize the performances at the expense of
reliability. In general every example of TSN application employs an
Apollolake cpu.

Instead, on the software’s side we had:

– Linux Debian 5.9. The version of the kernel of the operating system
has to be at least 5.3 in order to support the newest queueing disci-
plines such as TAPRIO. Furthermore the module sch_taprio must be
enabled in the configuration file of the kernel, so that the qdisc can be
successfully installed on one (or both) output ports of the system

– ptp4l and phc2sys. These are the two utilities necessary to perform
the time synchronization on any Linux-based computing unit.

Additionally, not relevant to TSN in general but to the execution of the
tests, we had:

– the utility iperf3, which was used in client mode to generate huge
amounts of packets that acted as best effort traffic; it was used in
server mode in the listening device

– tcpdump, used to monitor the activity at the receiving port of the
listening device. The utility produced a .pcap file that could be opened
with the program Wireshark, which allowed to plot the data in a more
comprehensible way

– software from Intel’s account on GitHub. In particular we exploited
two programs, named scheduler.py and sample-app-taprio.c.
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Chapter 4

Simulations

The third chapter is dedicated to the presentation of the simulation work
that has been done about Time Sensitive Networks. This simulation part
was developed after the practical tests described in the previous chapter;
the main goal was to build a virtual setup which would make it easier and
cheaper to test and verify the behavior of larger and more complex networks,
as it is one intrinsic property of any simulation. In particular, the feature
that we are going to focus on and that we want to test on a large and generic
network is the scheduling, which, as we mentioned, is one of the least treated
topics concerning time sensitive networking.

There is a good amount of references on the Internet describing several
different simulation tools and strategies useful to be used in our framework.
In particular, [16] provides a very useful comparison between some simulation
methods, highlighting for each one advantages and drawbacks.

Figure 4.1: Comparison between different simulation methods

Figure 4.1 shows such a comparison: among the listed methods we are
going to focus on OMNET++ and, most of all, on MATLAB/Simulink.
OMNET++ is a simulation library and framework, based on C++, which is
particularly suitable for the simulation of networks in general. As a matter
of fact, several paper exist which describe some kinds of simulations carried
out about time sensitive networks such as [17]. In this paper the simulation
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environment is described; OMNET++ provides the basic building blocks
that implement the time gating mechanisms and so allow to create and sim-
ulate simple networks. The results of these simulations show that using a
time aware shaper, instead, for instance, of a queueing system based on strict
priority, grants better performances in terms of latency and determinism for
TSN data. These simulations focus primarily on the gating mechanisms,
such as the Time Aware Shaper, neglecting the time synchronization proto-
cols that, as we described in section 2.3.1, are a necessary feature of TSN,
assuming that a time synchronization is already implemented and works
perfectly. Even though that’s a reasonable assumption, supported by the
experimental tests that we presented in chapter 3, we still have to keep in
mind that time synchronization is not free. Furthermore, due to the limits
of PTP, we are going to be constrained to consider limited-sized network by
default.

The key feature of these kinds of simulations is that they are "events"
simulations. Unlike usual simulations of physical systems, the protagonists
of these simulations are discrete and finite entities which are subject to in-
stantaneous events. Events can create, move and, in general, manipulate
the entities, which in turn have the ability to "move" within the simulation
environment. There is no need for time-varying continuous state variables
whose evolution is described by some integral equations system as, e.g., there
is in a mass-spring-damper setup. It is clear that a events simulation is more
suitable for a time sensitive network as we can associate to each real flow
a virtual entity, and program its motion within the network using events.
These concepts will be explained in detail later, but the goal of the first in-
troductive part is to highlight the differences in the simulation environment
needed to simulate a time sensitive network.

The main drawback of OMNET++ is its low expansibility, most of all in
terms of coding new functions. Recall that our final objective is to program
and test a scheduling algorithm, therefore we need quite high computational
capabilities from our simulation environment to implement one of the algo-
rithms described in section 2.4.

Mainly due to this reason, we chose to use the MATLAB/Simulink
platform to implement our simulation; not to mention that our knowledge
and experience about the particular software was far better with MAT-
LAB/Simulink than with OMNET++.

The main issue about MATLAB/Simulink, however, is its low complete-
ness in the matter of time sensitive networks, as it can be also gathered from
Fig. 4.1: the software is provided with event simulations libraries, but they
are not specific for TSN simulations. Therefore, even though the results of a
simulation about TSN would be the same and with the same properties, the
starting point would have to be at a lower level; this means that we will first
have to create from scratch the basic building blocks for TSN, and then use
them to create our test networks. In OMNET++ those blocks are integrated
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in the libraries that can be downloaded from the website, which are called
the "INET framework".

As a result we can state that the general goal of this chapter is duplex.
First we need to exploit the existing SimEvents library available in MAT-
LAB/Simulink to create a set of simulation tools suitable for a time sensitive
application; even though the concepts and mechanisms that we are going to
implement are quite simple on paper, the new simulation libraries will have
to be tested and evaluated, in particular by comparing the results of the
simulations with the experimental ones reported in other papers or the ones
actually obtained in first person, described in the previous chapter. Eventu-
ally, we are going to use the simulation to test and evaluate the behavior of
a proper TSN network in the scheduling process of a set of input tasks.

The chapter is then structured in the following way. The first sec-
tion is dedicated to the implementation of the simulation tools on MAT-
LAB/Simulink; as we mentioned, this part is also provided with a series
of tests to validate the effectiveness and accuracy of the simulation. The
second section presents the implementation, using the MATLAB’s environ-
ment, of one complete scheduling algorithm, in particular the No-wait packet
scheduling presented in section 2.4.2. The last section can be considered as
an integration of the first two as it reports the results of several simulations
conducted using the libraries created in section one to test the algorithm im-
plemented in section two. The results and the data gathered will be useful
to support some additional consierations about No-wait packet scheduling
algorithm, also in comparison with the other scheduling algorithm that we
have studied (see section 2.4.1).

4.1 Simulation libraries on MATLAB/Simulink

MATLAB is a programmable environment developed by Mathworks that
allows to perform complex matrix computations, plot functions of data and
implement algorithms. Simulink is an additional package with a graphical
interface which allows the simulation of multidomain physical systems. They
are widely used in the academic world and also in the automation bachelor
and master’s degrees.

The two programs share their workspace, but actually the simulation
of a time sensitive networks will feature for the great part the libraries of
Simulink, in particular the library named SimEvents. As we mentioned,
an event simulation is what’s required to correctly simulate a time sensitive
network, and SimEvents is the Simulink’s library that contains the necessary
tools.
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Figure 4.2: The SimEvents library

Figure 4.2 shows the components of the SimEvents library on Simulink.
In particular, the most used components will be the following:

– Entity generator, in order to produce the entities of the simulation

– Entity input switch, that allows to merge different flows of entities in
one, according to some rule that has to be specified

– Entity output switch, with a dual function with respect to the previus
one, namely to separate flows according to some rule

– Entity FIFO queue, which implements a simple queue where the high-
est output priority is assigned to the packet that arrived first, and so
on

– Entity server, which is useful to create delays in the transmission of
entities

– Simulink functions, needed to implement some additional functions,
also with the help of MATLAB functions

Before getting to the details of Simulink, however, it is necessary to
describe a very important function performed by a MATLAB script. When
we simulate a network, one of the first things that need to be specified is
related to the topology of the network itself, namely the connections between
the nodes. In order to efficiently store this information, a matrix is used,
usually called adjacency matrix: an adjacency matrix is a square matrix
with dimensions equal to the total number of nodes, which has a zero in
corrispondence of every couple of nodes that are not connected while it has
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ones otherwise. Actually it is possible to substitute the ones with other useful
information about the specific connection, for instance with the travelling
distance between said nodes.

So, once we have a proper adjacency matrix describing the configuration
of the network, the first thing to do is to solve the routing problem, namely
determine the routes that packets will have to follow in order to get from their
sources to their intended destinations. The routing problem is addressed in
the next subsection.

4.1.1 Routing

By definition, a routing problem takes as input the information about the
topology of a network, in our particular case, and gives as output the routes
connecting all the possible combinations of nodes. A route is an ordered
sequence of nodes such that between each couple of consecutive nodes there
exists a connection and such that, following that sequence, it is possible to
correctly reach the destination node starting from the source one.

In general, a routing problem is found as an optimization problem which
tries to minimize some cost function; the most common cost is the lenght
of the routes, which in turn gives as a result the shortest paths. There are,
however, also algorithms that take into account the overall set of tasks that
need to circulate in the network and produce solutions that minimize the
congestion in the network, which seldom coincide with the shortest paths.

For large networks, such as the Internet, this problem can become quite
complex and requires special addresses (IP addresses) which contain addi-
tional information about subnetworks and so on and so forth. Due to the
limits imposed by the accuracy of the Precision Time Protocol explained
in section 2.3.1, however, in a time sensitive framework the networks are
way smaller with respect to the Internet; therefore the routing problem is
tractable and very easy to solve. In particular, for the simulation the Dijk-
stra’s algorithm has been exploited. Dijkstra’s is a quite famous operative
research algorithm that allows to efficiently find the shortest paths in a net-
work of nodes.

Dijkstra’s algorithm computes the least-cost path from one node, one
at a time, (the source, which we will refer to as u) to all other nodes in
the network. Dijkstra’s algorithm is iterative and has the property that
after the kth iteration of the algorithm, the least-cost paths are known to k
destination nodes, and among the least-cost paths to all destination nodes,
these k paths will have the k smallest costs. It is important to define the
following elements:

– D(v): cost of the least-cost path from the source node to destination
v as of this iteration of the algorithm.
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– p(v): previous node (neighbor of v) along the current least-cost path
from the source to v.

– N’: subset of nodes; v is in N’ if the least-cost path from the source to
v is definitively known.

Aftwerards we have to perform the following computations in order to
obtain all tha routes from one node to all the other nodes. We have to
initialize the vector N’ with our starting node, and the vector D with the
distances of the neighbors of the starting node. Then we have to select
between the remaining nodes the one closer to the starting node, namely
the component of D with the lowest distance; we have to add this node to
the list of already visited nodes N’ and then update the vector D with the
smallest distance of the nodes from the starting one. Now this distance can
be the original value or another one taking into account the node just added
to N’. We need to iteratively repeat this process until the set N’ contains all
the nodes in the network.

When this loop finishes we have in the set N’ all the nodes, and for each
node we have its predecessor in the least cost path from the source node. So
we can extract the information about the routes by proceeding backwards,
namely starting from all the possible destinations and reconstructing the
path by adding iteratively the predecessors, up to the one source node.

The process just described has to be repeated considering every node
in the network as the starting node; eventually we will have produced the
complete set of routes.

In the next page, a simpler pseudocode version of the algorithm is shown,
with the purpose of helping the understanding of the basic principles.
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Algorithm 3: Dijkstra’s algorithm
function Dijkstra(Adjacency matrix);
for each node u do

for each node v do
N’ = {u};
if v is a neighbor of u then

D(v) = adjacency matrix (u,v);
else

D(v) = inf;
end

end
while not all nodes in N’ do

find w not in N’ such that D(w) is a minimum;
add w to N’;
for each neighbor v of w and not in N’ do

D(v) = min(D(v),D(w)+adjacency matrix(w,v));
end

end
routes=reconstructPaths(N’);

end
ROUTES=all the routes for each node in the network;
return ROUTES
We created a MATLAB function implementing the Dikjstra’s algorithm,

named Dijkstra.m. Since, for our purposes, we did not need to know the
shortest paths connecting the switches, but we needed the information only
about the hosts, we chose to repeat the process only for the hosts. We stored
the routes in a three-dimensional matrix that can be accessed by inserting in
the first dimension the Id of the source node and in the second dimension the
Id of the destination node: the result is the third dimension of the matrix,
which is a row vector containing the ordered sequence of Ids that make the
requested path. As we said, the input of the function has to be the adjacency
matrix and some additional information about which nodes are the hosts,
for the reasons just explained.

Our function also lets the user choose whether or not it has to show
the progression of the computation, which is a feature useful for the large
networks’ routing solutions. For the sake of completeness we report, in fact,
the approximate execution times of the algorithm as a function of the number
of nodes in the network:

– 1 second for 100 nodes

– 8 seconds for 200 nodes

– 29 seconds for 300 nodes
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– 86 seconds for 400 nodes

– 200 seconds for 500 nodes

We can notice that the execution times increase expoentially with the
number of nodes but, as we already said, it does not constitute a problem
as the size of TSN networks has to be limited.

4.1.2 Packets

Let’s resume now the discussion about what happens in the Simulink’s en-
vironment. We are going to treat in this subsection the entities, namely the
discrete units that represent the actual packets. In SimEvents, entities can
be characterized by several different parameters or fields, which can then
be used and manipulated during the simulation; SimEvents also gives us
the possibility to use user-defined entities. In the next picture we show the
generation block of the entities, which creates instances of our type of entity.

Figure 4.3: Configuration of a generation block

We can see that the configuration panel of the block is divided in tabs. On
the current tab the user can specify name of the entity (we chose "Packet")
and the set of fields that we mentioned earlier; in SimEvents these fields are
called attributes, and can be any kind of variable: integers, real numbers,
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vectors or matrices. By the names of the attributes one can already guess
their purpose in the simulation. Source and destination fields are going to
contain the initial and final node for each packet; class will specify whether
the packet belongs to the TSN set or it is a best effort packet; route will
contain the route of the packet computed before (and as a matter of fact
it is a row vector); the last three attributed aren’t strictly necessary to the
simulation itself but are used to gather data, such as the amount of time
that the packet is kept waiting or its latency.

Attributes need to be initialized in every generation block but can be
modified by means of "actions". Actions are simply some lines of code that
are executed whenever a packet arrives to a block, when it is waiting inside
the block or when it leaves the block; with block we mean the main ones
used and shown in Fig. 4.2, such as queues, switches and so on. The user
can decide which actions to insert in the simulations and where to put them.
Every configuration panel for every block has a tab where the actions specific
to that block can be coded, as it can also be seen from Fig. 4.3.

Figure 4.4: Configuration of a generation block

In the figure the tab related to the actions of the configuration panel for
the packets generation block is shown. We can see on the top left that event
actions can take place either at the generation time or when the packets leave
the block, or even in both cases; the action itself that we have programmed
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is divided in two parts: in the first part we scan a variable named genera-
tion_schedule, to extract the information about the packet that has to be
sent out next. In this variable we store the ordered sequence of packets that
need to be generated; the variable, which is clearly a matrix, also contains
the flow Ids, destination and size. In the second part of the action we use
the information about source and destination to access the routes matrix
and extract the specific route that we need.

Every piece of information that we have extracted from the variables of
the workspace is in turn stored in its dedicated field of the packet, so that
it can be brought around with it.

The generation_schedule also contains the starting time of each packet;
these data are used in the first tab of the panel, where the generation prob-
lem is addressed. In this tab we can code another action which computes
the intergeneration interval between a packet and the next one, in order to
correctly send them out with the right timing. Thanks to the persistent
variables SEQUENCE and indx, this procedure is cyclic, meaning that after
the packets in generation_schedule have been all produced, the block starts
again from the beginning.

In the next subsections we are going to describe the key elements or
subsystems that make the library for TSN simulation, all of them featuring
the basic elements listed before.

4.1.3 Input port

The first complex subsystem that we describe is the input port, which is
also useful to fully close the discussion about routing and how it is imple-
mented. This subsystem takes as input a one-directional flow of packets,
which can belong to every traffic class; it is the representation of an ethernet
input cable. The purpose of the subsystem is to accept the incoming pack-
ets and redirect them towards the appropriate output port, simulating the
computations that acctually take place in a switch.

We make the incoming packets accumulate on a FIFO queue where some
actions concerning routing are performed. In order to expand the possibilities
of what can be done in the action, we exploit Simulink functions, which allow
to create Simulink subsystems and use the computed output as a parameter
in the action. In particular, we can import parameters from the simulation
inside the action environment using Simuling functions; as Fig. 4.5 shows,
we define a Simulink function named redirectPacket(), whose output is then
going to be used in the entry action of the queue; said function takes as
additional inputs two variables from the simulation, namely Switch_Table
and Switch_Id. What happens inside the bock is that each incoming packet
is analyzed, and in particular its route field is extracted: it is searched to
find the position of the switch on the route, using the information about
the switch Id; then the next node on the route is known, and the associated
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output port is written in the homonym field of the packet. In order to
figure out which of the ports of the device assign to the packet, the function
examines the switch table, which contains the ports of the switch and the
Ids of the nodes connected with them; knowing which is the next destination
it is easy to extract the information about the output port.

Figure 4.5: Input port

The downstream server is used to impose a delay to the transmission of
the packet, which simulates the time that the computing unit of the switch
takes to compute the next destination. This delay can be set directly from
MATLAB for any input port, and we used the value of 5 µs.

Eventually the output switch is used to divide the packets according to
their "output port" field, which was previously filled with the right output
port. Figure 4.5 shows this configuration of the switch; then, the single
outputs of the switch will be the inputs of the respective output ports. The
word switch in this context is used to mean the component of the SimEvents
library instead of the component of networks.

4.1.4 Output port

The most important subsystem is the one implementing the output port, as
the output port is the key and fundamental place where TSN mechanisms
are implemented, particularly the time aware shaper.

The purpose of the output port is to take the packets from the input ports
in the device which have bee redirected to that output port; then, according
to the TSN standards, packets have to be divided in several queues according
to their traffic class. The distinction that we are going to consider is between
TSN data and best effort data, meaning that we have two queues and two
traffic classes. A downstream gating mechanism then chooses which queue
gets to send its highest priority packet into the communication medium; as
a consequence the output of the port is the packet that actually leaves the
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device.
The next figure shows the implementation of the output port

Figure 4.6: Output port

We can directly compare Figure 4.6 with Figure 2.14 and immediately
appreciate the similarities. As we said, packets get distributed among the
queues by means of an input switch, which redirects the packets in the queues
according to their class attribute; the output switch after the queues is con-
trolled by a signal generated by another subsystem, called Gate Controller,
which in turn is driven by a variable named Schedule. The Schedule has the
following format, which is very similar to the one of Figure 2.14:

Figure 4.7: Schedule

This variable is a matrix with many rows and six columns. Each row
represent a time window, while the columns contain the following data:

– the first four column contain the combination of open and closed gates,
where the first column usually represents the TSN queue and the others
represent the best effort queues
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– the fifth column contains the offset on the period at which the window
starts

– the sixth column contains the duration of the window

The details and the proper considerations about how this matrix is filled
will be presented in the next sections; for the time being what we want to
highlight is just the protocol by means of which we can communicate the
schedule to the gate controller.

In the Gate Controller subsystem this input schedule is analyzed and the
control signal for the output switch is generated. If we consider the example
of Figure 4.7, the control signal will order to the switch to close all the gates
for the first 120 µs of the period, then open the TSN queue for the next 60
µs and so on and so forth.

The downstream server is quite important because it performs several
functions. First of all, just like the server of the input port, it simulates the
delays in the transmission of packets: in this case it is the time that each
packet takes to arrive to the next node in the network. The delay is a function
of the size of the packet (one of its attributes), of the transmission rate of the
port and on the physical distance between the nodes. The transmission rate
of the port is extracted by means of a Simulink function, similarly, again, to
what happened for the input port, while the physical dstance is assumed to
be lower than 30 meters; as a consequence the maximum propagation delay
would be of 1 µs.

The second function performed by the server is the update of the attribute
related to the waiting time of packets. In the server of the input port, the
equivalent of a timer is activated, useful to measure how much the packet is
constrained to wait in the switch. This is simply done by writing the exit
time from that server (as an exit action) and subtract that time to the time
when the packet actually gets past the queue, namely in the entry action
of this server. Once the waiting time for the current switch is known, it
will have to be added to the previuos waiting time, which is stored in the
homonymus attribute of the packet.

A side note about the number of queues: we said that we chose to use
only two traffic classes and two queues, but in the simulation the queues are
four. The number of queues that the user chooses to exploit is not related
to the number of queues actually implemented in the system: our choice will
simply produce schedules and packets that will affect the first and the last
queues, leaving the two middle queues idle at all times. As a matter of fact
we can see that the second and third columns of the schedule are always
zero, meaning that the associated queues are always closed.

Finally, the fifth entry of the output switch is an entity generator which
does not ever produce packets. This because the simulation block cannot
intrinsically close all its gates; therefore when we require all the actual gates
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to be closed, we open the one connected with this packet generator, which
has an infinite intergeneration time, which gives the same result.

4.1.5 Switch

The union of an input port and of an output port makes a port. Several
identical ports make a switch. A switch is then a big block which can take
in as input a number of flow equal to its number of outputs; both are in turn
equal to the number of ports that it is provided with. Packets that arrive at
the switch get automatically redirected to the next node specified in their
route; this is the exact purpose of an actual switch. As we said, we even
take into account delays due to the computations that actually take place
inside real switches. Our switches are also TSN-capable, as their output
interfaces are provided with the gating mechanisms described in the TSN
standards, and so they need proper schedules to be driven according to the
desired behavior.

Figure 4.8: A three ports switch

Figure 4.8 shows how a switch is implemented. For the sake of clarity
we started to use masks for the sybsystems, in order to give a visual idea
of what they do. In this case the ports are represented with the image of
an ethernet port, because that is what they simulate. The one shown in the
example is clearly a three-ports switch as it is featured with three ports. We
can see that they are all interconnected so as to allow packets incoming to
every port to go out on every port.

In addition to the ports, this subsystem is characterized by a MATLAB
function called Switch_Configuration: the output of this function is the
Switch_Table that we already seen in the section dedicated to the input
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port. As a matter of fact, this variable is propagated inside every port,
where will be directed to the input port and used to perform the routing.
The input of the MATLAB function are constants that can be tuned from
the mask of the switch itself. We are not going to show it, but by double
clicking on the big switch subsystem, which contains the elements in Figure
4.8, a configuration panel opens: inside this configuration panel the user can
specify the neighbors of the switch in correspondence with its ports, along
with the transmission rates of the ports themselves. As we have seen, this
information is appropriately stored and used inside the ports.

By modularly duplicating ports it is possible to create switches with
multiple ports. The only thing that has to be kept in mind is that a suitable
switch table has to be produced, which takes into account the exact number
of ports and is able to correctly communicate the mapping between them and
the nighbor nodes. As the number of ports increases, the visual complexity
of the subsystems increases, along with the number of connections and lines,
making it difficult to understand the roles of the elements. For this reason
we show the three ports switch; for the purposes of the simulations, though,
we have created switches with up to six ports.

4.1.6 Host

A host is a device with one single port with the duty of generating and
receiving packets. We assume that hosts are placed at the boundaries of our
networks and that they are connected only with one switch; through routing,
is then possible to reach any other host in the network.

There is no need to show how a host is implemented because it is com-
posed by an output port and an input port. Furthermore, since it does not
have to redirect packets, the input port does not have any output; instead
it is provided with a suitable function whose purpose is to record the data
of every received packet and save, at the end of the simulation, those data
in the workspace.

Figure 4.9: Collected data

Figure 4.9 shows the format of the data which, as usual, are stored in a
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big matrix. Similarly to the case of the schedule we are not going to make
comments here on the specific data, but we are just going to describe how
they are displayed. Each row represent a received packet by the host; the
columns contain the following information, in order:

– Id of the receiving host

– Source of the packet

– Class

– Id of the flow

– Queueing time

– Arrival time

– Interpacket latency

– Latency

– Counter of the total number of packets received by the host (this col-
umn is not shown in Fig. 4.9)

Latency is computed using a Simulink function which registers the exact
time when the packet arrives at the host, and then by subtracting to that
value the starting time of the packet, which had been written in the latency
attribute of the packet when it was generated.

4.1.7 Network

Figure 4.10: Generic network

131



Figure 4.10 shows a generic network built using the described simulation
blocks for time sensitive networks, which have been created starting from
the basic blocks of the SimEvent library.

It is clear that the icons and the connections required to make the sim-
ulation work become confused for large networks, and make it difficult to
understand the topology at a first look. Therefore, in the section dedicated
to the simulations, we will resort to other ways to properly describe the
network and the problem that we are trying to solve.

Every Simulink file, such as the one shown in Fig. 4.10, is accompanied
by a MATLAB script by means of which the user defines all the necessary
variables and constants in the workspace. Some examples are the switching
delay, namely the computation time required to the switches to transfer a
packet from one input port to one output port, the duration and step size of
the simulation, the maximum number of packets to be recorder by the hosts.

In addition, the cofiguration script contains the function implementing
the routing algorithm; as we have seen we need to specify the adjacency
matrix describing the topology of the network, and we get as a result a
three-dimensional matrix storing all the relevant routes.

Eventually we need to specify a suitable schedule for every port of the
system. This can either be computed by a scheduling algorithm or evaluated
by hand and written in the appropriate variable, paying attention to the
particular format required by the simulation and shown in Fig. 4.7.

4.1.8 Validation

After having completed the description of our custom library for the simula-
tion of Time Sensitive Networks, we are going to provide in this subsection
some sort of validation for such a library. In order to do so, we are going to
compare the results of real tests with the results that the simulation environ-
ment gives, if we set it up to have the same configuration as the experimental
benchmark. To this end, a natural set of tests that can be taken into account
are the ones performed in first person, and described in chapter three, imple-
menting the TSN tutorials from Intel. The focus on these tutorials, however,
was not on the complexity of the topolgy, since the primary objective was to
show the implementation details and the behavior of a time aware shaper;
therefore the test itself, as a validation tool for our library, may be a little
bit more simplistic. For this reason we are also going to consider another set
of tests that have been conducted with a more complex topology and a more
heterogeneous taskset; this test is described in [18]. In particular, this paper
had indeed the purpose of supporting the simulation on OMNET++ of time
sensitive networks, by comparing the results of the simulation with the ones
of the experimental test. As a consequence it is particularly suitable to be
adopted as a model to follow even in our case.
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Tests of chapter 3

In the third chapter we presented this test from an implementative point
of view, describing how to correctly set up the time aware shaper on Linux-
based systems and analyzing not only the results but also all the implications
of the new output interface. As far as the topology and the taskset are
concerned, the test that we want to simulate is quite simple. We have a
network made by two nodes, in particular by two hosts directly connected;
one of them is a talker and the other is a listener, meaning that the talker
device produces packets and sends them to the listener, which in turn has
the duty of registering them.

Next we show the setup implemented in Simulink.

Figure 4.11: Generic network

Recall from the third chapter that the taskset was made by two different
TSN traffic classes, namely class 3 and class 5; as usual, we also had the
class of best effort data. We assigned to each one of these three classes a
dedicated queue in the output interface of the talker device: in particular
we used queues 1 and 2 for the TSN flows and queue 4 for the best effort
packets. The third queue would have been used if the test had featured three
TSN flows, but, since it does not, it remains idle at all times.

The application required to send, in nominal conditions, 2 instances of
every TSN flow per cycle, which in the test lasted one millisecond. Therefore
a total of four TSN packets had to be produced by the sending host every
millisecond. In addition, the interfering traffic was made by large packets
with size of 1500 bytes approximately, that had to be generated as much
as possible. The dimension of the best effort packets was chosen to put
ourselves in the worst possible scenario, as that is the largest ethernet frame
that can flow in a network.

Just like in the actual test we put manually the schedule for the only
relevant output port in the system, expressing the same windows using our
format, which is slightly different with respect to the one required by the
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actual time aware shaper.
We simulated the setup for one second, and the following are the results.

Figure 4.12: Measured interpacket latency

The first plot that we show is a histogram representing the interpacket
latency, namely the time that passes between two consecutive arrivals of
packets belonging to the same class. In the next plot we are going to show
the same result but with a zoom on the horizontal axis.

Figure 4.13: Zoom of the interpacket latency

By a quick comparison with figs. 3.18 and 3.18, it can easily be noticed
that the shape of the data is pretty much the same. In almost every case
we get values of interpacket latency very close to 500 microseconds, which
was the expected value as it is the distance in the schedule between two
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consecutive TSN windows.
We must also note that we had to add a randomly generated disturbance

to the latency of packets, in order to simulate all the little losses of time that
naturally and inevitably take place along the transmission. Without this
disturbance we would get an exact 500 microseconds interpacket latency for
every intance received.

We conclude the discussion about TSN data with the plot of the latency
as a function of time.

Figure 4.14: Measured TSN latencies

Then we show the measured latencies for best effort packets.

Figure 4.15: Measured best effort latencies

The two previous plots show that the latency of TSN packets remains
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pretty much constant for the whole simulation, while the best effort latencies
keep increasing their values. This means that the network is congested with
packets, as the rate of best effort data does not fit the cycle; nontheless this
congestion does not affect the TSN data, that reach their destination with
the intended frequency.

Figure 4.16: Zoom of the best effort latencies

Eventually we show a zoom of the latencies of best effort packets, as
it is useful to make some additional considerations. We can see that this
quantity increases in steps: it is practically constant for most of the time
but has little intervals where it becomes way bigger. This behavior makes
sense if we consider the cycle divided in two parts: the windows that allow
best effort packets to pass and the windows that do not. During the windows
belonging to the first type the best effort queue is emptied and it is filled
at the same time with approximately the same rate; in the other windows
this queue keeps being filled but cannot be emptied. This causes latencies to
remain constant when best effort packets are transmittend and to increase
drastically when TSN data are flowing instead.

In conclusion we can state that the results obtained with the simula-
tion are very close with respect to the ones obtained experimentally. This
shouldn’t come as a surprise, since all the mechanisms that we implemented
in simulation are conceptually rather simple: it is just a system of gates
that can be opened or closed to let information pass or constrain it to wait.
Since, as we already highlighted, the configuration and the topology of the
test were this simplistic, we are now going to consider another set of tests in
order to further validate our simulation environment.
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A Simulation Model for Time-sensitive Networking (TSN) with
Experimental Validation

The second set of tests that we take into account is described in [18], and
consists in a network with 10 hosts and 2 switches. The details on the
configuration and on the taskset are provided in the following picture.

Figure 4.17: Experimental setup

We have five talking devices and five listening devices. The two groups
are separated by a couple of switches in series. Of the talking devices, four
are dedicated to the transmission of TSN data, while the last one has to
produce the interfering traffic; the same goes for the listening devices. The
links in the network do not have the same rates as the ones connecting the
TSN hosts to the switches have 100 Mb/second, while the other links, namely
the one between the switches and the ones for the best effort nodes, have
1Gb/second.

The traffic pattern is made by four TSN flows, each one generated by
a different source and directed to a different destination; the application
requires one instance for each flow per cycle. In addition, as we said, the
traffic generator host contonuously sends best effort packets to the traffic
receiver host.

This particular test is meaningful because it creates multiple conflicts on
the first switch, due to the fact that several packets need to use it in order
to get to their destination; this scenario needs a suitable schedule to help
said switch to handle all the conflicts on its bottleneck downstream cable.
The test also presents some additional variability thanks to the fact that
the rates of transmission are not the same; this feature requires the specific
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configuration of each node within the simulation environment, by setting the
downstream transmission rate for each port of each block.

We do not actually have to focus on the implementation details for our
purposes, but we can notice that the switches employed in the network are
produced by Cisco, which is a known vendor of TSN technology. Without
entering in the details, in the paper it is explained that the system configu-
ration tool provided within the switches allowed them to compute a suitable
schedule just by inserting the characteristics of the traffic patterns; then, as
Fig. 4.17 shows, the system configuration deals with the transmission of the
gate control lists to each port. This is an example of the fact (explained in
section 2.3.3) that, from this point of view, progresses still need to be made
in the direction of procedure standardization: the methods adopted by Cisco
both for the scheduling computation and for its distribution are proprietary
and particular, therefore not accessible from the outside.

However, even though we do not get to know how it is been computed,
the resulting schedule is provided in the paper to help the reader understand
how it works, so we programmed our simulation to behave according to that
schedule.

We implemented the network on Simulink and simulated the setup for a
tenth of second; these were the results:

Figure 4.18: Latencies for TSN packets

The above graph shows a comparison between the latencies of the dif-
ferent time triggered flows. In the next graph we are going to show the
latencies of the best effort packets. Both the plots have on the horizontal
axis the number of samples, namely the ordered sequence of received packets.
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Figure 4.19: Latencies for BE packets

From figures 4.18 and 4.19 we can see that the latecy of any kind of TSN
packet is kept constant for the whole duration of the simulation, while the
latencies of the best effort packets are affected by a high degree of variability.
The reasons of this behavior are pretty much the same as in the previously
presented example. In this case, though, the rate of generation of best effort
packets is "affordable" by the network, which does not get congested as in
the other scenario. That’s why we do not see these latencies continuously
increasing. They are, however, subject to the fact that TSN flows have a
higher priority and dedicated windows; therefore, occasionally, the latency
of some packets is affected by delays due to the fact that they had to wait
the TSN windows to finish. In order to save memory, we registered only the
last fifty samples of best effort traffic, but this behavior is clearly detectable;
furthermore, from the values of the horizontal axis we can see that the total
number of best effort packets overcomes the ten thousands samples.

The schedule provided from the paper is clearly not based on the No-wait
packet scheduling algorithm, which has been described in section 2.4.2 and
which will be actually implemented in the next section. If that were the case,
since all the flows have the same path’s lenght, we would have found exactly
equal latencies. Instead, this schedule requires TSN packets to wait in their
dedicated queues in the switches, namely they arrive a little while before
the opening of their time window. Since we do not know the algorithm that
generated the schedule we cannot comment further about it, but this is the
reason why we have different values for the TSN latencies: clearly the flow
named TT1 is the one which waits the most, while TT4 waits the least.

Another consideration about latencies is the reason why the latency of
TSN packets is actually ten times higher with respect to the latency of the
best effort packets. This behavior is due to the configuration of the network,
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which provides 1Gb/second cables for the whole path of best effort packets
while for 2

3 of the TSN paths it only provides 100 Mb/second cables. Clearly
that’s a feature which is not under our direct control so we just have to
accept that, on average, TSN packets will have higher transmission times
with respect to the best effort packets.

Other than intrinsically making sense, these results are identical to the
ones reported in the paper, both from the simulation on OMNET++ and,
most importantly, from the experimental test. Therefore we can consider as
successful the validation process for our library, which is conceptually simple
but suitable to simulate with sufficient accuracy Time Sensitive Networks.

4.2 Implementation of No-wait packet scheduling
on MATLAB

This section is dedicated to the description of the scripts and the functions
that in MATLAB implement the No-wait packet scheduling. It is a heuristic
algorithm that allows the computation of a suitable schedule in a generic
network for a generic set of tasks. In section 2.4.2 we have given a brief
and general overview of the main concepts, supported by the versions in
pseudocode of the most important parts. Here we are going to focus mainly
on the imlementative details of the algorithm.

Recall that the No-wait packet scheduling is based on the assumptions
that each packet has to be scheduled as soon as possible within the period
and it never has to wait. Furthermore, we want to find the combination of
tasks that minimizes the span of the solution, namely the arrival time of the
task that finishes last. We are going to see that it is not possible to find what
is properly called the optimal solution, so we will settle for the best among
a limited set of possible solutions. Once we have our combination of tasks
we need to produce a schedule that meets the requirements and the format
of the specific time aware shaper which is supposed to implement the just
computed schedule. So other functions are needed to integrate the result in
the simulation or, in general, with the test network.

We implemented the calculations necessary to perform this work in a se-
ries of functions, which also define the structure of this section: first of all we
have the timetabling function, which deals with the computation of the span
for a single sequence; then we have the general NWPS_Heuristic function
whose duty is continuously change the input of the timetabling function in
order to find the minimum span solution; inside the NWPS_Heuristic, there
are also other functions which deal with the actual creation of the schedule
useful in the simulation.

The final objective is not only to actually implement one complete schedul-
ing algorithm, but also to test and analyze its behavior by means of the
simulation libraries described in the previous section.
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4.2.1 TimeTabling

The core strategies of the No-wait packet scheduling algorithm are imple-
mented in the timetabling function. We created a MATLAB function that,
starting from a given sequence of the tasks to be scheduled, places the tasks
in the network and computes span and critical flow. Recall that the critical
flow is the task that finishes last, and whose arrival time is the span; recall
also that we use the world "place" with the meaning of "occupying the nodes
of the path of the task with TSN windows".

The file TimeTabling.m contains our function, which has to be called
inside other programs in the following way:

[generation, span, TimeTable, critical_flow, success] = TimeTabling(
Adjacency_matrix, Routes, TaskSequence, map, TaskSet, cycle_time,
propagation_time, computation_time, accuracy)

(4.1)

In order for it to be the most general and configurable possible, several
different intputs are necessary, allowing the user to tune the function in the
most appropriate way. So we are going to consider the main steps of the
function where the inputs are used to generate the outputs.

The input variable TaskSequence is supposed to contain the ordered se-
quence of tasks that the timetabling function has to place into the network.
So one of the first things coded in the function is the call of a for cycle which
starts from the beginning of such a variable, taking into account one task at
a time.

Each iteration of the cycle manages, if possible, to place one task in the
network. Therefore at the start we use the Id of the task to access the variable
TaskSet to extract the information related to the task’s source, destination
and size. Then we use source and destination to access the variable Routes
and exctract the nodes that are going to be involved in the placement of
the task, namley the components of its path. We also define and initialize
the variable named TimeTable, which at the end will be given out as an
output. This variable is a matrix with several rows and two columns, and
it is used to indicate which time windows are currently occupied in the port
it is referring to: so we are going to have a timetable for each port in the
system. At the beginning all the elements of any timetable are -1, while
during the execution of the algorithm any new window will be indicated
by a non-zero row, where the first column will report the start time and
the second column will report the finish time of that window. In order to
accomplish its goal, in each iteration, we first need to check whether or not,
with the current starting time, the considered task satisfies the constraint
by accessing the timetable of each node along its path (without modifying
it); then, if the task fits, we have to retrace the path again creating, in the
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timetables, the new windows related to the current task. If, instead, we find
that the path is somewhere occupied, we finish the iteration and increment
of a small quantity the starting time.

Inside the for cycle we implement a while cycle wich stops when the
current start time of the task exceeds the cycle_time provided from the
outside. As we said, the objective of the inner cycle is to see if, with the
current starting time, the task finds a clear path and fits the cycle time.
So we consider every node of its route (by means of another while cycle)
and access its timetable to see if it is occupied or not. In particular we
store, inside of a variable that we call delay, the passing of time during the
transmission of the packets, namely we take into account propagation_time,
computation_time and transmission time that affect the motion between
a node and the next one. The transmission time is computed by dividing
the size of the packet by the transmsission rate; the transmission rate is in
turn extracted starting from the Adjacency_matrix and map variables: the
matrix is supposed to contain the transmission rates of every connection,
while map expresses the mapping between the neighbor nodes and the port
of a node . In this way we are able to know when exactly packets are going
to transit to each node, and to check their timetable accordingly. We do
not, however, modify the timetable because we first need to check the whole
route. As a matter of fact, if we find that the timetable of at least one node
is occupied when the packet is supposed to transit to that node, we restart
the computations over the route, but assuming a start time incremented by
accuracy. An important detail is that we initialize the value of the start time
not to zero, but to the duration of a guardband: this is done because every
TSN windows needs a guardband before, for the reasons widely explained,
therefore in any case we would first need to wait for the guardband to finish.
As a result, the earliest possible start time is equal to the duration of the
complete transmission of a maximum-sized ethernet packet.

If we successfully terminated the first while cycle and we found a suitable
starting time for our task, we first register the start time in the output
variable generation; then we proceed, by means of another, and similar to
the first one, while cycle, to consider each step of the route. This time,
though, since we are sure that the nodes are not occupied, we modify the
timetables and add the rows related to the current packet. At the end of this
cycle we compare the delay variable, which at this point is the arrival time,
with the maximum value of this variable found so far, in order to compute
span and identify the critical_flow.

This concludes the series of operations performed in the big for cycle, and
also concludes the function, as all the output variables have been computed.
The binary output variable success is simply written with a one if the whole
task sequence fits the cycle and with zero otherwise.
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4.2.2 NWPS_Heuristic

This is the main function addressing the No-wait packet shceduling algo-
rithm, namely the one function that has to be called in a generic program
and that contains all the others, timetabling included.

The function has the following features:

[Schedules, generation, span, max_span, critical_flow, success] =
NWPS_Heuristic(Routes, Adjacency_matrix, TaskSet, map, cycle_time,
prop_time, comp_time, accuracy, margin, x, y, outputs)

(4.2)

The first thing that the function does is compute an initial solution,
namely an ordered sequence containing all the tasks in TaskSet. It can be
random or it can be based on some criteria; we chose to generate our initial
solution according to the Ids of the tasks, so as to put as first the task with
the lowest Id and as last the one with the highst Id. In this way we try to
assign a sort of prioritizing role to the Ids.

Then we apply the timetabling algorithm (using 4.1) to the initial solu-
tion; the timetabling in turn gives the span and the critical flow of the initial
solution. Since it is the only value known so far, we register the span as the
best span, other than as the current solution.

Our search is based on neighborhoods. At each iteration we produce
a neighborhood, namely a restricted set of solution, that depends on the
current solution; then we search the whole neighborhood for its best solution
and use that as the current solution. Every current solution is also compared
with the best one in order to update the best one, if it needs to be; we
stop when we reach a certain number of consecutive neighborhoods visited
without improving the solution.

So we build a while cycle, and we put as the condition when the number
of insuccsessful iterations, which is a local variable, is higher than the input
y ; by means of this input it is possible to tune the duration of the algorithm.

Inside the while cycle we create the neighborhood. Recall from section
2.4.2 that a neighboorhood is generated by using two operations, swapping
and insertion, on all the flows preceeding the current critical flow in the
current solution: swapping consists in just switching the places of the critical
flow with the target flow, while insertion requires to put the critical flow
before the target flow. In this way we produce 2n-2 solutions, where n is the
position of the critical flow in the current solution. So, by means of a for
cycle, we analyze each component of the neighborhood with the timetabling
function. Another feature of the search is that it is based on a tabu list:
we keep track of the last x values of the critical flow in a vector that we
call tabu_list, and we are not allowed to select a solution as the current
solution if its critical flow figures in the tabu list. With the input x it is then
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possible to tune the lenght of the tabu list, whose purpose is to continuously
change the critical flow of the current solutions. The exception is when the
solution has a better span with respect to the best one encountered so far:
in this case, even if its critical flow belongs to the tabu list, it is eligible to
be selected as the next solution.

Once we have our current solution, before repeating again the cycle for
another neighborhood, we compare the current solution with the best one
encountered so far: if it is better then we register the current solution as the
best one, and we reset the counter for insuccessful iterations; otherwise we
increment the counter.

Eventually, when all the necessary iterations have been performed, the
timetable (recall from the previous subsection that it is an output variable
of the timetabling algorithm which reports the occupied windows for each
port in the system) variable is used by another function to create a proper
schedule. As we already highlighed, the simple sequence solution is not
enough to drive the time aware shaper, and neither it is the timetable; we
programmed a function specifically to build the schedule, and we are going
to describe it in the next subsection.

Eventually, after the computation of the actual schedule, which is stored
in the output variable Schedules, the function analyzes the input flag out-
puts: if it is one, some useful quantities are computed and then printed in
the command window, to provide the user with useful information about the
solution just computed; with outputs enabled, the function also prints peri-
odically the number of solutions analyzed while it is visiting neighborhoods
in the solutions’ space.

There are still a couple of input and output variables that haven’t been
described. max_span, for instance, is the span of the worse solution encoun-
tered in the search. margin, instead, is a safety margin, expressed in bits,
for the computation of the windows: it is added to the size of every task
in the taskset in order to consider bigger windows and bigger transmission
times than the ones actually required by the tasks. As the name suggests, it
is a safety margin which allows to compensate for inaccuracies in the model
of the network. The other input and output variables that have not been
mentioned here are needed for the timetabling function.

4.2.3 Schedules

As we already mentioned, the solution of the timetabling algorithm is not suf-
ficient to drive the time aware shaper. As we built it, our time aware shaper
needs a schedule in the form of a matrix, with the same format shown in
Figure 4.7. Therefore we created a function, named create_schedule, which
deals whit these computations. It needs to be called in the NWPS_Heuristic
function in the following way:
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[Schedules, TSN_time, idle_time, total_time] = create_schedule(
TimeTable, Adjacency_matrix, map, cycle_time)

(4.3)

As the first thing, we extract from the input TimeTable the information
about the TSN windows and add them to the output variable Schedules.
Schedules is a matrix with four dimensions, where the first indicates the
node’s Id and the second its port. If we access this matrix with a node’s Id
and the number of one of its ports, we get a bidimensional matrix similar
to the one of Figure 4.7. TSN windows are characterized by an offset, a
duration and a specific combination of the gates. From the values of the
TimeTable we have to compute the first two parameters and put the known
TSN sequence in its intended position.

Then we have to place guardbands before every TSN window. By means
of a while cycle we analyze every schedule built so far and place the guard-
bands: if there isn’t room for a whole guardband it means that two TSN
flows are scheduled so close that no best effort packet will ever be allowed
to pass in between; therefore we just have to fill the space between the TSN
windows with a window characterized by all the gates closed, but which is
not technically a guardband.

Eventually we have to consider every hole left by the scheduling of TSN
windows and guardbands, and fill them with best effort windows: again we
have to compute, from the neighbor windows, duration and offset of the new
windows, and also put the best effort’s combination in its place.

These operations give us proper matrices that can be used to drive our
time aware shapers. There is, however, another schedule that we need, which
is not a standardized schedule but it is needed for the simulation: it is the
generation schedule, which contains the information needed by the packets
generators to know when and which packets to produce.

Outside the function NWPS_Heuristic, namely in the main program, the
funtion create_generation_schedule has to be called, in the following way:

generation_schedule = create_generation_schedule(
generation, TaskSet, number_of_hosts, cycle_time)

(4.4)

This function takes the generation variable, which has the start times of
every flow in the best solution of the No-wait packet scheduling algorithm,
along with their associated tasks’ Ids. The objective is to create, for each
node, a sequence of the tasks that it needs to generate with all the informa-
tion about them: their Id, their destination, their size, their intergeneration
time and so an and so forth. So we exploit the TaskSet input variable to ac-
cess the data about the tasks and we create the output generation_schedule
so that it can easily be read and understood by the packets generators in the
simulation.
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4.2.4 Multi-objective optimization

So far we have described the No-wait packet scheduling algorithm as it is
presented in [14]. As we have seen, it is a heuristic solution which is inspired
by iterative algorithms for classical optimization problems: we start from an
initial solution and, based on that solution, we generate another solution to
evaluate, and so on and so forth. In our case we do not have the gradient
of the cost function to indicate us the search direction: instead, we generate
a whole neighborhood based on the critical flow and search there. Our
"direction" is the solution which minimizes the span in its neighborhood.

In this subsection we propose a variant of that algorthm, based on a
multi-objective optimization problem. The main reason that led us to de-
velop this alternative version is that minimizing the span isn’t always indica-
tive of a better solution. As a matter of fact, we can consider the final goal
of a good scheduling algorithm, other than correctly placing the TSN tasks
within the period, maximizing the overall throughput: we can achieve this
by minimizing the guardbands in the schedules.

By trying to schedule tasks as soon as possible, also minimizing the
span, the No-wait packet schedling is already an excellent solution as it
concentrates the tasks in a restricted section of the cycle; as a result, the
number of guardbands will decrease since one guardband will be used by
several TSN windows and not by just one. We can, however, directly consider
the actual amount of idle time of the system as a cost, and use it to find the
search direction of our algorithm.

We still kept the span as a cost, but added another cost, which is indeed
the idle time of the system. Recall from 4.3 that our scheduling function
gives as output three variables: total_time, TSN_time and idle_time. These
three values represent the total time available in one cycle for all the ports,
the time spent in TSN windows and the time in which the system has to
remain idle due to guardbands. We used the idle_time variable as our second
cost.

What we just created is a sort of multi-objective optimization problem,
where we are trying to minimize at the same time both the costs. In general
it does not exist a solution minimizing both. What does exist is a set of
solutions, each one minimizing a single cost or differentiating by the others
because neither one of the others has a better value for at least one of the
costs without worsening the other. In classical optimization problems, this
set is named Pareto set. Ours is not a classical optimization problem, there-
fore it wouldn’t be correct to use the term Pareto set, but we were in fact
inspired by this concept in the developement of our algorithm.

In order to solve the presented problem, we used a scalar method, namely
we turned our two costs in a scalar variable which can be used to make
comparisons. As a matter of fact we defined our global cost as:
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cost =
√
span2 + idle_time2 (4.5)

which is the euclidean distance from the origin in the plane with span
and idle_time as dimensions.

So we created another function named NWPS_Heuristic_mo, very sim-
ilar to the one described in section 4.2.2, but with the cost of equation 4.5
instead of the mere span. In this way our search direction is the one of the
solution that minimizes the new cost, which takes into account both the span
and the actual idle time.

From an implementative point of view, the code is in this case heavier,
because we need to compute the actual schedules for every analyzed solution,
while in the previous case we computed the schedules only for the final
solution. Afterwards we use the two costs to compute the global cost, and
then we proceed exactly as we used to do in NWPS_Heuristic.

4.2.5 Performance

As the final note about the implementation of the No-wait packet scheduling
algorithm, we provide some information about its performances, in terms of
execution times. The considerations about its effectiveness will be presented
in the next section, when the produced schedules will actually be tested using
the simulation environment; also, comparisons with the Joint Routing and
Scheduling problem and our custom version will be provided, highlighting
its advantages and drawbacks.

First of all we show what the function prints on the command window
of MATLAB if we enable it to do it.

Figure 4.20: Outputs of the function: 1
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The computations about the routing need to be performed before the
scheduling: we can see that the routing function also prints its progression,
as the number of hosts for which all the possible routes have been computed.
For the simple network in the example the routing execution is almost in-
stantaneous.

Then the scheduling function is called. If the outputs flag is activated it
periodically shows the number of solutions that have been evaluated up to
the moment, namely the number of times that the timetabling algorithm has
been applied. In addition it shows the number of feasible solutions found,
i.e. the number of sequences whose span is lower than the cycle time. This
parameter is also useful to immediately see if the problem is easy to solve or
not.

Figure 4.21: Outputs of the function: 2

Figure 4.21 shows the command window after some time with respect to
Figure 4.20. We can see that the data concerning the numbers of evaluated
and feasible solutions keep being shown throughout the whole execiution;
then, when the algorithm terminates, a summary of the computations just
performed and of the obtained results is provided to the user. We can see
the dimension of the network and of the taskset, the cycle time and the final
number of solutions analyzed. The the best solution found is presented to us,
along with its span and the percentages of idle time, time for TSN packets
and best effort packets.

In addition, the worst solution’s details are presented as well, in order to

148



appreciate the enhancements provided by the long search; clearly it is not
even close to the worst possible solution since, as we said, it is the worst
solution encountered while searching for the best one.

Eventually we can see that a suitable schedule has been crafted for all
the ports in the network, and we can read the execution time of the whole
algorithm which, in the example, was of 15 seconds.

Next we show the output of our alternative function namedNWPS_Heuri-
stic_mo.

Figure 4.22: Outputs of NWPS_Heuristic_mo

At the end of the execution of this function we are again shown the details
of the problem that we are trying to solve. Besides the optimal solution,
though, the output presents two other solutions. As a matter of fact, the
first solution is the one minimizing the global cost described by equation 4.5,
while the second minimizes only the span and the third only the idle time.
Therefore we can cosider the first as a tradeoff, while the others are aim at
minimizing just one cost at the expense of the other.

We conclude this section with an analysis of the average execution time
of the implemented instance of the No-wait packet scheduling. We have
seen that several cycles are required, usually nested one within the other.
Even though the number of lines does not exceed four or five hundreds,
the structure of the code turns out to be quite heavy, since the number of
iterations increases very rapidly. This behavior is immediately detectable for
non-trivial scheduling problems, where it takes some time to the algorithm
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to finish. At the end of the day, among all the data concerning the optimal
solution and network utilization, the execution time is a parameter to rate
the validity of a scheduling algorithm as well. One positive feature of this
implementation is that its memory consumption is limited and does not
depend on the execution time: by construction, the necessary amount of
memory at the start of the operations gets continuously updated without
the need to ask the system for more during the execution. Therefore the
algorithm could run virtually for a very long time, even in systems with
small amounts of RAM available.

So we have made some tests, measuring the execution time of the NW-
PS_Heuristic via a simple MATLAB command. The tests were carried out
using the 2018a version of MATLAB, running on a PC with 16 gigabytes of
RAM and an 8th generation i7 Intel processor.

As we have seen, there are several parameters that can change from
within the behavior of the algorithm, and thus affect its execution times:
the accuracy, namely the offset between one test start time and the next in
the timetabling algorithm, the number of insuccessful iterations, the dimen-
sion of the tabu list, of the network and of the taskset. Among all these
parameters, probably the most meaningful dependency to test is the one of
the execution time with respect to the number of tasks; therefore we fixed
the other conditions and we run the algorithm several times, progressively
increasing the number of tasks. In particular we considered a network with
10 hosts and 7 switches, 10 maximum insuccessful iterations, 2 values max-
imum in the tabu list and an accuracy of 1 µs. Then, by means of a simple
script, we generated a suitable set of tasks by randomly choosing source,
destination and size of every flow; the series of tasksets used in the tests
was obtained by progressively adding some elements to the already existing
taskset.

Figure 4.23 shows the evolution of the execution time and of the number
of solutions considered, as functions of the number of tasks.

As we can see, the execution time increases faster than the number of
tasks, with an exponential shape. This is a reasonable behavior, especially if
we consider how the algorithm works. For the same network, if we increase
the number of task, we need to allocate more windows to the transmission
of TSN data, therefore the last tasks to be placed will have to start later
and later, increasing the number of iterations needed to find the appropriate
start time. As a matter of fact, the time

evaluated solutions ratio constantly increases
with the number of tasks. The specific duration, both in terms of exectution
time and of solutions, depends also on the initial solution considered: if,
for instance, it has already a good span, which is hardly improvable, the
execution will stop sooner with respect to a "bad" first solution.
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Figure 4.23: Latencies for TSN packets

4.3 Test simulations

Finally in this concluding section of the chapter we exploit the topics of
both the previous sections to perform simulations of time sensitive networks,
whose schedules are computed by means of the No-wait packet scheduling
algorithm.

We are going to show the results of two simulations, carried out on two
different networks: the first network is very simple, and its purpose is to pro-
vide an example to better understand how the scheduling algorithm works
and to directly see the consequences of the No-wait policy; the second net-
work, instead, is more complex and representative of any possible network
compliant with the TSN standards.

Eventually we are going to end the chapter with a subsection dedicated to
the conclusions about the simulations and, in particular, about the schedul-
ing algorithm’s features.

4.3.1 Simple network

As we said, this simulation is quite trivial as it aims to show the properties
of the No-wait packet scheduling algorithm. We consider a simple network
made by three hosts and one switch, with a star connection. The hosts have
Ids from 1 to 3, while the switch as Id 4. Next we show the implementation
on Simulink of such a network.

Since the topology is simple, it is still possible to unsterstand the con-
nections from Simulink.
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Figure 4.24: Simple network

The taskset was very simple as well, since it had only five tasks; we used
Excel to write the taskset in a more comprehensible way and then imported
the data on MATLAB.

Figure 4.25: Taskset

For the purposes of the test, we have assigned to the tasks different sizes
in order for it to be easier to tell them apart in the schedules. Furthermore
they are all directed to host number 3 and generated in hosts 1 or 2. In this
way we create conflicts on the port of the switch connected to host 3, since
it has to receive and redirect the incoming packets from host 1 and 2.

So we launched the configuration script on MATLAB, which in turn
called the routing and scheduling functions; at the end we had all the pa-
rameters needed by Simulink stored in the workspace, and we were able to
correctly start the simulation. Once the simulation had finished, we launched
another script which analyzed the results of the simulation, namely the big
data matrix such as the one in Figure 4.9. These were the results of the
analysis, printed on the command window of MATLAB.
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Figure 4.26: Results of the simulation

The results of the simulation initially summarize the characteristics of
the problem such as simulated time, cycle time and number of TSN packets.
Then we can read the total number of received packets, in this case by host
3: correctly, the TSN packets are the exact product between the number
of cycles and the design number of packets per cycle, while the number
of best effort packets does not have a specific meaning. Afterwards the
counter of TSN packets that missed their deadline is shown: this counter
is increased whenever a packet is received in a different millisecond with
respect to the millisecond when it was generated and, in this case, we can
appreciate that all the packets were delivered on time. The average waiting
time is also meaningful, in particular since the scheduling algorithm is based
on it: as a matter of fact, TSN packets are constrained to wait for fractions
of microsecond, which is practically nothing, while best effort packets have
to wait, on average, more than three complete cycles during their path.

Even though these results are expected and make sense, the actual focus
of this simulation is on the schedule. As we can gather from the taskset and
from the network’s topology, this scheduling problem is easily solvable by
hand, but we used our algorithm to highlith some of its features. In order
to support our considerations, in the next picture we show the computed
schedule for the port of the switch connected with host 3 and the generation
variable, which reports the best sequence of task found along with their,
generation time.
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Figure 4.27: Schedule and generation

Starting from the schedule, we can see that the first window is dedicated
to best effort traffic (refer to subsection 4.1.6 for the format of the schedule);
this happens because TSN packets have to be first generated in their sources
and travel to this port, so there is room to let some best effort packets
flow. After 7 µs from the start of the cycle, a guardband is placed and,
subsequently, the series of TSN windows. The duration of the guardband
of 120 µs is obtained by muliplying 1500 bytes times 8 bits and dividing
by the rate of 100 millions of bits per second, namely the time it takes to
transmit the largest ethernet frame. A part from one case, due to the needs
of the schedule, the TSN windows are not completely attached, but they
are still close. So close that in between there is no space to put a whole
guardband and another best effort window; therefore we just have to put a
sort of shorter guardband to fill the gap. This explains why the throughput
of best effort packets is intrinsically augmented with this procedure.

From the durations of the TSN windows we can figure out which flow
they represent: the first one to transit is flow number 1, then numbers 3, 2,
5 and 4. Eventually we have one last best effort window which ends at the
end of the cycle; due to the particular strucure of this schedule, it resumes
right at the beginning of the new cycle.

By taking into account the computation and propagation delays that
we provided to the algorithm, along with the specific transmission times of
packets, it is possible to verify that each one of them is scheduled so as it
starts as soon as possible and it does not have to wait. In particular we
considered 5 µs of computation time and 1 µs of propagation time. These
features are supported by the results of the simulation.
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Let’s consider now the generation variable: on the first column we have
the ordered sequence which has been found to have the best span by the
algorithm. It is therefore the order followed placing the tasks on the system.
The second column reports the generation times associated to each task.

We can see that the earliest generation times are of 120 µs, which is the
duration of a guardband: this means that we want to produce flows 3 and 5
as soon as possible but, since we have to place guardbands before any TSN
window, we have to wait 120 µs from the start of every cycle. According to
the taskset, their sources are different, hence it is physically possible to send
them at the same time.

We can also notice that we do not produce flows as soon as the sources
could: if this were the case, we would have that host 1 produces flow 3 at 120
µs, flow 5 at 123 µs and flow 4 at 128 µs, while host 2 would produce flow 2
at 120 µs and flow 1 at 122 µs. This hypothetical schedule can be computed
by hand just by looking at the taskset and the optimal sequence of tasks.
However, since we have to meet the No-wait policy, we need to pospone the
production of some packets because, otherwise, they would be constrained
to wait, specifically, in the switch. So, for instance, in host 2, flow number 4
is not produced at 128 µs but instead it is produced at 131 µs.

Another interesting feature of this schedule is that flow number 1 is
actually the first to reach the destination, even though it is the last one to be
placed. We can see that it is the last value on the sequence in the genration
variable, but it is supposed to be produced at the beginning of the cycle in
host 1 and, also, the first TSN window in the host has the same duration as
flow 1. This happens because the first flow to be placed, namely number 3,
is so big that a small flow such as the number 1 fits in the schedule before
flow 3. As a matter of fact, if we take into account propagation, transmission
and computation delays, flow 3 arrives at the switch at 129 µs (120 µs plus 3
µs of transmission delay plus 1 µs of propagation and 5 µs of computation),
while flow 1, by 128 µs, has already finished using the switch. Since the
other tasks are not small enough, they do not fit and so they have to pass
after flow 3; instead, flow 1 does not get in the way of any of the previously
placed task, therefore it actually gets to pass as first.

This simple example is useful to understand how the No-wait packet
scheduling works and, in particular, how the final solution’s sequence does
not imply that that’s the actual ordering of the packets. Clearly, with a
generic network and a more complex taskset, these kinds of patterns, while
still guiding the structure of any schedule, become almost impossible to
highlight in a comprehensible way; for this reason we have adopted this
simple and nice test scenario.
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4.3.2 Generic network

The second simulation that we present in this section concerns a larger net-
work with a more extended set of tasks, and it is supposed to simulate all
the configuration steps in a generic scenario.

The network that we consider for the test has actually been provided
as an example of generic network in Figure 4.10; however, we are going
to show its principle scheme, drawn by means of Excel, so that it is more
comprehensible than the actual Simulink file.

Figure 4.28: Generic network

We indicated hosts with squares and switches with circles. The number
inside every node is its Id and every line represents a bidirectional connection;
at the ending points of the connection the port number of the node is written.

The taskset is made by 100 TSN flows, randomly generated; we used the
same script described in the last section which computes random sources,
destination and sizes for every task. Then we saved it in another script in
order for it to be available for any simulation.

As usual, the first thing to do is launch the configuration script, which
computes the necessary routes from all the hosts to all the hosts and then
computes the schedules for the specific taskset. In this case, after 170 sec-
onds and 4004 possible solutions evaluated, the algorithm found a solution
with span 0.356 milliseconds and 10.3% of time idle; the worst solution en-
countered had a span of 0.377 milliseconds and the 10.6% of the time idle.

Then we simulated the network for 0.01 seconds and, eventually, we eval-
uated the results.
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Figure 4.29: Results about the generic network

The graph it is referring to in the second-last sentence is the following.

Figure 4.30: Average waiting times

As we expected, the 10 cycles in 0.01 seconds produced a total of 1000
packets, all of them delivered within the millisecond in which they were
sent. The number of best effort packets is more than twice as the number of
TSN packets, and that’s reasonable since the TSN packets all finish before
the 2

5 of the period. Furhtermore we can notice that the No-wait property
is respected as the average waiting time for TSN packets is of 4 µs, while
for best effort packets it is a thousand times higher. Not only that: as a
matter of fact, we can see from the graph in Figure 4.30 that the average
waiting time per cycle of best effort data linearly increases with the number
of cycles, while the average waiting time per cycle for TSN data remains
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constant. This means that the best effort network is congested and does not
manage to satisfy all the requests it receives in a period, without, though,
affecting the behavior of the TSN part, which delivers its flows accordingly
to the schedule.

The actual waiting time for TSN packets is not zero because of the safety
margins of the model; namely we considered worst case scenario values for
the transmission time and propagation time of packets while crafting the
schedule, whereas in the simulation we used the "real" values. In any case, 4
µs is a very low value, especially if compared with the duration of the cycle
which is 1000 µs.

We also report the results of a simulation performed with a taskset of
200 elements, namely 20 tasks per host, on average.

Figure 4.31: Results about the generic network with 200 tasks

As the picture summarizes, we simulated five whole cycles and correctly
delivered 200 TSN flows, none of which arrived in a different period with
respect to the one where it was sent. We can appreciate how the space for
best effort data is reduced in comparison with the previous case, since we
have doubled the TSN flows. The details of the schedule’s computation are
the following: the algorithm terminated after 1569 seconds (almost half an
hour), having evaluated 7044 possible solutions, all of which were feasible;
the best solution had 0.545 milliseconds as span, while the worst had 0.608
milliseoconds. In this case we can also see that the lowest time span does
not always lead to the lowest waste in terms of bandwidth, because the best
solution had the 16.42% of time idle, while the worst had 16.35%. The
behavior of the waiting times was the same as in the previous case, reported
in Fig. 4.30.

We performed the same simulation with different tasksets and every time
we got the same results; we can therefore conclude that the No-wait packet
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scheduling algorithm could be a valid strategy to be employed in the config-
uration step of a time sensitive network.

4.3.3 Final considerations

In section 2.4 we have introduced the scheduling problem for a time sensitive
network and we presented two different ways to achieve a suitable schedule:
the Joint Routing and Scheduling problem and, indeed, the No-wait packet
scheduling. JRaS is an optimization problem which expresses the physical
constraints of the network and of the application as mathematical equations
and which is solved by means of ILP methods; NWPS, instead, is a heuristic
method which tries to schedule packets as soon as possible and so as they
are never constrained to wait. In this chapter we implemented and tested
the latter; we conclude with some considerations about its features, with
particular reference to the JRaS.

The first consideration concerns the heuristic nature of the No-wait packet
scheduling algorithm, and in particular the limit of insuccessful iterations af-
ter which it stops. We have a solution space that has a number of elements
of n!, where n stands for the number of tasks: as a matter of fact, all the
possible inputs for the timetabling function are all the permutations of the
n tasks in the taskset. It is possible that some solutions, if they present
"independent" tasks, will lead to the exact same schedules, therefore the
number of actual different solutions could be a little smaller; but from a
practical point of view there is no way of knowing them a priori, hence we
can consider the solution space as made of n! solutions. As a consequence, if
we actually wanted to find the absolute best solution there exists, we would
have to perform the timetabling algorithm n! times. This would mean:

– 120 times for 5 tasks

– over 3 million times for 10 tasks

– over 2 billion billion times for 20 tasks

and so on and so forth. The behavior of the factorial sequence is very
sudden and we can quicky find ourselves to handle a solution space which is
too large even for the most powerful computer in the world in an acceptable
time. Consider also that the timetabling itself requires more time to be exe-
cuted if the number of input tasks is increased, as we have seen. That’s why
scheduling is classified as a NP-hard problem. Therefore we set a criterion
to stop the search before having completed the whole solution space, and
then settling for a solution which is not guarateed to be the best.

On the other hand, even if the cost is different, the JRaS problem gives
the best solution, which makes its execution time way heavier with its cor-
responding heuristic version. In fact, in [13], all the tests are carried out on
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a powerful computing system with 128 gigabytes of RAM and with tasksets
made by 25 tasks top; they also explain how, in order to obtain a solution in
acceptable time, the number of tasks in the system shouldn’t exceed 50/60.
That’s one drawback of optimal solutions and, in contrast, one advantage of
heuristic methods: heuristic methods allow to obtain a solution, even if not
the best, in a reasonable time with respect to the dimensions of the problem.
We were in fact able, according to Figure 4.23, to solve the problem with
a considerable number of tasks in an acceptable time: we did not explore
the whole solution space, as the number of evaluated solutions attests, but
managed to find a suitable schedule for up to 200 tasks. In the worst case
it took us a couple of hours to execute the MATLAB’s script, which is still
acceptable, especially if we consider that this is a procedure which has to be
performed just once, before starting the operations. Furthermore, 200 tasks
is a reasonable maximum number of flows to be scheduled in a real enevi-
ronment; recall that the dimensions of the network, for the time being, are
constrained not to exceed a maxium path’s lenght between nodes of about
7/8 hops, due to the difficulty of keeping a stable and precise time synchro-
nization between the devices. Also, since the services provided by the time
aware shaper aren’t free, there is a limit on the number of windows per cycle
that a device can correctly handle; therefore, since both the number of nodes
and the packets per node have hardware limits, we can safely assume that
the total number of tasks to be schedluled in a real-life scenario does not
exceed a few hundreds of flows.

The second consideration is that the schedule produced by the No-wait
packet scheduling has some fault tolerant features, as we already mentioned
in subsection 2.4.2. Since the resulting flows are scheduled to finish as soon as
possible, there is still time in the cycle to compensate for possible inaccuracies
in the model of the network and/or in the assumptions about the maximum
values of delays and latencies. Clearly this is not an ideal situation, but the
concept that we want to highlight is that, by reducing both the finishing
time and the time packets spend around in the network, the amount of
risks, for what concrns packet loss or delay, is reduced. The JRaS problem,
for instance, does not include any constraint promoting early departures of
packets. Thus there could exist a scenario where in the optimal solution the
TSN flows are all scheduled at the end of the cycle: while this may work
on paper, in practice it is always better to consider safety margins that are
as large as possible, because if one unpredicted delay were to take place, it
would be easier to miss some deadlines.

To this fault tolerant feature we have to add that the No-wait packet
scheduling algorithm is more flexible as well, as it allows to add flows to the
taskset, after an initial computation, more efficiently. Minimizing the span
is not only useful to compress the flows and reduce the guarbands, but also
to have more time available to let best effort packets flow or, even, sched-
ule other TSN tasks. If, for instance, we needed to add a couple of flows

160



to an already existing and schedued taskset, we would just have to execute
the NWPS algorithm for the two additional flows, taking into account the
already occupied time windows in the network. So, basically, we woul be ap-
pending the new tasks at the end of the current best sequence of tasks for the
timetabling, without modifying the first part; as we have seen, this wouldn’t
even imply that they would be going to be scheduled as last because, if they
fit, they would be placed as soon as possible. Hence, the NWPS algorithm
gives us the degree of freedom of being able to choose whether or not to
recompute the schedule for the whole taskset: if we did, we would definitely
have a larger solution space to explore, but at the cost of an increased time
complexity; otherwise we could apply the algorithm just to the new packets
and obtain a solution within a few seconds. With the JRaS, we do not have
this possibiliy as, in any case, we would need to recompute all the schedules.

One possible drawback of the NWPS with respect to the JRaS is that
we need to assume that all the TSN flows have the same cycle time. In
a practical usecase it could happen that different time sensitive flows have
different frequencies, and we wouldn’t be able to handle similar tasksets very
well. We would need to consider one big cycle, with duration equal to the
least common multple of the individual flows, and put in the taskset as many
packets per flow as the number of periods in the big cycle. Then we could
add some conditions within the timetabling so as to recognize if a solution
meets the additional constraints, but we wouldn’t in fact be able to search
in the "right" direction. As a matter of fact, we base our next solution on
the assumption that, if the current one isn’t feasible, by minimizing the span
there will be a higher probability that the next solution is feasible; that’s not
the case for such a kind of problems, where minimizing the span does not
always imply finding a feasible solution. For instance, the minimum span
solution could schedule all the packets belonging to one flow at the end of
the cycle, therefore meeting only the last deadline. That’s what we meant
with right research direction: by just minimizing the span, we would be
blindly exploring the solution space, recognizing the feasible solutions that
we encounter but not really looking for them. On the other hand, the JRaS
problem handles this scenario in a better way as it is possible to specify,
for each flow, frequency and cycle time; the solution will then automatically
consider them as constraints to be satisfied in an optimal way. However, if we
consider our particular field, namely the industrial automation framework, it
is not so common to have tasks with different cycles: an automatic machine
is in fact driven by a Programmabe Logic Controller which imposes the cycle
time to all the elements of its network, that have to send it their data in
fixed windows. So, granted that this is a weakness of the algorithm, it is not
that problematic in our line of work.

In the end, the last consideration is the answer to the following question:
is it really necessary to obtain the best possible schedule? The answer, in
our opinion, is no. There are several reasons why it is preferrable, from a
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practical point of view, to use the No-wait packet scheduling algorithm for
the scheduling problem of a time sensitive network.

As we have seen, the best feature of Time Sensitive Networks is the
possibility of integrating both the best effort traffic and the time sensitive
traffic in one single network, with the side goal of connecting all the devices
that, before, had to communicate using different means. Therefore it is
important that both the data types flow in the system. If, for instance, we
had a taskset that hardly fits in the cycle, for which would be then required
to have the optimal schedule, the best effort packets would never get to flow
in our network. As a consequence, there wouldn’t be the need for a time
sensitive network. We can thus safely assume that all the tasksets that we
are going to have to schedule will be widely feasible. This is also reasonable
if we consider that in an industrial plant what matters is the determinism,
rather than the throughput and the actual amount of data. The problem is
therefore not much finding a feasible solution as finding a solution which is
"good" and does not require the computational effort to compute the best.

The No-wait packet scheduling is an excellent method in this sense, as its
guiding principles are intrinsically "smart" and efficient. As we have seen,
scheduling tasks as soon as possible and preventing them any kind of waiting
provides to the scheduling not only with an automatic compression of the
tasks, but also with some fault tolerant and flexible features. Furthermore,
the tuneable search of the algorithm allows to reduce, on average, of another
5-15% the span and 3-4% the idle time of the system.

One final consideration that applies to every scheduling algorithm is that
their effectiveness depends also on the accuracy of the model of the system
that they exploit. If the behavior of the system is different from what is
supposed to happen on paper, then some unwanted phenomena could take
place, with the risk of interfering with the efficiency of the schedule. For
instance, if the values for the transmission times or the propagation times
for packets in the network are too high or too low, packets can arrive at
the same time at the same node (which is forbidden by the algorithm) and
even get swapped, without the system knowing; this loss of determinism
could lead to delays and deadlines misses. We did actually experience this
behavior, in particular concerning the safety margins that we added both to
the transmission times and to the sizes of packets. If we chose values too
different from the ones used in the simulation, non-determinism occurred.
This in order to highlight the importance of a proper scheduling method
and also of actual tests, even in a simulated enviroment.

In conclusion we can state that there exists a tradeoff of performances
versus efficiency between No-wait packet scheduling and Joint Routing and
Scheduling problem, but it is very biased in favor of the NWPS; so much that
in the major part of cases it would the the better choice for the scheduling
problem of an actual time sensitive network.
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Chapter 5

Conclusions

The initial objective of this thesis project was to study the new topic of Time
Sensitive Networking with the perspective of its future implementation in an
industrial environment, in particular in the industrial automation field.

The advantages of a possible employment of a time sensitive network are
that every type of data, namely the ones that are subjected to temporal
constraints and the ones that are not, can flow in the same, big, corporate
network.

The currently most widespread solution for this kind of problems is to use
different networks to satisfy the needs of each type of data. For time sensitive
data, such as the ones exchanged between the sensors and the PLC of an
automatic machine, fieldbuses are employed: fieldbuses are special kinds of
networks whose purpose is to reduce the efficiency and the actual amount of
data circulating in the network in order to increase the determinism and the
predictability of the working parameters. Instead, for the data that are not
subject to any particular constraint, which are called best effort, a common
switched network is used. We have seen in the first part of the second chapter
how, in common switched network, it is virtually impossible to impose or
even to predict a certain behavior of the data flows, as they depend on a
high number of factors and events which are, most of the times, random.

Time Sensitive Networks are a series of standards which describe some
mechanisms that allow a common switched network be able to support and
meet the time constraints of a certain data flows, while letting the other
circulate in the usual way. The concept and the potential of this technology
are huge, as they are also compliant with the new paradigms of Industry 4.0
and Industrial Internet of Things.

In the first section of this final chapter we are going to briefly summa-
rize the main points of this thesis project and the results obtained, both
experimentally and in simulation. The second section is instead focused on
the future developements, in particular the goals that are still far away from
being reached and the topics that, even now, can be successfully explored.
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5.1 Summary

As the title reports, the work has been divided in four parts. The analysis
part is about the actual study of the material available on the internet,
describing the main features and characteristics of Time Sensitive Networks.
Since the final objective is the actual implementation of a time sensitive
network, these seeked features pertain also the implementation details, both
on the hardware and software sides. As a matter of fact, the second part
of this work was dedicated to the practical testing, on a special setup, of
the main mechanisms defining TSN. The third and fourth parts, instead,
are dedicated to the implementation and to the simualtion, with validation
purposes, of a suitable and efficient scheduling algorithm for a time sensitive
network, which is needed to organize and configure the network in order for
it to work properly.

5.1.1 Analysis

By definition, Time Sensitive Networks refers to a set of commuication stan-
dards based on ethernet, which in turn describe a series of mechanisms that
are supposed to be implemented in a switched network. These standards
are still under direct control of the IEEE association, which has developed a
part of them and aims at their completion in the next future.

We can divide the topics addressed in the standards in three areas: traffic
shaping, time synchronization and system configuration.

In the traffic shaping area we can find the most important mechanism
of TSN, which is the Time Aware Shaper. The TAS is a particular output
interface that allows to drive, by means of an appropriate list of commands,
a series of output queues which are filled with packets belonging to different
traffic classes. The main idea is to build a system of gates that open and
close to create "protected windows", namely intervals of time where only a
specific traffic class gets to be transmitted. Every output port of every node
in the system is supposed to have a time aware shaper which controls the
outgoing traffic. Then, by accurately organizing the time windows on every
time aware shaper, it is possible to guarantee the latencies of the data flows
of interest.

The Time Aware Shaper, as the name suggests, relies on the accuracy of
the time measure of every device in the network; the time synchronization
area deals with the methods to provide to all the nodes a common and shared
measure, in order to better synchronize all the gates.

Lastly, system configuration is the part of the standards that describes
how to correctly setup a time sensitive network in an automatic way. This is
a procedure which needs to be performed before the start of the operations
and basically consists in producing suitable schedules for the ports in the
system and delivering them to the related nodes. All of that in the most
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flexible and interoperable way possible.
Among the three areas just mentioned, system configuration is the less

developed, especially in terms of interoperability: the currently existing state
of the art solutions feature vendor-dependent methods which are not com-
pliant with the purposes of the standards.

5.1.2 Testing

There is no abundance of material on the internet concerning practical tests
about Time Sensitive Networks, with particular focus on the implementation
details necessary to personally build a setup and perform some tests. The
most interesting set of tutorials was provided by Intel, which has been long
active in the field of TSN. On its GitHub page there is a complete set of
demos, accurately described and detailed in a comprehensive document, that
implement some of the TSN features on Linux-based systems, in order to
perform some trivial performance tests. Since this was in line with the
objectives of this thesis, we decided to replicate the test and build our own
time sensitive network.

The test involves one talking node which is supposed to send TSN mes-
sages to a listening node, by means of a direct ethernet connection. During
our activity we discovered that the time aware features are implemented in
Linux by means of a kernel module which is called TAPRIO. Via the traffic
control utility it is possible to load said module and to install the TAPRIO
queueing discipline, which acts as a time aware shaper on one of the out-
put ports of the system. Of course it is also necessary to specify a suitable
schedule and the selection criteria that have to be followed to divide packets
in the queues; these tasks, which usually pertain to the system configuration
area, were performed manually, due to the simple topology of the tests.

The demos also included a section dedicated to the time synchronization
of devices, which was based on the Precision Time Protocol. We managed to
configure the systems in such a way to have less than 1 µs of delay between
the system clocks of the two nodes, which is widely acceptable, in particular
for the purposes of a time sensitive network.

Once system configuration and time synchronization had been performed,
we would launch the nominal tests in which the talking device would send
several TSN packets to the listening device every millisecond; furthermore,
the network was flooded with a huge amount of interfering traffic, generated
by the talking device as well. We verified that the time aware shaper correctly
managed to handle all the packets in its output queues, allowing the TSN
packets to leave the device with their intended frequency while leaving to the
others the remaining bandwidth. We also checked that in normal conditions,
namely with the default queuing discipline, the behavior of the traffic was
way less deterministic and the deadlines of the TSN data were hardly met.

Besides the complete lack of any system configuration tool, we detected
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the presence of some other anomalies and inconsistencies in the setting up
procedure of the time aware shaper, which suggested that, even more than
the standards themselves, the hardware and software support has yet to be
fully developed. However, the obtained results were in fact encouraging and
useful to better understand the working principles and dynamics of a time
sensitive network, in addition to the implementation details.

5.1.3 Scheduling

Scheduling is actually the main idea behind a Time Sensitive Network, even
though right now the attention is mostly focused on the time aware shaper
and the other necessary mechanisms. As a matter of fact, what the stadards
describe is just a set of tools that provide a higher level of control over a
switched network: scheduling represents, in a way, how we use such tools
in order to achieve our goals. A proper schedule is supposed to exploit
the working gating mechanism to control all the ports in the network and
accurately plan every detail about the transmission of the time triggered
flows.

However, as we said, since the hardware and software infrastructure sup-
porting TSN is not fully completed, the scheduling problem is mostly treated
in academic papers, without an actual implementation.

We studied several solutions concerning the scheduling problem, selecting
two of them to be further analyzed and to be compared. Scheduling algo-
rithms can be divided in optimization algorithms and heuristic algorithm,
i.e. solutions that are guaranteed to be the best and solutions which are not
the best but allow to save time and resources.

To the first category belongs the Joint Routing and Scheduling algo-
rithm, which is an optimization problem that solves both the routing and
the scheduling problems for a time sensitive network. This means that the
solution will provide a suitable schedule for all the ports, containing the
time windows associated to each packet, and also the routes that TSN flows
will have to follow to get to their destination. We need to express the con-
straints derived by the phisical, scheduling, routing and application domains
in mathematical forms, in order for them to be met in the solution. Then, by
exploiting a solver for ILP problems, which is a particularly common kind
of optimization problem, a solution can be computed. The possibility to
determine both the time windows and the route for each packet extends the
solution space, allowing for a solution even in the hardest cases, but also
increases the complexity of the algorithm.

Heuristic algorithms, instead, such as the No-wait packet scheduling, do
not guarantee an optimal solution but are the most common solution in
practical cases because they allow to compute a solution in acceptable time
for problems otherwise unsolvable with the optimal approach. In particular,
NWPS tries to schedule TSN flows so as they all start as soon as possible
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within the cycle and so as they are never constrained to wait. There is also a
research part which is aimed at the maximization, in a weaker sense, of the
general throughput of the network. The main advantage of this approach
is that, as we said, it is able to compute solutions for a larger set of tasks
in more complex networks; furhermore, thanks to the "smart" guiding prin-
ciples that we mentioned before, it has some interesting fault tolerant and
flexible features which make it the better choice in a practical case for a
scheduling problem.

We implemented a version of the NWPS algorithm on the software MAT-
LAB/Simulink, in order to test its performances. The coding itself and the
subsequent tests helped us to value all the positive features of this kind of
solution, in contrast to an optimal one. We were in fact able to test the
algorithm on a scheduling problem, which was simulated but as generic as
possible, and to correctly prove the claims of the papers in terms of perfor-
mances and effectiveness.

5.1.4 Simulation

Simulation is the fastest and cheapest way to test some features of complex
systems, such as a Time Sensitive Network. Several simulation environments
already existed which were suitable and fully supported TSN featured, but
they all lacked the computing power and libraries useful to implement the
scheduling algorithm. On the other hand, MATLAB/Simulink, while not
fully equipped to simulate a time sensitive network, had all the potential
to build the necessary simulation libraries and also to perform the complex
matrix operations needed to compute the schedules.

Therefore we started from the simple blocks of the SimEvents library and
built the main components of a switched network with TSN features: from
the routing system to the time aware shaper, up to an effective and complete
way to record the results and all the working parameters.

In the end we crated a set of elements, basically consisting in hosts and
various types of switches, which could be combined toghether to form a net-
work of any topology. It was also necessary to perform a kind of configuration
step of the network, providing it a structure with all the connections, along
with the taskset and other details.

We performed some test simulations in order to validate the just built
simulation environment, by comparing its results with the ones of other
simulations or even with the experimental results. We started with the tests
personally conducted about the time aware shaper, replicating in simulation
the setup and the initial conditions and we found exactly identical results.

We also exploited a paper describing a more complex set of tests, per-
formed both experimentally and on another simulation environment; the
paper gave all the necessary details, in terms of schedule and working pa-
rameters, to correctly setup our simulation to be a close replica. Again, the

167



results were very similar to the ones reported in the paper, indicating that
our simulation blocks were in fact suitable to approximate the behavior of a
real-life time sensitive network. This conclusion is also supported by the fact
that the mechanisms that we replicate are conceptually rather simple and
straightforward; the complexity comes when we consider systems made by
several nodes, which implies the presence of many ports, all of which need to
be modelled and taken into account for the creation of the specific schedules.

Eventually, we used our simulation environment to test the scheduling
algorithm that we implemented, namely the No-wait packet scheduling, fully
exploiting the computing capabilities of MATLAB and the simulation tools
of Simulink. As we expected, the computed schedules adapted to the type of
network and the specific taskset assigned, allowing the TSN flows to correctly
reach the destination within their deadlines.

5.2 Future developements

By definition, Time Sensitive Networking is an evolving topic, therefore the
set of possible aspects that can be developed in the future is quite large. We
have divided all the feasible goals in two groups, namely the ones that may
still need some time to be achieved and the ones that can be explored in the
next future.

5.2.1 Long-term objectives

As we said, the standards themselves describing the common and most im-
portant features of time sensitive networks are waiting to be finished by
the IEEE association, therefore the primary objective is to be able to read
and analyze their final versions, in order to actually manage to produce the
supporting hardware and software technology.

This reasoning can be applied, first of all, to the time aware shaping
mechanism which, as we have seen, still has some compatibility issues and,
specifically the one we got to test, is available only on the latest versions of
the Linux operating system.

The time synchronization area is already quite well developed, mostly
due to the fact that it is not an original feature of TSN, as there already
existed methods and protocols with the same exact purpose, even if they
were meant for different applications.

On the other hand, the system configuration area is hardly complete,
since there currently does not exist a common and stardandized method of
network organization adopted by vendors. As we have found in several occa-
sions, at the moment the few vendors of TSN technology rely on proprietary
systems and procedures of network’s configuration, making it hard to employ
devices provided by different producers in a flexible and interoperable way;
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this, according to the standards, is one of the final and most important ob-
jectives. Remaining in this area, the scheduling problem is a topic which is
not even mentioned in the standards but has a central role in a time sensitive
network. This work starts to take into account these kinds of problems as it
takes an already existing solution and provides implementation and testing
results about its performances and effectiveness.

5.2.2 Short-term objectives

We conclude with a brief list of ideas and projects that can be put into
practice in the next future.

As far as the simulation is concerned, it could be integrated with more
features belonging to the pure network communication framework, such as
the IP protocol, MAC addresses and so on and so forth. This in order to
simulate the network as a whole and not just the features of interest of the
TSN framework. As we already said, there isn’t quite yet the infrastructure
suitable to support a complete system configuration able to automatically
compute the schedules, but nonetheless the scheduling topic could be ex-
plored as well, either with different proposals for new algorithms or improve-
ments of the existing ones. In addition, an actual software implementation,
not for simulation purposes, will be required, at some point.

Furthermore, TSN-compatible switches are already on the market, and
the objective of another TSN-related work could be to actually analyze and
test them. By a simple research on the internet, using the keywords “man-
aged industrial ethernet switches", it is possible to find several models of
TSN switches, manufactured by as many companies. Some examples are
Moxa, Belden, Winsystems, Cisco and Phoeinix Contact.

Eventually, the implementaion details discovered in the chapter dedicated
to the tests can be exploited and employed in a more real setup (e.g. an
actual machine-to-machine communication network), different from the one
that we used, which was simplistic and illustrative. To this end, Beckhoff is
working on the developement of a particular module (the EK1000) which is
supposed to communicate directly with the EtherCAT fieldbus and to extract
from it some TSN data flows, which in turn can be injected in a proper Time
Sensitive Network. A detailed set of tests would then be required to verify
its effectiveness and the possible use cases in practical applications.
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