
Alma Mater Studiorum · Università di Bologna

Scuola di Scienze

Corso di Laurea in Informatica

Gas Analysis in Vyper Extension for the
Ethereum Blockchain

Relatore:

Prof. Ugo Dal Lago

Presentata da:

Michele Luca Contalbo

Anno Accademico 2019/2020

Alla famiglia, agli amici, a coloro che mi hanno permesso di concludere

questo percorso. . .

Contents

Introduction iii

1 Background 1

1.1 Blockchain . 1

1.2 Block . 2

1.3 Ethereum . 4

1.3.1 Transactions . 4

1.3.2 Payments and currency . 5

1.4 Vyper . 5

1.4.1 State Variables . 6

1.4.2 Types . 6

1.4.3 Environment Variables . 7

1.4.4 Functions . 7

2 Rewrite Systems 9

2.1 Integer Term Rewrite Systems . 10

2.1.1 Definition and syntax . 10

2.1.2 Complexity ITRS . 13

2.1.3 Termination . 14

2.2 KoAT . 15

2.2.1 Conditional CITRS . 16

2.2.2 The Com k command . 17

2.2.3 Structure of KoAT programs . 17

i

ii CONTENTS

3 Calculus Semantics 21

3.1 Control Flow Graph . 21

3.2 Operational Semantics . 25

3.2.1 Transition Systems . 25

3.2.2 Auxiliary Functions . 25

3.2.3 Semantics of commands . 26

3.2.4 Error semantics . 31

3.2.5 Considerations about the semantics of commands 32

4 Gas Calculation 33

4.1 Operational codes . 33

4.2 The Ethereum paradigm . 34

4.3 Compilers . 37

4.3.1 Vyper compiler . 39

5 Testing 43

5.1 Fibonacci algorithm . 43

5.2 Insertion sort . 45

5.3 Shell sort . 45

5.4 Binary search . 46

Conclusions 49

Bibliography 51

Introduction

In the last years, blockchain technologies like Bitcoin have demonstrated that it is pos-

sible to build decentralized, anonymous and secure systems to make digital transactions.

These technologies are becoming very popular and are being applied in a lot of fields.

One of these fields is finance (with online payments) but we can also find blockchains for

data sharing, Internet of Things or charity donations. In 2017, the University of Edin-

burgh managed to create the first full autonomous corporation, called BitBarista. This

is a coffee machine prototype and it interacts with customers by exchanging Bitcoins.

As instance, the customer pays in Bitcoin for the coffee, but he could also receive money

from BitBarista, in exchange for maintainance.

In 2013, a cryptocurrency researcher and programmer called Vitalik Buterin saw the

potential of blockchains and wondered whether it was possible to create something that

extends the functionalities of Bitcoin. Eventually, he proposed Ethereum, which is a

decentralized open source blockchain featuring smart contract functionality. This fea-

ture is one of the main differences between Bitcoin and Ethereum, and it highlights how

Ethereum is focused on facilitating the creation of peer-to-peer contracts and applica-

tions. At the same time, Ethereum has its own currency called Ether (ETH) which is like

Bitcoin and it can be used to instantly send money to anyone in the world. Ethereum is

gaining more and more popularity since it allows programmers to potentially create de-

centralized organizations. Moreover, applications in Ethereum cannot be censored, since

the programs are not deployed in only one web server, but accross the whole blockchain.

To each instruction of the EVM (Ethereum Virtual Machine) bytecode, corresponds a

certain gas usage, which is the unit of measure of the bytecode’s complexity. Thus, one

of the main problems of the Ethereum blockchain is to establish upper bounds to the

iii

iv INTRODUCTION

operational cost of certain operations. In fact, users who want to benefit from a certain

dApp (decentralized application, also called smart contract in Ethereum) must pay an

amount of Ether to the miner for their effort and that amount is equal to the total

amount of gas it took to complete the operation. Upper bounds could also be used as

a unit of measure between different dApps. In other words, upper bounds could show,

for a certain task, which could be the best algorithm (at least regarding the cost of the

execution). A lot of researches have been conducted to obtain more precise bounds at

a less computational effort, but, in case of while loops or recursion, such bounds can-

not always be computed. For this reason, a non Turing-Complete language was created,

called Vyper, so that, since it doesn’t allow programs to diverge, it is possible to compute

precise and non symbolic upper bounds. Vyper is becoming more and more popular even

because it is derived from Python, but since it is not Turing-Complete, a lot of program-

mers still prefer other alternatives, like Solidity. In this thesis, we consider extensions

of the Vyper language and compiler, allowing the programmer to use while constructs

in smart contracts. Afterward, we will illustrate the implementation of a compiler from

Vyper source code to CITRS (Complexity Integer Term Rewrite System). Then, a tool

named KoAT[24] will be used to infer symbolic upper bounds on while loops from the

CITRS code, which will allow us to calculate the maximum amount of gas spent by a

program.

Related Work

A lot of research have been conducted regarding Vyper. Mavridou et al.[8,9] highlight

the main security differences between Vyper and Solidity, which is a Javascript-based

Ethereum programming language. From the comparison, they claim that Vyper manages

to fully address 3 vulnerabilities that are present in Solidity, which are:

• Integer overflow and underflow: the contract execution reverts if they are detected;

• Denial of Service with unbounded operations: occurs when the operations required

in the execution of a function exceed the block gas limit. As said in the previous

chapter, Vyper does not have this problem, since upper bounds can be precisely

calculated;

• Unchecked call return value: due to Solidity’s discrepancy in handling exceptions

occured in called contracts.

Piper Merriam, in an article posted on the 8th of January 2020 [10], has said that,

even though Vyper has been approved by Vitalik Buterin as a valid replacement for

Serpent (its python predecessor), there are still a few bugs in the compiler that make it

still unsafe to use. Maintaners are working to fix these errors, but it may take a lot of

time.

Robin Sierra has introduced 2Vyper[11], which is a verifier for smart contracts that

can prove the absence of various security problems, like success or failures of a function or

unpredictable state. In the research, the specifications were encoded in an intermediate

language called Viper that, eventually, gets checked by an SMT solver.

Regarding term rewrite systems, some of the most important works are [1,2,3,4].

J.W.Klop[1] introduces several basic concepts regarding rewrite systems, including ab-

v

vi RELATED WORK

stract rewrite systems and the Knuth-Bendix completion, which is an algorithm to

translate sets of equations into equivalent term rewrite systems. N.Dershowitz et Mit-

suhiro Okada[2] provide a proof theoretic approach into term rewrite systems. With

this method, they analyze important properties of term rewrite systems, like termina-

tion and confluence. Dougherty et al.[3] have presented a formalism called “Addressed

Term Rewriting Systems”, which can be used to define the operational semantics of

programming languages.

Chapter 1

Background

This chapter gives a background on the topics of the thesis. It will show how

Ethereum works and some of the main features of Vyper. For formal definitions, we

suggest to check the Ethereum Yellow Paper[4] and the Vyper documentation[5].

1.1 Blockchain

A blockchain is, as the name may suggest, an always growing serie of blocks that

are timestamped. It can also be considered as a database of all the transactions and

operations deployed into the network. Indeed, every block is needed to mine new blocks,

thus, to preserve the blockchain’s integrity, no block can be eventually deleted. The

three main pillars that allow each blockchain to be secure and scalable are:

• Decentralization: there is no third-party organization that manages and controls

the blockchain;

• Transparency: each node is able to control the whole state of the blockchain;

• Immutability: even if technically possible, it is almost infeasible to change a

validated block’s data.

Encryption algorithms provide privacy and security of information. Indeed, in blockchains,

they can encrypt financial records and payments, making it impossible to read the in-

formation for someone that does not have the decryption key. The blockchain does not

1

2 BACKGROUND

define a particular encryption algorithm to be used for making safe transactions. Never-

theless, encryption algorithms or hashing functions like AES and SHA are usually chosen.

In general, we could say that encryption provides safety properties for cryptocurrencies,

but it is the structure of the blockchain that makes “digital money” usable. As instance,

euros are regulated and verified by a central authority (usually banks). This authority

manages the savings of a high number of customers, thus, if somehow it collapses, the

users savings could be at risk. Instead, in blockchains, there is no need for a central

authority, since the operations are spread accross the network. This reduces the overall

risk. As mentioned in the introduction, two of the most famous blockchains are Bit-

coin and Ethereum. They have some similarities: they are both public, have their own

cryptocurrencies but also a Proof of Work mining (PoW), meaning that the miner must

prove that the mining process had a certain computational effort. At the same time, we

could say that Ethereum extends the blockchain concepts from Bitcoin:

• it allows to run code equivalently on many computers (smart contracts);

• it has also proposed the Proof of Stack (instead of PoW). In PoS, the creator of

the next block is generally chosen through a random process.

1.2 Block

A block inside a blockchain is composed of the following parts:

• a unique block number;

• transaction data, which indicates the outcome of the execution of a certain function;

• the hash of the previous block;

• the nonce, which is useful to ensure the security of the blockchain.

When a block has to be validated, the mining process starts, with several computers

competing with each other to mine the block. These computers must find a suitable nonce

(number) such that the hash of the block with the nonce satisfies a certain condition.

1.2 Block 3

The condition is changed quite often to control the mining ratio of the blockchain: if too

many blocks are being mined, then the condition is made harder and, on the opposite

situation, it is made easier. As an example, the condition could be that each hash has

to contain a certain substring. When a suitable nonce is found, then the block has to

be validated by each node (computer) of the blockchain. This can be considered as a

poll and, if more than half of the votes are positive, then the block is added to the

blockchain. Now let us consider an user who wants to change the transaction data of

an already validated block. The user must recalculate the nonce (so, the hash) of the

block that has been changed, but also the hashes of all the next blocks, since they are

calculated based on the previous values. So, while it is technically possible to change the

value of a block, it is infeasible to recalculate all the next values.

Example 1.2.1. Let us consider an example, taken from [7]. We have 2 blocks in the

blockchain:

When mining a block, we have to find a suitable nonce. Hence, at the beginning

of the process, the nonce value is unknown. The value of data, instead, depends on

the operations done by the users. The prev entry is always equal to the hash of the

previous block, while the hash is the hashed value of the entire block (calculated when

finding the nonce). In this example, the condition that the nonce satisfies could be the

4 leading zeros in the hash value. Since hash is obtained by hashing the whole block

(including prev, i.e. a value dependent from the previous block), we can see that, if

4 BACKGROUND

block 1 is modified, then also the hash values of the next blocks must be changed (and

their nonces too).

1.3 Ethereum

Ethereum is a blockchain that aims to facilitate transactions without any third-party

organization that controls it. This is obtained because every agreement or contract is

enforced autonomously through a rich and unambiguous language (EVM bytecode). In

other words, there is no “in the middle” organization that receives and stores data,

so every user has complete power over his own information. Every smart contract is

open source, hence every user can directly read what the code does. Smart contracts

are also immutable, since once a contract is deployed in the network, it stays in the

network. Indeed, as previously said, the blockchain stores every block and they cannot

be modified. Thus, a smart contract and its associated address (from where the dApp

can be accessed) cannot change, since this would bring us to change old blocks.

1.3.1 Transactions

A transaction is a cryptographically-signed instruction used for message calls or for

the creation of new accounts with associated code. In both cases, the transaction specifies

a number of common fields. The most important fields in this research will be:

• gasPrice: it is a value equal to the number of Wei to be paid to the miner per

unit of gas;

• gasLimit: it is a value equal to the maximum amount of gas that can be paid for

the transaction. If it is not sufficient for the termination of the operation, the gas

will still be paid and the transaction aborted;

• value: it is a value equal to the number of Wei to be transferred to the message

call’s recipient.

1.4 Vyper 5

1.3.2 Payments and currency

Ether is a fundamental component in Ethereum and it not only allows to make normal

payments, but it is also the fuel of the entire blockchain. Through the entire research,

any reference to the value of Ether should be counted in Wei, whose value, together with

other units, is described in Table 1.1.

Unit Wei value Wei

wei 1 wei 1

Kwei 1e3 wei 1000

Mwei 1e6 wei 1000000

Gwei 1e9 wei 1000000000

microether 1e12 wei 1000000000000

milliether 1e15 wei 1000000000000000

ether 1e18 wei 1000000000000000000

Table 1.1: Ether conversion table

Ethereum Gas, instead, is the amount of Wei to be paid to a miner for the execution

of a function. As stated before, every EVM bytecode instruction has a certain cost,

which is specified in Appendix G of [4]. In general, the amount of gas to be paid is

calculated with

Gtotal = Gprice ∗Gused

1.4 Vyper

Vyper is a strongly-typed contract-oriented programming language that targets the

Ethereum Virtual Machine. Vyper strives to create secure smart contracts, for this

reason it does not provide the while command nor recursion. In this way, it is possible

to check bounds and overflow on arrays. Moreover, it is possible to compute a precise

upper bound for the gas consumption of any Vyper function call.

This section will provide basic examples to understand the structure of a Vyper contract.

6 BACKGROUND

1.4.1 State Variables

State variables are values which are permanently stored in the contract’s storage. So,

these variables have a global scope and they can be accessed from any function of the

contract. We can see an example in listing 1.1.

beneficiary: public(address)

auctionStart: public(uint256)

auctionEnd: public(uint256)

Current state of auction

highestBidder: public(address)

highestBid: public(uint256)

Set to true at the end , disallows any change

ended: public(bool)

Keep track of refunded bids so we can follow the withdraw pattern

pendingReturns: public(HashMap[address , uint256])

Code Listing 1.1: State Variables

The keyword public has the same meaning as “public” in an object oriented lan-

guage. In other words, it is possible to access the variable from outside the con-

tract. Plus, in Vyper, every public variable has a getter function already defined.

So, contract name.beneficiary() evaluates the value of the corresponding variable.

1.4.2 Types

Vyper is a statically typed language, so the type of every variable must be known

at compile time. It does not support type inference, so every variable type must be

specifically declared, in order for the compiler to work properly. This is a form of manifest

typing, since information on the type is not inferred, but it is explicit in the source code.

Vyper has the standard boolean and signed or unsigned integers/decimal operators (with

their corresponding bit representations). Vyper also has byte arrays, strings, lists and

1.4 Vyper 7

structs. Some particular types are addresses, which indicated the location of an account,

or mappings, which are hash tables. For an example on how to define these types, see

Example 1.1.

1.4.3 Environment Variables

Environment variables always exist in the namespace and they give information about

the blockchain and the current transaction. The most important ones are:

• block.timestamp: the UNIX timestamp of the current block;

• msg.sender: address of the account who sent the message;

• msg.value: Wei sent with the message;

• msg.gas: remaining gas;

• self: used to reference a contract within itself.

1.4.4 Functions

Functions may only be declared within a contract scope. Each function must have

exactly one visibility decorator, plus other optional decorators. Let us see an example:

@internal

def _times_two(amount: uint256) -> uint256:

return amount * 2

@external

def calculate(amount: uint256) -> uint256:

return self._times_two(amount)

@pure

@external

def pure():

this function cannot read state or environment variables

...

8 BACKGROUND

@view

@external

def readonly ():

this function cannot write to state

...

@nonpayable

@external

def dont_send_money ():

this function cannot receive Ether , but can read and write to state

...

@external

@nonreentrant("lock")

def make_a_call(_addr: address):

this function is protected from re-entrancy

...

@payable

@external

def send_me_money ():

this function can receive ether

...

Code Listing 1.2: Function Decorators

Functions with the @internal decorator are only callable from within the contract, while

the @external ones also from outside. The @payable function is the only one that can

receive Ether. So, for instance, a function that transfers money must have that decorator.

Instead, the @nonreentrant decorator is used to control concurrency and to avoid that

function calls work on a non stable contract state.

There are also some built-in functions. The one that is used the most is send(address,

uint256), which sends ether to the specified ethereum address.

Chapter 2

Rewrite Systems

This chapter focuses on rewrite systems, which are a set of rewriting rules composed

by a left term, a right term and a transition function (→). Given a formula, a rewrite

system can be used to replace subterms of the formula with other terms. In other words,

if the subterm matches a given left term, then it can be substituted with its right term.

Rewrite systems provide a paradigm of computation with straightforward syntax and

semantics. By simplifying terms, they ease the automatic verification of intrinsic program

properties.

Example 2.0.1. The chamelions come in three colors, red, yellow, and green, and wan-

der about continuously. Whenever two chamelions of different colors meet, they both

change to the third color. Suppose there are 15 red chamelions, 14 yellow, and 13 green.

Can their haphazard meetings lead to a stable state, all sharing the same color?

Example 2.0.2. An urn contains 150 black beans and 75 white. Two beans are removed

at a time: if they’re the same color, a black one is placed in the urn; if they’re different,

the white one is returned. The process is repeated as long as possible. Is the color of the

last bean in the urn predetermined and, if so, what is it?

Both examples give rules to go from a starting state to a final one. We can define

the first problem with a set of rules:

9

10 REWRITE SYSTEMS

red yellow → green green

green yellow → red red

red green→ yellow yellow

We could try to understand if this set of rules is terminating. As instance, green green

yellow → green red red → yellow yellow red → yellow green green, which could be

rearranged as green green yellow, thus the rules are not terminating. We can also define

the second problem with a set of rules:

black black → black

white white→ black

black white→ white

white black → white

In this case, the amount of beans is always decreasing, hence the sequence of reduc-

tions will terminate. By using this paradigm, we have been able to easily infer non-

termination properties of the two systems. It is also possible to get the computational

complexity of these programs. KoAT, as instance, is a tool developed for this reason and

it uses a particular type of rewrite systems, called Computational Integer Term rewrite

systems (CITRS), from which it is able to estimate a computational upper bound.

2.1 Integer Term Rewrite Systems

2.1.1 Definition and syntax

Definition 1. A term denotes an expression which is recursively constructed from con-

stant symbols, variables and function symbols.

We denote the set of terms as T (Σ, V, C), with Σ the set of signatures, V the set of

variables and C the constants.

REWRITE SYSTEMS 11

We will use the Extended Backus-Naur Form (EBNF) to formally define the syntax

of ITRSs. We begin by defining the syntax for the variables and constants (respectively

V and C).

〈var〉 ::= 〈name〉

〈const〉 ::= ’True’ | ’False’ | 〈digit〉〈digit〉*

〈arg〉 ::= 〈var〉 | 〈const〉

With the * symbol, we refer to the term repetition (i.e. Kleene’s star). We use

〈name〉 to refer to the set of names the variable may have. In a similar fashion, we will

use 〈digit〉 to refer to the numbers 0...9. We avoid writing their reductions, since they

are common in every programming language. For the same reason, we will not include

the syntax of mathematical and boolean expressions. However, ITRSs allow to have

function calls as operands of algebraic expressions. Now we consider the functions:

〈param〉 ::= (〈arg〉 | 〈expr〉) (’,’ (〈arg〉 | 〈expr〉))*

〈args〉 ::= ’(’ 〈param〉 ’)’

〈call〉 ::= 〈name〉〈args〉

Definition 2. Let l, r ∈ T (Σ, V, C). A Term Rewriting Rule is a tuple (l, r) and the

associated term rewrite relation is defined as l → r, meaning that the right-term r can

substitute the left-term l.

〈term〉 ::= 〈expr〉

〈rule〉 ::= 〈term〉 ’→’ 〈term〉

Example 2.1.1. Consider the rule A → 1 + sum(a, b). Let us see if it belongs to the

syntax, by building its corresponding Abstract Syntax Tree (AST).

12 REWRITE SYSTEMS

rule

term

expr

call

args

)param

arg

var

b

,arg

var

a

(

name

sum

+var

1

→term

expr

var

name

A

Definition 3. Let B = {true, false}, ArithOp = {+,−, ∗, /,%}, RelOp = {>,≥, <
,≤,==, 6=} and BoolOp = {∧,⇒}. Let I be a set of Term Rewrite Rules and D =

Z ∪ B ∪ ArithOp ∪ RelOp ∪ BoolOp. Then, I is an Integer Term Rewrite System if

∀(l, r) ∈ I. l, r ∈ T (Σ ∪D, V,C).

〈I 〉 ::= 〈rule〉*

As notation, if A is an ITRS, TA(Σ, V, C) will denote the set of terms used in A and→A

are the term rewrite relations defined over A.

Example 2.1.2. Let us consider a function that sums all the natural numbers between

two values a and b. We can write an ITRS such that

check(a, b)→ dsum(a 6= b, a, b)

dsum(true, a, b)→ dif(a ≥ b, a, b)

dif(true, a, b)→ b+ check(a, b+ 1)

dif(false, a, b)→ a+ check(a+ 1, b)

dsum(false, a, b)→ a

REWRITE SYSTEMS 13

We assign, as instance, the values 3 and 5 to a and b respectively.The ITRS executes

as follows:

check(3, 5)→ dsum(true, 3, 5)

dsum(true, 3, 5)→ dif(false, 3, 5)

dif(false, 3, 5)→ 3 + check(4, 5)

3 + check(4, 5)→ 3 + dsum(true, 4, 5)

3 + dsum(true, 4, 5)→ 3 + dif(false, 4, 5)

3 + dif(false, 4, 5)→ 3 + 4 + check(5, 5)

3 + 4 + check(5, 5)→ 3 + 4 + dsum(false, 5, 5)

3 + 4 + dsum(false, a, b)→ 3 + 4 + 5

2.1.2 Complexity ITRS

Complexity ITRSs (CITRS) are a special type of rewrite systems that are used for

complexity analysis. Hence, CITRSs do not focus on what the system computes, but

they focus on how many steps it takes to finish the computation. In other words:

Definition 4. Let cp be a function that calculates the computational complexity of an

ITRS A. Then, a CITRS is a rewrite system that calculates cp(TA(Σ, V, C),→A), where

by TA and →A we refer respectively to the set of terms of A and the reduction rules of

A.

The cp function is strictly dependent on the maximum sequence li →∗ lf , where li

and lf are the initial and final state of the CITRS. One way in which it is possible to

compute the complexity of the system is by counting the number of → steps in the

maximum sequence.

Definition 5. The derivation height of a term t with respect to the relation→ on terms

is the length of the longest sequence of →-steps starting with t, i.e.,

dh(t,→) = max{e | ∃t′ ∈ T (Σ, V, C). t→e t′}

14 REWRITE SYSTEMS

Definition 6. Consider an ITRS A. The complexity function is defined as

cp(TA(Σ, V, C),→A) = max{dh(t,→A) | ∀t ∈ T (Σ, V, C)}

2.1.3 Termination

We’ve already partially addressed the topic of termination of rewrite systems in the

Example 2.0.1. We’ve shown that it is possible to compute endless loops in rewrite sys-

tems (hence in CITRSs). This, together with other properties of rewrite systems, makes

the paradigm turing-complete. For this reason, it is possible to translate programs writ-

ten in high-level programming languages (like Python or Vyper with the while command)

into semantically equivalent CITRSs. There have been studies on proof theoretic tools,

which are useful for analyzing the termination property of rewrite systems[2]. This prop-

erty is strictly correlated to the calculation of computational upper bounds, since failure

in proving the termination means that the system may diverge, i.e. not have an upper

bound.

Definition 7. A rewrite system is terminating if there are no in infinite derivations

l1→ l2→ ...

Most of the approaches in literature try to prove the termination of programs by

defining a certain reduction ordering <. In particular, if a rewrite system consists of

a set of (finite) rules, then the reduction ordering < is the smallest ordering such that

∀i ≤ n, li > ri. In other words, s > t if t may be obtained from s by one or more

applications of rule reductions given by the rewrite system. To show termination of a

system over a set of variable-free terms, it is sufficient to show a well-founded monotonic

ordering ≺ , such that ∀i ≤ n, li ≺ ri.

Definition 8. A well-founded set X is a set where ∀x, y ∈ X, x > y is true ∨ x <

y is true ∨ x = y is true and every subset of X has a minimal element.

Well-founded sets that may be used to create a relation order are ordinal numbers,

which are “labels” that can be assigned to elements of a collection.

Definition 9. A set S is an ordinal if and only if S is well-ordered and every element of

S is also a subset of S.

REWRITE SYSTEMS 15

Example 2.1.3. Let us take the first few Von Neumann ordinals:

0 = {}

1 = {0}

2 = {0, 1}

3 = {0, 1, 2}

4 = {0, 1, 2, 3}

We can see that every natural number is an ordinal. As instance, 3 is an element of

4 and, at the same time, it is equal to the well-founded set {0, 1, 2}.

It is possible to map each well-founded set S to one of the Von Neumann ordinals,

thus using them to define an order relation over S. Generally, in a proof theory tool, it

could be possible to assign to each term an ordinal, then create an algorithm to define

the reduction steps and demonstrate that, for each reduction step, the relative ordinal

numbers decrease (hence, the system stops eventually). This topic is covered in [2] by

linking Ackermann ordinals to term rewrite systems. Finally, it can be stated that,

by choosing an appropriate reduction ordering, decreasing systems (with respect to the

ordering) eventually terminate.

2.2 KoAT

KoAT is an automatic complexity analyzer that takes as input a CITRS and outputs

an upper bound if termination can be proven. Some modifications to the syntax given

in the previous sections are needed in order to be able to use KoAT. The modifications

are:

• a switch from CITRS to conditional CITRS;

• left terms must be states and right terms must be function calls. Specifically, right

terms are Com k() calls;

16 REWRITE SYSTEMS

• information about the system, like the variables used and the initial state, must

be explicitly defined;

When we say that left and right terms must be states or function calls, we mean that

we cannot have expressions as in Example 2.1.2, where we had, as instance, terms like

3 + dsum(true, 4, 5). Every term must be a state or a function call, where the states, in

a CITRS, define a particular configuration of the system. As instance, in Example 2.2.3,

the states are l0,l1,l2 and l3. Function calls, like Com k(), are applied over states.

These calls implement the complexity calculation of the system. The rewrite system

used in KoAT is a conditional CITRS and metadata about the system must be explicitly

defined, like the name of the variables used, the start state, the goal of the system etc.

2.2.1 Conditional CITRS

Definition 10. Let A be an CITRS. A conditional CITRS is a CITRS where ∀(l, r) ∈
A, ∃c ∈ C. l→A r ⇐⇒ c = true, where C is the set of boolean expressions.

For the sake of readability, the conditional rewrite relation will be written l→ r : | : c.
This syntax is the one used in KoAT. This extension of the definition of CITRS does not

change the power of the formalism. In fact, every CITRS can always be translated into

an equivalent conditional ITRS.

Example 2.2.1. Consider Example 2.1.2. Let us try to write the same function as a

conditional ITRS:

check(a, b)→ dsum1(a, b) : | : a 6= b

check(a, b)→ 0 : | : a == b

dsum1(a, b)→ b+ check(a, b+ 1) : | : a ≥ b

dsum2(a, b)→ a+ check(a+ 1, b) : | : a < b

It is easy to check that the 2 systems always produce the same output. At the same

time, conditional CITRS allow us to write systems in a more compact manner.

From now on, as notation, we will refer to conditional CITRSs as CITRSs.

REWRITE SYSTEMS 17

2.2.2 The Com k command

The Com k() command is used to model a special type of recursion which leads to

transitions having multiple (k-many in case of Com k) target terms.

Example 2.2.2. Let us consider a simple program that calculates the factorial of an

input x:

int fac(int x)

r := 1

if x > 0 then

r := x * fac(x - 1)

fi

return r

This program could be translated into CITRS, resulting in

l0(r, x)→ l1(0, x) : | : true

l1(r, x)→ {l1(r = r′, x− 1), l0(r, x)} : | : x ≥ 0

l1(r, x)→ l2(r, x) : | : x < 0

In line 2, there is a transition with 2 target terms. In this way, it is possible to express

recursion, since one target term represents the evaluation of the called function, whereas

the other target location represents the context which is executed when returning from

the function call. Note that r = r’, where r’ is an arbitrary value, because KoAT does

not take the result of procedure calls into account.

We are not interested into → having multiple target terms, because we use KoAT

to compute upper bounds of CITRS obtained from Vyper code, which does not allow

recursion. Thus, we will always use Com 1.

2.2.3 Structure of KoAT programs

Each KoAT program consists of 4 parts:

18 REWRITE SYSTEMS

• (GOAL COMPLEXITY), which specifies that the purpose of the program is to calculate

the complexity of the system;

• (STARTTERM (FUNCTIONSYMBOLS start)), with start being the initial state;

• (VAR A,B,C...), indicating the list of variables used in the system;

• (RULES CITRS), where the actual rewrite system is specified.

As said in Section 2.2, we must modify the conditional CITRS, in order to create a

well written KoAT program. In Example 2.2.3, a well written KoAT CITRS is shown,

with all the modifications explained in this section,

Example 2.2.3. Let us consider the KoAT conditional CITRS sample given by AProVE[23]:

(GOAL COMPLEXITY)

(STARTTERM (FUNCTIONSYMBOLS l0))

(VAR A B C D)

(RULES

l0(A,B,C,D) -> Com_1(l1(0,B,C,D))

l1(A,B,C,D) -> Com_1(l1(A + 1,B - 1,C,D)) :|: B >= 1

l1(A,B,C,D) -> Com_1(l2(A,B,A,D)) :|: 0 >= B

l2(A,B,C,D) -> Com_1(l3(A,B,C,C)) :|: C >= 1

l3(A,B,C,D) -> Com_1(l3(A,B,C,D - 1)) :|: D >= 1 && C >= 1

l3(A,B,C,D) -> Com_1(l2(A,B,C - 1,D)) :|: 0 >= D && C >= 1

)

Code Listing 2.1: CITRS example

This program creates a loop over the B variable and, at each iteration, B is decreased

while A is increased. Once the loops ends, C is put equal to A. Afterward, a nested

loop occurs in the states l2 and l3 where, as soon as D becomes equal to 0, the value

of C decreases and D is put equal to C. Thus, we can say that the complexity of this

algorithm should be quadratic. We can prove our deduction by running KoAT over this

REWRITE SYSTEMS 19

conditional CITRS. The resulting upper bound calculated by KoAT is 2B2 + 5B + 2,

which is indeed quadratic (O(B2)).

20 REWRITE SYSTEMS

Chapter 3

Calculus Semantics

In this chapter, we will explain how our tool translates Vyper code into CITRS. We

will show which are the structures used to represent the flow of the programs and, in the

end, give the semantics of our tool.

3.1 Control Flow Graph

At the beginning of each compilation process, the program’s source code gets trans-

lated into an Abstract Syntax Tree (AST) which provides a natural representation for

the grammatical structure of the source code. This is the process of converting raw data

into a tree-based format, which can then be used for further steps of the compilation.

Example 3.1.1. Consider the following code:

x: int128 = 0

y: int128 = 5

while x<y:

x += 1

Its AST representation is

21

22 CALCULUS SEMANTICS

Body

While

Body

AugAssign

+

1x

Test

<

yx

AnnAssign

5int128y

AnnAssign

0int128x

In general, tree structures are useful when providing a grammatical and statical rep-

resentation of the source code. Anyway, they fail to model program behaviour, thus,

they are not used in dynamic analysis of programs. Indeed, ASTs cannot show the

flow of the code and the branches the program may take when executing. To get this

information, a different structure is more useful and it is the Control Flow Graph (CGF).

The simplest unit of control flow is the basic block, which is the maximal consecutive

sequence of branch-free commands (like if, for, while or assert). A basic block always

ends at the beginning of a branching instruction or at the end of a loop.

Definition 11. A CFG represents the flow between blocks in a program. It is a directed

graph G = (N,E) where each node n ∈ N is a block and each edge (ni, nj) ∈ E passes

the control of the flow from the i-th node to the j-th node.

Example 3.1.2. Consider the code in Example 3.1.1.

CALCULUS SEMANTICS 23

START

x = 0; y = 5

x < y

x+ = 1

END

False
True

A CITRS can be seen as a CFG where the branching instructions are multiple reduc-

tions from a term l to multiple terms r1...rn. Indeed, the CFG represented in Example

4.1.2, can get written as a CITRS like in the following example:

Example 3.1.3. Consider the CFG in Example 3.1.2. Its equivalent CITRS code is the

following:

(GOAL COMPLEXITY)

(STARTTERM (FUNCTIONSYMBOLS l0))

(VAR x y)

(RULES

l0(x,y) -> Com_1(l1(0,5))

l1(x,y) -> Com_1(l2(x,y)) :|: x<y

24 CALCULUS SEMANTICS

l1(x,y) -> Com_1(l3(x,y)) :|: x>=y

l2(x,y) -> Com_1(l1(x+1,y))

)

We can try to represent the CITRS as a graph

l0(0, 5)

l1(x, y)

l2(x+ 1, y)

l3(x, y)

x < y
x >= y

which has the same structure as the CFG shown in Example 3.1.2.

This shows that CITRS code and CFG are strictly correlated. We could follow

this approach and translate Vyper programs into CFGs so that, subsequently, we can

obtain its relative CITRS. Indeed, each maximal consecutive sequence of non-branching

commands is a basic block, and it corresponds to a transition to a new state in the

rewrite system. Each branch command can follow 2 edges, depending on whether the

condition is met or not. Trivially, in a CITRS, this is represented by a state with 2

possible transitions into 2 different states, with the rules being one the opposite of the

other. Also, looping commands have a back-edge targeting a block already passed. In

CITRS, this can be obtained by adding a new transition to a previous state.

CALCULUS SEMANTICS 25

3.2 Operational Semantics

In this section, we define the operational semantics of our calculus. We avoid defining

the semantic of boolean and arithmetical commands, already covered in [19]. We will re-

use and adapt previously made definitions, to give a mathematical model that describes

the programs’ behaviour.

3.2.1 Transition Systems

There are different approaches to give a semantic to a programming language. The

approach that it is used in this work is operational, which consists into building an

automaton that, step by step, shows the consequence of the execution of various instruc-

tions. In other words, it shows how the calculus works. We use a transition system,

which is a tuple (δ,→) where:

• δ is the set of configurations;

• → ⊆ δ × δ and it is defined as the transition relation.

Thus, the transition system is used to describe the system’s behaviour based on the

transition between configurations. A computation starting from a certain configuration

δ0 is a sequence δ0 → δ1 → δ2 → ... which can be finite or infinite. With→∗ we define the

reflexive and transitive closure of the transition relation →. This means that, if δ0 → δ1

and δ1 → δ2, then δ0 →∗ δ2.

Definition 12. The configuration of a transition system (δ,→) is a δ = (c, σ,G, s) where

c is a command, σ maps variables into their values, G is a CITRS and s is a state of the

CITRS.

When the value of a variable v changes into m, we use as notation σ[m/v].

3.2.2 Auxiliary Functions

Here we define the following functions:

26 CALCULUS SEMANTICS

• len(v), that returns the length of a list v. If the length of v cannot be statically

deduced, it outputs ∞;

• Type(v), which outputs the type of the expression v;

• get b state(), which outputs the name of the state that handles the loop condition;

• out block(), which outputs the name of the state outside the if or while block.

• else block(), outputs the name of the state of the else statement.

3.2.3 Semantics of commands

Here we present the commands’ semantics of the calculus. For readability reasons,

when adding new rules to G, we avoid specifying how the variables change (i.e. we do

not write s(σ), but only s). However, whenever there is →f , we mean that, in that

transition, σ does not change (the variables remain the same).

〈c, σ,G, s〉 → 〈c, σ,G, s〉
(Skip)

〈e, σ,G, s〉 →∗ m
〈v = e, σ,G, s〉 → 〈σ[v/m], G, s〉

(Assign)

〈e, σ,G, s〉 →∗ m v ∈ List

〈v[i] = e, σ,G, s〉 → 〈σ[v[i]/m], G ∪ {s→ s′ : | : i = σ(i)}, s′〉
∀i.i >= 0 ∧ i < len(v)

(ListAssign)

〈c1, σ,G, s〉 → 〈c′1, σ′, G, s〉
〈c1; c2, σ,G, s〉 → 〈c′1; c2, σ′, G, s〉

(Seq1)

〈c1, σ,G, s〉 → 〈σ′, G, s〉
〈c1; c2, σ,G, s〉 → 〈c2, σ′, G, s〉

(Seq2)

CALCULUS SEMANTICS 27

〈if e then c1 else c2, σ,G, s〉 → 〈c1; endif; c2; endelse, σ,

G ∪ {s→ s′ : | : e} ∪ {s→ s′′ : | : ¬e}, s′〉

(If)

In (If) we add to G the rewriting rules for the if-else branch. We add endif and

endelse so that we can manage the rules for the end of the if and else statement.

〈while e do c1; c2, σ,G, s〉 → 〈c1; endwhile; c2, σ,

G ∪ {s→ s′} ∪ {s′ →f s
′′ : | : e} ∪ {s′ →f s

′′′ : | : ¬e}, s′′〉

(While)

In (While), we add 3 rewriting rules:

• in the first one, we go from state s to state s′. This way, we denote how the values

of the variables have changed, with respect to initial values at the beginning of

state s;

• in the second one, we apply the case in which the while condition is satisfied;

• in the third one, we apply the case in which the while condition is not satisfied.

The initial transition is added because, when looping back, we do not go to the state

s (which would re-apply commands before the while body) but to s′, which is needed

only to check whether the condition is met or not.

get b state() = s′ out block() = s′′

〈endwhile, σ,G, s〉 → 〈σ,G ∪ {s→ s′}, s′′〉
(EndWhile)

The (EndWhile) reduction adds to G the back-edge rule (the transition back to the

beginning of while).

28 CALCULUS SEMANTICS

out block() = s′ else block() = s′′

〈endif, σ,G, s〉 → 〈σ,G ∪ {s→ s′}, s′′〉
(EndIf)

out block() = s′

〈endelse, σ,G, s〉 → 〈σ,G ∪ {s→ s′}, s′〉
(EndElse)

The (EndIf) and (EndElse) reduction rules add the rewriting rules for changing the

state from the if or else block to the outer block (i.e. after the if-else statement).

Example 3.2.1. Consider the following code:

x: int128 = 0

y: int128 = 5

while x<y:

x += 1

Let us try to use our tool to get the correspondant CITRS. In the initial state, we

have G = {} and s = l0. In this example, we will use the ; separator to divide each

command of the program. The ; is not allowed in Vyper, but we will use it, in this

case, for readability reasons. Moreover, for the same reason, we will write the content

of G only when it changes and we will use some names to indicate some commands in

the code (c1 for x : int128 = 5, c2 for y : int128 = 5, e for x < y, c3 for x+ = 1). The

reduction rules applied are the following:

〈c1, {Nil, Nil}, l0〉 →Assign

〈{0, Nil}, l0〉 →Seq2

〈c2, {0, Nil}, l0〉 →Assign

〈{0, 5}, l0〉 →Seq2

〈while(e) do c3, {0, 5}, l0〉 →While

〈c3; endwhile, {0, 5}, l1〉

The reduction rule (While) changes G, so it is a branching instruction. At this point,

CALCULUS SEMANTICS 29

G becomes:

l0(x, y)→ l1(0, 5)

l1(x, y)→ l2(x, y) : | : x < y

l1(x, y)→ l3(x, y) : | : x >= y

We can continue to apply the reduction rules:

〈c3; endwhile, {x, y}, l1〉 →Seq2

〈endwhile, {x+ 1, y}, l1〉 →EndWhile

〈{x+ 1, y}, l2〉

In the end, G becomes:

l0(x, y)→ l1(0, 5)

l1(x, y)→ l2(x, y) : | : x < y

l1(x, y)→ l3(x, y) : | : x >= y

l2(x, y)→ l1(x+ 1, y)

which, by adding the appropriate metadata (see section 2.2.3), creates our CITRS.

Example 3.2.2. Consider the following code:

lst: int128[2] = [1,5]

i: int128 = 0

while lst[1] > 0:

if i%2 == 0:

lst[i] += 1

else:

lst[i] -= 1

30 CALCULUS SEMANTICS

It is clear that there might be some problems with accessing list elements with sym-

bolic indexes. In CITRS there is no List type, so every element of the list must be

considered as a variable on its own, without any other kind of connection to the other

elements. The value of the symbolic indexes used to access the list elements are not

known at compile time, so it is impossible to know which element is being used.

This problem is solved by (ListAssign). Combinatorially, it adds to the CITRS an

amount of Term Rewrite Rules equal to the length of the list with the symbolic index

(as instance, sym ind). The i-th Term Rewrite Rule has the value of i at the place of

the symbolic index and has one more condition sym ind = i.

Example 3.2.3. Let us reconsider the previous example. We can apply the reductions,

and obtain:

(GOAL COMPLEXITY)

(STARTTERM (FUNCTIONSYMBOLS l0))

(VAR lst_e0 lst_e1 i)

(RULES

l0(lst_e0 ,lst_e1 ,i) -> Com_1(l1(1,5,0))

l1(lst_e0 ,lst_e1 ,i) -> Com_1(l2(lst_e0 ,lst_e1 ,i)) :|: lst_e1 > 0

l1(lst_e0 ,lst_e1 ,i) -> Com_1(l3(lst_e0 ,lst_e1 ,i)) :|: lst_e1 <= 0

l2(lst_e0 ,lst_e1 ,i) -> Com_1(l4(lst_e0 ,lst_e1 ,i)) :|: i%2 = 0

l2(lst_e0 ,lst_e1 ,i) -> Com_1(l5(lst_e0 ,lst_e1 ,i)) :|: i%2 != 0

l4(lst_e0 ,lst_e1 ,i) -> Com_1(l6(lst_e0+1,lst_e1 ,i)) :|: i = 0

l4(lst_e0 ,lst_e1 ,i) -> Com_1(l6(lst_e0 ,lst_e1+1,i)) :|: i = 1

l5(lst_e0 ,lst_e1 ,i) -> Com_1(l6(lst_e0-1,lst_e1 ,i)) :|: i = 0

l5(lst_e0 ,lst_e1 ,i) -> Com_1(l6(lst_e0 ,lst_e1-1,i)) :|: i = 1

l6(lst_e0 ,lst_e1 ,i) -> Com_1(l1(lst_e0 ,lst_e1 ,i))

)

As notation, we will use [arrayname] e[pos] to refer to the pos-th element of the

array. In this case, the assignments to list elements are parsed into 2 Term Rewriting

Rules (the number depends on the list length) who differ on which element is increased

CALCULUS SEMANTICS 31

(or decreased). The conditions, that constrain the value of i, make the Term Rewriting

Rules mutual exclusive.

This way, we add a set of rules that covers all the possible branches that the pro-

gram may take during runtime. Even though there may be some transitions that will

never be used (as instance, the transition l4 to l6 with i = 1 in the previous exam-

ple), they will be eventually canceled by KoAT. This reduction makes the algorithm

more computationally complex. Indeed, it is easy to see that, for an instruction like

list1[index1] = list2[index2], our tool will need to consider every combination of the

value of index1 and index2, which, in total, are len(list1) ∗ len(list2) pairs.

3.2.4 Error semantics

Type(v) 6= Int

〈v, σ,G, s〉 → err
(TypeErr)

isFunc(f) = True

〈f, σ,G, s〉 → err
(FuncErr)

Trivially:

• we cannot create a CITRS if there are variables which are not integers;

• we cannot create a CITRS if external calls are made.

Thus, the tool throws an error only in 2 cases: when there is a variable which cannot

be casted to an integer and when there is a call to an external function. Note that our

tool is only an integrative part of the entire compiler, which also contains the code of

the standard Vyper compiler. This means that the errors shown above are not the only

ones the new compiler can give, since it also includes the native exceptions of Vyper.

32 CALCULUS SEMANTICS

3.2.5 Considerations about the semantics of commands

We will not give a formal proof of soundness properties for our calculus. Neverthe-

less, we claim that the CITRS obtained is semantically equivalent to the initial Vyper

program. Indeed, as shown in Section 3.1, the produced CITRS has the same structure

of the CFG of the source program. This can be seen by using Python native libraries,

like pycfg, which outputs the CFG of the program. We also claim that the (Assign)

and (ListAssign) reductions are sound, since all the changes of variables’ values are

taken into account by σ.

Chapter 4

Gas Calculation

In this chapter, we will explain how Ethereum calculates the total amount of runtime

gas used and we will present how the Vyper compiler statically estimates an upper bound

of the gas consumption (except for while commands). This way, we are able to integrate

the existing computational analysis tools of Vyper with our tool on non-iterative loops.

Thus, we could obtain non-symbolic bounds with non-looping commands and symbolic

bounds for while looping. For the calculation of the gas consumption, we will not

consider every operational code, but only the most used ones. In other words, we avoid

giving a detailed explanation of all the operational codes[4], but we choose to follow a

more general approach, presenting the most frequent patterns in Ethereum bytecode.

4.1 Operational codes

The Ethereum bytecode is composed by operational codes that work on the stack

(hereafter referred as µ). Some of these codes are presented in the following table:

33

34 GAS CALCULATION

Operational Codes

Mnemonic Description

PUSH[x] Pushes a x-byte value onto µ

POP Pops a (u)int256 off µ and discards it

JUMP Unconditional jump to a destination address taken from µ

JUMPI Takes a destination and condition from µ. Based on the condition, the

execution can jump to the destination address

JUMPDEST Metadata to annotate possible jump destinations

MSTORE Takes an offset and a value from µ and writes to memory the value

MLOAD Takes an offset and writes the relative value onto µ

SSTORE Similar to MSTORE, but saves the value onto storage

SLOAD Similar to SLOAD, but takes the value from the storage

ADD Takes 2 (u)int256 from µ, pushes their sum

MUL Takes 2 (u)int256 from µ, pushes their multiplication

SUB Takes 2 (u)int256 from µ, pushes their difference

DIV Takes 2 (u)int256 from µ, pushes their division

More specifically, the Ethereum bytecode is a sequence of operational codes. It is very

similar to other low-level languages, like Assembly, but in Ethereum, to each operational

code, is also associated a certain gas cost for performing the operation. Thus, the

estimation of non symbolic bounds (i.e. the gas usage for operation different from the

while command) cannot be done before compiling the code to a simpler formalism,

because we need the operational codes for the calculation. This does not apply only to

Vyper, but to all high-level Ethereum languages (Solidity, Serpent etc.). Sometimes, it

is possible to calculate the gas usage at an intermediary level through abstractions of

sets of operational codes, as we will see it is the case for the Vyper compiler.

4.2 The Ethereum paradigm

The Ethereum VM is a pre-defined set of rules, used to specify how the Ethereum

state (σ) can change between different blocks. The EVM can be considered as a normal

mathematical function, taking the inputs and producing a deterministic output. Thus,

we could define the EVM as a state transition function Υ.

GAS CALCULATION 35

Ethereum incrementally executes transactions to obtain the current state from an

old one. The state includes every data about the blockchain, like addresses, balances

and more. The transaction represents a valid arc between two states, where by valid we

mean a transaction that follows the implicit rules of the blockchain (e.g., avoid reducing

a balance to a negative amount). Formally, their relation can be expressed as:

σt+1 := Υ(σt, T)

where σt is the world-state at time t, Υ is the state transition function and T is the

transition. In other words, Υ is the function that allows changes in Ethereum, while σ

is where all the current data can be accessed.

The gas estimation is strictly correlated to the Υ function, since its amount depends

on the number and type of operations deployed by Υ. So, understanding how the state

transition function works is needed to define a formula that gives the exact amount of

runtime gas used for a certain transaction.

It is assumed that every transaction executed is validated through a set of intrinsic

constraints. These include:

• the transaction is well formed, e.g. with no trailing bytes or with a valid nonce;

• the gas limit is no smaller than the intrinsic gas, g0, used by the transaction;

• the sender account balance contains at least the cost, v0 , required in up-front

payment.

The intrinsic gas is the gas to be paid before the execution of the transaction. For

readability, we define a small fee schedule, that abstracts some common operations de-

ployed during the execution.

Resized Fee Schedule

Name Value in gas Description

Gtxcreate 32000 Paid by all contract-creating transactions

Gtxdatazero 4 Paid for every zero byte of data or code for a transaction

Gtxdatanonzero 68 Paid for every non-zero byte of data or code for a transaction

Gtransaction 21000 Paid for every transaction

36 GAS CALCULATION

Definition 13. The intrinsic gas g0 is the gas to be paid before the transaction, obtained

as follows:

g0 :=
∑

i∈Ti,Td

{
Gtxdatazero if i = 0

Gtxdatanonzero otherwise

}
+

{
Gtxcreate if Tt = ∅
0 otherwise

}
+Gtransaction

where Ti is an unlimited size byte array specifying the EVM-code for the account ini-

tialization procedure, Td is an unlimited size byte array specifying the input data of the

message, Tt is the target of the transaction, so Tt = ∅ means there is no target (in other

words, this is the account creation transaction).

Ti and Td are mutual exclusive, this means that Ti exists only if the transaction is

for an account creation, while Td only if it is a message call.

Definition 14. Let us call Tg the gas limit set by the end user. Trivially, the computa-

tional gas gc is

gc := Tg − g0

The computational gas is the amount of gas that can be used for the execution,

whether it is a message call or a contract creation call. If gc is not enough to end the

execution, then the transaction is reverted and an amount equal to gc is paid to the

miner. We call this amount the runtime gas, gr, and we state that gr ≤ gc is always

verified. This is because, in the other case, the execution finishes before gc reaches 0,

thus the gas paid, gr, must be less.

The runtime gas directly depends on the EVM bytecode. In the previous table we have

already seen the abstraction of some operations and their correlated costs. Each of these

abstractions is obtained by certain sequences of operational codes. We divide some of

the operational codes into subsets as follows:

• Wbase = {POP, ...};

• Wverylow = {ADD,SUB,PUSH,MLOAD,MSTORE,, ...};

• Wlow = {MUL,DIV, ...};

• Wmid = {JUMP, ...};

GAS CALCULATION 37

• Whigh = {JUMPI, ...}.

Each of these subsets has more operational codes than the ones given in this paper, but

as stated in the previous section, we are excluding some codes due to readability reasons.

Definition 15. The runtime gas gr is defined as:

gr := Cmem(µf)− Cmem(µi) +

Gzero if w ∈ Wzero

Gbase if w ∈ Wbase

Gverylow if w ∈ Wverylow

Glow if w ∈ Wlow

Gmid if w ∈ Wmid

Ghigh if w ∈ Whigh

Gsload if w = SLOAD

Gjumpdest if w = JUMPDEST

Csstore if w = SSTORE

+ grest

where w is an operation and

Cmem(a) ≡ Gmemory ·+a+
a2

512

The Cmem calculates, based on the number of words, the cost for the extension of the

memory, such that all addresses referenced during the computation are valid addresses.

On the other hand, grest is the amount of gas obtained from the excluded operational

code. If we also wanted to develop the estimation of grest, we would have needed to

add each opcode into the expression between the curly parenthesis. Overall, this is the

structure of the formula for the runtime gas.

4.3 Compilers

Every compiler follows a general structure, which is divided in a series of phases.

Starting from the source code, every phase generates an intermediate representation,

which becomes the input of the next phase. Eventually, the last representation is the

38 GAS CALCULATION

object code (i.e. the code written in the target language of the compiler). This subdivi-

sion of the compiling process is taken from [15,20,21]. The phases are:

• Lexical analysis: it reads the symbols of the source code and groups them into

units called tokens. As instance, x = 1, in Python, returns 3 tokens: the variable

x, the assign operator = and the number 1;

• Syntax analysis: it produces a derivation tree (AST) from a list of tokens. Every

leaf of the tree must correspond to a token and, by reading the leaves from left to

right, it should be possible to reconstruct a correct sentence of the language. The

derivation tree represents the logical structure of the language. Thus, in this phase

the compiler also checks that the sequence of tokens is in a certain order, meaning

that the program is syntactically well constructed;

• Semantic analysis: the tree is subjected to checks relating to the contextual

constraints of the language. Contextual constraints could be, as instance, the

fact that a variable must be declared before its use, or that the number of actual

parameters must be the equal to the number of formal parameters, and more. In

this phase, the compiler adds information to each token. For example, a token

which is associated to a variable gets information about the type, where it was

declared, scope ecc.;

• Intermediate form: the code is translated into an intermediate language. It

would be possible to obtain, even in this phase, the object code, but it is usually

easier to have an intermediate language and, afterwards, perform optimization and

generation of the object code;

• Optimization: in this phase, the compiler deletes dead code, i.e. code that will

never be executed, or performs inlining, in which the function calls are substituted

with the body of the function that was called. There can also be done optimization

on other structures, like over loops or mathematical and boolean expressions;

• Code generation: starting from the optimized code, the object code is created.

GAS CALCULATION 39

The first four phases work together with an external structure, called symbol table.

This table records the symbols, the variables and their associated information, and it is

crucial when translating into the intermediate form.

4.3.1 Vyper compiler

In general, the Vyper compiler follows this structure, but it has a simpler implemen-

tation. Indeed, since Vyper is similar to Python, it is possible to use existing Python

libraries to obtain certain code representations, hence avoiding to implement compiler

phases. In python, there is already a module, called ast, which has a set of built-in

functions that can grant syntactical information about a given program. Its function

parse, given the source code as input, can output the definition tree of the program.

Vyper exploits this feature: in the pre-parsing phase, i.e. before obtaining the Abstract

Syntax Tree, it reformats vyper source strings into python source ones. Specifically:

• Translates interface, struct and event keywords into python class keyword;

• Prevents direct use of python class keyword;

• Prevents use of python semi-colon statement separator;

Indeed, interface, struct and event are the only keywords that can be used in

Vyper, but not in Python. It is possible to map them into the keyword class and let the

ast module do the parsing. Once the syntax tree has been created, it gets reconverted

into a Vyper syntax tree, by recursively evaluating each node and translating python

class nodes into a Vyper interface, struct or event. This is done by annotating

each conversion between Vyper and Python, so that the original values can be obtained

from the Python AST. The syntactical checks are done at this point, by checking whether

the terms used are part of the language or not. Some notation checking is also performed

at this point, e.g. the Vyper language does not allow slicing to occur, so it throws an

error if the Python AST has slicing operators. Afterward, constant folding operations

are performed on the Vyper syntax tree. Constant folding is the process of statically

recognizing constant values and computing them. This avoids calculating constant values

at runtime and it can be considered as a form of optimization, since many expressions

40 GAS CALCULATION

will get simplified, hence reducing the complexity of the object code. Then, the compiler

extracts information about global structures and data. So, it creates a globalctx class,

where it stores all the relevant definitions (made inside the global scope). We can say

that composite data (structs), Vyper contracts, events, functions and state variables can

all be found inside this class. Also, it carves data about imported libraries too. From

the contextualized AST, we can get an intermediate representation. The intermediate

representation used in Vyper compiler is a LLL[22] (Lisp Like Language). LLL are a

family of languages derived from Lisp, which is a functional programming language that

has been used in a lot of research areas. It is also often used as an intermediate language

during compilation, since its structure and functional nature allow compilers to analyze

more easily program properties. Indeed, the gas estimation is calculated on the LLL code,

not on the bytecode. This is because it is easier to abstract sequences of operational

codes and grouping them into LLL keywords, thus inferring common patterns and gas

usage.

Example 4.3.1. Consider the following code:

@private

def test():

x: int128 = 0

y: int128 = 2

z: int128 = 12 + y

Its LLL representation is:

Line 1

[if,

0,

[seq ,

/* test() */ [label , priv_4171824493],

pass ,

/* pop callback pointer */ [mstore , 320 , pass],

pass ,

[mstore , 352 , 0],

GAS CALCULATION 41

[mstore , 384 , 2],

[mstore ,

416 ,

[with ,

l,

12 ,

[with ,

r,

[mload , 384 <y>],

[seq , [clamp , [mload , 96], [add , l, r], [mload , 64]]]]]],

pass ,

[jump , [mload , 320]]]]

The LLL representation is close to machine language and it abstracts bytecode op-

erators, like mstore, mload or jump. The keyword clamp is used for clamping the first

parameter, i.e. restraining its value between the second and third parameter, while seq

denotes a sequence of commands.

LLL fee calculation

Name Value in gas Description

Cint 5 Gas paid for integer nodes

Cs gas+ 2 ∗ (outs− ins) Gas is the cost of the s opcode, outs is the

stack height at push time, ins at pop time

Cifelse condgas+max(ifgas, elsegas) + 3 This is the cost of the condition plus the

maximum between the 2 cases

Cif condgas+ ifgas+ 17 This is the cost of the condition plus the cost

of the if body

Cwith

∑
i(arggasi) + 5

Crepeat rounds ∗ (bodygas+ 50) + 30 Gas calculation over iterative looping

Cseq

∑
i(commandi) + 30 Gas calculation for consecutive commands

Table 4.1: LLL fee schedule

The upper bound calculation is done at this stage. The compiler checks each node

and assigns an upper bound, based on the type of operation and on the size of memory it

42 GAS CALCULATION

occupies. We can say that, given an LLL representation, the amount of gas it calculates

is equal to:

gas =
∑
i

Ci

where Ci is the gas amount for the i-th operation.

The value of Ci depends on the type of operation (which includes PUSH and POP operations

on the stack), based on Table 4.1.

With this calculation, together with the fee schedule for the operational codes, Vyper

gets the upper bound over terminating programs. The Crepeat cost is the equivalent for

the gas calculation over the for construct. Indeed, the price depends on the value of

rounds, which must be known at compile time. Our tool adds another cost, called Cwhile,

defined as

Cwhile = symbound · bodygas

where symbound is the symbolic formula computed by KoAT over the CITRS.

Afterwards, the intermediate representation gets converted into assembly and, eventually,

bytecode, which can be executed on the EVM.

Chapter 5

Testing

In this chapter, we provide some examples of algorithms written in Vyper and we

calculate the upper bound for their gas usage. We will consider algorithms that use the

while construct, since otherwise we would get the same output as the original Vyper

compiler. To show the correctness of our tool, we will also consider famous algorithms of

the complexity theory (thus, with well-known computational effort) and manifest that the

computed bound is valid. The coefficients of the polynomials may be overestimated, but

that is because, as we explained in Chapter 2, the cost function depends on the number

of transitions (steps) inside the CITRS. In other words, instead of only calculating the

back-edge transitions, we also consider the transition needed for defining the different

branches of the programs, and this increases the coefficients’ values.

5.1 Fibonacci algorithm

Consider the problem of finding the n-th number of the Fibonacci sequence

0 1 1 2 3 5 8 13 21 34 55 89...

This problem can be solved through recursion, but we can’t use it in Vyper. Plus,

the algorithm would be computationally expensive. We can write the program as follows:

@private

43

44 TESTING

def fibonacci(limit: int128):

res: int128 = 0

l: int128 = limit

first: int128 = 0

second: int128 = 1

tmp : int128 = 0

if l == 0:

res = 0

elif l == 1:

res = 1

else:

l -= 2

while l > 0:

tmp = second

second = first + second

first = tmp

l -= 1

res = second

return res

The symbolic bound calculation is deployed only for the looping instruction. The

CITRS given by our tool for the while body is as follows:

(GOAL COMPLEXITY)

(STARTTERM (FUNCTIONSYMBOLS l0))

(VAR limit res first second tmp)

(RULES

l0(limit ,res ,first ,second ,tmp) -> Com_1(l1(limit ,res ,first ,second ,tmp))

l1(limit ,res ,first ,second ,tmp) -> Com_1(l2(limit ,res ,first ,second ,tmp))

:|: limit > 0

l1(limit ,res ,first ,second ,tmp) -> Com_1(l3(limit ,res ,first ,second ,tmp))

:|: limit <= 0

l2(limit ,res ,first ,second ,tmp) -> Com_1(l1(limit-1,res ,second ,(first+

second),second)) :|: limit > 0

)

Using KoAT, the bound of the while instruction is 4 · limit + 2 which, as expected, is

TESTING 45

linear. By putting together the computed bound with the amount of gas calculated by

the compiler, we obtain 493 + 1260 · limit + 630, which is the maximum amount of gas

that the procedure may use.

5.2 Insertion sort

Consider an array a. Let us try to write a Vyper algorithm that sorts the array using

insertion sort.

@private

def insertion_sort ():

a: int128[3] = [5,2,10]

c: int128 = 1

x: int128 = 3

while c < 3:

i: int128 = c-1

b: int128 = c

while i>=0:

if a[b] < a[i]:

tmp: int128 = a[i]

a[i] = a[b]

a[b] = tmp

b -= 1

i -= 1

c += 1

A KoAT analysis over the CITRS obtained from this source code gives as output

51c2 + 142c+ 127. We may as well ignore the coefficients and focus on the fact that the

algorithm has a quadratic complexity. Overall, the maximum amount of gas that can be

paid is 1062 · (51c2 + 142c+ 127) + 268

5.3 Shell sort

Let us try to write a Vyper algorithm that sorts the array using shell sort.

46 TESTING

@private

def shellsort ():

lst: int128[9] = [2,5,9,15 ,44 ,67 ,111 ,423 ,543]

n: int128 = 9

h: int128 = 1

p: int128 = lst[h]

while h <= n:

h = 3*h + 1

h = h/3

while h >= 1:

i: int128 = h+1

while i < n:

tmp: int128 = lst[i]

j: int128 = i

while j > h and lst[j-h] > tmp:

lst[j] = lst[j-h]

j = j - h

lst[j] = tmp

i += 1

h = h/3

return

A KoAT analysis over the CITRS obtained from the source code gives multiple outputs,

depending on the number of non annidated while loops. The bound for the first loop

is max([0,−6 + 9 · h]) + max([2, 5 · h]), while for the second loop is 328 · n · h + 328 ·
h2 + 328 · n+ 1320 · h+ 994. The first and second loop are O(n) and O(n2) respectively.

Overall, the maximum amount of gas that can be paid is 305 · (max([0,−6 + 9 · h]) +

max([2, 5 · h])) + 481 + 635 · (328 · n · h+ 328 · h2 + 328 · n+ 1320 · h+ 994)

5.4 Binary search

Let us try to write a Vyper algorithm that outputs whether an element is in a given

array.

@private

def binary_search(item: int128):

TESTING 47

lst: int128[9] = [2,5,9,15 ,44 ,67 ,111 ,423 ,543]

begin: int128 = 0

end: int128 = 9

middle: int128 = 0

found: int128 = 0

while begin <= end and found == 0:

middle = (end + begin)/2

if lst[middle] == item:

found = 1

else:

if item > lst[middle]:

begin = middle+1

else:

end = middle-1

return

In this case, KoAT is not able to find an upper bound, thus it outputs ∞. This

is probably because complexity analysis tools usually have difficulties in creating an

appropriate ranking function for logarithmic algorithms.

48 TESTING

Conclusions

We have obtained a new Vyper’s compiler that allows infinite looping. We have de-

vised a way to translate programs written in Vyper into CITRS and, afterward, calculate

a symbolic upper bound for the complexity of the system. We have seen that the tool may

require too much computational effort when arrays are used. Unfortunately, at compile

time it is not possible to understand which element of the array is being accessed. So,

the tool has to consider and create a rewriting rule for every possible element, otherwise

it may output an incomplete CITRS, which may not behave like the original program in

all the cases. We have noticed that the tool may give ∞ bounds in case of logarithmic

computations. This is due to the limits of complexity analyzers. Indeed, the litera-

ture[23,24], it is known that they struggle to find precise upper bounds for these kind

of programs. Future developments should try to simplify the (ListAssign) reduction

rule. There are some algorithms which can reduce the domain of elements that may be

accessed for a specific command. By implementing this algorithm[25], we could obtain

a simplified CITRS and a better performing Vyper compiler. This new Vyper compiler

cannot replace the original one. Indeed, the original compiler, as stated in Chapter 1,

provides more safety properties and can output a precise upper bound. This extended

compiler, instead, may fail to give upper bounds or, in general, is less precise and less

secure. On the other hand, our language is more expressive and it is more similar to

Solidity. Solidity is a javascript-based language for Ethereum and it is the most used one

for dApps. Future researches could optimize the compiler presented in this thesis and

create a more stable and usable turing-complete python-based language for Ethereum.

49

50 CONCLUSIONS

Bibliography

[1] J.W.Klop (1992). Term Rewriting Systems, Handbook of Logic in Computer Science.

Oxford University Press.

[2] N.Dershowitz & M.Okada (1988). Proof-Theoretic Techniques for Term Rewrite

Theory. Proc. 3rd IEEE Symp. on Logic in Computer Science.

[3] D.Dougherty, P.Lescanne, L.Liquori & F.Lang (2005). Addressed Term Rewriting

Systems: Syntax, Semantics, and Pragmatics. Electronic Notes in Theoretical Com-

puter Science 127, 57–82.

[4] G.Wood (2013). Ethereum: a Secure Decentralised Generalised Transaction Ledger

[https://ethereum.github.io/yellowpaper/paper.pdf].

[5] B.Hauser (2015). Vyper documentation [https://vyper.readthedocs.io/en/]

[6] M.Di Pirro, S.Crafa and E.Zucca (2020). Is Solidity Solid Enough?. International

Conference on Financial Cryptography and Data Security. Financial Cryptography

Workshops, pp 138-153.

[7] M.Di Pirro (2018). How Solid is Solidity? An In-Depth Study of Solidity’s Type

Safety. Technical report. Università degli Studi di Padova.

[8] A.Mavridou & A.Laszka (2018). Designing Secure Ethereum Smart Contracts: A

Finite State Machine Based Approach. International Conference on Financial Cryp-

tography and Data Security. Financial Cryptography and Data Security, pp 523-540.

[9] A.Mavridou & A.Laszka (2017). Designing Secure Ethereum Smart Contracts: A

Finite State Machine Based Approach. Technical report. Cornell University.

51

52 BIBLIOGRAPHY

[10] P.Merriam (2020). Stateless Clients: A New Direction for Ethereum 1.x. Medium.

[11] R.Sierra (2019). Verification of Ethereum Smart Contracts Written in Vyper

[https://www.pm.inf.ethz.ch/education/student-projects/completedprojects.html].

University of Zurich.

[12] M.Ghelli (2020). Analisi Statica di Smart Contract in Ethereum: Stimare i Consumi

di Gas [https://amslaurea.unibo.it/19612/]. Alma Mater Studiorum - Università di

Bologna.

[13] R.N.Moll, M.A.Arbib and A.J. Kloury (1988). An Introduction to Formal language

Theory. Springer Verlag.

[14] E.Hildenbrandt, M.Saxena, X.Zhu, N.Rodrigues, P.Da- ian, D.Guth and G.Rosu

(2017). Kevm: A complete semantics of the ethereum virtual machine.

[15] M.Gabbrielli and S.Martini (2011). Programming Languages: Principles and

Paradigms. McGraw-Hill.

[16] A.Bertossi and A.Montresor (2014). Algoritmi e Strutture di Dati. CittàStudi.

[17] S.Nakamoto (2008). Bitcoin: A peer-to-peer electronic cash sys-

tem[https://www.bitcoin.com/get-started/bitcoin-white-paper-beginner-guide/].

[18] N.Dershowitz and Z.Manna (1979). Proving termination with multiset orderings.

Commun. ACM 22, 465-476.

[19] M. Martel (2008). Semantics Transformation of Arithmetic Expressions. Université

Paris-Saclay.

[20] A.V. Aho, M.S.Lam, R.Sethi and J.D.Ullman (2007). Compilers: Principles, Tech-

niques and Tools. Second Edition. Pearson.

[21] A.W.Appel (2007). Modern Compiler Implementation in C. University of Cam-

bridge.

[22] J.McCarthy (1985). LISP 1.5 Programmer’s Manual. MIT Press.

BIBLIOGRAPHY 53

[23] S.Falke, R.Thiemann, J.Giesl and P.Schneider-Kamp (2003). AProVE: A System

for Proving Termination. University of Aachen.

[24] M.Brockschmidt, F.Emmes, S.Falke, C.Fuhs, J.Giesl (2003). Analyzing Runtime

and Size Complexity of Integer Programs. ACM Transactions on Programming Lan-

guages and Systems.

[25] Y.Paek, J.Hoeflinger, D.Padua (2002).Efficient and precise array access analysis.

ACM Transactions on Programming Languages and Systems.

[26] T.H.Cormen, C.E.Leiserson, R.L.Rivest and C.Stein (1990). Introduction to Algo-

rithms. MIT Press.

Ringraziamenti

Ringrazio la mia famiglia per avermi supportato durante questo percorso. Ringrazio

il professor Dal Lago e il professor Vanoni per il loro impegno e per avermi aiutato nella

stesura di questa tesi. Ringrazio l’intera università per il livello di istruzione che mi ha

dato.

56 BIBLIOGRAPHY

	Introduction
	Background
	Blockchain
	Block
	Ethereum
	Transactions
	Payments and currency

	Vyper
	State Variables
	Types
	Environment Variables
	Functions

	Rewrite Systems
	Integer Term Rewrite Systems
	Definition and syntax
	Complexity ITRS
	Termination

	KoAT
	Conditional CITRS
	The Com_k command
	Structure of KoAT programs

	Calculus Semantics
	Control Flow Graph
	Operational Semantics
	Transition Systems
	Auxiliary Functions
	Semantics of commands
	Error semantics
	Considerations about the semantics of commands

	Gas Calculation
	Operational codes
	The Ethereum paradigm
	Compilers
	Vyper compiler

	Testing
	Fibonacci algorithm
	Insertion sort
	Shell sort
	Binary search

	Conclusions
	Bibliography

