
Alma Mater Studiorum - Università di Bologna

DIPARTIMENTO DI SCIENZE

Corso di Laurea Triennale in Informatica - 8009

Color Watermarking Techniques for Text-based Media

Google Workplace add-ons for watermarking

Relatore:

Prof. Danilo Montesi

Correlatore:

Dr. Flavio Bertini

0000838367:

Simone Branchetti

Anno Accademico 2020-2021

To Bianca, for keeping my mind sane and to Davide and Luca, for filling it with
the things I needed to get this far.

Summary

1 Introduction 1

2 Text-based watermarking techniques 3
2.1 State of the art for text based watermarking techniques 3

2.1.1 Zero Watermarking . 4
2.1.2 Image-based methodologies 5
2.1.3 Syntactic methods . 5
2.1.4 Semantic methods . 6
2.1.5 Structural methods . 6
2.1.6 Homoglyphs based watermarking 7

3 Watermarking techniques developed for this thesis 9
3.1 Grayscale based watermarking . 10

3.1.1 GBW’s Performance . 11
3.2 Space Coloring based watermarking 11

3.2.1 SBW’s performance . 12

4 End user grayscale perception test 13
4.1 Population . 13
4.2 Results . 13
4.3 Considerations . 16

5 Add-ons for Google Documents and Google Slides 18
5.1 Google Workplace and its add-ons 18
5.2 How the Google Documents Add-on works 19
5.3 How the Google Slides Add-on works 24
5.4 Performance and Portability tests 26

5.4.1 Performance . 26
5.4.2 Portability for text editors 27
5.4.3 Portability for presentation editors 29

6 Digital Object Identifier metadata embedded Zero-watermarking 30
6.1 The Digital Object Identifier System 30
6.2 Structure of DOI’s metatada . 31
6.3 DOIs and Watermarking . 34

6.3.1 Location of the string . 34

iii

Summary

7 Conclusions 37

Appendix A Survey for grayscale perception 38

Appendix B Add-ons code version 48

iv

List of Figures

3.1 The first two paragraphs of our example text without any watermark. 9
3.2 The first two paragraphs of our example text watermarked with

GBW using the lowest setting in our add-on (#070707). 10
3.3 The first two paragraphs of our example text watermarked with

GBW using the highest setting in our add-on (#272727). 10
3.4 The first two paragraphs of our example text watermarked with

SBW. 12

4.1 An example of a survey question from the first section. 14
4.2 An example of a survey question from the second section. 14
4.3 Population of the survey graphed for age groups and gender. . . . 15

5.1 "Watermark" sidebar for the Documents add-on as it appears when
it’s just loaded. 21

5.2 "Display Watermarking" sidebar for the Documents add-on as it
appears when it’s just loaded. 21

5.3 The extra buttons in the DOI integration version of the Google
Documents Add-on. 23

5.4 A comparison between a normal string (above) and its water-
marked version (below). 24

5.5 The highlights from the second sidebar (below) help the user to
identify the watermarks applied by the first sidebar (above). . . . 24

5.6 "Watermark" sidebar for the Slides add-on as it appears when just
loaded. 25

5.7 A comparison between a normal slide (above) and its watermarked
version (below). The yellow highlight on the top element signifies
that it wasn’t long enough to hide the watermark at least once. . 26

5.8 The resolution process of a slide leaves every element highlighted
green if the resolution is successful, yellow if there weren’t enough
bits recovered to cover the watermark and red if the resolution was
unsuccessful. 27

6.1 Visualization of the process of including a string generated by the
add-on within a DOI’s metadata. 35

6.2 Visualization of the process of resolving a watermark with the op-
tions being provided by a string in a DOI’s metadata. 36

v

List of Figures

1 Text #1. Non-bold, font size 12 38
2 Text #2. Bold, font size 12 . 38
3 Text #3. Non-bold, font size 14 39
4 Text #4. Bold, font size 14 . 39
5 Text #5. Non-bold, font size 20 40
6 Text #6. Bold, font size 20 . 40

vi

List of Tables

3.1 Table showing the details of the algorithm’s performance when
hiding a 64 bit payload. 11

4.1 Results to the first phase of the survey. 16

5.1 Table for text editors portability: which fonts hide homoglyphs in
different text editors? . 28

5.2 Table for presentation editors portability: which fonts hide homo-
glyphs in different presentation editors? 29

6.1 The basic elements of the IDF’s Metadata Kernel. 33

1 First text results. 41
2 Second text results. 42
3 Third text results. 43
4 Fourth text results. 44
5 Fifth text results. 45
6 Sixth text results. 46
7 All of the texts combined. 47

vii

List of Tables

viii

Chapter 1

Introduction

Within the ever changing landscape of the internet certifying the ownership of
a piece of media can be a challenging task. Media can be shared across various
platforms like social media, cloud file sharing services, and websites and for this
reason watermarking is becoming an ever increasing problem for people and com-
panies worldwide.
Digital watermarking can be defined as the process of digitally embedding a cer-
tain amount of information (the watermark) into a piece of multimedia content
such as a picture, a video or a written document. The simplest form of wa-
termark to recognize is the photographer’s name written inside the picture so
that, if one were to use it improperly, the picture would carry the watermark
and subsequently its paternity. Not every piece of media can be watermarked
using the same method and the same piece of content can be watermarked in
different ways, depending on the needs of the user. Watermarking a piece of text
is especially difficult, because text as a medium does not provide a lot of avenues
to be watermarked: for example, anyone would immediately be able to notice
if a whole new word was to be added in the middle of a sentence. This means
that watermarking text is done through other, more discreet, means like convert-
ing text to an image and watermarking that, using synonyms or, with the help of
structural watermarking methods like the ones developed for this thesis, changing
certain aspects of the text keeping the content intact. The related work of this
thesis is a pair of add-ons (customized applications that integrate with Google
Workspace productivity applications such as Gmail, Google Sheets, and Google
Docs to provide extra functionalities) for Google Workplace (ex Google Suite)
that watermark Google Documents and Google Slides respectively and resolve
the watermarks. These add-ons use three structural watermarking techniques
based on Homoglyphs, Space Coloring and Grayscales. Google Documents and
Google Slides are two widely used tools for editing documents and presentations
and add-ons provide a fast solution to adding features to them: in our case wa-
termarking capabilities. Portability of the watermarking techniques presented
for this thesis in both text editors and presentation editors is a pressing concern
because of the large number of editors present on the market. In this thesis we

1

Chapter 1. Introduction

will explore our watermarking techniques’ portability towards six different edi-
tors. The sixth chapter in this thesis is about the Digital Object Identifier (DOI)
system and how, using metadata, we can apply this system, in combination with
the Google Documents add-on, as an additional Zero-Watermarking technique.
The DOI system serves as a way for people and/or organizations to certify one’s
paternity of an entity (books, documents, videos, pictures) by assigning a unique
identifier and a set of metadata (additional information about the identified en-
tity) to it.

2

Chapter 2

Text-based watermarking

techniques

Watermarking a piece of text poses lots of different problems because text as a
medium has low embedding bandwidth (meaning that there’s not much room to
hide information compared to an image, where every pixel can hide many bits
of watermark) and only allows a restricted number of alternative syntactic and
semantic permutations [25].

2.1 State of the art for text based watermarking

techniques
According to [14], a watermarking method can be categorized using the following
characteristics:

• Readable or Detectable - The watermarking is readable if the user can clearly
read it. It’s detectable if a function can be used to check for it, but cannot
be otherwise read.

• Visible or Invisible - A visible watermarking method is visually perceptible
by the user. On the contrary, the method is invisible if it is hidden in
the original digital content and is not noticeable by the user. A visible
watermark may be non-readable if a user can visually detect it but cannot
read its content.

• Blind or Non Blind - If the original digital content is not needed in the
extraction process, the watermarking is blind. Otherwise, the watermarking
process belongs to the non blind category.

• Simple or Multiple - If a watermark can be applied only once the water-
marking is simple. A multiple watermarking method means that a payload

3

Chapter 2. Text-based watermarking techniques

of data can be embedded more than one time in the same document without
affecting the whole process.

• Fragile, Semi-Fragile, Robust - A fragile watermark is detectable and can be
altered or erased, thus, it is used for integrity authentication; a robust wa-
termark is detectable and not erasable and it is most suitable for copyright
protection. A semi-fragile watermarking is suited for content authentica-
tion.

Watermarking algorithms can also be classified in a few different categories based
on how they watermark a text:

• Zero Watermarking Techniques - Instead of watermarking the text, some
characterizing features of the text are stored on a third party authority
server, such as an Intellectual Property Rights (IPR) database.

• Image-based Techniques - The text is transformed into an image, then the
watermark is embedded into the image. Obviously, this approach modifies
the nature of the original document so it cannot be considered a pure text
watermarking method; however, it has some interesting features, such as
length preservation and language independency.

• Syntactic Techniques - These methods transform the language depending
structures in order to hide the watermark. Typically, the sentences have
different language depending structures that make the process easier.

• Semantic Techniques - These methods use verbs, nouns, prepositions,
spelling and grammar rules to permute the content and embed the
watermark.

• Structural Techniques - These methods exploit double letters occurrences,
words-shift and lines-shift encoding and the Unicode standard to embed the
watermark. They are some of the most recent methodologies with which
the original text is not altered.

This is just a basic description of the most important watermarking algorithms
currently known. In order to better grasp the techniques presented in this thesis,
we need to also look at the approaches actually used when embedding text. These
approaches are generally classified in three main categories [14, 12]: image-based,
syntactic and semantic. This classification leaves out the Zero marking approach
as it doesn’t actually hide any watermark in the text itself.

2.1.1 Zero Watermarking

We’ve already established that Zero watermarking techniques don’t actually hide
any information inside the content, but they aim to extract characterizing infor-
mation from it, for example a picture or a song, and then store this information
into an Intellectual Property Right (IPR) database [33]. Using this method the
association between the content and the author does not rely on the watermark,

4

Chapter 2. Text-based watermarking techniques

but on the proof from a trusted authority. Zero watermarking techniques can be
seen as a form of dimensionality reduction, and in fact they are often based on
well known dimensionality reduction techniques [19]. Using this technique the
amount of data that the IPR has to store is greatly reduced if compared to a
method that stores the entire text for paternity purpose. On the other hand,
zero-watermarking has a clear weakness: the text and identity of the owner must
be deposited to a third party and this can lead to privacy issues [25].

2.1.2 Image-based methodologies

Image-based text watermarking is the most researched approach to text water-
marking and the earliest one to be investigated, with the first techniques dating
back to the mid-nineties [9, 20]. In this approach a printed text is scanned as an
image, or as a screenshot in the case of digital text, then a watermark is applied
on this image. In gray-scale images of text documents, for example, the water-
mark payload is embedded by tuning the luminance of pixels according to the
watermark data [6], or by modifying the edge direction histograms to carry the
watermark signal [17]. A robust embedding can be obtained by slightly shifting
the text elements horizontally or vertically: a text element can be a single word
and the shift of a few pixels to the right or the left can hide information, or it
can be a whole line of text, where shifting it up or down has the same purpose
[9, 21]. Similar results can be obtained by altering the spaces between words to
encode the watermark data [10, 16]. Other methods are based on the alteration
of single characters [9], some focus on smaller details such as strokes and serifs
of the characters and work by prolonging them [3], others, more simply, alter the
character in their size by change the scale depending on the watermark content
[32]. There are two important shortcomings of image based methods. The first
is that text must be shared as an image (so, in an image file format e.g. PNG,
JPEG or TIFF), as printed paper or through fax machines, which is nowadays
less practical and not very common. The second is that text can be still recon-
verted to plain text by manual re-typing or through the use of an OCR software,
losing any trace of watermarking in the process.
Overall, while it is a strong solution for printed papers and scanned documents,
image-based text watermarking may become less and less relevant in the future
because digital media is increasingly preferred to printed paper both for reading
and sharing text contents.

2.1.3 Syntactic methods

Syntactic methods for text watermarking work on the syntax of natural language
text, by altering its structure to embed a watermark. The first common step is
to build the syntactic tree of a sentence, after which some syntactic operations
such as clefting, passivization or activization are applied in order to encode the
watermark bits [4]. Clefting is the process of transforming a simple sentence
into a more, unnecessarily complex one: for example the simple sentence "I like

5

Chapter 2. Text-based watermarking techniques

champagne" can be transformed into "champagne is what I like" (called "what"
clefting) or into "it is champagne that I like" (called "it" clefting) [18]. Pas-
sivization is the transformation from the active to the passive form of verbs: for
example, "Tom kicked the bucket", to "the bucket was kicked by Tom", while
activization is the opposite process. There are also other morpho-syntactic trans-
formations which can be also applied that are considered to preserve the original
meaning: the linguistic notion of possession for instance can be written either
with using the preposition ‘of’ or using the suffix ‘-s’ [22]. Low embedding capac-
ity, or the ratio between the text length and the length of the watermark that can
be embedded, is a limit of these methods. Contexts of use where the length of the
text is limited, such as mobile phones SMS texts or Twitter posts are inherently
excluded. Other disadvantages of syntactic methods come from the alteration of
the content; the assumption that different syntactic forms have the same meaning
is not always true [11]: in the previous example, "Tom kicked the bucket" has an
idiomatic interpretation, while its passive form only has a literal one.

2.1.4 Semantic methods

By exploiting the similarity of meaning of different words, it is possible to replace
words with their synonyms [29]. The systematic substitution of words depend-
ing on the watermark data results in a non-blind watermark embedding. This
semantic approach can be also mixed with syntactic approaches [28] to obtain an
overall higher embedding capacity. Other semantic techniques work on sentence
level semantic, leveraging the implicit presuppositions of each sentence [30, 31].
A presupposition is a sort of implicit information that follows directly from a
sentence, usually a fact that must be true in order for the sentence to make
sense. For example, in the statement "Jane likes her white car" the presuppo-
sition is that Jane has a car. By keeping the same meaning, the statement can
be rephrased as "Jane has a white car and she likes it." It is therefore possible
to add the presupposition explicitly, or in other cases to remove it, in order to
encode watermark data. The semantic methods share some of the shortcomings
of the syntactic methods. In the case of syntactic methods, the author’s content
can be strongly altered in order to embed the watermark. These methods also
depend on the language and the correctness of written text.

2.1.5 Structural methods

Structural methods include all those methods that do not alter the text content
but only its structure, intended as underlying representation or as features re-
garding visual rendering. These have recently emerged as methods that embed
watermark or hidden payloads by changing the underlying encoding of symbols
or adding invisible symbols, without actually altering the readable content of the
text.
The Unicode standard has several different symbols for whitespaces, some of
different width, others practically identical. By putting many of these whitespace

6

Chapter 2. Text-based watermarking techniques

symbols at the end of a paragraph, or by filling an empty line, relatively long
payloads have been hidden in Microsoft Word documents [24].
A similar technique has been effectively applied to watermark Arabic language
text: by using a different Unicode whitespace between words depending on the
bits of the watermark’s binary representation a payload of data can be hidden in
the text [2]. A more recent method uses multiple ASCII white spaces to embed a
covert message [15] for PDF steganography instead. This last technique works on
justified text and is able to embed 4 bits for each host line, where a host line is a
line with at least 9 normal spaces and 3 wider spaces. Apart from whitespaces, the
Unicode standard also provides some totally invisible symbols, which are coded
as zero-width whitespaces. These symbols, together with whitespaces, have been
exploited to hide hidden messages in text [5] and to watermark HTML pages
[23, 27].
As mentioned earlier, these methods have the important advantage of keeping the
original content unaltered without transforming the text to an image, or relying on
an external database. The above structural methods are blind, meaning that the
original text is not needed in order to extract the watermark. This, together with
the easiness of removing multiple whitespaces, makes these approaches fragile in
both malicious and benign attacks. This is particularly true for methods that use
consecutive whitespaces and whitespaces before or after the whole text, because
it has been proven that many digital platforms and social media automatically
remove them [26]. A similar problem can also occur through selection for copy
and paste: selection may easily exclude the white portion where the watermark
is embedded. Apart from whitespaces, homoglyphs ad invisible characters, some
image based techniques where lines or words are slightly shifted without altering
the text content [8, 7] have been also considered as structural methods [13].

2.1.6 Homoglyphs based watermarking

In Homoglyphs based watermarking (HBW), a particular type of structural wa-
termarking, a payload of bits is embedded in a piece of text by replacing symbols
and whitespaces with visually equivalent symbols, according to the watermark bi-
nary data: these symbols are called homoglyphs. This creates a technique that is
invisible (the content is kept exactly the same), detectable, fragile and non blind
(knowing the homoglyphs set it’s possible to detect the watermark and expose
the embedded data. This data is useless though, unless used in combination with
the password the owner chose and the full text). HBW preserves the content and
its length because every character is changed with another single character, thus
preserving every aspect of the text. This is particularly relevant in the instances
where there’s a limit to the number of characters that can be used, like in social
media posts, and other Unicode based techniques are not ideal because they em-
bed the watermark by adding whitespace characters to the text. HBW has no
overhead, is simpler to implement than NPL techniques and can be applied to
every piece of text that is Unicode compatible: this includes most software and
web platforms because because it does not depend on a particular file format [24]
or markup language [23].

7

Chapter 2. Text-based watermarking techniques

For a more comprehensive look at this watermarking method, its advantages and
disadvantages see [25].

8

Chapter 3

Watermarking techniques developed

for this thesis

After this lengthy explanation about different watermarking techniques we can
focus on the ones developed for our project. We employed three different wa-
termarking techniques: Homoglyph-based watermarking, Space coloring-based
watermarking and Grayscale-based watermarking. The latter two are new water-
marking techniques developed for this thesis. These methods are all structural
methods of watermarking because the don’t alter the text, but only visual aspects
of it; these methods are also detectable, invisible, blind, simple and fragile and
they can be used on their own or by combined, resulting in a total of 7 possible
watermarking methods.
To better explain how these new techniques work we will take the first 5 para-
graphs of an article written by Reed Abelson for The New York Times on the 27th
of November 2020 titled Covid Overload: U.S. Hospitals Are Stretched
Way Too Thin and use them as an example text on which we will apply our
watermarking techniques. The full article can be read here. Our example text is
composed of 5 paragraphs or 1508 characters.

Figure 3.1: The first two paragraphs of our example text without any watermark.

9

https://nyti.ms/2JhtDxg

Chapter 3. Watermarking techniques developed for this thesis

3.1 Grayscale based watermarking

Grayscale-based Watermarking (GBW) works by embedding the watermark into
the color of characters (excluding whitespace and some punctuation signs). The
RGB color of a character is split into three components (Red, Green, Blue) then
for each component a small amount of bits (the number is chosen so that it
can’t go over the limit for any one component) is taken from the watermark and
converted into an hexadecimal number. The three components are then joined
together to create a single hexadecimal color for the character.
Coloring a character with a hex color is an easy way to hide a great number of
bits into a single character but it also has its flaws; using GBW we can hide
between 8 and 15 bits of watermark into every character, compared to the one
to three bits per character embeddable with Homoglyphs based Watermarking.
With the full hex scale we could embed more bits into every character but
that would invalidate the invisibility of the method by making some of the
characters stand out with color. This method is invisible, detectable, fragile
(very susceptible to recoloring: if someone colors the whole text with any color
every trace of the watermark is gone) and non blind because a user-inputted
password is always required for the resolution process.

Figure 3.2: The first two paragraphs of our example text watermarked with GBW
using the lowest setting in our add-on (#070707).

Figure 3.3: The first two paragraphs of our example text watermarked with GBW
using the highest setting in our add-on (#272727).

10

Chapter 3. Watermarking techniques developed for this thesis

These pictures show that this method is invisible even with relatively high font
size (the pictures show the text in Arial font size 14). The different colors start
to become more apparent the higher the font size gets, of course. Another factor
that facilitates the visibility of the different colored characters is if the character
is bold or not because with bold characters it’s easier to discern whether its color
is black or not.

3.1.1 GBW’s Performance

GBW Performance
Hue #Bits hidden Time (seconds) #Times hidden

#070707 8 15 188
#0f0f0f 11 19 251
#171717 13 25 301
#1f1f1f 14 14 301
#272727 15 20 301

Table 3.1: Table showing the details of the algorithm’s performance when hiding
a 64 bit payload.

When testing the performance of this algorithm we used our add-on on the ex-
ample text to hide a watermark composed of 64 bits. The results are compiled
in this table: the first column represents the maximum hue possible for every
character (these are the same five hues we use as our options in the add-on, from
very weak to very strong), the second one shows how many bits of watermark are
hidden in one character, the third one tells us how much time the process took
and lastly, the fourth column shows how many times we managed to hide our 64
bit watermark inside the text. Please keep in mind that every function in every
add-on for Google Workplace is executed on Google servers, so execution times
may vary and are out of our control.

3.2 Space Coloring based watermarking
Space coloring-based watermarking (SBW) works similarly to the Grayscale-
based technique but focuses on whitespaces instead of characters. It retains the
same weakness to recoloring as the previous method but boasts an increased bit
embedding per character rate with 24 bits of watermark per single whitespace
character. This is possible thanks to the fact that a whitespace character doesn’t
render its color on screen but remains transparent. This makes this method in-
visible, detectable, fragile and non blind (the watermark can be extracted from
the colors but without the user-selected password it can’t be resolved). SBW is
fully compatible with Homoglyphs-based Watermarking because every whitespace
character can still be colored like every other character.

11

Chapter 3. Watermarking techniques developed for this thesis

3.2.1 SBW’s performance

Our example text was watermarked with the same 64 bit watermark to test for
performace. The process took 13 seconds and we managed to hide the watermark
in the text 10 times. This shows that, while SBW has a greater embedding
capacity per character compared to its grayscale counterpart, whitespaces are way
less common compared to normal characters; for instance in our example text out
of the total 1508 characters only 252 (17%) are whitespaces. This of course can
be remedied by combining this technique with other non-structural watermarking
techniques that add whitespaces to the text but, because the focus in this thesis is
on structural watermarking techniques we have not tested that possibility. This

Figure 3.4: The first two paragraphs of our example text watermarked with SBW.

picture shows clearly one of the main strengths of this watermarking technique:
invisibility. This technique is only visible when the document is still in the Google
Documents Editor and with the cursor on a whitespace the user notices that its
color is not the same as that of the rest of the text.

12

Chapter 4

End user grayscale perception test

Color perception is a vital part of grayscale based watermarking, because to
guarantee its invisibility property we have to make sure that fewest people as
possible can distinguish between black text and the grayscale value used. In
order to determine the optimal range on values that are indistinguishable from
black and let us hide the most bits possible per character, Prof. Montesi and Dr.
Bertini created a Google Survey that we presented to 162 people. This survey is
composed of two sections: in the first one participants are asked if two squares on
the screen are filled with the same color or not; this tests grayscale in a standard
enviroment, unrelated to text. The second section is composed of a series of
texts where some words are colored with different grayscales, ranging from barely
noticeable to very apparent: the user is then asked to write the word where he
first noticed a different colored letter in. The characters in a lighter shade of gray
are able to be embedded with more bits than darker shades but they are more
noticeable when side by side with black characters. These results can give us
insight into what hex values are not easily distinguished from pure black.

4.1 Population

Even though researchers are still unsure if men and women perceive grays differ-
ently [1], a diverse population is still preferred in every study. Our survey was
answered by 88 males (54.3%) and 74 females (45.7%). The most represented age
group is people from 20 to 29 years old and the least represented one is formed
by people from 70 to 79 years old.

4.2 Results

We organized the 162 results to better visualize how the polled population
perceives different shades of gray. Results for the first part show that, pre-
dictably, as hues get increasingly more distant from black, more and more people

13

Chapter 4. End user grayscale perception test

Figure 4.1: An example of a survey question from the first section.

Figure 4.2: An example of a survey question from the second section.

14

Chapter 4. End user grayscale perception test

Figure 4.3: Population of the survey graphed for age groups and gender.

15

Chapter 4. End user grayscale perception test

Are the two squares colored with the same shade of gray?
Squares’ hues YES NO

#000000 / #070707 118 - (72.8%) 44 - (27.2%)
#000000 / #0F0F0F 113 - (69.8%) 49 - (30.2%)
#171717 / #000000 68 - (42%) 93 - (58%)
#1F1F1F / #000000 45 - (27.8%) 116 - (72.2%)
#000000 / #272727 33 - (20.4%) 128 - (79.6%)
#2F2F2F / #000000 19 - (11.7%) 143 - (88.3%)
#000000 / #373737 10 - (6.2%) 152 - (93.8%)
#000000 / #3F3F3F 8 - (4.9%) 154 - (95.1%)
#474747 / #000000 5 - (3.1%) 157 - (96.9%)
#000000 / #4F4F4F 3 - (1.9%) 159 - (98.1%)
#575757 / #000000 3 - (1.9%) 159 - (98.1%)
#000000 / #5F5F5F 4 - (2.5%) 158 - (88.3%)

Table 4.1: Results to the first phase of the survey.

can tell the difference between the two squares. We see an increase in the
number of people who correctly recognize the difference in the squares from a
26% when the colors are black and #070707 to a 97.5% with black and #5F5F5F.

Thanks to this table that shows every answer from the first part of the survey
we can see that more than 70% of people can, for example, see the difference
between #1F1F1F and #000000. This tells us that, for our purposes, we should
aim for a lower maximum hue to minimize the watermark’s visibility. While it is a
good approximation, if it’s not applied to text it’s not as useful for our purposes;
that’s why the second section focuses on this exact problem by having the people
taking the text write the first word where they notice a different colored letter.
Every piece of text for the second part of this survey and its results are in the
first appendix, so as to not bog down the main text, but the conclusions will be
here.

4.3 Considerations

The point of this study was to understand what range of grayscales is the least
noticeable to the human eye, while maximizing bits to watermark each character
with. We’re especially interested in the second part because it shows people’s
reaction to actual text. From the data we gathered across all of the texts it’s
clear that after #272727 too many people recognize the difference (>10%) so
the final range of grayscales we used in the addons is from #070707 to #272727.
This interval ensures that the range of people that can recognize the watermark
is from 1.57% to 7.57%, which is an acceptable range of detection. Some things

16

Chapter 4. End user grayscale perception test

to remember are that some of the texts in the survey are bold and that enhances
the grayscale detectability, and that this is a cumulative measure, meaning that
1.57% of the interviewed people recognized one word with some letters colored
#070707 in all of the texts.

17

Chapter 5

Add-ons for Google Documents and

Google Slides

5.1 Google Workplace and its add-ons

Google Workplace (previously known as Google Suite) is Google’s solution to an
editing environment for documents, presentations, spreadsheets, surveys, events
and e-mails whose focus is customization, speed, scalability and accessibilty. This
service includes many Google editors such as Google Documents, Google Slides
and Google Forms while also containing tools to help people and businesses or-
ganize and collaborate when editing and planning, such as Gmail, Google Drive
and Google Calendar. These webapps are, of course, packed with features that
make it easier to create and edit documents collaboratively, but what happens
when a feature you need, for example watermarking capabilities, isn’t included in
an editor? Fortunately, every webapp included in the Google Workplace package
can be extended using add-ons. Add-ons are customized applications that inte-
grate with Google Workspace productivity applications such as Gmail, Google
Sheets, and Google Docs to provide extra functionalities. They are built using
Apps Script, Google’s own application development platform that is based on
JavaScript. Using addons you can:

• Create customized user interfaces that are directly integrated into Google
Workspace applications. These interfaces can display information to the
user and provide user controls;

• Boost workflow efficiency when working with Google Workspace by au-
tomating or streamlining tasks;

• Easily control and move data between Google applications with Apps Script
services;

18

Chapter 5. Add-ons for Google Documents and Google Slides

• Remove the need for browser switching by providing the user everything
they need within Google Workspace;

• Connect to non-Google services within Google Workspace applications, al-
lowing you to retrieve or upload data from those services into and from
Google Workspace.

There are two ways to add an add-on to your editors: making it yourself or
adding it to your editor from the Google Workspace Marketplace. While the
former is the way we chose to follow in this thesis, the latter is certainly the
more common of the two because the Marketplace is a collection of ready to use,
google-approved add-ons made by other users and/or companies that are free to
use and easy to install. If there is no add-on on the Marketplace that implements
the desired features, it is always possible and encouraged to make one and publish
it by accessing the "External Components" tab and clicking the "Script Editor"
button; this will open the App Script editor and let you start developing your
own add-on.
Building an add-on from scratch can be a daunting task, but Google provides
plenty of resources to help aspiring add-on creators get going. Since Apps Script
has easy built-in access to every API from the Workplace, Google provides doc-
umentation for all of them plus documentation for App Script itself on Google
Developers. Both of the add-ons presented in this thesis are made following di-
rections from Google Developers regarding both the APIs and Apps Script itself,
and feature, between the both of them, three sidebars, 8 different possible water-
marking/resolving techniques, six hashing functions to generate a watermark and
5 levels of grayscale strength. One thing to keep in mind with both of the addons
is that homoglyphs are supported only in a select number of fonts, defaulting to a
different sytle if not properly mapped. This means that this watermarking tech-
niques is truly hidden only in documents written in fonts like Times New Roman,
while sans-serif fonts like Arial usually accentuate the presence of homoglyphs
in the text instead of hiding it. This concern to doesn’t apply to whitespace
homolyphs, but only to the non-whitespace ones. The whitespace homoglyphs
sometimes expand when the text is justified, so right-aligned is recommended.

5.2 How the Google Documents Add-on works

After installing the add-on, it’s possible to use it like any other: with any Google
Documents document open, after clicking on the "Add-ons" tab in the top part
of the screen and selecting our add-on, two buttons will appear. The two of them
open up one sidebar each. Every functionality of this add-on is contained in one
of these sidebars. The "Watermark" sidebar handles watermarking, watermark
resolution, watermark deletion and can also tell you how many characters will
hide the watermark you selected. The "Display Watermarking" sidebar contains
functionalities for highlighting a watermark in your text, checking for signs of
possible watermarks and cleanup of the aforementioned highlights. Scattered

19

https://developers.google.com/
https://developers.google.com/

Chapter 5. Add-ons for Google Documents and Google Slides

around the sidebars are little blue symbols that, when hovered over with the
cursor, offer useful information about many of the settings in both of the sidebars.

20

Chapter 5. Add-ons for Google Documents and Google Slides

Figure 5.1: "Watermark" sidebar for
the Documents add-on as it appears
when it’s just loaded.

Figure 5.2: "Display Watermarking"
sidebar for the Documents add-on as
it appears when it’s just loaded.

21

Chapter 5. Add-ons for Google Documents and Google Slides

The components for the Watermark sidebar from top to bottom are:

• A dropdown menu to pick the algorithm you prefer to create the watermark:
this will affect watermark length, with shorter watermarks requiring less
characters to hide

• A textfield to insert your password: this password will be used to create
the watermark and is required to positively recover your watermark from a
text.

• Three checkboxes to select the type of watermark, allowing for 8 total water-
marking techniques by combining the three main ones (Homoglyph-based,
Space Coloring and Grayscale).

• When the checkbox for Grayscale-based watermarking is checked, the drop-
down menu to specify the level of grayscale strength desired gets enabled.
The stronger the grayscale the greater the number of watermark bits that
we can hide in a single character but, at the same time, more people can
possibly see the difference in color.

• One checkbox for controlling if the watermark is to be applied in the same
document the add-on is open on or in a new document, saved in the same
Google Drive folder, with the same name as the original but with the suffix
"-WATERMARKED" added.

• One checkbox to control the range of the other functions. If it’s checked
most of the other functions only work in the user selected part of the text.

• Four buttons: the first one starts the watermarking process with the info
from previous components, the second one starts the resolution process with
the same components, the third one checks how many characters it would
take to hide a watermark with the parameters specified (doesn’t actually
watermark the text) and the final one simply cleans up any trace of a
watermark, returning homoglyphs to their respective ASCII counterpart
and resetting the color of the text to black.

• A status box that displays messages with timestamps at the beginning and
at the end of functions. These messages show what function started, when
it started and its results.

The components for the Display Watermark sidebar from top to bottom are:

• Three selectors for the types of watermark to highlight. When one of these
selectors is selected it’s possible to change the color with which that tech-
nique will be highlighted by writing a new HEX code and pressing OK.
Note that when highlighting Homoglyph-based watermarking in combina-
tion with other techniques the first one takes priority but that doesn’t mean
that the character isn’t watermarked with both techniques. The rectangle
next to the name of the technique shows a preview of the color

22

Chapter 5. Add-ons for Google Documents and Google Slides

• A checkbox to select if you want the highlighting to happen on the whole
text or just the selected part of the text.

• Three buttons: one for highlighting the text with the colors you chose, one
for highlighting every paragraph in which a watermark is present in yellow
and one to clean up any and all highlights.

• A status box that displays messages with timestamps at the beginning and
at end of functions. These messages show what function started, when it
started and its results.

Every button checks for related parameters before starting its function so that
the script has every information it needs. For example a watermarking attempt
won’t go through without specifying the algorithm that you want to use. If two
people want to watermark the same text one can use Grayscale-based watermark-
ing and the other can use Space coloring-based watermarking. This is possible
because grayscale watermarking doesn’t check whitespaces when resolving a wa-
termark, checking the color of other characters instead and vice versa for the
Space Coloring tecnique. When watermarking a text the actual watermark is
determined by hashing the entire text with the password and the algorithm pro-
vided. This poses some problems when trying to recover a watermark because,
when homoglyph-based watermarking is used, some characters won’t be the same
as when the text was watermarked, thus requiring an additional step in the com-
putation that restores the text to its version without homoglyphs. The API for
Google Documents handles user selections like a list of elements, some of which
can be non textual (for example pictures); since we are only interested in text
for our purposes, a list of all the selected elements that have text in them is cre-
ated to act as the text when the "Watermark selected text" checkbox is checked.
When the same checkbox is not checked this is not an issue because, for whole
texts the API has a function to return a list of all the paragraphs in a text and
paragraphs only have text in them. Our watermarking and resolving algorithms
can therefore also be used with documents that contain pictures.
If you’re using the version with DOI integration, you’ll have access to a couple
new options on top of all of the others.

Figure 5.3: The extra buttons in the DOI integration version of the Google
Documents Add-on.

23

Chapter 5. Add-ons for Google Documents and Google Slides

These extra controls appear in the form of two buttons located just below the
"Clean up" button in the Watermark sidebar. The button Copy String
launches a function that transforms the settings of your watermark (password
excluded) into a string that is ready to be hidden inside a DOI’s metadata and
automatically puts it in your clipboard. The button labeled Input a String
opens the panel just under it, as shown in the picture. It contains a textbox to
put the string retrieved from your DOI in, a button to use that string to load the
settings to your watermark and a button to close the panel. Our string is sim-
ple by design, being composed of the values of the components separated by %.
This allows ease of access and readability without compromising security because
without a password, these settings are not useful.

Figure 5.4: A comparison between a
normal string (above) and its water-
marked version (below).

Figure 5.5: The highlights from the
second sidebar (below) help the user
to identify the watermarks applied
by the first sidebar (above).

These images show how a full watermark (a watermark with all three techniques
combined) looks on a string of text taken from our example article from Chapter
3.

5.3 How the Google Slides Add-on works

The Google slides add-on work similarly to the Google Add-on’s one with some
key differences to accomodate for the difference in the form of media treated.
The most glaring difference is the presence of one sidebar instead of two. Be-
cause Google Slides works with presentations instead of documents, it handles
text and selections differently: Google Slides lets the user select a wide range of
elements, from whole slides to a part o a text inside of a slide; since it’s hard to
know what elements contain text and how long it is from the selection alone, our
algorithm handles text watermarking element by element, leaving behind those
that don’t have any text. When going on a case by case basis, a possible prob-
lem is the shortness of the text: if a text is shorter than the minimum number
of characters necessary to embed the watermark at least one time the element
will be watermarked partially, meaning that no watermark can be recovered from
that element. This problem is partly solved by highlighting every element with
a different color depending on the result of the watermarking and resolving pro-
cesses. The elements in this sidebar are very similar to the ones in the Google
Documents version, and are only different in the way this add-on handles func-
tions. The checkbox to switch to and from selection mode is gone and in this
add-on every function is applied to the selected elements only. The filter that
checks that the appropriate options for each function are valid is still present but

24

Chapter 5. Add-ons for Google Documents and Google Slides

Figure 5.6: "Watermark" sidebar for the Slides add-on as it appears when just
loaded.

25

Chapter 5. Add-ons for Google Documents and Google Slides

there is no good way to check if a selection is empty, so if a selection is empty,
the function will run like normal but change nothing in the presentation. The
function that shows you how many characters hide your watermark has also been
overhauled and it now highlights parts of text with three colors: each colored
part represents one fully hidden watermark. If the last part of the text can’t hide
a full watermark it’s highlighted in red to show it. This function doesn’t actually
watermark the text in any way. Another new button on this sidebar is the Clean
Up Highlights one that, as the name suggests, gets rid of every highlight from
the selected elements. Due to the fact that we are using highlights to let the user
know basic information about the result of his operations, we felt like the second
sidebar, whose focus has always been letting the user know about his watermark,
had no place in this add-on and we got rid of it. Figure 5.7 and 5.8 are taken
using a font that shows homoglyphs clearly. This is done on purpose to highlight
them, because if they were hidden the comparisons wouldn’t work as well.

Figure 5.7: A comparison between a normal slide (above) and its watermarked
version (below). The yellow highlight on the top element signifies that it wasn’t
long enough to hide the watermark at least once.

5.4 Performance and Portability tests

5.4.1 Performance

Of course, when using an add-on for Google Workplace, a serious concern is time:
because every script function is run on Google servers, normal end users have
a maximum execution time of 6 minutes. At the same time, unfortunately, our

26

Chapter 5. Add-ons for Google Documents and Google Slides

Figure 5.8: The resolution process of a slide leaves every element highlighted
green if the resolution is successful, yellow if there weren’t enough bits recovered
to cover the watermark and red if the resolution was unsuccessful.

functions need many updates to the text to work and the Workplace API is built
to handle few updates to large amount of text. This means that our functions
have a longer execution time than normal. This time of course depends on many
factors like length of the text, font size, if there are images in it or not and number
of paragraph. Watermarking a full page typed in Arial 10 font with the Google
Documents add-on takes one minute. This is a good baseline measurement for the
performance of this add-on. The measurements for the Slides Add-on are slightly
more complicated because Google Slides is fundamentally different from Google
Documents. A slide of a presentation can contain many elements, many of which
may not have any text in it. Watermarking the text in a single element is not
difficult and it takes between 5 and 30 seconds depending on the length of the
text. The time consuming part is finding the elements with text in a selection.
Too many elements selected may run out the timer before the operation is fully
completed but, unlike the Documents add-on, because the watermarking function
is applied to every element, the first elements in the selection will be watermarked.

5.4.2 Portability for text editors

Portability plays a major role in the developement of text-based watermarking
techniques because of the many different text editors existing today. While Space
coloring-based watermarking and Grayscale-based watermarking don’t suffer from
the shift in text editors, Homoglyphs-based watermarking may have some prob-
lems depending on how every other editor handles homoglyphs. For portability

27

Chapter 5. Add-ons for Google Documents and Google Slides

in this case we mean the process of copying and pasting watermarked text from
Google Documents (where it originated) to another text editor and back again; if
the watermark is kept and can be retrieved, our watermarking method is portable
towards that particular text editor. We tested our full watermarking technique
(all three of the techniques combined) with a 64 bit watermark on the first two
paragraphs of our example text from chapter 3. The other editors tested were Mi-
crosoft Office Word, LibreOffice Writer and OpenOffice Writer. All of these pieces
of software were using their latest version possible as of the 28th of November
2020 and were installed on a Windows 10 system. Future updates or a different
OS may skew these results. The first thing we noticed was that, while Google
Documents handled homoglyphs in fonts that did not support them with minimal
difference, in other editors (expecially LibreOffice and OpenOffice) the difference
is much more stark and noticeable. This calls for a list of safe fonts that guar-
antee that the watermark is properly hidden in every editor. These fonts must
hide homoglyphs in both Google Documents and any other editor being tested;
we will also only take into consideration fonts that are shipped with the products,
discarding any custom font for ease of testing. A great number of fonts are not
fit for out purposes, especially sans-serif fonts like Arial o Calibri. On the other
hand, serifed fonts like Times New Roman or Georgia hide homoglyphs in Google
Documents perfectly. This is the full list of fonts that hide homoglyphs in Google
Documents:

• Times new Roman

• Georgia

• EB Garamond

• Spectral

Out of the four fonts listed here the only two present in every editor considered
are Times new Roman and Georgia. Now these fonts have to hide the same
watermark in the other editors. As we can see in the table, even though the fonts

Does the font hide the watermark in this editor?
Text Editor Times New Roman Georgia

Microsoft Word YES YES
LibreOffice Writer YES NO
OpenOffice Writer YES NO

Table 5.1: Table for text editors portability: which fonts hide homoglyphs in
different text editors?

are the same, only Microsoft Word correctly hides all of the homoglyphs with
both fonts. With LibreOffice and OpenOffice, only Times new Roman hides the
homoglyphs. The reason why some fonts hide homoglyphs and others don’t is that
all fonts define a series of glyphs for letters they intend to cover with different size,
weight and style from one another, so, because of size and complexity concerns,

28

Chapter 5. Add-ons for Google Documents and Google Slides

not every Unicode character is mapped when creating a new font. Many fonts
only map ASCII characters. This means that other characters need to default to
a different font when typed (this applies to our homoglyphs because they are non-
ASCII characters). If the default font is similar in style to the original one or if
the original font defines glyphs for our homoglyphs and those glyphs are the same
as their correspective characeters, the homoglyphs are hidden in that font. These
problems are of course only present when using Homoglyph-based watermarking
and the simplest fix to them would be to just use the two other techniques instead
that are completely portable with every other text editor tested. Grayscale-based
watermarking and Space coloring-based watermarking were correctly preserved,
and a watermark was extracted successfully after the tests, by all of the editors
and had no problem related to fonts that were not already discussed in chapter
3.

5.4.3 Portability for presentation editors

We repeated the same tests for presentation editors, this time to check the porta-
bility of watermarks applied by the Google Slides add-on. The editors considered
for these tests are Microsoft PowerPoint, LibreOffice Impress and OpenOffice Im-
press. All of these pieces of software were installed on a Windows 10 system
and had their version updated to the latest available as of the 28th of November
2020 before the start of the tests. We copied the contents of an element from a
Google Slides presentation into a new element of the same type in a presentation
from another editor, checked for invisibility and then repeated the process in the
opposite direction to check if the watermark was still valid. The fonts tested for
homoglyph invisibility are the same ones we tested for text editors for the same
reasons as stated previously: Times new Roman and Georgia. The only differ-

Does the font hide the watermark in this editor?
Presentation Editor Times New Roman Georgia

Microsoft PowerPoint YES NO
LibreOffice Impress YES NO
OpenOffice Impress YES NO

Table 5.2: Table for presentation editors portability: which fonts hide homoglyphs
in different presentation editors?

ence in these results is that that Georgia on Microsoft PowerPoint does not hide
homoglyphs. This is probably due to a different version of the font or a different
default font for this software compared to Microsoft Word. Another problem
present with presentation editors that text editors don’t have is that color is not
preserved between copy and paste operations. This means that unfortunately,
Grayscale-based watermarking and Space coloring-based watermarking are not
portable to any presentation editor tested. A watermark was successfully recov-
ered and extracted using only Homoglyph-based watermarking with all three of
the editors tested, so this technique is portable to any of them.

29

Chapter 6

Digital Object Identifier metadata

embedded Zero-watermarking

6.1 The Digital Object Identifier System
A Digital Object Identifier, or DOI, is an identifier of an entity on the net. It
provides a system for persistent identification and exchange of information and it
can be assigned to any entity (physical, digital or abstract). Its main purposes are
the sharing and managing as intellectual property of the associated entity. DOI
names can also be expressed as URIs. This system is already widely used with
more than 230 million DOI names assigned and over 5 billion DOI resolutions
per year, according to the official International DOI Foundation’s website. The
system was initiated by the International DOI Foundation (IDF) in 1998 and
later standardised as ISO 26324. The DOI system’s main component is the DOI
name; this name is composed of two parts: the prefix and the suffix. Let’s take
10.1000/182 as an example: this is the DOI for IDF’s latest applicable version of
their handbook, which contains useful information about the whole system and
its workings. This name is composed by:

• A prefix (10.1000) - This prefix is composed by a 10 (which signifies that
this string is a DOI) and a user-selected prefix (in this case 1000), separated
by a period

• A suffix (182) - The suffix is user-chosen and must not be repeated in any
other DOI registered by the same user.

This combination of suffix and prefix ensures that no two DOIs have the same
name as each other. These names are granted by a DOI Registration Agency
(RA), that’s a separate company from the IDF that provides services to whoever
wants to register a DOI. Registration Agencies provide services like allocating
prefixes, registering DOI names and providing the necessary infrastructure to
maintain and store metadata. An RA can be considered like a module to the

30

https://doi.org/doi_handbook/2_Numbering.html#2.1
https://doi.org/10.1000/182

Chapter 6. Digital Object Identifier metadata embedded Zero-watermarking

DOI system. New RAs can be added at any time, allowing for the system’s mod-
ular growth by incorporating new communities of users. Currently there are 10
Registration Agencies: Airiti, Crossref, CNKI, DataCite, EIDR, ISTIC, JaLC,
KISTI, mEDRA and the Publications Office of the European Union. Every RA
has a different business model and operates in a different part of the world; some
are located in Asia, some in Europe, some in the United States of America. The
IDF’s main purpose is DOI name resolution, that is a process in which an inden-
tifier is inputted and one or more pieces of information related to the identified
resource are returned, like an URL. Using this kind of multiple resolution, a single
DOI name can be resolved to an arbitrary number of associated resources like
URLs, other DOI names or other data types representing metadata items.

6.2 Structure of DOI’s metatada

Metadata are a vital part of the DOI system because an identifier is of no value
without some related metadata describing what it is that is being identified.
Metadata are defined as data that provides information about other data, such
as a title, author or anything that can help identify a piece of data. It can be
stored in different format but every RA uses an XML model personalized to fit
the RA’s needs, using the custom tags that XML provides to the fullest. Every
RA has its own set of metadata defined in a schema (or scheme) that a person
or company can fill and update for free when he registers a DOI but the IDF
defines a basic Kernel of mandatory metadata to identify a registered entity. The
purpose of this kernel is to provide a minimum set of metadata that different
RAs can build upon based on the preference of their audience. This minimum
set of metadata has two aims: recognition and interoperability
Recognition means that the kernel metadata should be sufficient to show clearly
what kind of thing our DOI name refers to, and allow a user to identify this
particular thing. These are complementary, for it is possible to know that
something is a book without knowing that it is "The Da Vinci Code" and
vice versa. Interoperability means that kernel metadata from different RAs
may be queried by the same software without requiring semantic mapping
or tranformation. The kernel provides this principle directly because ev-
ery implementation of a schema from a different RA must contain this kernel.

31

https://www.doi.org/doi_handbook/4_Data_Model.html#4.3.1
https://www.doi.org/doi_handbook/4_Data_Model.html#4.3.1

Chapter 6. Digital Object Identifier metadata embedded Zero-watermarking

Elements of the DOI Kernel according to the IDF
Kernel element(s) occurs Description
DOI name 1 Specific DOI name allocated to the identified ref-

erent.
referentIdentifier(s) 0-n Other identifier(s) referencing the same referent

(e.g. ISAN, ISBN, ISRC, ISSN, ISTC, ISNI).
This element contains a type element appropri-
ate to the primaryReferentType. The schema
at present recognises a creationIdentifierType
and partyIdentifierType, which are open lists for
which new allowed values may be registered.

referentName(s) 0-n Name(s) by which the referent is usually known
(e.g. title). This element contains a type element
appropriate to the primaryReferentType. The
schema at present recognises a creationName-
Type and partyNameType, which are open lists
for which new allowed values may be registered.
This element also contains a language element,
for which the allowed value list is the ISO 639-2
code list.

primaryReferentType 1 The primary type of the referent (e.g. creation,
party, event). This is an open list; new prima-
ryReferentTypes may be registered.

structuralType 1 The primary structuralType of a referent. For
creations, there are four mutually exclusive cre-
ationStructuralTypes (physical, digital, perfor-
mance, abstraction) that allow classification ac-
cording to overall form. Where structuralTypes
may be contained within one another, the ref-
erent’s structuralType is defined by the overall
form [e.g. a CD (physical) may contain files (dig-
ital) which contain recordings of performances
of songs (abstractions)], and elements of content
can be further classified if necessary under ref-
erentType. For parties there are three mutually
exclusive partyStructuralTypes (person, animal,
organization). These lists are closed.

mode 0-n For creations only, the principal sensory mode(s)
by which a referent is intended to be per-
ceived (audio, visual, tangible, olfactory, taste-
able, none). Mode only identifies the principal
intended modes of perception. This list is closed.

character 0-n For creations only, a fundamental form of com-
munication in which the content of a referent is
expressed. There are four values: music, lan-
guage, image, other. This list is closed.

32

Chapter 6. Digital Object Identifier metadata embedded Zero-watermarking

referentType 0-n Specification of type(s) of referent for parties:
author, book publisher, library, university, film
studio. It is typically described by creationType,
which may be extended as needed to include for-
mat and genre elements (for example: audio file,
book, PDF). This is an open list; new referent-
Types may be registered.

linkedCreation 0-n For creations only. Another creation with
which a referentCreation is associated. This
element contains a creationRoleToCreation ele-
ment, which is an open list for which new allowed
values may be registered.

linkedParty 0-n For parties only. Another party with which a ref-
erentParty is associated. This element contains a
partyRoleToParty element, which is an open list
for which new allowed values may be registered.

principalAgent 0-n For creations only, the entity or entities princi-
pally responsible for the creation or publication
of the referent. This element contains an agen-
tRole element which specifies the particular role
played (for example: Creator, Author, BookPub-
lisher). This is an open list for which new allowed
values may be registered.

dateOfBirthOrFormation 0-1 For parties only, the date of birth (for an individ-
ual or animal) or formation (for an organization)
of the referentParty.

dateOfDeathOrDissolution 0-1 For parties only, the date of death (for an indi-
vidual or animal) or dissolution (for an organi-
zation) of the referentParty.

associatedTerritory 0-n For parties only, a territory with which the ref-
erentParty is associated (for example, a territory
of birth, nationality or residence). The allowed
value list is the ISO 3166a2 territory code list.

registrationAuthorityCode 1 Code assigned to denote the name of the agency
(authorized by the ISO 26324 Registration Au-
thority) that issued this DOI name.

issueDate 1 Date when this DOI name was issued.
issueNumber 0-1 Number or other designation associated with the

specific version of the DOI Kernel Metadata Dec-
laration

Table 6.1: The basic elements of the IDF’s Metadata Kernel.

33

Chapter 6. Digital Object Identifier metadata embedded Zero-watermarking

6.3 DOIs and Watermarking

With this introduction to the DOI system it is clear that it has points in common
with other watermarking techniques we described earlier in this thesis. The whole
DOI system can be equated to a Zero-Watermarking technique. Both of them are
methods of protecting a document’s paternity without altering anything about
it, instead opting to store information related to the text on a service provided
by a third party. The proposed way of integrating our watermarking methods
and tools with the DOI system is to include in the DOIs metadata a string
that represents the settings used to watermark the document using the add-on
(without the password, of course). This string is constructed in a way that makes
it easy to read and short but without compromising security, because a watermark
can’t be resolved without the correct password (which is not included in any way
in the string). An apposite function in the add-on converts the string back to
its settings and the user only has to insert the correct password and start the
normal function to resolve the watermark. One of the major weaknesses of a
zero-watermarking technique (the fact that data given to a third party can’t be
certified) is circumvented because the only person that can resolve the watermark
with the settings of the string embedded in the metadata is the same person that
compiled the metadata for the DOI. Advantages to this technique include security
and scalability: the process is secure because every RA only lets the user who
registered a DOI change its metadata, so the only person who can modify the
string is the owner itself. This technique is also scalable because if multiple
people watermark different parts of the document the process allows for multiple
different string to be hidden in the same metadata.

6.3.1 Location of the string

An important role in this method is given to the location of our famous string
inside the metadata schema. Because the DOI system was created without this
watermarking method in mind, its definition doesn’t allow for much room to
hide non required data in. Ideally, the best spot to hide our string in would
be the IDF’s Kernel to make it available to every RA but, as stated before,
the kernel contains only the minimum metadata categories to keep it simple
but still descriptive so there is no official place to put our string in. Using
annotations (XML’s comments) we can hide our string in the tag for the name
of an author, so as to keep the scalability properties of this method. Another
possibility is including our string into a metadata tag that an RA has left
appositely for miscellaneous purposes, like Crossref’s "Custom Metadata". Since
annotations are still stored by the RA and our resolving method only needs
the string pasted and nothing more, the two methods of hiding are equivalent.

34

Chapter 6. Digital Object Identifier metadata embedded Zero-watermarking

Figure 6.1: Visualization of the process of including a string generated by the
add-on within a DOI’s metadata.

In this picture we can see that a User is using the Google Documents add-on with
the intent of watermarking a text, inserting it into a DOI and protecting it further
by inserting the string formed by the options of the watermarking function into
the DOI’s metadata. In his first operation he takes a normal text and watermarks
it by setting the options he wants in the add-on and using a password. The
watermarking function returns a watermarked text and the options used can be
turned into a string by a function inside the add-on. The second part of this
process is actually registering a DOI with the document being the watermarked
text and, when filling in the related metadata, inserting your options string in an
annotation or in a "Custom Metadata".

35

Chapter 6. Digital Object Identifier metadata embedded Zero-watermarking

Figure 6.2: Visualization of the process of resolving a watermark with the options
being provided by a string in a DOI’s metadata.

This picture illustrates the inverse process to the first image. The same user
wants to confirm his watermark from the DOI he registered. His first operation is
using the text saved in the DOI to start a resolving watermarking function with
the options recovered from the DOI’s metadata that only he can access and the
password that he used when watermarking the text. At this point the add-on
returns a positive response if the watermark is recovered successfully or a negative
one if it isn’t.

36

Chapter 7

Conclusions

The protection of intellectual property of digital contents from plagiarism and
unauthorized copy has become a challenging research problem, worsened by how
easy it is selecting, copying and sharing other people’s content. Text Watermark-
ing techniques must, in this light, evolve and mutate in order to facilitate the
user in the act of watermarking and discouraging potential attackers. An attack
that only captures a small part of the text (a partial copy) is particularly insidi-
ous because watermarking techniques that watermark the whole text are not as
effective as the techniques presented in this thesis, that watermark every letter of
a document, often resulting in a full watermark being hidden in just a few words.
All the techniques present in this thesis share a weakness to re-typing that is com-
mon in structural watermarking techniques. Grayscale-based watermarking and
Space coloring-based watermarking are weak to re-coloring as well. The add-ons
are a tool to combine these watermarking techniques in an automated and easy
to use way, in order to bridge the gap between big corporations that watermark
documents daily and new users that have never watermarked a document before.
Our watermarked documents are also portable to other text editors, with some
restrictions on fonts (only Times New Roman hides homoglyphs in every editor
tested). Portability to presentation editors is instead limited to Homoglyph-based
watermarked presentations in Times New Roman font. Simpler tools and safer
techniques are required to keep the barrier of entry into the world of watermark-
ing as low as possible and these add-ons are a step in that direction. The addition
of the Digital Object Identifier support as a form of Zero watermarking to be used
in conjunction with our techniques is another way in which text watermarking
can evolve in the future.

37

A - Survey for grayscale perception

This appendix contains all the results to the second part of our survey on grayscale
perception. This part was composed of six texts in total, and for every text
participants were asked to report the first word they noticed was written with a
different shade of gray. What follows is a look at all the texts from one to six
with any special notes written in the caption.

First Text

Figure 1: Text #1. Non-bold, font size 12

Second text

Figure 2: Text #2. Bold, font size 12

38

Third text

Figure 3: Text #3. Non-bold, font size 14

Fourth text

Figure 4: Text #4. Bold, font size 14

39

Fifth text

Figure 5: Text #5. Non-bold, font size 20

Sixth text

Figure 6: Text #6. Bold, font size 20

40

These texts are created to highlight different situations regarding font size and
boldness of the text. Following this is a series of tables that represent the results
of the survey and are constructed as follows: the first column is composed of the
words with letters of different shades of gray in the text, the second one refers to
the colors with which the first column’s word was painted and the last column
represents the percentage of people that recognized the change in color with that
hue or less. An hexadecimal number between square brackets represents a hue
with every component (red, green, blue) being the number; for example [27]
represents the color #272727. We used a second horizontal line to highlight the
range of grayscale that is present in our add-ons, with every shade of gray above
the double line being present in the add-ons. This is useful to show why we chose
the hues we did and how they performed in the public’s eye. The sixth text had
a problem where two of the words with letters changed were the same so it’s
impossible to distinguish which one people voted for. This has been corrected in
the final table.

Text 1

ALICE [07] 2,11%

COMINCIAVA [0f] 4,23%

SENTIRSI [17] 6,34%

MORTALMENTE [1f] 6,34%

STANCA [27] 7,75%

SEDERE [2f] 8,45%

POGGIO [37] 9,16%

ACCANTO [3f] 9,16%

SORELLA [47] 13,38%

SENZA [4f] 22,54%

NULLA [57] 45,77%

VOLTE [5f] 80,99%

AVEVA [67] 90,84%

GITTATO [6f] 92,96%

SGUARDO [77] 99,30%

LIBRO [7f] 99,30%

LEGGEVA [87] 100,00%

C’ERANO [8f] 100,00%

IMAGINI [97] 100,00%

DIALOGHI [9f] 100,00%

Table 1: First text results.

41

Text 2

QUANDO [07] 0,00%

GAMBE [0f] 0,00%

FURONO [17] 0,00%

SGRANCHITE [1f] 2,75%

PINOCCHIO [27] 8,26%

COMINCIÒ [2f] 9,17%

CAMMINARE [37] 14,68%

CORRERE [3f] 23,85%

STANZA [47] 67,89%

FINCHÈ [4f] 70,64%

INFILATA [57] 90,83%

PORTA [5f] 92,66%

CASA [67] 97,25%

SALTÒ [6f] 97,25%

NELLA [77] 98,16%

STRADA [7f] 100,00%

DÈTTE [87] 100,00%

SCAPPARE [8f] 100,00%

POVERO [97] 100,00%

GEPPETTO [9f] 100,00%

Table 2: Second text results.

42

Text 3

DAVVERO [07] 2,84%

TROPPO [0f] 3,55%

MERAVIGLIARSI [17] 6,38%

ALICE [1f] 6,38%

PENSÒ [27] 6,38%

FOSSE [2f] 8,51%

STRAVAGANTE [37] 21,99%

SENTIRE [3f] 24,11%

PARLARE [47] 46,10%

CONIGLIO [4f] 67,38%

DICEVA [57] 81,56%

FATTO [5f] 93,62%

QUANDO [67] 97,16%

RAMMENTÒ [6f] 97,16%

SEGUITO [77] 97,16%

S’ACCORSE [7f] 97,16%

AVREBBE [87] 97,16%

DOVUTO [8f] 97,16%

MERAVIGLIARSI [97] 100,00%

ALLORA [9f] 100,00%

Table 3: Third text results.

43

Text 4

ALLA [07] 2,13%

FINE [0f] 3,55%

BUONA [17] 4,26%

FORTUNA [1f] 4,26%

CAPITÒ [27] 4,96%

CARABINIERE [2f] 11,35%

SENTENDO [37] 31,21%

TUTTO [3f] 47,52%

QUELLO [47] 65,96%

SCHIAMAZZO [4f] 87,94%

CREDENDO [57] 92,20%

TRATTASSE [5f] 93,62%

PULEDRO [67] 97,16%

AVESSE [6f] 99,29%

LEVATA [77] 100,00%

MANO [7f] 100,00%

PADRONE [87] 100,00%

PIANTÒ [8f] 100,00%

CORAGGIOSAMENTE [97] 100,00%

GAMBE [9f] 100,00%

Table 4: Fourth text results.

44

Text 5

IDEA [07] 1,77%

ALLARMANTE [0f] 2,66%

SICCHÉ [17] 2,66%

TIRATOSI [1f] 2,66%

LETTO [27] 5,31%

ANDÒ [2f] 13,28%

BRANCOLANDO [37] 29,20%

VERSO [3f] 29,20%

FINESTRA [47] 67,26%

FREGÒ [4f] 81,42%

MANICA [57] 97,35%

VESTE [5f] 97,35%

CAMERA [67] 98,23%

VETRI [6f] 98,23%

VEDER [77] 98,23%

QUALCHE [7f] 99,12%

COSA [87] 100,00%

GRAN [8f] 100,00%

ARRIVÒ [97] 100,00%

VEDERE [9f] 100,00%

Table 5: Fifth text results.

45

Text 6

PENSAVA [07] 16,08%

IMBROGLIAVA [0f] 16,78%

SFORZAVA [17] 17,48%

PENSARE [1f] 19,58%

FORTE [27] 27,27%

PENSAVA [2f] 43,36%

SPETTRO [37] 63,64%

MARLEY [3f] 79,02%

TURBAVA [47] 86,01%

ASSAI [4f] 93,71%

QUANTE [57] 99,30%

VOLTE [5f] 99,30%

DOPO [67] 99,30%

MATURO [6f] 100,00%

ESAME [77] 100,00%

RISOLVEVA [7f] 100,00%

MENTE [87] 100,00%

STATO [8f] 100,00%

SOGNO [97] 100,00%

SCATTASSE [9f] 100,00%

Table 6: Sixth text results.

46

A combined look at all the answers
For obvious reasons, this table won’t contain a column with words associated to
the different hues, leaving only two columns.

Combined Texts

[07] 1,57%

[0f] 2,61%

[17] 3,79%

[1f] 4,57%

[27] 7,57%

[2f] 13,58%

[37] 26,76%

[3f] 34,33%

[47] 55,74%

[4f] 69,32%

[57] 83,29%

[5f] 92,56%

[67] 96,48%

[6f] 97,39%

[77] 98,83%

[7f] 99,22%

[87] 99,48%

[8f] 99,48%

[97] 100,00%

[9f] 100,00%

Table 7: All of the texts combined.

47

B - Add-ons code version

The code for both of the add-ons and the tests related to them were performed
on the latest versions of the appropriate softwares as of November 2020. Results
are subject to change.

48

Bibliography

[1] I. Abramov, J. Gordon, O. Feldman, and A. Chavarga. Sex and vision ii:
color appearance of monochromatic lights. Biology of sex differences, 3(1):21,
2012.

[2] R. A. Alotaibi and L. A. Elrefaei. Improved capacity arabic text watermark-
ing methods based on open word space. Journal of King Saud University-
Computer and Information Sciences, 30(2):236–248, 2018.

[3] T. Amano and D. Misaki. A feature calibration method for watermarking of
document images. In Proceedings of the Fifth International Conference on
Document Analysis and Recognition. ICDAR’99 (Cat. No. PR00318), pages
91–94. IEEE, 1999.

[4] M. J. Atallah, V. Raskin, M. Crogan, C. Hempelmann, F. Kerschbaum,
D. Mohamed, and S. Naik. Natural language watermarking: Design, anal-
ysis, and a proof-of-concept implementation. In International Workshop on
Information Hiding, pages 185–200. Springer, 2001.

[5] S. S. Baawi, M. R. Mokhtar, and R. Sulaiman. Enhancement of text
steganography technique using lempel-ziv-welch algorithm and two-letter
word technique. In International Conference of Reliable Information and
Communication Technology, pages 525–537. Springer, 2018.

[6] A. K. Bhattacharjya and H. Ancin. Data embedding in text for a copier
system. In Proceedings 1999 International Conference on Image Processing
(Cat. 99CH36348), volume 2, pages 245–249. IEEE, 1999.

[7] J. Brassil, S. Low, N. Maxemchuk, and L. O’Gorman. Hiding information in
document images. In Proc. Conf. Information Sciences and Systems (CISS-
95), pages 482–489, 1995.

[8] J. T. Brassil, S. Low, and N. F. Maxemchuk. Copyright protection for
the electronic distribution of text documents. Proceedings of the IEEE,
87(7):1181–1196, 1999.

[9] J. T. Brassil, S. Low, N. F. Maxemchuk, and L. O’Gorman. Electronic
marking and identification techniques to discourage document copying. IEEE
Journal on Selected Areas in Communications, 13(8):1495–1504, 1995.

49

Bibliography

[10] D. Huang and H. Yan. Interword distance changes represented by sine waves
for watermarking text images. IEEE Transactions on Circuits and Systems
for Video Technology, 11(12):1237–1245, 2001.

[11] R. Huddleston. Introduction to the Grammar of English. Cambridge Uni-
versity Press, 1984.

[12] Z. Jalil and A. M. Mirza. A review of digital watermarking techniques for
text documents. In 2009 International Conference on Information and Mul-
timedia Technology, pages 230–234. IEEE, 2009.

[13] N. S. Kamaruddin, A. Kamsin, L. Y. Por, and H. Rahman. A review of text
watermarking: theory, methods, and applications. IEEE Access, 6:8011–
8028, 2018.

[14] M. Kaur and K. Mahajan. An existential review on text watermarking tech-
niques. International Journal of Computer Applications, 120(18), 2015.

[15] B. Khosravi, B. Khosravi, B. Khosravi, and K. Nazarkardeh. A new method
for pdf steganography in justified texts. Journal of information security and
applications, 45:61–70, 2019.

[16] Y.-W. Kim, K.-A. Moon, and I.-S. Oh. A text watermarking algorithm based
on word classification and inter-word space statistics. In ICDAR, pages 775–
779. Citeseer, 2003.

[17] Y.-W. Kim and I.-S. Oh. Watermarking text document images using edge
direction histograms. Pattern Recognition Letters, 25(11):1243–1251, 2004.

[18] K. Lambrecht. A framework for the analysis of cleft constructions. Linguis-
tics, 39(3):463–516, 2001.

[19] R.-z. Liu and T.-n. Tan. Svd based digital watermarking method. Acta
Electronica Sinica, 29(2):168–171, 2001.

[20] S. H. Low, N. F. Maxemchuk, J. T. Brassil, and L. O’Gorman. Document
marking and identification using both line and word shifting. In Proceedings
of INFOCOM’95, volume 2, pages 853–860. IEEE, 1995.

[21] S. H. Low, N. F. Maxemchuk, and A. M. Lapone. Document identification
for copyright protection using centroid detection. IEEE Transactions on
Communications, 46(3):372–383, 1998.

[22] H. M. Meral, B. Sankur, A. S. Özsoy, T. Güngör, and E. Sevinç. Natural
language watermarking via morphosyntactic alterations. Computer Speech
& Language, 23(1):107–125, 2009.

[23] N. Mir. Copyright for web content using invisible text watermarking. Com-
puters in Human Behavior, 30:648–653, 2014.

50

Bibliography

[24] L. Y. Por, K. Wong, and K. O. Chee. Unispach: A text-based data hiding
method using unicode space characters. Journal of Systems and Software,
85(5):1075–1082, 2012.

[25] S. G. Rizzo, F. Bertini, and D. Montesi. Fine-grain watermarking for in-
tellectual property protection. EURASIP Journal on Information Security,
2019(1):10, 2019.

[26] S. G. Rizzo, F. Bertini, D. Montesi, and C. Stomeo. Text watermarking
in social media. In Proceedings of the 2017 IEEE/ACM International Con-
ference on Advances in Social Networks Analysis and Mining 2017, pages
208–211, 2017.

[27] M. Taleby Ahvanooey, H. Dana Mazraeh, and S. H. Tabasi. An innovative
technique for web text watermarking (aitw). Information Security Journal:
A Global Perspective, 25(4-6):191–196, 2016.

[28] M. Topkara, C. M. Taskiran, and E. J. Delp III. Natural language wa-
termarking. In Security, Steganography, and Watermarking of Multimedia
Contents VII, volume 5681, pages 441–452. International Society for Optics
and Photonics, 2005.

[29] U. Topkara, M. Topkara, and M. J. Atallah. The hiding virtues of ambi-
guity: quantifiably resilient watermarking of natural language text through
synonym substitutions. In Proceedings of the 8th workshop on Multimedia
and security, pages 164–174, 2006.

[30] O. Vybornova and B. Macq. A method of text watermarking using pre-
suppositions. In Security, Steganography, and Watermarking of Multimedia
Contents IX, volume 6505, page 65051R. International Society for Optics
and Photonics, 2007.

[31] O. Vybornova and B. Macq. Natural language watermarking and robust
hashing based on presuppositional analysis. In 2007 IEEE International
Conference on Information Reuse and Integration, pages 177–182. IEEE,
2007.

[32] X. Wang. Digital watermarking research based on text. In 2013 IEEE Third
International Conference on Information Science and Technology (ICIST),
pages 433–436. IEEE, 2013.

[33] Y. Zhou and W. Jin. A novel image zero-watermarking scheme based on
dwt-svd. In 2011 International Conference on Multimedia Technology, pages
2873–2876. IEEE, 2011.

51

	Introduction
	Text-based watermarking techniques
	State of the art for text based watermarking techniques
	Zero Watermarking
	Image-based methodologies
	Syntactic methods
	Semantic methods
	Structural methods
	Homoglyphs based watermarking

	Watermarking techniques developed for this thesis
	Grayscale based watermarking
	GBW's Performance

	Space Coloring based watermarking
	SBW's performance

	End user grayscale perception test
	Population
	Results
	Considerations

	Add-ons for Google Documents and Google Slides
	Google Workplace and its add-ons
	How the Google Documents Add-on works
	How the Google Slides Add-on works
	Performance and Portability tests
	Performance
	Portability for text editors
	Portability for presentation editors

	Digital Object Identifier metadata embedded Zero-watermarking
	The Digital Object Identifier System
	Structure of DOI's metatada
	DOIs and Watermarking
	Location of the string

	Conclusions
	Appendix Survey for grayscale perception
	Appendix Add-ons code version

