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Abstract

Monitoring the galactic cosmic-ray flux variations is a crucial issue for all those
space missions for which cosmic rays constitute a limitation to the performance
of the on-board instruments. If it is not possible to study the galactic cosmic-ray
short-term fluctuations on board, it is necessary to benefit of models that are able
to predict these flux modulations.

Artificial neural networks are nowadays the most used tools to solve a wide
range of different problems in various disciplines, including medicine, technology,
business and many others. All artificial neural networks are black boxes, i.e. their
internal logic is hidden to the user. Knowledge extraction algorithms are applied
to the neural networks in order to obtain explainable models when this lack of
explanation constitutes a problem.

This thesis work describes the implementation and optimisation of an explain-
able model for predicting the galactic cosmic-ray short-term flux variations ob-
served on board the European Space Agency mission LISA Pathfinder. The model
is based on an artificial neural network that benefits as input data of solar wind
speed and interplanetary magnetic field intensity measurements gathered by the
National Aeronautics and Space Administration space missions Wind and ACE
orbiting nearby LISA Pathfinder. The knowledge extraction is performed by ap-
plying to the underlying neural network both the ITER algorithm and a linear
regressor. ITER was selected after a deep investigation of the available literature.
The model presented here provides explainable predictions with errors smaller than
the LISA Pathfinder statistical uncertainty.

Keywords: Artificial neural networks, knowledge extraction, explainable artifi-
cial intelligence, interpretable prediction, LISA Pathfinder, cosmic rays
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Chapter 1

Introduction

Monitoring the galactic cosmic-ray flux short-term variations is a main issue for all
those space missions for which cosmic rays represent a limitation to the on-board
instrumentation performance. For these missions the study of the instrument
efficiency requires the analysis of the cosmic-ray flux variations. When no proper
particle detectors are flown on the satellite, models are used to obtain estimates
or predictions of galactic cosmic-ray fluctuations.

Nowadays, artificial neural networks are among the most used tools to solve a
wide range of different tasks. Neural networks learn relationships between input
and output data, modeling them as variables of a function that can be either
linear or not. However, neural networks solve problems as black boxes, so it is not
possible to understand how they work and how they combine data to obtain the
final result. These tools are used in many application fields, such as predictions and
decision making. Since there are critical applications in which human beings must
know how to interpret the network response, different methods were developed to
extract knowledge from the aforementioned black boxes.

Several works showing rule extraction methods applied to neural network mod-
els exist in the literature. The described neural networks are used to solve problems
belonging to a wide range of areas, such as financial analysis or bio-medical field.
For instance, in [1, 2, 3] the authors describe this technique for credit-risk evalua-
tion. As for the medical field, neural networks are used to make early breast cancer
prognosis predictions [4] and to help the diagnosis of hepatobiliary disorders [5],
coronary artery disease or thyroid dysfunctions [6], as well as to determine the
type of dermatological diseases or to take decisions about liver diseases or diabetes
[7]. All these papers refer to rule extraction mechanisms adopted to explain neural
networks solving medical tasks. The lists are not exhaustive: rule extraction algo-
rithms are applied also to neural networks for credit card screening [8], detecting
intrusions in computer networks [9], keyword extraction [10] and many other areas.

The goal of this work is to design and implement an explainable predictor of the

1



2 CHAPTER 1. INTRODUCTION

galactic cosmic-ray flux short-term variations. In the pursuit of this objective, this
thesis provides manifold contributions. First of all, the design and implementation
of a neural network model for time-series analysis aimed to the prediction of the
cosmic-ray flux variations in an opaque way, by using observations of solar wind
speed and interplanetary magnetic field intensity as input variables. This work
also reports the best pre-processing method of the raw input data in order to
obtain suitable data sets for the neural network training and testing phases. The
model is trained to mimic the measurements performed on board the European
Space Agency (ESA) LISA Pathfinder space mission [11, 12], a satellite carrying
instruments for gravitational wave detection in space and a particle detector. The
LISA Pathfinder spacecraft was orbiting around the first Lagrangian point at 1.5
millions km from Earth between the end of January 2016 and July 2017. The
input variable observations of solar wind speed and interplanetary magnetic field
intensity are carried out by other space missions.

The second contribution of this work is the the design and implementation of
a knowledge extraction procedure aimed to replace the aforementioned neural net-
work with a human-intelligible rule-based predictor. This implies a deep literature
analysis in order to select the best extraction strategy, resulted in the choice of the
ITER algorithm. Moreover, two novel variants of the ITER algorithm tailored on
the prediction task at hand are proposed and discussed.

Finally, the predictive performances of the two predictors are numerically as-
sessed and compared with respect to the test set, entirely composed of samples
never used during the training phase of the neural network model. The robust-
ness of the proposed predictors is then evaluated also with respect to the LISA
Pathfinder missing data.

Thesis structure. This thesis work is structured as follows. In Chapter 2 the
use of machine learning models, and in particular of neural networks, is discussed
to solve different problems, such as classification and regression. In Chapter 3
methods and techniques to extract rules from black box models for understanding
the model behaviour are described, with particular attention to neural networks.
In Chapter 4 the ESA LISA Pathfinder space mission is presented as a case study
for which neural networks are used to predict the cosmic-ray data gathered on
board the satellite by using as input variables the solar wind speed and the in-
terplanetary magnetic field intensity obtained from measurements taken by the
National Aeronautics and Space Administration (NASA) Wind experiment orbit-
ing also around the first Lagrangian point L1. The developed model is described
in Chapter 5, together with the knowledge extraction methods applied to it. The
results of this work are reported in Chapter 6. Finally, in Chapter 7 the main
results of this thesis work are summarised.



Chapter 2

Machine Learning and Artificial
Neural Networks

Machine learning is an application of artificial intelligence that provides systems
of the ability to automatically learn and improve from experience without being
explicitly programmed. Machine learning focuses on the development of computer
programs that can access data, known as training data, and use them to automati-
cally learn [13, 14, 15]. Machine learning approaches are traditionally divided into
three broad categories, depending on the nature of the feedback available to the
learning system. The categories are: supervised learning, where example inputs
are given to the system as well as the expected outputs and the goal is to learn a
general rule that maps inputs to outputs; unsupervised learning, where no labels
are given to the learning algorithm, leaving the algorithm to find automatically the
structure in its input; reinforcement learning, where a computer program interacts
with a dynamic environment in which it must perform a certain goal.

Performing machine learning involves creating a model, which is trained on the
training data and then can process additional unknown data to make predictions.
Various types of models are used and researched for machine learning systems,
such as artificial neural networks.

In the following general aspects of machine learning models are reported; arti-
ficial neural networks are discussed in particular.

2.1 General aspects of machine learning models

2.1.1 Typical problems and inputs

Typical problems resolved by using machine learning models are classification and
regression. In a (multi-class) classification problem the goal is to assign a class label

3
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to an object of interest. These objects are called examples, samples or instances
and are composed of attributes or features. Features can be continuous or discrete;
the former can take any value in an infinite domain, while the latter are from
finite domains. In addition, discrete features can be ordinal, if their values can be
ordered, or categorical. Formally, an instance x described by k attributes can be
defined as:

x = (x1, x2, ..., xk) ∈ D, (2.1)

where D is defined as A1 ×A2 × ...×Ak and Ai is the domain of the i-th feature.
In a classification problem the model assigns a category at every unknown

instance. Formally, each instance x has a class label y, where y is one of the
u elements of the set of the different classes of the problem L = {y1, y2, ..., yu}.
Mathematically, a classification problem consists in the definition of a function
that maps input examples to output classes [16]:

f : D→ L. (2.2)

It is possible to split classification problems into two different categories: multi-
class classification if there are more than two classes or binary classification if
there are exactly two classes. A variation of the standard multi-class classification
problem is the multi-label classification problem, where the output is a subset of
the possible classes rather than a single one, i.e. each instance could belong to
more than one class [17]. Another variant is the probabilistic classification, where
the output is composed by a probability for each class, representing the probability
of the input instance to belong to a specific class.

In regression problems the goal is to calculate a numeric output value rather
than a discrete one (as for category labels in classification). In this case the
mathematical formulation of the problem is a function that maps input examples
to real values:

f : D→ R. (2.3)

It is possible to have integer values in place of real ones; moreover, a multi-class
classifier can be adopted to solve regression problems by splitting the output do-
main into disjoint classes. For instance, if the goal is to solve a regression in the
[0, 1] interval, this interval can be split into n disjoint classes, such as 10: [0, 0.1),
[0.1, 0.2), ..., [0.9, 1.0]. Then each output value is replaced by the pertinent class
and the problem is resolved as a multi-class classification. In this case the output
cannot be an exact value, but an interval.
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2.1.2 Splitting of the data set

Given a data set, it is a good practice to split it in subsets in order to better
estimate the accuracy of the model. So, first of all it is necessary to select and
keep separate a certain amount of examples, such as 20% of the total number of
instances, and never use it during the training phase. This set is called test set
and will be used only after the training to measure the accuracy of the model
with completely unknown examples. Generally the test set is chosen randomly,
so as to take instances with different characteristics that reflects the whole data
set. By not using these examples for the learning phase it is possible to prevent
the occurrence of over-fitting problems, because the instances of the test set are
completely unknown for the model, so there it was no chance to memorise such
data for a good performance in later predictions (see Section 2.1.3).

The remaining examples that are not part of the test set can be used as a unique
training set or can be split again between training set and validation set. The val-
idation set is used to check the optimal values of the model hyper-parameters and
it could be chosen in different manners. The simplest way is to randomly take a
portion of the training set and not use it in the learning phase. In this case the
validation set is fixed and used during all the proofs. Another approach consists
in applying the so-called k-fold cross-validation [18]: the training set is divided
into k disjoint folds of equal size S1, S2, ..., Sk, where the union of all the folds is
the whole training set. Then each partition Si is selected as validation set while
the remaining k − 1 are the training set. The model is trained with this latter
and the accuracy is measured on the former. This is repeated k times, each one
with a different partition as validation set, then the output accuracy averaged on
the k folds is calculated together with the standard deviation of all the accuracies
measured during the cross-validation. An extension of regular cross-validation is
stratified cross-validation [19]. In k-fold stratified cross-validation the training set
is partitioned into k folds such that each class is uniformly distributed among the
k folds. The result is that the class distribution in each fold is similar to that in
the original training set. In this sense, the partition is balanced in terms of class
distributions. In contrast, regular cross-validation randomly partitions the sam-
ples into k folds without considering class distributions. A possible scenario with
regular cross-validation is that a certain class could be distributed unevenly, i.e.
some folds contain more cases of the class than other folds. This distortion in class
distributions can cause a less reliable accuracy estimation. In [20] is reported that
stratified cross-validation performs better than regular cross-validation, having
smaller bias and variance. Stratification is used mainly for classification problems,
but can be applied with regression, too.

In any case, it is necessary to repeat these operations for each possible combi-
nation of the hyper-parameter values (or, due to time issues, for a subset of these).
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Figure 2.1: Representation of data set splitting into training and test sets. The
training set is also used as validation set through the k-fold cross-validation.

As a final step, it is possible to select the best values for the hyper-parameters by
checking which combination presents the best accuracy, then the model is trained
again with the entire training set (no more validation set is needed) and the best
selected hyper-parameters. Finally, the output accuracy is measured on the test
set. This method is graphically resumed in Figure 2.1.

2.1.3 Under-fitting and over-fitting

By observing the prediction error on both the training and test sets it is possible to
identify two common issues caused by a lack or an excess of model complexity, i.e.
under-fitting and over-fitting [21]. A graphical representation of these problems is
reported on Fig. 2.2.

Under-fitting. Under-fitting occurs when a machine learning model is unable to
reduce the error for either the test or training set. This is caused by an insufficient
capacity of the model; that is, it is not powerful enough to fit the underlying
complexities of the data distributions. An endless decrease of the test prediction
error over the iteration number highlights this kind of problem; it could be resolved
with changes in the network architecture, such as the number of hidden layers and



2.1. GENERAL ASPECTS OF MACHINE LEARNING MODELS 7

Figure 2.2: Effects of under-fitting and over-fitting with respect to the prediction
error on training set (cyan line) and test set (orange line). Model complexity
(reported on the x axis) refers to the capacity or powerfulness of the model. The
optimal capacity falls between under-fitting and over-fitting.

neurons, or by using different activation functions or data pre-processing.

Over-fitting. Over-fitting happens when the machine learning model is so pow-
erful as to fit the training set so well that the noise and the peculiarities of the
data are memorized. By defining the generalisation error as the loss measured
on the validation or test set minus the loss measured on the training set, a large
generalisation error implies good accuracy on training set and poor performance
on validation or test set [22]. Over-fitting causes an increase of the generalisation
error. In other words, if a neural network over-fits training data, there will be a
lack of generalisation and thus low accuracy with different, unknown data. Too
many hidden neurons or hidden layers, as well as a too small learning rate, can
cause this problem. Over-fitting is pointed out by an increase of the test prediction
error over the iterations number. An example is reported in Figure 2.3.

2.1.4 Time series processing

Some applications require input data in the form of variables extracted from a time
series. A time series is defined as a series of data points time indexed. Generally, a
time series is a sequence taken at successive equally spaced points in time. Thus it
is a sequence of discrete-time data. Time series can exhibit different characteristics,
such as a trend or a seasonality (i.e. an increasing or decreasing tendency with
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Figure 2.3: Example of an over-fitting situation. Red dots are the data points that
have to be interpolated. The blue line is a good interpolation, while the green line
is a bad one. However, the accuracy of the green line is better than the other,
because it fits perfectly every data point.

respect to time or a fixed pattern repeated in time, respectively). Time series
are useful when past observations of a variable of interest can be studied to make
predictions about the future behaviour of the variable. This forecast is performed
by using some function of the data collected in the past. The main issue to handle
is to understand how many past observations enter into the forecast, since each
variable has its own peculiarities.

If there is a single time-dependent variable, the time series is called univariate;
otherwise it is called multivariate. In the univariate case the value of the studied
variable is only related to its predecessors in time. Multivariate time series have
more than one time-dependent variable and each variable depends not only on
its past values but also depends on other variables. This dependence is used for
forecasting future values [23].

Models for time series data can have many forms and represent different stochas-
tic processes. When modeling variable variations, three broad classes of practical
importance are the autoregressive models, the integrated models and the moving
average models. Other models have been developed, merging the features of two
or more of the aforementioned classes [24]. In addition, it is possible to adopt
machine learning models to deal with time series. In any case, the variable of an
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univariate time series needs to be unrolled in order to obtain a vector of fixed size.
This step is required since the majority of machine learning models cannot accept
as input vectors of variable size. Formally, this approach to forecast may be ex-
pressed as follows. Let yt denote the value of the variable of interest y in a period
t. Then a prediction ŷT of the variable y for period T , made with observations
belonging to the time interval between the periods T −h and T − 1, may have the
form:

ŷT = f(yT−1, yT−2, . . . , yT−h), (2.4)

where f(·) denotes some suitable function of the past observations yT−1, yT−2, . . . ,
yT−h. For instance, f(·) can be a linear function. A similar unrolling is required
for predicting variables belonging to multivariate time series. Let y1,t, y2,t, . . . ,
yK,t denote the K distinct variables of the time series in a period t. The prediction
ŷk,T of the variable yk for period T , made with observations belonging to the time
interval between the periods T − h and T − 1, may have the form:

ŷk,T = fk(y1,T−1, y2,T−1, . . . , yK,T−1, y1,T−2, . . . , yK,T−2, . . . y1,T−h, . . . , yK,T−h).
(2.5)

In Equation (2.4) and Equation (2.5) the size of the time window including the
past observations of the variables is not defined. The size depends on the problem
to solve and on the variables involved. In the multivariate case it is possible
to choose different sizes for distinct variables. The above equations assume that
within a time window all the observations are used, but it is possible to choose a
different granularity, for instance selecting one every n observations and discarding
the remaining n−1. With multivariate time series it is possible to choose a different
granularity for each variable.

2.2 Artificial neural networks

Artificial neural networks are mathematical systems loosely modeled on the human
brain and inspired by the organization and functioning of biological neurons. The
main concept resides in learning from experience. They try to emulate biological
neurons by multiple layers of simple processing elements called artificial neurons.
Each neuron is linked to all or a part of its neighbours and each link (called
connection) has a coefficient of connectivity (called weight) that represents the
strength of the connection. Neural network weights are randomly initialised; the
learning process consists in adjusting these values so that the final output of the
network will be as much as possible close to the expected result [25].
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There are numerous artificial neural network variations, related to the nature
of the task assigned to the network. There are also numerous variations in how
the neurons are modeled. Some models correspond closer than others to biological
neurons [26, 27].

Artificial neural networks can approximate both linear and non-linear func-
tions and can also estimate piece-wise approximations of functions [28]. In the last
decades artificial neural networks became increasingly central in information tech-
nology research thanks to their ability to solve complex problems with high degree
of accuracy, even in fields where traditional methods fail, such as forecasting and
decision modeling [29].

Despite this advantage, neural networks often require a lot of experience to ef-
fectively choose optimal hyper-parameters, regularisation parameters and network
architecture, which are all tightly coupled. Since there are no simple and easy
ways to set hyper-parameters, currently this process is mostly based on extensive
trial and error, because a grid or random search of the hyper-parameter space is
often computationally expensive and time consuming [30]. Examples of hyper-
parameters are activation functions, (see Section 2.2.2), network architecture (as
discussed in Section 2.2.4) and learning rate (Section 2.2.9).

2.2.1 Artificial and biological neurons

Neural networks are composed by a large number of elemental components called
neurons. Since their structure is modeled after that of the brain, neural networks
have a strong similarity to the biological brain and therefore a great deal of the
terminology is borrowed from neuroscience.

Biological neurons. The basic signaling unit of the nervous system is the neu-
ron. The brain contains billions of them; the best estimates carried out for adult
human brains are of the order of 1011 neurons. The interactions between them
enable people to think, remember, move, maintain homeostasis and feel emotions.
A neuron is a specialized cell allowing for different actions because of precise con-
nections with other neurons, sensory receptors and muscle cells. Each neuron can
connect with up to 2 · 105 other neurons [31, 32, 33]. The basic neuron consists of
synapses, soma, axon and dendrites as shown in Fig. 2.4 [34]. Synapses are links
between neurons that permit electric signals to pass from one to another. These
electrical signals are then jumped across to the soma, which carries out some op-
erations and sends its own electrical signal to the axon. The axon then disperses
this signal to dendrites. Dendrites send the signals to the different synapses, and
the process is reiterated [35]. In other words, a biological neuron receives inputs
from other sources, combines them and performs a generally nonlinear operation
and then outputs the final result.
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Figure 2.4: Simplified biological neuron and relationship of its four components.

Artificial neurons. The basic unit of neural networks is the artificial neuron
and it simulates the four basic functions of natural neurons, even though they are
much simpler than the biological counterpart. Figure 2.5 shows the basics of these
components.

Every neuron of the network has different simultaneous inputs, each of which
has a weight connection assigned to it. Weights are correlated with the significance
of the correspondent input. The global input of the neuron, called net value, is
the weighted sum of all the inputs multiplied by their respective weights. Each
neuron has its own distinctive threshold value, and if the output is greater than
the threshold, then the neuron is called fired, otherwise it is not fired. The output
is then fed into all the neurons of the following layer.

There are alternative ways to calculate the net value instead of using the
weighted sum. For example, the aggregation function can select minimum, maxi-
mum, majority or product.

Figure 2.5 shows n inputs and weights of a generic neuron (represented by xi
and wi, respectively); each input xi is multiplied by the correspondent weight wi.
The net value is obtained by summing up all these products and an additional
parameter called bias (represented in figure as b). The output value of the neuron
is equal to the transfer function (σ) applied to the net value [36].

2.2.2 Activation functions

The activation function, or transfer function, is a core element of artificial neu-
rons. It transforms the activation level of a neuron into an output signal, enabling
nonlinear mappings of the data so that they can be more comprehensible for the
network. For example, it can make the data linearly separable for a better classi-
fication.



12 CHAPTER 2. MACHINE LEARNING

Figure 2.5: Artificial neuron.

The choice of the correct activation function depends on the kind of problem
that has to be solved. It is well known that sufficiently elaborated networks can
approximate any function of interest thanks to the activation function [37, 38].
In [39] the authors reported that it is possible to approximate any continuous
function to any degree of accuracy if and only if the network adopts an activation
function that is not polynomial. In the literature there are many works discussing
the advantages of the sigmoid function [40, 41, 42, 43], although a wide selection
of other useful functions exists, both nonlinear such as the hyperbolic tangent
[44, 45] or the rectifier function [46, 47, 48], and linear [49]. Other non-conventional
functions have been proposed in the literature, such as in [50].

Interesting dissertations about the difference between the various activation
functions can be found in [51] and [52].

Binary step function. The binary step function is the simplest activation func-
tion that can be implemented with a simple if-else statement. It represents a
neuron that is activated only if its input is larger than a certain threshold. It
is suitable for binary classification but not for multi-class classification. Its main
drawback is that its gradient is zero; this could be a problem during the training
back-propagation phase.

If t is the threshold, this function can be defined as:

f(x) =

{
1 if x ≥ t,

0 otherwise.
(2.6)

Figure 2.6a shows this function with a threshold t = 0.
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(a) Binary step function with t = 0. (b) Linear function with a = 1 and b = 0.

(c) Uni-polar sigmoid function. (d) Bi-polar sigmoid function.

(e) Hyperbolic tangent function. (f) ReLU function.

Figure 2.6: Examples of activation functions.
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Linear activation function. The linear activation function is directly propor-
tional to the input. It removes the zero gradient problem of the binary step
function. It can be defined as:

f(x) = ax+ b. (2.7)
Figure 2.6b shows this function with parameters a = 1 and b = 0. With this values
the linear function is an identity function.

Sigmoid functions. Sigmoids are the most widely used activation functions,
since they are non-linear functions continuously differentiable. This feature makes
them especially advantageous to be used in neural networks trained by back-
propagation algorithms. The term sigmoid means ‘S-shaped’.

Uni-polar sigmoid function. The uni-polar sigmoid function maps the interval
(−∞,∞) onto (0, 1) and is defined as:

f(x) =
1

1 + e−x
. (2.8)

The uni-polar sigmoid function is mainly used for models that have to provide an
output prediction in terms of probability. Since the probability ranges between 0
and 1, uni-polar sigmoid is the most suitable choice. This function is shown in
Figure 2.6c.

Bi-polar sigmoid function. This function differs from the uni-polar one be-
cause it is symmetric with respect to the origin and produces output in the range
(-1, 1). It is used for applications that produce output values in the same range
and it is defined as:

f(x) =
1− e−x

1 + e−x
. (2.9)

Figure 2.6d shows the bi-polar sigmoid function.

Hyperbolic tangent. The hyperbolic tangent is defined as the ratio between the
hyperbolic sine and cosine functions or expanded as the ratio of the half-difference
and half-sum of two exponential functions in the points x and -x as follows:

tanhx =
sinhx

coshx
=
ex − e−x

ex + e−x
. (2.10)

As shown in Fig. 2.6e, this function is similar to a sigmoid, but has a more steep,
zero centered gradient. It has the same output range of the bi-polar sigmoid
function and it is mainly used for classification between two classes.
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ReLU function. ReLU stands for rectified linear unit and is a non-linear ac-
tivation function widely used in neural networks. It is more efficient than other
functions because not all the neurons are activated at the same time; in addition, in
some cases the value of the gradient is zero, so weights and biases are not updated
during back-propagation. It can be defined as follows:

f(x) = max(0, x). (2.11)

This function is reported in Fig. 2.6f.

2.2.3 Multi-layer perceptrons

Neural networks are composed of connected artificial neurons, but the clustering of
these neurons is a fundamental issue in the network construction. Generally they
are grouped in layers, where only neurons in successive layers are connected. The
basic architecture, called perceptron, is composed of an input layer and an output
one. The first has a number of neurons equal to the number of data set features,
while the latter has a neuron for each output value of the network. For example, a
simple classifier, that returns a label representing the class of a sample, will have
a single output neuron, as also a regressor for predicting real values. The input
value of input neurons is the feature value (opportunely scaled with respect to the
problem, usually between 0 and 1, or -1 and 1). In this basic architecture, inputs
are processed in the input layer and the relative output, after the application of
the activation function, is fed to the output layer.

A more complex architecture consists of one or more additional layers put be-
tween the two described above. These are called hidden layers. In this case, the
output of the input layers is sent to the first hidden layer. Hidden neurons do sim-
ilar operations on their input (weighted summation of the values and application
of an activation function) and provide output to successive hidden layers. The
output of the last hidden layer is fed to the output layer. It can be seen that the
propagation of the input throughout the layers creates a feed-forward path to the
output [53]. Figure 2.7 shows a multi-layer perceptron with two hidden layers. In
the example there are an input layer with eight neurons, two hidden layers with
five and two hidden units, respectively, and finally an output layer with only one
neuron. Biases are not reported in the figure to keep it clear, while all the connec-
tions are drawn. As examples, only some weights are reported, such as w31 for the
connection between the input unit 1 and the hidden unit 3, w34 for the connection
between the hidden units 3 and 4 and finally w54 for the connection between the
hidden unit 4 and the output unit 5.

It is possible to have connections starting from a neuron in a layer and ter-
minating in neurons of a previous layer; these are called feedback. Inhibitions,
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Figure 2.7: Representation of a multi-layer perceptron with two hidden layers.
Biases are not reported to keep the figure clear.

or lateral inhibitions, are connections between neuron of the same layer, used to
inhibit a neuron if there is another neuron with higher value. They are usually
applied in output layers of classifiers, to deactivate neurons with non-maximum
probability. This mechanism is also called competition.

2.2.4 Hidden layers and hidden units

The number of hidden layers and that of hidden neurons (or units) is crucial for
different reasons. First of all, adding layers allows the network to learn more
complex mappings between input and output. However, too many of them could
lead to over-fitting problem (see Section 2.1.3) and protract the training time. Use
only one hidden layer is faster, but the network could be not sufficiently complex to
model the problem (see the under-fitting problem in Section 2.1.3). For example,
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it has been shown that a single hidden layer feed-forward network, with sigmoid
activation function in the hidden layer, can approximate an arbitrary mapping
from one finite dimensional space to another [37]. Although it seems that multi-
layer perceptrons can learn whichever mapping if complex enough, adding more
than two or three hidden layers does not generally improve the output accuracy.

A similar conclusion is valid for hidden neurons with respect to under-fitting
and over-fitting problems. The optimal number of units can be tuned with trial and
error methods, even though different rules are suggested in the literature [54, 55].
There is not a valid formula that holds in every context.

2.2.5 Training

The training of a multi-layer perceptron is a supervised learning algorithm, consist-
ing in two phases: the forward propagation of the samples of the training set and
the successive update of the network parameters (connections weights and neurons
biases) in order to reduce the prediction error, using back-propagation techniques
[56]. The prediction error is calculated with respect to a defined loss function, such
as the mean absolute error or the mean squared error (see Section 2.2.8). Network
parameters are randomly initialised. The supervised nature of the process implies
that both training input and output are provided to the model.

During the forward phase, every training sample is fed to the network, starting
from the input layer. Each neuron of the layer produces an output value and this is
propagated to every connected neuron all through the output layer [57]. Neurons
in the output layer give the final result of the model. Since the expected value
is known, it is possible to calculate the error of the model and to back-propagate
such error in order to update the network parameters and reduce it [58].

2.2.6 Epochs and iterations

During the training phase of the neural network, an epoch represents the feeding
process of each data sample of the training set to the network. An epoch com-
prises one or more batches, depending on the batch size. A batch is a subset of
the training set. The batch size is a hyper-parameter. The number of epochs is
another hyper-parameter and defines the number of times that the learning algo-
rithm takes as input the entire training set. Too many epochs can lead to a lack
of generalisation due to over-fitting.

In the training algorithm network parameters are updated after the feed of
an entire batch to the algorithm, and the feeding followed by the update is called
iteration. As a result, the number of iterations per epoch depends on the batch size:
large sizes implies less iterations per epoch. Small batch sizes are recommended
for having regularisation effects [59].
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2.2.7 Early stopping

Over-fitting can be resolved by using a technique called early stopping. It implies
the preliminary separation of the training data into two splits, the training and
validation sets. The training set is used to train the network, while the validation
set is only used to periodically test the accuracy of the model. During the training
the prediction error is supposed to decrease on both splits; when validation error
starts to grow up, the training is stopped [60]. It is suggested to use a large
number of hidden neurons, slow learning rate and small random initial weights. It
is possible to select a threshold and consider any improvement of the prediction
error on the validation set smaller than this threshold as a marker of the worsening
of the error.

2.2.8 Loss function

The loss function, or cost function, is a measure of how the output of a model
diverges from the expected output. It can be formulated in different ways, de-
pending on the problem to resolve. For example, cross-entropy is a loss function
used in classification problems, where the output is a label, while mean absolute
error or mean squared error are functions used in regression problems. The mean
absolute error (MAE) is defined as the average absolute difference between the
model output ŷ and the expected output y:

MAE(y, ŷ) =
1

n

n∑
i=1

|yi − ŷi|, (2.12)

where n is the number of test samples yi and corresponding model outputs are ŷi.
Conversely, the mean squared error (MSE) is defined as follows:

MSE(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)2. (2.13)

.
Of course, a perfect model would have a loss equals to zero.

2.2.9 Learning rate

This hyper-parameter determines the size of the step taken during the training to
move toward a minimum of the used loss function. This value must be carefully
tuned: if too large it is possible to jump over the minimum, but if too small there
are different problems, such as a very long time for convergence or a stop in a
suboptimal local minimum. The tuning of this hyper-parameter is intertwined
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with that of the others; for example, it is found that it is possible to increase the
batch size instead of reducing the learning rate without losses in test accuracy [61].

2.3 Pruning in neural network models

Artificial neural networks tend to have an elevate number of neurons and, thus, of
trainable parameters. This implies high computation, energy and memory costs
during the learning phase, but also higher probability of over-fitting the training
data and a more difficult procedure to extract a set of rules from the model. There
are different kinds of pruning, based on different criteria, aimed to make the net-
work smaller and faster. The majority is based on the removal of neurons or input
features that make little or no contribution to the output of a trained network.
Obviously, by removing part of the network complexity there is a drawback re-
garding the model accuracy. The more the model is pruned, the more it can lose
precision.

A method to perform pruning is described in [62] and consists in estimating the
contribution of a neuron with respect to the final loss and the iterative removal of
those with smaller scores. The algorithm applies an iterative fine-tuning process
with small learning rate. During each epoch it alternates two steps. The first
consists in computing the importance of each neuron for each batch of samples.
After a predefined number of batches, the second step takes place: it consists in
the removal of the less important neurons. The algorithm stops when the target
number of neurons is pruned or when the accuracy drops below a certain threshold.

The method reported in [63] is based on the sensitivity estimation of the error
function to the exclusion of each neuron. This estimation is performed during the
network training in a non-interfering manner, so at the end of the process it is
possible to prune the connections with smaller sensitivity.

In [64] connections (and thus neurons with no input or output connections)
identified by small weights are removed without loss of accuracy.

Other approaches, called brute-force pruning, exclude one connection at a time
and evaluate if the network without the inhibited connection have the same (or a
comparable) accuracy. If it is the case, the connection is pruned [65].

Pruning algorithms are an alternative to constructive algorithms. While the
former start with a sufficient number of neurons and then remove units iteratively
until a criterion is met, the latter start with few neurons and then add units and
layers until the obtained results are acceptable.

Some pruning methods require an ad hoc training. An example are magnitude-
based approaches, in which the loss function is modified by adding a term to push
the network towards weights near to zero during the training.

Pruning or constructive approaches can be applied also to input features, in
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order to minimize the number of units in the input layer. From the point of view
of the knowledge extraction it is an important issue, because less input variables
implies simpler rules.



Chapter 3

Knowledge Extraction from Neural
Networks

Decision support systems constructed as black boxes are more and more widely
used. A black box model is a system that hides its internal logic to the user; this
lack of knowledge constitutes a problem, especially in critical applications such
as to the field of public health and economy. The literature reports approaches
aiming to provide a possibility to interpret the model results which are preferred
over those that do not allow any interpretation despite being characterised by a
good accuracy.

3.1 Interpretable models

The term interpretability, applied to machine learning systems, is referred to the
ability to explain or to present a model in an understandable way for humans [66].

Given a black box it is possible to distinguish between reverse engineering or
design of explanations. In the first case given the decision records produced by a
black box decision maker the problem consists in reconstructing an explanation for
it. In the second case, given a data set of training decision records the task consists
in developing an interpretable predictor model together with its explanations. In
the reverse engineering field, there are different kinds of problems, described in the
following using as a reference a black-box classifier [67].

3.1.1 Black box problems

Black box model explanation problem. Given a black-box classifier this
problem consists in providing an interpretable and transparent model which is
able to mimic the behaviour of the black box and which is also understandable by

21
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humans.

Black box outcome explanation problem. Given a black-box classifier this
problem consists in providing an interpretable outcome, that is a method for pro-
viding an explanation for the outcome of the black box. In other words, the inter-
pretable model must return the prediction together with an explanation about the
reasons for that prediction. It is not required to explain the whole logic behind
the black box but only the reasons for the choice of a particular instance.

Black box inspection problem. Given a black-box classifier this problem con-
sists in providing a representation for understanding either how the black box
model works or why the black box returns certain predictions more likely than
others.

3.1.2 Explanator types

Different kinds of explanators can be used to open a black box. Their nature
differs on the basis of how the explanator is constructed and presents the output
to the user. Decision rules and decision trees are the most widespread and human
understandable models.

Decision rules. Decision rules are functions which map observations to appro-
priate actions and can be extracted by generating the so called classification rules,
i.e. association rules that in the consequence have the output class label [68, 69].
The most common rules are if-then rules where the if clause is typically a conjunc-
tion of conditions on the input variables, event though is possible to use negations
and disjunctions too. An improvement of these rules are m-of-n rules, where, given
a set of n conditions, if m of them are verified then the consequence of the rule
holds [70].

Decision trees. This model is based on a graph structured like a tree and com-
posed of internal nodes that represent tests on attributes. Leafs are the output
class labels of a black-box classifier or the output value of a black-box regressor.
Each branch models a possible outcome and the entire paths from root to leaves
represent classification rules [71]. Obviously it is possible to linearise the tree to
obtain a list of if-then rules [72], in the form:

if body then outcome,
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where the body is the conjunction of the clauses corresponding to the different
node conditions in the path from the root to the outcome represented by a leaf.
This must be done for each possible path.

The comprehensibility of decision trees is facilitated by several factors [73], such
as their graphical structure and the fact that they typically contain a subset of
attributes instead of all of them, helping users to focus on the most relevant ones.
Third, the hierarchical tree structure provides information about the importance
of different attributes; attributes close to the root are more relevant.

Other explanators. Beyond decision rules and trees there are other explanator
models. Features importance is a very simple but effective solution consisting in
returning as explanation the set of features used by the black box together with
their weight [74, 75]. Salient masks are an efficient way of pointing out what causes
a certain outcome, especially when images or texts are treated, and consist in using
“masks” visually highlighting the determining aspects of the analyzed record. They
are generally used to explain deep neural networks [76, 77]. Sensitivity analysis
consists of evaluating the uncertainty in the outcome of a black box with respect to
different sources of uncertainty in its inputs. It is generally used to develop visual
tools for black box inspection [78, 79]. Partial dependence plots help in visualizing
and understanding the relationship between the outcome of a black box and the
input in a reduced feature space [80, 81]. Prototype selection consists in returning,
together with the outcome, an example very similar to the classified record, in order
to make clear for which criteria the prediction was returned. A prototype is an
object that is representative of a set of similar instances and is part of the observed
points, or it is an artifact summarizing a subset of them with similar characteristics
[82, 83]. Neurons activation is the inspection of neural networks and deep neural
network carried out by observing which are the fundamental neurons activated
with respect to particular input records [84, 85].

3.2 Extracting knowledge from black boxes

Despite the versatility of black boxes, these models have an inherent inability
to explain in a comprehensible form the process by which a given decision or a
generated output has been obtained. However, in certain applications it is crucial
to find an explanation for the black box response, so it is necessary to apply a
method for knowledge extraction from the model. In addition, by applying these
methods, it could be possible to learn unknown relationships between input and
output [86].
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3.2.1 Explanator classification.

Several methods exist for extracting knowledge from black box models and three
different dimensions are used to classify them. One of these is the translucency,
intended as the view of the model internal structure. Translucency is described in
more detail in the next section. The other dimensions are the kind of the extracted
rules (for instance if-then or m-of-n rules) and the kind of the problem to solve
(i.e. a classification or a regression).

3.2.2 Translucency of the model

With respect to the translucency parameter, there are two possible approaches:
decompositional and pedagogical. In addition there is a third approach, called
eclectic, which combines elements of both categories.

Decompositional approach. The decompositional approach allows for the knowl-
edge extraction considering the internal logic and structure of the underlying black
box model. For this reason the extracting process is closely intertwined with all
the peculiarities of the black box and each kind of black box requires specific
extraction algorithms.

With respect to artificial neural networks, this kind of approach focuses on
extracting rules at the level of individual network units, the hidden and output
neurons weights and biases. Hence it provides a transparent view of the underlying
network. The computed output from each hidden and output network unit must
be mapped into a binary outcome (yes or no) which corresponds to the notion of
a rule consequent. For this reason each hidden or output unit can be interpreted
as a step function or a Boolean rule, which reduces the rule extraction problem
to determine the situations in which the rule is true. The rules extracted at the
individual unit level are then aggregated to form the composite rule set for the
neural network as a whole.

Pedagogical approach. The pedagogical approach extracts rules from a black
box model without making any architectural assumptions of the underlying model
and it can therefore be applied to any kind of black box. This technique considers
the rule extraction as a learning task where the target concept is the function
computed by the black box model. The input features used for the extraction are
the same input features of the underlying model.

In the case of artificial neural networks, the pedagogical approach treats the
underlying neural network as a model with an opaque view of its units. The
knowledge extraction is performed by learning rules that map inputs directly into
outputs, regardless from the network parameters.
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3.2.3 Quality of the extracted rules

To evaluate the quality of the rules extracted with knowledge extraction methods,
different indicators can be kept in consideration: prediction performance evalua-
tion, fidelity, consistency and comprehensibility [87]. Quality is intended as how
well the extraction task has been performed, i.e. by comparing the generalization
power of the interpretable model with respect to that of the underlying black box
model [88].

The prediction performance evaluation is correlated to the goodness of the
model output and it depends on the task to solve. In the case of classifications,
the accuracy of the explanator can be used. Conversely, in regression tasks dif-
ferent metrics are adopted, such as the mean squared error or the coefficient of
determination R2.

Fidelity is about the ability of the model to mimic the behaviour of the under-
lying black box. Consistency holds if, under different training sessions, the model
generates rule sets which produce the same classifications of unseen examples. Fi-
nally, the comprehensibility is determined by measuring the size of the model. For
example, for a rule set is the number of rules and the number of antecedents per
rule.

3.3 Extracting knowledge from neural networks

In the following only explanators producing decision rules or trees for solving the
model explanation problem are reported.

3.3.1 Knowledge extraction from classifiers

In this section two algorithms for extracting knowledge from artificial neural net-
work solving classification problems are described.

Rule-extraction-as-learning. This algorithm is an eclectic method for extract-
ing conjunctive rules from trained neural networks using a learning process driven
by sampling and queries. Output rules can be if-then or m-of-n rules. The core
idea is to view rule extraction as a learning task where the target concept is the
function computed by the network and the input features are simply the network
input features. As it can be seen in Algorithm 1 [89], the approach uses two dif-
ferent oracles, namely functions that are able to answer queries about the concept
being learned. The first is the Examples oracle, which produces, on demand,
training examples for the rule-learning algorithm. The second is the Subset ora-
cle, which takes as arguments a class label c and a conjunctive rule r and returns
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Algorithm 1 The Rule-extraction-as-learning algorithm.
\∗ initialise rules for each class ∗\
for each class c
Rc := ∅

repeat
e := Examples()
c := classify(e)
if e not covered by Rc then
\∗ learn a new rule ∗\
r := conjunctive rule formed from e
for each antecedent ri of r
r′ := r but with ri dropped
if Subset(c, r′) = true then r := r′

Rc := Rc ∨ r
until stopping criterion met

true if all of the instances that are covered by the rule r are members of the given
class c. It returns false otherwise.

The algorithm repeatedly queries the Examples oracle, each time determining
the class of the returned example. If such example is not covered by the learned
rule for its class, the rule is extended with an additional term in order to include
the example. Class rules are disjunctive normal form expressions, while new terms
are initialised as the conjunction of all of the feature values of the example. Then
the rule is generalised by repeatedly dropping each antecedent and checking with
the Subset oracle if the rule is still agreeing with the network. Dropping an
antecedent means making one of the example features undetermined. If Subset
returns true the antecedent is definitely removed from the rule. This is equivalent
to say that the value of the feature is irrelevant in determining the output class
of the example. The algorithm works until a stopping criterion is met, such as
obtaining an accuracy greater than a predefined threshold with respect to a set of
selected samples or when a certain number of consecutive iterations have resulted
in no new rules.

The main drawbacks of this algorithm are the impossibility to handle real-
valued features (it only works with categorical ones) and the low degree of read-
ability with an high number of different classes and/or input features. This latter
problem can be limited by extracting m-of-n rules instead of if-then rules.

TREPAN. TREPAN is a pedagogical algorithm for extracting comprehensible,
symbolic representations from trained neural networks by using queries to induce
a decision tree that approximates the concept represented by the given network.
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Algorithm 2 The TREPAN algorithm.
TREPAN(training_examples, features)
\∗ sorted queue of nodes to expand ∗\
Queue := ∅
for each example E ∈ training_examples
\∗ use net to label examples ∗\
class label for E := Oracle(E)

initialise the root of the tree, T , as a leaf node
put 〈T, training_examples, {}〉 into Queue
while Queue is not empty and size(T ) < tree_size_limit
\∗ expand a node ∗\
remove node N from head of Queue
examplesN := example set stored with N
constraintsN := constraint set stored with N
use features to build set of candidate splits
use examplesN and calls to Oracle(constraintsN) to evaluate splits
S := best binary split
search for best m-of -n split, S ′, using S as a seed
make N an internal node with split S ′
for each outcome s of S ′
\∗ make children nodes ∗\
make C, a new child node of N
constraintsC := constraintsN ∪ {S ′ = s}
call Oracle(constraintsC) to determine if C should remain a leaf
otherwise
examplesC := members of examplesN with outcome s on split S ′
put 〈C, examplesC , constraintsC〉 into Queue

return T

It is able to produce decision trees that maintain a high level of fidelity to their
respective networks while being comprehensible and accurate. It results to be
general in its applicability and to scale well to large networks and problems with
high-dimensional input spaces.

TREPAN, shown in Algorithm 2 [90], is based on the availability of an oracle
that is able to answer queries during the learning process. Since the target function
is simply the concept represented by the network, the oracle uses the network to
answer queries. It learns directly from the training set. The role of the oracle
is to determine the class (as predicted by the network) of each instance that is
presented as a query. Queries to the oracle, however, do not have to be complete
instances, but instead they can specify constraints on the values that the features
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can take. In the latter case, the oracle generates a complete instance by randomly
selecting values for each feature, while ensuring that the constraints are satisfied.
In order to generate these random values, TREPAN uses the training data to
model the marginal distribution of each feature. The oracle is used for three
different purposes: to determine the class labels for the network training examples;
to select splits for each of the tree internal nodes; to determine if a node covers
instances belonging to only one class.

TREPAN grows trees using a best-first expansion. The best node is the one at
which there is the greatest potential to increase the fidelity of the extracted tree
to the network. The function used to evaluate node n is:

f(n) = reach(n) · (1− fidelity(n)), (3.1)

where reach(n) is the estimated fraction of instances that reach n when passed
through the tree, and fidelity(n) is the estimated fidelity of the tree to the network
for those instances. The role of internal nodes in a decision tree is to make a
partition of the input space in order to increase the separation of instances of
different classes. This algorithm forms trees that use m-of-n expressions for its
splits.

Split selection involves deciding how to partition the input space at a given
internal node in the tree. A limitation of conventional tree-induction algorithms
is that the amount of training data used to select splits decreases with the depth
of the tree. Thus splits near the bottom of a tree are often poorly chosen because
these decisions are based on few training examples. TREPAN, having an oracle
available, is able to use as many instances as desired to select each split. It chooses
a split after considering at least Smin instances, where Smin is a parameter of the
algorithm. When selecting a split at a given node, the oracle is given the list of all
of the previously selected splits that lie on the path from the root of the tree to
that node. These splits serve as constraints on the feature values that any instance
generated by the oracle can take, since any example must satisfy these constraints
in order to reach the given node.

TREPAN uses two separate stopping criteria for the decision tree growth. First,
a given node becomes a leaf in the tree if, with high probability, the node covers
only instances of a single class. To make this decision, the algorithm determines
the proportion of examples that fall into the most common class at a given node,
and then calculates a confidence interval around this proportion. The oracle is then
queried for additional examples. TREPAN also accepts a parameter that specifies
a limit on the number of internal nodes in an extracted tree. This parameter can
be used to control the comprehensibility of extracted trees, since some domains
may require very large trees to describe networks to a high level of fidelity.

With respect to Rule-extraction-as-learning, TREPAN presents many advan-
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tages. First of all, its decision trees are more readable for humans than decision
rules. A second benefit is in the higher level of both fidelity and accuracy with
respect to the underlying neural network and test data, respectively. In addition,
TREPAN is computationally faster than Rule-extraction-as-learning. However,
TREPAN cannot be applied to real-valued features but only to categorical ones,
as the Rule-extraction-as-learning algorithm.

3.3.2 Knowledge extraction from regressors

This section is referred to algorithms for knowledge extraction from neural network
used in regression problems.

REFANN (Rule Extraction from Function Approximating Neural Net-
works). REFANN is a decompositional rule extraction algorithm for regression
problems [91]. The method is designed specifically for multi-layer perceptrons
with one hidden layer. It assumes that the activation function used in the hidden
layer is the hyperbolic tangent function (see Eq. (2.10)) and that no activation
function was used for the output unit. The principal idea behind the algorithm is
to approximate the hidden layer activation functions by multiple linear functions.
Subsequently, these linear approximations are used to create the rules. REFANN
is summarised in Algorithm 3.

Pruning of irrelevant input and hidden nodes is essential to create a network
that generalizes well and to allow the extraction of a small set of comprehensible
rules. The N2PFA algorithm (Neural Network Pruning for Function Approxi-
mation) (see Algorithm 4) is used for pruning the network. The main reason of
selecting N2PFA over other pruning algorithms is that it removes complete neu-
rons instead of only some connections. This will result in better comprehensibility
because fewer inputs remain for inclusion in the rule conditions.

Regarding the rule condition simplification, as such conditions are based on
scalar products involving the input weights, the resulting boundaries are oblique
hyperplanes in the input space. To facilitate human interpretation, it might be
better to replace these oblique boundaries by ones that are parallel with the axes
of the input space. C4.5 algorithm can be adopted for this task by assigning each
training observation a class label corresponding to the subregion it belongs to. C4.5
is then able to learn parallel decision boundaries from these labelled observations
that can be used to replace the original oblique conditions.

This method is able to generate accurate results, however it presents some
drawbacks too. First, the number of extracted rules grows exponentially with the
number of hidden neurons. This means that the method is only applicable if the
problem can be solved by a neural network that contains a limited number of hid-
den neurons. The second drawback is associated with all dependent approaches.
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Algorithm 3 The REFANN algorithm.
• train and prune a network with one hidden layer and one output unit
• for each hidden unit i = 1, 2, ..., H

◦ determine xim from the training samples
◦ find the interesting points of the n-piece approximating linear func-

tion Li(x), with n ∈ {3, 5}
◦ define the Li(x) function
◦ divide the input space into nH subregions

• for each nonempty subregion generate a rule
◦ define a linear equation that approximates the network output ŷp for

input sample Ip in this subregion as the consequent of the extracted
rule:

ŷp =
H∑
i=1

viLi(sip), (3.2)

where:

sip =
N∑
j=1

wijIjp. (3.3)

Ijp is the j-th feature of the input sample Ip and vi is the weight of
the connection between the hidden neuron i and the output neuron,
while wij is that of the connection between input neuron j and hidden
neuron i.
◦ create the condition for this rule

• optional: simplify the rule conditions

Whereas it is rather straightforward to alter the REFANN method for the approx-
imation of the hidden unit activation function, it seems much more difficult to
apply the algorithm when there are more drastic changes to the architecture of
the neural network, e.g. networks with several hidden layers.

ITER. ITER is a pedagogical algorithm usable for building predictive regression
rules from a trained regression model, such as neural networks [92]. The main idea
of the algorithm is to iteratively expand a number of hypercubes until they cover
the entire input space. Each of these cubes can then be converted into a rule of
the following format:
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Algorithm 4 The N2PFA algorithm.
• Split the data into three subsets: training, cross-validation, and test sets.
• Train a network with a sufficiently large number of hidden units to mini-

mize the error function.
• Remove redundant hidden units.
• Remove irrelevant inputs.
• Report the accuracy of the network on the test data set.

if V ar1 ∈ [V alueLow1 , V alueHigh1 ]

and V ar2 ∈ [V alueLow2 , V alueHigh2 ]

and ... and V arM ∈ [V alueLowM , V alueHighM ]

then predict some Constant,

(3.4)

where M is the dimension of the input space.
The algorithm starts with the creation of a user-defined number of random

starting cubes. These cubes are infinitesimally small and therefore correspond to
points in the input space. Afterwards, these initial cubes are gradually expanded
until they cover the entire input space or until they can no longer be expanded.
During each update are executed the steps reported in Algorithm 5.

Before the first iteration of the algorithm, ITER calculates the size of the sur-
rounding hypercube, i.e. the cube that surrounds all of the training observations.
When calculating the allowed update size, ITER takes this surrounding cube into
consideration and never creates cubes that lie outside it. The surrounding cube
is also used to retrieve default values for the MinUpdate values. Unless the user
specifies otherwise, the default is equal to a twentieth of the size of each dimen-
sion. For example, if the values of the training observations for some dimension
lie within the interval [0,1] then MinUpdate = 0.05.

A drawback of the algorithm is non-exhaustivity. While ITER creates rules that
are non-overlapping, it is not always able to cover the entire input space. In other
words, the rules created by ITER are exclusive but not necessarily exhaustive. It
can happen when none of the cubes can expand because each cube is blocked by
another cube. To guarantee exhaustivity, it is necessary to add a number of cubes
that cover the remaining gaps. The authors report that generally the number of
cubes to add remains relatively small.

By specifying the number of starting cubes, the user automatically indicates
the desired number of rules because ITER will never create extra cubes during
execution. Only to make the resulting rule set exhaustive, the algorithm is allowed
to construct additional cubes. There are several disadvantages, such as a strong
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Algorithm 5 The ITER algorithm.
1. For each hypercube i = 1, ..., N and for each dimension j = 1, ...,M calcu-

late how far the cube can be expanded to both extremes of the dimension
before it intersects with another cube, call these distances LowerLimitji
and UpperLimitji .

2. For each hypercube i = 1, ..., N and for each dimension j = 1, ...,M cal-
culate the size of the update. The update equals MinUpdatej, a user-
specified constant, unless this size would result in overlapping cubes. If
this is the case then the update is smaller such that the two blocks become
adjacent.
Mathematically: LowerUpdateji = min{LowerLimitji ,MinUpdatej} and
UpperUpdateji = min{UpperLimitji ,MinUpdatej}.

3. For each hypercube i = 1, ..., N and for each dimension j = 1, ...,M cre-
ate two temporary cubes adjacent to the original cube along the oppo-
site sides of dimension j with a width of respectively LowerUpdateji and
UpperUpdateji . For each of both cubes, create a number of random points
lying within the cube and calculate the mean prediction for these points
according to the trained continuous regression model. Call the difference
between each of both means and the mean prediction for the original cube
respectively LowerDiff ji and UpperDiff ji .

4. Find the global minimum over all cubes of these differences and combine
the temporary cube for which the difference was minimal with its original
cube. Update the mean prediction for this cube and remove all other
temporary cubes.

dependence of the results on the number and location of the starting cubes, that
make it worthwhile to give the algorithm the opportunity to create a new cube
when the current update is deemed not ‘good’ enough. An update is considered
to be ‘good’ when the global minimum of step 4 of Algorithm 5 is smaller than a
user-specified threshold (see Algorithm 6). By setting the threshold to a very large
value, all updates will be considered good and the results of the updated step 4
will be similar to the original.

It is worthwhile to notice that the ITER algorithm provides constant outputs
for each rule, and not a linear combination of the input variables. ITER can also
be adjusted for classification problems instead of regression ones.

3.3.3 Comparison between the described algorithms

The four different algorithms presented in this thesis enable knowledge extraction
from artificial neural networks in various contexts.
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Algorithm 6 Modified fourth step of the ITER algorithm.
4. Find the global minimum over all cubes of these differences.

If this global minimum is smaller than the threshold then combine the
temporary cube for which the difference was minimal with its original
cube. Update the mean prediction for this cube and remove all other
temporary cubes.
If this global minimum is larger than the threshold then create a new
cube on the position of the temporary cube for which the difference
was the global minimum. The size of each side of the hypercube equals
MinimumUpdatej (smaller if this results in overlapping cubes).

If the task at hand is classification, only Rule-extraction-as-learning or TREPAN
are eligible to extract knowledge from the network. They are both limited to cat-
egorical features due to their inability to handle real-valued features. The main
differences between them are that Rule-extraction-as-learning is an eclectic method
that produces a list of propositional rules, simple to implement but with small hu-
man readability when applied to problems with a large number of output classes
or input features. Conversely, TREPAN is a pedagogical algorithm that extracts
decision trees, with higher accuracy, fidelity and readability with respect to Rule-
extraction-as-learning.

For networks addressing regression tasks, only REFANN or ITER are appli-
cable in order to perform knowledge extraction. The main difference resides in
the output of the produced explanator. With REFANN a regression interpretable
model is constructed; the model is able to provide to the human a function that
represents the approximated relationship between input and output data. On the
other hand, ITER provides fixed output values for similar input samples, chang-
ing the regressive nature of the problem in a pseudo-classification, where all the
samples belonging to a certain region of the feature space (which size is defined
by the algorithm parameters) are associated with the same result (as it was a
class label). In any case, ITER has to be preferred when the limits of REFANN
make it impracticable to be chosen. One limit is represented by a large number of
hidden neurons in the network architecture, since REFANN imposes to substitute
the non-linear activation function of each neuron with an approximating linear
function. Another limit is the presence of more than one hidden layer, because the
algorithm is expected to be applied uniquely to single hidden layer networks.
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Chapter 4

The LISA Pathfinder Mission

Galactic cosmic rays and solar energetic particles are nowadays monitored with
an increasing fleet of spacecraft orbiting at different distances from the Sun and
different inclinations about the ecliptic. In this thesis work the LISA Pathfinder
mission is considered as case study.

4.1 The LISA Pathfinder mission

LISA Pathfinder was an ESA space mission aiming to demonstrate that the present
technology for gravitational wave detection in space with interferometers is mature.
In February 2011 the discovery of gravitational waves generated by stellar black
holes collapse with the LIGO Earth interferometers opened a new window on these
and other astrophysical sources of the gravitational Universe, studied up to the
present time with electromagnetic waves only.

The exceptional results of the LISA Pathfinder mission, which demonstrated
the possibility to place two free falling masses in space with a residual acceleration
smaller than a millionth of billionth of the gravitational one, will allow to possibly
anticipate the scientific mission LISA [93] to the beginning of the ’30s, even though
the nominal launch date is 2034. The main LISA experiment goal is to reveal the
coalescence of supermassive black hole, which mass is up to 108 times that of Sun
(this latter equal to 2 · 1030 kg).

A particle detector was placed on board LISA Pathfinder mission to monitor the
flux of galactic cosmic-rays and solar particles with enough energy to traverse the
spacecraft and charge the test masses (two platinum and gold cubes), generating
spurious forces that, under particular conditions of the interplanetary medium,
could simulate the gravitational wave passage. This particle detectors allowed to
determine the integral flux of galactic cosmic-rays with a statistical uncertainty of
1% during one-hour intervals.

35



36 CHAPTER 4. THE LISA PATHFINDER MISSION

4.1.1 Characteristics and orbit

The LISA Pathfinder spacecraft was launched from the Kourou base in French
Guyana on December 3rd, 2015 on board a Vega rocket. LISA Pathfinder reached
its final orbit around the Lagrangian point L1 at 1.5 million km from Earth in the
Earth-Sun direction on January 2016. July 18th, 2017 was the last day of data
taking. The LISA Pathfinder orbit was inclined of about 45 degrees with respect to
the ecliptic plane and the spacecraft spent about six months to complete it. Orbit
minor and major axes were approximately 0.5 and 0.8 millions of km, respectively.
The satellite rotated around its own axis with a six month period. The LISA
Pathfinder orbit is reported in Figure 4.1. In the same figure appear also the orbits
of the ACE andWind satellites1. In particular, solar wind speed and interplanetary
magnetic field intensity measurements gathered with Wind experiment will be used
in this work for comparison with the galactic cosmic-ray variations.

The LISA Pathfinder mission was aimed to place two test masses in free fall
with a residual acceleration of femto-g for the future experiments meant for grav-
itational wave detection in space. The gravitational wave detection in space with
the interferometric method is based on the principle for which two distant free
falling observers that are linked by laser beams, experience a time-varying differ-
ence in the beam frequency at the passage of a gravitational wave. Observers are
represented by test masses. The LISA Pathfinder mission carried two test masses,
namely two free-floating cubes with a side of 4.6 cm, of about 2 kg each, put at
38 cm of distance, composed by gold (70%) and platinum (30%) that played the
role of interferometer mirrors. Despite the small distance that prevented from
carrying out any scientific measurement, noise sources remained the same with
respect to the final mission LISA. In Figure 4.2 a schema of the equipment on
board LISA PAthfinder spacecraft is reported.

Protons and ions of galactic origin with energies larger than 100 MeV n−1
penetrated and charged the test masses. This charging process induced spurious
noise force on both test masses [94]. This process was properly studied before the
mission launch on the basis of Monte Carlo simulations [95, 96, 97]. Periodic test
masses discharging with ultraviolet light beams was carried out for noise control
after the spacecraft launch [98].

4.1.2 The particle detector

A particle detector, shown in Figure 4.3, was placed on board LISA Pathfinder
to monitor the overall incident galactic cosmic-ray and solar particle fluxes [99].
The particle detector was mounted behind the solar panels with its viewing axis

1Data from Wind and ACE experiments were obtained from the NASA-CDAWeb website
(https://cdaweb.gsfc.nasa.gov/index.html).

https://cdaweb.gsfc.nasa.gov/index.html
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Figure 4.1: Orbit of the LISA Pathfinder satellite (black and red lines). The orbits
of other interplanetary missions devoted to the monitoring of the interplanetary
medium, ACE (cyan line) and Wind (yellow line), are also shown for comparison.
Magenta squares point the effective spacecrafts position on February 6th, 2016,
when the particle detectors where turned on. Courtesy of Andrea Cesarini.
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Figure 4.2: Schematic representation of the instrumentation on board the LISA
Pathfinder spacecraft. The figure shows the two test masses (TM1 and TM2),
the light beams and the optical bench used to measure ∆x and x1, namely the
movement between the two masses and that of TM1 with respect to the spacecraft
wall. The measure of ∆x controls the electrostatic suspension of TM2, that applies
electrical forces needed to reposition it by means of electrodes shown in the figure.
Other electrodes surrounding the test masses are not indicated. The measure of
x1 guides the control cycle that uses the propellers to generate forces of the order
of micronewton on the spacecraft. The image shows the x and y axes of the LISA
Pathfinder reference system. The z axis is the normal to the figure. Courtesy of
the LISA Pathfinder Collaboration.
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along the Sun-Earth direction. The detector consisted of two ∼ 300 µm thick
silicon wafers of 1.40 × 1.05 cm2 area, separated by 2 cm and placed in a telescopic
arrangement. For particles with energies > 100 MeV n−1 and an isotropic incidence
on each silicon layer, the instrument geometrical factor was found to be energy
independent and equal to 9 cm2 sr. In coincidence mode (particles traversing both
silicon wafers), the geometrical factor was about one tenth of this value. The silicon
wafers were placed inside a shielding copper box of 6.4 mm thickness meant to stop
particles with energies smaller than 70 MeV n−1. The particle detector allowed
for the counting of protons and helium nuclei traversing each silicon layer and
for the measurement of ionisation energy losses of particles in coincidence mode.
The maximum allowed detector counting rate was 6500 counts s−1 on both silicon
wafers, corresponding to an event integrated proton fluence of 108 protons cm−2 at
energies > 100 MeV. In coincidence mode up to 5000 energy deposits per second
could be stored on the on board computer. No solar energetic particle events with
associated proton fluences above a few tens of MeV n−1 overcoming that of protons
of galactic origin were observed during the LISA Pathfinder mission operation. As
a result, a continuous monitoring of long and short-term variations of cosmic-rays
of galactic origin was allowed.

The Nymmik model [100, 101] allows for the estimate of the rate of occurrence
of solar energetic particle events with fluences larger than the saturation limit. For
instance, the expected occurrence of solar energetic particle events with fluence
> 108 protons cm−2 at energies > 30 MeV is less than 1 per year [102]. In case of
particle detector saturation, the evolution of solar energetic particle events and the
particle spatial distribution could be inferred from particle energy differential flux
measurements carried out by other experiments and the use of models for particle
propagation in the interplanetary medium [103]. In case of solar energetic particle
event occurrences, observations gathered by other experiments should have been
properly normalised to the counting rates observed on the LISA Pathfinder particle
detector at the onset and during the final phases of each event.

4.2 Galactic cosmic-rays

4.2.1 Long-term variations of galactic cosmic-rays

The overall galactic cosmic-ray flux in the inner heliosphere is approximately of
about 1000 particles m−2 s−1 [104]. Particles of galactic origin show an isotropic
spatial distribution and consist approximately of 90% protons, 8% helium nuclei,
1% heavy nuclei and 1% electrons [105]. The galactic cosmic-ray energy spectrum
appear modulated following the 11-year solar cycle and the 22-year global solar
magnetic field polarity.
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Figure 4.3: Schematic representation of the particle detectors on board LISA
Pathfinder. Silicon layers, representing the sensitive part of the instrument, appear
inside a copper shielding box.



4.2. GALACTIC COSMIC-RAYS 41

It is worthwhile to recall that periods of positive polarity for the Sun are those
during which the lines of force of the solar magnetic field exit from the North
Pole; negative in the opposite case. The polarity change occurs during the solar
maximum.

In [106] it was shown that during positive polarity epochs the energy spec-
tra, J(r, E, t), of cosmic-rays at a distance r from the Sun and at a time t are
well represented by the symmetric model in the force field approximation by Glee-
son and Axford (G&A) [107] assuming time-independent interstellar intensities
J(∞, E + Φ) and an energy loss parameter Φ:

J(r, E, t)

E2 − E2
0

=
J(∞, E + Φ)

(E + Φ)2 − E2
0

, (4.1)

where E and E0 represent the particle total energy and the rest mass, respectively.
For Z = 1 particles with rigidity (particle momentum per unit charge) larger
than 100 MV, the solar modulation is completely defined by the solar modulation
parameter, φ, that, at these energies, is equal to Φ [108].

The number of observed spots on the Sun photosphere is the most widely
used proxy for the solar modulation. The photospheric sunspots are regions of
low temperature and high magnetic field. The galactic cosmic-ray flux in the
inner heliosphere is maximum (minimum) when the solar activity is minimum
(maximum). The maximum proton flux variation between solar minimum and
solar maximum is about one order of magnitude at 100 MeV n−1 near Earth. The
solar modulation does not present any evident effect on the galactic cosmic-ray
energy flux above 10 GeV n−1. The galactic cosmic-ray flux, consisting for 99% of
the total of positive particles, results depressed at most by 40% at 100 MeV n−1
during negative polarity periods. The negative polarity of the global solar magnetic
field does not affect the galactic cosmic-ray flux above 4 GeV n−1.

The sunspot number and solar modulation parameter values observed dur-
ing the LISA Pathfinder mission are reported in Table 4.1. The integral flux
of protons and helium nuclei increased by more than 20% during the mission,
due to a decreasing solar activity. The solar modulation parameter is inferred
from http://cosmicrays.oulu.fi/phi/Phi_mon.txt [109]. The galactic cosmic-
ray single counts per sampling time of 15 s, averaged over each Bartels rotation
(GCR15s), were calculated during the LISA Pathfinder mission elapsed time. A lin-
ear correlation was found between the solar modulation parameter φ and GCR15s:

GCR15s = 0.23272 φ(MV) + 230.73 (4.2)

as it is shown in Figure 4.4. This observation suggests that the LISA Pathfinder
particle detector did not present any detectable loss of efficiency during the first
year of the mission lifetime.

http://cosmicrays.oulu.fi/phi/Phi_mon.txt
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Figure 4.4: Solar modulation parameter and LISA Pathfinder particle detector
galactic cosmic-ray single count rate in 15 s sampling time averaged over each Bar-
tels rotation during the LISA Pathfinder mission. High (low) values of the solar
modulation parameter correspond to mission beginning (end). The solar modu-
lation parameter is reported in http://cosmicrays.oulu.fi/phi/Phi_mon.txt
[109]. Courtesy of the LISA Pathfinder Collaboration.

http://cosmicrays.oulu.fi/phi/Phi_mon.txt
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Table 4.1: Observed sunspot number and solar modulation parameter (φ) dur-
ing the LISA Pathfinder mission. Data were reported in the website http:
//cosmicrays.oulu.fi/phi/Phi_mon.txt [109].

Sunspot number φ
MV

December 2015 58.0 561
January 2016 57.0 500
February 2016 56.4 468
March 2016 54.1 475
April 2016 37.9 468
May 2016 51.5 464
June 2016 20.5 447
July 2016 32.4 464
August 2016 50.2 438
September 2016 44.6 436
October 2016 33.4 407
November 2016 21.4 385
December 2016 18.5 386
January 2017 26.1 366
February 2017 26.4 357
March 2017 17.7 348
April 2017 32.6 367
May 2017 18.8 359
June 2017 19.4 350
Mission end 383

http://cosmicrays.oulu.fi/phi/Phi_mon.txt
http://cosmicrays.oulu.fi/phi/Phi_mon.txt
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By applying the G&A model to the interstellar proton and helium nucleus
energy spectra inferred from a series of balloon flights of the BESS and BESS-
POLAR I and II experiments [110, 111, 112], the proton and helium nucleus energy
differential fluxes at the beginning (December 2015 - January 2016; φ = 550 MV)
and at the nominal end of the LISA Pathfinder mission were obtained and reported
in Figure 4.5.

In order to test the reliability of the approach described above, the proton en-
ergy spectrum predictions for June 2015 were compared to the preliminary mea-
surements carried out by the PAMELA experiment (private communication) dur-
ing the same period. A very good agreement was found. For the comparison it
was chosen the June 2015 period since the published PAMELA data until 2013
were gathered during a negative polarity period of the solar magnetic field. Pre-
dictions for the proton flux during the Bartels rotation 2496 (from July 7th, 2016
through August 16th, 2016) were compared to the AMS-02 experiment analogous
data published in 2017 and an agreement of 10% was observed for the integral
fluxes.

The energy spectra interpolation function is reported below [105]:

F (E) = A (E + b)−α Eβ particles (m2 sr s GeV n−1)−1, (4.3)

where E is the particle kinetic energy per nucleon. The parameters A, b, α and β for
the LISA Pathfinder mission beginning and end appear in Table 4.2. About these
predictions of the galactic cosmic-ray energy spectrum at steady state (without
considering galactic cosmic-ray short-term variations), it is worthwhile to recall
that cosmic-rays are also modulated on much lower time-scales during the passage
of magnetic structures of solar or interplanetary origin, that sometimes produce
geomagnetic disturbances.

4.2.2 Short-term variations of galactic cosmic-rays

The Sun is a sphere of plasma and gas rotating differentially depending on the he-
liolatitude. Equatorial and near-equatorial regions rotate with a period of about
25-26 days (sidereal rotation period), while near the poles the period is about
36 days. The solar rotation periodicity appears as 27-28 days (27.28 days on aver-
age) to an observer on Earth (synodic rotation period) due to the orbital motion
of our planet and to the solar wind characteristics observed from Earth, represen-
tative of the conditions of the Sun near-equatorial region in the heliosphere.

All galactic cosmic-ray flux variations characterised by a duration shorter than
the solar rotation period and associated with the passage of magnetic structures
of solar or interplanetary origin are called short-term variations. Nominal quasi-
periodicities of 27, 13.5 and 9 days, related to the Sun rotation period and higher
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Figure 4.5: Galactic cosmic-ray proton and helium energy spectra measurements
(data points; [110]). Estimated energy spectra at the beginning of the LISA
Pathfinder mission (December 2015 - January 2016) and predictions at the end
of the same (July 2017) are also indicated as dot-dashed and continuous lines,
respectively. The helium flux appears properly scaled in order not to superpose
lines. Courtesy of the LISA Pathfinder Collaboration.



46 CHAPTER 4. THE LISA PATHFINDER MISSION

Table 4.2: Parameterisations of proton and helium energy spectra at the beginning
and the end of the LISA Pathfinder mission.

A b α β

p (Dec. 2015 - Jan. 2016) 18000 1.19 3.66 0.87
p (May 2017 - minimum) 18000 1.09 3.66 0.87
p (May 2017 - average) 18000 1.03 3.66 0.87
p (May 2017 - maximum) 18000 0.97 3.66 0.87
He (Dec. 2015 - Jan. 2016) 850 0.96 3.23 0.48
He (May 2017 - minimum) 850 0.90 3.23 0.48
He (May 2017 - average) 850 0.84 3.23 0.48
He (May 2017 - maximum) 850 0.78 3.23 0.48

harmonics, are observed in the cosmic-ray flux, in the solar wind plasma and
magnetic field, and in the geomagnetic activity indices [113, 114]. Oscillations
in the cosmic-ray flux were formerly studied in space above a few tens of MeV
with the Helios 1, Helios 2 and IMP-8 experiments [115]. These observations
indicated that the effects of corotating interaction regions, generated when high-
speed solar wind streams emanating from coronal holes overtake the leading slow
solar wind associated with the closed streamer belt region, are at the origin of
∼ 9-day galactic cosmic-ray flux modulations [116]. Temmer, Vršnak and Veronig
[117] found that a ∼ 9-day periodicity is also shown by the coronal holes area. A
correlation of the galactic cosmic-ray short-term variations with the BV product
of the interplanetary magnetic field intensity (B) and the solar wind speed (V ) was
investigated by Sabbah [118]. This correlation takes into account both cosmic-ray
diffusion from interplanetary magnetic field and convection in the solar wind. From
the point of view of geomagnetic indices, a good correlation of Ap andKp with both
BV and BV 2 was found by Sabbah [119]. Ap and Kp are magnetic indices defined
as follows: Ap index is related to Kp index, that in turn represents the values
global mean of the geomagnetic activity produced by solar particle radiation and
recorded in thirteen reference stations. The quasi 9-day periodicity observed in the
thermospheric energy budget was also associated with the recurrence of high-speed
solar wind streams [120].

Clues on the energy-dependence of 27-day galactic cosmic-ray flux variations
are reported in [97]. In the past, the majority of work on this topic was carried out
with observations gathered on Earth with neutron monitors [121]. These devices
have the merit to have provided a continuous monitoring of the overall galactic
cosmic-ray flux trend in the last sixty years. However, the use of models is manda-
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tory to infer from ground measurements the galactic cosmic-ray spectra at the top
of the atmosphere [122]. Interesting attempts to investigate the energy-dependence
of short-term depressions of cosmic-ray fluxes through direct measurements with
magnetic spectrometers, down to low energies, were carried out by the balloon-
borne experiment BESS-POLAR 1 [111] and the satellite experiment PAMELA
[123]. BESS-POLAR I flew from Williams Field near Mc Murdo Station from
December 13th through December 21st, 2004. At the beginning of the flight, this
balloon-borne experiment observed a recovering proton flux from a previous de-
crease. The recovery intensity appeared to be of 8-9% below 0.86 GeV and of 3%
above 6 GeV. Authors claimed that this occurrence was due to the transit of a coro-
tating interaction region interface or a magnetic cloud or a combination of the two.
This experiment detected a new galactic cosmic-ray proton flux depression after
the passage of a high-speed stream on December 17th. PAMELA carried out the
first measurement of proton and helium nucleus differential fluxes in space during
a Forbush decrease on December 14th, 2006 (16.50 UT - 22.35 UT) after two solar
energetic particle events dated December 13th and December 14th, 2006. Unfor-
tunately, magnetic spectrometer space-borne experiments have small geometrical
factors and differential flux data must be integrated over periods longer than the
typical one-hour data binning required to sample galactic cosmic-ray short-term
variations. Moreover, observations gathered with balloon-borne experiments may
be affected by the geomagnetic field playing some role in modifying the galactic
cosmic-ray fluxes at low energies. Data gathered with LISA Pathfinder and other
experiments in space revealed the energy dependence of the galactic cosmic-ray
short-term variations as shown in [].

4.2.3 Forbush decreases

Forbush decreases, discovered by Forbush in 1937 [], are the most intense non-
recurrent variations. Forbush decreases are characterised by a drop of the galactic
cosmic-ray intensity observed during typical periods of one day, while the recovery
phases last approximately two or three days.

An example of Forbush decrease is shown in Figure 4.6 [124]. Non-recurrent
Forbush decreases are associated with the passage of interplanetary counterparts of
coronal mass ejections. In principle, the evolution of the galactic cosmic-ray drop
is modulated by, before the passage of shock and ejecta, then by the magnetic
cloud. In this case the Forbush decrease is called classical. Conversely, in the case
the interplanetary counterparts of the coronal mass ejection is not accompanied
by shocks or magnetic clouds, the Forbush decrease presents a different dynamics
[125]. Non-recurrent Forbush decreases generate galactic cosmic-ray flux depres-
sions of about 5-10% at 10 GV of rigidity.

Recurrent Forbush decreases with intensities < 2% at 10 GV of rigidity are
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Figure 4.6: Moscow neutron monitor counting rate in December 2006. A non-
recurrent Forbush decrease was observed on December 15th. The counting rate of
the neutron monitor (y axis) is expressed in impulses per minute.

associated with corotating interaction regions in the interplanetary medium. This
last observation is carried out in space with proton differential flux measurements
(as on board LISA Pathfinder) and on Earth with neutron monitors. In general, it
is observed that the short-term galactic cosmic-ray variations in space show a more
marked energy dependence at low energies not accessible to neutron monitors.

During the LISA Pathfinder mission have been observed forty-five recurrent
Forbush decreases and only three non-recurrent Forbush decreases.

4.3 Cosmic-ray flux short-term variations observed
with LISA Pathfinder

The LISA Pathfinder particle detector allowed to study galactic cosmic-ray short-
term flux variations during Bartels rotations 2490-2509 (from February 18th, 2016
through July 18th, 2017). A Bartels rotation lasts 27 days and is defined as a
complete apparent Sun rotation viewed from Earth. The first day of the rotation
1 was arbitrarily fixed on February 8th, 1832.

In order to focus on recurrent periodicities consistent with the Sun rotation
period and higher harmonics, galactic cosmic-ray percent variations were compared
to interplanetary magnetic field and solar wind plasma parameters for each Bartels
rotation and to neutron monitor measurements. Galactic cosmic-ray counting rates
of neutron monitors vary proportionally to the cosmic-ray flux at energies larger
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Table 4.3: Neutron monitor station characteristics.

Station Vertical cut-off rigidity Effective energy
GV GeV

Thule 0.3 5.5
Terre Adelie 0.0 5.5
Mc Murdo 0.3 5.5
Oulu 0.8 6
Rome 6.3 15
Mexico 8.2 29

than the effective energy ranging between 10-11 GeV and more than 20 GeV for
near-polar and equatorial stations, respectively [126]. This energies are set by the
vertical geomagnetic cut-off and the shielding action of the atmosphere. In other
words, neutron monitors allow for a direct measurement of the galactic cosmic-ray
flux at energies larger than the effective energy of each station. Vertical cut-off
rigidities and effective energies for all neutron monitor stations considered in this
work are reported in Table 4.3.

The effects of systematic errors of galactic cosmic-ray observations on board
LISA Pathfinder, due to possible fluctuations of the particle detector efficiency
over the mission lifetime and solar modulation intensity change, were reduced
by considering the percent variations of the cosmic-ray flux with respect to the
average value during each Bartels rotation. A similar approach was considered
in [127] for the ACE experiment. As an example, in Figure 4.7 the cosmic-ray
percent variation (first panel) during the Bartels rotation 2491 (from March 4th
through March 31st, 2016) are compared to the solar wind plasma velocity gathered
in L1 by the ACE spacecraft (second panel), to the interplanetary magnetic field
radial component (third panel) and intensity (fourth panel). In the third panel the
heliospheric current sheet crossing is also indicated. The fifth panel shows those
periods of time during which the solar wind velocity remains above 400 km s−1
and the interplanetary magnetic field intensity stays above 10 nT. It is possible to
notice that these values of the interplanetary parameters are correlated with the
cosmic-ray depressions.

In Fig. 4.8 the cosmic-ray percent variations are compared to near-polar neu-
tron monitor contemporary observations hourly binned as the LISA Pathfinder
data. From the beginning of the data taking phase until April 2016, LISA Pathfinder
remained below the ecliptic plane, crossing it only once every three months. Due
to the high effective energy of the neutron monitors, there is no evidence of a
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Figure 4.7: Comparison of LISA Pathfinder particle detector counting rate percent
variations (first panel) with ACE measurements of the solar wind speed (second
panel) and interplanetary magnetic field radial component (third panel) and in-
tensity (fourth panel), during the Bartels rotation 2496 (July 17th, 2016 - August
13th, 2016). In the fifth panel appear indicated those periods of time during which
the solar wind speed and the magnetic field intensity remain above 400 km s−1
and 10 nT, respectively. Courtesy of the LISA Pathfinder Collaboration.
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Figure 4.8: Comparison of LISA Pathfinder particle detector counting rate percent
variations (first panel) with contemporary, analogous measurements of neutron
monitors placed at different vertical geomagnetic cutoffs (other panels) during the
Bartels rotation 2496 (July 17th, 2016 - August 13th, 2016). Courtesy of the LISA
Pathfinder Collaboration.

better agreement of the trend of the LISA Pathfinder measurements with those
of either North or South neutron monitor stations. It can be observed that the
measurements carried out on board LISA Pathfinder, that include low energy par-
ticles, are more intense in comparison to those of high-latitude neutron monitors
(that is at high geomagnetic cut-off).

From the point of view of the time profiles of individual depressions, those
presenting similar durations for decrease and recovery phases are called symmetric.
The symmetric variations are V or U shaped. All the other depressions are called
asymmetric [128]. The most intense asymmetric depressions are the non-recurrent
Forbush decreases. All recurrent variations under study appear asymmetric except
six that show a U-shape (five of six) or a V-shape (one of six). The period during
which the particle detector counting rate remains at minimum values between
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Table 4.4: Average characteristics of galactic cosmic-ray recurrent variations ob-
served with LISA Pathfinder.

Days %

Decrease 2.8 ± 2.0
Plateau 1.3 ± 1.2
Recovery 5.1 ± 3.8
Total duration 9.2 ± 5.0
Intensity 5.1 ± 2.5

decrease and recovery phases is called plateau. A plateau is observed during both
U-shaped symmetric and asymmetric depressions. Average duration of decrease,
plateau and recovery periods for the ∼ 9-day depressions observed with LISA
Pathfinder are reported in Table 4.4.

It can be noticed that the galactic cosmic-ray flux appears modulated when
the interplanetary magnetic field intensity is larger than 10 nT and/or the solar
wind speed remains above the threshold velocity of 400 km s−1 (bottom panel of
Figure 4.7). This scenario basically corresponds to the transit of fast-slow wind
interaction regions. In the majority of cases the cosmic-ray flux begins to recover
when the solar wind speed drops below 400 km s−1. The correlation of galactic
cosmic-ray short-term variations with the BV parameter, carried out in several
works, privileges the role of the magnetic field trend and penalises that of the
solar wind speed due to the mutual variations of these two parameters, being
much more relevant those of the magnetic field. The recurrent galactic cosmic-
ray depressions observed with LISA Pathfinder, for instance, are associated with
solar wind speed changes smaller than 30%, while the magnetic field is observed
to increase up to a factor of 5. Therefore, while the study of galactic cosmic-
ray short-term depressions associated with a drift effect (BV ) is effective, it is
inferred that a separate analysis of the role played by B and V increases may help
in better understanding the dynamics of individual depressions. This approach
allows also to infer the role of interplanetary magnetic structures in influencing
galactic cosmic-ray variations.



Chapter 5

Predicting LISA Pathfinder Data

This thesis work focuses on the development of a model aiming to predict the galac-
tic cosmic-ray flux short-term variations observed on board the LISA Pathfinder
mission. The prediction has to be comprehensible for human users, i.e. the out-
put of the model is a prediction with its associated explanation. In this chapter
the workflow leading to the implementation of an explainable model based on a
neural network is reported. The explainable model predictions have an average
error smaller than the statistical uncertainty of the LISA Pathfinder mission and
provide a linear relationship between the input and output variables.

The output of the developed system is the prediction of the galactic cosmic-ray
flux variations at a certain instant. Being these target variations mainly modu-
lated by the interplanetary magnetic field intensity and the solar wind speed, the
observation of these two variables are chosen as input data. In addition, a single
value of the cosmic-ray flux variation is taken in input for flux variation normali-
sation. All these input variables are combined into a linear function provided as
output by the implemented explainable model.

5.1 Model design

The work presented here is based on a neural network model. A knowledge extrac-
tion algorithm is applied to the neural network in order to obtain a new explainable
model. The workflow allowing for the realisation of these models is reported in
Figure 5.1.

As shown in the left portion of the figure, the process consists of four macro-
steps. The first represents the creation of a data set used for the neural network
model training, tuning and testing. The second and third macro-steps indicate
the neural network implementation and optimisation, to find the model hyper-
parameters and data set options that minimise the prediction error. Finally, a

53
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Figure 5.1: Schematic representation of the workflow allowing for the realisation
of the models described in this chapter. On the left are reported the macro-steps.
The single sub-steps are reported on the right.

rule extraction algorithm is applied to the optimised neural network.
These macro-steps are split into sub-steps, shown in the right portion of the

figure. The data set creation consists of three phases: firstly the input variables
are time aligned, then each variable (in the form of a time series) is unrolled
to constitute the data set sample. Finally, incomplete samples due to missing
measurements are discarded. The output data set is then used to compose the
training, validation and test sets.

The optimisation of the neural network model consists of three phases: the re-
search of the best hyper-parameter values and network architecture that minimise
the prediction error; the study of time windows of different sizes for observing
the input variables and finally the use of different granularities for these variable
observations. The time windows refer to how many days of past input variable
observations are necessary for the prediction; the granularity is the number of
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observations that belong to each time window. The aforementioned second and
third steps are finalised to obtain an optimised model with the same prediction
error of the model selected during the first step but using a smaller data set (by
diminishing the size of the time windows and increasing the granularity). A small
data set allows to simplify the knowledge extraction process.

To perform the knowledge extraction from the neural network model three
steps are performed. Firstly, the ITER algorithm is applied to the neural network.
In case the ITER algorithm application would not return a positive result because
of the complexity of the network, an alteration of the original ITER algorithm
would be implemented and applied to the same neural network. Again, in the case
this would not be sufficient, a new model using a linear regressor and with a logic
resuming the main ITER concepts is finally applied to the neural network in order
to extract linear functions that explain the relationship between the input solar
wind speed and interplanetary magnetic field intensity with the output cosmic-ray
flux variation.

The aforementioned macro-steps are executed with a modular approach with
three different programs described in Section 5.2: the first creates the data set.
The output data set represents the input file for the second program, developed
to create the predicting neural network and finally, the third program is used for
knowledge extraction from the neural network.

5.2 Implementation

5.2.1 Data set creation

Since the neural network has to predict the galactic cosmic-ray flux variations with
a good accuracy, the LISA Pathfinder data have been hourly binned, in order to
limit the statistical error to 1% on each bin. The data were gathered between
February 18th, 2016 and July 3rd, 2017. Analogously, during the same period
of time, solar wind speed and interplanetary magnetic field intensity observations
gathered with Wind have been also hourly binned. The three data time series were
then time aligned, associating the corresponding timestamp to each set of obser-
vations. The interplanetary magnetic field intensity is expressed in nT and the
solar wind speed in km s−1. For an accurate prediction of the output data, a time
window must be set to study the preceding trend of the mentioned variables with
respect to present time. The optimum size of this window is set on the basis of the
output of the second program, as described below. Being conscious that both solar
wind and interplanetary magnetic field modulations have an average duration of a
few days (in particular, four/five for high-speed stream passage and two/three for
interplanetary magnetic field increases associated to corotating interaction regions
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and the transit of interplanetary counterparts of coronal mass ejections), in order
to verify that the program will find an analogous solution, a time window of twelve
days is initially set. During the training phase of the neural network model it is
possible to dynamically select time sub-windows of these twelve days, for example
keeping the first four past days and removing the remaining. For each time in-
stant set, the twelve-day data window of the input variables is considered, along
with the input solar wind speed and interplanetary magnetic field intensity at the
same instant. The cosmic-ray variation nine days before the selected time instant
is also considered in input. The nine days elapsed time is set on the basis of the
observed average duration of the galactic cosmic-ray flux recurrent variations. The
cosmic-ray variation at the time instant constitutes the output variable. The total
number of the considered observations is (12 ·24+1) ·2+1 = 579. To limit the role
of the statistical uncertainty of the cosmic-ray variation input data, instead of the
value of the variation observed nine days before of the selected time instant, data
were averaged over four hours; two time bins before selected time and two after.
In Figure 5.2 an example of a data set sample during the Bartels rotation 2505,
from March 17th, 2017 through April 13th, 2017, is reported. The plot represents
in the top panel the galactic cosmic-ray flux percent variation, in the middle one
the solar wind speed and in the bottom panel the interplanetary magnetic field
intensity. The figure highlights the input features and the output value for the
sample corresponding to the April 4th, 2017 at 22:00 UT. In the top panel the
output value of galactic cosmic-ray flux variation (red dot on the right) and the
input value used for flux normalisation (blue dot on the left) are highlighted. In
the middle and bottom panels blue dots indicate the input features representing
the solar wind speed and the magnetic field intensity, respectively (namely the
observations on April 4th, 2017 at 22:00 UT plus one observation per hour during
the preceding twelve days).

All samples for which some features are missing due to unavailability of space
mission data are discarded. The data set is split into two separate parts, one that
is used for the training of the neural network and one that is adopted for the final
testing. The test set is never used during the training or the hyper-parameter
tuning and it consists of the 25% of the original data set. This 25% of data is
randomly extracted from the original data set. The training set and test set are
used as input data for the other programs developed for this analysis. The total
number of samples is 11 319.

5.2.2 Neural network implementation and optimisation

This section describes the neural network created to predict the galactic cosmic-ray
flux short-term variations observed on board LISA Pathfinder. In this program
the best hyper-parameter values for the network training are chosen and the final
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Figure 5.2: Galactic cosmic-ray flux percent variations (top panel), solar wind
speed (middle panel) and interplanetary magnetic field intensity (bottom panel)
measured during the Bartels rotation 2505. With reference to the data set sample
of April 4th, 2017 at 22:00 UT, composed of cosmic-ray flux variations and solar
wind speed and interplanetary magnetic field intensity observations, all the input
features are highlighted with blue dots, while the output value is reported in the
top panel with a red dot. The predicted galactic cosmic-ray percent variation dated
April 4th, 2017 at 22:00 UT (red dot) was obtained on the basis of the cosmic-
ray flux variation value observed nine days before (blue dot in the top panel)
and hourly observations of the solar wind speed and interplanetary magnetic field
intensity (blue dots in the middle and bottom panels, respectively) gathered during
the preceding twelve days.
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prediction accuracy with respect to the test set data is evaluated. The program
also allows for the graphical display of the results, in order to give the user the
opportunity to check at a glance the network performance.

Hyper-parameter tuning. The training of a neural network requires the choice
of the best values for each hyper-parameter. This goal cannot be easily reached,
since the combination of all possible values of each hyper-parameter makes an
exhaustive research in the hyper-parameter value space impracticable. The ap-
proach adopted in this work to find acceptable values of the hyper-parameter is
the following: some hyper-parameters are fixed, such as the activation function of
the hidden and output layers; the others have been explored with a grid search to
highlight possible promising regions to explore more finely.

For the very preliminary estimation of these hyper-parameters, the batch size
is fixed and set equal to 1000 samples. Several tests were carried out to estimate
the impact of changing the batch size. No sensitive variations were observed for
batch sizes varying from hundreds to a few thousands. The only difference consists
in the number of epochs required for the convergence.

After setting the batch size, the maximum number of epochs is also set to 200,
in order to allow for possible slow trainings. An early stopping method is used to
monitor the trend of the prediction error on the validation set during the training.
Early stopping patience value and threshold for possible improvements between
consecutive epochs are 5 and 0.05, respectively. The statistical uncertainty of the
LISA Pathfinder cosmic-ray data is of 1%. Therefore, the mean squared error
(MSE) is preferred with respect to the mean absolute error (MAE) to estimate the
predictive performance of the neural network (since the MSE assigns more weight
to errors larger than 1% and reduces that of errors smaller than 1%). The MSE
is calculated on the validation set for triggering the early stopping. All hidden
neurons have an activation function of type hyperbolic tangent, while the identity
function is used for the output neuron (see Section 2.2.2).

The test set is never used during the hyper-parameter tuning or the network
training. The remaining samples are divided into a fixed validation set (10%),
used for monitoring the early stopping, and an effective training set. The accuracy
measurements for the best hyper-parameter values are done by applying the k-fold
cross validation technique to the training set, with k = 10 (see Figure 2.1). All
tests are done with this same sets for better comparing the results. At the end of
the grid search on the hyper-parameter space and the selection of the best hyper-
parameters, the neural network is re-trained with these best values and the whole
training set. Only the definitive network is tested on the test set for checking its
prediction accuracy.

With the constraints defined above the network architecture and the optimal
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learning rate are chosen. Different ways to minimise the data set to improve the
prediction accuracy or remove redundancy are explored.

Best network architecture and learning rate selection. The first issue to
handle is to select the optimum network architecture, i.e. to set the number of hid-
den layers and the number of hidden units. Even though it has been demonstrated
that a neural network with a single hidden layer using a sigmoid activation function
is a universal approximator, it is a common practice to try adding a hidden layer
to attempt to improve the network accuracy. For this reason both architectures
with one and two hidden layers are tested. A good practice suggests to chose the
number of hidden neurons by adding them incrementally, starting from a little
number and adding units iteratively until the prediction error on the validation
set stops to decrease or an over-fitting condition (see Section 2.1.3) is identified.
For the four-layer architecture it has been decided to limit the second hidden layer
to only half of the first hidden layer neurons.

It is worthwhile to recall that the optimal hyper-parameter values are inter-
twined, so the learning rate critically depends on the chosen architecture and its
optimum value is not necessarily the same for all the different possible architec-
tures.

In Table 5.1 the mean squared error calculated on the validation set during the
training of a neural network with a single hidden layer is reported. The number
of hidden units varies from 75 to 900. Larger values are useless, because the
prediction accuracy on the validation set decreases very slowly with respect to
the network complexity. The learning rate ranges between 0.1 and 0.00016. All
possible combinations of all the parameter values are tested, selecting intersection
points in a grid that covers the entire space described. Twelve different values are
tested for the number of neurons and five for the learning rate, resulting in sixty
different combinations of hyper-parameter values.

The standard deviation reported in this and other tables has been corrected.
The same results of Table 5.1 are reported graphically in Figure 5.3. The results
highlight that large learning rates or small numbers of hidden units are poorly ac-
curate. Figure 5.4 shows the same tests but boosted in the region of minimisation
of the squared error. Neural networks trained with a learning rate equal to 0.004
perform better than the other independently from the number of neurons. Various
single hidden layer architectures have a validation MSE of 0.59. Since it is conve-
nient to choose the simplest neural network with highest accuracy, the best result
of the grid search is the architecture with 375 hidden units. Since the learning
rate seems to be a discriminating factor stronger than the number of hidden units,
further tests for checking the MSE for values around 0.004 are executed. With a
learning rate of 0.0024 the MSE on the validation set decreases to about 0.56%.
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Table 5.1: Mean squared error calculated on neural networks with an only hidden
layer with a different number of neurons and for various learning rates. The mean
values are calculated by applying the 10-fold cross validation technique at the
training data. The standard deviation has been corrected. Entries with MSE
smaller than 0.6 are highlighted in bold font.

Learning Hidden Mean squared Learning Hidden Mean squared
rate neurons error (%) rate neurons error (%)

0.1 75 4.16 ± 0.46 0.0008 75 1.01 ± 0.04
150 2.62 ± 0.34 150 0.77 ± 0.04
225 2.06 ± 0.19 225 0.72 ± 0.03
300 1.53 ± 0.08 300 0.66 ± 0.01
375 1.48 ± 0.16 375 0.67 ± 0.04
450 1.37 ± 0.12 450 0.63 ± 0.03
525 1.38 ± 0.11 525 0.61 ± 0.03
600 2.97 ± 3.01 600 0.63 ± 0.03
675 1.39 ± 0.13 675 0.66 ± 0.02
750 3.60 ± 4.37 750 0.64 ± 0.04
825 1.46 ± 0.07 825 0.62 ± 0.03
900 1.51 ± 0.11 900 0.62 ± 0.02

0.02 75 1.80 ± 0.32 0.00016 75 3.28 ± 0.09
150 1.23 ± 0.11 150 1.28 ± 0.07
225 1.06 ± 0.08 225 1.04 ± 0.03
300 0.90 ± 0.05 300 0.94 ± 0.05
375 0.84 ± 0.05 375 0.92 ± 0.02
450 0.83 ± 0.05 450 0.87 ± 0.04
525 0.79 ± 0.05 525 0.85 ± 0.03
600 0.78 ± 0.06 600 0.87 ± 0.07
675 0.77 ± 0.02 675 0.84 ± 0.04
750 0.81 ± 0.07 750 0.83 ± 0.02
825 0.75 ± 0.03 825 0.80 ± 0.01
900 0.80 ± 0.05 900 0.81 ± 0.04

0.004 75 0.92 ± 0.05
150 0.68 ± 0.04
225 0.63 ± 0.03
300 0.62 ± 0.02
375 0.59 ± 0.02
450 0.60 ± 0.03
525 0.60 ± 0.04
600 0.59 ± 0.02
675 0.60 ± 0.03
750 0.61 ± 0.04
825 0.59 ± 0.02
900 0.59 ± 0.02
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Figure 5.3: Mean squared error calculated on neural networks with one only hidden
layer with a different number of neurons and for various learning rates. The mean
values are calculated by applying the 10-fold cross validation technique at the
training data.

Figure 5.4: Refined region of minimum MSE following from Figure 5.3.
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The analogous for the neural network with two hidden layers (starting from 50
and 25 neurons per layer up to 600 and 300) is shown in Table 5.2 and Figure 5.5.
As seen above, configurations with large learning rates or small number of neurons
are bad choices. The region of MSE minimisation is shown in Figure 5.6. Also for
this architecture, 0.004 is the best learning rate. As for the number of hidden units,
the best choice with this learning rate value is equal to 350 neurons in the first
hidden layer and 175 in the second. With this configuration the validation MSE is
about 0.6%. Further tests on learning rate values around 0.004 are executed. The
validation MSE decreases to about 0.57% with a learning rate equal to 0.003.

For these experiments the input features corresponding to twelve days time
windows have been used. The single hidden layer architecture has a performance
comparable to that with two hidden layers. Since when there are many solutions
with similar accuracy it is always suggested to adopt the simplest, a study on the
complexity appears worthwhile. The complexity of a neural network is propor-
tional to the number of its trainable parameters. For a multi-layer perceptron the
number of trainable parameters Np is:

Np = Nw +Nb, (5.1)

where Nw and Nb are the number of connection weights and neuron biases, respec-
tively. For networks with a single hidden layer with i input units, h hidden units
and o output units they are defined as:

Nw = i · h+ h · o (5.2)
Nb = h+ o. (5.3)

Since the optimal studied architecture has 579 input neurons, 375 hidden neu-
rons and 1 output neuron:

Nw = 579 · 375 + 375 · 1 = 217 500 (5.4)
Nb = 375 + 1 = 376 (5.5)
Np = 217 500 + 376 = 217 876. (5.6)

The number of parameters of neural networks with two hidden layers with h1
and h2 hidden units, respectively, is calculated as follows:

Nw = i · h1 + h1 · h2 + h2 · o (5.7)
Nb = h1 + h2 + o. (5.8)
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Table 5.2: The same of Table 5.1 for neural networks with two hidden layers.
Entries with the smallest MSE are highlighted in bold font.

Learning Hidden Mean squared Learning Hidden Mean squared
rate neurons error (%) rate neurons error (%)

0.1 (50, 25) 3.34 ± 0.39 0.0008 (50, 25) 1.11 ± 0.09
(100, 50) 3.40 ± 0.45 (100, 50) 0.78 ± 0.03
(150, 75) 3.38 ± 0.50 (150, 75) 0.71 ± 0.04
(200, 100) 3.51 ± 0.79 (200, 100) 0.68 ± 0.03
(250, 125) 4.22 ± 1.08 (250, 125) 0.65 ± 0.03
(300, 150) 3.84 ± 0.62 (300, 150) 0.67 ± 0.03
(350, 175) 2.75 ± 0.51 (350, 175) 0.67 ± 0.02
(400, 200) 3.38 ± 0.51 (400, 200) 0.64 ± 0.03
(450, 225) 3.35 ± 0.73 (450, 225) 0.64 ± 0.05
(500, 250) 3.56 ± 0.60 (500, 250) 0.63 ± 0.03
(550, 275) 5.07 ± 3.92 (550, 275) 0.61 ± 0.03
(600, 300) 3.58 ± 0.59 (600, 300) 0.67 ± 0.06

0.02 (50, 25) 1.08 ± 0.06 0.00016 (50, 25) 2.30 ± 0.10
(100, 50) 0.87 ± 0.07 (100, 50) 1.10 ± 0.07
(150, 75) 0.81 ± 0.03 (150, 75) 0.90 ± 0.09
(200, 100) 0.82 ± 0.06 (200, 100) 0.81 ± 0.04
(250, 125) 0.86 ± 0.05 (250, 125) 0.75 ± 0.05
(300, 150) 0.82 ± 0.07 (300, 150) 0.72 ± 0.05
(350, 175) 0.84 ± 0.05 (350, 175) 0.75 ± 0.08
(400, 200) 0.82 ± 0.05 (400, 200) 0.74 ± 0.07
(450, 225) 0.88 ± 0.08 (450, 225) 0.78 ± 0.05
(500, 250) 0.92 ± 0.04 (500, 250) 0.76 ± 0.05
(550, 275) 0.94 ± 0.10 (550, 275) 0.74 ± 0.04
(600, 300) 0.89 ± 0.04 (600, 300) 0.75 ± 0.05

0.004 (50, 25) 0.96 ± 0.04
(100, 50) 0.75 ± 0.05
(150, 75) 0.68 ± 0.04
(200, 100) 0.65 ± 0.06
(250, 125) 0.62 ± 0.05
(300, 150) 0.62 ± 0.05
(350, 175) 0.60 ± 0.01
(400, 200) 0.63 ± 0.03
(450, 225) 0.62 ± 0.04
(500, 250) 0.61 ± 0.03
(550, 275) 0.60 ± 0.02
(600, 300) 0.60 ± 0.02
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Figure 5.5: The same of Figure 5.3 for neural networks with two hidden layers.

Figure 5.6: Refined region of minimum MSE following from Figure 5.5.
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Table 5.3: Complexity and mean squared error measured on validation set for
the neural networks trained with the best hyper-parameters found with the grid
search.

Hidden Hidden Learning Mean squared Parameters Weights Biases
layers neurons rate error (%)

1 375 0.004 0.59 ± 0.02 217 876 217 500 376
1 600 0.004 0.59 ± 0.02 348 601 348 000 601
1 825 0.004 0.59 ± 0.02 479 326 478 500 826
1 900 0.004 0.59 ± 0.02 522 901 522 000 901
2 (350, 175) 0.004 0.60 ± 0.01 264 601 264 075 526
2 (550, 275) 0.004 0.60 ± 0.02 470 801 469 975 826
2 (600, 300) 0.004 0.60 ± 0.02 528 601 527 700 901
2 (500, 250) 0.004 0.61 ± 0.03 415 501 414 750 751
2 (550, 275) 0.0008 0.61 ± 0.03 470 801 469 975 826

Since the best studied architecture with two hidden layers has the same number
of input and output neurons than that with just one hidden layer and 350 and 175
hidden units in the two hidden layers, it follows:

Nw = 579 · 350 + 350 · 175 + 175 · 1 = 264 075 (5.9)
Nb = 350 + 175 + 1 = 526 (5.10)
Np = 264 075 + 526 = 264 601. (5.11)

The network with two hidden layers has about 45 000 trainable parameters
more than the other. Since the accuracy of the networks with one and two hidden
layers are almost identical, it appears a useless complication to choose the second
solution. In Table 5.3 are reported the complexity of some of the best architectures
considered, together with the hyper-parameter values and the calculated MSEs.

Input feature selection. All tests described above are done by using a data
set with twelve days of hourly observations for both interplanetary magnetic field
intensity B and solar wind speed V . It is reasonable to think that some time
sub-windows can be more relevant than others. In particular, data referring to
instants just before the time considered may affect the result much more than
data observed days in advance.



66 CHAPTER 5. PREDICTING LISA PATHFINDER DATA

Figure 5.7: Mean squared error calculated on neural networks with different time
windows for the input variables (solar wind speed and interplanetary magnetic
field). The MSE of each combination is calculated on the validation set with a
10-fold cross validation with different learning rate values and hidden layers and
units. The best results for each combination are reported in the figure. The region
between the white lines corresponds to the MSE assuming values of approximately
0.65%.

In order to find the minimal time window for both V and B variables, several
tests with different cuts of the maximal twelve-day window are executed. These
tests were carried out by considering the results showed in the previous paragraph
in order to set the grid search on neuron number and learning rate value and using
the same 10-fold cross-validation to check if smaller input sets allow for better
accuracy in case different hyper-parameter values are chosen. As a successive step,
further tests are executed to check the possibility of sampling the input variables
on daily cadence, for instance, rather than hourly.

Since the best MSE found with the twelve-day windows is about 0.56% and
0.57% for the one and two hidden layers architecture, respectively, and since the
statistical uncertainty of the LISA Pathfinder hourly binned data is 1%, it is
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reasonable to accept a smaller input data set that determines neural network model
predictions with mean squared error smaller than 0.65%. Sub-windows ranging
from six to twelve days for the solar wind speed V and from two to twelve days for
the interplanetary magnetic field intensity B are investigated. Each combination
of B and V sub-windows is tested with 10-fold cross-validation in order to find
the best architecture and learning rate value for the specific combination. The
optimum regions of these hyper-parameters are chosen on the basis of the previous
results. In Figure 5.7 the best results obtained for each combination of B and
V sub-windows are reported. By reducing the number of input variables, the
architecture with two hidden layers always performs better than the single one.
For example, with seven days of V observations and two for B, the architecture
with two hidden layers has an MSE of 0.67%, while that with one hidden layer has
an MSE of 0.77%. A learning rate equal to 0.005 is on average the best, although for
combinations with less input variables a larger value, such as 0.007 or 0.01, seems
better. In the region of Figure 5.7 highlighted between the white lines the MSE is
nearly constant (about 0.65%). Among all the possibilities contained in this region,
nine days of observations for V and two for B is chosen, since it is the one with less
input variables with the same output error, but also represents a correlation with
the typical duration of solar wind speed and interplanetary magnetic field increases
at the passage of high-speed streams that modulate the recurrent variations of the
galactic cosmic-ray flux. With these time windows, using a learning rate equal to
0.005 and two hidden layers, with 550 and 275 neurons, respectively, the MSE on
the validation set is 0.64% ± 0.04%. In Figure 5.2 the Bartels rotation 2505 is
reported, as in Figure 5.8, but with the optimal value found for the B and V time
windows.

The number of input features can be further decreased by sampling differently
the time window of each variable. For example, it may be sufficient to get one
sample every n hours instead of hourly observations. In order to keep as much
as possible the information contained in the data set, each considered observation
is substituted with the mean value of the contiguous discarded observations. For
instance, by keeping one value every twenty-four hours, each resulting observation
is the mean value measured during a 24-hour period. In this work, different values
for the parameter n, ranging up to 36 hours for V and 24 hours for B, are tested
with nine days of observations for V and two for B and different learning rate values
and hidden unit number. In this case the architecture with only one hidden layer
has a worse performance (for instance, with n = 24 it has a MSE above 1.1, with
respect to the 0.7 of the architecture with two hidden layers). Passing from twelve
days of hourly observations for both variables to two days of daily observations
for B and nine days of observations for V , with one observation every twenty-
four hours for B and thirty-six hours for V , allows to drop the number of input
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Figure 5.8: Same as Figure 5.2. In this plot the blue dots represent the optimal
time windows estimated for the solar wind speed and interplanetary magnetic field
intensity past observations included in the data set (nine days for the solar wind
and two days for the magnetic field).

features from 579 to 11 (3 variables for B, 7 for V and 1 for galactic cosmic-ray flux
variation normalisation). The resulting MSEs found with the aforementioned 10-
fold cross-validation are reported in Table 5.4. The steps used for V and B appear
for each neural network, together with the number of hidden units and the learning
rate that minimise the MSE are reported. All tests are executed by averaging n
observations and the mean values are the new input data. Without averaging the
data, statistical fluctuations show an undesired impact on the prediction accuracy.

The same Bartels rotation shown in Figure 5.8 is also reported in Figure 5.9
and Figure 5.10, but this time with different data sampling rates for B and V .
The data sample shown in Figure 5.9 is obtained only by keeping one observation
every twenty-four for B and every thirty-six for V , while in Figure 5.10 sequences
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Table 5.4: Mean squared error calculated on the validation set for neural networks
with different architectures and learning rates varying the sampling rate of the
input variables. In input are taken nine and two days of solar wind speed V and
interplanetary magnetic field intensity B observations, respectively.

V sampling B sampling Hidden Learning Mean squared
rate (hours) rate (hours) units rate error (%)

1 1 600 0.006 0.62 ± 0.06
(550, 275) 0.005 0.64 ± 0.04

3 3 525 0.015 0.64 ± 0.07
(300, 150) 0.01 0.62 ± 0.05

6 6 375 0.015 0.69 ± 0.04
(450, 225) 0.005 0.62 ± 0.02

12 12 750 0.015 0.82 ± 0.05
(300, 150) 0.007 0.63 ± 0.04

24 24 525 0.015 1.11 ± 0.11
(450, 225) 0.007 0.69 ± 0.02

36 24 (300, 150) 0.01 0.73 ± 0.06

of twenty-four and thirty-six observations are substituted with their mean value.
The mean squared errors of the best networks found during the optimisations

phase of the work described in this paragraph are shown in Table 5.5. All the
information regarding the input variables, the hyper-parameter values and the
complexity expressed as number of trainable parameters are reported for each
network. Since, as recalled above, the LISA Pathfinder data statistical error is
about 1%, the network with input variables B and V observed every twenty-four
and thirty-six hours, respectively, appears the best choice with a MSE of 0.73,
because it has only eleven input variables.

Plausibility of chosen variable time windows The artificial neural network
accepts as input data past observations of the solar wind speed and interplanetary
magnetic field intensity in terms of time windows of nine days for the first and
two days for the second. Different sizes of the time windows have been considered,
specifically from six to twelve days for the wind speed and from two to twelve days
for the interplanetary magnetic field. These ranges have been considered appro-
priate for the following reasons. Galactic cosmic-ray short-term variations present
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Figure 5.9: Same as Figure 5.8. In this plot the blue dots represent the optimal
samplings estimated for the solar wind speed and interplanetary magnetic field
intensity past observations included in the data set (thirty-six hours for the solar
wind and twenty-four hours for the magnetic field).

quasi-periodicities associated with the solar rotation (∼ 27 days) and higher har-
monics. The interplanetary magnetic field intensity and solar wind speed increases
show similar periodicities. The LISA Pathfinder cosmic-ray data were gathered
during the declining part of the solar cycle 24 between 2016 and 2017, during which
a high number of high-speed solar wind streams from equatorial coronal holes and
equatorward extensions of polar coronal holes were observed generating forty-five
galactic cosmic-ray flux recurrent variations. Conversely, only three non-recurrent
Forbush decreases caused by the passage of three interplanetary counterparts of
coronal mass ejections were observed for a total duration of six days during the
same time. The recurrent galactic cosmic-ray variations presented an average
intensity of 5% and an average duration of nine days. The typical duration of
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Figure 5.10: Same as Figure 5.9. In this plot each blue dot represents the mean
value of the successive observations highlighted with the blue line on the right of
the dot.

high-speed solar wind stream passage corresponding to wind velocities larger than
400 km s−1 is four days, while for velocities larger than 380 km s−1 is five days.
The increase of the magnetic field associated with the high-speed stream transit
lasts typically two days. The combination of solar wind speed and interplanetary
magnetic field at the interaction regions between high-speed solar wind with the
preceding slow wind increase causes the galactic cosmic-ray recurrent variations.
The model presented here was optimised by starting from the aforementioned ob-
servational clues. The time windows for the input variables were initially set to
twelve days and then reduced to nine and two days for the wind speed and the
magnetic field intensity, respectively. The time window size corresponding to the
solar wind speed stream passage results in line with the duration of single high-
speed stream transits because, despite several high-speed streams superpose, the



72 CHAPTER 5. PREDICTING LISA PATHFINDER DATA

Table 5.5: Complexity and mean squared error measured on validation set for the
best optimised neural networks described in the paragraph.

(V , B) (V , B) Hidden Learning Mean squared Parameters
windows sampling units rate error (%) (weights and
(days) rate (hours) biases)

(12, 12) (1, 1) 750 0.0024 0.56 ± 0.02 435 751
(12, 12) (1, 1) (500, 250) 0.003 0.57 ± 0.03 415 501
(9, 6) (1, 1) 450 0.0035 0.62 ± 0.02 164 251
(9, 2) (1, 1) (550, 275) 0.005 0.64 ± 0.04 299 201
(9, 2) (3, 3) 525 0.015 0.64 ± 0.07 48 826
(9, 2) (24, 24) (450, 225) 0.007 0.69 ± 0.02 108 451
(9, 2) (36, 24) (300, 150) 0.01 0.73 ± 0.06 48 901

solar wind speed goes below 400 km s−1 even for short time. Time windows of nine
days capture the dynamics of these multiple events. Conversely, since interplane-
tary magnetic field intensity increases are usually isolated and limited to two-day
periods, a time window of size equal to two days is sufficient.

5.2.3 Knowledge extraction from the neural network

As shown in Chapter 3, several methods for extracting rules from neural networks
solving regression problems exist in the literature. All methods, however, show
a complexity growing proportionally to the number of neurons and/or input fea-
tures. Some algorithms are only applicable to neural networks with one hidden
layer. Amongst the algorithms described in Chapter 3, the most adequate for
regression problems and networks with more than one hidden layer is ITER (see
Algorithm 5), that is chosen for this work. It may be possible to extend REFANN
(see Algorithm 3) for extracting rules from neural networks with two hidden layers,
but considering also the number of input features of the problem under study and
the total number of hidden neurons required to have a good enough prediction,
the resulting rules will be so complex to become unintelligible. REFANN provides
more regressive outputs than ITER and it may be possible to apply the REFANN
algorithm to neural network models with only one hidden layer. However, it has
been demonstrated in Section 5.2.2 how two hidden layers perform better with
respect to the problem discussed here, so this solution has not been adopted to
extract rules. Rule-extraction-as-learning and TREPAN (see Algorithm 1 and
Algorithm 2, respectively) are not suitable because they are designed for classi-
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fication problems, thus they require the transformation of the data set and the
neural network accordingly, in order to pass from regression to classification, and
for this work is not the case for several reasons. Firstly, the output real-valued
variable to predict has to be converted in a categorical variable. This can be done
by splitting the range between minimum and maximum of the output variable
into n contiguous and non-overlapping sub-ranges, each of them associated to a
different class label. Each sub-range i has lower and upper bounds, ai and bi,
respectively. The output value of each data set sample is then substituted with
a class label as described in the following. Given the partitioning criterion of the
initial output variable range, the output oj of a given sample j belongs to one and
only one sub-range i, that for which ai <= oj < bi holds. The higher the n value is,
the most the regressive nature of the initial problem is preserved, because a large
amount of distinct classes allows the prediction of a wider range of different output
values. Conversely, having only few classes causes the implementation of a model
able to predict only few distinct output values. Thus, the transformation from
regression to classification imply a loss of precision in the output data, that pass
from real values to intervals containing those values. A second problem concerns
the evaluation of the prediction performance of the model to implement: while
it is simple to measure the prediction error between two real values, the same it
is not true for two class labels identifying intervals. A further reason to discard
Rule-extraction-as-learning and TREPAN is their inability to handle real-valued
input features (but only categorical features): they would require a transformation
of the features analogous to that described above for the output values, to convert
real values into intervals associated to class labels. This conversion would provoke
more loss of precision and an explosion of the number of input features, resulting
in the implementation of a neural network with poor predictive performance and
in an extraction algorithm with major complexity. Since a growing complexity cor-
responds to less readable extracted rules, this feasibility study suggests to adopt
neither Rule-extraction-as-learning nor TREPAN.

Given all the considerations discussed above, for this thesis work ITER ap-
pears to be the best choice. However, with respect to the actual problem, the
main drawbacks of applying ITER are two: the output value of the extracted rules
is a constant value, different for each rule but equal for all the examples represented
by a single rule, so the model produced by the algorithm performs a sort of classifi-
cation instead of a real regression. The second disadvantage is the number of input
features; with eleven features the algorithm create one hyper-cube per rule, where
each hyper-cube has eleven dimensions, resulting in elaboration complexity and
rules with eleven constraints on the variables. While it is not possible to reduce
the number of input features any further, there is a chance to remove the former
problem of ITER by implementing a different model that uses the main concepts
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of ITER but in synergy with a linear regressor, in order to create hyper-cubes of
samples with similar output from which it is feasible extracting rules in the form
of linear function of the input features.

Notation. Since the goal of extracting regression rules is to find a relationship
between input features and output predictions, it is worthwhile to introduce a
notation to indicate the input variables in a concise and non-ambiguous way.

Let X be an input variable, X0 is the value of the input variable X at the
instant t = 0 and X i

j represents the value of the X variable obtained by averaging
the data over the time interval set by j as the number of time intervals of i hours
to go backward in time, from t1 through t2 where: t1 = −j · i and t2 = −(j− 1) · i,
assuming that the values of t1 and t2 are the number of hours before instant t = 0.
For instance, X24

1 represents the average value of 24 consecutive observations of
the X variable from t1 = −24 to t2 = −1, that is the average value of the variable
X during the day preceding the current instant; X36

2 is the average value between
three days and a day and a half before current instant and corresponding t1 and
t2 are equal to -72 and -37, respectively.

The best neural network described in Section 5.2.2 to adopt for knowledge ex-
traction is that with nine days of solar wind speed observations averaged every
thirty-six hours and two days of interplanetary magnetic field intensity observa-
tions every twenty-four hours. The last input variable is the value of the galactic
cosmic-ray flux nine days before the instant to predict. The output is the flux value
at current time expressed in terms of increment with respect to the flux value nine
days before. Adopting the notation described above, let O be the output and F
the cosmic-ray flux at time t = −9 · 24:

O = f(V0, V
36
1 , V 36

2 , V 36
3 , V 36

4 , V 36
5 , V 36

6 , B0, B
24
1 , B

24
2 , F ). (5.12)

The goal of the knowledge extraction is to estimate the f function.

ITER implementation. The implementation of ITER as shown in Algorithm 5
and Algorithm 6 applied to the case study reported above has a really poor per-
formance. The problems highlighted are several. First of all, in [92] the authors
recommend as default update value for each dimension a twentieth of the total size
of the dimension. If the dimension number is eleven and each one is partitioned
into twenty portions, there are 2011 sub-cubes contained in the surrounding cube
(it is recalled that the latter is the hyper-cube containing all the samples of the
problem). Since the feature space is not entirely filled (for example, feature x
ranges between a and b, while feature y ranges between c and d, but there are
not examples where x = a and y = d), this exaggerated number of sub-portions
leads to the repeated hyper-cube expansion during the algorithm toward regions



5.2. IMPLEMENTATION 75

absolutely not useful for the handled problem. Computationally, this is translated
into a very long CPU-intensive work with a useless output. This problem can be
overcomed by partitioning the feature space into bigger portions and stopping the
hyper-cube expansion when this goes towards regions with no data set samples.

A second problem emerged during the development of the algorithm is related
to the (non-)exhaustivity of ITER. The algorithm ends when it is not possible
to further expand any hyper-cube; although this stuck configuration is reached
in different moments depending on the number, position and size of the initial
hyper-cubes and the parameters of the algorithm (such as the value of the single
hyper-cube update), ITER ends with a very little prediction capacity (it is able
to predict less than 1% of the test set, with accuracy and fidelity variable on the
basis of the algorithm parameters). This issue can be addressed by adding extra
hyper-cubes in the space left between the existing ones, but since the very first
iteration the new cubes added are so little (due to the absence of big empty spaces)
that can comprehend only few data set samples. This lead to a huge number of
hyper-cubes (i.e. one for each training sample) and, as a consequence, of rules. In
addition, since these cubes are so small, the examples of the test set can remain
uncovered by the resulting model. In Figure 5.11 are shown the expansions of two
hyper-cubes, supposing a problem with two input features. Initially the hyper-
cubes are the light blue squares. During the first iteration they expand toward
the green squares, then toward the orange ones, the yellow and finally the red.
The figure helps to catch the extent of the cube expansion through the algorithm
iterations, showing at the same time the dependence of the final configuration from
the number, position and size of the starting hyper-cubes. In addition, it is easy
to imagine that the growing hyper-cubes tend to leave big blank spaces in the
surrounding cube, forcing to add new smaller and smaller cubes.

The problems and considerations presented above remain valid with all rea-
sonable values for the algorithm parameters, even though it is possible to notice
several differences by varying the parameter values. Such parameters are the num-
ber of initial hyper-cubes (more points produce a more accurate model and more
blank spaces between hyper-cubes), the dimension of the initial cubes (the larger
the size, the smaller the accuracy and the blank spaces) and the threshold value
for the creation of new hyper-cubes instead of expanding the existing ones (higher
values tend to produce a more accurate model but with higher number of cubes
and therefore of rules).

Considering these criticalities, the idea of altering the original ITER algorithm
appears reasonable. For example, it can be convenient to partition the surrounding
cube into a predetermined number of sub-cubes of fixed dimension; each cube has
for each dimension a minimum and a maximum value and its predicted value is
equal to the mean value of the training examples covered by the cube. Since there
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Figure 5.11: Hyper-cube expansion during the iterations of the ITER algorithm.

are eleven dimensions, the number of resulting cubes is n11 if n is the number
of partitions of each dimension. For instance, n = 2 produces over 2 000 cubes,
while for n = 3 they are more than 175 000. A first optimisation of this algorithm
consists in discarding all those useless hyper-cubes that do not cover any sample of
the data set. This precaution allows to dramatically reduce the number of effective
cubes of the output model. A second optimisation step can be the further split of
those hyper-cubes that cover data set examples with high variance in the output
value, in order to create sub-cubes more specific and accurate. As a result, the
proposed variation of ITER starts splitting the surrounding cube into n11 cubic
disjoint and contiguous partitions. Each created hyper-cube is discarded if useless;
otherwise it is added to the output model or further partitioned intom11 sub-cubes
if the variance of the examples that covers is higher than an assigned threshold.
The value of m can be fixed (such as equal to n) or proportional to the sample
variance (high variances imply high values of the m parameter). Figure 5.12 shows
the proposed variation of ITER. The example assumes a two-dimensional problem.
The white square is the surrounding hyper-cube. Each dimension is partitioned
into two halves, so at each iteration a square is divided into 22 square splits. During
the first iteration the surrounding cube is divided into four light blue squares. Then
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Figure 5.12: Proposed variation of the ITER algorithm.

the usefulness of each square is evaluated. If it is useless, it is discarded (white
bottom left square); if it is useful and covers examples with low variance, it is
added to the final output model (light blue top right square); otherwise, it is
further split into four squares (the green and orange ones in the second and third
iterations, respectively). Each new square is recursively evaluated to check its
usefulness and variance. For example, by using this technique with two splitting
steps (n = m = 2) it is possible to achieve the same accuracy than a single step
with n = 4 but with a very smaller number of resulting hyper-cubes.

Since the surrounding cube is calculated on the training set, it is possible to
find in the test set samples that lie outside the cube. In addition, due to discarding
useless squares, some test examples may correspond to uncovered regions of the
model. These problems are resolved by finding the nearest cube with respect
to the example and assigning the example to it. The mean absolute error of the
predictions performed by the presented variation of ITER with respect to both the
neural network output used to build the understandable model and the real data is
reported in Table 5.6. Since the models involved in the comparison present galactic
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Table 5.6: Mean absolute error of the predictions made by the variation of ITER
with respect to the underlying neural network (NN) and the real data. For each
model is reported the number of hyper-cubes.

First split Second split Hyper-cubes NN MAE (%) Data MAE (%)

2 - 243 1.57 1.74
3 - 986 1.04 1.31
4 - 1 984 0.51 0.81
2 2 1 749 0.54 0.83

cosmic-ray flux variation prediction errors smaller than 1% in the majority of cases,
in the following the mean absolute error is considered to be more appropriate than
the mean squared error for studying the precision of the various models. For each
model the number of hyper-cubes is reported.

Each hyper-cube in the output model corresponds to a rule extracted from
the underlying neural network. Each rule is formed by a body expressed as a
conjunction of clauses on the input variables, such as (a < x < b) ∧ (c < y < d),
where x and y are input variables and a, b, c, d are threshold values, and an output
value. For instance, let E be a sample of the test set expressed accordingly to the
notation described above:

E = (V0, V
36
1 , V 36

2 , V 36
3 , V 36

4 , V 36
5 , V 36

6 , B0, B
24
1 , B

24
2 , F )

= (546.0, 384.0, 366.6, 486.8, 460.1, 360.6, 420.2, 4.9, 12.2, 4.8, 2.92).

The sample E is covered by the hyper-cube HC, defined as follows by using the
proposed variation of ITER and two splitting steps with parameters m = n = 2:

Average increment is about -1.83% if:
- V0 is between 508 and 630 km s−1

- V 36
1 is between 284 and 390 km s−1

- V 36
2 is between 285 and 390 km s−1

- V 36
3 is between 390 and 495 km s−1

- V 36
4 is between 390 and 495 km s−1

- V 36
5 is between 284 and 390 km s−1

- V 36
6 is between 390 and 495 km s−1

- B0 is between 0.90 and 7.50 nT
- B24

1 is between 9.65 and 13.56 nT
- B24

2 is between 1.87 and 5.71 nT
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Figure 5.13: Mean absolute error measured on the predictions of a regression tree
trained with the output of the presented neural network. The errors are calculated
with respect to the network predictions (orange line) and to the real data (blue
line) varying the number of leaf nodes.

- F is between 0.48 and 4.31%.

According to the extracted rule, the sample belongs to a region of the feature
space where the predicted increment is about −1.83%. The increment relative to
the same sample predicted by the underlying neural network is −1.61%, while the
real increment is −1.82%.

The example above is obtained by applying the proposed variation of the ITER
algorithm. Since in [92] the authors of ITER compare the performance of this
algorithm to a classical binary regression tree, the same comparison has been done
between the proposed ITER variation and a regression tree, both applied to the
case study described in this work. The mean absolute error versus the number of
leaves of a regression tree trained with the output of the presented neural network
with respect to both the underlying neural network predictions and the real data
(orange and blue lines, respectively) are reported in Figure 5.13. Since each leaf
is associated to one rule (as each ITER hyper-cube), it is clear that the tree can
achieve the same or even better accuracy of the ITER variation with about the
50% of rules.

Although the ITER variation addresses some issues encountered during the
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Algorithm 7 Algorithm for the creation of an explainable model that uses the
main ITER concepts and a linear regressor.

1. select an input sample
2. build a hyper-cube centered in the sample
3. generate n random samples belonging to the hyper-cube
4. predict the output value of each generated sample with the artificial neural

network
5. calculate the mean output value and assign it to the hyper-cube
6. expand the hyper-cube

• create temporary adjacent hyper-cubes as described by the ITER
algorithm
• repeat steps 3, 4 and 5 for each temporary adjacent hyper-cube
• select the most similar temporary adjacent hyper-cube with respect

to the main hyper-cube (the one which mean value is the nearest to
that of the main hyper-cube)
• if the difference between the selected hyper-cube mean value and

that of the main hyper-cube exceeds the defined threshold, it is not
possible to expand further the hyper-cube; go to step 7
• merge the main hyper-cube with the selected one and recalculate the

mean value
• remove all the temporary hyper-cubes and repeat step 6

7. train a linear regressor with the samples inside the expanded hyper-cube
8. predict the output of the initial sample with the linear regressor
9. use the regressor parameters to obtain a linear function that explains the

prediction obtained in step 8

classical implementation and ignoring the disadvantageous comparison with re-
gression trees, there are two main problems in its provided explanation: the model
is not globally intelligible by a human, because there are thousands of rules, and
the regression problem has been converted into a multi-class classification prob-
lem, since each hyper-cube assigns the same output value to each sample that it
covers. In other words, if there are n cubes, the new problem is a classification
with n classes.

These problems derive from the nature itself of ITER and can be resolved by
applying the core concepts of the algorithm in a different way. The steps allowing
for the implementation of the new explainable model described in the following
are reported in Algorithm 7. Instead of the creation of an explainable model
capable of mimic the underlying neural network, it seems to be a better choice to
focus on a single sample and try to explain the specific output returned by the
neural network for the sample. For instance, when the neural network receives
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a sample, it can be seen as a point in the feature space. It seems reasonable to
use the ITER concepts to create only a single hyper-cube, centered on this point,
and expanding it using the neural network as oracle in order to find the biggest
region in the feature space that contains samples with similar output values. The
similarity of the output values is calculated as the difference between the mean
value inside the hyper-cube and that of the adjacent cubes, and comparing this
difference with a threshold. When the hyper-cube corresponding to the promising
region is found, it is possible to train a linear regressor in order to find not a single
value as output of the rule (as in the ITER algorithm), but a linear equation of the
input variables. It is worthwhile to notice that training a global linear regressor on
the whole data set does not produce good results. Since local regressors are more
accurate, this seems the most reasonable approach to get an explanation for the
output values of the neural network. Using the neural network as an oracle means
to generate random samples that lie in a certain hyper-cube and get the network
predictions for these samples, in order to have a larger number of examples in each
region and thus more robust mean values. This process is shown in Figure 5.14,
with two-dimensional hyper-cubes and n = 25 as parameter for the number of
random examples to create inside each temporary cube. Initially a hyper-cube is
constructed around the sample to predict (the blue square with the central blue
dot). Then n samples are generated inside the hyper-cube (the black dots) and
predicted with the neural network. The mean value is reported in the label inside
the square. Two temporary hyper-cubes are created for each dimension (the red
dotted squares) and then n random samples are generated into each temporary
hyper-cube. The mean of each hyper-cube is then calculated. If there is at least
one cube with a mean value that differs from the starting cube mean less than
the specified threshold, then the starting cube is merged with the temporary cube
with the more similar mean (the green dashed square). The random samples of
this best temporary cube are kept, while other cubes and samples are discarded.
This is repeated until there are no further expansions left.

As output instance, from the sample E previously described it is possible to
create the hyper-cube HC ′ defined as follows:

Average increment is about -1.64% if:
- V0 is between 534 and 558 km s−1

- V 36
1 is between 373 and 394 km s−1

- V 36
2 is between 356 and 377 km s−1

- V 36
3 is between 476 and 497 km s−1

- V 36
4 is between 450 and 471 km s−1

- V 36
5 is between 350 and 371 km s−1

- V 36
6 is between 410 and 431 km s−1
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Figure 5.14: Proposed algorithm for the expansion in the feature space starting
from a single data set example.

- B0 is between 4.24 and 5.56 nT
- B24

1 is between 11.86 and 12.64 nT
- B24

2 is between 4.42 and 5.19 nT
- F is between 2.54 and 3.30%.

The HC ′ hyper-cube has been created by using 20 as parameter for defining
the number of equal portions of each input dimension (and thus their size) and 0.1
as threshold for stopping the cube expansion. The mean absolute error measured
between the output of this model and both the expected values and those predicted
by the underlying neural network with respect to the variation of the splitting
parameter value is reported in Table 5.7. It is evident how this parameter is not
very impacting on the final predictions, since large values imply less expanding
iterations, while small ones requires more iterations, but in both cases the final
cube is similar. FromHC ′ it is possible to extract a linear regression rule to predict
the output value of the samples belonging to the hyper-cube and, in particular, of
E:
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Table 5.7: Mean absolute error of the predictions of the proposed model with re-
spect to the underlying neural network (NN) and the real data. The data reported
is referred to different values of the splitting parameter.

Splitting parameter value NN MAE (%) Data MAE (%)

10 0.25 0.73
15 0.14 0.69
20 0.09 0.68

OE = 0.01V0 − 0.0048V 36
1 − 0.026V 36

2 + 0.0021V 36
3 + 0.0091V 36

4 − 0.018V 36
5

− 0.011V 36
6 − 0.31B0 − 0.61B24

1 + 0.29B24
2 − 1.5F = −1.65

It is worthwhile to recall that the real output of E is −1.82%, while the pre-
diction of the neural network is −1.61%. The prediction of the hyper-cube HC ′ is
−1.64% and, finally, the regression rule gives an output value of −1.65%. By merg-
ing the hyper-cube ranges with the regression rule, the final explanation extracted
for the provided output of the sample E, valid also for other samples covered by
HC ′ is the following:

The increment is 0.01V0 − 0.0048V 36
1 − 0.026V 36

2 + 0.0021V 36
3 + 0.0091V 36

4

−0.018V 36
5 − 0.011V 36

6 − 0.31B0 − 0.61B24
1 + 0.29B24

2 − 1.5F
if:

- V0 is between 534 and 558 km s−1

- V 36
1 is between 373 and 394 km s−1

- V 36
2 is between 356 and 377 km s−1

- V 36
3 is between 476 and 497 km s−1

- V 36
4 is between 450 and 471 km s−1

- V 36
5 is between 350 and 371 km s−1

- V 36
6 is between 410 and 431 km s−1

- B0 is between 4.24 and 5.56 nT
- B24

1 is between 11.86 and 12.64 nT
- B24

2 is between 4.42 and 5.19 nT
- F is between 2.54 and 3.30%.
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5.3 Programming language

All the codes written during this thesis work are in Python programming lan-
guage. Python is known for being an interpreted, high-level and general-purpose
programming language designed to emphasize code readability. Its language con-
structs and object-oriented approach aim to help programmers write clear, logical
code for both small and large-scale projects. Python is dynamically typed and
garbage-collected. It can be easily interfaced with other languages and allows
the programmer to write application with graphical user interface. Python sup-
ports multiple programming paradigms, including structured, object-oriented and
functional, and has a large number of standard libraries. Between the existent
paradigms, the most used is the imperative, where the program is seen as a se-
quence of instructions. Each instruction represents an order given to the computer.
As for the imperative syntax, often its constructs are expressed as verbs at the im-
perative mood.

It is possible to download, install and use Python completely free and it is
portable; it is sufficient to have the correct interpreter version installed on the
device. Python portability derives from being a pseudo-compiled language (the
source code is analysed and executed by an interpreter without being compiled).
A drawback of this is the lower speed with respect to the compiled languages.
Actually Python is faster than purely interpreted languages, because initially the
source code undergoes a pre-compiling step in order to translate it into a byte-
code, an intermediate language between Python and machine language. The suc-
cessive code executions have a better performance because the generated bytecode
is reused instead of reinterpreting the source code. A more efficient execution can
be obtained by using additional modules, such as Numba, providing just-in-time
compilers in order to compile in machine language some portions of the source
code. Its use is particularly convenient to optimize mathematical and vectorial
operations.

Python is particularly suitable for executing scientific computing thanks to the
module NumPy; it consents the use of multi-dimensional vectors and vectorised
functions that allow to avoid classical loops, inefficient and thus slower. Other
modules allow to generate random numbers, data display and drawings (even in
three dimensions), downloading files through File Transfer Protocol (FTP) and
read/write files in Common Data Format (CDF), used as instance by the National
Aeronautics and Space Administration (NASA) and ESA for the dissemination
of science data among different communities. Python external libraries also of-
fer powerful tools for designing and optimising neural networks and doing other
machine learning experiments, for example the Scikit-learn and Keras libraries.

Another point of strength of using Python are the built-in high-level data
structures, such as tuples, lists, sets and dictionaries, that allow the programmer
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to save time during the code writing and have a cleaner and clearer code.
The version of Python adopted here is the 3.7.
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Chapter 6

Results

The predictive models presented in this work aim to reproduce the galactic cosmic-
ray flux short-term variations observed on board the LISA Pathfinder mission. The
data set samples used as input data by the models are composed of solar wind
speed and interplanetary magnetic field observations and one preceding galactic
cosmic-ray flux variation measurement for normalisation. The models return as
output the percent variations of the cosmic-ray flux with respect to past values. In
Section 6.1 a comparison between the different models is reported; in Section 6.2
the neural network model is applied in order to carry out predictions about LISA
Pathfinder cosmic-ray missing data.

6.1 Comparison between the implemented models

The first implemented model is the artificial neural network trained with the LISA
Pathfinder data. The second model is the variation of ITER described in the
previous chapter. Finally, the latter is the model obtained by applying the main
ITER concepts together with a linear regressor and using the neural network as
predicting oracle. The prediction performance evaluation of each model is reported
in Table 6.1 in terms of mean absolute error and standard deviation with respect
to the data. Errors are measured on the test set initially separated from the
whole data set. Results are reported for each Bartels rotation during which the
LISA Pathfinder was taking cosmic-ray data (March 2016 - June 2017); the last
row contains the results about the entire test set. For each entry the number of
samples of both training and test sets are reported.

From Figure 6.1 through Fig. 6.18 the model predictions are shown in com-
parison with the LISA Pathfinder mission data gathered from March 17th, 2016
through July 2nd, 2017. In all figures the galactic cosmic-ray flux percent varia-
tion measurements are indicated by black continuous lines in top panels while the

87
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Table 6.1: Mean absolute error (MAE) and standard deviation of the predictions
made with the three models described in the previous chapter (the artificial neural
network (ANN), the variation of ITER and the third model using ITER concept
and a linear regressor) with respect to the data of the test set. Results are reported
for each Bartels rotation. The number of samples of both training and test sets is
also indicated.

Bartels Training Test ANN ITER Regressor
rotation samples samples MAE (%) MAE (%) MAE (%)

2491 482 166 0.89 ± 0.71 0.98 ± 0.81 0.88 ± 0.71
2492 486 162 0.87 ± 0.65 1.09 ± 0.88 0.89 ± 0.65
2493 496 152 0.71 ± 0.59 0.86 ± 0.78 0.70 ± 0.58
2494 481 167 0.77 ± 0.59 0.92 ± 0.72 0.76 ± 0.59
2495 492 156 0.77 ± 0.65 0.85 ± 0.75 0.81 ± 0.69
2496 493 155 0.84 ± 0.60 0.99 ± 0.99 0.85 ± 0.63
2497 474 174 0.67 ± 0.47 0.95 ± 0.82 0.69 ± 0.48
2498 411 147 0.64 ± 0.52 0.94 ± 0.85 0.63 ± 0.51
2499 481 167 0.75 ± 0.53 0.98 ± 0.88 0.75 ± 0.53
2500 474 174 0.64 ± 0.48 0.98 ± 0.84 0.64 ± 0.48
2501 492 156 0.66 ± 0.49 1.04 ± 1.02 0.71 ± 0.51
2502 489 159 0.67 ± 0.49 1.05 ± 1.01 0.69 ± 0.51
2503 458 151 0.78 ± 0.54 0.97 ± 0.75 0.79 ± 0.53
2504 394 107 0.67 ± 0.56 0.83 ± 0.71 0.66 ± 0.57
2505 500 148 0.60 ± 0.41 0.70 ± 0.55 0.60 ± 0.39
2506 388 120 0.71 ± 0.65 0.94 ± 0.87 0.73 ± 0.68
2507 477 171 0.68 ± 0.55 0.87 ± 0.81 0.67 ± 0.54
2508 470 178 0.67 ± 0.53 0.83 ± 0.83 0.71 ± 0.54
All 8 490 2 829 0.72 ± 0.57 0.94 ± 0.84 0.73 ± 0.57
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Figure 6.1: Galactic cosmic-ray flux percent variations (black continuous line in
top panel), solar wind speed (middle panel) and interplanetary magnetic field in-
tensity (bottom panel) measured during the Bartels rotation 2491, from March
4th, 2016 through March 30th, 2016. In the top panel is also reported the predic-
tions obtained as output of the three described models: red asterisks represent the
artificial neural network predictions; blue exes indicate those obtained with the
variation of ITER; green crosses show the predictions of the model using ITER
concepts with a linear regressor.
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Figure 6.2: Same as Fig. 6.1 for the Bartels rotation 2492, from March 31st, 2016
through April 26th, 2016.

solar wind speed and interplanetary magnetic field intensity measurements appear
in the middle and bottom panels. In the top panels of each figure predictions are
also reported as outputs of the three described models: red asterisks represent the
artificial neural network predictions; blue exes are those made by the variation
of ITER and green crosses are the predictions of the model using ITER concepts
with a linear regressor. All the predictions are performed on the test set. It is
worthwhile to notice that Bartels rotations 2498, 2503, 2504 and 2506 (shown in
Figures 6.8, 6.13, 6.14 and 6.16, respectively) present missing data.

The mean absolute error measured for each model results to be independent
from the Bartels rotation considered for the observations. The all three model
outcomes are in agreement with data within ±1% typical of the statistical uncer-
tainty of the LISA Pathfinder data. However, the neural network model and that
using ITER concepts with a linear regressor perform slightly better than the ITER
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Figure 6.3: Same as Fig. 6.1 for the Bartels rotation 2493, from April 27th, 2016
through May 23rd, 2016.

model. For instance, applied to the Bartels rotation 2501, the neural network has
a MAE equal to 0.66%, while the ITER variation prediction MAE is greater than
1%. The average prediction of the three models is resumed in the last row of
Table 6.1, which shows that the artificial neural network and the model with the
linear regressor present almost the same prediction performance, with a mean ab-
solute error smaller than 0.75%. The ITER variation has a MAE equal to 0.94%.
Since the model using the ITER concepts and the regressor is both more under-
standable by humans than the neural network and more accurate than ITER, it
results to be the best choice for predicting galactic cosmic-ray flux variations.

As an example in the following it will be focused on the Bartels rotations 2496
(from July 17th, 2016 through August 12th, 2016) and 2507 (from May 10th,
2017 through June 5th, 2017), shown in Figures 6.6 and 6.17, respectively. The
Bartels rotation 2496 is characterised by a cosmic-ray flux variation ranging from
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Figure 6.4: Same as Fig. 6.1 for the Bartels rotation 2494, from May 24th, 2016
through June 19th, 2016.

−6% through +9% with respect to the average monthly value. During this Bar-
tels rotation a Forbush decrease occurred between August, 2nd and 3rd. It is
worthwhile to recall that Forbush decreases are characterised by sudden drops of
the galactic cosmic-ray flux due to a large interplanetary magnetic field intensities
associated with the passage of the interplanetary counterpart of a coronal mass
ejection. Another evident peculiarity of this Bartels rotation is the presence of
multiple superposed high-speed solar wind streams, during which the solar wind
speed never decreases below 400 km s−1 and the interplanetary magnetic field has
small values (starting from August, 4th through the end of the Bartels rotation).
All the implemented models are able to make predictions with small errors during
this Bartels rotation. The only exception is represented by the ITER variation,
that has a poor prediction performance between July, 31st and August, 3rd. It
must be pointed out, however, that the Forbush decrease results from an inter-
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Figure 6.5: Same as Fig. 6.1 for the Bartels rotation 2495, from June 20th, 2016
through July 16th, 2016.

planetary magnetic structure that has completely different characteristics from the
high-speed solar wind speed.

Differently from the Bartels rotation 2496, the Bartels rotation 2507 exhibits
a flat trend (flux variations are included between −5% and +4%), with the only
exception represented by a Forbush decrease of small intensities between May, 27th
and May, 28th 2016. Even in this case the implemented models provide predictions
with errors smaller than the LISA Pathfinder statistical uncertainty, except the
ITER model.

During the LISA Pathfinder mission the solar wind speed varied from 263
through 761 km s−1, the interplanetary magnetic field intensity never exceeded
28 nT and the galactic cosmic-ray flux variations ranged between −7% and +9.2%.
The minimum and maximum of the flux variations are reached during the Bartels
rotations 2502 and 2496, respectively. The cosmic-ray variations of the data set



94 CHAPTER 6. RESULTS

Jul
17

18 19 20 21 22 23 24 25 26 27 28 29 30 31 Aug
1

2 3 4 5 6 7 8 9 10 11 12 13

Time

10

5

0

5

10
Va

ri
at

io
n 

(%
)

LISA-PF Radiation Monitors
LPF data
ANN
predictions
ITER
variation
predictions
ITER
variation
+
regressor
predictions

Jul
17

18 19 20 21 22 23 24 25 26 27 28 29 30 31 Aug
1

2 3 4 5 6 7 8 9 10 11 12 13

Time

200

300

400

500

600

700

800

V 
(k

m
 s

1 )

Wind speed

Jul
17

18 19 20 21 22 23 24 25 26 27 28 29 30 31 Aug
1

2 3 4 5 6 7 8 9 10 11 12 13

Time

0

5

10

15

20

25

30

B
 (n

T)

IMF

Figure 6.6: Same as Fig. 6.1 for the Bartels rotation 2496, from July 17th, 2016
through August 12th, 2016.

samples included in the test set ranges from −6.6% through +9.2%, while the
training set range is between −7% and +8.7%. The difference in the training and
test ranges is due to the reduced number of samples having outputs smaller than
−6.6% and larger than +8.7%, i.e. only four and two, respectively. Since the data
set is randomly split into training and test sets, the four samples which output is
included between −7% and −6.6% are all in the training set, while the two samples
with the output greater than 8.7% are both in the test set.

The three implemented models appear to be unable to reproduce the higher
values of the galactic cosmic-ray flux variation range: the artificial neural network
predictions vary from −6.4% through +8.2%; those of the ITER variations be-
long to the interval between −6.7% and +7.3%; the model using the main ITER
concepts with the linear regressor provides outputs from −6.3% to +7.8%. This
performance issue is ascribable, as said above, to the reduced number of available
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Figure 6.7: Same as Fig. 6.1 for the Bartels rotation 2497, from August 13th, 2016
through September 8th, 2016.

samples with high output values during the training of the neural network, but has
little impact on the average predictive performance since those extreme values of
the galactic cosmic-ray flux variations are very rare. During the LISA Pathfinder
mission elapsed time 12 432 hourly observations were gathered. Only thirty-four
of these are above the maximum flux variation value predicted by ITER, equal
to +7.3%. The number decreases further with respect to the maximum of the
model using the ITER concepts with the regressor and that of the artificial neural
network: only nineteen and seven observations are larger than their maximum
predicted value of +7.8% and +8.2%, respectively. A similar conclusion holds for
the smaller flux variation values measured during the mission.

The implemented models have the main drawback to make predictions by only
considering several observations gathered in preceding time windows. If one of
these observations is not available, the models cannot be applied. The same oc-
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Figure 6.8: Same as Fig. 6.1 for the Bartels rotation 2498, from September 9th,
2016 through October 5th, 2016. There are missing LISA Pathfinder data during
this Bartels rotation.

curs if there is no access to the past galactic cosmic-ray flux variation value used
for normalisation. The data set created for this work uses solar wind speed and
interplanetary magnetic field intensity observations that do not present missing
data. However, some data are missing in the LISA Pathfinder time series. Since
the models require those missing data to perform predictions about the flux varia-
tion values nine days after, these unpredictable periods are present neither in the
training set, nor in the test set and therefore, in the corresponding plots, predic-
tions are missing (see Bartels rotations 2498, 2504 and 2506 in Figures 6.8, 6.14
and 6.16, respectively).

As for the knowledge extraction from the neural network model, this thesis
work proofs that it is possible to obtain linear functions that combine the input
variable observations to obtain the output galactic cosmic-ray flux variation and
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Figure 6.9: Same as Fig. 6.1 for the Bartels rotation 2499, from October 6th, 2016
through November 1st, 2016.

that these functions approximate the relationship between the input and output
variables with an error smaller than the LISA Pathfinder data statistical uncer-
tainty. This condition holds only if the rules are extracted in limited regions of
the input feature space; it is not feasible to obtain a global function that is able to
accurately calculate the output cosmic-ray flux variation for all the possible input
solar wind speed and interplanetary magnetic field intensity observation values due
to the peculiarities of the difference between interplanetary structures and solar
wind high-speed streams [129]. The model for the rule extraction from the neu-
ral network described in this work consents to identify these input feature space
limited regions.

Summarising, both the artificial neural network and the model based on the
ITER concepts and using the linear regressor are able to provide predictions of the
galactic cosmic-ray flux variations observed on board the LISA Pathfinder mission
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Figure 6.10: Same as Fig. 6.1 for the Bartels rotation 2500, from November 2nd,
2016 through November 28th, 2016.

with an average error smaller than the mission data statistical uncertainty, but they
need past observations of the input variables and if those data are not available,
the models cannot be applied. Since the neural network has a slightly better
performance, it is suggested to use it when no output explanation is required.
Finally, the knowledge extraction is feasible only if carried out in limited regions
of the input feature space.

6.2 Prediction of LISA Pathfinder galactic-cosmic
ray flux variation missing data

The implemented models, and in particular the artificial neural network due to
its better accuracy, can be used to fill the missing data in the LISA Pathfinder
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Figure 6.11: Same as Fig. 6.1 for the Bartels rotation 2501, from November 29th,
2016 through December 25th, 2016.

time series. The results of this test are reported in Figures 6.19-6.22. The neural
network predictions are represented with red dots in the top panel of each figure.
The predicted flux variations show a good agreement with the LISA Pathfinder
data gathered immediately before and after the missing data periods.

Further studies and tests can be done on the predictions of the missing data.
For instance, it is possible to perform predictions using as input flux normalisation
data the artificial neural network output in order to estimate the goodness of the
missing data predictions. If the predictions based upon model outcome have a
small mean absolute error with respect to the LISA Pathfinder data, there is a
quantitative indication of accurate missing data predictions. Within this thesis
work only one test of this kind was carried out, as a hint for future application
in space. The result of this test is reported in Figure 6.23. The plot refers to the
Bartels rotation 2506 and shows the predictions provided by the neural network
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Figure 6.12: Same as Fig. 6.1 for the Bartels rotation 2502, from December 26th,
2016 through January 21st, 2017.

model for the missing data between April, 13th and April 19th (represented by
the red dots in the top panel). These predictions are used, in turn, as input flux
normalisation to predict the galactic cosmic-ray flux variations between April, 22nd
and 28th (represented by the blue dots in the top panel). The predictions generated
on the basis of the model output have a MAE equal to 0.72% ± 0.54%. The quality
of these predictions is comparable to that found with the neural network on the
test set.

Summarising, the presented artificial neural network model can be used to
predict the missing cosmic-ray flux variation data of the LISA Pathfinder mission
with a good agreement with respect to the observed data immediately preceding
and following the predictions.
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Figure 6.13: Same as Fig. 6.1 for the Bartels rotation 2503, from January 22nd,
2017 through February 17th, 2017. There are missing LISA Pathfinder data during
this Bartels rotation.
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Figure 6.14: Same as Fig. 6.1 for the Bartels rotation 2504, from February 18th,
2017 through March 16th, 2017. There are missing LISA Pathfinder data during
this Bartels rotation.
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Figure 6.15: Same as Fig. 6.1 for the Bartels rotation 2505, from March 17th, 2017
through April 12th, 2017.



104 CHAPTER 6. RESULTS

Apr
13

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 May
1

2 3 4 5 6 7 8 9 10

Time

10

5

0

5

10

Va
ri

at
io

n 
(%

)

LISA-PF Radiation Monitors
LPF data
ANN
predictions
ITER
variation
predictions
ITER
variation
+
regressor
predictions

Apr
13

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 May
1

2 3 4 5 6 7 8 9 10

Time

200

300

400

500

600

700

800

V 
(k

m
 s

1 )

Wind speed

Apr
13

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 May
1

2 3 4 5 6 7 8 9 10

Time

0

5

10

15

20

25

30

B
 (n

T)

IMF

Figure 6.16: Same as Fig. 6.1 for the Bartels rotation 2506, from April 13th,
2017 through May 9th, 2017. There are missing LISA Pathfinder data during this
Bartels rotation.
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Figure 6.17: Same as Fig. 6.1 for the Bartels rotation 2507, from May 10th, 2017
through June 5th, 2017.
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Figure 6.18: Same as Fig. 6.1 for the Bartels rotation 2508, from June 6th, 2017
through July 2nd, 2017.
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Figure 6.19: Same as Fig. 6.8 with missing data filled with the prediction of the im-
plemented artificial neural network model (red dots in the top panel). Predictions
performed by the implemented models on the test set are not reported.
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Figure 6.20: Same as Fig. 6.13 with missing data filled with the prediction of the
implemented artificial neural network model (red dots in the top panel). Predic-
tions performed by the implemented models on the test set are not reported.
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Figure 6.21: Same as Fig. 6.14 with missing data filled with the prediction of the
implemented artificial neural network model (red dots in the top panel). Predic-
tions performed by the implemented models on the test set are not reported.



110 CHAPTER 6. RESULTS

Apr
13

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 May
1

2 3 4 5 6 7 8 9 10

Time

10

5

0

5

10

Va
ri

at
io

n 
(%

)

LISA-PF Radiation Monitors
LPF data
ANN
predictions

Apr
13

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 May
1

2 3 4 5 6 7 8 9 10

Time

200

300

400

500

600

700

800

V 
(k

m
 s

1 )

Wind speed

Apr
13

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 May
1

2 3 4 5 6 7 8 9 10

Time

0

5

10

15

20

25

30

B
 (n

T)

IMF

Figure 6.22: Same as Fig. 6.16 with missing data filled with the prediction of the
implemented artificial neural network model (red dots in the top panel). Predic-
tions performed by the implemented models on the test set are not reported.
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Figure 6.23: Same as Fig. 6.22 with artificial neural network predictions (blue
dots in the top panel) performed by considering as input flux normalisation the
preceding predictions of the same model (red dots in the top panel).
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Chapter 7

Conclusions

In this thesis work it is shown that on board any space mission carrying instru-
ments for interplanetary magnetic field intensity monitoring and solar wind speed
measurements it is feasible to predict recurrent variations of the galactic cosmic-
ray flux. Space missions can be divided into two major classes: those devoted to
the measurement of cosmic rays and those for which cosmic rays constitute a limi-
tation to the performance of on-board instruments. In this last case, it is extremely
important to monitor in situ variations of the galactic cosmic-ray flux to study the
detector efficiencies. However, if no particle detectors are present on board or the
geometrical factors of those detectors are too small to allow for studying short-
term galactic cosmic-ray fluctuations, it is more than recommended to benefit of
models that allow for tracing the passage of interplanetary magnetic structures
and solar wind high-speed streams that generate these fluctuations. This is the
case, for instance, of the ESA/NASA Solar Orbiter mission launched on February
9th, 2020 from Cape Canaveral (Florida, USA). This mission is devoted to study
how the Sun creates and controls the heliosphere. The spacecraft will reach a min-
imum distance from the Sun of 0.28 AU. The EPD/HET detector on board Solar
Orbiter allows for the monitoring of the cosmic-ray flux up to 1 GeV. However, the
geometrical factor of this detector does not allow to study cosmic-ray flux fluctua-
tions with a precision of 1% down to time scales of hours as it was needed for the
LISA Pathfinder mission. The development of a model for predicting short-term
variations of the galactic cosmic-ray flux is the main goal of this work. This model
allows to use solar wind speed and interplanetary magnetic field intensity data
gathered on board the same or nearby space missions to carry out predictions on
the galactic cosmic-ray flux variations with an average uncertainty smaller than
1%.

A qualitative relationship between increments of solar wind speed and inter-
planetary magnetic field intensity with galactic cosmic-ray flux depressions is well
known in the literature. The explainable model implemented in this work allows
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to extract quantitative relationships between the input and output variables in the
form of linear functions. The parameters of these functions permit to learn how
changes in the input variable values affect the observed cosmic-ray flux variations.

This work highlights as some of the most known knowledge extraction algo-
rithms from neural networks solving regression tasks are not always applicable with
the desired results, especially in those cases where it is not possible to extremely
simplify the underlying neural network model. Both the extraction algorithms
REFANN and ITER are compared. REFANN is not applicable because it is de-
signed for artificial neural networks having a single hidden layer while the neural
network model developed in this work has two hidden layers. ITER results to be
no suitable for the task at hand due to the complexity of the input data set, i.e.
the number of input features. Nevertheless, there is the possibility to adapt those
extraction algorithms in order to apply their concepts to the problem under study.
Two variants of ITER are described in this work; only one model proved to give
good output predictions. The implementation of this model takes into account the
main concepts of the original ITER algorithm in order to create hyper-cubes in
the input feature space, where all the samples contained in each hyper-cube have
a similar output value. Then a linear regressor is applied to single hyper-cubes for
the knowledge extraction.

The explainable model described here uses an underlying artificial neural net-
work with comparable prediction performance: the outputs of both models have a
mean absolute error smaller than 0.75%. This result is comparable to the statisti-
cal uncertainty of the LISA Pathfinder mission data of 1%. Since the underlying
neural network has a slightly better performance, it is suggested to use this model
when no prediction explanations are required. Conversely, the explainable model
has to be preferred when human understandable outputs are required.

It is also found that the implemented artificial neural network can be used
to carry out predictions about the galactic cosmic-ray flux variations in periods
during which the LISA Pathfinder data are missing. The model output exhibits a
good agreement with the data immediately preceding and following in the LISA
Pathfinder time series and can be used as input flux normalisation in the place
of the mission missing data to perform further predictions about the cosmic-ray
fluctuations in successive instants. It is shown that these predictions based on the
neural network outcomes have a mean absolute error of 0.72%, showing an agree-
ment comparable to that of the other test samples. This result is a quantitative
indication of the missing data prediction goodness.

Finally, the explainable model presented in this work allows to set a quantita-
tive relationship between the galactic cosmic-ray flux variations and the trend of
solar wind speed and interplanetary magnetic field intensity. The relationship is
obtainable from the described trained neural network with no losses in the predic-
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tion performance. Galactic cosmic-ray flux short-term variations were observed to
range from −7% through +9% during the whole LISA Pathfinder mission elapsed
time. When applied to the test set samples, the explainable model is able to re-
produce the data trend between −6.3% and +7.8%, due to the small number of
training examples having an output value near the limits of the LISA Pathfinder
data range. Nevertheless, since the observation of these very small or large values
is extremely rare, the prediction performance of the model is not affected.

The minimisation of the predicting neural network model from the point of
view of the network architecture as well as the reduction of the input data set
dimension intended as number of input features is carried out in this work and
can be further investigated and considered for future applications in space. The
implementation of a different rule extraction algorithm can also be considered in
the future in order to obtain different kinds of rules, such as decision trees.

The limits of the implemented model application reside in the necessity of
composing input samples with past solar wind speed and interplanetary magnetic
field intensity observations and with a past galactic cosmic-ray flux variation value
used for normalisation. For instance, it would be impossible to make real-time
predictions without real-time availability of the input variable data. In addition,
the input variable observations need to be gathered in situ or in the proximity of
the satellite taking cosmic-ray data for flux normalisation.

Since the data used in this work have a statistical uncertainty of 1% and
since the implemented models provide outputs with a mean absolute error smaller
than this uncertainty, the described models can be adopted to predict the galactic
cosmic-ray flux variations on board space mission where particle detectors are not
present or if these detectors are present but have small geometrical factors. Solar
Orbiter is an example of an ongoing space mission that may benefit of the models
described here. The implemented models can be put on board this mission in order
to study the galactic cosmic-ray flux short-term variations when the satellite will
be in the proximity of the first Lagrangian point, where orbited LISA Pathfinder.
Observing recurrent galactic cosmic-ray variations is important to study recurrent
geomagnetic storms. Finally, it would be possible to use the model predictions as
a replacement of the cosmic-ray missing data during hardware tests carried out on
board satellites.



116 CHAPTER 7. CONCLUSIONS



Bibliography

[1] Bart Baesens, Rudy Setiono, Christophe Mues, and Jan Vanthienen. Using
neural network rule extraction and decision tables for credit-risk evaluation.
Management science, 49(3):312–329, 2003.

[2] Bart Baesens, Rudy Setiono, V. De Lille, Stijn Viaene, and Jan Vanthienen.
Building credit-risk evaluation expert systems using neural network rule ex-
traction and decision tables. In Proceedings of the 5th Pacific Asian Confer-
ence on Intelligent Systems (PACIS), 2001.

[3] Maria Teresinha Arns Steiner, Pedro José Steiner Neto, Nei Yoshihiro Soma,
Tamio Shimizu, and J.C. Nievola. Using neural network rule extraction
for credit-risk evaluation. International Journal of Computer Science and
Network Security, 6(5):6–16, 2006.

[4] Leonardo Franco, José Luis Subirats, Ignacio Molina, Emilio Alba, and
José M. Jerez. Early breast cancer prognosis prediction and rule extrac-
tion using a new constructive neural network algorithm. In International
Work-Conference on Artificial Neural Networks, pages 1004–1011. Springer,
2007.

[5] Yoichi Hayashi, Rudy Setiono, and Katsumi Yoshida. A comparison between
two neural network rule extraction techniques for the diagnosis of hepatobil-
iary disorders. Artificial intelligence in Medicine, 20(3):205–216, 2000.

[6] Guido Bologna and Christian Pellegrini. Three medical examples in neural
network rule extraction. Physica Medica, 13:183–187, 1997.

[7] Guido Bologna. A study on rule extraction from neural networks applied
to medical databases. In The 4th European Conference on Principles and
Practice of Knowledge Discovery (PKDD2000), 2000.

[8] Rudy Setiono, Bart Baesens, and Christophe Mues. Rule extraction from
minimal neural networks for credit card screening. International journal of
neural systems, 21(04):265–276, 2011.

117



118 BIBLIOGRAPHY

[9] Alexander Hofmann, Carsten Schmitz, and Bernhard Sick. Rule extrac-
tion from neural networks for intrusion detection in computer networks. In
SMC’03 Conference Proceedings. 2003 IEEE International Conference on
Systems, Man and Cybernetics. Conference Theme-System Security and As-
surance (Cat. No. 03CH37483), volume 2, pages 1259–1265. IEEE, 2003.

[10] Arnulfo Azcarraga, Michael David Liu, and Rudy Setiono. Keyword ex-
traction using backpropagation neural networks and rule extraction. In The
2012 international joint conference on neural networks (IJCNN), pages 1–7.
IEEE, 2012.

[11] M. Armano et al. Sub-femto-g free fall for space-based gravitational wave
observatories: LISA Pathfinder results. Phys. Rev. Lett., 116:231101, Jun
2016.

[12] Michele Armano et al. Beyond the required LISA free-fall performance:
new LISA Pathfinder results down to 20 µ Hz. Physical review letters,
120(6):061101, 2018.

[13] Tom M. Mitchell. Machine learning and data mining. Communications of
the ACM, 42(11):30–36, 1999.

[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[15] John R. Koza, Forrest H. Bennett, David Andre, Martin A. Keane, and
Frank Dunlap. Automated synthesis of analog electrical circuits by means
of genetic programming. IEEE Transactions on evolutionary computation,
1(2):109–128, 1997.

[16] Christopher M. Bishop. Pattern recognition and machine learning. Springer,
2006.

[17] Eneldo Loza Mencía. Efficient Pairwise Multilabel Classification. PhD thesis,
Technische Universität, 2013.

[18] Xinchuan Zeng and Tony R. Martinez. Distribution-balanced stratified cross-
validation for accuracy estimation. Journal of Experimental & Theoretical
Artificial Intelligence, 12(1):1–12, 2000.

[19] Leo Breiman, Jerome Friedman, Charles J. Stone, and Richard A. Olshen.
Classification and regression trees. CRC Press, 1984.

http://www.deeplearningbook.org


BIBLIOGRAPHY 119

[20] Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In Ijcai, volume 14, pages 1137–1145. Mon-
treal, Canada, 1995.

[21] Leslie N. Smith. A disciplined approach to neural network hyper-parameters:
Part 1 – learning rate, batch size, momentum, and weight decay. arXiv
preprint arXiv:1803.09820, 2018.

[22] H. Jabbar and Rafiqul Zaman Khan. Methods to avoid over-fitting and
under-fitting in supervised machine learning (comparative study). Computer
Science, Communication and Instrumentation Devices, pages 163–172, 2015.

[23] Helmut Lütkepohl. New introduction to multiple time series analysis.
Springer Science & Business Media, 2005.

[24] Jonathan D. Cryer and Kung-Sik Chan. Time series analysis: with applica-
tions in R. Springer Science & Business Media, 2008.

[25] Daniel Klerfors and Terry L. Huston. Artificial neural networks. St. Louis
University, St. Louis, Mo, 1998.

[26] Mark A. Gluck and Gordon H. Bower. Evaluating an adaptive network model
of human learning. Journal of memory and Language, 27(2):166–195, 1988.

[27] Richard Granger, J. Ambrose-Ingerson, Ursula Staubli, and Gary Lynch.
Memorial operation of multiple interacting simulated brain structures. Neu-
roscience and connectionist theory, pages 95–129, 1990.

[28] Dave Anderson and George McNeill. Artificial neural networks technology.
Kaman Sciences Corporation, 258(6):1–83, 1992.

[29] M. Hiew and G. Green. Beyond statistics. a forecasting system that learns.
In The Forum, volume 5, pages 1–6, 1992.

[30] James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. The Journal of Machine Learning Research, 13(1):281–305,
2012.

[31] David P. Friedman and Sue Rusche. False messengers: How addictive drugs
change the brain. CRC Press, 2003.

[32] National Institutes of Health and National Institute on Drug Abuse. Brain’s
response to drugs: Mind over matter teacher’s guide, revision. http://www.
sarasquest.org, 2000. Accessed: 2020-07-19.

http://www.sarasquest.org
http://www.sarasquest.org


120 BIBLIOGRAPHY

[33] Eric R. Kandel et al. Nerve cells and behavior. Principles of neural science,
2:24–25, 1991.

[34] National Institutes of Health and National Institute on Drug Abuse.
Neurons, brain chemistry, and neurotransmission. https://science.
education.nih.gov/supplements/webversions/BrainAddiction/
guide/lesson2-1.html. Accessed: 2020-07-19.

[35] Tarik Rashid. A Novel Recurrent Neural Network Model: A Case Study in
Energy Load Forecasting. PhD thesis, University of Kurdistan Hewlêr, 08
2006.

[36] Charu C. Aggarwal et al. Neural networks and deep learning. Springer, 2018.

[37] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedfor-
ward networks are universal approximators. Neural networks, 2(5):359–366,
1989.

[38] Kurt Hornik. Approximation capabilities of multilayer feedforward networks.
Neural networks, 4(2):251–257, 1991.

[39] Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Mul-
tilayer feedforward networks with a nonpolynomial activation function can
approximate any function. Neural networks, 6(6):861–867, 1993.

[40] Yann Le Cun and Françoise Fogelman-Soulié. Modèles connexionnistes de
l’apprentissage. Intellectica, 2(1):114–143, 1987.

[41] Alan S. Lapedes and Robert M. Farber. How neural nets work. In Neural
information processing systems, pages 442–456, 1988.

[42] George Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems, 2(4):303–314, 1989.

[43] Ken-Ichi Funahashi. On the approximate realization of continuous mappings
by neural networks. Neural networks, 2(3):183–192, 1989.

[44] Amanda C. Mathias and Paulo C. Rech. Hopfield neural network: The hyper-
bolic tangent and the piecewise-linear activation functions. Neural Networks,
34:42–45, 2012.

[45] George A. Anastassiou. Univariate hyperbolic tangent neural network ap-
proximation. Mathematical and Computer Modelling, 53(5-6):1111–1132,
2011.

https://science.education.nih.gov/supplements/webversions/BrainAddiction/guide/lesson2-1.html
https://science.education.nih.gov/supplements/webversions/BrainAddiction/guide/lesson2-1.html
https://science.education.nih.gov/supplements/webversions/BrainAddiction/guide/lesson2-1.html


BIBLIOGRAPHY 121

[46] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evalu-
ation of rectified activations in convolutional network. arXiv preprint
arXiv:1505.00853, 2015.

[47] Kazuyuki Hara, Daisuke Saito, and Hayaru Shouno. Analysis of function
of rectified linear unit used in deep learning. In 2015 International Joint
Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2015.

[48] George E. Dahl, Tara N. Sainath, and Geoffrey E. Hinton. Improving deep
neural networks for lvcsr using rectified linear units and dropout. In 2013
IEEE international conference on acoustics, speech and signal processing,
pages 8609–8613. IEEE, 2013.

[49] Forest Agostinelli, Matthew Hoffman, Peter Sadowski, and Pierre Baldi.
Learning activation functions to improve deep neural networks. arXiv
preprint arXiv:1412.6830, 2014.

[50] David L. Elliott. A better activation function for artificial neural networks.
Technical report, University of Maryland, 1993.

[51] Sagar Sharma. Activation functions in neural networks. Towards Data Sci-
ence, 6, 2017.

[52] Bekir Karlik and Ahmet Vehbi Olgac. Performance analysis of various acti-
vation functions in generalized MLP architectures of neural networks. Inter-
national Journal of Artificial Intelligence and Expert Systems, 1(4):111–122,
2011.

[53] John J. Hopfield. Neural networks and physical systems with emergent collec-
tive computational abilities. Proceedings of the national academy of sciences,
79(8):2554–2558, 1982.

[54] Takashi Onoda. Neural network information criterion for the optimal number
of hidden units. In Proceedings of ICNN’95-International Conference on
Neural Networks, volume 1, pages 275–280. IEEE, 1995.

[55] Mario Gutierrez, Jennifer Wang, and Robert Grondin. Estimating hidden
unit number for two-layer perceptrons. In IJCNN International Joint Con-
ference on Neural Networks, pages 677–681. Publ by IEEE, 1989.

[56] Daniel Svozil, Vladimir Kvasnicka, and Jiri Pospichal. Introduction to multi-
layer feed-forward neural networks. Chemometrics and intelligent laboratory
systems, 39(1):43–62, 1997.



122 BIBLIOGRAPHY

[57] Terrence L. Fine. Feedforward neural network methodology. Springer Science
& Business Media, 2006.

[58] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learn-
ing representations by back-propagating errors. nature, 323(6088):533–536,
1986.

[59] D. Randall Wilson and Tony R. Martinez. The general inefficiency of batch
training for gradient descent learning. Neural networks, 16(10):1429–1451,
2003.

[60] Warren S. Sarle. Stopped training and other remedies for overfitting. Com-
puting science and statistics, pages 352–360, 1996.

[61] Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V. Le.
Don’t decay the learning rate, increase the batch size. arXiv preprint
arXiv:1711.00489, 2017.

[62] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz.
Importance estimation for neural network pruning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
11264–11272, 2019.

[63] Ehud D. Karnin. A simple procedure for pruning back-propagation trained
neural networks. IEEE transactions on neural networks, 1(2):239–242, 1990.

[64] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights
and connections for efficient neural network. In Advances in neural informa-
tion processing systems, pages 1135–1143, 2015.

[65] Philippe Thomas and Marie-Christine Suhner. A new multilayer percep-
tron pruning algorithm for classification and regression applications. Neural
Processing Letters, 42(2):437–458, 2015.

[66] Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable
machine learning. arXiv preprint arXiv:1702.08608, 2017.

[67] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca
Giannotti, and Dino Pedreschi. A survey of methods for explaining black
box models. ACM computing surveys (CSUR), 51(5):1–42, 2018.

[68] Alex A. Freitas. Comprehensible classification models: a position paper.
ACM SIGKDD explorations newsletter, 15(1):1–10, 2014.



BIBLIOGRAPHY 123

[69] Johan Huysmans, Karel Dejaeger, Christophe Mues, Jan Vanthienen, and
Bart Baesens. An empirical evaluation of the comprehensibility of decision
table, tree and rule based predictive models. Decision Support Systems,
51(1):141–154, 2011.

[70] Patrick M. Murphy and Michael J. Pazzani. Id2-of-3: Constructive induction
of m-of-n concepts for discriminators in decision trees. In Machine Learning
Proceedings 1991, pages 183–187. Elsevier, 1991.

[71] J. Ross Quinlan. C4.5: Programming for machine learning. Morgan Kauff-
mann, 38:48, 1993.

[72] J. Ross Quinlan. Simplifying decision trees. International Journal of Human-
Computer Studies, 51(2):497–510, 1999.

[73] Lior Rokach and Oded Z. Maimon. Data mining with decision trees: theory
and applications, volume 69. World scientific, 2008.

[74] Andreas Henelius, Kai Puolamäki, Henrik Boström, Lars Asker, and Pana-
giotis Papapetrou. A peek into the black box: exploring classifiers by ran-
domization. Data mining and knowledge discovery, 28(5-6):1503–1529, 2014.

[75] Yin Lou, Rich Caruana, Johannes Gehrke, and Giles Hooker. Accurate
intelligible models with pairwise interactions. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 623–631, 2013.

[76] Kelvin Xu et al. Show, attend and tell: Neural image caption generation
with visual attention. In Proceedings of the 32nd International Conference
on Machine Learning, Lille, France, volume 37, 2015.

[77] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Tor-
ralba. Learning deep features for discriminative localization. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages
2921–2929, 2016.

[78] David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe,
Katja Hansen, and Klaus-Robert Müller. How to explain individual classifi-
cation decisions. The Journal of Machine Learning Research, 11:1803–1831,
2010.

[79] Julian D. Olden and Donald A. Jackson. Illuminating the “black box”: a
randomization approach for understanding variable contributions in artificial
neural networks. Ecological modelling, 154(1-2):135–150, 2002.



124 BIBLIOGRAPHY

[80] Julius Adebayo and Lalana Kagal. Iterative orthogonal feature projection
for diagnosing bias in black-box models. arXiv preprint arXiv:1611.04967,
2016.

[81] Alex Goldstein, Adam Kapelner, Justin Bleich, and Emil Pitkin. Peeking
inside the black box: Visualizing statistical learning with plots of individual
conditional expectation. Journal of Computational and Graphical Statistics,
24(1):44–65, 2015.

[82] Jacob Bien and Robert Tibshirani. Prototype selection for interpretable
classification. The Annals of Applied Statistics, pages 2403–2424, 2011.

[83] Been Kim, Cynthia Rudin, and Julie A. Shah. The bayesian case model: A
generative approach for case-based reasoning and prototype classification. In
Advances in neural information processing systems, pages 1952–1960, 2014.

[84] Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural
networks via information. arXiv preprint arXiv:1703.00810, 2017.

[85] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson.
Understanding neural networks through deep visualization. arXiv preprint
arXiv:1506.06579, 2015.

[86] Robert Andrews, Joachim Diederich, and Alan B Tickle. Survey and critique
of techniques for extracting rules from trained artificial neural networks.
Knowledge-based systems, 8(6):373–389, 1995.

[87] Geoffrey G. Towell and Jude W. Shavlik. Extracting refined rules from
knowledge-based neural networks. Machine learning, 13(1):71–101, 1993.

[88] Christian W. Omlin and C. Lee Giles. Extraction of rules from discrete-time
recurrent neural networks. Neural networks, 9(1):41–52, 1996.

[89] Mark W. Craven and Jude W. Shavlik. Using sampling and queries to extract
rules from trained neural networks. In Machine learning proceedings 1994,
pages 37–45. Elsevier, 1994.

[90] Mark W. Craven and Jude W. Shavlik. Extracting tree-structured represen-
tations of trained networks. In Advances in neural information processing
systems, pages 24–30, 1996.

[91] Rudy Setiono, Wee Kheng Leow, and Jacek M. Zurada. Extraction of rules
from artificial neural networks for nonlinear regression. IEEE transactions
on neural networks, 13(3):564–577, 2002.



BIBLIOGRAPHY 125

[92] Johan Huysmans, Bart Baesens, and Jan Vanthienen. Iter: an algorithm for
predictive regression rule extraction. In International Conference on Data
Warehousing and Knowledge Discovery, pages 270–279. Springer, 2006.

[93] Pau Amaro-Seoane et al. Laser interferometer space antenna. arXiv preprint
arXiv:1702.00786, 2017.

[94] D.N.A. Shaul et al. Solar And Cosmic Ray Physics And The Space Environ-
ment: Studies For And With LISA. In AIP Conference Proceedings, volume
873, pages 172–178. AIP, 2006.

[95] H.M. Araújo, P. Wass, D. Shaul, G. Rochester, and T.J. Sumner. Detailed
calculation of test-mass charging in the LISA mission. Astroparticle Physics,
22(5-6):451–469, jan 2005.

[96] Catia Grimani et al. LISA test-mass charging process due to cosmic-ray
nuclei and electrons. Classical and Quantum Gravity, 22(10):S327–S332,
may 2005.

[97] Catia Grimani, Michele Fabi, Alberto Lobo, Ignacio Mateos, and Daniele
Telloni. LISA Pathfinder test-mass charging during galactic cosmic-ray flux
short-term variations. Classical and Quantum Gravity, 32(3):035001, feb
2015.

[98] M. Armano et al. Charge-induced force noise on free-falling test masses:
results from LISA Pathfinder. Physical Review Letters, 118(17):171101, apr
2017.

[99] Priscilla Cañizares et al. The lisa pathfinder dmu and radiation monitor.
Classical and quantum gravity, 28(9):094004, 2011.

[100] Rikho Nymmik. Sep event distribution function as inferred from spaceborne
measurements and lunar rock isotopic data. In 26th International Cosmic
Ray Conference (ICRC26), Volume 6, volume 6, page 268, 1999.

[101] Rikho Nymmik. Relationships among solar activity sep occurrence frequency,
and solar energetic particle event distribution function. In 26th International
Cosmic Ray Conference (ICRC26), Volume 6, volume 6, page 280, 1999.

[102] M. Storini, E.W. Cliver, M. Laurenza, and Catia Grimani. Forecasting solar
energetic particle events. COST 724 final report, page 63, 2008.

[103] Catia Grimani et al. Lisa-pf radiation monitor performance during the evo-
lution of sep events for the monitoring of test-mass charging. Classical and
Quantum Gravity, 31(4):045018, 2014.



126 BIBLIOGRAPHY

[104] T.K. Gaisser et al. Cosmic rays and particle physics, cambridge, uk: Univ,
1990.

[105] P. Papini, Catia Grimani, and S.A. Stephens. An estimate of the secondary-
proton spectrum at small atmospheric depths. Il Nuovo Cimento C,
19(3):367–387, 1996.

[106] Catia Grimani, M. Fabi, N. Finetti, and D. Tombolato. Parameterization
of galactic cosmic-ray fluxes during opposite polarity solar cycles for future
space missions. In Proceedings of the 30th International Cosmic Ray Con-
ference, Merida, Mexico, pages 3–11, 2007.

[107] L.J. Gleeson and W.I. Axford. Solar modulation of galactic cosmic rays. The
Astrophysical Journal, 154:1011, 1968.

[108] Catia Grimani, M. Fabi, N. Finetti, and D. Tombolato. The role of inter-
planetary electrons at the time of the lisa missions. Classical and Quantum
Gravity, 26(21):215004, 2009.

[109] I. Usoskin. The monthly and annual values of the modulation parameter
reconstructed from the ground based cosmic ray data. http://cosmicrays.
oulu.fi/phi/Phi_mon.txt. Accessed: 2020-08-05.

[110] Yoshiaki Shikaze et al. Measurements of 0.2–20 gev/n cosmic-ray proton
and helium spectra from 1997 through 2002 with the bess spectrometer.
Astroparticle Physics, 28(1):154–167, 2007.

[111] Neeharika Thakur. Observed transient variations in cosmic ray proton fluxes
from bess-polar i and their physical interpretations. In ICRC, volume 11,
page 220, 2011.

[112] Koh Abe et al. Measurements of cosmic-ray proton and helium spectra from
the bess-polar long-duration balloon flights over antarctica. The Astrophys-
ical Journal, 822(2):65, 2016.

[113] M. Storini, N. Iucci, and S. Pase. North-south anisotropy during the
quasi-stationary modulation of galactic cosmic rays. Il Nuovo Cimento C,
15(5):527–538, 1992.

[114] I. Sabbah and K. Kudela. Third harmonic of the 27 day periodicity of
galactic cosmic rays: Coupling with interplanetary parameters. Journal of
Geophysical Research: Space Physics, 116(A4), 2011.

http://cosmicrays.oulu.fi/phi/Phi_mon.txt
http://cosmicrays.oulu.fi/phi/Phi_mon.txt


BIBLIOGRAPHY 127

[115] Ian G. Richardson, G. Wibberenz, and H.V. Cane. The relationship between
recurring cosmic ray depressions and corotating solar wind streams at ≤ 1
AU: IMP 8 and Helios 1 and 2 anticoincidence guard rate observations. Jour-
nal of Geophysical Research: Space Physics, 101(A6):13483–13496, 1996.

[116] Ian G. Richardson. Energetic particles and corotating interaction regions in
the solar wind. Space Science Reviews, 111(3-4):267–376, 2004.

[117] Manuela Temmer, Bojan Vršnak, and Astrid M. Veronig. Periodic appear-
ance of coronal holes and the related variation of solar wind parameters.
Solar Physics, 241(2):371–383, 2007.

[118] I. Sabbah. The role of interplanetary magnetic field and solar wind in mod-
ulating both galactic cosmic rays and geomagnetic activity. Geophysical
research letters, 27(13):1823–1826, 2000.

[119] I. Sabbah. Twenty-seven-day variation of galactic cosmic rays. Solar Physics,
245(1):207–217, 2007.

[120] Martin G. Mlynczak et al. Solar-terrestrial coupling evidenced by periodic
behavior in geomagnetic indexes and the infrared energy budget of the ther-
mosphere. Geophysical Research Letters, 35(5), 2008.

[121] Agnieszka Gil and Michael V. Alania. Rigidity spectrum of the 27-day vari-
ation of the galactic cosmic ray intensity in different epochs of solar activity.
Advances in space research, 45(3):429–436, 2010.

[122] J.W. Bieber, E. Eroshenko, P. Evenson, E.O. Flückiger, and R. Kallenbach.
Cosmic rays and earth, volume 10. Springer Science & Business Media, 2000.

[123] O. Adriani et al. Observations of the 2006 december 13 and 14 solar particle
events in the 80 MeV n−1 - 3 GeV n−1 range from space with the pamela
detector. The Astrophysical Journal, 742(2):102, 2011.

[124] A.ne.mo.s. web interface to the neutron monitor database. http:
//cosray.phys.uoa.gr/index.php/esa-neutron-monitor-service/
multi-station-neutron-monitor-data. Accessed: 2020-08-06.

[125] R.P. Kane. Severe geomagnetic storms and forbush decreases: interplanetary
relationships reexamined. In Annales Geophysicae, volume 28, pages 479–
489. Copernicus GmbH, 2010.

[126] K.M. Alanko, I.G. Usoskin, Kalevi Mursula, and G.A. Kovaltsov. Effec-
tive energy of neutron monitors. In International Cosmic Ray Conference,
volume 7, page 3901, 2003.

http://cosray.phys.uoa.gr/index.php/esa-neutron-monitor-service/multi-station-neutron-monitor-data
http://cosray.phys.uoa.gr/index.php/esa-neutron-monitor-service/multi-station-neutron-monitor-data
http://cosray.phys.uoa.gr/index.php/esa-neutron-monitor-service/multi-station-neutron-monitor-data


128 BIBLIOGRAPHY

[127] M.E. Wiedenbeck et al. Time dependence of solar modulation throughout
solar cycle 23 as inferred from ace measurements of cosmic-ray energy spec-
tra. In Proceedings of the 31st International Cosmic Ray Conference, Łódź,
Poland, 2009.

[128] Y.P. Singh et al. Study of short-term modulation of galactic cosmic rays: A
new approach. In Proceedings of the ILWS Workshop. Goa, India, page 182,
2006.

[129] C. Grimani, A. Cesarini, M. Fabi, F. Sabbatini, D. Telloni, and M. Villani.
Recurrent galactic cosmic-ray flux modulation in L1 and geomagnetic ac-
tivity during the declining phase of the solar cycle 24. The Astrophysical
Journal, 904(1), 2020.


	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Machine Learning and Artificial Neural Networks
	General aspects of machine learning models
	Typical problems and inputs
	Splitting of the data set
	Under-fitting and over-fitting
	Time series processing

	Artificial neural networks
	Artificial and biological neurons
	Activation functions
	Multi-layer perceptrons
	Hidden layers and hidden units
	Training
	Epochs and iterations
	Early stopping
	Loss function
	Learning rate

	Pruning in neural network models

	Knowledge Extraction
	Interpretable models
	Black box problems
	Explanator types

	Extracting knowledge from black boxes
	Explanator classification.
	Translucency of the model
	Quality of the extracted rules

	Extracting knowledge from neural networks
	Knowledge extraction from classifiers
	Knowledge extraction from regressors
	Comparison between the described algorithms


	The LISA Pathfinder Mission
	The LISA Pathfinder mission
	Characteristics and orbit
	The particle detector

	Galactic cosmic-rays
	Long-term variations of galactic cosmic-rays
	Short-term variations of galactic cosmic-rays
	Forbush decreases

	Cosmic-ray flux short-term variations observed with LISA Pathfinder

	Predicting LISA Pathfinder Data
	Model design
	Implementation
	Data set creation
	Neural network implementation and optimisation
	Knowledge extraction from the neural network

	Programming language

	Results
	Comparison between the implemented models
	Prediction of LISA Pathfinder galactic-cosmic ray flux variation missing data

	Conclusions
	Bibliography

