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Abstract

Detecting suspicious or unauthorized activities is an important con-
cern for High-Performance Computing (HPC) systems administrators. Au-
tomatic classification of programs running on these systems could be a
valuable aid towards this goal. This thesis proposes a machine learning
model capable of classifying programs running on a HPC system into var-
ious types by monitoring metrics associated with different physical and
architectural system components. As a specific case study, we consider the
problem of detecting password-cracking programs that may have been in-
troduced into the normal workload of a HPC system through clandestine
means.

Our study is based on data collected from a HPC system called DA-
VIDE installed at Cineca. These data correspond to hundreds of physical
and architectural metrics that are defined for this system. We rely on Prin-
cipal Component Analysis (PCA) as well as our personal knowledge of the
system to select a subset of metrics to be used for the analysis. A time se-
ries oversampling technique is also proposed in order to increase the avail-
able data related to password-cracking activities. Finally, a deep learning
model based on Temporal Convolutional Networks (TCNs) is presented,
with the goal of distinguishing between anomalous and normal activities.

Our results show that the proposed model has excellent performance in
terms of classification accuracy both with balanced (95%) and imbalanced
(98%) datasets. The proposed network achieves an F1 score of 95.5% when
training on a balanced dataset, and an AUC–ROC of 0.99 for both balanced
and imbalanced data.



Sommario

Nell’ambito dei sistemi di calcolo ad elevate prestazioni (HPC) è utile
poter determinare la natura dei programmi in esecuzione sul sistema, even-
tualmente segnalando attività sospette o non autorizzate dalle politiche
del Data Center. Questa tesi propone un modello di apprendimento in
grado di identificare una certa tipologia di programmi in esecuzione su un
sistema HPC, analizzando i valori prodotti da alcuni componenti architet-
turali del sistema stesso. In questo contesto vengono identificati come
anomali alcuni programmi che tentano di recuperare il valore originale
dell’hash di una password.

I dati analizzati sono stati registrati da un sistema di monitoraggio
molto avanzato installato sul cluster DAVIDE del Cineca. La mole di dati
raccolta descrive l’andamento di centinaia di metriche fisiche e architet-
turali presenti nel sistema. La Principal Component Analysis (PCA) ci
ha aiutato ad identificare quelli considerabili rilevanti in questo contesto.
Viene inoltre proposta una tecnica di sovracampionamento di serie tempo-
rali che permette di aumentare i dati a disposizione relativi ai programmi
di password-cracking. Infine, presentiamo un modello basato su Tempo-
ral Convolutional Networks (TCN) in grado di distinguere i programmi
considerati anomali da quelli normali.

I risultati mostrano elevate prestazioni da parte del modello proposto,
sia in presenza di un dataset bilanciato che in caso di sbilanciamento tra
le classi. La rete mostra un’accuratezza del 95% e un F1 score del 95.5%
in caso di dataset bilanciato e un AUC–ROC di 0.99 sia in caso di dati
bilanciati che non.
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1 Introduction
High-Performance Computing (HPC) systems contain large numbers of
processors operating in parallel and delivering vast computational power
in the order of PetaFLOPs. HPC solutions are employed for different pur-
poses across multiple domains including financial services, scientific re-
search, computer-generated imaging and rendering, machine learning, ar-
tificial intelligence and many others.

HPC systems employ a variety of leading-edge hardware technologies
that allow state-of-the-art computing power to be achieved. Yet, elevated
performance levels cannot be obtained by relying only on hardware alone.
Strong cooperation between hardware and software is required in order to
obtain the highest performance levels.

In fact, system administrators usually rely on monitoring tools that col-
lect, store and evaluate relevant operational, system and application data.
The potential of these tools is vast, ranging from efficient energy manage-
ment to retaining insights on the working conditions of the system. Over
time, these tools started playing an increasingly relevant role in the system
administration decision process and progressively expanded their moni-
toring scope.

An important use case for these system-wide monitoring frameworks
is verifying that resource usage is kept within acceptable margins and that
power consumption levels meet specific power band requirements. They
are also crucial in supervising application behaviour. Since it has a direct
impact on power consumption, the collected data are highly relevant to
fine tune facility-wide power and energy management [1].

As part of this thesis we used a monitoring framework on a HPC sys-
tem to create logs of system metrics during a 38-day period. One of the
metrics recorded is the fine-grained per-node power consumption which
is sampled every millisecond and comprises about 95% of the data. These
data compose a large dataset that we make public with the intent to en-
courage research in the area of HPC systems.

1



Due to their enormous computational power, HPC systems are some-
times used also for illicit activities such as password cracking and cryp-
tocurrency mining [2]. In order to detect and prevent these abuses, anomaly
detection systems can be employed. However, oftentimes these techniques
aim to detect system-specific anomalies, like performance drops, rather
than user activities considered anomalous according to the data center
policies. Traditionally, anomaly detection is based on analysis of system
logs or log messages generated by special software tools [3]. More recently,
new approaches based on analysis of sensor data and machine learning
techniques have been proposed [4, 5, 6, 7].

The goal of this thesis is to analyse the physical and architectural met-
rics monitored by hardware sensors in a HPC system in order to detect
anomalous jobs performing illicit tasks – like password cracking – em-
ploying supervised machine learning techniques.

We simulate password cracking activities based on brute force and dic-
tionary attacks on the HPC system. The sensor data recorded by the mon-
itoring infrastructure is collected and stored. We keep track of hundreds
of architectural metrics which describe the state of the system during the
execution of normal and anomalous programs. The Principal Component
Analysis is applied to the data in order to obtain statistical insights on the
relations between the metrics. Using this information and our knowledge
of the system, a subset of metrics is selected for the anomalous activity de-
tection. Since the password cracking programs injected in the system are
significantly less than the non-anomalous programs, we propose a new
time series oversampling technique, which we validate on our dataset. Fi-
nally, we employ Temporal Convolutional Networks in order to discrimi-
nate between production programs and anomalous programs carrying out
illicit activities on the cluster. We test the model on both balanced and im-
balanced datasets and the results obtained show an high accuracy of 95%
and a F1 score of 95.5% with balanced datasets. With imbalanced datasets
the accuracy reaches 98% and the F1 score 94%. In both cases the AUC–
ROC is 0.99 which confirms the great performance of the model. All the
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source code presented and used for this thesis are available on GitHub at:
www.github.com/methk/AAD-HPC.

This thesis is organized as follows. The next Chapter describes the
data collection process and the hardware infrastructure for monitoring the
HPC system’s architectural metrics. Moreover, the collected dataset that
will be made available to the public in the near future is described. In
Chapter 3 we detail the metrics recorded by the monitoring infrastructure
and employed in anomalous activity detection. Chapter 4 describes the
password cracking programs injected in the HPC system in order to sim-
ulate anomalous activity. In Chapter 5 we describe the feature selection
process through which a subset of the metrics are chosen among all those
recorded by the monitoring framework on the HPC system. Chapter 6
introduces Temporal Convolutional Networks, the machine learning technol-
ogy that we choose to base our anomalous activity detector on. In Chapter
7 we propose a new technique to oversample multivariate time series of
different lengths. Chapter 8 presents the results achieved by our classifi-
cation model when discriminating between anomalous and normal activ-
ities. Chapter 9 concludes the thesis.

1.1 The DAVIDE HPC System
The system under study, DAVIDE (Development of an Added Value In-
frastructure Designed in Europe), is a HPC system located at the Cineca
computing center near Bologna. Cineca is a non-profit consortium consist-
ing of 70 Italian universities, four national research centers and the Min-
istry of University and Research (MIUR). The High-Performance Comput-
ing department of Cineca — SCAI (SuperComputing Applications and In-
novation) — is the largest computing center in Italy and one of the largest
in Europe [8].

DAVIDE is an energy-aware PetaFLOPs Class High-Performance Clus-
ter based on OpenPOWER architecture and coupled with NVIDIA Tesla
Pascal GPUs with NVLink. It was designed by E4 Computer Engineering
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Figure 1: Picture of the supercomputer DAVIDE.

for the PRACE (Partnership for Advanced Computing in Europe) project
whose aim was to produce a leading edge HPC cluster optimizing perfor-
mance and power consumption.

DAVIDE entered the TOP500 and GREEN500 list in June 2017 in its air-
cooled version, while a liquid cooling system was adopted in the following
years.

A key feature of DAVIDE is ExaMon, an innovative technology for
measuring, monitoring and capping the power consumption of nodes and
the entire system, through the collection of data from relevant components
(processors, memory, GPUs, fans) to further improve energy efficiency.

DAVIDE mounts 45 compute-nodes, each of which consists of 2 POWER8
multiprocessors and 4 Tesla P100 GPUs for a total of 16 cores each, as well
as a service node and a login node. For cooling SoCs (System-On-a-Chip)
and GPUs, direct hot water is supplied. This allows the system to achieve
a cooling capacity of roughly 40kW. As storage it mounts 1 SSD SATA. The
peak performance of each node is 22 TeraFLOPs for double precision op-
erations, and 44 TeraFLOPs for single precision operations. Giving a peak
performance of ~1 PetaFLOP/s for the entire system.

DAVIDE was taken out of production in January 2020 [9].
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1.2 Related Work
Very few studies use architectural metrics of HPC systems to detect par-
ticular behaviours, and at the time of this writing, we are not aware of any
work aimed at classifying programs running on HPC systems based on
measured metrics.

Tuncer et al. [4] aim to diagnose performance variations in HPC sys-
tems. This issue is critical. It can be caused by resource contention, as
well as software or firmware-related problems, and it can lead to prema-
ture job termination, reduced performance and wasted computing plat-
form resources. They collect several measurements through a monitoring
infrastructure and convert the resulting data into a group of statistical fea-
tures modeling the state of the supercomputer. The authors then train
different machine learning algorithms in order to classify the behaviour of
the supercomputer using the statistical features.

Baseman et al. [5] propose a similar technique for anomaly detection in
HPC systems. They collect a large amount of sensor data and apply a gen-
eral statistical technique called classifier-adjusted density estimation (CADE)
to improve the training of a Random Forest classifier. The learning model
classifies (as normal, anomalous, etc.) each data point (set of physical mea-
surements).

Netti et al. [6] compare multiple online machine learning classifiers in
order to detect system faults injected through FINJ, a fault injection tool.
They identify Random Forests as the more suitable model for this type of
task.

The methods described rely on supervised machine learning models.
Borghesi et al. [7] propose instead a semi-supervised approach which
makes use of autoencoders to learn the normal behavior of a HPC system
and report any anomalous state.

The studies mentioned above detect system behavior anomalies which
could lead to poor performance, wasted resources and lower reliability
during job execution. The purpose of this thesis is instead to detect pro-
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grams which are considered anomalous by the system administrators based
on subjective criteria, and not on software or hardware anomalies. This
makes the detection more difficult because the anomaly is not intrinsic in
the program or system behavior, and the same job could be marked as
anomalous or normal depending on context.
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2 Data Collection
During the period from the end of November 2019 to the beginning of Jan-
uary 2020, we collected 884 GB of data containing physical and architec-
tural metrics. These data were recorded by the ExaMon [10] infrastructure
monitoring the DAVIDE HPC system at Cineca.

The exact dates on which the data were collected are: 29/11/2019,
30/11/2019, 01/12/2019, 02/12/2019, 03/12/2019, 04/12/2019,
05/12/2019, 06/12/2019, 07/12/2019, 08/12/2019, 09/12/2019,
10/12/2019, 11/12/2019, 12/12/2019, 13/12/2019, 14/12/2019,
15/12/2019, 16/12/2019, 17/12/2019, 18/12/2019, 19/12/2019,
20/12/2019, 21/12/2019, 22/12/2019, 23/12/2019, 24/12/2019,
25/12/2019, 26/12/2019, 27/12/2019, 28/12/2019, 29/12/2019,
30/12/2019, 31/12/2019, 08/01/2020, 09/01/2020, 10/01/2020,
11/01/2020 and 12/01/2020.

In order to access the sensor data, we created a project on DAVIDE
through which we could interface with the monitoring infrastructure and
run the scripts to collect the recorded data. The following sections give
an overview of the monitoring infrastructure and the scripts which were
used to collect data.

2.1 The ExaMon Monitoring Infrastructure
ExaMon is a highly scalable HPC monitoring infrastructure capable of
handling the massive sensor data produced by the exascale HPC physical
and architectural components. The monitoring framework can be divided
into four logical layers, as illustrated in Figure 2.

Sensor collectors: these are the low-level components having the task of
reading the data from the several sensors scattered across the system and
delivering them, in a standardized format, to the upper layer of the stack.
These software components are composed of two main objects: the MQTT
API, which implements the MQTT messaging protocol, and the Sensor
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Figure 2: ExaMon architecture.

API, which implements the custom sensor functions related to the data
sampling.

Communication layer: the framework is built around the MQTT pro-
tocol. MQTT implements the publish-subscribe messaging pattern and
requires three different agents to work: the publisher, which has the role
of sending data on a specific topic. The subscriber, which needs certain
data and therefore subscribes to the appropriate topic. The broker, which
has the functions of receiving data from publishers, making topics avail-
able and delivering data to subscribers. The basic MQTT communication
mechanism works as follows: when a publisher agent sends data having a
certain topic as a protocol parameter, the topic is created and made avail-
able at the broker. Any subscriber to that topic will receive the associated
data as soon as it is available to the broker. In ExaMon, collector agents
have the role of publishers.

Visualization, storage and processing: the data published by the collectors
is used for three main purposes: real time visualization using web-based
tools (Grafana), short-term storage in NoSQL databases (Cassandra), use-
ful both for visualization and for batch processing (Apache Spark), and
real time data processing (Spark Streaming). In this scenario, the adapters
that interface Grafana and Cassandra to the MQTT broker, and thus to the
data published by the collectors, are MQTT subscriber agents that estab-
lish a link between the communication layer and each specific tool.
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User applications: finally, in the upper layer of the stack lie all the other
applications that can be built on top of the layers below, such as infrastruc-
ture monitoring, model learning, process control, data analytics and so on
[10].

2.2 Data Gathering
Generally, resource management in a parallel cluster is enforced by a sched-
uler. The scheduler manages user requests and provides the resources
while trying to guarantee a fair sharing. On DAVIDE, the resource man-
ager is SLURM (Simple Linux Utility for Resource Management) [11], a
free and open-source job scheduler for Linux and Unix-like kernels. In
this context, a job is a unit of execution that performs some work in the
HPC system.

SLURM consists of a slurmd daemon running on each compute-node
and a central slurmctld daemon running on the login node. The slurmd
daemon provides fault-tolerant hierarchical communications. SLURM pro-
vides the following commands:

sbatch is used to submit a job script for later execution. The script will
typically contain one or more srun commands to launch parallel tasks.

scancel is used to cancel a pending or running job. It can also be used
to send an arbitrary signal to all processes associated with a running job.

squeue reports the state of the jobs. It has a wide variety of filtering,
sorting, and formatting options. By default, it reports the running jobs and
the pending jobs sorted by priority.

SLURM provides many other commands [11]. The following com-
mands were used to run, check and stop the data collection script:
sbatch back_up_jobs_metrics.sh, runs the script as a job on the system.
scontrol show job <jobID>, reports the specified job’s status.
scancel <jobID>, stops the specified running or pending job.
squeue -u $USER, reports the status of all the jobs launched by the user.

In order to retrieve and store the data collected by ExaMon, a simple
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Python script was used. It establishes a connection to a database and exe-
cutes a few queries. This program was run on DAVIDE and it backed up
all the sensor data on the DRES storage space: a shared storage area of 6.5
PB mounted on all system login-nodes.

Algorithm 1 Backup job and metric data
selected_metrics ⇐ read list of metrics from user input
authenticate user to Cassandra
connect to Cassandra DB
result ⇐ execute("SELECT * FROM davide_jobs")
filtered_jobs ⇐ all result rows executed the day before
save filtered_jobs to parquet file
close connection to Cassandra DB

ExamonQL ⇐ authenticate user to KairosDB via ExaMon Client
for metric in selected_metrics do

if metric = "power" then
for node in [1 . . . 45] do
result ⇐ ExamonQL.execute("SELECT * FROM {metric}

WHERE node = {node}")
save result to parquet file

else
result ⇐ ExamonQL.execute("SELECT * FROM {metric}")
save result to parquet file

Algorithm 1 describes the pseudo-code for the data gathering script.
The script can be divided into two main parts. First, job data collection.
These data include a large amount of information about the jobs, like the
start and end time, the nodes on which a job was running, the user who
launched the execution and more.

Secondly, metric data collection. These data describe the HPC sys-
tem activity by monitoring its physical and architectural components. The
metrics have a sampling rate of 5 or 10 seconds, except for the per-node
power consumption metric, which has a fine-grained sampling rate of 1
millisecond. Due to this high sampling rate, the power metric generates
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a massive amount of data, which is stored separately for each compute-
node.

In order to automate the data collection process, the software utility
cron was adopted. The script launch was scheduled every day at 8:30 AM.
Since the job execution time limit on DAVIDE is 8 hours, collecting data at
8:30 AM assured that even the jobs launched at 11:59 PM the previous day
would have completed their execution.

2.3 The Dataset
The dataset that we have built is a valuable contribution to numerous re-
search fields, both related to HPC systems analysis and machine learning
in general. In fact, fine-grained power metrics with 1 millisecond sampling
rate are quite rare for typical HPC datasets. Moreover, the massive amount
of data (884 GB) gives an extensive overview of an actual in-production
HPC system during more than one full month of operation. For these rea-
sons we decided to make the dataset available to the public. Any sensitive
data will be anonymized and the link to the dataset will be published in
the main page of this thesis’ GitHub repository.

The dataset is divided into two parts: the jobs data, which contain
information about the jobs which run on the system. The metrics data,
which contain the architectural components’ measurements recorded by
ExaMon. The data are contained in Parquet files [12], grouped by day
of recording. Apache Parquet is a free and open-source column-oriented
data storage format, it provides efficient data compression and encoding
schemes with enhanced performance to handle complex data in bulk. As
mentioned, the files are grouped in folders by day of recording. These
folders are named as follows:

FROM_<dd>_<MM>_<YYYY>_<HH><mm><ss>_TO_<dd>_<MM>_<YYYY>_<HH><mm><ss>

Where <dd> is the day of the month, <MM> the month as integer, <YYYY> the
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year and <HH><mm><ss> the time, which is always from midnight to mid-
night ("000000"). These folders contain the Parquet files related to that spe-
cific day. Since the fine-grained power metric produces a massive amount
of data, the recorded measurements are divided in 45 Parquet files, one for
each node, and contained in the "power" folder inside the day’s directory.

It is worth mentioning that during the data collection period only the
following nodes were monitored by ExaMon: 17, 18, 19, 20, 21, 22, 23, 24,
34, 36, 37, 38, 39, 41, 42, 43, 44 and 45.

Attribute Description

index * Table integer index.

timestamp Time when the measurement was taken (timestamp).

value Measurement value.

name Name of the metric.

node Node where the measurement was taken.

plugin The architectural component under analysis.

unt Unit of measurement.

cmp Type of measurement: per-processor, per-core, etc.

id Core id (only if the type of measurement requires it).

occ OCC id (only in OCC metrics).

ts Measurement timestep: 1s, 1ms (only in power metric).

Table 1: Metrics table schema (the marked attribute is the table index).

Table 1 details and explains the attributes available for metrics data.
Note that the attributes depend on the type of metric, for instance OCC
metrics have per-core measurements (therefore cmp, occ and id attributes),
while system cooling metrics have not. These differences are highlighted
in Chapter 3.
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Attribute Description

job_id * Integer id assigned to the job by the system.

part String specifying the system’s partition used.

user_id Integer id assigned to the user by the data center.

job_name Name of the job.

account_name String id assigned to the project when created.

nodes String with the nodes specified for the job.

exc_nodes String with the nodes where the job executed.

req_nodes String with the nodes requested for the job.

node_count Number of nodes used for the job.

time_limit Maximum duration of the job.

cpu_cnt Number of CPUs used.

min_nodes Minimum number of nodes used for the job.

min_cpus Minimum number of CPUs used for the job.

exit_code Exit code returned when the execution terminated.

elapsed_time Time elapsed from the launch.

wait_time Time the job was pending before the execution.

num_task Total number of parallel tasks.

num_task_pernode Number of parallel tasks per node.

cpus_pertask Number of CPUs used for each parallel task.

pn_min_memory Per node minimum memory.

submit_time Time of submission to SLURM (timestamp).

begin_time The earliest starting time (timestamp).

start_time Time when execution started (timestamp).

end_time Time of termination (timestamp).

Table 2: Jobs table schema (the marked attribute is the table index).
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Table 2 shows the table template related to jobs information, detailing
and explaining each attribute available for this type of data.
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3 System Metrics
The ExaMon monitoring framework collects massive amounts of data from
a variety of hardware components in the DAVIDE HPC system. For in-
stance, for the Intelligent Platform Management Interface hardware com-
ponent temperature, current, voltage and power consumption are moni-
tored.

This Chapter briefly describes the architectural metrics that are moni-
tored by ExaMon and made available to our anomaly detection system.

3.1 Cooling System
DAVIDE has three racks consisting of 15 compute-nodes each and an in-
dependent Asetek RackCDU liquid cooling system mounted on each rack.
The metrics recorded for these components are detailed in Figures 3a and
3b [13]:

Figure 3a: Cooling system metrics.
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Figure 3b: Cooling system metrics.
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3.2 Power Supply
ExaMon also keeps track of the LiteOn PSUs which supply power on each
rack on the HPC system. Figure 4 lists the metrics recorded for these com-
ponents:

Figure 4: Power supply metrics.
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3.3 Intelligent Platform Management Interface
Intelligent Platform Management Interface (IPMI) is a hardware-based so-
lution used for securing, controlling, and managing servers. Many metrics
related to the IPMI are monitored by ExaMon for each compute-node. The
metrics recorded for these components are listed in Figure 5:

Figure 5: IPMI metrics.
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3.4 On-Chip Controller
The On-Chip Controller (OCC) is a co-processor embedded directly on
the main processor die. It can be used to control the processor frequency,
power consumption, and temperature in order to maximize performance
and minimize energy usage. Figures 6a, 6b and 7 detail the metrics recorded
for these components:

Figure 6a: On-chip controller metrics.
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Figure 6b: On-chip controller metrics.
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The metrics listed in the figure below describe the per-component power
consumption:

Figure 7: On-chip controller metrics.

3.5 Fine-grained Power
Power consumption at compute-node power plug is recorded with a sam-
pling rate of 1ms. This metric generates a huge amount of data in compar-
ison to the aforementioned metrics, which have a sampling rate of 5 or 10
seconds.
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Figure 8: Fine-grained power metric.

A total of 160 metrics are monitored, but the number of metric param-
eters is significantly higher. For instance, each of the metrics that contain
per-core measurements can be divided into 12, one for each of the 12 cores
in each On-Chip Controller monitored.
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4 Password Cracking Activities
In order to simulate anomalous activity, multiple password cracking jobs
were run simultaneously. Since the use of existing offline password crack-
ing software such as Hashcat or John the Ripper would probably have alerted
system administrators, leading to my account being blocked, a simpler al-
ternative was adopted.

The goal was to collect the hardware metric data generated by pass-
word cracking activities in the HPC system. Therefore two scripts were
created, one implementing a brute force attack (a technique employed in
both password cracking and crypto-mining) and one simulating a dictio-
nary password attack.

Both scripts were kept as simple as possible so as to avoid detection
by the current malware detection system, while allowing me to collect the
HPC system’s hardware component data. If a machine learning model
were to successfully identify a set of common instructions (such as nested
for-loops) as anomalous, detecting more specific and unique behaviours
would be straightforward.

Again, it must be emphasized that the task was to collect the data gen-
erated by the HPC system while performing a specific activity, in order to
discriminate it from the others. The goal was not to identify state-of-the-
art advanced password cracking algorithms running on the system, but
rather to build a learning model capable of classifying a specific collection
of jobs based on the data generated by the hardware components.

On the following days: 23/12/2019, 24/12/2019, 27/12/2019, 28/12/2019,
29/12/2019, 30/12/2019, 31/12/2019, 08/01/2020, 09/01/2020, 10/01/2020,
76 anomalous jobs were run on the system. Half were brute force attacks,
half dictionary attacks.

Some of them were run on a single node, while others on two nodes.
Some engaged all available resources in the node(s), while others shared
the computational power with multiple jobs running on the same node(s).
This allowed us to collect sensor data from the HPC system while running
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under different conditions.

4.1 Brute force attack

Algorithm 2 Password cracking: brute force attack
password ⇐ read first argument
if password is empty then
password = random_password(length=random_length([3 . . . 6]))

password = hash_password(password)

for len in [1 . . . 6] do
for guess in len long combinations of chars and digits do

if hash_password(guess) = password then
return true

return false

The brute force attack script is simple and its pseudo-code is shown
in Algorithm 2. The script can receive a generic string (i.e. a plain-text
password) as argument. If no string is passed as input, then a random
ASCII string composed of characters and digits is generated. The string is
then hashed using the bcrypt library [14], an implementation of the Blow-
fish cipher, which is the standard hashing algorithm for many operating
systems, such as OpenBSD and SUSE Linux.

Finally, we generate all possible character and digit combinations of a
variety of lengths, ranging from 1 to 6. If a matching password is found,
the execution ends.
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4.2 Dictionary attack

Algorithm 3 Password cracking: dictionary attack
mpos ⇐ read first argument
password ⇐ read second argument

if password is empty then
password = random_password(length=random_length([3 . . . 6]))

else if password = ’random’ then
password = get_random_word(’passwords.txt’, max_pos=mpos)

password = hash_password(password)

for index, psw in ’passwords.txt’ do
if index < mpos then

if hash_password(psw) = password then
return true

else
break

return false

Dictionary attacks usually rely on a list of common passwords in order
to crack a given hash. The script works with the text file ‘passwords.txt’
which contains the 1,000,000 most common passwords according to Se-
cLists [15].

The script can either draw a password at random from ‘passwords.txt’,
receive a plain-text password as input or generate a random sequence of
characters and digits. In the latter case the password will probably not be
found during the dictionary attack, however it is useful to collect system
data regarding this scenario also. The plain-text password is then hashed
with the same cipher used in the brute force script.

Finally, the script loops over all the passwords in the dictionary. The
user can also specify a maximum number of attempts as argument. If a
matching hash is found or the number of attempts reaches the specified
value, the execution ends.
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5 Feature Selection
As described in Chapter 3, ExaMon monitors a variety of physical and
architectural components, which results in many hundreds of metrics be-
ing recorded. However, training a machine learning model with such
an amount of features could put unnecessary computation burden on the
model, reducing generalization and increasing overfitting.

Therefore, feature reduction by means of selecting few valuable met-
rics is desirable. As previously seen, the recorded metrics describe very
heterogeneous hardware components (cooling system, power supply, on-
chip controllers, and so on) and record data in many different units of
measurement (Celsius, Volt, Ampere, Watt, percentages, and so on). In
this context it is preferable to let the end user choose which architectural
metrics to use to detect anomalous activities according to their knowledge
of the HPC system.

In order to select the metrics to use for our study we relied both on
our knowledge of DAVIDE and on the insights provided by a statistical
analysis of the data. We computed the Principal Component Analysis [16]
in order to determine which linear combinations of metrics contain the
larger amount of "information", and we used these insights to support the
metric selection process.

5.1 Principal Component Analysis
Principal Component Analysis (PCA) is a technique used to reduce the
dimensionality of large datasets, increasing interpretability while at the
same time minimizing information loss. This method achieves these re-
sults by creating new uncorrelated variables that successively maximize
variance.

This chapter provides a brief overview on the intuition behind PCA
and how we took advantage of it to select our metrics.
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5.1.1 Standardization

Standardization is a preprocessing technique which aims to standardize
the range of the initial continuous variables so that each one of them con-
tributes equally to the analysis.

PCA is quite sensitive to the variances of the initial variables. In fact,
variables with larger ranges dominate over those with smaller ranges (e.g.
a variable that ranges between 0 and 100 will dominate over a variable that
ranges between 0 and 1), which may lead to biased results. Therefore, scal-
ing the data to comparable scales can prevent this problem. Oftentimes,
the difference in data ranges is caused by the adoption of different units of
measurement (Ampere, Volt, Celsius, percentages, etc.), as is the case with
our data.

The Z-score is one of the most popular methods to standardize data,
and it consists in subtracting the mean (µ) from each value (v) and divid-
ing the result by the standard deviation (σ), as shown in the following
equation:

z =
v− µ

σ
.

Once the standardization is completed, all the features have a mean of
zero, a standard deviation of one, and thus the same scale.

5.1.2 Covariance Matrix

A covariance matrix is computed in order to underline how the features of
the input dataset vary from the mean with respect to each other. In other
words, to determine the relationship that exists between them. As a matter
of fact, features are sometimes highly correlated in such a way that they
contain redundant information.

A covariance matrix is a symmetric matrix whose entries are the covari-
ances associated with all the possible pairs of initial features. For instance,
given the n× p sample matrix S, the variables X1, X2, . . . , Xp represent the
columns of S, each of which represent the samplings of an initial feature.

27



The covariance matrix is a p× p matrix of the form

C =


Cov(X1, X1) . . . Cov(X1, Xp)

... . . . ...

Cov(Xp, X1) . . . Cov(Xp, Xp)

 .

In statistics, the covariance is a measure of the joint variability of two
variables. The sample covariance between two variables A and B can be
computed using the following formula:

Cov(A, B) = ∑n
i=1(Ai − Ā)(Bi − B̄)

n
,

where Ai is the i-th element of the sample for variable A, Ā is the sam-
ple mean for A, Bi is the i-th element of the sample for variable B and B̄
is the sample mean for B. The covariance matrix can also be represented
using matrix operations:

C = ST S N−1.

Since the covariance of a variable with itself is its variance (Cov(a, a) =
Var(a)), the main diagonal of the covariance matrix (top left to bottom
right) contains the variances of each initial feature. Moreover, since the
covariance is commutative (Cov(a, b) = Cov(b, a)), the entries of the co-
variance matrix are symmetric with respect to the main diagonal, which
means that the upper and the lower triangular portions are equal.

If the covariance between two features is positive, then these features
increase or decrease together (i.e. they are correlated). Otherwise if the
covariance is negative, then the two features move in opposite directions
(i.e. they are inversely correlated).
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5.1.3 Principal Components

Principal Components (PC) are new uncorrelated features that are con-
structed as linear combinations of the initial features. They are constructed
in such a way that most of the information contained within the initial fea-
tures is "compressed" into the foremost components.

The principal components can be seen as the axes that provide the best
angle to see and evaluate the data, such that the differences between the
observations are best visible.

There are as many principal components as there are features in the
data. Principal components are constructed so that the first PC accounts
for the largest possible variance in the dataset. The second PC is computed
in the same way, with the condition that it be uncorrelated with (i.e. per-
pendicular to) the first principal component and that it account for the
next highest variance. This process continues until a total of p principal
components have been computed, equal to the original number of initial
features.

Figure 9 shows a visual example of principal components in a 2 dimen-
sional dataset.

Figure 9: Example of PCA for 2-dimensional data.
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Eigenvectors and eigenvalues of the covariance matrix C are computed
in order to determine the principal components of the data.

The eigenvectors of the covariance matrix are the directions of the axes
where there is the most variance (most information), called principal com-
ponents. Eigenvalues are the coefficients attached to eigenvectors, which
give the amount of variance carried in each principal component.

In order to find the eigenvalues of the covariance matrix C, the follow-
ing equation must be solved:

det(C− λI) = 0,

where I is the identity matrix. The solutions to the equation above are
the eigenvalues λ1, λ2, . . . , λp of the covariance matrix. The rank p of the
matrix determines the equation degree, which is equal to the number of
eigenvalues.

Finally, in order to compute the eigenvectors of the correlation matrix
C, the following equation must be solved:

C x̄i = λi x̄i,

where λi is the i-th eigenvalue of matrix C and x̄i = [x1, x2, . . . , xp]T is
a column vector which represents the i-th eigenvector of the correlation
matrix.

The result is a p× p matrix P, where the rows are the eigenvectors of
C and specify the orientation of the principal components relative to the
original features. These vectors are usually sorted by their eigenvalues,
which quantify the variance explained by each principal component.

5.1.4 Feature Importance

The components of each eigenvector are called loadings and they describe
how much each feature contributes to a particular principal component.
Large loadings (positive or negative) suggest that a particular feature has
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a strong relationship with a certain principal component. The sign of a
loading indicates whether a variable and a principal component are posi-
tively or negatively correlated. An example is shown below:

PC1

PC2

feature 1
2.12

0.23

feature 2
1.37

−1.05

feature 3
−2.38

0.16

feature 4
1.42

0.02

expl. var.

0.59

0.33

In the example above, only the first two principal components are con-
sidered, because together they account for 92% of the total explained vari-
ance, whereas the two remaining PCs are not considered relevant enough
to be taken into account. The first principal component is most related to
features 3 and 1, while the second PC is most related to feature 2.

The loadings were taken into account during the metric selection pro-
cess. We selected the metrics according both to our knowledge of the sys-
tem and their statistical importance.

5.2 Data Processing
Performing PCA on the whole dataset would be unnecessarily resource-
consuming. Therefore, the analysis was carried out on data from four
days in December: 09/12/2019, 22/12/2019, 28/12/2019 and 30/12/2019,
Which represent about 10% of the whole dataset.

The script split_metrics_data.py creates a CSV file for each available
metric. Each file contains one or more columns depending on the type
of recorded data. For instance, metric "TEMP_P0", which records proces-
sor and core temperatures, logs data from 2 different On-Chip Controllers
(CMP=PROC and OCC=1,2) and from 12 cores for each OCC (CMP=CORE, OCC=1,2
and ID=0-11). Therefore, a total of 26 data columns are created: 12 columns
for core ids 0 to 11 in OCC 1, 12 columns for core ids 0 to 11 in OCC 2 and
two more columns for average processor temperature for OCC 1 and OCC
2.

The script metric_columns_to_df.py merges all of the columns for
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each metric created with the script described above, in order to create a
single CSV file. During the merging process, some data preprocessing was
carried out. For instance, the metrics "CPU_Core_Temp_*", "DIMM*_Temp"
and "Mem_Buf_Temp_*" were merged together by averaging the column
values. The same was done for processor and core measurements (divid-
ing by CMP: CORE and PROC). This preprocessing is useful in reducing the
number of features that are related to the same architectural metrics.

Finally, the script perform_pca.py performs the Principal Component
Analysis using the Python library scikit-learn [17]. The resulting CSV file
contains the principal components sorted by explained variance.

5.3 Selection of Relevant Metrics
As mentioned before, the resulting file contains the principal components
sorted by explained variance. For each component we list its loadings.
That is, the degree of contribution of each metric to the principal compo-
nent.

Figure 10: First 10 principal components and their first 5 metrics, sorted
by highest-to-lowest loading values.

32

https://github.com/methk/AAD-HPC/blob/main/4/perform_pca.py


Figure 10 shows the 5 metrics that are most related to each of the first
10 components. The metrics selected for the anomalous activity detection
described in the next chapters are listed in Table 3:

Metric PC Description Unit

CPU1_Temp 1 IPMI package temperature ◦C

PWR_VDD0 1 Power consumption for Vdd regulator W

PWR_P0 1 Processor power consumption W

Fan_3 2 Fan 3 speed RPM

Fan_2 2 Fan 2 speed RPM

MRD_P0 3 Memory read requests per sec. GB/s

Proc1_Power 4 CPU power consumption W

PWR_VSC0 5 Power consumption for Vcs regulator W

Table 3: Metrics selected for the anomalous activity detection.

These metrics provide a general overview of the system state by con-
sidering different measures like power consumption, IPMI temperature,
fan speed, memory requests, and so on. We do not apply the PCA to the
whole dataset and use the resulting variables in the analysis because we
want the learning model to detect anomalous activities using initial fea-
tures as they are delivered by the monitoring framework. Thus, no extra
expensive computations are required in potential real-world applications.
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6 Temporal Convolutional Networks
Temporal Convolutional Network is a relatively new deep learning archi-
tecture which has shown significant results in processing time series data.
For this reason, it is employed in this thesis to discriminate between nor-
mal and anomalous activities.

The data collected by ExaMon model the state of the HPC system by
inspecting many physical and architectural metrics. These temporal se-
quences of sensor data form multivariate time series, which are submitted
to a Temporal Convolutional Network with the aim of identifying anoma-
lous activities.

For time series analysis, the most commonly used technologies are
Recurrent Neural Networks (RNN). Derived from feed-forward neural
networks, RNNs can use their internal state, called memory, to process
variable-length sequences of inputs. However, the basic RNN model is
generally not directly suitable for computations requiring long-term mem-
ory; rather, a RNN variant known as Long Short-Term Memory (LSTM) is
usually employed. LSTMs can process sequences with thousands or even
millions of time points, and have good processing abilities even for long
time series containing many high (and low) frequency components [18].

However, the latest research shows that the Temporal Convolutional
Network (TCN) architecture, one of the members of the Convolutional
Neural Network (CNN) family, shows better performance than the LSTM
architecture in processing very long sequences of inputs [19]. A TCN
model can take a sequence of any length as input and output a processed
sequence of the same length, as is the case with an RNN. Moreover, the
convolution is a causal convolution, which means that there is no informa-
tion "leakage" from future to past.

TCNs use a one-dimensional, Fully Convolutional Network (1D FCN)
architecture to produce an output of the same length as the input. Namely,
each hidden layer is zero-padded to maintain the same length as the in-
put layer. To avoid leakage from future to past, a causal convolution is
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adopted, which means that an output at time t is the result of the convo-
lution of exclusively elements from times t or earlier in the previous layer
[20].

6.1 Sequence Modeling
Sequence modeling is the task of predicting what value comes next. Given
the input sequence x0, x1, . . . , xT, the task is to predict some corresponding
outputs y0, y1, . . . , yT at each time. In this context, the key constraint is that
to predict the output yt for some time t, only the inputs that have been
previously observed (that is, x0, x1, . . . , xt) can be used.

Formally, a sequence modeling network is any function f : XT+1 →
YT+1 that produces the mapping

f (x0, . . . , xT) = ŷ0, . . . , ŷT,

while satisfying the causal constraint that yt depend only on x0, x1, . . . , xt

and not on any "future" input xt+1, xt+2, . . . , xT.
The goal of learning in a sequence modeling setting is to find a network

f that minimizes some expected loss between the actual outputs and the
predictions, L(y0, . . . , yT, f (x0, . . . , xT)), where the sequences and outputs
are drawn according to some distribution [21].

6.2 Fully Convolutional Networks
As mentioned above, a TCN makes use of a one-dimensional Fully Con-
volutional Network architecture in order to produce an output sequence
of the same length as the input.

In an FCN, all the layers are convolutional layers, hence the name "fully
convolutional". There are no fully-connected layers at the end, which are
typically used for classification with a CNN. Instead, FCNs up-sample the
class prediction layer and use a final convolutional layer to classify each
value in a matrix (e.g. pixels in an image).
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Therefore, the final output layer is the same height and width as the in-
put matrix, but the dimension of each resulting cell is equal to the number
of classes. Using a softmax probability function, the most likely class for
each cell can be computed.

For instance, Figure 11 shows a 2D FCN used for image segmentation
[22]. In the last layer each pixel is an N-dimensional vector with elements
the probabilities of the image belonging to each class (which in the exam-
ple are dog, cat, couch or background).

Figure 11: Example of image segmentation with an FCN.

Generally, TCNs make use of 1D FCNs which can process univariate
time series data. However, if time series have multiple observations for
each time step, the TCN can employ multi-dimensional FCNs.

6.3 Causal Convolutions
The second principle of TCNs is the absence of leakage from the future
into the past. This is achieved by using causal convolutions.

Causal convolutions are a type of convolution used for temporal data
which ensures that the model cannot violate the ordering in which the data
is presented: the prediction yt emitted by the model at timestep t cannot
depend on any of the future timesteps xt+1, xt+2, . . . , xT.
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Figure 12: Example of causal convolutions in a network with 3 hidden
layers.

Figure 12 illustrates which neurons each node of the output layer de-
pends on.

6.4 Dilated Convolutions
A simple causal convolution is only capable of looking back at a history
with size linear in the depth of the network. This makes it challenging
to apply the aforementioned causal convolution on sequence tasks, espe-
cially those requiring longer history. A solution is to employ dilated con-
volutions that enable an exponentially large receptive field [21].

More formally, given a 1D sequence input x ∈ Rn and a filter f :
{0, 1, . . . , k − 1} → R, the dilated convolution operation F on element s
of the sequence is defined as

F(s) =
k−1

∑
i=0

f (i) · xs−d·i,

where d is the dilation factor, k is the filter size, and s− d · i accounts for
the direction of the past.

When d = 1, a dilated convolution is identical to a regular convolution.
Using a larger dilation factor enables an output at the top level to depend
on a wider range of inputs, thus effectively expanding the receptive field
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of the Convolutional Network. There are, therefore, two ways to increase
the receptive field of the TCN: choosing larger filter size k and increasing
the dilation factor d [21].

Figure 13: Example of dilated convolutions. Thanks to the dilations, the
receptive field is larger than the one in Figure 12.

Figure 13 shows an example of dilated convolutions with filter size
k = 2 and dilations d = [1, 2, 4, 8].

6.5 Residual Connections
Since the receptive field of a TCN depends on the network depth n as well
as the filter size k and the dilation factor d, stabilization of deeper and
larger TCNs becomes important.

Very deep neural networks are difficult to train because of the vanish-
ing and exploding gradient problems. In order to mitigate these issues,
residual blocks and residual connections can be employed.

Residual blocks consist of a set of stacked layers, whose inputs are
added back to their final output. This is accomplished by means of the
so-called residual (or skip) connections [23].

A residual block contains a branch leading out to a series of transfor-
mations F, whose outputs are added to the input x of the block. Usually
an Activation function is applied to the resulting value, which produces
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the residual block output:

o = Activation(x + F(x)).

This effectively allows layers to learn modifications to the identity map-
ping rather than entire transformations, a choice which has repeatedly
been shown to benefit very deep networks.

Figure 14 shows an example of the residual blocks used in TCNs. If
input and output have different widths, an 1× 1 convolution is added to
ensure that the element-wise addition receives tensors of the same shape.

Figure 14: TCN residual block scheme.
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7 Minority Class Oversampling
When the class distributions in a dataset are highly imbalanced, data are
said to suffer from the Class Imbalance Problem. In this context, many clas-
sification learning algorithms have low predictive accuracy for the infre-
quent classes. Various approaches may be adopted in order to solve this
issue.

Undersampling is a technique which aims to balance the class distribu-
tion of a dataset by removing observations from the majority class. This
approach is preferable when the minority class contains a large amount of
data, despite being outnumbered by the majority class.

Oversampling is a different approach which addresses the class imbal-
ance problem by integrating the minority class with new observations.
Some popular techniques are: Random Oversampling, which randomly
duplicates the samples in the minority class. SMOTE (Synthetic Minority
Over-sampling TEchnique), which generates synthetic samples based on
nearest neighbours according to euclidean distance between data points
in the feature space. ADASYN (Adaptive Synthetic), which generates new
samples for the minority class privileging the data points that are harder
to learn according to their position in the feature space.

During the period of time in which we stored the data monitored by
ExaMon, a total of 2761 jobs were recorded: 86 of them were password-
cracking jobs, which we consider anomalous in the context of this thesis,
whereas 2675 were considered normal activities in this analysis.

This disproportion between the classes could adversely affect the ac-
curacy of the model. In order to mitigate this issue we oversample the
anomalous class. This chapter describes how the system sensor data were
translated to time series and the technique we adopted to oversample the
minority class.
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7.1 Data Preprocessing
As detailed in Chapter 3, the monitoring framework records a large amount
of sensor data. In addition, ExaMon stores job information such as start
and end date, execution time, the nodes on which a job was running, the
user who ran the job, the user’s project account and more. Thanks to these
data we are able to pair sensor values with the jobs that were running on
the system.

Algorithm 4 shows the pseudo-code for the preprocessing script, which
disaggregates sensor data into single metrics which are combined to create
a multi-dimensional time series for each job run on the system.

Disaggregating sensor data into multi-dimensional time series asso-
ciated with the recorded jobs is crucial in order to correctly identify the
anomalous jobs executed on DAVIDE instead of just anomalous states of
the system.

First, the script retrieves the information available for all the jobs which
ran on the specified day. Then the jobs which did not run on monitored
nodes and those which ran for more than 8 hours are filtered out. The
reason is that during the data collection period, ExaMon was only config-
ured on the following 18 compute-nodes: 17, 18, 19, 20, 21, 22, 23, 24, 34,
36, 37, 38, 39, 41, 42, 43, 44, 45. Moreover, the maximum job execution
time for standard users on DAVIDE was 8 hours, while jobs lasting longer
were run by system administrators. Filtering out sysadmin jobs, which
could run up to 12 hours, decreased the size of the resulting dataset and
as a consequence it reduced the computational cost required to train the
learning model.

When a job runs over multiple days, the time series construction is de-
layed: the sensor data regarding the current day being processed is trans-
lated to the job time series, while the rest of the series is completed when
the next day’s sensor data is processed. This is done by saving the pend-
ing job id on a file in the ‘old’ folder of the next day. Then, each time the
script is run, it checks if any jobs were saved in the current day’s ‘old’
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folder. If so, these jobs are also included in the processing.

Algorithm 4 Time series generation

metrics ← read input {list of metrics to extract}
from_date ← read input {consider only jobs run in this date}
job_info ← retrieve data for jobs run in from_date

valid_jobs ← create dictionary
for job in job_info do

if job.nodes in MONITORED_NODES
and job.duration < 8H
and job.nodes 6= ’login’ then

for node in job.nodes do
valid_jobs[node].append(job)

if from_date/old folder is not empty then
old_jobs ← read jobs in from_date/old
for job in old_jobs do

for node in job.nodes do
valid_jobs[node].append(job)

metric_data ← read metric data for selected metrics
for node in valid_jobs do

for job in valid_jobs[node] do
if job.end_date = from_date + 1 day then
write job to next day’s /old folder

ts_files ← open CSV files for each combination of:
job.id, node, CMP, OCC and ID available for metrics

for data in metric_data[node] do
for job in valid_jobs[node] do

if job was running in data.timestamp then
param_comb ← job.id+node+data.cmp+data.occ+data.id
ts_files[param_comb].write(data.measurement)

save and close all ts_files

Finally, the script reads the full metric data. As illustrated in Chapter
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3, metrics have different parameters depending on their type (e.g. cooling
system metrics can be grouped by rack id, on-chip controller metrics can
be filtered by occ, cmp and core id, and so on). Therefore each metric pa-
rameter is a distinct dimension in the output job time series. For instance,
the metric "UTIL_P0" adds 26 different dimensions to the job time series:
1 for average utilization of the first processor (OCC=1, CMP=PROC), 1 for the
second processor (OCC=2, CMP=PROC), 1 for each of the 12 cores in the first
processor (OCC=1, CMP=CORE, ID=0-11) and 1 for each of the 12 cores in the
second processor (OCC=2, CMP=CORE, ID=0-11). With this decomposition,
the learning model can take into account all the fine metric parameters,
and not just the high-level metric overview (i.e. the model can learn from
any of the 26 parameters of UTIL_P0 instead of just from their aggrega-
tion).

In Chapter 4 we said that 76 password-cracking jobs were executed,
however from this Chapter on we will refer to 86 anomalous jobs. This in-
crease is due to the preprocessing script, which splits a password-cracking
job executed over multiple nodes into multiple anomalous time series.
This distinction is necessary because from the point of view of the mon-
itoring framework a job execution over different nodes is equivalent to
multiple parallel and independent executions.

7.2 Existing Oversampling Techniques
The simplest technique employed for oversampling is Random Oversam-
pling. This method requires to randomly select samples from the minor-
ity class and duplicate them in order to increase the number of samples
available. The more advanced approaches can be divided into three main
groups: interpolation techniques, probability distribution-based methods
and structure preserving approaches.

A popular oversampling technique based on interpolation is SMOTE
(Synthetic Minority Over-sampling TEchnique). The main idea is to ran-
domly interpolate synthetic samples between the feature vectors of two
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neighboring data points in the minority class [24]. Another famous tech-
nique is ADASYN (Adaptive Synthetic) which also generates new data
by interpolating neighboring samples, but privileging those minority class
data points which are surrounded by a large number of majority class sam-
ples. The reason behind this choice is that these data points are considered
harder to learn [25]. However, since these techniques take into account
only the local characteristics of the samples and not their correlation over
time, many random data variations can be introduced, weakening the in-
herent interrelation of the original time series data.

RACOG and wRACOG are two probability distribution based tech-
niques. These methods use the joint probability distribution of data at-
tributes and Gibbs sampling in order to generate new minority class sam-
ples. While RACOG selects samples produced by the Gibbs sampler based
on a predefined "lag", wRACOG selects those samples that have the high-
est probability of being misclassified by the existing learning model [26].

MDO (Mahalanobis Distance-based Oversampling) is an example of
structure-preserving approach. This technique generates synthetic sam-
ples having the same Mahalanobis distance from the considered class mean
as the other minority class samples [27]. Another example is SPO (Struc-
ture Preserving Oversampling), which generates synthetic minority sam-
ples based on multivariate Gaussian distribution by estimating the covari-
ance structure of the minority class and regularizing the unreliable eigen-
spectrum [28].

A quite recent technique that should be mentioned is OHIT (Oversam-
pling of High-dimensional Imbalanced Time-series), which generates the
structure-preserving synthetic samples based on multivariate Gaussian
distribution by using estimated covariance matrices [29].

All the aforementioned techniques have advantages and disadvantages.
A common drawback is the lack of reliable and easily available libraries,
or the unsuitability of such libraries for time series data. These approaches
and the theory behind them are quite complex and their implementation
from the ground up is beyond the scope of this thesis. For this reason
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we developed an oversampling technique, inspired by Random Oversam-
pling, which generates new samples that are similar, but not identical, to
the minority class time series; this plays an important role in preventing
overfitting. Standard oversampling techniques, including Random Over-
sampling, are almost always designed for cross-sectional data. This often
makes them unsuitable for time series data. We intend to address this de-
ficiency by proposing a computationally inexpensive technique which can
oversample time series data by generating synthetic series close in feature
space and with a similar trend to minority class samples.

7.3 Proposed Oversampling Method
The main idea is to generate synthetic samples by randomly selecting mi-
nority class time series that can act as guidance for generating new, similar
series. This way the synthetic samples will be close to the original time se-
ries in feature space and they will consist of similar — yet not identical —
sequences of values. The technique can be divided into two main parts:
producing new time series lengths and generating sequences of synthetic
values.

7.3.1 Generating Synthetic Time Series Lengths

Time series in our dataset represent the architectural metric data which
were recorded while the jobs were running on the system, therefore their
length can vary significantly. In order to oversample this type of data we
first need to generate the lengths of the soon-to-be synthetic samples. A
naive approach would be to randomly sample new uniformly distributed
lengths. However this solution may not generate a faithful representa-
tion of the minority class, especially if this contains jobs of non-uniformly
distributed lengths. To address this, we first compute the job length dis-
tribution of the minority class, and then we randomly oversample similar
lengths according to the original distribution.
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All time series have a sampling rate of 5 seconds (those of 10 seconds
are interpolated to 5 seconds) and the maximum execution time is 8 hours,
therefore there could be 5760 possible different lengths. Since it is very in-
frequent to find time series of identical lengths, we consider as similar time
series whose lengths differ by a few minutes. Thus we split the set of pos-
sible lengths in multiple "windows" which contain time series with similar
lengths. We define the size of the windows as W. As a consequence, the
total number of windows is N = 5750

W . The j-th time series of length lj be-
longs to the i-th window if wi ≤ lj < wi +W, where wi is the i-th window’s
shortest length, that is, i ·W, ∀i ∈ [0, 1, . . . , (N − 1)].

After the aforementioned aggregation we can easily compute a vec-
tor v whose i-th element is the total number of time series belonging to
the i-th window. Then we can compute the discrete distribution vector p
which contains the percentage of time series for each window. Finally, we
can randomly generate the lengths of the synthetic series according to the
distribution p of the original time series lengths.

Figure 15: Original time series length distribution on the left, original
(black) and synthetic (orange) time series lengths on the right.

Figure 15 shows on the left the distribution of time series lengths in
the minority class, grouped by windows. The window size is W = 60,
which means that jobs belonging to the same window differ by a maxi-
mum of 5 minutes. The plot shows that many jobs have run for about 2
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hours. The chart on the right shows the original (black) and the synthetic
(orange) time series lengths. It is clear the synthetic lengths have the same
distribution as the original ones.

7.3.2 Sampling Synthetic Time Series Values

In order to generate the synthetic time series data points we do not sample
random numbers or just duplicate existing values. Instead, we pair each
synthetic time series with a time series from the original dataset and we
generate values which follow the same trend. Since we only know the
length of the new time series, we pair synthetic time series to random
original series which belong to the same window.

The synthetic data points follow the trend of the paired time series val-
ues. The value at timestep t in a synthetic time series will be similar to a
data point close or equal to t in the paired original time series. This process
consists of two steps:

1. First, a random position close to t in the original time series is se-
lected. The random sampling is not uniform, but rather it follows
the standard normal probability density function:

f (x) =
1

σ
√

2π
e−

1
2 (

x−µ
σ )2

,

where µ = t is the position of the synthetic data point and the stan-
dard deviation σ determines the amount of dispersion away from the
mean. The lower the standard deviation, the higher the probability
of choosing an original data point close to timestep t. Since the ran-
dom sampling returns floating point values, the result is truncated
in order to obtain the reference timestep.

The probability of choosing a reference data point close to timestep t
(e.g. t− 3, . . . , t+ 3) in the original time series is higher than selecting
a point far in the "past" (e.g. t− 6, t− 7, t− 8, . . . ) or far in the "future"
(e.g. t + 6, t + 7, t + 8, . . . ), as shown in Figure 16.
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Figure 16: Random sampling probability density function.

2. In order to introduce slight randomness in the synthetic time series
values and not merely duplicate the original data points, we ran-
domly compute a new value close to the selected original one. The
goal is to sample a random value inside a circle around the selected
data point. Since the time series may have high dimensionality, a
uniformly random point on a hypersphere is generated. A simple
way to generate points uniformly at random on the interior of a d-
sphere is by the generalization of the Muller algorithm [30]. The
procedure consists in:

(a) Generating d random variables xi, i = 1, 2, . . . , d normally dis-
tributed in the range [0, 1].

(b) For each point x = (x1, x2, . . . , xd), locating a point y on the unit
d-sphere having the d-direction cosines

r · xi√
Σd

i=1x2
i

, i = 1, 2, . . . , d,

where r = d√k and k is a normally distributed random variable which
determines the distance from the center of the sphere.

Figure 17 broadly illustrates the oversampling process described above.
Time series (a) represents a job in the original dataset, the timesteps are

placed on the x-axis and the values on the y-axis. For the purpose of this
example the series has only one dimension.
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Figure 17: Oversampling process. (a) The original time series selected as
reference to sample a new synthetic one. (b) Each point at time t in the
synthetic time series corresponds to a data point in the paired series close
or equal to time t. (c) Selected values in the previous step are slightly
randomized.

Time series (b) shows the reference points, which are randomly sam-
pled from (a), for each new synthetic data point. For instance, for the fifth
data point in (b), the algorithm randomly chose the fourth data point (i.e.
the (t− 1)-th element) in the paired time series.

Time series (c) is equivalent to (b) but with a slight randomization of
series values using the Muller algorithm. A moving average can also be
applied to smooth the resulting values.

In conclusion, time series (c) has a similar (but not identical) trend to
time series (a), which is the goal of this oversampling technique.
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7.4 Validation
In the context of this thesis, we validate the technique described above on
the data we use for the anomaly detection. In order to do so, we train a
machine learning model on the original time series data and test it on both
original and synthetic time series. The goal is to ensure that the model is
not able to distinguish original time series from synthetic ones, and there-
fore that it has a similar classification accuracy on both types of time series.

For the validation we employ a TCN, which is the same model we
adopt for the anomaly detection. We trained the TCN for 30 epochs on
128 original time series: half from the anomalous class and half from the
normal class. Then we tested the model on two datasets. The first contains
88 synthetic time series generated with the aforementioned oversampling
technique: 44 for the anomalous class and 44 for the normal class. The
second contains 44 original time series, not present in the training set: half
from the anomalous class and half from the normal class. This process is
illustrated in Figure 18.

Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Average

Original 90.91 84.10 81.82 88.64 88.64 79.55 85.61

Synthetic 93.18 88.64 87.50 90.91 92.05 86.36 89.77

Table 4: Testing accuracies of 6 different training and test sessions.

Table 4 shows the accuracy (i.e. the number of correctly classified time
series out of all the series in the test set) during the classification of syn-
thetic and original time series. The whole training and testing process was
repeated 6 times with different training and test sets in order to compare
the accuracy between multiple independent experiments. The data show
that despite the small size of the datasets, the testing accuracy in the clas-
sification of synthetic and original time series is comparable. Moreover,
we can notice a slightly better performance on the synthetic test set, which
is probably due to the very small size of the original time series test set.
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Figure 18: Validation process of the proposed oversampling technique.

In conclusion, we can affirm that the model cannot reasonably distinguish
between original and synthetic time series, having a comparable classifi-
cation accuracy on the two.

A few advantages of adopting this approach are that it is suitable for
our dataset, it has a low computational cost, it is easy to understand and if
a learning model correctly identifies anomalous activities when this basic
technique is adopted, then it can certainly have better performance when
a more complex oversampling approach is employed.
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8 Anomaly Detection
This chapter gives an overview of the learning model employed to classify
the anomalous jobs and the obtained results. We first acquaint ourselves
with this type of neural network by modeling a different task: account
classification. Then we use the model to distinguish anomalous jobs from
normal jobs, which is the main objective of this thesis.

8.1 Account Classification
In order to become familiar with Temporal Convolutional Networks and
explore the available data, we first tried to classify jobs according to the
account id that launched the execution. In fact, a user must create or be
added to a project account in order to execute jobs on DAVIDE. In this
context, a project account gathers multiple users which work on the same
project, it is identified by an id and it has a limited amount of hours to run
jobs on the system.

There are 25 different accounts which ran jobs in the period from De-
cember 2019 to January 2020. Some of them executed very few jobs, so
we removed these accounts from the classification task. In total, 10 ac-
counts executed more than 40 jobs each in the observed period of time.
The highest-to-lowest number of jobs per account is: 753, 498, 247, 196,
184, 164, 148, 147, 120, 62. Since a high class imbalance can lead to poorer
performance, we opted to oversample each class to 300 jobs (and under-
sample the two most populated classes to the same size). We trained a
Temporal Convolutional Network many times using different hyperpa-
rameters, a varying number of metrics and multiple epochs. Nonetheless,
the loss did not fall below ~0.85 and the testing accuracy ranged between
67% and 76%.

Since these results showed that the network was struggling to deter-
mine the account associated with a job, we decreased the number of ac-
counts taken into consideration. In fact, a possible reason for the poor
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performance could be the similarity between the jobs executed by differ-
ent accounts. Therefore, for classes we selected only 5 accounts, which we
expected to run jobs unrelated to one another, in order to see if this could
affect the model accuracy. Surprisingly the loss dropped to ~0.18 and the
testing accuracy ranged between 83% and 89%.

As an additional proof, we trained and tested the same model with a
dataset containing jobs from the other 5 accounts, which we expected to
have run similar jobs. As anticipated, the training loss was stable around
~0.68 and the testing accuracy ranged between 71% and 78%.

In light of this, the most plausible reason for the poor performance on
the account classification task was that the accounts tended to execute jobs
which could be similar between different accounts. In fact, it is not uncom-
mon for a user to take part in different projects and as a consequence to
be associated with multiple accounts. In conclusion, we can assume that
the account id is not a significant feature for classifying jobs. However, the
main goal of this analysis was to become familiar with TCNs, as well as
the available data, and to fine tune the network hyperparameters.

8.2 Learning Model Configuration
In section 8.1 we tested the potential of TCNs, studying and modeling the
network to obtain the best-performing configuration. In Temporal Con-
volutional Networks, the kernel size and the dilation factors are critical
parameters. The former determines the size of the convolutional filters
used in the TCN. The latter influence the range of inputs encoded in an
output, increasing or decreasing the receptive field of the network. Based
on previous experiments, we know that the model can achieve excellent
performance by employing 8 filters for each layer, with a kernel size k = 4,
and the following dilation factors:
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L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

1 2 4 8 16 32 64 128 256 512 1024

Table 5: Dilations used between TCN’s hidden layers for job classification.

Therefore, the network has a receptive field of 4 × 1024 data points,
which means that each output value is produced as a function of 4096
input values.

Furthermore, we apply a Dropout layer with dropout factor 0.3 to each
Residual Block, since we noticed that it helps reduce overfitting. More-
over, Layer Normalization in Residual Blocks is implemented in order to
normalize the input layers by re-centering and re-scaling the values. This
increases training speed and stability. The TCN is followed by a Dense
layer with a sigmoid activation function to binary-classify the input.

Finally, the Adam optimizer, with a learning rate of 10−3, and the bi-
nary cross-entropy loss function are employed in order to optimize the
model. The binary cross-entropy is defined as follows:

H(P, Q) = − 1
N

N

∑
i=1

yi · log Q(y = 1|xi) + (1− yi) · log(1−Q(y = 1|xi)),

where yi = P(y = 1|xi) is the real classification (1 for anomalous jobs
and 0 for normal jobs) of the i-th job and Q(y = 1|xi) is the predicted
probability of the i-th job being anomalous. Therefore, when the label
is 1, the log probability of the job being anomalous is added to the loss.
Conversely, when the label is 0 the log probability of the job being normal
is added. Using the logarithm of the probabilities (as opposed to the plain
probabilities) is useful to significantly increase the loss value when a job
is not correctly classified. The Adam optimizer, an extension to Stochastic
Gradient Descent, makes use of this value in order to update the internal
parameters of the model and reduce the error.
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8.3 Evaluation Metrics
In this section we present the evaluation metrics employed to evaluate
the TCN configuration described in the previous section, as well as the
subsequent results. For this classification task we only have two classes:
each job can be labeled as normal (label 0) or anomalous (label 1).

Given the following variables: TP, the number of anomalous jobs clas-
sified as anomalous; TN, the number of normal jobs classified as normal;
FP, the number of normal jobs classified as anomalous and FN, the num-
ber of anomalous jobs classified as normal, we employ the following met-
rics:

• Classification Accuracy: this metric computes the proportion of cor-
rect predictions among the total number of cases examined.

Accuracy =
TP + TN

TP + FP + TN + FN
.

This metric is less relevant when the dataset is imbalanced. In fact,
if the model classifies all dataset samples as belonging to class 0 and
the test set consist of 90% of 0-labeled elements, the accuracy is as
high as 90%.

• Log Loss: this metric takes into account the uncertainty of a predic-
tion based on how much it varies from the actual label. The formula
is equivalent to the binary cross-entropy described above:

Loss = −y log(p)− (1− y) log(1− p),

where y is the actual label and p is the probability of predicting 1.

• Precision: this metric computes what proportion of predicted posi-
tives is truly positive.

Precision =
TP

TP + FP
.
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• Recall: this metric computes what proportion of actual positives is
correctly classified.

Recall =
TP

TP + FN
.

• F1 Score: this metric is the harmonic mean between Precision and Re-
call and it determines how precise the classifier is (i.e. how many in-
stances it correctly classifies) as well as how robust it is (i.e. whether
it misses a significant number of instances or not):

F1 = 2 · Precision · Recall
Precision + Recall

.

This metric is helpful to better understand if the accuracy result de-
pends on the imbalance of the dataset or if it is due to the actual
predictive ability of the model.

• AUC–ROC: the ROC (Receiver Operating Characteristics) is a prob-
ability curve and AUC (Area Under the Curve) explains how capa-
ble the model is in distinguishing between two classes. The higher
the AUC, the larger the number of samples the model can correctly
classify. The ROC curve is plotted with TPR (on the y-axis) against
the FPR (on the x-axis). The TPR (True Positive Rate) is equal to
Recall, namely the proportion of anomalous jobs that were correctly
classified. The FPR (False Positive Rate) computes the proportion of
normal jobs that were incorrectly classified as anomalous:

TPR =
TP

TP + FN
, FPR =

FP
FP + TN

.

Figure 19 shows an example of an ROC curve. Each point on the
curve is a different threshold value in the sigmoid classification func-
tion. If a sample is under the threshold, then it is classified as normal,
otherwise it is classified as anomalous. The higher the area under the
curve is, the better performance the model has.
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Figure 19: Example of AUC–ROC Curve. The higher the curve, the better
the model.

8.4 Results on Detection of Anomalous Activities
We have 86 anomalous jobs, which represent password-cracking activities,
and 2675 jobs executed by the system users, which we consider normal.
The minority class is oversampled by applying the custom random over-
sampling technique described in Chapter 7. The metrics selected in order
to train the learning model to detect if a job is anomalous or not are the fol-
lowing: CPU1_Temp, PWR_VDD0, PWR_P0, Fan_3, Fan_2, MRD_P0, Proc1_Power
and PWR_VSC0, as described in Chapter 5.

Using the configuration and the parameters described in Subsection
8.2, we implemented the learning model in Python using Keras with the
TensorFlow backend. For the TCN layers we relied on the Keras TCN im-
plementation by Philippe Rémi, available on GitHub [31]. First, we trained
and tested the model for 40 epochs on a fully balanced dataset of 1000
jobs: 500 anomalous and 500 normal. 80% of the dataset is employed in
the training process, while the remaining 20% is used for testing. Only the
anomalous class is oversampled, while the normal class is randomly un-
dersampled. Moreover, we preserve the same proportion of synthetic and
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original jobs in the anomalous class in the training set and the test set.

(a) (b)

Figure 20: Training (a) and testing (b) accuracy with a balanced dataset
containing 1000 jobs.

(a) (b)

Figure 21: Training (a) and testing (b) loss with a balanced dataset contain-
ing 1000 jobs.

Figure 20 shows the model accuracy progression during training and
testing. Each line is a different training and test session, with different data
but with the same proportions as described above. The darker line is the
average of the values produced by each session. The model achieves an
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average testing accuracy of 95% after 40 epochs. Since the dataset is quite
small, we consider this result excellent.

Figure 21 shows the loss of the model during training and testing. The
average testing loss achieved after 40 epochs of training is 0.13.

(a) (b)

Figure 22: Training (a) and testing (b) precision with a balanced dataset
containing 1000 jobs.

(a) (b)

Figure 23: Training (a) and testing (b) recall with a balanced dataset con-
taining 1000 jobs.
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(a) (b)

Figure 24: Training (a) and testing (b) F1 score with a balanced dataset
containing 1000 jobs.

Figure 22 and Figure 23 show, respectively, precision and recall metrics
during both training and testing. The average values after 40 epochs are
95% precision and 96% recall when validating the model. Figure 24 shows
the progression of the F1 score. This metric reaches a 95.5% average value
during validation after 40 epochs of training, which is an excellent result.

(a) (b)

Figure 25: Training (a) and testing (b) AUC with a balanced dataset con-
taining 1000 jobs.

Finally, the AUC–ROC reaches an average of 0.99 during model vali-
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dation, which confirms the great performance of the model.

Accuracy Loss Precision Recall F1 score AUC

Training 96% 0.10 96% 97% 96.5% 0.99

Testing 95% 0.13 95% 96% 95.5% 0.99

Table 6: Training and testing evaluation metric values after 40 epochs, av-
eraged over multiple experiments. The dataset is balanced and consists of
1000 jobs.

Since the model can achieve valuable results on a balanced dataset, we
also attempt to train it on a larger and imbalanced dataset. This condi-
tion is more in line with a real anomaly detection scenario, where the vast
majority of the jobs is normal and few are anomalous. The full dataset
contains 3000 jobs: 500 anomalous (17%) and 2500 normal (83%). We split
the dataset in two parts: the training set, which contains 2400 jobs (80%),
and the test set, which contains 600 jobs (20%). The two classes are propor-
tionally split between the two datasets. Also, the distribution of synthetic
and original jobs in the anomalous class is the same in the training set and
the test set.

(a) (b)

Figure 26: Training (a) and testing (b) accuracy with an imbalanced dataset
containing 3000 jobs.
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(a) (b)

Figure 27: Training (a) and testing (b) loss with an imbalanced dataset
containing 3000 jobs.

Increasing the size of the dataset seems to also increase the testing accu-
racy, which reaches 98% after 40 epochs, as shown in Figure 26. However,
since the dataset is not balanced, this metric alone does not provide a reli-
able evaluation of the model. Figure 27 shows the loss metric progression,
which after 40 epochs settles around 0.09, which is also better than the
previous experiment.

(a) (b)

Figure 28: Training (a) and testing (b) precision with an imbalanced
dataset containing 3000 jobs.
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(a) (b)

Figure 29: Training (a) and testing (b) recall with an imbalanced dataset
containing 3000 jobs.

(a) (b)

Figure 30: Training (a) and testing (b) F1 score with an imbalanced dataset
containing 3000 jobs.

After 40 epochs of training, the average testing precision, recall and F1

score are, respectively: 93%, 95% and 94%. These values are slightly lower
than those measured in the previous experiment, which is probably due
to the dataset imbalance.
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(a) (b)

Figure 31: Training (a) and testing (b) AUC with an imbalanced dataset
containing 3000 jobs.

The AOC - ROC metric gives similar results to the training sessions
with 1000 jobs: 0.99. This confirms the high performance of the model.

Accuracy Loss Precision Recall F1 score AUC

Training 99% 0.04 96% 96% 96% 0.99

Testing 98% 0.09 93% 95% 94% 0.99

Table 7: Training and testing evaluation metric values after 40 epochs, av-
eraged over multiple experiments. The dataset used is imbalanced and
consists of 3000 jobs.

In conclusion, the evaluation metrics observed confirm the model is
able to detect password cracking jobs injected on the system with a very
low error rate. Moreover, the model presented shows excellent perfor-
mance also with an imbalanced dataset, which is quite similar to a real-
world scenario.
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9 Conclusion
This thesis aimed to illustrate the effectiveness of Temporal Convolutional
Networks in detecting anomalous activities on HPC systems. Based on
few architectural metrics, jobs considered anomalous can be correctly iden-
tified and reported to system administrators. The results show that the
presented model classifies anomalous and normal jobs with a very high
accuracy, comparable to related studies [4, 5, 6, 7], proving the effective-
ness of the proposed approach.

Another relevant contribution is the creation of a public dataset con-
taining the architectural metrics recorded in over a month of monitoring.
Specifically, the fine-grained per-node power consumption is a very valu-
able metric which is uncommon to find in typical HPC system datasets.

First, we described the sensor data collection process, detailing the
monitoring infrastructure and the HPC system under analysis. Then, we
detailed the available system metrics, together with the password-cracking
jobs that we injected into the system to serve as anomalous activities. Af-
ter a statistical analysis, we selected a few relevant metrics out of the hun-
dreds of system metrics available. Since the dataset had a class imbalance
problem, we presented a new oversampling technique and we applied it
to the minority class in order to rebalance the dataset. Finally, we illus-
trated the learning model based on Temporal Convolutional Network and
the classification results.

We show our model reaches an accuracy of 95% and a F1 score of 95.5%
when applied to a balanced dataset. When the data is imbalanced the
model reaches an accuracy of 98% and a F1 score of 94%. In both cases the
AUC–ROC is 0.99, confirming the great performance of the model.

The problem we solved with this work is not well examined in the lit-
erature. Some studies show relevant results in system anomaly detection,
which is quite different from detecting a specific class of jobs considered
anomalous based on subjective criteria.
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9.1 Future Work
We presented a machine learning model based on batch data analysis.
However, real-world applications usually need an online approach in or-
der to detect anomalous activities at the earliest indicators. An interesting
extension of the model could be to train the model on a stream of data
instead of batches.

Furthermore, the number of metrics could be increased, or different
metrics could be selected according to other statistical analyses or based
on the sysadmin’s knowledge of the system. In this context, the feature
selection heavily depends on the type of metrics made available by the
monitoring infrastructure.

Moreover, we used architectural metric data as recorded by the moni-
toring framework, while many forms of statistical analysis could be ap-
plied in order to transform them or extract valuable statistical features
from them. On one hand, applying complex data transformations could
improve the network ability to learn from the data. On the other hand, this
could significantly slow down execution, which can be critical in stream
data processing.

More advanced oversampling techniques could also be adopted in or-
der to increase the number of elements in the anomalous class. This could
possibly strengthen the model accuracy when training on imbalanced datasets.
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