
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE
Corso di Laurea Magistrale in Informatica

Causal-Consistent Debugging of
Distributed Erlang

Relatore:
Prof. Ivan Lanese

Presentata da:
Giovanni Fabbretti

Sessione II
Anno Accademico 2019/2020

A Domenica, per l’incondizionato amore che mi hai sempre dato.

Acknowledgements

My first and deepest thanks goes to my supervisor, prof. Ivan Lanese, for giving me the
chance to work together with him, for sharing with me his incredible enthusiasm about
this beautiful subject and for being the kind of supervisor that I wish everyone to have.
Then, I would like to thank my parents, Cristina and Giordano, and my sister, Gaia,
because even if they do not understand what I am doing they do understand why I
am doing it and that provides me a great support. Moreover, I thank them for always
pushing me to chase my dreams while following my heart, I believe that this freedom
that you always ensured me has made me a better person.
A mention is also necessary to all the incredible colleagues who accompanied me during
this master, Simone, Federico, Pietro and Luigi, thank you for being such great compan-
ions.
Finally, the last mention goes to my roommates, and dear friends, of Via Mazzini 3,
who have contributed to make this journey memorable, sharing an apartment with you
during this last two years has exceeded every expectation that I had.

Abstract

The main purpose of this work is to study the reversibility in a concurrent and dis-
tributed environment. Reversing the execution of a program in such environment is not
straightforward, indeed in order to undo a step performed by one of the, potentially
many, processes of the system one has to make sure that also all of its consequences, if
any, have been undone beforehand. This notion is usually referred to as causal consis-
tency. Here, we study reversibility in the context of the Erlang language. In order to
reverse the execution of a concurrent and distributed erlang program we define a forward
semantics which, at each step performed by the program, stores in an external device,
called history, auxiliary pieces of information that later on can be used to undo the step.
In addition to the forward semantics we also develop a backward semantics and a rollback
semantics, the former tells how and when we can undo a step while the latter allows us
to undo several steps in an automatic manner. Lastly, we present a proof-of-concept im-
plementation of a debugger able to reverse the execution of a concurrent and distributed
program written in Erlang.

Italian summary

Lo scopo del seguente elaborato è quello di studiare le relazioni di dipendenza che inter-
corrono tra l’utilizzo di costrutti appartenenti ad un linguaggio concorrente e distribuito
al fine di realizzare un debugger reversibile per tale linguaggio. Un debugger reversibile è
un debugger che, tra le altre funzionalità, permette all’utente di interrompere l’esecuzione
in avanti del codice e eseguirlo all’indietro.

Quando si parla di programmi sequenziali la nozione di reversibilità è particolarmente
intuitiva, infatti sappiamo con precisione qual è l’ultima azione che il programma ha
eseguito e per annullarne l’effetto è sufficiente effettuare l’azione inversa. Ad esempio, se
l’azione che stiamo considerando è l’incremento di una variabile per annullarne l’effetto è
sufficiente sottrarre alla variabile la stessa quantità che in precedenza vi è stata aggiunta.

La nozione si complica leggermente quando consideriamo istruzioni con perdita di
memoria, come ad esempio l’assegnamento di un nuovo valore ad una variabile. In tal
caso per poter disfare l’azione è necessario, prima di effettuare l’assegnamento, salvare il
valore della variabile, in modo tale che poi quando si vorrà ripristinare il valore precedente
sarà sufficiente consultare la storia del processo.

La nozione di reversibilità si complica in maniera considerevole qualora la volessimo
applicare a sistemi concorrenti e distribuiti. Infatti, quando consideriamo un sistema
distribuito e concorrente, per definizione, non è possibile avere una nozione di tempo o
una nozione di ultima azione eseguita. In aggiunta, siccome il sistema è composto da
diversi processi è necessario considerare che il comportamento di uno di questi potrebbe
influire sul comportamento dei rimanenti.

Il seguente elaborato mira alla realizzazione di un debugger reversibile per programmi
scritti in Erlang.

Erlang è un linguaggio funzionale, concorrente, distribuito basato su message-passing.
Per poter realizzare il debugger reversibile innanzitutto abbiamo definito la semantica

formale del linguaggio, estendendo quella già presentata in [1], aggiungendo costrutti per
programmazione distribuita.

Una volta definita la semantica del sistema abbiamo realizzato una semantica for-
ward che ci permette di eseguire il codice in avanti e al tempo stesso salvare informazioni
che poi in seguito potranno essere utilizzate per ripristinare stati precedenti della com-
putazione. Successivamente, abbiamo definito la semantica backward che ci permette

di capire quando e come è possibile disfare l’effetto di una particolare azione. Infatti,
siccome il sistema è composto di molti processi e ognuno di questi può influenzare il
comportamento dei rimanenti, prima di poter disfare un’azione è necessario assicurarsi
che tutte le sue conseguenze, se ce ne sono, siano state disfatte.

Infine, dato che riavvolgere l’esecuzione dell’intero sistema un passo alla volta non
è efficiente dal punto di vista dell’utente abbiamo introdotto una semantica rollback.
La semantica rollback permette all’utente di disfare un numero arbitrario di azioni in
maniera automatica. Più precisamente la semantica rollback permette all’utente di speci-
ficare uno stato precedente della computazione, sotto forma di azione compiuta da uno
dei processi del sistema, che desidera raggiungere, dopodiché la semantica si occupa di
disfare tutte le conseguenze dell’azione fino a disfare l’azione stessa.

Una volta realizzate le tre semantiche una proof-of-concept del debugger è stata
implementata. Il debugger permette di effettuare il caricamento di file sorgenti erlang,
una volta che il caricamento è stato completato l’utente sceglie quale funzione fungerà da
entry-point e ne specificherà gli eventuali argomenti. A tal punto, l’utente può eseguire
il programma in avanti, quando si renderà conto che il comportamento del programma
non è quello desiderato potrà usufruire delle varie funzionalità del debugger per cercare
di identificarne la causa. Tra le funzionalità offerte possiamo identificare: ispezione dello
stato di ogni processo, ispezione della storia di ogni processo, stampe di debug, ed infine
eventuali stampe del programma (disponibili nella console in cui il debugger è stato
lanciato).

5

Contents

1 Introduction 8
1.1 Concurrent and distributed programming 9
1.2 Reversible computation . 12
1.3 Reversible debugger . 13
1.4 CauDEr . 14
1.5 Distributed CauDEr . 16

2 Background 18
2.1 Language: syntax . 18
2.2 The language semantics . 20

2.2.1 Erlang concurrency . 28
2.3 A reversible semantics . 28

2.3.1 Properties of the uncontrolled reversible semantics 34
2.4 Rollback semantics . 37

3 Distributed CauDEr 39
3.1 Extended language: syntax . 39
3.2 The extended language semantics . 40
3.3 A reversible semantics . 47

3.3.1 Properties of the extended uncontrolled reversible semantics . . . 53
3.4 Rollback semantics . 62

4 Distributed CauDEr 72
4.1 CauDEr . 72
4.2 Distributed CauDEr . 75

4.2.1 Workflow . 75
4.2.2 Finding concurrent bugs with CauDEr 76
4.2.3 Finding distributed bugs with CauDEr 78

5 Related work 80

6

6 Conclusions and future work 82

A Auxiliary functions 84

7

Chapter 1

Introduction

Writing code is a complicated art. To write a good quality software a developer needs
to have a deep understanding of different subjects (logic, mathematics, language theory,
programming, to mention a few) and possibly a long experience in the field. Millions and
millions of people know how to code nowadays and yet, not even a single one of them can
write completely bug-free code; actually, it is quite the contrary. Additionally, errors are
even more frequent and hard to discover when it comes to distributed and concurrent
programming; this is mainly due to the nature of this kind of task. In fact, while in
sequential programming we have only one thread executing instructions in concurrent and
distributed programming we have several thread working at the same time. Moreover,
these thread are cooperating together, in some scenarios sharing resources, in other
exchanging messages, therefore the programmer must ensure that not only every single
thread is performing correctly its work but also that once that they are working all
together they are still behaving as expected.

Many programming languages address some of these problems through the paradigm
they implement: let us consider the case of a race condition. A race condition occurs
when two or more threads can access shared data and they try to change it at the same
time. This problem does not occur in a functional programming language, in fact when
using the functional paradigm it is not possible to change the value of a variable after
that this one has been bounded to a value the first time, therefore it is impossible to
face the problem. Unfortunately, this is not enough to write bug-free code.

Erlang [2], a functional and concurrent programming language based on asynchronous
message passing, is a perfect example of such a language. Erlang implements the actor
model [3], a mathematical model that treats actors as the universal primitive of con-
current programming. An actor is a process that can: communicate with other actors
through messages, modificate his own state, create more actors. Thanks to the actor
model many problems, like shared resources, are addressed by the language, yet it is still
possible to introduce errors in the code. For instance, since the semantics of an erlang
program is mostly based on how the actors involved communicate with each other if

8

there is an error in the implementation of the protocol that they are supposed to obey,
then the program will not behave as expected.

Therefore, since writing software is not an error-free activity, we need tools to ensure
that the code we write, at least, contains the smallest number of errors. Many of these
tools already exist; we have IDEs to help writing, git to collaborate with colleagues,
compilers to translate programs, debuggers and the list keeps going on.

In particular, a debugger is a tool meant to help users to discover errors in a given
program by running it in a controlled environment that permits the programmer to track
the operations in progress and monitor changes in the computer resources. This work
aims to provide the community with a new causal-consistent debugger for a subset of
the Erlang language, to help them during the process of seeking the bug in a distributed
system written in Erlang. The rest of the chapter will give a brief overview to the reader
of the basics concepts on which the whole project heavily relies. The code of the proof-
of-concept debugger is publicly available at: https://github.com/gfabbretti8/cauder

1.1 Concurrent and distributed programming
Concurrent programming is a technique in which two or more processes start, run in
an interleaved fashion through context switching and complete in an overlapping time
period by managing access to shared resources, e.g., on a single core of CPU. Context
switching is the procedure of saving the states of the registers and of the program counter
of a process, so that its computation can be resumed at a later point, this allows to run
several processes on a single core.

In [4], published in 2005, it is well underlined that the leading companies manufactur-
ing CPUs have reached the limits of a single core CPU; however, the demand for more
computational power was and will always be ubiquitous. To answer this omnipresent
demand of computational power, since it has become almost impossible to improve the
performances of a single CPU, the trend moved towards multiple CPUs.

Nowadays every computer relies on several cores, even the domestic ones, each of
these cores can run several threads, hence to fully exploit the computing power of a
calculator, we have to use those cores together in a concurrent fashion. Thanks to these
multiple cores that we have in our machine, it is possible to have many applications
running simultaneously, allowing us to perform seamlessly even tasks that require heavy
computations.

Unfortunately, concurrent programming comes with inherent problems due to its
nature; since two or more processes share the same memory and the same resources,
we have to deal with situations that are not present in sequential programming. The
main problem is caused by the fact that two or more processes share the same resources,
to have a better understanding of why this might cause problems let us analyze what
happens in the following example.

9

p1 {
...
if(x == 5){

x = x*10;
}
...

}

p2 {
...
x = 4;
...
}

Figure 1.1: Two concurrent processes

Example 1.1. The two processes in figure 1.1 run in a concurrent fashion, this means
that they can execute instructions at the same time, potentially involving the same
resource. Since the two processes are concurrent the following is possible: p1 could
perform the check on the variable x, checking that its value is 5, then proceed to multiply
it by 10; the problem is that we have no warranty that the actual value of x is 5 when
the multiplication will be performed. Indeed, after the check of the if clause p2 could
have assigned the value 4 to x, so p1’s behaviour is no longer what we were initially
expecting, this situation is called race condition.

To address this problem usually a lock it used. A lock is a synchronisation mechanism
which ensures that if a process is able to get the lock of a variable then it is also the only
one allowed to perform operations on it. The introduction of the lock mechanism brings
up new scenarios:

• Deadlock: each process is waiting for another process to unlock a resource, without
which it cannot proceed with the computation.

• Starvation: a group of processes are locking and unlocking a certain resource and
one or more processes cannot get the lock of the resource.

Some programming languages tackled these problems at the root, solving some of them by
construction; this is particularly the case for Erlang [2]. Erlang is a functional concurrent
programming language that uses the actor model; it has been designed for systems with
one, or more, of the following traits:

• Soft-real time

• Distributed

• Fault tolerant

• Hot swapping

• Highly available, non-stop application

10

Hot swapping is a particularly interesting feature: by hot-swap it is intended the ability
of a system to update one, or more, of its modules without halting the system. Over
a long time a system might, for instance, face the need to change the exposed APIs,
this might be due to an update of the data handled or to adapt the behaviour to a
new protocol. Restarting the system, to make an update effective, is a time-consuming
process and during that process the system it is not available to its users. Thanks to
the hot swapping Erlang offers the possibility to update modules without interrupting
the system. In order to do it Erlang use the code server. The code server is basically a
VM process that stores in memory two versions of the same module, one is the newest
version of the module loaded and the other one is the one currently used (they might or
might not coincide). Whenever a function call, prefixed by the module, is performed the
virtual machine checks if a newer version of the module is available, if that is the case
the latest version is then used, if the current version is already the latest the function it
is normally called. If the function call is performed omitting the module then the current
version of the module it is used, even if a newer version is available.

Erlang is also called the language of the nine zeros [5]; this is because the project
AXD301, where Erlang has been employed to develop the system, over a period of 20
years, has been available 99.9999999% of the time. Erlang owes its success to some of its
characteristics, like: the actor model, the ’let it fail policy’, and the functional paradigm.

The actor model is a paradigm where every process is considered an actor, every actor
can communicate with other actors through asynchronous messages, and every actor has
a queue of received messages. In this model the only way that an actor has to affect the
behaviour of another actor is through a message, indeed it is impossible for the actor A
to change directly the state of the actor B. Thanks to this model some problems, like
race conditions, are addressed directly from the language, in fact since every actor’s state
is private it is impossible to have two actors trying to manipulate the same resource.
The actor paradigm is also excellent for distributed programming since every process of
the system can be seen as an actor, with the only difference, compared to concurrent
programming, that two actors are possibly running on different machines.

Although thanks to such an approach it is possible to avoid some issues, it is still
possible to write buggy programs; some of these bugs can be considered logical errors of
the program.

A logical error can be defined as a misbehaviour of the program that causes it to
operate in an undesired fashion, but it is not detected from a static analysis. When it
comes to a concurrent, distributed system it is easy to introduce bugs in the code and
potentially hard to spot them because some of these faulty behaviours might only show
up in some interleaving of the actors. For instance, the faulty behaviour might depend
on the different speed of execution of the processes, which means that it is particularly
complicated to spot the error and then solve it, or simply reproduce such circumstance
during the debugging phase.

Let us consider once more Example 1.1: we already established that the program

11

is not safe due to the fact that the second process could modify the value of variable x
while the first process is performing operations on it. The fact that the program contains
this bug does not imply that the faulty behaviour will show up in every execution of the
program. As a matter of fact, the first process might be significantly faster than the
second one, for instance 1000x times faster, so the likelihood that the second process will
change the value of x in that critical section is very low. Consequently, since the faulty
behaviour might arise only in some interleaving, potentially very few of them, and it is
a challenging task to find the source of the problem.

1.2 Reversible computation
A program can be considered as a list of instructions that a computer performs. Usually,
instructions are performed in an incremental way, this means that istri is executed before
istri+1, this kind of computation is also referred to as forward computation.

Although forward computation is the standard kind of computation, it is not the only
one; in fact, as a dual of the forward computation, also backward computation exists.
Backward computation allows one to execute instructions in a reverse way, by undoing
the effects of the forward computation previously performed.

Given a generic program, it is not guaranteed that it is possible to execute it in a
backward manner. In fact, during its execution, a generic program, unless reversible or
without loss of information, erases intermediate data while computing the final output.

Let us consider the instruction x = x + 1 and the instruction x = 42. The first
one is lossless, indeed whichever the previous value of x was, it can be retrieved by
applying the inverse function x = x - 1. The second one is with loss of information:
after performing the assignment to x, we will lose once and for all the previous value
of x. Given the latter situation, it is impossible to execute the program in a backward
fashion because we have no way to restore the previous value of x.

We can now distinguish between programming languages that allow instructions with
information loss and languages that only allow instructions without information loss;
among the ones belonging to the second category, there is Janus, firstly described in [6].

Janus only allows instructions that have a mathematical inverse function, this way it
is straightforward to execute a program in both a forward and a backward manner.

However, every mainstream programming language allows instructions with informa-
tion loss. The central challenge is that given the state of a program, if we want to reach
the previous state and the step that must be undone belongs to the ones that erase infor-
mation, it is impossible to know which one is the predecessor state and consequentially
how to restore it.

Landauer first in [7] and then Bennet in [8] tackled this problem by adding information
history to the computation of each state, making it possible to recover to previous states
regardless of the instruction performed. This simple idea is compelling; let us consider

12

once more the example x = 42. If we are also provided with a history of the program,
including the previous values that x has had, reversing the instruction becomes a simple
task: we can consult the history to know which one was the previous value before the
assignment and then restore the previous state. A considerable drawback of this approach
is the amount of memory necessary to store all the intermediate information necessary
to the program’s execution.

A naive approach to save the history of a given process is the following: for each step
that the process performs, we save its environment and a map to keep track of every
variable’s actual value. Such an approach is computationally expensive because, at each
step, a new copy of the environment and the map is saved regardless of the fact that any
of the values in both objects have been changed. For instance, if the action performed
is a print we will not introduce new variables or change the value of the existing ones,
so it is not necessary to save again a copy of both objects, which are identical to the
previous ones. Although more sophisticated ways of keeping the history exist, in this
work we will use the naive approach since reducing the memory used to store information
is orthogonal to the goals of this project.

Reversible computation could be applied to improve how some tasks are solved, to
mention a few of them: error recovery, exploring different computations, state explo-
ration, and finally, debugging.

1.3 Reversible debugger
Debugging is the activity to analyze a program, find a bug (i.e. a mistake) and solve it.
Sometimes bugs are evident, they are fatal errors and it is easy to find and fix them,
sometimes they are trickier, sometimes the faulty behaviour only arises under certain
circumstances and it is painful to reproduce it and then find a solution.

A debugger is a program meant to help developers to analyze providing by providing
pieces of information that are generally not available. Usually, a debugger runs a program
under precise environment conditions in a controlled manner, keeping track of every
change in the memory to help the programmer spot the faulty behaviour.

According to [9] more than 70% of software budget is spent on debugging and over
75% of software professionals do program maintenance of some sort. From these numbers,
it is evident that debugging is an activity that cannot be underestimated, and it is crucial
to have efficient tools to simplify the task.

A typical feature offered by a debugger is the possibility of inserting breakpoints in
the code. Often the programmer suspects in what part of the code the bug is located, so
(s)he can insert a breakpoint in the code, then the computation can be started through
the debugger. When the computation reaches the instruction marked by the breakpoint
the debugger stops the computation and shows the environment state to the user. This
way the user can check the values of the variables, then (s)he can choose to resume the

13

computation, eventually to another breakpoint, or (s)he can proceed the computation
step by step to have a better understanding of the program’s behaviour. This latter task
is particularly tedious: the user has to press the button to execute the forward step,
check that everything is ok and then continue, if (s)he goes too far in the execution and
misses the faulty behaviour, the process of debugging needs to be restarted.

A reversible debugger is a tool that, among other things, allows the user to execute
the code in a backward manner. If the debugger can reverse the code’s execution, then
it is easy for the programmer to go back, spot the error, and fix it without restarting the
process from scratch.

On one hand, this notion is particularly natural when it comes to sequential code;
the instructions are executed in an incremental way, so to reverse the execution it is
just necessary to execute them backward, using, for instance, the technique described in
Section 1.2.

On the other hand, this notion is less natural when it comes to concurrent program-
ming; in fact, in concurrent programming, there are several processes running simulta-
neously, potentially interacting with each other, so it is impossible to have a notion of
time and a notion of last instruction executed. What we would like to do is to undo
the action(s) of a particular process, possibly the one which we suspect has the faulty
behaviour, but in order to undo the actions of a process we need to undo also all of its
consequences.

This notion is called causal consistency [10]. If we do not undo the consequences of
the action, we will reach a state of the system which is not reachable with a forward
computation, entering thus a state of inconsistency. For instance, let us consider the
scenario where we have a system composed by two processes, namely p1 and p2, where
p1 has spawned p2. If we desire to undo the spawn of p2 before proceeding to actually
undo the spawn we first need to undo all the actions performed by p2, otherwise we
would enter a state of the system formerly not reachable.

1.4 CauDEr
A causal-consistent debugger is a tool which allows us to debug a concurrent program,
ensuring causal-consistency. As discussed in Section 1.1, it is far from trivial to spot a
faulty behaviour in a concurrent system, so it is beneficial to have tools that help us. In
[1], CauDEr is introduced, CauDEr is a causal-consistent debugger for a functional and
concurrent subset of the Core Erlang language [11].

The program works as follow: the user loads an Erlang source file, the Erlang source
file is translated into Core Erlang and then the resulting code is shown in the Code
window, if no error has been found by the compiler. Then, the user specifies which
function is the entry-point, and, eventually, the function’s arguments and then, after
pressing the start button, the system is booted. After booting the system, the user can

14

Figure 1.2: Screenshot of the application

execute the program in a forward manner automatically, specifying how many forward
steps need to be performed, or, alternatively, the user can select a process and perform
forward steps of that particular process.

Moreover, the user can select a process and perform a backward computation on it,
given that all the consequences of the action that the user desire to undo are all undone.

Additionally, the user can rollback the process to a particular point where an ob-
servable action has been performed, with the guarantee that causal-consistency has been
ensured.
A tool that allows its user to focus only on the desired process, ignoring the others, is
powerful, it reduces the amount of information that the user perceives in a single mo-
ment, reducing the cognitive load and so allowing him to focus solely on what he needs.
Let us consider a debugger that keeps a trace of the whole system and then allows us
to move it back and forward; such a tool would not allow us to focus on a particular
process but would force us to rollback and replay the whole system, even processes that
are not linked to the one we are interested in. Such an approach would overwhelm the
user with information which are not useful, increasing thus the probabilities that (s)he
will miss the bug causing the misbehaviour.

In [1], a semantics for the chosen subset of Erlang is given, followed by a reversible
one which can go both forward and backward, in a non-deterministic fashion. Then, the
control on the previous semantics is added through the rollback operator and finally an
implementation of CauDEr is presented.

15

1.5 Distributed CauDEr
A distributed system is a system whose components are located on different networked
computers, communicating and coordinating their actions by passing messages to one
another. A distributed system can be seen as an edge case of a concurrent system where
different processes could run in different machines.

Nowadays we are surrounded by distributed systems, and we use them on a daily ba-
sis; telephone networks, cellular networks, peer-to-peer applications, distributed databases,
network file systems are all examples of distributed systems. Erlang is a language par-
ticularly suited to do concurrent and distributed programming, and since distributed
programming shares some common problems with concurrent programming, it is crucial
to have tools to help the programmers developing such systems.

As we have already mentioned in Section 1.4, CauDEr supports a functional, concur-
rent subset of the Core Erlang language; the aim of this work is to extend that subset
to a functional, concurrent distributed subset of the Core Erlang language, by extending
the, already supported, subset with constructs that allow to run and coordinate pro-
cesses running different physical machines. In other words the goal is to realise a new
version of CauDEr that is also able to debug distributed programs in a causal-consistent
manner. Before listing the set of commands added we informally introduce the notion
of node and spawn because the knowledge of these terms is essential to understand the
work done.

A node can be seen as a pool of processes, nodes are virtual and two different nodes
could be located in the same physical machine; nonetheless, the convention is that each
machine connected to the network contains just one node.

Spawn is the term we will use to indicate that an actor has started another actor;
a spawn can be remote, i.e., the actor is located in a different node, or local, i.e., the
spawned actor is located on the same node of his parent.

After introducing these fundamental notions we can proceed with the list of con-
structs:

• node/0: returns on which node the actor is located

• nodes/0 returns the list of all visible nodes the actor is connected to

• start/2: allows an actor to start a new node, given that a node with the same name
does not belong already to the network

• spawn/4: allows an actor to perform a remote spawn

Obviously, there are numerous more constructs designed to perform distributed program-
ming, but the ones added are sufficient to perform every kind of distributed computation.
Following the approach in [1] the various semantics, including the new constructs, have

16

been defined, paying attention to preserve causal-consistency, and finally the debugger
has been expanded adding such distributed constructs.

17

Chapter 2

Background

In the following of this chapter, we will discuss and analyse the work done in [1], where
the first version of CauDEr, a reversible debugger for (a subset) of Erlang, has been
presented. The paper first presents the syntax of the language, then the reversible
and the rollback semantics, and finally several properties of the semantics are proven.
Presenting the paper is needful because that work constitutes the basis of the distributed
version of CauDEr.

2.1 Language: syntax
Erlang is a functional, message-passing, concurrent, distributed programming language.
Core Erlang is an intermediate representation of an Erlang program during the process
of its compilation. In a nutshell, Core Erlang is a much simpler version of Erlang, indeed
from a language perspective many of the constructs that Erlang offers are nothing but
syntactic sugar from a compiler perspective, therefore working with Core Erlang is much
simpler. In this section we will provide the syntax and the semantic of the subset of
Core Erlang supported by CauDEr.

In Figure 2.1, one can find the syntax of the language. Here, a module is a sequence
of function definitions, a function can be identified by f/n, i.e., an atom, representing
the name, followed by an integer representing the number of arguments required. Every
function has associated a body represented by an expression, which might include vari-
ables, literals, function calls, built-in calls, lists, tuples, let bindings, receive functions,
spawn functions, self functions and "!".

In the let binding, Var, as is standard practice, always has to be considered a fresh
variable. In this syntax, expressions, patterns and values carry different meanings. A
pattern is composed of variables, literals, lists and tuples, while values are composed by
literals, lists and tuples without variables (i.e., they are ground). Expressions are denoted
by e, e′, e1e2, e3, ..., patterns by pat, pat′, pat1, pat2, pat3, ... and values by v, v′, v1, v2, v3, ...,

18

module ::= fun1 . . . funn
fun ::= fname = fun (X1, . . . , Xn) → expr

fname ::= Atom/Integer
lit ::= Atom | Integer | Float | []

expr ::= Var | lit | fname | [expr1|expr2] | {expr1, . . . , exprn}
| call expr (expr1, . . . , exprn) | apply expr (expr1, . . . , exprn)
| case expr of clause1; . . . ; clausem end
| let Var = expr1 in expr2 | receive clause1; . . . ; clausen end
| spawn(expr, [expr1, . . . , exprn]) | expr1 ! expr2 | self()

clause ::= pat when expr1 → expr2
pat ::= Var | lit | [pat1|pat2] | {pat1, . . . , patn}

Figure 2.1: Language syntax rules

variables start with a capital letter and atoms are represented by lower-case letters, or
are enclosed in quotes if they start with a capital letter or they contain special characters.

To bind variables with expressions a substitution θ is used, where θ is a mapping
between the variable and the expression. A substitution is usually a set of associations,
like {X1 7→ v1, ..., Xn 7→ vn}, meaning that variable Xi has to be replaced by vi. The
identity substitution is represented by id. Two substitutions can be composed by juxta-
position, i.e., θθ′ indicates θ′(θ(X)) for all X ∈ V ar. A substitution can be updated, and
it is denoted by θ[X1 7→ v1, ..., Xn 7→ vn], the resulting substitution θ′ has the following
semantic: θ(X) = vi if X = Xi where i ∈ {1, ..., n}, θ′(X) = θ(X) otherwise.

In a case expression, case e of pat1 when e1 → e′1; ...; patn when en → e′n end, first e is
evaluated to a value v, then a pattern that matches v is searched among pat1, ..., patn. A
pattern that matches v is always found, indeed, if the user has not provided the case with
a catch-all clause the Erlang compiler will, and that clause will be the one responsible
for throwing the error badmatch. Afterwards, when a pattern that matches v is found
the clause when ei is evaluated, if ei evaluates to true then e′i is evaluated, if ei evaluates
to false then a new pattern that matches v will be searched. Due to a decision taken
while developing Erlang, the ei expression can only contain calls to built-in functions
(usually arithmetical and relational operators).

Now let us describe the concurrent features of the language, first of all, we introduce
the notion of system. A system is as a pool of processes, where each process is uniquely
identified by its pid, the only way that a process has to interact with the other processes
is through the exchange of messages. The send of a message is asynchronous, this means
that after sending a message the process proceeds with its computation, in other words
the send of a message is a non-blocking operation. The syntax used to send a message is
e1 ! e2, where e1 evaluates to a pid and e2 evaluates to v2, which represents the message.

19

Finally, the whole expression evaluates to v2 and as a side effect the message will be
stored, eventually, to the queue of messages of the receiver. In this work we assume
that the expression e1 always evaluates to a pid which has been generated by means of
a spawn or to the pid of the first process of the system. As opposed to the send, the
receive function is a blocking operation, when the receive is performed the process’ queue
of messages is traversed, searching for a message that matches a branch of the receive
statement, if no message matches then the computation of that process is suspended
until the reception of a message that will match. Moreover, when a receive is performed
and matches a message successfully, as a side effect, this last one will be removed from
the queue of messages.

As already discussed, each process is uniquely identified by a pid, and self is the
function that returns the pid of the current process. New processes can be added to
the system by means of a spawn, indeed, through spawn(f/n, [v1, ..., vn]) a process can
spawn another process and this last one will start its computation by applying f/n to
[v1, ..., vn]. The evaluation of spawn(f/n, [v1, ..., vn]) will also return the pid of the newly
spawned process.

Example 2.1. Let us consider the program in Fig. 2.2. With the symbol "_" we
indicate an anonymous variable, i.e., a variable whose value we are not interested in.
The computation starts with "apply main/0 ()". This creates a process, say m, then m
proceeds its own computation by spawning two processes, say p1 and p2, and successively
saves in the variable S its pid. Then, it proceeds by sending a message to both p1 and p2
and terminates its computation. In the meantime, both p1 and p2 are waiting to receive
a message, once this is received they reply back with a simple message containing the
atom pong. In this language, there is no guarantee about the order of the messages, (a),
(b), (c), and (d) of Fig. 2.9 are all admissible interleaving of the messages (note that the
four interleavings shown in the figure are not all the possible ones).

2.2 The language semantics
In this section we will formalise the semantics of the language, following the same ap-
proach used in [1], however before doing so we formally introduce some fundamental
notions.

Definition 2.1 (Process). A process is a tuple 〈p, (θ, e), q〉, where p represents the pro-
cess’ pid, θ is the environment (i.e., a substitution), e is the next expression that needs to
be evaluated and q is the process’ mailbox, a FIFO queue of messages that have been sent
to the process. The following operations are permitted on the mailbox. Given a message
v and a local mailbox q, we identify v : q as a new local mailbox with the message v on
top. On the other hand, by means of q\\v we indicate the queue resulting by removing

20

main/0 = fun () → let P1 = spawn(ping/0, [])
in let P2 = spawn(ping/0, [])
in let S = self()
in let _ = P1 ! {S, ping},
in P2 ! {S,ping}

ping/0 = fun () → receive
{P, ping} → P ! pong

end

Figure 2.2: A simple multiple ping-pong program

v from q, it is important to notice that v not necessarily is the oldest message in the
queue.

Definition 2.2 (System). A system is denoted by Γ;Π, where Γ, the global mailbox, is a
multiset of the form (target_process_pid,message), and Π is a pool of running processes,
denoted by an expression of the form

〈p1, (θ1, e1), q1〉 | ... | 〈pn, (θn, en), qn〉

where "|" represents a commutative and associative operator. Given a global mailbox Γ
we denote Γ′ = Γ ∪ {(p, v)} as the new global mailbox which also stores the pair (p, v).
Often, in the rest of this work we will denote a system with the expression

Γ; 〈p, (θ, e), q〉 | Π

to indicate the process p, which is an arbitrary process of the pool (this is possible thanks
to the associativity and commutativity of the operator "|").

The presence of Γ is needed to guarantee that every possible interleaving of the
messages is admissible, in fact, without the presence of the mailbox when a process
performs a send the only place where the message could be stored would be the queue
of the receiver. Such an approach would imply that the order of the messages is always
guaranteed, which is not always true in real systems (e.g., a message can be lost in the
network or simply delayed). Thanks to the global mailbox one can easily simulate every
possible interleaving of an asynchronous model.

Example 2.2. In this example we will show how it is possible to obtain different inter-
leaving by means of the global mailbox. Let us consider two processes, p1 and p2, now
p1 performs a send to p2, then the message, say v1, is stored in Γ, then p1 sends another
message to p2, say v2, and v2 is also stored in Γ. Now Γ contains both messages and v2
can be delivered to p2 before v1, in other words, Γ allows us to simulate the unpredictable
behaviour of a network.

21

m p1 p2

p1 ! {m,pong}

p2 ! {m,pong}

m ! ping

m ! ping

(a)

m p1 p2

p1 ! {m,pong}

m ! ping

p2 ! {m,pong}

m ! ping

(b)
m p1 p2

p1 ! {m,pong}

p2 ! {m,pong}

m ! ping

m ! ping

(c)

m p1 p2

p1 ! {m,pong}

p2 ! {m,pong}

m ! ping

m ! ping

(d)

Figure 2.3: Some admissible intearlvings for the program of Fig. 2.2

In the following, we denote by on a sequence of n syntactic objects for some n, by oi,j
we denote the sequence oi, ..., oj where i ≤ j. We use o when the length of the sequence
is not relevant.

The semantics of the expressions is defined by the following labeled transition relation:

−→: {Env,Exp} × {Label} × {Env,Exp}

where Env is the domain of environments (i.e. substitutions) and Exp is the domain of
expressions, and Label represents an element of the following set:

{τ, send(v1, v2), rec(κ, cln), spawn(κ, a/n, [vn]), self(κ)}

The letter ` is used to range over the labels. As one can notice, rules have been divided,
for simplicity, in two sets, Fig. 2.4 shows the set of rules for sequential expressions, and
Fig. 2.5 shows the set of rules for concurrent expressions.

22

Var
θ,X

τ−→ θ, θ(X)
Tuple

θ, ei
ℓ−→ θ′, e′i

θ, {v1,i−1, ei, ei+1,n}
ℓ−→ θ′, {v1,i−1, e′i, ei+1,n}

List1
θ, e1

ℓ−→ θ′, e′1

θ, [e1|e2]
ℓ−→ θ′, [e′1|e2]

List2
θ, e2

ℓ−→ θ′, e′2

θ, [v1|e2]
ℓ−→ θ′, [v1|e′2]

Let1
θ, e1

ℓ−→ θ′, e′1

θ, let X = e1 in e2
ℓ−→ θ′, let X = e′1 in e2

Let2
θ, let X = v in e

τ−→ θ[X 7→ v], e

Case1
θ, e

ℓ−→ θ′, e′

θ, case e of cl1; ...; cln end
ℓ−→ θ′, case e′ of cl1; ...; cln end

Case2
match(θ, v, cl1, ..., cln) = 〈θi, ei〉

θ, case v of cl1; ...; cln end
τ−→ θθi, ei

Call1
θ, ei

ℓ−→ θ′, e′i i ∈ {1, ..., n}

θ, call op(v1,i−1, ei, ei+1,n)
ℓ−→ θ, call op(v1,i−1, e′i, ei+1,n)

Call2
eval(op, v1, ..., vn) = v

θ, call op(v1, ..., vn)
τ−→ θ, v

Apply1
θ, ei

ℓ−→ θ′, e′i i ∈ {1, ..., n}

θ, apply a/n(v1,i−1, ei, ei+1,n)
ℓ−→ θ′, apply a/n(v1,i−1, e′i, ei+1,n)

Apply2
µ(a/n) = fun(X1, ..., Xn) → e

θ, apply a/n(v1, ..., vn)
τ−→ θ ∪ {X1 7→ v1, ..., Xn 7→ vn}, e

Figure 2.4: Standard semantics: evaluation of sequential expressions.

Transitions are labelled either with τ , i.e., transitions without side-effect, or with the
label that identifies the reduction of an action with some side-effect. As it is in Erlang,
we consider that the order of evaluation of the arguments is fixed from left to right.
Let us now analyse some rules that might not be immediately understandable. For the
case rule, in Fig. 2.4, the auxiliary function match has been used. The function match,
given an environment θ, a value v, and cln clauses, selects the first clause cli such that v
matches pati, and the guard holds. One may notice that if no pattern matches v then the
computation is suspended, in reality, that is never the case since, as already discussed,
the Erlang compiler, if not already present, always adds a catch-all clause to the case,
which will be used to throw the badmatch error.

The semantics also distinguishes between functions which have been defined by the
user and functions that are built-ins. The former are evaluated thanks to the auxiliary

23

Send1
θ, e1

ℓ−→ θ′, e′1

θ, e1 ! e2
ℓ−→ θ′, e′1 ! e2

Send2
θ, e2

ℓ−→ θ′, e′2

θ, v1 ! e2
ℓ−→ θ′, v1 ! e′2

Send3
θ, v1 ! v2

send(v1,v2)−−−−−−−→ θ′, v2

Receive

θ, receive cl1; ...; cln end
rec(κ,cln)−−−−−−→ θ, κ

Spawn1
θ, ei

ℓ−→ θ′, e′i i ∈ {1, ..., n}

θ, spawn(a/n, [v1,i−1, ei, ei+1,n])
ℓ−→ θ′, spawn(a/n, [v1,i−1, e′i, ei+1,n])

Spawn2
θ, spawn(a/n, [vn])

spawn(κ,a/n,[vn])−−−−−−−−−−−→ θ, κ

Self
θ, self()

self(κ)−−−−→ θ, κ

Figure 2.5: Concurrent semantics: evaluation of concurrent expressions.

function µ, which acts like a map between a function name and its body, while the latter
are evaluated with the auxiliary function call.

Now let us move our focus on the rules of Fig. 2.5; one can divide the rules in two
different sets, according to whether it is known locally to what the expression evaluates
or not. Rules Send1, Send2, Send3, which are for "!", belong to the first set, in fact, it
is always known to what they evaluate. The remaining rules belong to the second set,
indeed, a fresh symbol κ is returned, then the duty of binding κ to the right value is left
to the rules of Fig. 2.6, i.e., the selected expression in case of a Receive rule or a pid in
rules Spawn and Self . In these cases, the transition’s label contains all the information
needed to perform the evaluation at a system level, including which one is the value of
κ.

Ultimately, let us consider the system rules of Fig. 2.6. As already mentioned, Γ
indicates the global mailbox, where a message is stored after being sent from a process,
the tuple 〈p, (θ, e), q〉 indicates an arbitrary process of the system and Π denotes the
remaining processes.
Rule Seq represents a sequential action, it only affects the environment and the expression
of the process.
Rule Send adds the pair (p′′, v) to the global mailbox, it indicates that the process p has
performed a send. As already discussed in Section 2.2, Γ is necessary to make sure that
every possible interleaving is admissible.
Rule Receive, through the auxiliary function matchrec, allows a process to receive a
message that has been stored in its own queue. The auxiliary function matchrec is

24

Seq
θ, e

τ−→ θ′, e′

Γ; 〈p, (θ, e), q〉 |Π ↪→ Γ; 〈p, (θ′, e′), q〉 |Π

Send
θ, e

send(p′′,v)−−−−−−→ θ′, e′

Γ; 〈p, (θ, e), q〉 |Π ↪→ Γ ∪ (p′′, v); 〈p, (θ′, e′), q〉 |Π

Receive
θ, e

rec(κ,cln)−−−−−−→ θ′, e′ matchrec(θ, cln, q) = (θi, ei, v)

Γ; 〈p, (θ, e), q〉 |Π ↪→ Γ; 〈p, (θ′θi, e′{κ 7→ ei}), q\\v〉 |Π

Spawn
θ, e

spawn(κ,a/n,[vn])−−−−−−−−−−−→ θ′, e′ p′ is a fresh pid
Γ; 〈p, (θ, e), q〉 |Π ↪→ Γ; 〈p, (θ′, e′{κ 7→ p′}), q〉 | 〈p′, [], (id, apply a/n(vn), []〉 |Π

Self
θ, e

self(κ)−−−−→ θ′, e′

Γ; 〈p, (θ, e), q〉 |Π ↪→ Γ; 〈p, (θ′, e′{κ 7→ p}), q〉 |Π

Sched
Γ ∪ {(p, v)}; 〈p, (θ, e), q〉 |Π ↪→ Γ; 〈p, (θ, e), v : q〉 |Π

Figure 2.6: Standard semantics: system rules.

similar to match used in rule Case2 in Fig. 2.4; the difference is that in this scenario,
instead of the value of the case, the queue of messages q is taken in input, and the output
contains, in addition to θ′ and ei, v, which is the first message that has matched the
pattern of one of the clauses. Finally, κ is bounded to the expression of the selected
clause, ei, and the environment is enriched with the matching substitution.
Rule Spawn creates a new process and adds it to the system, the newly created process’
environment is represented by id, since no variable has been possibly bounded to a value
yet, the process’ expression is denoted by the application of the function a/n to vn, and,
ultimately, the process’ mailbox is denoted by the empty queue. Here, κ is bounded to
the newly spawned process’ pid.
Rule Sched is the rule which, non-deterministically, delivers a message from the global
mailbox to the receiving process, it is by applying rule Sched in different orders that we
can simulate different interleaving of the system.

Example 2.3. Figures 2.7, and 2.8 show the derivation for the program depicted in
Fig. 2.2. The derivation coincides with the interleaving shown in Fig. 2.9 (c), therefore
it is not the only one. For clarity in each transition we have underlined the reduced
expression.

25

{ }; 〈m, (id, apply main/0 []), []〉
↪→Seq { }; 〈m, (id, let P1 = spawn(ping/0, []) in . . . , []〉
↪→Spawn { }; 〈m, (id, let P1 = p1 in . . . , []〉

| 〈p1, (id, apply ping/0 [], []〉
↪→Seq { }; 〈m, ({P1 7→ p1}, let P2 = spawn(ping/0, []) in . . . , []〉

| 〈p1, (id, apply ping/0 [], []〉
↪→Spawn { }; 〈m, ({P1 7→ p1}, let P2 = p2 in . . ., []〉

| 〈p1, (id, apply ping/0 [], []〉 | 〈p2, (id, apply ping/0 [], []〉
↪→Seq { }; 〈m, ({P1 7→ p1, P2 7→ p2}, let S = self() in . . . , []〉

| 〈p1, (id, apply ping/0 [], []〉 | 〈p2, (id, apply ping/0 [], []〉
↪→Self { }; 〈m, ({P1 7→ p1, P2 7→ p2}, let S = m in . . ., []〉

| 〈p1, (id, apply ping/0 [], []〉 | 〈p2, (id, apply ping/0 [], []〉
↪→Seq { }; 〈m, ({P1 7→ p1, P2 7→ p2, S 7→ m}, let _ = P1 ! {S,ping} in . . . , []〉

| 〈p1, (id, apply ping/0 [], []〉 | 〈p2, (id, apply ping/0 [], []〉
↪→Seq { }; 〈m, ({P1 7→ p1, P2 7→ p2, S 7→ m}, let _ = p1 ! {S, ping} in . . . , []〉

| 〈p1, (id, apply ping/0 [], []〉 | 〈p2, (id, apply ping/0 [], []〉
↪→Seq { }; 〈m, ({P1 7→ p1, P2 7→ p2, S 7→ m}, let _ = p1 ! {m, ping} in . . . , []〉

| 〈p1, (id, apply ping/0 [], []〉 | 〈p2, (id, apply ping/0 [], []〉
↪→Send {m1}; 〈m, ({P1 7→ p1, P2 7→ p2, S 7→ m}, let _ = {m, ping} in . . ., []〉

| 〈p1, (id, apply ping/0 [], []〉 | 〈p2, (id, apply ping/0 [], []〉
↪→Seq {m1}; 〈m, ({P1 7→ p1, P2 7→ p2, S 7→ m}, P2 ! {M, ping}〉, []

| 〈p1, (id, apply ping/0 [], []〉 | 〈p2, (id, apply ping/0 [], []〉
↪→Seq {m1}; 〈m, ({P1 7→ p1, P2 7→ p2, S 7→ m},p2 ! {M,ping}, []〉

| 〈p1, (id, apply ping/0 [], []〉 | 〈p2, (id, apply ping/0 [], []〉
↪→Send {m1}; 〈m, ({P1 7→ p1, P2 7→ p2, S 7→ m},p2 ! {m,ping}, []〉

| 〈p1, (id, apply ping/0 [], []〉 | 〈p2, (id, apply ping/0 [], []〉
↪→Seq {m1,m2}; 〈m, ({P1 7→ p1, P2 7→ p2, S 7→ m}, {m,ping}, []〉

| 〈p1, (id, apply ping/0 [], []〉
| 〈p2, (id, apply ping/0 [], []〉

↪→Seq {m1,m2}; 〈m, ({P1 7→ p1, P2 7→ p2, S 7→ m}, {m,ping}, []〉
| 〈p1, (id, receive{P, ping} → P ! pong end, []〉
| 〈p2, (id, apply ping/0 [], []〉

Figure 2.7: A possible interleaving for the program in Fig. 2.2, where m1 =
(p1, {m, ping}),m2 = (p1, {m, ping}) (part 1/2)

26

↪→Sched {m2}; 〈m, ({P1 7→ p1, P2 7→ p2, S 7→ m}, {m, ping}, []〉
| 〈p1, (id, receive{P, ping} → P ! pong end, [{m,ping}]〉
| 〈p2, (id, apply ping/0 [], []〉

↪→Receive {m2}; 〈m, ({P1 7→ p1, P2 7→ p2, S 7→ m}, {m, ping}, []〉
| 〈p1, ({P 7→ m}, P ! pong, []〉
| 〈p2, (id, apply ping/0 [], []〉

↪→Seq {m2}; 〈m, ({P1 7→ p1, P2 7→ p2, S 7→ m}, {m, ping}, []〉
| 〈p1, ({P 7→ m},m ! pong, []〉
| 〈p2, (id, apply ping/0 [], []〉

↪→Send {m2,m3}; 〈m, ({P1 7→ p1, P2 7→ p2, S 7→ m}, {m,ping}, []〉
| 〈p1, ({P 7→ m}, pong, []〉
| 〈p2, (id, apply ping/0 [], []〉

↪→Seq {m2,m3}; 〈m, ({P1 7→ p1, P2 7→ p2, S 7→ m}, {m,ping}, []〉
| 〈p1, ({P 7→ m}, pong, []〉
| 〈p2, (id, receive{P, ping} → P ! pong end, []〉

↪→Sched {m3}; 〈m, ({P1 7→ p1, P2 7→ p2, S 7→ m}, {m, ping}, []〉
| 〈p1, ({P 7→ m}, pong, []〉
| 〈p2, (id, receive{P, ping} → P ! pong end, [{m,ping}]〉

↪→Receive {m3}; 〈m, ({P1 7→ p1, P2 7→ p2, S 7→ m}, {m, ping}, []〉
| 〈p1, ({P 7→ m}, pong, []〉
| 〈p2, ({P 7→ m}, P ! pong, []〉

↪→Seq {m3}; 〈m, ({P1 7→ p1, P2 7→ p2, S 7→ m}, {m, ping}, []〉
| 〈p1, ({P 7→ m}, pong, []〉
| 〈p2, ({P 7→ m},m ! pong, []〉

↪→Send {m3,m4}; 〈m, ({P1 7→ p1, P2 7→ p2, S 7→ m}, {m,ping}, []〉
| 〈p1, ({P 7→ m}, pong, []〉
| 〈p2, ({P 7→ m}, pong, []〉

↪→Sched {m4}; 〈m, ({P1 7→ p1, P2 7→ p2, S 7→ m}, {m, ping}, [pong]〉
| 〈p1, ({P 7→ m}, pong, []〉
| 〈p2, ({P 7→ m}, pong, []〉

↪→Sched { }; 〈m, ({P1 7→ p1, P2 7→ p2, S 7→ m}, {m,ping}, [pong, pong]〉
| 〈p1, ({P 7→ m}, pong, []〉
| 〈p2, ({P 7→ m}, pong, []〉

Figure 2.8: A possible interleaving for the program in Fig. 2.2, where m1 =
(p1, {m, ping}),m2 = (p2, {m, ping}),m3 = (m, pong), and m4 = (m, pong) (part 2/2)

27

2.2.1 Erlang concurrency
To be able to define causal consistency we need to provide also a definition of concurrency,
in this case, again following [1], we will accomplish this by providing the opposite notion
of conflict. Given two systems s1, s2 we denote with s1 ↪→∗ s2 a derivation, a one step
derivation is called transition. By d, d′, d1, d2, ... we denote derivations, by t, t′, t1, t2, ...
we denote transitions. Transitions are labelled as follows: s1 ↪→p,r s2 where

• p represents the pid of the process performing the action or the pid of the process
receiving the message if the selected rule is Sched

• r represents the rule applied in order to perform the transition and spans over the
rules of Fig. 2.6

Given a derivation d = (s1 ↪→∗ s2) we define init(d) = s1 and final(d) = s2, two derivations
are composable, and we denote it by d1; d2, if final(d1) = init(d2). Two derivations, d1
and d2, are cofinal if final(d1) = final(d2), and coinitial if init(d1) = init(d2). With εs we
denote the empty derivation, i.e., s ↪→∗ s. In the following we will restrict our attention
only to reachable systems, the formal definition is provided below.

Definition 2.3 (Concurrent transitions). Given two coinitial transitions t1 = (s ↪→p1,r1

s1) and t2 = (s ↪→p2,r2 s2), we say that they are in conflict if they consider the same
process, i.e., p1 = p2, and either r1 = r2 = Sched or one transition applies rule Sched
and the other applies rule Receive. Two coinitial transitions are concurrent if they are
not in conflict.

2.3 A reversible semantics
As we mentioned in Section 1.2, in order to perform reversible computation we need to
keep a history of the computation of each process. In this section two transition relations
will be introduced, ⇀, which denotes the forward semantics, and ↽, which denotes the
backward semantics. The forward semantics is a conservative extension of the semantics
presented in Fig. 2.6, indeed it enriches the already presented semantics with a typical
Landauer embedding, to keep track of previous states of each process of the system. In
contrast, the reversible semantics allows us to undo the computation of each process step
by step.

One crucial difference between the system semantics already presented and the for-
ward semantics, which we will soon introduce, is the need to uniquely identify, with a
time-stamp, each message exchanged between two processes of the system. Before pre-
senting the two semantics and diving into technical details, we will illustrate, with an
example, why it is fundamental to have a unique identifier for each message.

28

p1 p2 p3

p2 ! v

p2 ! v t1

t2

(a)

p1 p2 p3

p2 ! v

p2 ! v t1

t2

(b)
p1 p2

p2 ! v

p2 ! v t1

t1

(c)

p1 p2

p2 ! v

p2 ! v t1

t1

(d)

Figure 2.9: Different interleavings

As we mentioned already, in order to ensure causal-consistency before undoing an
action we have to undo all its consequences, this also means that we have to undo the
exchange of messages following the original order. Now let us consider the examples (a)
and (b) of Fig. 2.9, two processes, namely p1 and p3, send the same message, namely
v, to p2. Now consider the case where one has to undo the action of p3 up to p2 ! v,
to ensure causal-consistency we need to undo all the consequences of p2 ! v, but with
the current semantic it is impossible to determine whether it is necessary to undo the
computation of p2 up to t2 or to t1 . Indeed, if we consider scenario (a) we need to undo
p2’s computation up to t1 , conversely, if we consider scenario (b) we need to undo p2’s
computation up to t2 . One possible solution consists in storing the pid of the sender,
thanks to this extra information it becomes trivial to know whether to undo up to t1 or
to t2 (it is enough to check if t2 corresponds to the message sent by p3, if yes then it
is enough to undo up to t2 , otherwise p2’s computation need to be undone up to t1).

However, the solution just presented is not general enough, to prove it let us discuss
scenario (c) and (d). In both scenarios, p1 sends two, identical, messages to p2, now in

29

(Seq)
θ, e

τ−→ θ′, e′

Γ; 〈p, h, (θ, e), q〉 |Π⇀ Γ; 〈p, τ(θ, e) : h, (θ′, e′), q〉 |Π

(Send)
θ, e

send(p′′,v)−−−−−−→ θ′, e′ λ is a fresh identifier
Γ; 〈p, h, (θ, e), q〉 |Π⇀ Γ ∪ (p′′, {λ, v}); 〈p, send(θ, e, p′′, {λ, v}) : h, (θ′, e′), q〉 |Π

(Receive)
θ, e

rec(κ,cln)−−−−−−→ θ′, e′ matchrec(θ, cln, q = (θi, ei, {λ, v})
Γ; 〈p, h, (θ, e), q〉 |Π⇀ Γ; 〈p, rec(θ, e, {λ, v}, q) : h, (θ′θi, e′{κ 7→ ei}), q\\{λ, v}〉 |Π

(Spawn)
θ, e

spawn(κ,a/n,[vn])−−−−−−−−−−−→ θ′, e′ p′ is a fresh identifier
Γ; 〈p, h, (θ, e), q〉 |Π⇀ Γ; 〈p, spawn(θ, e, p′) : h, (θ′, e′{κ 7→ p′}), q〉

| 〈p′, [], (id, apply a/n(vn)), []〉 |Π

(Self)
θ, e

self(κ)−−−−→ θ′, e′

Γ; 〈p, h, (θ, e), q〉 |Π⇀ Γ; 〈p, self(θ, e) : h, (θ′, e′{κ 7→ p}), q〉 |Π

(Sched)
Γ ∪ {(p, {λ, v})}; 〈p, h, (θ, e), q〉 |Π⇀ Γ; 〈p, h, (θ, e), {λ, v} : q〉 |Π

Figure 2.10: Forward reversible semantics.

order to undo the consequences of p1’s first send it is necessary to undo p2’s actions up
to t1 . Unfortunately, with just the sender, as meta-data of the message, it is impossible
to distinguish t1 and t2 , therefore, some additional information must be taken into
account, namely, a unique identifier for each message. One could argue that there are
different semantics, and it is indeed true, one of them, for instance, is the semantics that
just considers the message v. However, using such less precise semantics would imply
that the backward semantics is unpredictable, i.e., we could undo the wrong message.
Moreover, defining the notion of concurrency would become much trickier, indeed, one
would like to have conflict only between the message v and the "last" delivery of such
message, therefore it has been decided that every message is unique.

Now let us analyse the rules of the forward semantics, depicted in Fig. 2.10. As one
can notice, these rules are an extension of the rules of Fig. 2.6, where each process is
enriched with a history. Precisely, every time that a process performs a step the history
keeps track of the action executed and of the piece of information necessary to restore
the previous state. As already discussed, the approach used to store information could
be optimised, but this goal would be orthogonal to both the purpose of [1] and ours.
Before proceeding, let us observe that in rule Receive the auxiliary function matchrec
now is able to deal with messages of the form {λ, v}, this result is obtained by merely

30

parent/0 = fun () → let C1 = spawn(child/0, [])
let C2 = spawn(child/0, [])
in let S = self()
in let _ = C1 ! {S, {sum, 2, 3},
in let _ = C2 ! {S, {divide, 6, 3},
in let Res1 = receive

{R1} → R1
end in let Res2 = receive

{R2} → R2
end

child/0 = fun () → receive
{P, {sum,A,B}} → P ! A+B
{P, {divide,A,B}} → P ! A/B

end

Figure 2.11: A simple program with two processes

ignoring λ while searching for the first matching message.

Example 2.4. Let us now focus on the program described in Fig. 2.11. Fig. 2.13 shows
a possible interleaving under the forward reversible semantics. In order to contain the
derivation’s dimension we omitted every rule Seq both from the trace and from the
processes’ history. More precisely, we consider the following conventions:

• Processes parent, child1 and child2 are shortened to p, c1, and c2

• For convenience we do not show the full expression that needs to be evaluated by
each process, instead we show C[e], where C is the context and e is the redex which
need to be evaluated.

• Moreover, with "_" we indicate some arguments which are not relevant

Now, let us prove formally that the forward semantics is an extension of the system
semantics. First of all, we define del′, an auxiliary function that removes the history of
each process of a given system; formally:

del′(〈p, h, (θ, e), q〉) = 〈p, (θ, e), q〉

del′(〈p, h, (θ, e), q〉 | Π) = 〈p, (θ, e), q〉 | del′(Π)
where we assume that Π is not empty. We can now state the conservative extension

result.

Theorem 2.1. Let s1 be a system of the reversible semantics and s1 = del′(s′1) a system
of the standard semantics. Then, s1 ⇀∗ s2 iff s′1 ↪→∗ s′2 and del′(s2) = s′2.

31

(Seq) Γ; 〈p, τ(θ, e) : h, (θ′, e′), q〉 |Π↽ Γ; 〈p, h, (θ, e), q〉 |Π

(Send) Γ ∪ {(p′′, {λ, v})}; 〈p, send(θ, e, p′′, {λ, v}) : h, (θ′, e′), q〉 |Π↽ Γ; 〈p, h, (θ, e), q〉 |Π

(Receive) Γ; 〈p, rec(θ, e, {λ, v}, q) : h, (θ′, e′), q\\{λ, v}〉 |Π↽ Γ; 〈p, h, (θ, e), q〉 |Π

(Spawn) Γ; 〈p, spawn(θ, e, p′) : h, (θ′, e′), q〉 | 〈p, [], (id, e′′), []〉 |Π↽ Γ; 〈p, h, (θ, e), q〉 |Π

(Self) Γ; 〈p, self(θ, e) : h, (θ′, e′), q〉 |Π↽ Γ; 〈p, h, (θ, e), q〉 |Π

(Sched)
Γ; 〈p, h, (θ, e), {λ, v} : q〉 |Π↽ Γ ∪ {(p, {λ, v})}; 〈p, h, (θ, e), q〉 |Π

if the topmost rec(...) item in h (if any) has the
form rec(θ′, e′, {λ′, v′}, q′) with q′\\{λ′, v′} 6= {λ, v} : q

Figure 2.12: Backward reversible semantics.

For the proof of this result the interested reader can refer to [1].

Now let us pose our focus on the rules of Fig. 2.12, i.e., the backward semantic rules.
As it is evident from the figure, the rules for the backward semantics are meant to restore
the previous state of a given process through the history of this one. Let us discuss the
most interesting cases:

• Rule Send can be undone only when the message is available in Γ, i.e., the global
mailbox. If the message is not present in Γ it means that we need to apply first the
rule Sched to undo the insertion of the message in the receiver’s queue of messages.
If rule Sched is not applicable to the process for the given message, it means that
we need to undo some steps of the receiver process, at least until the rule Sched
becomes available. This is required to ensure causal-consistency, i.e., an action can
be undone iff every consequence of the action is undone.

• When it comes to rule Spawn we need to ensure that the mailbox of the process
is empty, as well as its history, this again is required to ensure causal-consistency.
It is important to notice that if we undo the spawn of a process it is impossible to
have orphan messages, meant to be delivered to him. This is possible thanks to
the assumption that every pid used in the program is the result of the evaluation
of a spawn, therefore, thanks to causal-consistency, if we are about to undo the
spawn it means that we already have undone every possible use of value produced
by the evaluation of the spawn expression.

• Rule Receive can be applied only when the restored queue will be exactly the same

32

{ }; 〈p, [], (id, C[apply main/0 [])], []〉
⇀ ∗ { }; 〈p, [], (id, C[spawn(child/0, [])], []〉
⇀Spawn { }; 〈p, [spawn(_,_, c1)], (_, C[spawn(child/0, [])], []〉

| 〈c1, [], (id, C[receive . . .]), []〉
⇀Spawn { }; 〈p, [spawn(_,_, c1), spawn(_,_, c2)], (_, C[self()], []〉

| 〈c1, [], (id, C[receive . . .]), []〉 | 〈c2, [], (id, C[receive . . .]), []〉
⇀Self { }; 〈p, [spawn(_,_, c1), spawn(_,_, c2), self(_,_)],

(_, C[c1 ! {p, {sum, 2, 3}}], []〉
| 〈c1, [], (id, C[receive . . .]), []〉 | 〈c2, [], (id, C[receive . . .]), []〉

⇀Send {(c1,m1)}; 〈p, [spawn(_,_, c1), spawn(_,_, c2), self(_,_), send(_,_, c1,m1)],
(_, C[c2 ! {p, {divide, 6, 3}}], []〉
| 〈c1, [], (id, C[receive . . .]), []〉 | 〈c2, [], (id, C[receive . . .]), []〉

⇀Send {(c1,m1), (c2,m2)}; 〈p, [spawn(_,_, c1), spawn(_,_, c2), self(_,_), send(_,_, c1,m1),
send(_,_, c2,m2)], (_, C[receive . . .], []〉
| 〈c1, [], (id, C[receive . . .]), []〉 | 〈c2, [], (id, C[receive . . .]), []〉

⇀Sched {(c2,m2)}; 〈p, [spawn(_,_, c1), spawn(_,_, c2), self(_,_), send(_,_, c1,m1),
send(_,_, c2,m2)], (_, C[receive . . .], []〉
| 〈c1, [], (id, C[receive . . .]), [m1]〉 | 〈c2, [], (id, C[receive . . .]), []〉

⇀Receive {(c2,m2)}; 〈p, [spawn(_,_, c1), spawn(_,_, c2), self(_,_), send(_,_, c1,m1),
send(_,_, c2,m2)], (_, C[receive . . .], []〉
| 〈c1, [rec(_,_,m1, [m1]], (_, C[p ! 5]), []〉 | 〈c2, [], (id, C[receive . . .]), []〉

⇀Send {(c2,m2), (p,m3)}; 〈p, [spawn(_,_, c1), spawn(_,_, c2), self(_,_), send(_,_, c1,m1),
send(_,_, c2,m2)], (_, C[receive . . .], []〉
| 〈c1, [rec(_,_,m1, [m1]), send(_,_, p,m3)], (_, C[5]), []〉
| 〈c2, [], (id, C[receive . . .]), []〉

⇀Sched {(p,m3)}; 〈p, [spawn(_,_, c1), spawn(_,_, c2), self(_,_), send(_,_, c1,m1),
send(_,_, c2,m2)], (_, C[receive . . .], []〉
| 〈c1, [rec(_,_,m1, [m1]), send(_,_, p,m3)], (_, C[5]), []〉
| 〈c2, [], (id, C[receive . . .]), [m2]〉

⇀Receive {(p,m3)}; 〈p, [spawn(_,_, c1), spawn(_,_, c2), self(_,_), send(_,_, c1,m1),
send(_,_, c2,m2)], (_, C[receive . . .], []〉
| 〈c1, [rec(_,_,m1, [m1]), send(_,_, p,m3)], (_, C[5]), []〉
| 〈c2, [rec(_,_,m2, [m2])], (_, C[p ! 2]), []〉

⇀Send {(p,m3), (p,m4)}; 〈p, [spawn(_,_, c1), spawn(_,_, c2), self(_,_), send(_,_, c1,m1),
send(_,_, c2,m2)], (_, C[receive . . .], []〉
| 〈c1, [rec(_,_,m1, [m1]), send(_,_, p,m3)], (_, C[5]), []〉
| 〈c2, [rec(_,_,m2, [m2]), send(_,_,m4)], (_, C[2]), []〉

Figure 2.13: A derivation under the forward reversible semantics, with m1 =
{1, {p, ”ok?”}}, m2 = {2, {c, ”ok!”}}, m3 = {3, {5}}, and m4 = {4, {2}}

33

as it was when the message had been received. This is required to ensure that rule
Receive does not commute with eventual applications of rule Sched.

• Rules Sched is the one with the highest degree of freedom, indeed, there are several
cases where one can apply rule Sched without interfering with the other rules,
the only rules that do not commute with Sched are another Sched or the rule
Receive. The fact that two rules Sched do not commute is ensured by the fact
that they always apply to the most recent message of the queue and that message,
by definition, is unique. The fact that Sched does not commute with Receive is
ensured thanks to the side condition of the rule Sched.

Example 2.5. Let us focus on Fig. 2.14, where a possible backward derivation for
the final state of the computation depicted in Fig. 2.13 is shown. As one can see, the
(backward) derivation does not strictly follows the inverse order of the original forward
derivation. Of course, a derivation which follow the exact inverse order exists but it
is not the only one. In this example we have used the same rules and conventions of
Example 2.4.

2.3.1 Properties of the uncontrolled reversible semantics
Given two systems, s1 and s2, by means of s1 ⇀∗ s2 we denote a forward derivation from
system s1 to system s2, by means of s1 ↽∗ s2 we denote a backward derivation from
system s1 to system s2. If a derivation contains both forward and backward transitions
we will denote it by s1 ⇌∗ s2. Let us now consider the labelled transition t = s1 ⇌p,r,k s2
and let us analyse the labels:

• p and r represent, respectively, the pid of the process and the rule applied

• k represents the history item, if the selected rule is different from Sched or Sched
otherwise it represents the history item.

• k = sched({λ, v}) when the selected rule is either Sched or Sched.

The notion of init, final, composable, coinitial and cofinal, from Sec. 2.2.1, are ex-
tended, to the reversible semantics in the natural way. Given generic label r we in-
dicate with r the correspondent inverse rule, i.e., if r = Send then r = Send (note
that if r = Receive then r = Receive). We use the same notation for transitions,
if t = s1 ⇀p,r,k s2 then t = s1 ↽p,r,k s2, consequently if t = s1 ↽p,r,k s2 then
t = s1 ⇀p,r,k s2. In other words, t is the inverse of t. The definition of inverse is
naturally extended to derivations. The zero steps derivations εs is indicated by s⇌∗ s.

34

{(p,m3), (p,m4)}; 〈p, [spawn(_,_, c1), spawn(_,_, c2), self(_,_), send(_,_, c1,m1),
send(_,_, c2,m2)], (_, C[receive . . .], []〉
| 〈c1, [rec(_,_,m1, [m1]), send(_,_, p,m3)], (_, C[5]), []〉
| 〈c2, [rec(_,_,m2, [m2]), send(_,_,m4)], (_, C[2]), []〉

↽Send {(p,m3)}; 〈p, [spawn(_,_, c1), spawn(_,_, c2), self(_,_), send(_,_, c1,m1),
send(_,_, c2,m2)], (_, C[receive . . .], []〉
| 〈c1, [rec(_,_,m1, [m1]), send(_,_, p,m3)], (_, C[5]), []〉
| 〈c2, [rec(_,_,m2, [m2])], (_, C[p ! 2]), []〉

↽Receive{(p,m3)}; 〈p, [spawn(_,_, c1), spawn(_,_, c2), self(_,_), send(_,_, c1,m1),
send(_,_, c2,m2)], (_, C[receive . . .], []〉
| 〈c1, [rec(_,_,m1, [m1]), send(_,_, p,m3)], (_, C[5]), []〉
| 〈c2, [], (id, C[receive . . .]), [m2]〉

↽Sched {(c2,m2), (p,m3)}; 〈p, [spawn(_,_, c1), spawn(_,_, c2), self(_,_), send(_,_, c1,m1),

send(_,_, c2,m2)], (_, C[receive . . .], []〉
| 〈c1, [rec(_,_,m1, [m1]), send(_,_, p,m3)], (_, C[5]), []〉
| 〈c2, [], (id, C[receive . . .]), []〉

↽Send {(p,m3)}; 〈p, [spawn(_,_, c1), spawn(_,_, c2), self(_,_), send(_,_, c1,m1)],
(_, C[c2 ! {p, {divide, 6, 3}}], []〉
| 〈c1, [rec(_,_,m1, [m1]), send(_,_, p,m3)], (_, C[5]), []〉
| 〈c2, [], (id, C[receive . . .]), []〉

↽Send { }; 〈p, [spawn(_,_, c1), spawn(_,_, c2), self(_,_), send(_,_, c1,m1)],
(_, C[c2 ! {p, {sum, 3, 2}}], []〉
| 〈c1, [rec(_,_,m1, [m1])], (_, C[p ! 5]), []〉 | 〈c2, [], (id, C[receive . . .]), []〉

↽Receive{ }; 〈p, [spawn(_,_, c1), spawn(_,_, c2), self(_,_), send(_,_, c1,m1)],
(_, C[c2 ! {p, {sum, 3, 2}}], []〉
| 〈c1, [], (id, C[receive . . .]), [m1]〉 | 〈c2, [], (id, C[receive . . .]), []〉

↽Sched {(c1,m1)}; 〈p, [spawn(_,_, c1), spawn(_,_, c2), self(_,_), send(_,_, c1,m1)],

(_, C[c2 ! {p, {sum, 3, 2}}], []〉
| 〈c1, [], (id, C[receive . . .]), []〉 | 〈c2, [], (id, C[receive . . .]), []〉

↽Send { }; 〈p, [spawn(_,_, c1), spawn(_,_, c2), self(_,_)], (_, C[letS = self()], []〉
| 〈c1, [], (id, C[receive . . .]), []〉 | 〈c2, [], (id, C[receive . . .]), []〉

↽Self { }; 〈p, [spawn(_,_, c1), spawn(_,_, c2)], (_, C[spawn(child/0, [])], []〉
| 〈c1, [], (id, C[receive . . .]), []〉 | 〈c2, [], (id, C[receive . . .]), []〉

↽Spawn { }; 〈p, [spawn(_,_, c1)], (_, C[spawn(child/0, [])], []〉
| 〈c1, [], (id, C[receive . . .]), []〉

↽Spawn { }; 〈p, [], (_, C[spawn(child/0, [])], []〉
↽∗ { }; 〈p, [], (_, C[apply parent, [])], []〉

Figure 2.14: A backward derivation under the reversible semantics, with m1 =
{1, {p, ”ok?”}}, m2 = {2, {c, ”ok!”}}, m3 = {3, {5}}, and m4 = {4, {2}}

35

Definition 2.4. A system is initial if it is composed by a single process, and this process
has an empty history and an empty queue; furthermore the global mailbox is empty. A
system s is reachable if there exists an initial system s0 and a derivation s0 ⇌∗ s using
the rules corresponding to a given program.

Now the previous definition of concurrency for the standard semantics will be ex-
tended to the reversible semantics.

Definition 2.5 (Concurrent transitions). Given two coinitial transitions, t1 = (s⇌p1,r1,k1

s1) and t2 = (s⇌p2,r2,k2 s2), we say that they are in conflict if at least one of the following
conditions holds:

• both transition are forward, they consider the same process, i.e., p1 = p2, and
either r1 = r2 = Sched or one transition applies rule Sched and the other transition
applies rule Receive.

• one is a forward transition that applies to a process p, say p1 = p, and the other
one is a backward transition that undoes the creation of p, i.e., p2 = p′ 6= p, r2 =
Spawn and k2 = spawn(θ, e, p) for some control (θ, e);

• one is a forward transition that delivers a message {λ, v} to a process p, say
p1 = p, r1 = Sched and k1 = sched({λ, v}), and the other one is a backward
transition that undoes the sending {λ, v} to p, i.e., p2 = p′, r2 = Send and k2 =
send(θ, e, p, {λ, v}) for some control (θ, e);

• one is a forward transition and the other one is a backward transition such that
p1 = p2 and either i) both applied rules are different from both Sched and Sched,
i.e., {r1, r2}∩{Sched, Sched} = ∅ ; ii) one rule is Sched and the other one is Sched;
iii) one rule is Sched and the other one is Receive; or iv) one rule is Sched and
the other one is Receive.

Two transitions are concurrent if they are not in conflict, two backward transitions
are always concurrent.

In [1] it is possible to find more results, among which causal consistency. Those
results will not be reported here, this because we intend to prove causal-consistency, and
the other properties in a different manner, i.e., relying on the work done in [12].

In [12] causal consistency, and other properties are proved on an abstract model
(i.e., labelled transition system) by building these properties upon a small set of axioms.
Hence, if we prove that those axioms also hold for this (concrete) model, automatically we
prove all the properties which follow from these axioms, among which causal-consistency.

36

(Seq) Γ; b〈p, τ(θ, e) : h, (θ′, e′)q〉cΨ |Π↽↽ Γ; b〈p, h, (θ, e), q〉cΨ |Π

(Send1)
Γ ∪ {(p′′, {λ, v})}; b〈p, send(θ, e, p′′, {λ, v}) : h, (θ′, e′), q〉cΨ |Π

↽↽ Γ; b〈p, h, (θ, e), q〉cΨ |Π

(Send1)

Γ; b〈p, send(θ, e, p′′, {λ, v}) : h, (θ′, e′), q〉cΨ | b〈p′′, h′′, (θ′′, e′′), q′〉cΨ′ |Π
↽↽ Γ; b〈p, send(θ, e, p′′, {λ, v}) : h, (θ′, e′), q〉cΨ | b〈p′′, h′′, (θ′′, e′′), q′〉cΨ′∪{#λ

sch}
|Π

if {(p, {λ, v})} does not occur in Γ and #λ
sch 6∈ Ψ′

(Receive) Γ; b〈p, rec(θ, e, {λ, v}, q) : h, (θ′, e′), q\\{λ, v}〉cΨ |Π↽↽ Γ; b〈p, h, (θ, e), q〉cΨ |Π

(Spawn1)
Γ; b〈p, spawn(θ, e, p′) : h, (θ′, e′), q〉cΨ | b〈p′, [], (id, e′′), []〉cΨ′ |Π

↽↽ Γ; b〈p, h, (θ, e), q〉cΨ |Π

(Spawn2)

Γ; b〈p, spawn(θ, e, p′) : h, (θ′, e′), q〉cΨ | b〈p′, h′′, (θ′′, e′′), q′〉cΨ′ |Π
↽↽ Γ; b〈p, spawn(θ, e, p′) : h, (θ′, e′), q〉cΨ | b〈p′, h′′, (θ′′, e′′), q′〉cΨ′∪{#sp} |Π

if h′′ 6= [] ∨ q′ 6= [] ∧#sp 6∈ Ψ

(Self) Γ; b〈p, self(θ, e) : h, (θ′, e′), q〉cΨ |Π↽↽ Γ; b〈p, h, (θ, e), q〉cΨ |Π

(Sched)

Γ; b〈p, h, (θ′, e′), {λ, v} : q〉cΨ |Π↽↽ Γ ∪ {(p, {λ, v})}; b〈p, h, (θ, e), q〉cΨ\{#λ
sch}

|Π
if the topmost rec(...) item in h (if any) has the
form rec(θ′, e′, {λ′, v′}, q′) with q′\\{λ′, v′} 6= {λ, v} : q

Figure 2.15: Rollback semantics.

2.4 Rollback semantics
In this section we will describe (a simplified version of) the rollback semantics, following,
as usual, [1].

The approach used to define the rollback semantics that we will present here is
different from the one that we will use later to define the rollback semantics of distributed
CauDEr. Indeed, the rollback semantics that we will present here is uncontrolled while
the one that we will provide later for distributed CauDEr is controlled. Nonetheless,
even if the two approaches are different we believe that reporting here the uncontrolled
rollback semantics will provide the reader with a full overview of how the first version
of CauDEr has been developed. Moreover, the reader by comparing the two (rollback)
semantics will have a deeper understanding of how the approach has improved overtime,
indeed the approach that we will use later in Section 3.4 has been inspired by [13]
and makes much easier both the definition of the semantics and the proof of desirable
properties.

Here, a process is said in rollback mode when it is annotated with b cΨ, where Ψ

37

represents the set of requests to be undone. We identify two kinds of request:
• #sp where sp stands for "spawn", a rollback to undo all the actions of a process,

finally deleting it from the system;

• #λ
sch where sch stands for sched: a rollback to undo the actions of a process until

the delivery of a message {λ, v} is undone.
In the following, to simplify the reduction rules we assume that the semantics satisfies

the following structural equivalence:

(SC) Γ | b〈p, h, (θ, e), q〉c∅ | Π ≡ Γ | 〈p, h, (θ, e), q〉 | Π

The rollback semantics has been introduced to automatically reach previous states
of the computation, while maintaining causal-consistency. Indeed, while the backward
semantics is able to undo the computation, of a specified process, step by step, with
the rollback semantics is possible to specify a target (e.g., the spawn of a process) and
the rollback semantics will automatically roll-back the system, until the target that we
specified is satisfied. The rules for the rollback semantics are shown in Fig. 2.15. Here,
we assume that Ψ 6= ∅, but Ψ′ might be empty. Let us analyse the most interesting
cases:

• As one can notice, we have two rules for Send, one considers the scenario where the
message can be found in the global mailbox and the other considers the scenario
where the message is not in the global mailbox. If we consider the first case, i.e.,
Send1, it is possible to proceed and undo the send, the fact that the message is in
the global mailbox imply that all the consequences of the send are already undone.
On the contrary, if the message is not there it means that before undoing the send
we need to undo its consequences. In order to reach this goal, we add to the set of
requests of the receiver, the request #λ

sch, in this way the rollback semantics will
undo all the actions which have a dependency on the send, then it will proceed to
undo the actual send.

• A similar scenario can also be found for the rule Spawn. Similarly to rule Send,
before undoing the spawn of a process, it is necessary to ensure that every action
performed by such process has been undone, this can be verified by checking its
history and mailbox. On the one hand, we have the case where both history and
mailbox are empty, therefore we can proceed and safely undo the spawn. On the
other hand, the history of the process is not empty, and in this case we need to
add to the set of requests of this process also #sp. Hence, the rollback semantics
will undo every action of the process, and in the end, when both the history will
be empty, it will be possible to undo the spawn.

• Finally, rule Sched requires the same side-conditions as in the backward semantics,
this is required in order to avoid commutations of rules Sched and Receive.

38

Chapter 3

Distributed CauDEr

In the following of this chapter, we will present the syntax of the extended language
supported, followed by the system semantics, and finally by the reversible semantics. In
contrast to the language already presented in Section 2.1, the one that will be presented
here will include built-in functions meant for distributed programming.

module ::= fun1 . . . funn
fun ::= fname = fun (X1, . . . , Xn) → expr

fname ::= Atom/Integer
lit ::= Atom | Integer | Float | []

expr ::= Var | lit | fname | [expr1|expr2] | {expr1, . . . , exprn}
| call expr (expr1, . . . , exprn) | apply expr (expr1, . . . , exprn)
| case expr of clause1; . . . ; clausem end
| let Var = expr1 in expr2 | receive clause1; . . . ; clausen end
| spawn(expr, expr, [expr1, . . . , exprn]) | expr1 ! expr2 | self()
| start(expr) | node() | nodes()

clause ::= pat when expr1 → expr2
pat ::= Var | lit | [pat1|pat2] | {pat1, . . . , patn}

Figure 3.1: Extended language syntax rules

3.1 Extended language: syntax
The syntax for the distributed version of CauDEr can be found in Fig. 3.1. As one can
notice, the syntax is similar to the one presented in [1], with the addition of three new
functions: start, node, nodes. The extended syntax follows the same rules and conventions
already presented in Section 2.1. Before proceeding and discussing the new syntax we
will introduce the notions of node and network.

39

Definition 3.1 (Node). A node is a pool of processes, each node is uniquely identified
by an atom of the form name@host; there is no limit on the number of nodes that a
single machine can host, although, the convention is that there is only one node per
physical machine.

Definition 3.2 (Network). A network is a set of nodes cooperating together, each node
in the network is uniquely identified by its name, in the following we will often refer to
the network with the symbol Ω.

Let us now analyse the differences w.r.t. the syntax of Fig.2.1.
First, start allows one to start a new node and add it to the network of nodes cooperating
together, if the node is already part of the network an error will be returned. Then, node
returns the name of the node where the process which called it is running, and, ultimately,
nodes returns the list of nodes of the network (minus the node of the process which
invoked the nodes, as it happens in Erlang). Moreover, now the function spawn takes
in input three arguments instead of two, the additional argument is used to specify on
which node the spawn has to be performed. Indeed, a process is able to spawn processes
also in a node different from its own, this can be accomplished just by specifying the
node as first argument of the new spawn/3.

In a real Erlang environment, in order for a remote spawn to succeed, it is necessary
that the module, where the function is defined, is loaded in the targeted node. Usually,
to load a module in all the nodes of the network, the built-in function nl/1 is used, where
the argument represents which module has to be loaded. Here, we assume that every
node is already provided with the module that contains the function’s body, therefore,
a spawn can never fail because the module is not loaded.

Now we extend the definition of system already provided in [1]. Previously, a system
was defined as a pool of processes with a global mailbox, now a system is defined as a pool
of nodes with a global mailbox. Each process belonging to the system is still uniquely
identified by its pid, even across different nodes, and they can communicate with each
other through asynchronous message passing. The syntax for sending a message from
one process to another is still v1 ! v2, where v1 is the pid of the receiver and v2 is the
message, regardless of the fact that the two processes are running in the same node or
not.

3.2 The extended language semantics
In this section we will formalise the semantics of the extended language, the definitions
included here are an extension of the ones already presented in Section 2.2.

Definition 3.3 (Process). A process is a tuple 〈node, p, (θ, e), q〉, where node represents
the node where the process is running, p represents the process’ pid, θ is the environment

40

(i.e., a substitution), e is the next expression that needs to be evaluated and q is the
process’ mailbox, a FIFO queue of messages that have been sent to the process. The
following operations are permitted on the mailbox. Given a message v and a local
mailbox q, we identify v : q as a new local mailbox with the message v on top. On the
other hand, by means of q\\v we indicate the queue resulting by removing v from q, it is
important to notice that v not necessarily is the oldest message in the queue.

Definition 3.4 (Distributed system). A distributed system is denoted by Γ;Π;Ω, where
Γ, the global mailbox, is a multiset of the form (target_process_pid,message), Π is a
pool of running processes, denoted by an expression of the form

〈node1, p1, (θ1, e1), q1〉 | . . . | 〈noden, pn, (θn, en), qn〉

where "|" represents a commutative and associative operator. Given a global mailbox Γ
we denote Γ′ = Γ ∪ {(p, v)} as the new global mailbox which also stores the pair (p, v).
Often, in the rest of this work we will denote a system with the expression

Γ; 〈node, p, (θ, e), q〉 | Π;Ω

to indicate the process p, which is an arbitrary process of the pool (this is possible thanks
to the associativity and commutativity of the operator "|"). Ultimately, Ω represents the
set of nodes connected to the network, two operations are permitted on Ω, add a new
node by means of start, we will indicate it by {node} ∪ Ω, where node is the new node,
and reading the nodes connected together through the built-in function nodes.

As already done previously, we define the semantics by means of two relations: −→
for expressions and ↪→ for systems. The relation −→ is defined as follow:

−→: {Env,Exp} × {Label} × {Env,Exp}

where Env is the domain of environments (i.e. substitutions) and Exp is the domain of
expressions, and Label represents an element of the following set:

{τ, send(v1, v2), rec(κ, cln), spawn(κ, a′, a/n, [vn]), self(κ), start(κ, a), node(κ), nodes(κ)}

The letter ` is used to range over the labels, and as one can notice, −→ is now able to
range also on start(κ, a), node(κ), nodes(κ). The set of rules that will be used to evaluate
sequential expressions is still the one defined in Fig 2.4, indeed, using the same abuse
of notation that has been used in [1], we moved in to the set of rules for evaluating
concurrent expressions also node, nodes, and start. Fig. 3.3 shows the set of rules for
evaluating concurrent expressions. Now, we will analyse the distributed aspects of these
rules, the reader interested in other aspects of the rules will find a detailed explanation
in Section 2.2.

41

Send1
θ, e1

ℓ−→ θ′, e′1

θ, e1 ! e2
ℓ−→ θ′, e′1 ! e2

Send2
θ, e2

ℓ−→ θ′, e′2

θ, v1 ! e2
ℓ−→ θ′, v1 ! e′2

Send3
θ, v1 ! v2

send(v1,v2)−−−−−−−→ θ, v2

Receive

θ, receive cl1; ...; cln end
rec(κ,cln)−−−−−−→ θ, κ

Spawn1
θ, e

ℓ−→ θ′, e′

θ, spawn(e, a/n, [argsn])
ℓ−→ θ′, spawn(e′, a/n, [argsn])

Spawn2
θ, ei

ℓ−→ θ′, e′i i ∈ {1, ..., n}

θ, spawn(a′, a/n, [v1,i−1, ei, ei+1,n])
ℓ−→ θ′, spawn(a′, a/n, [v1,i−1, e′i, ei+1,n])

Spawn3
θ, spawn(a′, a/n, [vn])

spawn(κ,a′,a/n,[vn])−−−−−−−−−−−−→ θ, κ

Self
θ, self()

self(κ)−−−−→ θ, κ

Node
θ, node()

node(κ)−−−−→ θ, κ

Nodes
θ, nodes()

nodes(κ)−−−−−→ θ, κ

Start1
θ, e

ℓ−→ θ′, e′

θ, start(e)
ℓ−→ θ′, start(e′)

Start2
θ, start(a)

start(κ,a)−−−−−→ θ, κ

Figure 3.2: Extended standard semantics: evaluations of concurrent expression

42

(Seq)
θ, e

τ−→ θ′, e′

Γ; 〈node, p, (θ, e), q〉 |Π;Ω ↪→ Γ; 〈node, p, (θ′, e′), q〉 |Π;Ω

(Send)
θ, e

send(p′′,v)−−−−−−→ θ′, e′

Γ; 〈node, p, (θ, e), q〉 |Π;Ω ↪→ Γ ∪ {(p′′, v)}; 〈node, p, (θ′, e′), q〉 |Π;Ω

(Receive)
θ, e

rec(κ,cln)−−−−−−→ θ′, e′ matchrec(θ, cln, q) = (θi, ei, v)

Γ; 〈node, p, (θ, e), q〉 |Π;Ω ↪→ Γ; 〈node, p, (θ′θi, e′{κ 7→ ei}), q\\v〉 |Π;Ω

(Spawn1)
θ, e

spawn(κ,node′,a/n,[vn])−−−−−−−−−−−−−−→ θ′, e′ p′ is a fresh pid node′ ∈ Ω

Γ; 〈node, p, (θ, e), q〉 |Π;Ω ↪→ Γ; 〈node, p, (θ′, e′{κ 7→ p′}), q〉
| 〈node′, p′, (id, apply a/n(vn), []〉 |Π;Ω

(Spawn2)
θ, e

spawn(κ,node′,a/n,[vn])−−−−−−−−−−−−−−→ θ′, e′ p′ is a fresh pid node′ /∈ Ω

Γ; 〈node, p, (θ, e), q〉 |Π;Ω ↪→ Γ; 〈node, p, (θ′, e′{κ 7→ p′}), q〉 |Π;Ω

(Start1)
θ, e

start(κ,node′)−−−−−−−−→ θ′, e′ node′ /∈ Ω

Γ; 〈node, p, (θ, e), q〉 |Π;Ω ↪→ Γ; 〈node, p, (θ′, e′{κ 7→ node′}), q〉 |Π; {node′} ∪ Ω

(Start2)
θ, e

start(κ,node′)−−−−−−−−→ θ′, e′ node′ ∈ Ω err represents the error
Γ; 〈node, p, (θ, e), q〉 |Π;Ω ↪→ Γ; 〈node, p, (θ′, e′{κ 7→ err}), q〉 |Π;Ω

(Self)
θ, e

self(κ)−−−−→ θ′, e′

Γ; 〈node, p, (θ, e), q〉 |Π;Ω ↪→ Γ; 〈node, p, (θ′, e′{κ 7→ p}), q〉 |Π;Ω

(Node)
θ, e

node(κ)−−−−→ θ′, e′

Γ; 〈node, p, (θ, e), q〉 |Π;Ω ↪→ Γ; 〈node, p, (θ′, e′{κ 7→ node}), q〉 |Π;Ω

(Nodes)
θ, e

nodes(κ)−−−−−→ θ′, e′

Γ; 〈node, p, (θ, e), q〉 |Π;Ω ↪→ Γ; 〈node, p, (θ′, e′{κ 7→ list(Ω \ {node})}), q〉 |Π;Ω

(Sched)
Γ ∪ {(p, v)}; 〈node, p, (θ, e), q〉 |Π;Ω ↪→ Γ; 〈node, p, (θ, e), v : q〉 |Π;Ω

Figure 3.3: Extended standard semantics: system rules.

43

main/0 = fun () → let _ = start(counter, hot_dog_shop)
let C1 = spawn(′counter@hot_dog_shop′, cashier/0, [])
in let S = self()
in let _ = C1 ! {request, 3, hot_dog, S}
in receive

{3, hot_dog} → eat
end

cashier/0 = fun () → receive
{request,N, hot_dog, P} → P ! {N,hot_dog}
{request,N, chips, P} → P ! {N, chips}

end

Figure 3.4: An example of a program that starts a node

First of all, it is possible to notice that the function spawn now requires three argu-
ments, as opposed to the spawn defined in Fig. 2.5, which had only two arguments. The
additional extra-argument is required to specify in which node the spawn of the process
will happen. Moreover, we can distinguish two categories of rules, rules belonging to
the first category are those rules which we know locally to what value they will reduce,
conversely, rules belonging to the second category are those rules which we do not know
to what value they will reduce. Rules Send1, Send2, Send3 and Start1 belong to the
first category, the remaining rules belong to the second one. For those rules which we
do not know a value locally we return a fresh symbol κ, which will act as a future, then
the system semantic will eventually bind κ to the right values.

The system rules are depicted in Fig. 3.3.
In most of the rules, we denote by Γ; 〈node, p, (θ, e), q〉 | Π;Ω an arbitrary system where
we select a process, node indicates on which node the process is running, with the proviso
that node always belong to Ω, p represents the unique pid of the process, (θ, e) represents
the control environment, and, ultimately, q represents the queue of messages received by
the process. Let us now discuss the distributed aspects of the system semantics.

Here, we have two rules Spawn, indeed, while before it was impossible for a spawn
to fail, by adding the possibility to perform remote spawns we also have introduced the
possibility for a spawn to fail. Rule Spawn2 represents a failed spawn, the spawn fails
because the node feed as first argument does not belong to Ω, in other words it means
that the node where the spawn was supposed to happen is not connected to the network.

On the contrary, rule Spawn1 depicts a successful spawn, and it is possible to observe
that the freshly spawned process has, as a node attribute, the one that was specified to
the spawn.

As one would expect, we also have two rules Start, one for when the start succeeds

44

(Start1), and one for when the start fails (Start2). In a real system, a start could fail for
many reasons, to mention a few of them: the internet connection could fail, the daemon
waiting for the connection could not work properly, or someone could accidentally unplug
the remote machine, in our simulated environment the only reason why a start can fail
is that the node is already part of the network. Indeed, since every node has to have a
unique name, if someone tries to start a node that is already connected there is no viable
solution but to return an error.

Finally, rules Node and Nodes respectively, bind κ to the process’ node and to the
network of connected nodes.
Now, we introduce the notion of concurrency for the new language which we have just
introduced.

Definition 3.5 (Concurrent transitions). Given two coinitial transitions, t1 = (s⇌p1,r1

s1) and t2 = (s⇌p2,r2 s2), we say that they are in conflict if at least one of the following
conditions holds:

• they consider the same process, i.e., p1 = p2, and either r1 = r2 = Sched or one
transition applies rule Sched and the other transition applies rule Receive.

• they consider different processes, i.e., p1 6= p2, and one rule is Start1, which starts
a node, say n, that does not belong to the network, and the other process performs
a spawn on n.

• they consider different processes, i.e., p1 6= p2, and both start the same node that
does not belong to the network yet.

• they consider different processes, i.e., p1 6= p2, and one transition applies rule Nodes
and the other applies rule Start1, to start a node that does not exists yet.

Two transitions are concurrent if they are not in conflict.

Now, we prove that this definition of concurrency makes sense.

Lemma 3.1 (Square lemma). Given two coinitial concurrent transitions t1 = (s⇌p1,r1

s1) and t2 = (s ⇌p2,r2 s2), there exist two cofinal transitions t2/t1 = (s1 ⇌p2,r2 s
′) and

t1/t2 = (s2 ⇌p1,r1 s
′). Graphically,

s
p1,r1 /

p2,r2
�

s1o

s2

O
=⇒

s
p1,r1 /

p2,r2

�

s1
p2,r2
�

o

s2 p1,r1
/

O

s′

O

o

Proof. We distinguish the following cases depending on the applied rules:

45

• Two transitions t1 and t2 where r1 6= Sched and r2 6= Sched. Trivially, they apply
to different processes, i.e., p1 6= p2. There are few problematic cases, we will now
analyse them:

i) t1 starts a node and t2 spawns a process, if both rules consider the same node,
and this one is not part of the network yet, by applying t1 to p2 and t2 to p1
we would end up in two different systems.

ii) both transitions start a node, if both rules consider the same node by applying
t1 to p2 and t2 to p1 we would end up in two different systems, one system
would be the one where p1 succeeded in the creation of the node and p2 failed,
and the other would the one where p1 failed and p2 succeeded.

iii) r1 = Start1 and r2 = Nodes , by applying t1 to p2 and t2 to p1 we would end
up in two different systems, indeed in one system the result of rule Nodes
applied by p2 contains the node started by p1, in the other, since rule Start1
is applied after Nodes, the result does not contains the node started by p1.

Nonetheless, i, ii, iii are not concurrent transitions, therefore, such situations can-
not happen. Then, for the remaining cases, we can easily prove that by applying
rule r2 to p1 in s1 and rule r1 to p2 in s2 we have two transitions t1/t2 and t2/t1
which produce the corresponding history items and are cofinal.

• One transition t1 which applies rule r1 = Sched to deliver message v1 to process
p1 = p, and another transition which applies a rule r2 different from Sched. All
cases but r2 = Receive with p2 = p are straightforward. This situation, though,
cannot happen since transitions using rules Sched and Receive are not concurrent.

• Two transitions t1 and t2 with rules r1 = r2 = Sched delivering messages v1 and v2,
respectively. Since the transitions are concurrent, they should deliver the messages
to different processes, i.e., p1 6= p2. Therefore, we can easily prove that delivering
v2 from s1 and v1 from s2 we get two cofinal transitions.

We remark the fact that this definition of concurrency is not unique, indeed many
others exist, but we believe that this one is a good tradeoff between the complexity of
the definition itself and the granularity of concurrent actions captured.
Example 3.1. In Fig. 3.5 one can observe a derivation from ”apply main/0 ()” of the
simple program described in Fig. 3.4.
In the figure is possible to observe one possible execution of the program. For clarity
we label each step with the corresponding reduction rule, furthermore we underline the
reduced expression. On the right one can see the value of Ω. For the sake of brevity we
represented the processes’ pid with m, for the processes executing main, and c, for the
processes executing cashier.

46

3.3 A reversible semantics
In the following of this section we will introduce two new semantics, the forward reversible
semantics, which will keep track of every step performed through an history item, and
a backward semantics, which will tell us how and when it is possible to reach previous
states of the computation, while being causally consistent. To be more precise, we will
introduce two new relations, namely ⇀ and ↽.

On the one hand, the first relation, ⇀, is the natural extension of the relation ↪→,
introduced in Fig. 3.3, which follows a typical Landauer embedding, now each forward
step records in the history which action has been performed and other useful informations
in order to be able to undo the action in a causal-consistent way. We will refer to this
relation as the forward (reversible) semantics.

On the other hand, we have ↽p,r,Ψ which represents the backward reversible seman-
tics, which is able to undo a step in a causal-consistent way. At present, we will ignore
the labels p, r and Ψ, as they are there to implement a rollback operator, more details
can be found in the next section. Lastly, in order to define the reversible semantics
we will make use of auxiliary functions while defining the rules, each time an auxiliary
function will be used an informal description will also be provided, while if the reader is
interested in a more formal description (s)he can refer to Appendix A.

In Fig. 3.6 are depicted the rules of the forward semantics. As one can see, this
semantics is a natural extension of the system semantics, presented in Fig.3.3, nonethe-
less, there are few interesting situations, due to the distributed functions that have been
added, which we will now analyse.

Here, both rules Spawn map κ to a fresh pid, regardless of the fact that one has
successfully created a new process and the other has failed, we opted for this solution
because this is what actually happens in Erlang, also it is important to notice that the
history kept is exactly the same in both situations.

On the contrary, rules Start produce two different history items, if the start succeeds
(Start1) then an atom succ is included in the history, conversely, if the start fails (Start2)
then an atom fail is included in the history.
Unfortunately, the choice of including such atom in the history item will narrow down
our definition of concurrency, but it is necessary in order to be causally consistent. In
fact, without the atom pointing out which process successfully created the node, it would
be possible to broaden the definition of concurrency, but it would be impossible to be
causally-consistent. As a matter of fact, we could reach a point in our system where
several processes have a start item in the history with the same node and since we do
not have a notion of time, it would be impossible to tell apart which one is the process
which actually created the node from the rest.

Conversely, with the spawn we do not need to save such an atom because the failed
spawn returns a unique pid, therefore when it comes to understanding if a spawn has

47

{ }; 〈n1,m, (id, apply main/0 []), []〉 ; {n1}
↪→Seq { }; 〈n1,m, (id, let _ = start(counter, hot_dog_shop) in . . . , []〉 ; {n1}
↪→Start { }; 〈n1,m, (id, let _ = counter@hot_dog_shop in . . . , []〉 ; {n1, n2}
↪→Seq { }; 〈n1,m, (id, let C = spawn(n2, cashier/0, []) in . . . , []〉 ; {n1, n2}
↪→Spawn { }; 〈n1,m, (id, let C = spawn(n2, cashier/0, []) in . . . , []〉

| 〈n2, c, (id, apply(cashier/0 []), []〉 ; {n1, n2}
↪→Spawn { }; 〈n1,m, (id, let C = c in . . . , []〉

| 〈n2, c, (id, apply(cashier/0 []), []〉 ; {n1, n2}
↪→Seq { }; 〈n1,m, (id, let C = c in . . . , []〉

| 〈n2, c, (id, receive . . .), []〉 ; {n1, n2}
↪→Seq { }; 〈n1,m, ({C 7→ c}, let _ = C ! {request, 3, hot_dog} in . . . , []〉

| 〈n2, c, (id, receive . . .), []〉 ; {n1, n2}
↪→Seq { }; 〈n1,m, ({C 7→ c}, let _ = C ! {request, 3, hot_dog} in . . . , []〉

| 〈n2, c, (id, receive . . .), []〉 ; {n1, n2}
↪→Seq { }; 〈n1,m, ({C 7→ c}, let _ = c ! {request, 3, hot_dog} in . . . , []〉

| 〈n2, c, (id, receive . . .), []〉 ; {n1, n2}
↪→Send {m1}; 〈n1,m, ({C 7→ c}, let _ = {request, 3, hot_dog} in . . . , []〉

| 〈n2, c, (id, receive . . .), []〉 ; {n1, n2}
↪→Sched { }; 〈n1,m, ({C 7→ c}, let _ = {request, 3, hot_dog} in . . . , []〉

| 〈n2, c, (id, receive . . .), [m1]〉 ; {n1, n2}
↪→Seq { }; 〈n1,m, ({C 7→ c}, receive {3, hot_dog} → eat, []〉

| 〈n2, c, (id, receive . . .), [m1]〉 ; {n1, n2}
↪→Receive { }; 〈n1,m, ({C 7→ c}, receive {3, hot_dog} → eat, []〉

| 〈n2, c, ({N 7→ 3, P 7→ m}, P ! {N,hot_dog}), []〉 ; {n1, n2}
↪→Receive { }; 〈n1,m, ({C 7→ c}, receive {3, hot_dog} → eat, []〉

| 〈n2, c, ({N 7→ 3, P 7→ m},m ! {N,hot_dog}), []〉 ; {n1, n2}
↪→Receive { }; 〈n1,m, ({C 7→ c}, receive {3, hot_dog} → eat, []〉

| 〈n2, c, ({N 7→ 3, P 7→ m},m ! {3, hot_dog}), []〉 ; {n1, n2}
↪→Send {m2}; 〈n1,m, ({C 7→ c}, receive {3, hot_dog} → eat, []〉

| 〈n2, c, ({N 7→ 3, P 7→ m}, {3, hot_dog}), []〉 ; {n1, n2}
↪→Sched { }; 〈n1,m, ({C 7→ c}, receive {3, hot_dog} → eat, [m2]〉

| 〈n2, c, ({N 7→ 3, P 7→ m}, {3, hot_dog}), []〉 ; {n1, n2}
↪→Receive { }; 〈n1,m, ({C 7→ c}, eat, []〉

| 〈n2, c, ({N 7→ 3, P 7→ m}, {3, hot_dog}), []〉 ; {n1, n2}

Figure 3.5: A derivation from ”apply main/0 ()”, where m1 = {request, 3, hot_dog},
m2 = {3, hot_dog}, n1 = cauder@debugger and n2 = counter@hot_dog_shop

48

(Seq)
θ, e

τ−→ θ′, e′

Γ; 〈node, p, h, (θ, e), q〉 |Π;Ω⇀ Γ; 〈node, p, τ(θ, e) : h, (θ′, e′), q〉 |Π;Ω

(Send)
θ, e

send(p′′,v)−−−−−−→ θ′, e′ λ is a fresh identifier
Γ; 〈node, p, h, (θ, e), q〉 |Π;Ω

⇀ Γ ∪ {(p′′, {λ, v})}; 〈node, p, send(θ, e, p′′, {λ, v}) : h, (θ′, e′), q〉 |Π;Ω

(Receive)
θ, e

rec(κ,cln)−−−−−−→ θ′, e′ matchrec(θ, cln, q) = (θi, ei, {λ, v})
Γ; 〈node, p, h, (θ, e), q〉 |Π;Ω

⇀ Γ; 〈node, p, rec(θ, e, {λ, v}, q) : h, (θ′θi, e′{κ 7→ ei}), q\\{λ, v}〉 |Π;Ω

(Spawn1)
θ, e

spawn(κ,node′,a/n,[vn]−−−−−−−−−−−−−−→ θ′, e′ p′ is a fresh pid node′ ∈ Ω

Γ; 〈node, p, h, (θ, e), q〉 |Π;Ω⇀ Γ; 〈node, p, spawn(θ, e, node′, p′) : h, (θ′, e′{κ 7→ p′}), q〉
| 〈node′, p′, [], (id, apply a/n(vn)), []〉 |Π;Ω

(Spawn2)
θ, e

spawn(κ,node′,a/n,[vn]−−−−−−−−−−−−−−→ θ′, e′ p′ is a fresh pid node′ /∈ Ω

Γ; 〈node, p, h, (θ, e), q〉 |Π;Ω⇀ Γ; 〈node, p, spawn(θ, e, node′, p′) : h, (θ′, e′{κ 7→ p′}), q〉 |Π;Ω

(Start1)
θ, e

start(κ,node′)−−−−−−−−→ θ′, e′ node′ /∈ Ω

Γ; 〈node, p, h, (θ, e), q〉 |Π;Ω⇀ Γ; 〈node, p, start(θ, e, succ, node′) : h, (θ′, e′{κ 7→ node′}), q〉
|Π; {node′} ∪ Ω

(Start2)
θ, e

start(κ,node′)−−−−−−−−→ θ′, e′ node′ ∈ Ω err represents the error
Γ; 〈node, p, h, (θ, e), q〉 |Π;Ω⇀ Γ; 〈node, p, start(θ, e, fail, node′) : h, (θ′, e′{κ 7→ err}), q〉 |Π;Ω

(Self)
θ, e

self(κ)−−−−→ θ′, e′

Γ; 〈node, p, h, (θ, e), q〉 |Π;Ω⇀ Γ; 〈node, p, self(θ, e) : h, (θ′, e′{κ 7→ p}), q〉 |Π;Ω

(Node)
θ, e

node(κ)−−−−→ θ′, e′

Γ; 〈node, p, h, (θ, e), q〉 |Π;Ω⇀ Γ; 〈node, p, node(θ, e) : h, (θ′, e′{κ 7→ node}), q〉 |Π;Ω

(Nodes)
θ, e

nodes(κ)−−−−−→ θ′, e′

Γ; 〈node, p, h, (θ, e), q〉 |Π;Ω
⇀ Γ; 〈node, p, nodes(θ, e,Ω) : h, (θ′, e′{κ 7→ list(Ω \ {node})}), q〉 |Π;Ω

(Sched)
Γ ∪ {(p, {λ, v})}; 〈node, p, h, (θ, e), q〉 |Π;Ω⇀ Γ; 〈node, p, h, (θ, e), {λ, v} : q〉 |Π;Ω

Figure 3.6: Extended forward reversible semantics

49

failed or not, it is enough to check if the pid in the history item matches any of the pid
in Π, if not it was a failed spawn, otherwise it was a successful spawn.

Let us now move our focus on the rules of the backward semantics, which are depicted
in Fig. 3.7. As usual, we will now discuss some interesting details and tricky situations.
First of all, just by observing the rules one could notice that some of them make use of
auxiliary functions and some do not. The reason why is that, for those rules which use
auxiliary functions, before undoing the step some criteria need to be met, otherwise we
would end up in a non-consistent state.

Now, let us start analysing the first rule which makes use of auxiliary functions,
namely rule Spawn2, by introducing an example.

Example 3.2. When a process, say p1, tries to spawn another process, say p2, and fails
in our system that can only mean that the node, say node, where p1 tried to spawn p2
was not part of Ω. Now, if another process, say p3, starts node, and we undo the failed
spawn, ignoring the auxiliary function, and then we redo it this time it will not fail,
because now node is part of Ω, breaking the loop lemma (Lemma 3.2).

Here, Example 3.2 gives us an idea of why it is necessary, in order to maintain causal
consistency, to make sure that the node which caused the fail is still not part of Ω. The
other condition, exists(p,Π) = false, is necessary in order to distinguish if the spawn
failed or not, indeed, as already discussed, thanks to the unicity of the pids it is not
necessary to save in the history the result of the spawn.

Again on the one hand, this implies that we will have a broader definition of con-
currency, indeed, the definition of concurrency depends on the definition of the history,
but on the other hand, it is more computationally expensive. In fact, adding an atom to
the history would imply a cost O(1) to determine if the spawn has failed or not, without
this information we have to scan every process of the system and check if the pid in the
history tag matches one of them, therefore we have a computational cost of O(n), where
n represents the number of process in Π.

During this work, every time we had to face such a decision we have always opted
for a broader definition of concurrency against lower computational costs.

Now, let us move our focus to rule Start1; this rule is the one undoing the successful
start of a node, therefore before undoing this step it is crucial to make sure that every
action which depends on this one has been undone beforehand. Here, three auxiliary
functions have been used, the first one makes sure that there are no more processes
running on the node, the second one makes sure that no one has performed a read of Ω
by means of rule Nodes, and, finally, the third function makes sure that no other processes
tried a start of the same node. It is important to notice that the first check could have
been avoided with the assumption that the only way to introduce in a program a node
name is through the evaluation of a start, however, that would have implied that there
would be no way to hard-code the name of a node in a program, therefore we decided

50

(Seq) Γ; 〈node, p, τ(θ, e) : h, (θ′, e′), q〉 |Π;Ω↽p,seq,{s} Γ; 〈node, p, h, (θ, e), q〉 |Π;Ω

(Send)
Γ ∪ {(p′′, {λ, v})}; 〈node, p, send(θ, e, p′′, {λ, v}) : h, (θ′, e′), q〉 |Π;Ω

↽p,send(λ),{s,λ⇑} Γ; 〈node, p, h, (θ, e), q〉 |Π;Ω

(Receive)
Γ; 〈node, p, rec(θ, e, {λ, v}, q) : h, (θ′, e′), q\\{λ, v}〉 |Π;Ω

↽p,rec(λ),{s,λ⇓} Γ; 〈node, p, h, (θ, e), q〉 |Π;Ω

(Spawn1)
Γ; 〈node, p, spawn(θ, e, node′, p′) : h, (θ′, e′), q〉 | 〈node′, p, [], (id, e′′), []〉 |Π;Ω

↽p,spawn(p′),{s,spp′} Γ; 〈node, p, h, (θ, e), q〉 |Π;Ω

(Spawn2)

Γ; 〈node, p, spawn(θ, e, node′, p′) : h, (θ′, e′), q〉 |Π;Ω
↽p,spawn(p′),{s,spp′} Γ; 〈node, p, h, (θ, e), q〉 |Π;Ω

if exists(p′,Π) = false ∧ node′ /∈ Ω

(Start1)

Γ; 〈node, p, start(θ, e, succ, node′) : h, (θ′, e′), q〉 |Π;Ω ∪ {node′}
↽p,start(node′),{s,stnode′} Γ; 〈node, p, h, (θ, e), q〉 |Π;Ω

if procs(node′,Π) = [] ∧ reads(node′,Π) = [] ∧ tried_starts(node′,Π) = []

(Start2)
Γ; 〈node, p, start(θ, e, fail, node′) : h, (θ′, e′), q〉 |Π;Ω

↽p,start(node′),{s} Γ; 〈node, p, h, (θ, e), q〉 |Π;Ω

(Self) Γ; 〈node, p, self(θ, e) : h, (θ′, e′), q〉 |Π;Ω↽p,self,{s} Γ; 〈node, p, h, (θ, e), q〉 |Π;Ω

(Node) Γ; 〈node, p, node(θ, e) : h, (θ′, e′), q〉 |Π;Ω↽p,node,{s} Γ; 〈node, p, h, (θ, e), q〉 |Π;Ω

(Nodes)
Γ; 〈node, p, nodes(θ, e,Ω′) : h, (θ′, e′), q〉 |Π;Ω↽p,nodes,{s} Γ; 〈node, p, h, (θ, e), q〉 |Π;Ω

if Ω = Ω′

(Sched)

Γ; 〈node, p, h, (θ, e), {λ, v} : q〉 |Π;Ω
↽p,sched(λ),{s,λsched} Γ ∪ {(p, {λ, v})}; 〈node, p, h, (θ, e), q〉 |Π;Ω

if the topmost rec(...) item in h (if any) has the
form rec(θ′, e′, {λ′, v′}, q′) with q′\\{λ′, v′} 6= {λ, v} : q

Figure 3.7: Extended backward reversible semantics

51

main/0 = fun () → let R1 = spawn(n1, racer/0, [])
in let R2 = spawn(n1, racer/0, [])
in let _ = R1 ! go
in R2 ! go

racer/0 = fun () → let R = receive
go→ start(another, node)

end
in case R of

{ok,_} → winner
{error,_} → loser

end

Figure 3.8: An example of a program where two processes race to start a node

again for the solution that would bring us as close as possible to a real Erlang system.
Now, through the following example we will clarify why we need also to make use of the
second auxiliary function.

Example 3.3. Let us consider a system composed by two processes, p1 and p2, running
on the same node, now p1 performs a start, then p2 performs a nodes. In this situation,
if we undo the start performed by p1 and then we also undo the nodes made by p2 and
then we redo the nodes we would enter a new state, this because now only one node is
part of Ω and not two.

For this reason, before undoing a start we also need to ensure that no process has
read the node that we are about to undo, this also explains why while performing Nodes
we save a copy of the current Ω.

Similarly, the third function checks that no other process tried to perform a start and
failed because the node was already part of Ω, because, again, if we undo the successful
start, then we undo the failed start and then we redo it will succeed instead of failing,
as one would expect if the system was causally-consistent. A clever way of performing
these three checks would cost O(nm), where n represents the number of processes in Π
and m represents the length of the longest process’ history.

Lastly, we have rule Nodes, where, dually to rule Start1, we have to check that new
nodes have not been added to Ω before undoing a Nodes . This check can be easily
accomplished by controlling that the Ω′ available in the history item and the Ω of the
system are exactly the same.

Example 3.4. In Fig. 3.9 it is possible to observe a possible forward derivation of the
program depicted in Fig. 3.8. For the sake of brevity we omitted non-relevant arguments
in the histories by denoting them with the anonymous variable ”_”, the same has been
done for the environment. Then, instead of showing the full expression for each process

52

we show C[e], where C represents the context and e represents the redex which need to
be evaluated, also we omitted every applications of rule Seq.

Then, in Fig. 3.10 it is possible to observe a possible backward derivation of the
final system shown in Fig. 3.9. The derivation follows the same conventions and rules as
above.

Finally, we stress that the backward derivation does not undo the steps performed in
the same order as they were originally performed in the forward derivation, nonetheless
causal consistency is maintained.

3.3.1 Properties of the extended uncontrolled reversible se-
mantics

In the following of this section we will prove several properties of our extended reversible
semantics, including its causal consistency. In this part we will use the same rules and
conventions that we have used in Sub-Section 2.3.1.

We begin by providing the definition of initial distributed system.

Definition 3.6. A distributed system is initial if it is composed by a single process, and
this process has an empty history and an empty queue; furthermore the global mailbox
is empty and Ω contains only one node, i.e., the node of the only existent process. A
system s is reachable if there exists an initial system s0 and a derivation s0 ⇌∗ s using
the rules corresponding to a given program.

The next lemma proves that every forward (resp. backward) transition can be undone
by a correspondent backward (resp. forward) transition.

Lemma 3.2 (Loop Lemma). For every pair of systems, s1 and s2, we have s1 ⇀p,r,k s2
iff s2 ↽p,r,k s1.

Proof. The proof that a forward transition can be undone follows by rule inspection.
The other direction relies on the restriction to reachable systems: consider the process
undoing the action. Since the system is reachable, restoring the memory item would put
us back in a state where the undone action can be performed again (if the system would
not be reachable the memory item would be arbitrary, hence there would not be such a
guarantee), as desired. Again, this can be proved by rule inspection.

Now, we introduce the definition of concurrency, which tell us what actions can be
switched without changing the semantics of the computation.

Definition 3.7 (Concurrent transitions). Given two coinitial transitions, t1 = (s⇌p1,r1,k1

s1) and t2 = (s⇌p2,r2,k2 s2), we say that they are in conflict if at least one of the following
conditions holds:

53

{ }; 〈n1, p, [], (id, C[apply main/0 []]), []〉 ; {n1}
⇀∗ { }; 〈n1, p, [], (id, C[spawn(n1,main/0, [])], []〉 ; {n1}
⇀Spawn { }; 〈n1, p, [spawn(_,_, n1, r1)], (id, C[spawn(n1, racer/0, [])], []〉

| 〈n1, r1, [], (id, C[receive go→ . . .]), []〉 ; {n1}
⇀Spawn { }; 〈n1, p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2)], (_, C[r1 ! go], []〉

| 〈n1, r1, [], (id, C[receive go→ . . .]), []〉
| 〈n1, r2, [], (id, C[receive go→ . . .]), []〉 ; {n1}

⇀Send {(r1,m1)}; 〈n1,p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2), send(_,_, r1,m1)],
(_, C[r2 ! go], []〉 | 〈n1, r1, [], (id, C[receive go→ . . .]), []〉
| 〈n1, r2, [], (id, C[receive go→ . . .]), []〉 ; {n1}

⇀Sched { }; 〈n1,p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2), send(_,_, r1,m1)],
(_, C[r2 ! go], []〉 | 〈n1, r1, [], (id, C[receive go→ . . .]), [m1]〉
| 〈n1, r2, [], (id, C[receive go→ . . .]), []〉 ; {n1}

⇀Send {(r2,m2)}; 〈n1,p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2), send(_,_, r1,m1),
send(_,_, r2,m2)], (_, C[go], []〉 | 〈n1, r1, [], (id, C[receive go→ . . .]),
[m1]〉 | 〈n1, r2, [], (id, C[receive go→ . . .]), []〉 ; {n1}

⇀Sched { }; 〈n1,p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2), send(_,_, r1,m1),
send(_,_, r2,m2)], (_, C[go], []〉 | 〈n1, r1, [], (id, C[receive go→ . . .]),
[m1]〉 | 〈n1, r2, [], (id, C[receive go→ . . .]), [m2]〉 ; {n1}

⇀Receive { }; 〈n1, p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2), send(_,_, r1,m1),
send(_,_, r2,m2)], (_, C[go], []〉 | 〈n1, r1, [], (id, C[receive go→ . . .]),
[m1]〉 | 〈n1, r2, [rec(_,_,m1, [m1])], (id, C[start(another, node)]), []〉 ; {n1}

⇀Start1 { }; 〈n1, p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2), send(_,_, r1,m1),
send(_,_, r2,m2)], (_, C[go], []〉 | 〈n1, r1, [], (id, C[receive go→ . . .]),

[m1]〉 | 〈n1, r2, [rec(_,_,m1, [m1]), start(_,_, succ, n2)],
(id, C[winner]), []〉 ; {n1, n2}

⇀Receive { }; 〈n1, p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2), send(_,_, r1,m1),
send(_,_, r2,m2)], (_, C[go], []〉 | 〈n1, r1, [rec(_,_,m2, [m2])],
(id, C[start(another, node)]), []〉 | 〈n1, r2, [rec(_,_,m1, [m1]),

start(_,_, succ, n2)], (id, C[winner]), []〉 ; {n1, n2}
⇀Start2 { }; 〈n1, p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2), send(_,_, r1,m1),

send(_,_, r2,m2)], (_, C[go], []〉 | 〈n1, r1, [rec(_,_,m2, [m2]),
start(_,_, fail, n2)], (id, C[loser]), []〉 | 〈n1, r2, [rec(_,_,m1, [m1]),
start(_,_, succ, n2)], (id, C[winner]), []〉 ; {n1, n2}

Figure 3.9: A possible forward derivation for the program depicted in Fig. 3.8, where
n1 = cauder@debugger, n2 = another@node, m1 = {1, {go}} and m2 = {2, {go}}

54

{ }; 〈n1,p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2),
send(_,_, r1,m1), send(_,_, r2,m2)], (_, C[go], []〉
| 〈n1, r1, [rec(_,_,m2, [m2]), start(_,_, fail, n2)],
(id, C[loser]), []〉 | 〈n1, r2, [rec(_,_,m1, [m1]),
(start(_,_, succ, n2)], (id, C[winner]), []〉 ; {n1, n2}

↽Start2 { }; 〈n1,p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2),
send(_,_, r1,m1), send(_,_, r2,m2)], (_, C[go], []〉
| 〈n1, r1, [rec(_,_,m2, [m2])], (id, C[start(another, node)]), []〉
| 〈n1, r2, [rec(_,_,m1, [m1]),
start(_,_, succ, n2)], (id, C[winner]), []〉 ; {n1, n2}

↽Receive { }; 〈n1,p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2),
send(_,_, r1,m1), send(_,_, r2,m2)], (_, C[go], []〉 | 〈n1, r1, [], (id, C[receive go→ . . .]), [m1]〉
| 〈n1, r2, [rec(_,_,m1, [m1]), start(_,_, succ, n2)],
(id, C[winner]), []〉 ; {n1, n2}

↽Start1 { }; 〈n1,p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2),
send(_,_, r1,m1), send(_,_, r2,m2)], (_, C[go], []〉
| 〈n1, r1, [], (id, C[receive go→ . . .]), [m1]〉
| 〈n1, r2, [rec(_,_,m1, [m1])], (id, C[start(another, node)]), []〉 ; {n1}

↽Receive { }; 〈n1,p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2),
send(_,_, r1,m1), send(_,_, r2,m2)], (_, C[go], []〉 | 〈n1, r1, [], (id, C[receive go→ . . .]), [m1]〉
| 〈n1, r2, [], (id, C[receive go→ . . .]), [m2]〉 ; {n1}

↽Sched {(r2,m2)}; 〈n1,p, send(_,_, r1,m1), send(_,_, r2,m2)], (_, C[go], []〉
| 〈n1, r1, [], (id, C[receive go→ . . .]), [m1]〉
| 〈n1, r2, [], (id, C[receive go→ . . .]), []〉 ; {n1}

↽Sched {(r1,m1), (r2,m2)}; 〈n1, p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2),
send(_,_, r1,m1), send(_,_, r2,m2)], (_, C[go], []〉
| 〈n1, r1, [], (id, C[receive go→ . . .]), [m1]〉
| 〈n1, r2, [], (id, C[receive go→ . . .]), []〉 ; {n1}

↽Send {(r1,m1)}; 〈n1,p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2),
send(_,_, r1,m1)], (_, C[r2 ! go], []〉
| 〈n1, r1, [], (id, C[receive go→ . . .]), [m1]〉
| 〈n1, r2, [], (id, C[receive go→ . . .]), []〉 ; {n1}

↽Send { }; 〈n1,p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2)],
(_, C[r1 ! go], []〉 | 〈n1, r1, [], (id, C[receive go→ . . .]), [m1]〉
| 〈n1, r2, [], (id, C[receive go→ . . .]), []〉 ; {n1}

↽Spawn { }; 〈n1,p, [spawn(_,_, n1, r1)], (_, C[spawn(n1, racer/0, [])], []〉
| 〈n1, r1, [], (id, C[receive go→ . . .]), [m1]〉

↽Spawn { }; 〈n1,p, [], (_, C[spawn(n1, racer/0, [])], []〉

Figure 3.10: A possible backward derivation for the program depicted in Fig. 3.8, where
n1 = cauder@debugger, n2 = another@node, m1 = {1, {go}} and m2 = {2, {go}}

55

(a) Both transitions are forward

• they consider the same process, i.e., p1 = p2, and either r1 = r2 = Sched or
one transition applies rule Sched and the other transition applies rule Receive.

• they consider different processes, i.e., p1 6= p2, and one rule is Start1, which
starts a node, say n, that does not belong to the network, and the other
process performs a spawn on n.

• they consider different processes, i.e., p1 6= p2, and both start the same node
that does not belong to the network yet.

• they consider different processes, i.e., p1 6= p2, and one transition applies rule
Nodes and the other applies rule Start1, to start a node that does not exists
yet.

(b) One transition is forward and the other is backward

• one is a forward transition that applies to a process p, say p1 = p, and
the other one is a backward transition that undoes the creation of p, i.e.,
p2 6= p, r2 = Spawn1 and k2 = spawn(θ, e, p) for some control (θ, e);

• one is a forward transition that delivers a message {λ, v} to a process p,
say p1 = p, r1 = Sched and k1 = sched({λ, v}), and the other one is a
backward transition that undoes the sending {λ, v} to p, i.e., r2 = Send and
k2 = send(θ, e, p, {λ, v}) for some control (θ, e);

• one is a forward transition and the other one is a backward transition such
that p1 = p2 and either

i) both applied rules are different from both Sched and Sched, i.e., {r1, r2}∩
{Sched, Sched} = ∅

ii) one rule is Sched and the other one is Sched
iii) one rule is Sched and the other one is Receive
iv) one rule is Sched and the other one is Receive

• one is a forward transition that spawns a process on node, and the other one
is a backward transition that undoes the creation of node, i.e., p2 6= p, r2 =
Start1 and k2 = start(θ, e, succ, node), for some control (θ, e)

• one is a forward transition that starts node, i.e., r1 = Start1 and the other
is a backward transition that undoes a (failed) spawn of a process in node,
i.e., r2 = Spawn2 and k2 = spawn(θ, e, node, p′′), for some control (θ, e).

• one is a forward transition that applies rule Nodes , i.e., reads the value of Ω,
and the other is a backward transition that applies rule Start1, i.e., starts
a new node, with p1 = p 6= p2.

56

• one is a forward transition that applies rule Start1, i.e., starts a new node,
and the other is a backward transition that applies rule Nodes , i.e., reads
the value of Ω.

• one is a forward transition that tried to start node, and the other is a back-
ward transition that applies rule Start1 and undoes the creation of node, i.e.,
p2 6= p, r2 = Start1, and k2 = start(θ, e, succ, node), for some control (θ, e).

Two coinitial transition are concurrent if they are not in conflict.

Below we prove that this definition of concurrency makes sense by proving the square
lemma, a fundamental result to prove causal consistency.

Lemma 3.3 (Square lemma). Given two coinitial concurrent transitions t1 = (s⇌p1,r1,k1

s1) and t2 = (s⇌p2,r2,k2 s2), there exist two cofinal transitions t2/t1 = (s1 ⇌p2,r2 s
′) and

t1/t2 = (s2 ⇌p1,r1 s
′). Graphically,

s
p1,r1 /

p2,r2
�

s1o

s2

O
=⇒

s
p1,r1 /

p2,r2

�

s1
p2,r2
�

o

s2 p1,r1
/

O

s′

O

o

Proof. We distinguish the following cases depending on the applied rules:

(a) Two forward transitions. Then we have the following cases:

• Two transitions t1 and t2 where r1 6= Sched and r2 6= Sched. Trivially, they
apply to different processes, i.e., p1 6= p2. There are few problematic cases,
we will now analyse them:

i) t1 starts a node and t2 spawns a process, if both rules consider the same
node, and this one is not part of the network yet, by applying t1 to p2
and t2 to p1 we would end up in two different systems.

ii) both transitions start a node that is not part of Ω yet, if both rules
consider the same node by applying t1 to p2 and t2 to p1 we would end up
in two different systems, one system would be the one where p1 succeeded
in the creation of the node and p2 failed, and the other would the one
where p1 failed and p2 succeeded.

iii) r1 = Start1 and r2 = Nodes , by applying t1 to p2 and t2 to p1 we would
end up in two different systems, indeed in one system the nodes history
item of p2 contains the node started by p1, in the other, since rule Start1
is applied after Nodes , the history item does not contains the node started
by p1.

57

Nonetheless, i, ii, iii are not concurrent transitions, therefore, such situations
cannot happen. Then, for the remaining cases, we can easily prove that by
applying rule r2 to p1 in s1 and rule r1 to p2 in s2 we have two transitions t1/t2
and t2/t1 which produce the corresponding history items and are cofinal.

• One transition t1 which applies rule r1 = Sched to deliver message {λ1, v1} to
process p1 = p, and another transition which applies a rule r2 different from
Sched. All cases but r2 = Receive with p2 = p and k2 = rec(θ, e, {λ2, v2}, q)
are straightforward. Note that λ1 6= λ2 since these identifiers are unique.
Here, by applying rule Receive to s1 and rule Sched to s2 we will end up with
the same mailbox in p (since it is a FIFO queue). However, the history item
rec(θ, e, {λ2, v2}, q′) will be necessarily different since q 6= q′ by the application
of rule Sched. This situation, though, cannot happen since transitions using
rules Sched and Receive are not concurrent.

• Two transitions t1 and t2 with rules r1 = r2 = Sched delivering messages
{λ1, v1} and {λ2, v2}, respectively. Since the transitions are concurrent, they
should deliver the messages to different processes, i.e., p1 6= p2. Therefore, we
can easily prove that delivering {λ2, v2} from s1 and {λ1, v1} from s2 we get
two cofinal transitions.

(b) One forward transition and one backward transition. Then, we distinguish the
following cases:

• If the two transitions apply to the same process, i.e., p1 = p2, then, since they
are concurrent, we can only have r1 = Sched and a rule different from both
Sched and Receive, or r1 = Sched and a rule different from both Sched and
Receive. In these cases, the claim follows easily by a case distinction on the
applied rules.

• Let us now consider that the transitions apply to different processes, i.e.,
p1 6= p2, and the applied rules are different from Sched and from Sched. In
this case, the claim follows easily except when:

i) one transition considers a process p and the other one undoes the spawn-
ing of the same process p.

ii) one transition considers the spawn of a process on a node and the other
one undoes the start of the same node.

iii) one transition applies a Nodes on a process, say p1, and the other undoes
the start of a node.

iv) one transition applies a Start1 and the other undoes a Nodes .
These cases, however, are not allowed since the transitions are concurrent.

58

• Finally, let us consider that the transitions apply to different processes, i.e.,
p1 6= p2, and that one transition applies rule Sched to deliver a message {λ, v}
from sender p to receiver p′, i.e., p1 = p′, r1 = Sched and k1 = sched({λ, v}).
In this case, the other transition should apply a rule r2 different from Send
with k2 = send(θ, e, p′, {λ, v}) for some control (θ, e) since, otherwise, the
transitions would not be concurrent. In any other case, one can easily prove
that by applying r2 to s1 and Sched to s2 we get two cofinal transitions.

(c) Two backward transitions. We distinguish the following cases:

• If the two transitions apply to different processes, the claim follows easily,
except when:

i) one rule is Start1, and the other is Nodes , and the started node is not
part of the nodes read by Nodes , however, this case is not allowed by the
side condition of the backward rule Nodes .

ii) r1 = Start2, r2 = Start1 and k1 = start(θ, e, fail, node),
k2 = start(θ, e, succ, node), however, this case is not allowed from rule
Start1.

iii) one rule is Start1, and the other is Spawn1 , and the spawned process is
on the node started by Start1 , however, this case is not allowed by the
side condition of the backward rule Start1 .

iv) one rule is Start1, and the other is Spawn2 , and the spawned process
does not exists because the node was not part of the network at the time
of the spawn, however, this case is not allowed by the side condition of
the backward rule Spawn2 .

• Let us now consider that they apply to the same process, i.e., p1 = p2 and
that the applied rules are different from Sched. This case is not possible
since, given a system, only one backward transition rule different from Sched
is applicable (i.e., the one that corresponds to the last item in the history).

• Let us consider that both transitions apply to the same process and that both
are applications of rule Sched. This case is not possible since rule Sched can
only take the newest message from the local queue of the process, and thus
only one rule Sched can be applied to a given process.

• Finally, consider that both transitions apply to the same process and only
one of them applies rule Sched. In this case, the only non-trivial case is when
the other applied rule is Receive, since both change the local queue of the
process. However, this case is not allowed by the backward semantics, since
the conditions to apply rule Sched and rule Receive are non-overlapping.

59

Now, in [1] more results have been proved in order to prove finally causal consistency,
here we take a different approach and we will rely on the results shown in [12].

The main goal of the paper is to simplify the work required to demonstrate properties
like causal-consistency. In order to obtain such result they consider an abstract model,
i.e., a labelled transition system with independence equipped with reverse transitions,
and use a small set of axioms to demonstrate desirable properties of the system.

Now, if we prove that those axioms hold for our reversible system we get for free the
proofs of the most relevant properties.

More precisely, we have to show that five axioms are true: Square Property (SP),
Backward Transitions are Independent (BTI), Well-Foundedness (WF), Coinitial Prop-
agation of Independence (CPI), and Coinitial Independence Respects Event (CIRE).

Now let us discuss the validity of the axioms. First, SP is proved in Lemma 3.3, BTI
is trivial from the definition of concurrency (Definition 3.7), and WF holds since the pair
of integers (total number elements in histories, total number of message queued) ordered
under lexicographical order are always positive and decrease at each backward step. In-
deed, every reverse rule, but Sched, remove an item from the history and each reverse
Sched removes a message from a process’ queue. Ultimately, CPI and CIRE hold since
the notion of concurrency is given on the annotated labels, and by [12, Proposition 5.4]
Consequently, since we have proved the fundamental set of axioms following the proof
in [12] one can derive causal consistency and many other properties (an exhaustive list
can be found in [12, Table 1]).

In the remaining of this section we will show other properties which will come into
play in the next section to prove properties of the rollback semantics.

Lemma 3.4 (Switching lemma). Given two composable transitions of the form t1 =
(s1 ⇌p1,r1,k1 s2) and t2 = (s2 ⇌p2,r2,k2 s3) such that t1 and t2 are concurrent, there
exist a system s4 and two composable transitions t2⟨⟨t1 = (s1 ⇌p2,r2,k2 s4) and t1⟩⟩t2 =
(s4 ⇌p1,r1,k1 s3).

Proof. First, using the loop lemma (Lemma 3.2), we have t1 = (s2 ⇌p1,r1,k1 s1). Now,
since t1 and t2 are concurrent, by applying the square lemma (Lemma 3.3) to t1 =
(s2 ⇌p1,r1,k1 s1) and t2 = (s2 ⇌p2,r2k2 s3), there exists a system s4 such that t1⟩⟩t2 =
t1/t2 = (s3 ⇌p1,r1,k1 s4) and t2⟨⟨t1 = t2/t1 = (s1 ⇌p2,r2,k2 s4). Using the loop lemma
(Lemma 3.2) again, we have t1⟩⟩t2 = t1/t2 = (s4 ⇌p1,r1,k1 s3), which concludes the
proof.

The following auxiliary result will be crucial to prove several properties of the rollback
semantic.

Lemma 3.5 (Shortening lemma). Let d1 and d2 be coinitial and cofinal derivations,
such that d2 is a forward derivation while d1 contains at least one backward transition.

60

Then, there exists a forward derivation d′1 of length strictly less than that of d1 such that
d′1 ≈ d1.

Proof. We prove this lemma by induction on the length of d1. By the parabolic lemma
([12, Parabolic Lemma]) there exist a backward derivation d and a forward derivation d′
such that d1 ≈ d; d′. Furthermore, d; d′ is not longer than d1. Let s1 ↽p1,r1,k1 s2 ⇀p2,r2,k2

s3 be the only two successive transitions in d; d′ with opposite direction. We will show
below that there is in d′ a transition t which is the inverse of s1 ↽p1,r1,k1 s2. Moreover,
we can swap t with all the transitions between t and s1 ↽p1,r1,k1 s2, in order to obtain a
derivation in which s1 ↽p1,r1,k1 s2 and t are adjacent. To do so we apply the switching
lemma (Lemma 3.4), since for all transitions t′ in between, we have that t′ and t are
concurrent (this is proved below too). When s1 ↽p1,r1,k1 s2 and t are adjacent we can
remove both of them using ≈. The resulting derivation is strictly shorter, thus the claim
follows by inductive hypothesis.

Let us now prove the results used above. Thanks to the loop lemma (Lemma 3.2) we
have the derivations above iff we have two forward derivation which are coinitial (with
s2 as initial state) and cofinal: d; d2 and d′. We first consider the case where r1 6= Sched .
Since the first transition of d; d2, (s1 ↽p,r1,k1 s2), adds item k1 to the history of p1 and
such item is never removed (since the derivation is forward), then the same item k1 has
to be added also by a transition in d′, otherwise the two derivation cannot be cofinal.
The earliest transition in d′ adding item k1 is exactly t. Let us now justify that for each
transition t′ before t in d′ we have that t′ and t are concurrent. First, t′ is a forward
transition and it should be applied to a process which is different from p1, otherwise
the item k1 would be added in the wrong position in the history of p1. We consider the
following cases:

• If t′ applies rule Spawn1 to create process p, then t should not apply to process p
since the process p1, to which t applies, already existed before t′. Therefore, t′ and
t are concurrent.

• If t′ applies rule Send to send a message to some process p, then t cannot deliver
the same message since we know that t is not a Sched since it adds k1 to the
history. Thus, t and t′ are concurrent.

• If t′ applies rule Start1 to start a node, then t should not apply rule Nodes oth-
erwise the two systems could not possibly be cofinal, indeed in one system the
history item of rule Nodes would contain the node started by Start1 and the other
would not. Thus, t and t′ are concurrent.

• If t′ applies rule Start1 to start a node, then t should not spawn a process on
the node started by t′, indeed if that was the case we would end up with two

61

different systems, one where the spawn was successful and one where the spawn
failed. Thus, t and t′ are concurrent.

• If t′ tries to spawn a process and fails, i.e., applies rule Spawn2, then t should not
start the node which made the spawn fail, otherwise the two systems would not be
cofinal. Thus, t and t′ are concurrent.

• If t′ applies rule Nodes, then t should not apply rule Start1, otherwise the history
item created by the application of rule Nodes would be different in the two systems
and consequently they would not be cofinal. Thus, t and t′ are concurrent.

• If t′ applies some other rules, then t′ and t are clearly concurrent.

Now we consider the case r1 = Sched with k1 = sched({λ, v}), so that (s1 ↽p1,Sched,k1
s2)

adds a message {λ, v} to the queue of p1. We now distinguish two cases according to
whether there is in d; d2 an application of rule Receive or not:

• If the forward derivation d; d2 contains no application of rule Receive to p1 then,
in the final state, the queue of process p1 contains the message. Hence, d′ needs to
contain the a Sched for the same message. The earliest such Sched transition in
d′ is exactly t.

Let us now justify that for each transition t′ before t in d′ we have that t′ and t
are concurrent. Consider the case where t′ applies rule Sched to deliver a different
message to the same process p1. Since no receive would be performed on p1 then
the queue will stay different, and the two derivations could not be cofinal, hence
this case can never happen. In all other cases the two transitions are concurrent.

• If the forward derivation d; d2 contains at least an application of Receive to p1, let
us consider such first application. In order for the two derivations to be cofinal,
the same history item needs to be created in d′. The queue stored in k2 has a suffix
{λ, v} : q, hence also in d′ the first Sched delivering a message to p1 should deliver
message {λ, v} : q. Since there are no other Sched nor Receive targeting p1 then
the Sched delivering message {λ, v} to p1 is concurrent to all previous transitions
as desired.

3.4 Rollback semantics
In this section, we introduce a rollback semantics which will allow the user to undo
automatically several steps in a causal-consistent way, until the system reaches a specified

62

(U − Satisfy)
Γ;Π;Ω↽p,r,Ψ′ Γ′; Π′; Ω′ ∧ ψ ∈ Ψ′

ddΓ;Π;Ωee{p,ψ}+Ψ ⇝ ddΓ′; Π′; Ω′eeΨ

(U − Sched1)
Γ;Π;Ω↽p,r,{s,λ′sched} Γ

′; Π′; Ω′ ∧ λ′sched 6= λsched

ddΓ;Π;Ωee{p,λsched}+Ψ ⇝ ddΓ′; Π′; Ω′ee{p,λsched}+Ψ

(U − Sched2)
∀λ′ ∈ N Γ;Π;Ω 6↽p,r,{s,λ′sched} ∧ Γ;Π;Ω↽p,r,Ψ Γ′; Π′; Ω′

ddΓ;Π;Ωee{p,λsched}+Ψ ⇝ ddΓ′; Π′; Ω′ee{p,λsched}+Ψ

(U −Act1)
Γ;Π;Ω↽p,r,Ψ′ Γ′; Π′; Ω′ ∧ ψ /∈ Ψ′ ∧ λsched /∈ Ψ′ ∧ ψ 6= λsched ∀λ ∈ N

ddΓ;Π;Ωee{p,ψ}+Ψ ⇝ ddΓ′; Π′; Ω′ee{p,ψ}+Ψ

(U −Act2)
Γ;Π;Ω 6↽p,r,Ψ′ ∧ ψ /∈ Ψ′ ∧ Γ;Π;Ω↽p,r,{s,λsched} Γ

′; Π′; Ω′ ∧ ψ 6= λsched ∀λ ∈ N
ddΓ;Π;Ωee{p,ψ}+Ψ ⇝ ddΓ′; Π′; Ω′ee{p,ψ}+Ψ

(Send)
Γ; 〈node, p, send(θ, e, p′, {λ, v}) : h, (θ′, e′), q〉 |Π;Ω 6↽p,r,Ψ′

ddΓ; 〈node, p, send(θ, e, p′, {λ, v}) : h, (θ, e), q〉 |Π;Ωee{p,ψ}+Ψ

⇝ ddΓ; 〈node, p, send(θ, e, p′, {λ, v}) : h, (θ′, e′), q〉 |Π;Ωee({p′,λsched},{p,ψ})+Ψ

(Spawn1)
Γ; 〈node, p, spawn(θ, e, node′, p′) : h, (θ′, e′), q〉 |Π;Ω 6↽p,r,Ψ′ exists(p′,Π) = true

ddΓ; 〈node, p, spawn(θ, e, node′, p′) : h, (θ, e), q〉 |Π;Ωee{p,ψ}+Ψ

⇝ ddΓ; 〈node, p, spawn(θ, e, node′, p′) : h, (θ, e), q〉 |Π;Ωee({p′,s},{p,ψ})+Ψ

(Spawn2)
Γ; 〈node, p, spawn(θ, e, node′, p′) : h, (θ′, e′), q〉 |Π;Ω 6↽p,r,Ψ′ exists(p′,Π) = false

ddΓ; 〈node, p, spawn(θ, e, node′, p′) : h, (θ, e), q〉 |Π;Ωee{p,ψ}+Ψ

⇝ ddΓ; 〈node, p, spawn(θ, e, node′, p′) : h, (θ, e), q〉 |Π;Ωee({p′′,stnode′},{p,ψ})+Ψ

where p′′ = node_parent(node′,Π)

(Nodes)
Γ; 〈node, p, nodes(θ, e,Ω) : h, (θ′, e′), q〉 |Π;Ω′ 6↽p,r,Ψ

ddΓ; 〈node, p, nodes(θ, e,Ω) : h, (θ, e), q〉 |Π;Ω′ee{p,ψ}+Ψ′

⇝ ddΓ; 〈node, p, nodes(θ, e,Ω) : h, (θ, e), q〉 |Π;Ω′ee({p′,stnode′},{p,ψ})+Ψ

where node′ = fst(list(Ω′ \ Ω)) ∧ p′ = node_parent(node′,Π)

(Start)
Γ; 〈node, p, start(θ, e, succ, node′) : h, (θ′, e′), q〉 |Π;Ω′ 6↽p,r,Ψ

ddΓ; 〈node, p, start(θ, e, succ, node′) : h, (θ, e), q〉 |Π;Ω′ee{p,ψ}+Ψ′

⇝ ddΓ; 〈node, p, start(θ, e, succ, node′) : h, (θ, e), q〉 |Π;Ω′ee({p′,ψ′},{p,ψ})+Ψ

where p′ = fst(reads(node,Π)) ∧ ψ′ = {s} if reads(node,Π) 6= []
or p′ = fst(tried_starts(node,Π)) ∧ ψ′ = {s} if tried_starts(node,Π) 6= []

or p′′ = fst(procs(node′,Π)) ∧ p′ = proc_parent(p′′,Π) ∧ ψ′ = {spp′′}

Figure 3.11: Rollback semantics

63

state. The rollback operator that we are about to introduce has been strongly inspired
by the one introduced in [13].

Similarly to what we have done for the reversible semantics, also here we make use
of auxiliary functions, the reader will find an informal description of the function in this
section every time one is used, instead for a formal description the user can refer to
Appendix A.

Usually, when it comes to debugging the user has an idea where the bug is located
and if the computation proceeds too much it might be tedious for him/her to undo it
step by step, therefore we introduce the rollback operator.

We denote a system in rollback mode by ddsee{p,ψ}, where the subscript means that
we wish to undo the action ψ performed by process p, and, of course, every action which
depends on it. More in general, the subscript of ddee, often depicted with Ψ or Ψ′, can
be seen as a stack of requests that need to be undone, once this stack is empty it means
that the system has reached the state desired by the user. In this work, we consider the
following kinds of requests:

• {p, s}: a step back for the process p

• {p, λ⇓}: a backward derivation of process p up to the receiving of the message
uniquely identified by λ

• {p, λ⇑}: a backward derivation of process p up to the sending of the message
uniquely identified by λ

• {p, λsched}: a backward derivation until the scheduling of the message uniquely
identified by λ

• {p, stnode}: a backward derivation of process p up to the start of node

• {p, spp′}: a backward derivation of process p up to the spawn of p′

Moreover, this is where the labels introduced in the backward semantic of Fig.3.7
come into play. Formerly, we defined the backward semantics in terms of the relation
↽p,r,Ψ, where:

• p represents the pid of the process which is performing the backward transition

• r represents the rule applied

• Ψ represents the requests satisfied by the backward transition

The controlled rules for the rollback semantics are shown in Fig. 3.11, and we will now
proceed to analyse them.

64

Here, we have two kind of rules, the ones belonging to the first kind are those rules
prefixed by U , these five rules are the ones actually performing a step back, then, the
ones belonging to the second kind are the remaining rules, and those are the rules which
push another request on the top of the stack because a consequence of the action that
we desire to undo has to be undone beforehand.

Example 3.5. In Fig. 3.12 and Fig. 3.13 one can see the rollback semantics in action.
In order to have a more readable and coincise derivation we used C[e] to represents the
context, where e is the next expression which needs to be evaluated. Where possible
we underline the element of the history which influence the application of the next rule,
unfortunately that is not always possible because sometimes we need to undo τ -actions
that are not show in the history.

As one can see, to satisfy the request the semantics starts to undo steps on the
targeted process, then once it founds itself stuck it starts to push new requests on top
of the stack in order to undo the action which has a causal dependency on the primary
request. Then, once all the consequences of the start have been undone the semantics
proceed to satisfy the user’s request.

Let us begin with the rules of the first kind. The rollback semantics has to undo only
the actions that are in the stack, and every action which depends on one of them, the
remaining actions must not be undone.

During the process of rolling back, it might happen that more than one backward
rule could be applied to a process, i.e., a Sched and another one, therefore we need to
ensure that the minimum amount of backward steps are performed.

Intuitively, since rules Sched do not commute, i.e., they have to be undone in the
same order as they have been performed during the forward computation in order to
ensure causal-consistency, if our goal is to undo a Sched and more than one backward
rule can be applied we have to choose the Sched, regardless of the fact that the Sched
undoes the scheduling of the "right" message or not (the right message is the one iden-
tified by the λ in the request on top of the stack). Similarly, if we aim to undo every
action different from Sched and we have more than one option available we need to go
for the action which is not a Sched . In both situations, if we have only one backward
rule available, obviously, we have to undo that one. Rules prefixed by U ensure exactly
this property.

Now, let us now discuss the rules of the second kind by making a premise: every time
that we apply one of these rules it means that not all the criteria required to perform
a backward step, on the desired process, are met. Therefore, in order to meet all the
criteria and to ensure causal-consistency we need to push onto the stack of requests new
requests in order to undo all the consequences of the desired action.

Let us start with rule Send. In this scenario rule Send cannot be undone because
the message is not in Γ, the global mailbox, therefore that means that the message has

65

been delivered to the receiver, and rule Sched is the only one able to remove a message
from Γ. Hence, in order to undo the send we have first to undo the Sched, to that end
we push on top of the stack of request {p′, λsched}, in other words we first need to undo
the Sched which has delivered the message.

Rule Spawn1 is the one that we apply when we intend to undo the successful spawn
of a process, say p1, but p1 has not an empty history. For this reason, we push the
request of a step back for p1, then once the step back has been performed we check if it
is possible to undo the spawn or not, if yes we undo it, if no we push again the request
for a step back of p1. Since there is no infinite backward computation, sooner or later,
the criteria required to undo the spawn, i.e., an empty history and an empty queue of
messages, will be met and the spawn will be undone.

Then, we have rule Spawn2 , which takes care of undoing a failed spawn; a failed
spawn cannot be undone if someone started the node which was not part of Ω when the
spawn failed, therefore if this node is now part of Ω we have to undo its start first, and
we do so by pushing the request {p′′, stnode}, where p′′ represents the pid of the process
which started the node. Here, the auxiliary function node_parent scans the system
searching for the process responsible for the start of node′.

Moving on, we have rule Nodes. This rule cannot be undone if the Ω saved in the
history item is not identical to the one of the system, because otherwise if we undo the
nodes and then we redo it we would obtain a different result, entering thus a new state.
To this end, if this condition is not met we push, one by one, the request of undoing the
nodes contained in the difference of the two sets. The decision of pushing these requests
one by one is due to the fact that by adding them all together we could face a tricky
situation. Indeed, one of the requests, say {p, ψ}, in Ψ could have depended on one of
the deepest requests, and then while undoing {p, ψ} we would have had to undo also the
dependency, i.e., pushing on the stack a request which is already present, having then
two identical requests in the stack. Let us clarify this scenario with an example.

Example 3.6. Let say that we have a system with two processes, p1 and p2, running
in the same node, i.e., node1, now p1 perform a nodes, then it starts a new node, node2,
and finally it sends a message to p2. Now, p2 receives the message from p1 and then
starts another node, node3. In this scenario, in order to undo the nodes performed by
p1 we first need to undo the start of node2 and node3, but if we push all the requests
together and we push {p1, stnode2} after {p2, stnode3}, i.e., we have a stack of the form
{p1, stnode2}, {p2, stnode3}, {p1, ψ}. Then, in order to undo the start of node2, we need to
undo the send, in order to undo the send we have to undo the sched, to undo the sched
we need to undo the receive, and ultimately before undoing the receive we have to undo
the start of node3.

A possible solution to Example 3.6 would be to perform a deep analysis of the stack
when a start is removed, to check if there are other occurrences of the same start, but

66

this solution is intricate and to keep things as simple as possible we decided to push the
requests one by one.

At the end, we have rule Start , which pushes requests on the stack when it is not pos-
sible to undo the successful start of the node identified by the history item (we will refer
to it as node′). A successful start cannot be undone if there are processes still running
on the node, or if someone read the node by means of rule Nodes, or if someone tried
to start the same node and failed because the node was already part of Ω. Since here
as well some of the consequences, that we have to undo, could have some dependencies
we decided to push one request at the time, again to avoid the deep check on the stack
and to keep things simple. Here, the auxiliary function reads scans the system searching
for the pids of the processes which have applied rule Nodes when node′ was part of Ω,
similarly tried_start scans the system searching for processes who tried to start node′
and failed, then we have procs which returns the list of processes currently running on
node′, and lastly proc_parent given the pid of a process returns the pid of its parent.

Now let us move our focus on the relation ⇝; one could say that ⇝ is a controlled
version of the uncontrolled reversible semantics presented in Section 3.3. Moreover, we
can observe that for each derivation of the controlled rollback semantics there is an
equivalent derivation of the uncontrolled reversible semantics, while the opposite is not
generally true. In the following of this section we will formalise this claim, but before
proceeding we need some notation. The notions of transition and derivation are easily
extended to controlled derivation. Now we provide a notion of projection from controlled
systems to uncontrolled ones:

uctrl(ddΓ;Π;ΩeeΨ) = Γ;Π;Ω

The notion of projection trivially extends to derivations.

Proof. Trivially by inspection of the controlled rules, noting that rules prefixed by U
execute an uncontrolled backward step, and the remaining ones do some bookkeeping
which is removed by function uctrl.

Moreover, our controlled semantics is not only causal-consistent but also minimal,
this means that in order to satisfy the first request on Ψ, and consequently every other
request in Ψ, we undo the least amount of steps which allow us to satisfy such requests.

In order to prove this we need to restrict our attention to those requests which require
us to rollback transitions that are in the past of the process.

Definition 3.8. A controlled system c = ddsee({p,ψ}) is well initialised iff there exist
a derivation d under the reversible semantics, a system s0 = init(d), an uncontrolled
derivation s0 ⇌∗ s, and an uncontrolled backward derivation from s satisfying {p, ψ}. A
controlled derivation d is well initialised iff init(d) is well initialised.

67

The existence of a derivation satisfying the request can be easily checked in O(n) time,
where n is the length of the process’ history. We proceed now to prove that controlled
derivations are finite.

Lemma 3.6. Let d a well initialised derivation. Then d is finite.

Proof. First note that uctrl(d) is finite. Indeed, for rollback request, the total length is
bounded by the length of histories and by the number of messages exchanged.
In addition to lifting the uncontrolled steps, the controlled semantics also takes some
administrative steps. If we show that between each pair of uncontrolled steps there
is a finite amount of administrative steps then the thesis follow. Let us consider the
rollback semantics. Rule Sched is bounded by the number of messages exchanged. Rule
Spawn1 can be applied only a limited amount of times since the history of the targeted
process is finite, rule Spawn2 can be applied only one time for each process, rule Nodes
is bounded by the number of nodes of the system. Ultimately, rule Start is bounded
because the number of reads that other process have performed, which is finite because
their history is finite, plus the number of failed start, again bounded for the finiteness of
the history, plus the number of processes still running in the node is a finite value. The
thesis follow.

We can now show that all the uncontrolled transitions executed as a consequence of
a rollback request depend on the action that needs to be undone.

Theorem 3.1. For each well-initialised controlled system c = ddΓ;Π;Ωee({p,ψ}) consider
a maximal derivation d with init(d) = c. Let us call t the last transition in uctrl(d). We
have that t satisfies {p, ψ}, and for each transition t′ in uctrl(d), t′ ⇝ t.

Proof. We can prove that t satisfies the request {p, ψ} by inspections of the rules, since
a derivations only terminates when the request at the bottom of the stack is removed,
and this is always the original request {p, ψ}. In order to show this we need to show
that the controlled semantics never gets stuck, otherwise namely that if the uncontrolled
semantics gets stuck a new request is generated. This can be shown by contrasting
uncontrolled and controlled rules.
Now let us move to the second part of the thesis. We will show two invariants of the
derivation. First, consider transitions t1 and t2 satisfying two rollback requests {p1, ψ1}
and {p2, ψ2} on the stack, such that {p1, ψ1} is on top of {p2, ψ2}. Then t1 ⇝ t2. Second
if t1 satisfies the request on top of the stack, and transition t3 is performed, then t1 ⇝ t3.
Both invariants can be proved by inspection of the rules. The thesis then follow by
transitivity of ⇝.

We conclude the section by proving that we undo the least amount of step for each
request, but before doing so we need to prove another result.

68

Proposition 3.1 (Confluence). Let s be a system in the uncontrolled reversible seman-
tics. If s⇌∗ s1 and s⇌∗ s2 then there exists s3 such that s1 ↽∗ s3 and s1 ↽

∗ s3.

Proof. Let s0 be the system obtained from s by undoing all the actions. Consider the
derivation s0 ⇀∗ s⇌∗ s1, where the first part exists from the loop lemma (Lemma 3.2).
From the parabolic lemma ([12, Parabolic Lemma]) we have s0 ↽∗⇀∗ s1. Since there is
no possible backward transition from s0 we have s0 ⇀∗ s1. Similarly, we get s0 ⇀ s2.
Backward confluence follows from the loop lemma.

Theorem 3.2 (Minimality). Let d be a well-initialised controlled derivation such that
init(d) = ddsee({p,ψ}). Derivation uctrl(d) has minimal length among all uncontrolled
derivations d′ with init(d′) = s including at least one transition satisfying {p, ψ}.

Proof. Take an uncontrolled derivation d′ satisfying the premises. By definition d and d′
are coinitial. We can assume that there is in d′ a unique transition satisfying the request
and that is the last transition in d′. For backward derivations, by backward confluence
(Prop. 3.1) we can extend the derivation to cofinal derivation d′; d′′ and uctrl(d); d′′′ with
d′′ and d′′′ backward. Thanks to the shortening lemma (Lemma 3.5) we can assume d′; d′′
to be backward too. By causal consistency the two derivation are causally equivalent,
and since they are backward they differ only for swap of concurrent actions. Note
that for each request there is a unique action satisfying it, hence there is a sequence of
swaps of independent transitions transforming d′; d′′ into uctrl(d); d′′′. Assume towards
a contradiction that length(d′) < length(d). Then t in d′ must be swapped with some of
the transitions following t in uctrl(d), but this is impossible thanks to Theorem 3.1.

69

dd{ }; 〈n1,p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2), send(_,_, r1,m1),
send(_,_, r2,m2)], (_, C[go], []〉 | 〈n1, r1, [rec(_,_,m2, [m2]),
start(_,_, fail, n2)], (id, C[loser]), []〉 | 〈n1, r2, [rec(_,_,m1, [m1]),
start(_,_, succ, n2)], (id, C[winner]), []〉 ; {n1, n2}ee({r2,stn2})

⇝U−Act1 dd{ }; 〈n1,p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2), send(_,_, r1,m1),

send(_,_, r2,m2)], (_, C[go], []〉 | 〈n1, r1, [rec(_,_,m2, [m2]),
start(_,_, fail, n2)], (id, C[loser]), []〉 | 〈n1, r2, [rec(_,_,m1, [m1]),
start(_,_, succ, n2)], (id, C[case ok of . . .]), []〉 ; {n1, n2}ee({r2,stn2})

⇝U−Act1 dd{ }; 〈n1,p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2), send(_,_, r1,m1),

send(_,_, r2,m2)], (_, C[go], []〉 | 〈n1, r1, [rec(_,_,m2, [m2]),
start(_,_, fail, n2)], (id, C[loser]), []〉 | 〈n1, r2, [rec(_,_,m1, [m1]),
start(_,_, succ, n2)], (id, C[case R of . . .]), []〉 ; {n1, n2}ee({r2,stn2})

⇝Start dd{ }; 〈n1,p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2), send(_,_, r1,m1),
send(_,_, r2,m2)], (_, C[go], []〉 | 〈n1, r1, [rec(_,_,m2, [m2]),
start(_,_, fail, n2)], (id, C[loser]), []〉 | 〈n1, r2, [rec(_,_,m1, [m1]),
start(_,_, succ, n2)], (id, C[winner]), []〉 ; {n1, n2}ee({r1,s})+Ψ

⇝U−Act1 dd{ }; 〈n1,p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2), send(_,_, r1,m1),

send(_,_, r2,m2)], (_, C[go], []〉 | 〈n1, r1, [rec(_,_,m2, [m2]),
start(_,_, fail, n2)], (id, C[case error of . . .]), []〉
| 〈n1, r2, [rec(_,_,m1, [m1]), start(_,_, succ, n2)],
(id, C[winner]), []〉 ; {n1, n2}ee({r2,stn2})

⇝Start dd{ }; 〈n1,p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2), send(_,_, r1,m1),
send(_,_, r2,m2)], (_, C[go], []〉 | 〈n1, r1, [rec(_,_,m2, [m2]),
start(_,_, fail, n2)], (id, C[case error of . . .]), []〉
| 〈n1, r2, [rec(_,_,m1, [m1]), start(_,_, succ, n2)],
(id, C[winner]), []〉 ; {n1, n2}ee({r1,s})+Ψ

⇝U−Act1 dd{ }; 〈n1,p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2), send(_,_, r1,m1),

send(_,_, r2,m2)], (_, C[go], []〉 | 〈n1, r1, [rec(_,_,m2, [m2]),
start(_,_, fail, n2)], (id, C[case R of . . .]), []〉
| 〈n1, r2, [rec(_,_,m1, [m1]), start(_,_, succ, n2)], (id, C[winner]),
[]〉

; {n1, n2}ee({r2,stn2})

Figure 3.12: The rollback semantics applied on the final state of the program depicted
in Fig. 3.8, where Ψ represents {r2, stn2}, n1 represents the main node and n2 represents
′another@node′. (part 1/2)

70

⇝Start dd{ }; 〈n1,p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2), send(_,_, r1,m1),
send(_,_, r2,m2)], (_, C[go], []〉 | 〈n1, r1, [rec(_,_,m2, [m2]),
start(_,_, fail, n2)], (id, C[case R of . . .]), []〉
| 〈n1, r2, [rec(_,_,m1, [m1]), start(_,_, succ, n2)],
(id, C[winner]), []〉 ; {n1, n2}ee({r1,s})+Ψ

⇝U−Act1 dd{ }; 〈n1,p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2), send(_,_, r1,m1),

send(_,_, r2,m2)], (_, C[go], []〉
| 〈n1, r1, [rec(_,_,m2, [m2])], (id, C[start(another, node)]), []〉
| 〈n1, r2, [rec(_,_,m1, [m1]), start(_,_, succ, n2)],
(id, C[winner]), []〉 ; {n1, n2}ee({r2,stn2})

⇝U−Act2 dd{ }; 〈n1,p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2), send(_,_, r1,m1),

send(_,_, r2,m2)], (_, C[go], []〉
| 〈n1, r1, [rec(_,_,m2, [m2])], (id, C[start(another, node)]), []〉
| 〈n1, r2, [rec(_,_,m1, [m1]), start(_,_, succ, n2)],
(id, C[case ok of . . .]), []〉 ; {n1, n2}ee({r2,stn2})

⇝U−Act2 dd{ }; 〈n1,p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2), send(_,_, r1,m1),

send(_,_, r2,m2)], (_, C[go], []〉
| 〈n1, r1, [rec(_,_,m2, [m2])], (id, C[start(another, node)]), []〉
| 〈n1, r2, [rec(_,_,m1, [m1]), start(_,_, succ, n2)],
(id, C[case R of . . .]), []〉 ; {n1, n2}ee({r2,stn2})

⇝U−Act1 dd{ }; 〈n1,p, [spawn(_,_, n1, r1), spawn(_,_, n1, r2), send(_,_, r1,m1),

send(_,_, r2,m2)], (_, C[go], []〉
| 〈n1, r1, [rec(_,_,m2, [m2])], (id, C[start(another, node)]), []〉
| 〈n1, r2, [rec(_,_,m1, [m1])], (id, C[start(another, node)]), []〉 ; {n1, n2}ee()

Figure 3.13: The rollback semantics applied on the final state of the program depicted
in Fig. 3.8, where Ψ represents {r2, stn2}, n1 represents the main node and n2 represents
′another@node′. (part 2/2)

71

Chapter 4

Distributed CauDEr

In this chapter we will discuss the implementation of the debugger and how it works
from the user perspective. The first section will describe the already existent CauDEr,
then the second section will describe how it has been expanded in order to support the
distributed functions and how it changed. Furthermore, in the second section we will
provide examples of bugged programs, which display typical problems of concurrent and
distributed programming and we will show how CauDEr can be used to detect those
bugs.

4.1 CauDEr
In [1] CauDEr has been presented, here we remind the reader that CauDEr is a reversible
debugger designed for Core Erlang, a much simpler version of Erlang, indeed Core Erlang
works as an intermediate representation of a program during its compilation. However,
since it would not be practical for the user to write programs directly in Core Erlang
the debugger automatically translates the Erlang source code into Core Erlang, having
then the advantage of dealing with a simple language while offering the user the ability
to write Erlang programs.

The debugger works as follow: first the user has to select the Erlang source file, then
the file is compiled into Core Erlang, if the compilation succeeds CauDEr will show the
user the Core Erlang source code and the user can choose which function will be the
entry point of the program and feed to it its arguments, if the compilation fails then
an error is returned. Hence, the user can execute the program both in a forward and a
backward manner, searching for the misbehaviour.

Fig. 4.1 shows a screenshot of CauDEr after loading and executing a program.
On one hand, by selecting the Code tab one can see the Core Erlang source code of

the program loaded by the user. On the other hand, by selecting the tab State it will be
shown the state of the program, where GM represents the global mailbox, i.e., Γ. Then,

72

Figure 4.1: CauDEr after starting a program

below GM we have listed all the processes of the system, i.e., Π.
Each process is introduced by its pid and the name of the function followed by the

number of arguments required.
For each process we have the local mailbox, represented by LM, the history, repre-

sented by H, the environment, represented by ENV and finally EXP, which represents
the next expression that needs to be evaluated. For both history and environment we
have two modalities, full and concise, as the names of the modalities suggest one shows
every single piece of information about the process, while the other focus only on the
interesting facts. More precisely, if we choose the "concise mode" for the history then
CauDEr will show us only the application of rules receive, send, and spawn, conversely
if we choose the "full history" CauDEr will show us every rule which has been applied.
The same goes for the environment, if we choose "concise mode" CauDEr will show us

73

only the environment for those variables occurring in the current expression, conversely
if we choose "full environment" CauDEr will show us every variable of the process.

Now, to execute the program the user can choose between three modes: Manual,
Automatic and Rollback. If the user chooses manual then (s)he can select which process
has to perform the step, by means of its pid, and if the step has to be forward or backward.
The granularity offered by this mode is the finest possible. Here, it is important to stress
that the button which performs a step back will be active only when all the consequences
of the action, if any, have been undone beforehand.

Of course, executing a program only with the manual mode would be tedious and
unproductive, that is why the automatic mode has been implemented as well. While in
automatic mode the user can choose the number of steps that (s)he wants to perform
and in which direction, then the debugger will perform the steps halting himself once it
has performed all of them or in case the system has reached a final state. Here, there
are two modalities for the scheduler which will decide who is performing every single
step. The first modality is called Random mode, i.e., CauDEr will randomly choose an
available move of the system and will perform it, the second one is called Random (Prio.
Proc.) mode, while in this mode CauDEr, if available, will always prefer to perform a
step on one of the processes of the system, if no one of the processes can move then a
rule Sched, if available, will be applied.

The third mode is the rollback mode, which allows the user to perform steps back
until a particular state of the program is reached, to do so the user can express which
state he wishes to reach, for instance the spawning of a particular process, and then hit
the Roll button. After doing so, the debugger will automatically roll the system up to
that point, by undoing every action which was a consequence of the original request of
the user and finally it will undo the user’s request itself, reaching the desired state.

Moreover, in the right bottom corner of the program we have more useful information
about the computation of the system. If we choose the Trace tab we will see the trace
of the program, i.e., which messages have been sent and to whom, which messages have
been received and finally which processes have been spawned and by who. Conversely,
by selecting the Roll Log tab, we can choose to see the rollback log which will tell us
what relevant actions have been undone while performing the rollback.

Lastly, let us briefly discuss the implementation. CauDEr has been implemented in
a modular way, so that it is possible to extract the source files with the semantics and
reuse them in different projects. Indeed, each semantics has its own module, then we
have a module named cauder.hrl which is the module that contains the descriptions of
the tuples used to model the system, the processes, the messages and the traces, then
we have modules with utility functions, and modules for the graphic interface.

74

4.2 Distributed CauDEr
Here, we will introduce the distributed version of CauDEr, which is an extension of the
one already presented in the previous section. In Fig. 4.2 one can see a screenshot of
Distributed CauDEr while executing a program.

Some differences w.r.t. CauDEr are immediately noticeable: first of all now the state
box begins by showing the variable Nodes, which shows which nodes are part of the
network, then we can observe that each process is introduced by the information on
which node is running, followed by the function’s name and the number of arguments
required.

Moving on, we can see some changes also in the Trace box, which now contains
information about the nodes, for instance when a spawn is performed now the trace will
tell us not only which process has performed the spawn but also on which node, also it
will tell us which nodes has been started and by whom.

The Roll Log box is changed similarly to the Trace one. The only update that is not
visible from the screenshot is under the Rollback mode, indeed following the rollback
semantics presented in Section 3.4 now it is also possible to roll back up to the point
where a node has been started.

The structure of the debugger is unaltered, indeed since it was designed in a modular
way it has been sufficient to modify the modules containing the semantics and the one
containing the description of the system (cauder.hrl) to make possible for the debugger
to handle the distributed constructs (minor changes have been necessary also in other
modules, for instance to update the graphic interface).

4.2.1 Workflow
Usually, a session with CauDEr works as follow: the user loads the Erlang source file,
which is compiled into Core Erlang, subsequently the source code is shown to the user
in the tab Code, then the user can choose which function will act as an entry point and
which ones are its arguments. Successively, after pressing Start, the debugger will switch
to the State tab and will show the user the state of the system. From now on, the user
is free to execute the program, either by taking advantage of the manual mode or the
automatic mode, until the misbehaviour shows up.

When the user detects the misbehaviour then (s)he can start analysing which ones
could be the possible causes. To do so, the user can go through the State tab, or through
the Trace panel, or even through the console output (which can be found in the same
console where CauDEr has been launched). Here, the user is free to take advantage of
every feature offered by CauDEr, for instance (s)he could rollback the system up to the
point where a faulty message has been exchanged and then proceed in a forward manner
again to see what went wrong.

75

Figure 4.2: Screenshot of distributed CauDEr while executing the sleeping barber pro-
gram

Unfortunately, there is not a unique solution which works perfectly with every sce-
nario, indeed every program is unique and so are its bugs, therefore the user needs to
analyse the situation, correctly understand the logic of the program and eventually do
some tests to precisely locate the problem. Experience with concurrent and distributed
programming will help during the process of debugging because it means that the user
has already been exposed to a wide variety of problems and (s)he should also know how
to deal with them.

4.2.2 Finding concurrent bugs with CauDEr
Here, by showing different implementations of the sleeping barber, firstly introduced in
[14], we will show some scenarios where bugs typical of concurrent computation arise
and how to use CauDEr to detect and solve them. Actually, the version of the sleeping
barber that we propose here is slightly different from the canonical one, indeed we made
use also of the distributed functions, although they do not play a fundamental role.

The problem is simple, there is a barber shop with one barber who can serve one

76

client at the time, the shop has a waiting room which can host at most n clients. When
a client arrives if the barber is free then he gets served, or else if the barber is busy
and if there is enough space left in the waiting room he takes a seat and waits for his
turn, otherwise he simply leaves the shop. Once done with a customer the barber checks
if there is someone waiting in the waiting room, if yes he picks up the next client and
starts to serve him, otherwise he starts to sleep in the chair where he cuts his client’s
hair, waiting for a new customer to come and wake him up.

Here, the barber, the waiting room and the clients all exist in different nodes, the init
function starts each node and then proceeds to spawn the barber process, the waiting
room process and the process which creates the clients.

Livelock scenario

Let us consider now the program "sleeping_barber_livelock.erl", which can be found in
the GitHub repository. The entry point function takes as argument the number of seats
available in the waiting room, after firing the system and performing about 1000 forward
steps one can start to see, from the output in the console, that something went wrong,
indeed every time that a new customer shows up, he is refused because the barber is
busy and there are no available seats for waiting. This scenario should not occur, indeed
the barber takes a finite amount of time to serve a client, and we are guaranteed of this
because by analysing the trace box we can see that the barber is sending the message
{barber, done} to both the customer and the waiting room. Now, some new client can be
refused, we could face the situation of having a full waiting room and the barber busy
with a client, but if this happens systematically for every new customer something is
wrong.

One can see then, by observing the history of the barber, that the same client keeps
appearing on his seat, while this should not happen, indeed once that a customer has
received a haircut we should not see him again (it is unlikely that a customer needs a
haircut immediately after receiving one). Then, the user can rollback up to the point
where the client has been served twice and try to analyse the system in order to under-
stand what went wrong. Indeed, after serving a customer this one should be removed
from the waiting room, but by executing the program again in a forward manner it is
easy to see that this does not happen, and the list of clients in the waiting room is
always the same. Therefore, the problem must be in the line of code which takes care of
updating such list, in fact if one checks such line it is possible to notice that instead of
updating the list by removing the customer served the previous list is kept.

Bad order messaging

Let us now move to a different scenario, i.e., bad order messaging. According to [15], we
can define a bad order messaging bug as a violation of the order of the messages defined

77

by the protocol. Again, this kind of error is a logical error, therefore we will not observe
any crash of the program.

An example of this bug can be found in sleeping_barber_bad_order.erl. After loading
and executing about 500 forward steps by observing the state of the second client it is
possible to notice that something went wrong. In fact, by observing its state we can see
that the process sent a request to the room, then the room answered with the message
{room, no_space}, and this seems already weird because unless we set the room capacity
to zero then the second client should have found an available seat, but this could be
justified by a particular interleaving, i.e., the request of the client got stuck in the
global mailbox and it has been scheduled after other requests, although unlikely it is
an admissible scenario.

Nonetheless, we receive the confirmation that something went wrong when we observe
the local mailbox of the process and we discover the message {barber, done}. Clearly here
something went wrong, indeed the client has been told by the room that there was not
enough space available, then the client terminated its computation and then it received
another message from the barber stating that he has performed the cut. First of all, one
could roll back up to the point where the message {room, no_space} has been sent and
then check if the room has enough space available or not. By doing so one can see that
the room is empty, therefore unless we set its capacity to zero the room should be able
to host the client, then by performing some steps forward it is possible to see that the
room sends again a message stating that there is not enough space.

With this acquired knowledge, one can start analysing the program, in particular
the code managing new clients when the room has still available space and the barber
is busy, by doing so it is possible to see that, at line 50, there is an instruction which
is clearly misplaced, i.e., the instruction that informs the client that the room is busy,
which instead should be placed in the case below.

4.2.3 Finding distributed bugs with CauDEr
Here, we will show a faulty program which shows a problem typical of distributed com-
putation.

The scenario is the following: we have a client which produces data every n mil-
liseconds, the client wants to store the data remotely on a server since it does not have
enough space to keep all of them locally. There is a server which acts as a hub, it is
able to receive data from the client, then it forwards them to a storage node, receives a
confirmation that the storage node has saved a copy of the data locally and then sends
an acknowledgement to the client. Each storage node should host only one process and
that process is able to store at most m packets from the client, once the limit is reached
it proceeds to inform the server that its capacity has been reached (this constraint could
be imposed for various reason e.g., performance, lack of space, balancing of the load,

78

etc). The server holds a list of domains, each domain is followed by a counter, i.e., an
integer, and the server also holds an index of the list. Each time it receives a notification
from a storage server stating that this last one has reached its capacity it proceeds as
follow: if the counter of the domain pointed by the index is a multiple of five it selects the
next domain in the list, increases its counter and starts a new storage node on the new
domain, if the counter of the domain is not a multiple of five then the server increases
it and then starts a storage node on the new domain. Each domain should host at most
one node.

Violation of the protocol

Here, we will refer to the program named distributed_storage_node.erl, available in the
GitHub repository. The program shows a wrong implementation of the program de-
scribed above, as always the bug is at the application level. In order to check the
program one has to load it and then start the system, consequently it is sufficient to exe-
cute about 2000 steps forward to notice that something went wrong, indeed by checking
the Trace box one can see a warning: a start has failed because the node was already
part of the network. At first glance, the computation has proceeded correctly, but if
one then starts to analyse carefully the state of the system it will be evident that the
specifics have not been respected, indeed we have two storage processes running in the
same node.

This is a violation of the protocol described above, which could cause a slow down of
the whole system or, even worse, could obstacle the correct storing of the data. To inves-
tigate why this happened one could roll back to the reception of the message {store, full}
right before the failed start. After rolling back, since the misbehaviour happened in
the server one could proceed with the computation in the manual mode by performing
forward steps on the server. After few steps it is possible to observe that after receiving
the message the server enters the case where the index of the domain is a multiple of
5, which is correct because we have 5 storage nodes on such domain so far. Now, one
should expect the server to select the next domain in the list, increase its counter and
perform the start there, instead the server proceeds to perform the start on the selected
domain and then it selects the new domain and increases the counter. This malfunction
has occurred because few lines of code have been swapped, the server should have first
selected a new domain, increased its counter and then proceeded to start a new storage
node there.

79

Chapter 5

Related work

First, the work presented here is an extension of the one presented in [1], therefore many
elements are in common. The first element shared with [1] is the approach used to define
the semantics: that is the modular approach, indeed here as well our relation is split into
expression-level rules and system-level rules. This division allows us to simplify the work
of defining the reversible semantics, indeed since the reversible semantics affects only the
system semantics if this last one is easier consequently the reversible semantics will be
easier. The same modular approach for the semantics of Core Erlang can be found in
[13, 16, 17].

In contrast to the modular approach, we have the monolithic approach used in [18].
The monolithic semantics does not split the relation in two levels but there is a single
relation which define the behaviour of both the expression-level and the system-level.

Although a different approach for defining the semantics has been used, our work
presents also similarities with [18], i.e., the presence of a global mailbox which allows
every possible interleaving of the messages even within the same node, which we remind
is not the case for real Erlang. However, thanks to this choice extending the semantics
to a distributed system has been incredibly natural.

Another work describing the semantics of a distributed Erlang system is [17], where,
conversely to what we have done, they have provided every node with its own local
mailbox. Moreover, the semantics for message exchanging within the same node that
they use does not allow every possible interleaving, as it happens in real Erlang, indeed
the preservation of the order is guaranteed. As a consequence of this approach, they
needed rules for exchanging messages within the same node and also rules to exchange
messages between different nodes, adding a layer of complexity to the definition of the
semantics.

Regarding the reversibility part, it has also been studied in the context of CCS, by
[19, 20]. The first one is closer to our work, indeed in order to reach previous states of the
computation it makes use of memories, while in the second they propose a slightly differ-
ent syntax for CCS and then they rely on that to retrieve past states of the computation,

80

without using external devices (like memories).
Another interesting work is [21], in which Actoverse, a causal-consistent debugger for

Akka, has been presented. Among the features offered by Actoverse we have: message-
oriented breakpoints which allow the user to set breakpoints according to some conditions
specified on the messages, rollback, state inspection, message timeline and session replay.

The last one is particularly interesting, session replay allows one to replay the execu-
tion of a program given the log of a computation. Such a feature is particularly helpful
when one detects a bug, fix it, and then wants to verify that such a situation does not
happen again.

Another interesting work which studied session replay, in the context of Erlang, is [13],
in such work the "session replay" is extended with the dual notion of causal consistency,
which allows one to replay the execution of the system up to an action (conversely to
what happens in rollback mode), including all and only its causes. The possibility to
replay only action in which we are interested, and their causes, allows us to focus only in
the part of the computation of the system that we are interested in, leaving out actions
which are not related, therefore increasing the chances that the user will detect the
misbehaviour. Moreover, with [13], as already mentioned, we share the approach used
to define the rollback semantics.

81

Chapter 6

Conclusions and future work

In this work we have extended the reversible semantics for Erlang presented in [1] by
adding functions meant for distributed computing. Adding these functions has required
to introduce new rules in the reversible semantics and to re-think some of the already
existent ones, while for the rollback semantics we followed the approach proposed in [13].
Moreover, we extended the notion of system by adding a variable to keep track of which
nodes are part of the network and we also extended the tuple defining a process, adding
an atom which represents on which node the process is running.

Regarding the message exchanging although we were moving from a non-distributed
environment to a distributed one no changes were required, indeed the global mailbox
used in [1] was already able to model every possible interleaving (including the dis-
tributed ones). Then, after introducing the semantics we have proved that they enjoy
desirable properties, like the loop lemma, the square lemma, and causal consistency for
the reversible semantics and then we also proved desirable properties for the rollback
semantics, like minimality. As final step we have extended the already existent im-
plementation of CauDEr by adding such constructs and updating the graphic interface
accordingly.

As for future developments, plenty of directions still have to be explored, first of
all there are still a plethora of functions that one could add to CauDEr, then as the
number of supported functions increase it will increase also the number of dependencies
that each action will have, therefore it would be helpful to have a tool which shows
what actions need to be undone before undoing a targeted step. Already by adding
these three functions meant for distributed programming we have examples of subtle
dependencies, for instance in order to undo a nodes performed in the early stages of a
system it might be necessary to undo the creation of several nodes and processes running
on them, sometimes such relationship might not be obvious. As of now, CauDEr only
provides the user with a piece of binary information, if the action can be undone then
the backward button in the manual mode is active, otherwise it is not. Therefore, the
assistance of a graphical tool which shows what actions need to be undone in the form

82

of a tree would help the user to have a deeper understanding of the system.
Another line of research could focus its efforts in investigating ways to reduce the

amount of space required to save the histories, indeed if we want CauDEr to be exploited
also for real programs it is essential that we improve its performances.

83

Appendix A

Auxiliary functions

Here, the interested reader will find both an informal and a formal description of the
auxiliary functions used in Chapter 3 to describe the reversible semantics.

exists

Given a pid and a list of processes, returns true if the pid represents a real process.
exists(p′, []) = false
exists(p′, 〈node, p, h, (θ, e), q〉 | Π) = true if p = p′

exists(p′, 〈node, p, h, (θ, e), q〉 | Π) = exists(p′,Π) otherwise

reads

Given a node and a list of processes, returns the processes that have performed a nodes
when node was part of the network.
reads(node, []) = []
reads(node, 〈node′, p, h, (θ, e), q〉 | Π) = p+ reads(node,Π) if has_read(node, h)
reads(node, 〈node′, p, h, (θ, e), q〉 | Π) = reads(node,Π) otherwise

has_read

Given a process’ history and a node, returns the pid of the process if node has been read
by one of the nodes performed.
has_read(node, []) = false
has_read(node, nodes(θ, e,Ω) : h) = true if node ∈ Ω
has_read(node, nodes(θ, e,Ω) : h) = has_read(node, h) if node /∈ Ω
has_read(node, op(...) : h) = has_read(node, h)

84

procs

Given a node and a list of processes, returns the list of processes running in node.
procs(node, []) = []
procs(node, 〈node′, p, h, (θ, e), q〉 | Π) = p+ procs(node,Π) if node = node′

procs(node, 〈node′, p, h, (θ, e), q〉 | Π) = procs(node,Π) otherwise

proc_parent

Returns the parent of a given process.
proc_parent(p, []) = error
proc_parent(p, 〈node, p′, h, (θ, e), q〉 | Π) = p′ if has_spawned(p, h)
proc_parent(p, 〈node, p′, h, (θ, e), q〉 | Π) = proc_parent(p,Π) otherwise

has_spawned

Given a process’ pid and the history of a process, returns true if in the history the spawn
of the process is recorded, false otherwise.
has_spawned(p, []) = false
has_spawned(p, spawn(θ, e, node, p′) : h) = true if p = p′

has_spawned(p, spawn(θ, e, node, p′) : h) = has_spawned(p, h) if p 6= p′

has_spawned(p, op(...) : h) = has_spawned(p, h)

node_parent

Returns the parent of a given node.
node_parent(node, []) = error
node_parent(node, 〈node′, p′, h, (θ, e), q〉 | Π) = p′ if has_started(node, h)
node_parent(node, 〈node′, p′, h, (θ, e), q〉 | Π) = node_parent(node,Π) otherwise

has_started

Given a node and the history of a process, returns true if in the history the start of node
is recorded, false otherwise.
has_started(node, []) = false
has_started(node, start(θ, e, success, node′) : h) = true if node = node′

has_started(node, start(θ, e, success, node′) : h) = has_started(node, h) if node 6= node′

85

has_started(node, op(...) : h) = has_spawned(p, h)

tried_starts

Given a node and a list of processes, returns the list of processes that tried to start node
and failed because node was already part of the network.
tried_starts(node, []) = []
tried_starts(node, 〈node, p, h, (θ, e), q〉|Π) = p+ tried_starts(node,Π) if has_tried_start(node, h)
tried_starts(node, 〈node, p, h, (θ, e), q〉|Π) = tried_starts(node,Π) otherwise

has_tried_start

Given a node and a process’ history, returns true if the process tried to start node and
failed.
has_tried_start(node, []) = false
has_tried_start(node, start(θ, e, failure, node′) : h) = true if node = node′

has_tried_start(node, start(θ, e, failure, node′) : h) = has_tried_start(node, h) if node 6= node′

has_tried_start(node, op(...) : h) = has_tried_start(node, h)

86

Bibliography

[1] Ivan Lanese, Naoki Nishida, Adrián Palacios, and Germán Vidal. A theory of
reversibility for Erlang. Journal of Logical and Algebraic Methods in Programming,
100:71–97, November 2018.

[2] Francesco Cesarini. Erlang programming. O’Reilly, Beijing Cambridge Mass, 2009.

[3] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor for-
malism for artificial intelligence. In Proceedings of the 3rd International Joint Con-
ference on Artificial Intelligence, IJCAI’73, page 235245, San Francisco, CA, USA,
1973. Morgan Kaufmann Publishers Inc.

[4] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobbs Journal, 30(3):202–210, 2005.

[5] Ulf Wiger. Industrial-strength functional programming: Experiences with the eric-
sson AXD301 project. IFL’00, Aachen, 2000.

[6] Christopher Lutz. Janus: a time-reversible language. Letter to R. Landauer., 1986.

[7] R. Landauer. Irreversibility and heat generation in the computing process. IBM
Journal of Research and Development, 5(3):183–191, July 1961.

[8] C. H. Bennett. Logical reversibility of computation. IBM Journal of Research and
Development, 17(6):525–532, November 1973.

[9] W. Harrison and C. Cook. Insights on improving the maintenance process through
software measurement. In Proceedings. Conference on Software Maintenance 1990.
IEEE Comput. Soc. Press.

[10] Vincent Danos and Jean Krivine. Reversible communicating systems. In CONCUR
2004 - Concurrency Theory, pages 292–307. Springer Berlin Heidelberg, 2004.

[11] Richard Carlsson. An introduction to core Erlang. In In Proceedings of the PLI01
Erlang Workshop, 2001.

87

[12] Ivan Lanese, Iain Phillips, and Irek Ulidowski. An axiomatic approach to reversible
computation. In Jean Goubault-Larrecq and Barbara König, editors, Foundations of
Software Science and Computation Structures, pages 442–461, Cham, 2020. Springer
International Publishing.

[13] Ivan Lanese, Adrián Palacios, and Germán Vidal. Causal-consistent replay debug-
ging for message passing programs. In Jorge A. Pérez and Nobuko Yoshida, editors,
Formal Techniques for Distributed Objects, Components, and Systems - 39th IFIP
WG 6.1 International Conference, FORTE 2019, Held as Part of the 14th Interna-
tional Federated Conference on Distributed Computing Techniques, DisCoTec 2019,
Kongens Lyngby, Denmark, June 17-21, 2019, Proceedings, volume 11535 of Lecture
Notes in Computer Science, pages 167–184. Springer, 2019.

[14] Edsger W. Dijkstra. Cooperating sequential processes. In The Origin of Concurrent
Programming, pages 65–138. Springer New York, 1968.

[15] Carmen Torres Lopez, Stefan Marr, Elisa Gonzalez Boix, and Hanspeter Mössen-
böck. A study of concurrency bugs and advanced development support for actor-
based programs. In Alessandro Ricci and Philipp Haller, editors, Programming
with Actors, volume 10789 of Lecture Notes in Computer Science, pages 155–185.
Springer, 2018.

[16] Rafael Caballero, Enrique Martin-Martin, Adrián Riesco, and Salvador Tamarit. A
declarative debugger for sequential erlang programs. In Margus Veanes and Luca
Viganò, editors, Tests and Proofs, pages 96–114, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[17] Koen Claessen and Hans Svensson. A semantics for distributed Erlang. In Proceed-
ings of the 2005 ACM SIGPLAN Workshop on Erlang, ERLANG ’05, page 7887,
New York, NY, USA, 2005. Association for Computing Machinery.

[18] Hans Svensson, Lars-rAke Fredlund, and Clara Benac Earle. A unified semantics
for future Erlang. In Proceedings of the 9th ACM SIGPLAN Workshop on Erlang,
Erlang ’10, page 2332, New York, NY, USA, 2010. Association for Computing Ma-
chinery.

[19] Vincent Danos and Jean Krivine. Reversible communicating systems. In Philippa
Gardner and Nobuko Yoshida, editors, CONCUR 2004 - Concurrency Theory, pages
292–307, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[20] Iain Phillips and Irek Ulidowski. Reversing algebraic process calculi. In Luca Aceto
and Anna Ingólfsdóttir, editors, Foundations of Software Science and Computation
Structures, pages 246–260, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

88

[21] Kazuhiro Shibanai and Takuo Watanabe. Actoverse: A reversible debugger for
actors. In Proceedings of the 7th ACM SIGPLAN International Workshop on Pro-
gramming Based on Actors, Agents, and Decentralized Control, AGERE 2017, page
5057, New York, NY, USA, 2017. Association for Computing Machinery.

89

	Introduction
	Concurrent and distributed programming
	Reversible computation
	Reversible debugger
	CauDEr
	Distributed CauDEr

	Background
	Language: syntax
	The language semantics
	Erlang concurrency

	A reversible semantics
	Properties of the uncontrolled reversible semantics

	Rollback semantics

	Distributed CauDEr
	Extended language: syntax
	The extended language semantics
	A reversible semantics
	Properties of the extended uncontrolled reversible semantics

	Rollback semantics

	Distributed CauDEr
	CauDEr
	Distributed CauDEr
	Workflow
	Finding concurrent bugs with CauDEr
	Finding distributed bugs with CauDEr

	Related work
	Conclusions and future work
	Auxiliary functions

