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Abstract

The aim of the thesis is to apply the Diagrammatic Monte Carlo numerical method
[N. V. Prokof’ev and B. V. Svistunov, Phys. Rev. Lett. 81, 2514, 1998] to the
Holstein model of the lattice polaron. As part of this work, the method was imple-
mented in a computer program, and its results were collected and analyzed. The
study focuses on ground state properties of the Holstein polaron, such as energy,
effective mass and average number of phonons. Observables are computed via an
improved approach using estimators developed by Mishchenko [A. Mishchenko et
al., Phys. Rev. B, vol. 62, 09, 2009]. The dependency of polaron properties on
coupling and momentum is investigated for different dimensionalities (1D, 2D and
3D). Results are compared to analytical expressions obtained in the weak-coupling
and strong-coupling limits and to other approaches found in literature.
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Chapter 1

Introduction

This part is intended as a brief summary of the main concepts required to under-
stand both the Diagrammatic Monte Carlo algorithm and the physical system to
which the algorithm is applied in this work. In Section 1.1 the standard Hamilto-
nian of condensed matter physics is recalled and its electronic and phononic parts
are developed. Section 1.2 follows up with a discussion on the electron-phonon
interaction and introduces the polaron problem. Section 1.3 traces the path from
ordinary quantum mechanics to the many-body Green function expansion, ex-
plaining the meaning of Feynman diagrams. Lastly, Section 1.4 takes a break from
the physics to present the techniques upon which Diagrammatic Monte Carlo is
based.

1.1 Review of condensed matter physics funda-
mentals

The electrons and atoms that constitute matter are assumed as non-relativistic
quantum particles. They interact via electromagnetic interaction, the dynamic
effects of which are usually ignored so that it can be represented as a static potential
V (r). Often this is the Coulomb potential V (r) = Q/r, where Q is the charge of
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1.1. Review of condensed matter physics fundamentals Chapter 1. Introduction

the particle. The starting point is the Hamiltonian [1]:

Ĥ = Ĥe + Ĥa + Ĥea (1.1)

Ĥe =
Ne∑
i

(
p̂2i
2m

+
1

2

∑
j 6=i

Vee(r̂i − r̂j)

)
(1.2)

Ĥa =
Na∑
i

(
P̂ 2
i

2M
+

1

2

∑
j 6=i

Vaa(R̂i − R̂j)

)
(1.3)

Ĥea =
Ne∑
i

Na∑
j

Vea(r̂i − R̂j) (1.4)

where r̂i and R̂i are respectively the electronic and atomic coordinates, Ne is the
number of electrons, Na is the number of atoms, p̂i and P̂i the momentum operators
for electrons and atoms, and m and M their masses. The first is the electronic
term, the second is the atomic/ionic1 term and the third term takes into account
electron-ion interaction. As we will always deal with quantum observables, the hat
symbol from operators will be dropped to ease notation.

The electron-ion term 1.4 is a summation of the interactions between the in-
dividual atoms at Rj and the electrons at ri. The position of each ion can be
decomposed into a sum of the equilibrium position R

(0)
j and the displacement Qj:

Rj = R
(0)
j +Qj (1.5)

Assuming small displacements, one can do a Taylor expansion of the interaction
potential:

Vea(ri −R
(0)
j −Qj) = Vea(ri −R

(0)
j )−Qj ·∇Vea(ri −R0

j) +O(Q2) (1.6)

The constant term:
Vea(ri −R

(0)
j ) (1.7)

is the potential for the electrons when the atoms are in their equilibrium positions,
which forms a periodic potential in the crystal. The solution of the Hamiltonian
for the motion of the electron in this periodic potential of fixed atoms gives the

1Here the word “ion” does not imply any particular charge state and it is used interchangeably
with “atom”
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1.1. Review of condensed matter physics fundamentals Chapter 1. Introduction

Bloch states |η〉 of the solid, with associated eigenvalues Eη(R). In the Born-
Oppenheimer approximation, these eigenvalues are then substituted back into Eq.
1.1, acting as a potential energy for the dynamics of the ions. We will be interested
in just the ground state term E0(R) which provides a “binding” contribution:

〈H〉0 = Ha + E0(R) (1.8)

1.1.1 Phonons

If the crystal is finite with a number of cells N = N1N2N3, its lattice points define
a sequence over which displacement and momentum of the ions are defined. After
applying Born-Von Karman boundary conditions, the sequence becomes periodic
and can be treated by Fourier analysis:

Q(R) =
1√
N

∑
q

eiq·RQ̃(q) Q̃(q) =
1√
N

∑
R

e−iq·RQ(R) (1.9)

P(R) =
1√
N

∑
q

eiq·RP̃(q) P̃(q) =
1√
N

∑
R

e−iq·RP(R) (1.10)

The sum in q is over N equally spaced wavevectors over the first Brillouin Zone.
Displacements and their conjugate momenta must be real, which leads to the

condition:
Q̃?(q) = Q̃(−q) P̃?(q) = P̃(−q) (1.11)

The Born-Oppenheimer approximation introduced in the previous section al-
lowed to decouple the ionic part from the electronic one. The new Hamiltonian
1.8 contains a repulsive (inside Ha) and attractive E0(R) term, which compete to
form a minimum of the potential energy. In the harmonic approximation around
the minimum, the system becomes a collection of coupled harmonic oscillators.
The above mentioned Fourier transform can then be used to decouple the system
of oscillators [1]. The result is:

Hph =
1

2

∑
ξ=l,tr

∑
q

[
|Pξ(q)|2

M
+Mω2

ξ (q)|Qξ(q)|2
]

(1.12)

The transformed Hamiltonian is a sum of independent harmonic oscillators, each
wavevector mode has its own characteristic frequency given by the dispersion re-
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1.1. Review of condensed matter physics fundamentals Chapter 1. Introduction

lation ωξ(q). ξ indicates the polarization state (longitudinal or transversal, with
respect to the direction of q).

The goal is to quantize this Hamiltonian. We recall the procedure in the case
of a single harmonic oscillator in position space:

H =
p2

2m
+
mω2x2

2
=

1

2m

[
p2 + (mωx)2

]
The expression in square brackets is a sum of squares, which is natural to write

as a product. However, position and momentum operator do not commute, so
there is an additional term:

(ip+mωx)(−ip+mωx) = p2 + (mωx)2 + imω[p, x]

H = h̄ω

(
ip+mωx√

2mh̄ω
· −ip+mωx√

2mh̄ω
+

1

2

)
= h̄ω

(
b†b+

1

2

)
Where we defined two new operators: b and its adjoint b†

In this form, the Hamiltonian is easier to diagonalize.
The commutator

[
b, b†

]
follows from the canonical commutation relations:

[
b, b†

]
=
−2imω[x, p]

2mh̄ω
= 1

Now apply these results to 1.12:

b†
ξ(q) = −

i√
2Mh̄ωξ(q)

Pξ(q) +

√
ωξ(q)M

2h̄
Qξ(q) (1.13)

bξ(q) =
i√

2Mh̄ωξ(q)
Pξ(−q) +

√
ωξ(q)M

2h̄
Qξ(−q) (1.14)

these create/destroy an elementary excitation of bosonic type called phonon, with
energy h̄ωξ(q), momentum h̄q and polarization ξ. Here a single phonon branch is
assumed. In this formalism, the Hamiltonian takes the simpler form:

Hph =
∑
ξ=l,tr

∑
q

h̄ωξ(q)
[
b†
ξ(q) · bξ(q) + 1/2

]
(1.15)

where b†
ξ(q) · bξ(q) is the phonon number operator.
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1.1. Review of condensed matter physics fundamentals Chapter 1. Introduction

From 1.13 and 1.14 it follows immediately:

Qξ(q) =

√
h̄

2Mωξ(q)

[
b†
ξ(q) + bξ(−q)

]
(1.16)

which, substituted into 1.9, allows to express the displacement in terms of cre-
ation/annihilation operators:

Q(R) =
1√
N

∑
ξ,q

√
h̄

2Mωξ(q)

[
b†
ξ(q) + bξ(−q)

]
eiq·R (1.17)

1.1.2 Tight binding

The Holstein Hamiltonian describes the kinetic electronic term using a second-
quantized tight binding approach. For this reason this section introduces tight
binding and derives its form in second quantization.

The electrons in this model are considered tightly bound to the atom to which
they belong and they should have limited interaction with states and potentials
on surrounding atoms of the solid.

It is often used in a variational context, where the following form for the elec-
tronic wavefunction is chosen:

ψm(r) =
∑
R

cm(R)φm(r−R)

where the expansion is in terms of the atomic orbitals φm, and the free parameters
cm(R) are to be obtained via energy minimization.

Another possible approach is to pick instead a set of “desirable” localized states
and define an approximate electronic Hamiltonian in terms of them. This is the ap-
proach used in the following, where the second-quantized form of the tight-binding
Hamiltonian is derived.
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1.1. Review of condensed matter physics fundamentals Chapter 1. Introduction

Tight binding in second quantization

Consider the electronic Hamiltonian2 for the single electron plus the fixed-nuclei
term, which is the sum of the potentials U(r− na) generated by the n-th ion:

Ĥ =
p̂2

2m
+
∑
n

U(r− na) (1.18)

As single particle states we pick localized orbitals 〈r|n〉 = φ(r − na) that are
lowest energy eigenstates of the Hamiltonian of the single site:

Ĥ =
p̂2

2m
+ U(r− na) (1.19)

Ĥ |n〉 = ε0 |n〉 (1.20)

Note that the eigenvalues do not depend on n: the localized orbital states are
all degenerate in energy. The tight-binding Hamiltonian in second quantization
reads:

Ĥtb =
∑
i,j

〈i| Ĥ |j〉 ĉ†i ĉj (1.21)

The matrix elements are:

〈i| Ĥ |j〉 =
∫

drφ(r− ia)

[
p̂2

2m
+
∑
n

U(r− na)

]
φ(r− ja)

=

∫
drφ(r− ia)

[
p̂2

2m
+ U(r− ja) +

∑
n6=j

U(r− na)

]
φ(r− ja)

= ε0

∫
drφ(r− ia)φ(r− ja) +

∑
n6=j

∫
drφ(r− ia)U(r− na)φ(r− ja)

= ε0S(i, j) +
∑
n 6=j

U(i, j, n)

(1.22)

Now the nearest neighbor approximation is used: we postulate nonzero S and
U for nearest neighbors only. We also assume a 1D lattice, so that:

2correlation effects due to electron-electron interaction are neglected in this work
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1.1. Review of condensed matter physics fundamentals Chapter 1. Introduction

Ĥtb =
∑
i

(
〈i| Ĥ |i− 1〉 ĉ†i ĉi−1 + 〈i| Ĥ |i〉 ĉ†i ĉi + 〈i| Ĥ |i+ 1〉 ĉ†i ĉi+1

)
(1.23)

The following properties can be shown:

S(i, i− 1) = S(i, i+ 1) ≡ S(1) (1.24)

U(i, i− 1, n) = U(i, i+ 1, n− 1) (1.25)∑
n

U(i, i− 1, n) =
∑
n

U(i, i+ 1, n) ≡ U(1) (1.26)

After introducing the definitions:

E ≡ ε0 + U(0) (1.27)

t ≡ ε0S(1) + U(1) (1.28)

one finally gets to:

Ĥtb = E
∑
i

ĉ†i ĉi + t
∑
i

ĉ†i (ĉi−1 + ĉi+1) (1.29)

The first term only results in a shift in energy of the Hamiltonian and will be
dropped.

It is also possible to express the same Hamiltonian in momentum space. To do
so it’s sufficient to apply a discrete Fourier transform to the sequence of operators
ci and c†i :

cj =
1√
N

∑
k

eikjack c†j =
1√
N

∑
k

e−ikjac†k (1.30)
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In this way the tight-binding term becomes:

t
∑
j

ĉ†j(ĉj−1 + ĉj+1) =

t

N

∑
j

(∑
k,k′

ei(k
′−k)jae−ik′ac†kck′ +

∑
k,k′′

ei(k
′′−k)jaeik

′′ac†kck′′

)
=

t

N

(∑
k,k′

Nδk′,ke
−ik′ac†kck′ +

∑
k,k′′

Nδk′′,ke
ik′′ac†kck′′

)
=

t
∑
k

(
eika + e−ika

)
c†kck (1.31)

which can be written in the usual form (single band, 1D):∑
k

ε(k)c†kck ε(k) = 2t cos(k) (1.32)

Compare this to the dispersion of free electrons (h̄ = 1):

εfree(k) =
k2

2m

k is discrete for a crystal of finite size and becomes continuous in the thermo-
dynamic limit. The curves are similar in the proximity of k = 0.

The tight binding Hamiltonian 1.29 is often [2] written in the equivalent form:

Ĥtb = −t
∑
<i,j>

(ĉ†i ĉj + ĉiĉ
†
j) (1.33)

Here the angular brackets denote nearest neighbor pairs and the hopping in-
tegral t corresponds to the transfer integral J , also called interatomic matrix ele-
ment, bond energy or two center integral. It is the fundamental ingredient of the
tight-binding model:

Jml(Rn) = −
∫

drφ∗
m(r)U(r)φ

∗
l (r−Rn) (1.34)

For t→ 0 it is impossible for an electron to hop into neighboring sites (isolated
atomic system). If the hopping term is turned on, electrons can stay in both sites
lowering their kinetic energy.

11



1.2. Polaron physics Chapter 1. Introduction

Figure 1.1: Tight binding band for a monoatomic chain of atoms in 1D compared
to the free electron.

1.2 Polaron physics

1.2.1 The electron-phonon interaction

The linear term of Eq. 1.6 is the electron-phonon interaction, which is the focus
of this section:

Vep =
∑
j

Qj ·∇Vea(ri −R0
j) (1.35)

Now the goal is to write this interactions in terms of operators, that is to express
it in second quantization formalism. For this we need the second quantized form
of the displacement operator that was derived in Section 1.1.1.

Being periodic, the electron-atom potential can be written in a Fourier series:

Vea(r) =
1

N

∑
q

Vea(q)e
iq·r (1.36)

12



1.2. Polaron physics Chapter 1. Introduction

and its gradient is:
∇Vea(r) =

i

N

∑
q

qVea(q)e
iq·r (1.37)

which inserted into 1.35 gives:

Vep(r) =
i

N

∑
q

qVea(q)e
iq·r
∑
j

Qje
iq·R(0)

j (1.38)

Inserting now the expression 1.17 for Qj and using the properties of Fourier
transforms, the second quantized form of Vep can be obtained:

Vep(r) = −
∑
qG

eir(q+G)Vea(q+G)(q+G) · ξq

√
h̄

2MNωq

(bq + b†−q) (1.39)

now the summation has been divided into a q variable ranging over the first Bril-
louin Zone of the crystal and G which is the set of reciprocal lattice vectors. The
product MN can also be expressed as ρν (density and volume) in view of the
continuum limit. The different modes λ were dropped for simplicity.

The electron-phonon interaction is finally obtained by integrating this potential
over the charge density of the solid ρ(r):

Hep =

∫
d3r ρ(r)Vep(r) =

−
∑
qG

ρ(q+G)Vea(q+G)(q+G) · ξq

√
h̄

2MNωq

(bq + b†−q) (1.40)

This matrix element is often written as:

Mq+G = −Vea(q+G)(q+G) · ξq

√
h̄

2MNωq

(1.41)

Hep =
∑
qG

Mq+G ρ(q+G)(bq + b†−q) (1.42)

The most common forms of electron-phonon interactions in semiconductors are
three [3]:

• Deformation potential coupling to acoustical phonons

• Piezoelectric coupling to acoustical phonons

13
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• Polar coupling to optical phonons

Deformation potential

The deformation potential coupling to acoustical phonons is the long-wavelength
limit of 1.42. The terms with G 6= 0 are discarded and the electron-ion potential
is taken to be a constant D at q → 0, called the deformation constant. At long
wavelength ξ approaches the direction of q and only longitudinal phonons are
important when there is no degeneration. The interaction becomes: [3]

Hdef
ep = D

∑
q

√
h̄

2ρνωq

|q|ρ(q)(bq + b†−q) (1.43)

where the summation is over longitudinal acoustic phonons. However, it often
happens in semiconductors that valence bands are degenerate at the band max-
imum, so the holes have a deformation coupling to transverse phonon that must
be taken into account when dealing with a multi-band model.

A detailed derivation of this type of coupling can be found for example in [1].

Piezoelectric interaction

Many semiconductors are piezoelectric, that is an electric field is produced when a
crystal is deformed and vice-versa. Acoustical phonons are periodic deformations,
so they create electric fields if the crystal is piezoelectric. Examples of strongly
piezoelectric materials are CdS and ZnO. Without going into the details of this
type of interaction, the final result is shown: [3]

Hpiezo
ep = i

∑
q

√
h̄

2ρνωq

Mλ(q̂)ρ(q)(bq + b†−q) (1.44)

It is characterized by a matrix element Mλ(q̂) that depends only on the direction
of q. Moreover, Mλ(−q̂) = −Mλ(q̂) so that 1.44 is hermitian.

Polar coupling

In ionic crystals, the polar coupling between electrons and optical phonons can be
very large. Some of the atoms are positively charged, while others are negatively

14



1.2. Polaron physics Chapter 1. Introduction

charged. An optical phonon has the different ions in the crystal vibrating out of
phase, so that when the plus and minus ions oscillate, they set up a dipole polar-
ization field. Such polarization causes a long-range electric field which scatters the
electrons. The form of the Hamiltonian has been derived by Fröhlich [4]:

Hep =
∑
q

M

q
√
ν
ρ(q)(bq + b†−q) (1.45)

M2 = 2πe2h̄ωLO

(
1

ε∞
− 1

ε0

)
(1.46)

the high-frequency (electronic, ion-clamped) dielectric constant ε∞ is the square
of the refractive index, and the static (electronic and ionic) dielectric constant ε0
can be measured by putting the solid between the parallel plates of a capacitor.

1.2.2 Pekar’s polaron

The first and simplest model of a polaron was proposed by Pekar in the 1940s.
[5] Its goal was to try to describe localization without performing very difficult
calculations, by introducing only the minimal ingredients required to have some
localized solution. [6]

Consider an electron wavefunction and add the kinetic energy to the total
energy. It is the standard kinetic energy with some kind of effective mass. Instead
of describing ions as discrete objects one can describe the system as a dielectric
continuum and therefore the energy associated with it comes from the electrostatic
energy (the integral of the energy density).

E =
h̄2

2m∗

∫
dr |∇ψ|2 + 1

2

∫
dr E ·D (1.47)

Ideally one wants to find this wavefunction, which requires connecting it to the
electric field and displacement. The first relation to be used is the Gauss Law:

∇ ·D = −e|ψ(r)|2 (1.48)

Then one can relate the displacement to the electric field by the dielectric
constant (assuming linear, homogeneous, etc.).

D = ε0ε0E (1.49)

15



1.2. Polaron physics Chapter 1. Introduction

Inverting these two relations, one gets a Coulomb integral in the charge density:

1

2

∫
dr E ·D =

1

2

e2

4πε0

(
1

ε0
− 1

ε∞

)∫
dr dr′

|ψ(r)|2|ψ(r′)|2

|r− r′|
(1.50)

The screening comes from the total electric screening (ionic plus electronic con-
tribution). A problem arises: by using the total screening we are double counting
the electronic contribution. We are already considering an effective mass so the
electronic screening was already taken into account. It has to be canceled with a
subtraction of the electronic dielectric screening.

Plugging back into Eq. 1.47 one gets an expression involving only the wave-
function of the polaron. At this point one does a variational minimization with
constraint (normalization of the wavefunction). One arrives at an equation that
looks a lot like the Schrödinger equation, but a nonlinear equation of third order
in the wavefunction. It is the Landau-Pekar equation:

− h̄2

2m∗∇
2ψ(r)− e2

4πε0

(
1

ε0
− 1

ε∞

)∫
dr′
|ψ(r′)|2

|r− r′|
ψ(r) = λψ(r) (1.51)

To gain insight into this equation, one tries a simple trial solution, to see if
something with localized features solves the problem. Consider an exponentially
decaying function:

ψ(r) = (πr3p)
−1/2 exp(−|r|/rp) (1.52)

The energy becomes a sum of two terms (kinetic and Coulomb), one scaling as
the inverse of the square of the polaron radius with a plus sign, and the other one
scaling as the inverse of the polaron radius with a minus sign:

h̄2

2m∗
1

r2p
− 5

16

e2

4πε0

(
1

ε0
− 1

ε∞

)
1

rp
(1.53)

Since there is different scaling at infinity and opposite sign, there will be a
competition between the kinetic and Coulomb part, and this competition leads
to the formation of a minimum, which corresponds to the self-trapped polaron
(qualitatively described in Figure 1.2).

Some problems of this model are:

• In the case of a non-polar semiconductor or insulator the Coulomb term
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Figure 1.2: Kinetic and Coulomb terms compete to form a minimum in the total
energy.

vanishes because the dielectric constant including the ionic contribution will
be equal to the electronic dielectric constant

• The model doesn’t consider any granularity in the crystal, no atoms, no mul-
tiple electronic bands, no multiple phonon branches, so it is not something
that can be used for quantitative calculations.

1.3 Many body physics

Diagrammatic Monte Carlo requires the mathematical tools of many-body quan-
tum physics, which are introduced here. The fundamental quantity of interest is
the many-body Green function of the system and its expansion in a diagrammatic
series. The main steps towards this expansion are outlined in this section, and its
first terms will be derived for the case of electron-phonon interaction.

We start by recalling the main pictures (equivalent representations) of quantum
mechanics (h̄ = 1 is assumed throughout this section). Consider a Hamiltonian H

17
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that doesn’t explicitly depend on time:

• Schrödinger picture: the quantum state evolves in time

ψ(t) = e−iHtψ(0) (1.54)

• Heisenberg picture: the operators evolve in time

O(t) = eiHtOe−iHt (1.55)

These are equivalent point of views because they lead to the same expectation
values. In Schrödinger picture:

〈ψ(t)|O |ψ(t)〉 = ψ?(t)Oψ(t) = ψ?eiHtOe−iHtψ (1.56)

In Heisenberg picture:

〈ψ|O(t) |ψ〉 = ψ?Oψ = ψ?eiHtOe−iHtψ (1.57)

which yields the same result as 1.56.

1.3.1 Interaction picture

Consider an Hamiltonian decomposed into an unperturbed, exactly solvable part
H0 and a perturbation V :

H = H0 + V (1.58)

In the interaction picture both states and operators evolve with time. Op-
erators evolve under the influence of the unperturbed Hamiltonian, while state
evolution is driven by the perturbation only (the latter is not immediately obvi-
ous, but will become apparent later in Eq. 1.64).

Ô(t) = eiH0tOe−iH0t

ψ̂(t) = eiH0te−iHtψ
(1.59)
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where operators and states are marked with a hat to distinguish them from other
pictures.

The main purpose of introducing this picture is to remove the explicit ap-
pearance of the unperturbed Hamiltonian H0 in the time-dependent Schrödinger
equation:

∂

∂t
ψ(t) = −iHψ(t) (1.60)

In order to transform 1.60 into the interaction picture, we calculate the deriva-
tive:

∂

∂t
ψ̂(t) = iH0e

iH0tψ(t) + eiH0t
∂

∂t
ψ(t) (1.61)

Using the time dependent Schrödinger equation 1.60 and the fact that H0

commutes with eiH0t one gets:

∂

∂t
ψ̂(t) = ieiH0t(H0 −H)ψ(t) = −ieiH0tV ψ(t) (1.62)

At this point it’s easy to cast the right-hand side into the interaction picture:

∂

∂t
ψ̂(t) = −ieiH0tV e−iH0teiH0tψ(t) = −iV̂ ψ̂(t) (1.63)

This equation shows that the time dependence of ψ̂(t) is determined by V̂ (t).
Taking the state at time 0 as reference, one can define an equivalent equation in
terms of the evolution operator U(t):

∂

∂t
U(t) = −iV̂ U(t) with ψ̂(t) = U(t)ψ(0) (1.64)

The above can be solved in an iterative manner. The first step is to integrate
the equation from time 0 to t:

U(t)− U(0) = −i
∫ t

0

dt1 V̂ (t1)U(t1) (1.65)
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Now, iterating:

U(t) = 1− i
∫ t

0

dt1 V̂ (t1)

[
1− i

∫ t1

0

dt2 V̂ (t2)U(t2)

]
(1.66)

= 1− i
∫ t

0

dt1 V̂ (t1)−
∫ t

0

dt1

∫ t1

0

dt2 V̂ (t1)V̂ (t2) (1.67)

=
∞∑
n=0

(−i)n
∫ t

0

dt1

∫ t1

0

dt2 . . .

∫ tn−1

0

dtn V̂ (t1)V̂ (t2) . . . V̂ (tn) (1.68)

The last expression is similar to the series expansion of an exponential, but not
exactly: it’s missing the n! factor, and the integration limits depend on previous
integration variables, so that it cannot be written as a product of identical terms.

However, it is possible to rearrange the above expression into a compact, ex-
ponential form. It is done by introducing the time-ordering operator, which acts
on time dependent operators and arranges them so that earlier times appear on
the right (so that they are the first to be applied). An example with three times:

t2 < t3 < t1 : T [V̂ (t1)V̂ (t2)V̂ (t3)] = V̂ (t1)V̂ (t3)V̂ (t2) (1.69)

The time ordering operator can be given an explicit expression through the
Heaviside θ(t) function. For two operators it reads:

T [V̂ (t1)V̂ (t2)] = θ(t1 − t2)V̂ (t1)V̂ (t2) + θ(t2 − t1)V̂ (t2)V̂ (t1) (1.70)

Let us now use the above to rearrange the evolution operator restricting our-
selves to just the n = 2 term for clarity:

∫ t

0

dt1

∫ t1

0

dt2 V̂ (t1)V̂ (t2) =

1

2

(∫ t

0

dt1

∫ t1

0

dt2 V̂ (t1)V̂ (t2) +

∫ t

0

dt2

∫ t2

0

dt1 V̂ (t2)V̂ (t1)

)
=

1

2

∫ t

0

dt1

∫ t

0

dt2

(
θ(t1 − t2)V̂ (t1)V̂ (t2) + θ(t2 − t1)V̂ (t2)V̂ (t1)

)
=

1

2!

∫ t

0

dt1

∫ t

0

dt2 T [V̂ (t1)V̂ (t2)] (1.71)

where we performed the relabeling t1 ↔ t2 in the second term of the second row
above. This argument can be readily generalized to the arbitrary n case, obtaining
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the full expansion for U(t):

U(t) =
∞∑
n=0

(−i)n

n!

∫ t

0

dt1

∫ t

0

dt2 . . .

∫ t

0

dtn T [V̂ (t1)V̂ (t2) . . . V̂ (tn)] (1.72)

which can also be written in the more compact form:

U(t) = T exp

(
−i
∫ t

0

dt1 V̂ (t1)

)
(1.73)

S matrix

Define the operator S as:
S(t, t′) = U(t)U †(t′) (1.74)

S evolves the state from an arbitrary point in time to another. It may be broken
down to:

1. backward evolution from t′ to 0

2. forward evolution from 0 to t

where backwards evolution is achieved by U †.
S satisfies the following properties:

S(t, t) = 1 (1.75)

S†(t, t′) = S(t′, t) (1.76)

S(t, t′)S(t′, t′′) = S(t, t′′) (1.77)

which are easily verifiable using the fact that U is unitary. S obeys a differential
equation very similar to that of U , with solution analogous to 1.73:

S(t, t′) = T exp

(
−i
∫ t

t′
dt1 V̂ (t1)

)
(1.78)

1.3.2 Green function

A quantity of fundamental importance in the Diagrammatic Monte Carlo method
is the Green function or propagator. At zero temperature, it is proportional to the
probability amplitude of finding the system in its interacting ground state with an
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added particle at time t if a particle in the same state was added at a previous
time t′.

For example, in the case of an electron in state k one has:

G(k, t− t′) = −i 〈Ψ0| ck(t)c†k(t
′) |Ψ0〉 (1.79)

To make this definition clearer, let us break down the formula into a series of
steps:

1. Start from the real ground state of the interacting system Ψ0

2. An electronic excitation in state k at time t′ is created

3. The same excitation at a later time t is destroyed

4. The resulting state is projected along the ground state

If |k〉 were an eigenstate of H, this state would propagate with a simple time
dependence reduced to multiplication by a phase factor. Instead, the particle ini-
tially created in step 2 undergoes a series of “scattering events” between t′ and t,
and the Green function tells how much amplitude is left in the state k.

Now a procedure to actually calculate the Green function from quantities that
are known is presented. The first step is to change the creation/annihilation op-
erators from Heisenberg picture to interaction picture:

ck(t) = S(0, t)ĉk(t)S(t, 0) (1.80)

where the definitions of the time evolution and S-matrix operators were used.
The main problem of the formalism used up to this point is that it is based on

the ground state of the interacting system Ψ0 which is not known. A way to bridge
this state to the ground state of the non-interacting system φ0 was established by
Gell-Mann and Low [7]:

ψ(0) = S(0,−∞)φ0 (1.81)

which means that Ψ̂0(−∞) is equal to φ0. An additional assumption is also needed
for Ψ̂0(∞):

ψ̂(∞) = eiLφ0 (1.82)
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relating it to φ0 via a phase factor. 1.81 and 1.82 allow the intermediate result:

〈Ψ0| = 〈φ0|S(−∞, 0) =
〈φ0|S(∞, 0)

〈φ0|S(∞,−∞) |φ0〉
(1.83)

Finally, applying 1.80 and 1.83 to the definition of the propagator 1.79:

G(k, t− t′) = −i〈φ0|TS(∞,−∞)ĉk(t)ĉ
†
k(t

′) |φ0〉
〈φ0|TS(∞,−∞) |φ0〉

(1.84)

Together with 1.78, this formula represents the crucial result that the Green func-
tion of the interacting system can be represented as an expansion of matrix ele-
ments between the non-interacting ground state.

1.3.3 Diagrammatic expansion of the Green function

Consider for now just the numerator of 1.84 with the expansion 1.78 for S. The
n = 0 term of the exponential expansion is always the free propagator G0:

M (0) = 〈ψ0|T{ĉk2(t2)ĉ
†
k1
(t1)} |ψ0〉 (1.85)

By 1.59, the creation/annihilation operators in interaction picture can be ex-
pressed as:

ĉk(t) = eiH0tcke
−iH0t (1.86)

The commutator is:

[H0, ck] =
∑
k′

ε(k′)[c†k′ck′ , ck] =
∑
k′

ε(k′)
(
[c†k′ , ck]ck′ + c†k′ [ck′ , ck]

)
(1.87)

where the first commutator is a delta and the second is zero because it is between
two annihilation operators:

[H0, ck] =
∑
k′

ε(k′)δk′,kck′ = ε(k)ck (1.88)

Substituting this for the commutators:

ĉk(t) = ck − iε(k)tck +
i2

2!
ε2(k)t2ck + · · · = cke

−iε(k)t (1.89)
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Now, going back to 1.85 with the time ordering t2 > t1:

M (0) = 〈ψ0| ck1c
†
k2
|ψ0〉 e−i(ε(k2)t2−ε(k1)t1) = δk1,k2e

−iε(k1)(t2−t1) (1.90)

which is just the free propagator iG+
0 (k2,k1, t2 − t1)

Now take V as the electron-phonon interaction:

V =
∑
qk

MqAq c
†
k+q ck (1.91)

which is 1.42 with a new annihilation operator Ak defined as:

Ak = bk + b†−k A†
k = b†k + b−k = A−k (1.92)

The propagator for phonons may be defined in two different ways [8]. The one
with a more direct physical interpretation is:

Gph(k, t) = −i 〈ψ0|T{bk(t)b†k(0)} |ψ0〉 (1.93)

where the ket vector |ψ0〉 is the exact ground state for the system of phonons,
also called the “interacting vacuum”. Analogously to the electronic case, this
propagator has the physical significance of being the probability amplitude to
observe a phonon in state k at time t if a phonon in state k was introduced into
the system at time 0. In the case of zero interaction, G(k, t) becomes the free
propagator:

G
(0)
ph (k, t) = −i(θt 〈0| bk(t)b

†
k(0) |0〉+ θ−t 〈0| bk(t)b†k(0) |0〉) = −iθte

−iω(k)t (1.94)

where θt is the Heaviside function and |0〉 is the ket for the non-interacting vacuum.
An alternative definition, harder to interpret physically but more convenient

mathematically is:

D(k, t) = −i 〈ψ0|T{Ak(t)A
†
k(0)} |ψ0〉 (1.95)

D(k, t) may be viewed as propagating a “displacement wave” in the interacting
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vacuum. The free propagator is:

D(0)(k, t) = −i(θte−iω(k)t + θ−te
iω(k)t) (1.96)

When there is a mixture of phonon and electron operators, the bracket can be
immediately factored into separate parts for electron and phonons, because the
two different kinds of operators commute.

The n = 1 term vanishes because it contains the factor 〈φ0|TÂq |φ0〉 which is
zero since 〈0| aq |0〉 and 〈0| a†q |0〉. This can be generalized to the statement: [3]

Only the terms even in n contribute to the propagator expansion for the electron-
phonon interaction.

Computing now the n = 2 term:

G(k, t− t′) = G(0)(k, t− t′) + (−1)3

2!

∫
dt1

∫
dt2∑

q1,q2

Mq1Mq2 〈φ0|TÂq1(t1)Âq2(t2) |φ0〉

×
∑
k1,k2

〈φ0|T ĉk(t)ĉ†k1+q1
(t1)ĉk1(t1)ĉ

†
k2+q2

(t2)ĉk2(t2)ĉ
†
k(t

′) |φ0〉 (1.97)

The phonon bracket gives a single-phonon Green’s function:

〈φ0|TÂq1(t1)Âq2(t2) |φ0〉 = iδq1+q2D
(0)(q1, t1 − t2) (1.98)

Note the Dirac delta, which imposes the condition q1 = q2 to the calculations that
will follow.

The electron bracket instead has a lot of possible pairings. To decompose it,
one makes use of Wick’s theorem, which states that the only non-zero terms are
the fully contracted ones:

ĉk(t)ĉ
†
k1+q1

(t1)ĉk1(t1)ĉ
†
k2+q2

(t2)ĉk2(t2)ĉ
†
k(t

′) =

i3δk,k1+q1δk,k2G
(0)(k, t− t1)G(0)(k− q1, t1 − t2)G(0)(k, t2 − t′) (1.99)
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ĉk(t)ĉ
†
k1+q1

(t1)ĉk1(t1)ĉ
†
k2+q2

(t2)ĉk2(t2)ĉ
†
k(t

′) =

i2δq1,0δk,k1G
(0)(k, t− t1)G(0)(k, t1 − t′)nF (ξk2) (1.100)

ĉk(t)ĉ
†
k1+q1

(t1)ĉk1(t1)ĉ
†
k2+q2

(t2)ĉk2(t2)ĉ
†
k(t

′) =

i2δk,k1δk,k2−q1G
(0)(k, t− t2)G(0)(k+ q1, t2 − t1)G(0)(k, t1 − t′) (1.101)

ĉk(t)ĉ
†
k1+q1

(t1)ĉk1(t1)ĉ
†
k2+q2

(t2)ĉk2(t2)ĉ
†
k(t

′) =

i2δq1,0δk,k2G
(0)(k, t− t2)nF (ξk1)G

(0)(k, t2 − t′) (1.102)

ĉk(t)ĉ
†
k1+q1

(t1)ĉk1(t1)ĉ
†
k2+q2

(t2)ĉk2(t2)ĉ
†
k(t

′) =

iδq1,0δk,k2G
(0)(k, t− t′)nF (ξk1)nF (ξk1) (1.103)

ĉk(t)ĉ
†
k1+q1

(t1)ĉk1(t1)ĉ
†
k2+q2

(t2)ĉk2(t2)ĉ
†
k(t

′) =

− i3δk1,k2−q1G
(0)(k, t− t′)G(0)(k1, t1 − t2)G(0)(k1 + q1, t2 − t1) (1.104)

where the definition nF (ξk) = 〈φ0| c†k(t)ck(t) |φ0〉 is used.

1.3.4 Feynman diagrams

Feynman introduced the idea of representing the terms in the propagator expansion
by diagrams [9]. The diagrams in time domain are drawn by representing the
electron unperturbed Green’s function G(0)(k, t− t′) by a solid line with an arrow
which goes from t′ to t, while the phonon unperturbed propagator D(0)(q, t− t′) is
represented by a wiggly line. The latter does not have a directional arrow because

D(0)(q, t− t′) = D(0)(−q, t′ − t) (1.105)

so the sign of q is irrelevant: phonons can be viewed as going in either direction
in time. The factor nF (ξk) is drawn as a solid line which loops and represents an
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expression symbol factor

G(0)(k, t− t′) k −ie−iε(k)(t−t′)

D(0)(q, t− t′) q −ie−iω(q)(t−t′)

nF (ξk) −1

Table 1.1: Rules for translating mathematical expressions from diagrams and vice-
versa. In addition, vertices carry a factor of Mq.

electron line which starts and ends at the same point in time. By using these rules
(also summarized in Table 1.1) the diagrams representing each of the six terms
1.99 to 1.104 are constructed in Figure 1.3. However, not all of them are actually
contributing to the perturbed Green function.

The terms (b), (d) and (e) in Figure 1.3 vanish because they exist only if the
phonon wave vector can assume the value of zero, but a phonon with q = 0 is
either a translation of the crystal as a whole or a permanent strain, and neither of
these are included in the Hamiltonian. Sums over q are implicitly excluding the
q = 0 term.

The terms (a) and (c) are not zero, and are the kind of terms to be dealt with
in the Diagrammatic Monte Carlo algorithm:

1

2!

∫
dt1

∫
dt2
∑
q

|Mq|2D(0)(q, t1 − t2)

×
[
G(0)(k, t− t1)G(0)(k− q, t1 − t2)×G(0)(k, t2 − t′)

+G(0)(k, t− t2)G(0)(k+ q, t2 − t1)×G(0)(k, t1 − t′)
]

(1.106)

These term really differ only in the labeling of the variables t1, t2,qi, which can
be relabeled so that only one term needs to be written and the factor 1/2 gets
canceled.

The term (f) as the property that part of it is not topologically connected to
the electron propagator G(0)(k, t− t′). This kind of diagram is called disconnected
diagram. The disconnected parts provide just a constant which multiplies the
contribution from the connected parts.
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k k− q1

q1

k

(a)

k

q1 = 0

k

(b)

k k+ q1

q1

k

(c)

k

q1 = 0

k

(d)

k

q1 = 0

(e)

k

k1 + q1

k1

q1

(f)

Figure 1.3: Diagrammatic representation of the first terms (1.99 to 1.104) entering
the expansion of the single electron Green function.
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Vacuum polarization terms

Now the denominator of 1.84 which was ignored up to this point should be con-
sidered. 〈ψ0|S(−∞,∞) |ψ0〉 can be expanded exactly in the same way as it was
done for the numerator. At the end of the calculations one obtains the following
result up to term n = 2:

〈ψ0|S(−∞,∞) |ψ0〉 = 1 + F1 + . . . (1.107)

where F1 is exactly the same constant obtained before from the term (f), which
corresponds in the diagram representation to the closed bubble of Figure 1.3 (f).

The evaluation of the vacuum polarization terms is unnecessary because of a
cancellation theorem known as linked cluster theorem, which states that:

The vacuum polarization diagrams exactly cancel the disconnected diagrams in
the expansion of G(k, t− t′).

Thanks to this theorem one only needs to take into account connected diagrams
when calculating G(k, t− t′). This is not only very convenient, but often necessary
since disconnected diagrams can give infinities when evaluated.

1.4 Monte Carlo methods

1.4.1 Monte Carlo integration

Monte Carlo integration [10] is a technique for numerical integration using random
numbers. Consider the integral of a function f of a real variable:∫

f(x) dx =

∫
f(x)

p(x)
p(x) dx =

〈
f(x)

p(x)

〉
p

(1.108)

The law of large numbers states that the mean of a large number of samples drawn
from a distribution tends to its expected value:

1

N

N∑
i

f(xi)

p(xi)
−−−→
N→∞

〈
f(x)

p(x)

〉
p

(1.109)

29



1.4. Monte Carlo methods Chapter 1. Introduction

this gives a way to approximate an integral by drawing samples from an arbitrary
distribution.

1.4.2 Metropolis-Hastings algorithm

Metropolis-Hastings is a Markov Chain Monte Carlo (MCMC) method based on
two postulates:

1. Existence of stationary distribution: ensured by detailed balance

2. Uniqueness of stationary distribution: ensured by ergodicity

Detailed balance: the probability (π) of being in state x and transitioning (P )
to state x′ is equal to the probability of being in state x′ and transitioning to state
x. In symbols, this proposition reads:

P (x′|x)π(x) = P (x|x′)π(x′) (1.110)

The aim is to design a Markov process3 which fulfills detailed balance such
that after a given amount of transitions (also called updates) we reach the target
equilibrium distribution π(x). The detailed balance condition can be rewritten as:

π(x′)

π(x)
=
P (x′|x)
P (x|x′)

(1.111)

Now separate the transition into two independent sub-steps:

1. Proposal: a new state is proposed according to the probability distribution
p(x′|x)

2. Accept-reject: the proposal is only accepted with a probability A(x′, x)

The transition probability can thus be written as their product:

P (x′|x) = p(x′|x)A(x′, x)

P (x|x′) = p(x|x′)A(x, x′)
(1.112)

3A Markov process is a stochastic process for which predictions regarding future outcomes
can be made based solely on its present state.
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Inserting this relation into 1.111 we find:

A(x′, x)

A(x, x′)
=
π(x′)p(x|x′)
π(x)p(x′|x)

(1.113)

So far we simply reshaped the detailed balance condition into another form.
Designing the Markov process now amounts to choose an appropriate A such that
1.113 is satisfied. Let us consider the Metropolis choice:

A(x′, x) = min

(
1,
π(x′)p(x|x′)
π(x)p(x′|x)

)
(1.114)

It’s easy to see that this choice satisfies 1.113: exchanging x and x′ the ratio
on the right side of 1.114 becomes the reciprocal so that either A(x′, x) or A(x, x′)
is 1.

Prescription 1.114 has the remarkable feature that the complete knowledge of
the form of π(x) is not actually needed, but only its form up to a multiplicative
constant (independent of x). This is important because it allows to draw samples
from a distribution whose normalization factor is unknown: the factor cancels in
the ratio on the right side of 1.114 so that the non-normalized form of π(x) can
be used instead.

Another observation is that we didn’t impose any requirement on the proposal
distribution p(x′|x). In practice it will be some distribution from which we can
draw samples easily by direct sampling. The simplest possible form is to use a uni-
form distribution independent of the current state x, but this means that proposal
values systematically try to escape the high density region, and the accepted ratio
will be low. So a better idea is to use a distribution that approximates our target
distribution: if we could directly sample from it, we would have π(x) = p(x), which
substituted into 1.114 means that every proposed update is always accepted, and
the whole procedure becomes pointless, since we already have the target distribu-
tion.

The downside of the Metropolis-Hastings algorithm versus direct sampling is
that it introduces correlation in the sequence it generates. This means that the
error estimation for observables extracted from the distribution of states has to be
adapted. The naive way of computing the standard deviation of samples underes-
timates the error. So we must resort to a slightly more involved procedure known
as blocking analysis.
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1.4.3 Blocking analysis

In this context blocking means arranging of sampling units in groups (blocks) that
are similar to one another.

The variance satisfies the following properties:

Var(aX) = a2Var(X) (1.115)

Var(X + Y ) = Var(X) + Var(Y ) if X,Y independent (1.116)

Split the M measurements into N blocks of length L so that M = NL:

Var(X̄) = Var

 1

NL

N−1∑
n=0

(n+1)L−1∑
m=nL

Xm

 = Var

 1

N

N−1∑
n=0

 1

L

(n+1)L−1∑
m=nL

Xm


(1.117)

The expression in the inner brackets is the block average of X inside block n:

X̄n ≡
1

L

(n+1)L−1∑
m=nL

Xm (1.118)

Applying properties 1.115 and 1.116 to 1.117:

Var

(
1

N

N−1∑
n=0

X̄n

)
=

1

N2
Var

(
N−1∑
n=0

X̄n

)
=

1

N2

N−1∑
n=0

Var(X̄n) (1.119)

Now assume common variance for block averages [11]:

∀n Var(Xn) =: Var(X̄block) (1.120)

This is true for sufficiently big block size L. To ensure such requirement, one
can study the behavior of correlation for increasing block sizes (see [11] for more
information on this).

With this assumption, the sum
∑

nVar(X̄n) reduces to N Var(X̄block):

Var(X̄) =
1

N
Var(X̄block) (1.121)

This relation allows to calculate the variance of the correlated outcomes of X
from the variance of the uncorrelated (or better, less correlated) block averages,
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for which the usual formula applies:

Var(X̄block) = σ2(X̄block) =
1

N − 1

N−1∑
n=0

(X̄n − X̄)2 (1.122)

The adaptation of the MCMC Metropolis-Hastings algorithm to deal with a
stochastic process in which states are represented by Feynman diagrams will be
discussed in Chapter 3.
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Chapter 2

Holstein model

2.1 Holstein Hamiltonian

The discussion of the Holstein Hamiltonian starts from the original model pre-
sented by Holstein in [12][13] and then develops into the second quantized form
used in the Diagrammatic Monte Carlo algorithm. Analytical approaches to the
weak-coupling and strong-coupling regimes are also described.

2.1.1 The molecular-crystal model

n− 1 n n+ 1

Figure 2.1: Holstein’s molecular-crystal model.

The system is taken to be a linear chain of N identical diatomic molecules. [12]
The only degree of freedom they possess is their internuclear separation xn. The
potential energy curve for the bond of each individual molecule is assumed to be
parabolic, and there is no coupling between different molecules. Thus the lattice
Hamiltonian reads:

HL =
N∑
n

(
P 2
n

2M
+

1

2
Mω2

0x
2
n

)
(2.1)
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Where M is the reduced mass of the molecule and ω0 the vibrational frequency.
The system can be thought as an ensemble of N uncoupled harmonic oscillators
with the same frequency. Figure 2.1 shows site n and their nearest neighbors n−1

and n+1. As an example, the system is depicted in a state where the molecule on
site n− 1 is in equilibrium (xn−1 = 0), the molecule on site n is stretched (xn > 0)
and the molecule on site n+ 1 is compressed (xn+1 < 0).

In addition, a single electron moves in this environment. The electron interacts
with each molecule through the potential U(r−na, xn). The electronic Hamiltonian
reads:

He =
p2

2m
+

N∑
n

U(r − na, xn) (2.2)

The key feature of the model is that U depends on the internuclear separation
xn, coupling the electronic degree of freedom with the lattice vibrations. This kind
of electron-phonon interaction is called Holstein coupling.

The Hamiltonian of the whole system is the sum of the lattice and electron
Hamiltonians:

H = He +HL (2.3)

As stressed above, the electronic term also contains a coupling to the lattice.
In what follows, the coupling will be extracted from the electronic term, resulting
in a purely electronic term and an interaction term in the Hamiltonian. Now we
switch to a quantum mechanical description of the system, where all observables
are replaced by operators acting on a Hilbert space.

The full Hamiltonian of the system (Equation 2.3 quantized) is:

Ĥ = − h̄2

2m
∇2 +

∑
n

U(r − na, xn) +
∑
n

(
− h̄2

2M

∂2

∂x2n
+

1

2
Mω2

0x
2
n

)

A tight-binding approach is used to express the electronic wavefunction as a
linear combination of localized1 orbitals φ:

1In this context, localized doesn’t mean exactly localized at position r but rather a state in
which the electron is most of the time around a certain position (the lattice site). The probability
to find the electron far from the site vanishes exponentially.
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ψ(r, x1, ..., xN) =
∑
n

an(x1, ..., xN)φ(r − na, xn)

The electron states φ used in the expansion are the energy eigenstates of a
system comprised of the electron and a single molecule at n:[

− h̄2

2m
∇2 + U(r − na, xn)

]
φ(r − na, xn) = E(xn)φ(r − na, xn)

The equations obeyed by the expansion coefficients are obtained by a standard
“projection” procedure. The calculation can be found in the Appendix of Holstein’s
paper [12]. The result is:

Ĥan(x1, ..., xn) =−
∑
±

J(xn, xx±1)an±1(x1, ..., xn)

+
∑
n

(
− h̄2

2M

∂2

∂x2n
+

1

2
Mω2

0x
2
n

)
an(x1, ..., xn) (2.4)

− E(xn)an(x1, ..., xn)

where:

J(xn, xm) ≡
∫

dr φ∗(r − na, xn)∆U(r − na)φ∗(r −ma, xm) (2.5)

is the two center transfer integral mentioned in the tight-binding section (Eq.
1.34).

A number of simplifications are introduced into 2.4:

1. The neglect of the x-dependence of the J(xn, xn±1); this simplification means
that the J(xn, xn±1) are all to be taken equal to a single constant −J

2. The x-dependence of E(xn) is taken to be linear:

E(xn) = −Axn (2.6)

Introducing the approximations into 2.4 we get:
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Ĥan = −J(an+1 + an−1) +
∑
n

(
− h̄2

2M

∂2

∂x2n
+

1

2
Mω2

0x
2
n

)
an − Axnan (2.7)

which is an equation for the coefficients an.
However, we will not try to solve 2.7 in this form. In order for the Diagrammatic

Monte Carlo algorithm to be applied, the Hamiltonian must be translated into the
second quantization framework.

2.1.2 Second quantized form

The Hamiltonian 2.3 can be represented as a sum of three terms:

Hhol = Hhol
el +Hhol

ph +Hhol
el−ph (2.8)

To obtain the second quantized form, all the terms must be rewritten using
creation/annihilation operators. In Section 1.1.2 the tight binding term 1.33 was
derived, and the phonon term is just the standard treatment of a set of indepen-
dent harmonic oscillators at each site discussed in 1.1.1, all vibrating at the same
frequency ω0. The interaction term, which was presented in general in Eq. 1.42,
has a constant coefficient g independent of phonon momentum. For h̄ = 1 and
lattice constant a = 1: [14]

Hhol
el = −J

∑
n

ĉ†n(ĉn+1 + ĉn−1) (2.9)

Hhol
ph = ω0

∑
n

b̂†nb̂n (2.10)

Hhol
el−ph = g

∑
n

ĉ†nĉn(b̂
†
n + b̂n) (2.11)

Sometimes the kinetic integral J is denoted by t, and the creation/annihilation
operators written in the equivalent form 1.33 [15]:

Hhol
el = −t

∑
〈n,m〉

(ĉ†nĉm + ĉnĉ
†
m) (2.12)

where 〈n,m〉 means summing over nearest neighbor pairs. The hopping parameter
t will be taken as unity of energy (t = 1).
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The same Hamiltonian can be expressed in momentum space by Fourier trans-
forming its terms (as was done in Sections 1.1.2 and 1.2.1):

Hhol
el =

∑
k

ε(k)ĉ†kĉk (2.13)

Hhol
ph = ω0

∑
q

b̂†qb̂q (2.14)

Hhol
el−ph =

g√
N

∑
k,q

ĉ†k+qĉk(b̂
†
−q + b̂q) (2.15)

This Hamiltonian describes the lattice or Holstein polaron, in which the elec-
tron is spread over a small region of space, accompanied by a strong local distortion
of the lattice.

Assuming a simple z-dimensional hypercubic lattice with unitary lattice con-
stant, the electron dispersion is:

ε(k) = −2t
z∑

i=1

cos(ki)

Phonons are instead assumed dispersionless:

ω(q) = ω0

The behavior of the Hamiltonian depends on two parameters. It is customary
to define the following combinations, respectively called dimensionless coupling α
(which measures the strength of the electron-phonon coupling) and adiabaticity
ratio γ:

α =
g2

zω0t
γ =

ω0

t
(2.16)

Summarizing, the Holstein model is a simple model for the lattice polaron
which:

• only considers optical phonons

• features a momentum-independent coupling
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2.2 Weak-coupling limit

At small coupling, the limiting behavior is obviously that of the unperturbed
system. The unperturbed states consist of the bare electron plus a number of
phonons.

Let’s redefine k here to refer to the total momentum of the polaron, and call ke

the momentum of the bare electron instead. Looking at the total energy, the bare
electron brings a contribution ε(ke) dependent on its momentum, while phonons
are present with a fixed energy cost of ω0 each.

Let’s now consider a system with just a single phonon. The ensemble of states
with one phonon of momentum qi ∈ [−π, π] forms a continuum in the energy spec-
trum. Figure 2.2 depicts these energy states, where each different q introduces
a horizontal shift of the original electron dispersion (due to conservation of total
momentum). For a finite-sized crystal, q assumes discrete values, but in the con-
tinuum limit the orange curves densely fill the graph and the black points marking
the intersection with a given total momentum become a line.

Figure 2.2: Energy of the lowest unperturbed states of Holstein Hamiltonian. The
blue curve is a state with zero phonons, and coincides with the bare electron disper-
sion. The orange curves are an ensemble of states with one phonon of momentum
q, vertically shifted from the blue curve by the phonon energy ω0. The vertical
black line indicates a given value of the total polaron momentum.
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2.2.1 Weak-coupling perturbation theory

When turning on the coupling, the electron becomes lightly dressed by phonons
spread over a large region of space, and the effective mass increases slightly. This
regime is the large-radius Holstein polaron for which a quasi-classical approxima-
tion (the continuum polaron) is also valid. Rayleigh-Schrödinger (RS) perturbation
theory provides accurate results, but only at small momentum where there is no
degeneracy with the upper states of the continuum.

Call {|n0〉} the set of unperturbed eigenstates, assumed non-degenerate. The
index n here represents the momentum index of the polaron. The perturbed
eigenstate is given by the expansion:

|n〉 =
∣∣n0
〉
+
∣∣n1
〉
+
∣∣n2
〉
+ · · · (2.17)

and the energy is:
En = E0

n + E1
n + E2

n + · · · (2.18)

where the exponent is the order of the correction. Standard time-independent
perturbation theory provides expressions to calculate the correction terms.

Let’s evaluate corrections to the ground state energy. It’s easy to see that the
first order energy term vanishes:

〈
n0
∣∣Hel−ph

∣∣n0
〉
= 0 (2.19)

because the interaction creates a state with one more phonon, which is orthogonal
to the original one.

The first non-vanishing correction to the energy is:

E2
n =

∑
m6=n

|〈m0|Hel−ph |n0〉|2

E0
n − E0

m

(2.20)

while the first non-vanishing correction to the state is:

∣∣n1
〉
=
∑
m6=n

∣∣m0
〉 〈m0|Hel−ph |n0〉

E0
n − E0

m

(2.21)

We are interested in the ground state, therefore |n0〉 contains zero phonons.
Hel−ph then acts by adding one phonon and finally the projection on 〈m0| makes
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all states with a number of phonon different from one vanish.
Thus the summation only runs on states containing a single phonon, and the

denominator of 2.20 becomes the difference between the bare electron dispersion
(state n) and the energy of one of the orange states of Figure 2.2 (state m):

E0
n → ε(k) E0

m → ε(k − q) + ω0 (2.22)

Let’s recall the form of Hel−ph (Eq. 2.15). As for its matrix element, the
electron part gives 1 and in the phonon part the b term vanishes when applied
to a zero phonon state. So we are left with a delta from the b† operator, and a
factor of 1/2π arises as a consequence of the continuum limit taken for both the
perturbation theory sum and the sum inside Hel−ph.

Substituting the matrix elements and the expression for the unperturbed energy
in 2.20, one gets the following expression:

Ek = −2t cos(k)−
∫

dq

2π

tω0α

2t cos(k) + ω0 − 2t cos(k − q)
(2.23)

If the phonon energy ω0 is below 4t there will be a momentum value at which
the denominator becomes zero, and perturbative corrections will diverge. This
corresponds to the point where the one-phonon continuum starts to intersect the
bare electron (blue) curve in Figure 2.2.

Also the effective mass m∗ can be obtained analytically [15] with RS pertur-
bation theory:

m∗

m0

=

(
1− α

4

√
t

ω0

1 + ω0/2t

(1 + ω0/4t)
3/2

)−1

(2.24)

where m0 is the mass of the bare electron. In the limit of α→ 0, Assuming all
other parameters constant, the effective mass enhancement is proportional to g2:

m∗ = m0(1− kα)−1 ≈ m0(1 + kα) =⇒ ∆m ∝ g2 (2.25)

2.3 Strong-coupling limit

If the electron-phonon interaction is strong, the hopping term Hhol
el can be treated

as a perturbation. The two terms 2.14 and 2.15 can be diagonalized using the
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Lang-Firsov canonical transformation.
A slightly simpler case with a single energy level will be discussed first to

introduce the Lang-Firsov transformation, and the results will be generalized to
the Holstein case.

2.3.1 Lang-Firsov transformation

Consider a system where a particle possessing a single energy level ε interacts with
a set of phonons of energy ωq: [3]

H = ε c†c+
∑
q

Mq(b
†
q + bq) c

†c+
∑
q

ωqb
†
qbq (2.26)

where the interaction term has the form 1.42. By making a canonical trans-
formation (the Lang-Firsov transformation [16]), the Hamiltonian may be trans-
formed into the following form:

H ′ = (ε−∆) c′†c′ +
∑
q

ωqb
′†
qb

′
q (2.27)

where the effect of the interaction has been reduced to just a shift of energy by a
term ∆, which has to be found.

The right transformation is:

O′ = eSOe−S (2.28)

S =
∑
q

Mq

ωq

(b†q − bq) c†c (2.29)

The operator S and the transformed operators O′ enjoy the following proper-
ties:

S† = −S (2.30)(∏
n

On

)′

=
∏
n

O′
n (2.31)

Property 2.30 is trivial while property 2.31 is easily shown by inserting the
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identity operator 1 = eSe−S between each pair of factors:

(AB)′ = eSABe−S = eSAeSe−SBe−S = A′B′ (2.32)

The transformed operators can be evaluated from their commutators with S

thanks to the expansion of the exponential:

eSOe−S =

(
1 + S +

S2

2!
+O(S3)

)
O

(
1− S +

S2

2!
+O(S3)

)
=(

O + SO +
S2O

2!
+O(S3)

)(
1− S +

S2

2!
+O(S3)

)
=

O + SO −OS +
S2O

2!
− SOS +

OS2

2!
+O(S3) =

O + [S,O] +
S[S,O]

2!
− [S,O]S

2!
+O(S3) =

O + [S,O] +
[S[S,O]]

2!
+O(S3) (2.33)

Now the transformed creation/annihilation operators can be computed:

[S, c] =
∑
q

Mq

ωq

(b†q − bq)[c†c, c] = −
∑
q

Mq

ωq

(b†q − bq) c (2.34)

[S, [S, c]] = −

(∑
q

Mq

ωq

(b†q − bq)

)2

[c†c, c] =

(∑
q

Mq

ωq

(b†q − bq)

)2

c (2.35)

and similar formulas for higher order commutators. For phonons:

[S, bq] =
∑
q′

Mq′

ωq′
c†c[b†q′ − bq′ , bq] = −

∑
q′

Mq′

ωq′
δq′,q c

†c = −Mq

ωq

c†c (2.36)

[S, [S, bq]] = 0 (2.37)

so that only the first order is actually relevant in this case.
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c′ = X c X = exp

{
−
∑
q

Mq

ωq

(b†q − bq)

}
(2.38)

b′q = bq −
Mq

ωq

c†c (2.39)

and the corresponding creation operators follow by taking the adjoint. Substituting
the above back into 2.26 we get 2.27 with:

∆ =
∑
q

M2
q

ωq

(2.40)

Turning now to the Holstein Hamiltonian (without the hopping term, to be
treated perturbatively), the same argument can be repeated but adding an index
i for the site to the c, c† operators and assuming Mq = −g/

√
N and ωq = ω0. The

result (in position space) is [17]:

S = − g

ω0

∑
i

c†ici(b
†
i + bi) (2.41)

c′i = Xi ci Xi = exp

(
g

ω0

(b†i − bi)
)

(2.42)

H ′ = ω0

∑
i

b′†i b
′
i −

g2

ω0

∑
i

c′†i c
′
i (2.43)

From 2.40, the lattice deformation energy gained due to the electron presence
is:

Ep =
g2

ω0

(2.44)

so that the α coupling constant defined earlier in 2.16 can be thought as the
ratio between this energy and the bare electron kinetic energy proportional to the
hopping t. Ep is typically referred to as polaron energy or polaron binding energy.

2.3.2 Strong-coupling perturbation theory

The transformed Hamiltonian 2.43 is now diagonal, and there are N degenerate
unperturbed single-electron ground states |GS, i〉′0 = c′†i |0〉 that can be projected
into the original basis by considering the inverse transform. This leads to the
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following condition for the ground state in the original basis:

c′†i |0〉 = eS |GS, i〉0 (2.45)

the solution of which can be obtained by using fermion algebra and the Baker-
Campbell-Hausdorff formula for the exponential operator:

|GS, i〉0 = e−Sc′†i |0〉 = exp

(
g

ω0

(b†i − bi)
)
c′†i |0〉 =

exp

(
g

ω0

b†i

)
exp

(
− g

ω0

bi

)
exp

(
− g2

2ω2
0

)
c′†i |0〉 =

exp

(
− g2

2ω2
0

)
exp

(
g

ω0

b†i

)
c′†i |0〉 (2.46)

The phononic part of the state turns out to be the so-called coherent state of
the harmonic oscillator. Some properties of these states are briefly recalled before
proceeding.

Coherent states of the harmonic oscillator

The eigenstates of the annihilation operator are known as coherent states of the
harmonic oscillator:

b |ξ〉 = ξ |ξ〉 (2.47)

where the eigenvalue ξ is an arbitrary complex number. Coherent states can
be shown to possess the property of minimizing the uncertainty product: [18]

σxσp =
h̄

2
(2.48)

Like any other quantum state, coherent states can be expressed in terms of
energy eigenstates:

|ξ〉 =
∞∑
n=0

|n〉 〈n|ξ〉 (2.49)

The expansion coefficients cn ≡ 〈n|ξ〉 can be easily computed thanks to prop-
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erty 2.47. Recall the expression for the energy eigenstates |n〉:

|n〉 =
(
b†
)n
√
n!
|0〉 〈n| = 〈0| b

n

√
n!

(2.50)

substituting the bra state into 2.49 gives:

cn = 〈n|ξ〉 = 〈0| b
n

√
n!
|ξ〉 = ξn√

n!
〈0|ξ〉 = ξn√

n!
c0 (2.51)

So that 2.49 becomes:

|ξ〉 = c0

∞∑
n=0

ξn√
n!
|n〉 (2.52)

Note that c0 can be considered to be real with no loss of generality, since a
global phase has no physical effect on the state. With this in mind, c0 can be found
from the normalization condition |〈ξ|ξ〉|2 = 1, which translates into a condition
for the coefficients:

c20

∞∑
n=0

∣∣∣∣ ξn√n!
∣∣∣∣2 = 1 =⇒ 1

c20
=

∞∑
n=0

(
|ξ|2
)n

n!
=⇒ c0 = e−|ξ|2/2 (2.53)

so that:

|ξ〉 = e−|ξ|2/2
∞∑
n=0

ξn√
n!
|n〉 (2.54)

and using 2.50 again, this time the ket expression:

|ξ〉 = e−|ξ|2/2
∞∑
n=0

(
ξb†
)n

n!
|0〉 = e−|ξ|2/2eξb

† |0〉 (2.55)

so that 2.46 indeed contains coherent states (ξ = g/ω0).
Going back to our original calculation, the property of coherent states to min-

imize the uncertainty product between the momentum and position operators im-
plies that the ground state has ξ = g/ω0 unperturbed ground states in the real
space and can be interpreted as an electron dressed by a phonon cloud with zero
average momentum [17]. The phonon statistic is found to be a Poisson distribution
(at zero order in the perturbation) [17]:
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P0(n) = |〈n| ci |GS, i〉0|
2 = e−Np0

(Nph,0)
n

n!
(2.56)

Nph,0 = 0〈GS, i| b†ibi |GS, i〉0 =
g2

ω2
0

=
αzt

ω0

(2.57)

where |n〉 is a state with a well-defined number of phonons (n) and Nph is the
average number of phonons in the state.

As for the energy, as we have seen at zeroth order the electron is trapped by
the lattice deformation at a given site, with energy given by 2.44. The expression
can be recast into −αzt using 2.16. The first order correction lifts the degeneracy
with an exponentially reduced nearest-neighbor hopping. The second order has a
much stronger effect, corresponding to a virtual transition of the electron without
carrying its lattice deformation to a nearest neighbor location [15]. Explicit cal-
culations of the first and second order correction can be found in [19]. The total
polaron dispersion is given by the sum of the three terms:

− αzt− t

α
− 2teff

z∑
i=1

cos(ki) teff = t exp

(
−αzt
ω0

)
(2.58)

The exponentially suppressed teff induces an exponentially large effective mass
enhancement:

m∗

m0

= exp

(
αzt

ω0

)
(2.59)

The quantities here derived in the weak-coupling and strong-coupling limits
will be calculated using Diagrammatic Monte Carlo, which is described in the
next section.
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Chapter 3

Diagrammatic Monte Carlo

3.1 DMC applied to the polaron system

The method of Diagrammatic (Quantum) Monte Carlo was developed by Prokof’ev
and Svistunov [20]. It allows direct simulation of entities specified in terms of
diagrammatic expansions of the type encountered in Section 1.3. This method
is very general since it imposes no restrictions on the particular form of particle-
particle interaction and dimensionality of the problem.

The technique was shown to work well when applied to the polaron problem,
both by the original paper and by follow-up studies [21][15][22]. This work is
not based on or extending previously written codes, thus providing a completely
independent verification of the methods employed.

The purpose of the algorithm is to calculate a functionQ which is given in terms
of a series of integrals with an ever increasing number of integration variables:

Q({y}) =
∞∑
n=0

∑
ξn

∫
dx1 . . . dxn Dn(ξn, {y}, x1, . . . , xn) (3.1)

here ξn indexes different terms of the same order n: the diagrams they represent
are said to possess different topologies1. {y} collects all the external variables on
which Q depends, while x1, . . . , xn are the integration or internal variables. Both
external and internal variables are allowed to be either continuous or discrete: in
the latter case integrals are replaced by sums.

1In this context topologies mean terms with the same number of integration variables but
with a different time ordering of the vertices, as discussed in Section 1.3.4.
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Diagrammatic Monte Carlo (DMC) is based essentially on the Metropolis-
Hastings algorithm presented in 1.4.2. It samples diagrams represented by points
in the parameter space {y}, n, ξn, {x}n and collects statistics for Q({y}) so that for
a number of samples large enough the procedure converges to the exact answer.
This process has a lot in common with standard Monte Carlo simulation of a
distribution given by a multidimensional integral, except that in the expansion 3.1
the number of integration variables is increasing with the order n.

The Markov chain to be produced is a sequence of Feynman diagrams. One
starts from an arbitrary diagram, such as a n = 0 term with some set values for the
external variables. At every iteration of the algorithm, the current diagram has a
chance to be modified into a proposed diagram via a transition called update. The
update is chosen among a series of possible types by drawing a random integer,
and every update further depends on some real parameters to be extracted from
a distribution. Being a Markov chain, the probabilities can only depend on the
current state2, but not on the previous states (the chain is memoryless).

The proposed diagram is either accepted or rejected according to the accep-
tance probability associated with the update. Note that even when the update is
rejected, the “new” diagram (which will be the current diagram again) must still
be considered in the statistics.

The set of elementary updates chosen and their implementation is arbitrary and
specific to the problem to which DMC is applied. The only necessary requirements
are the Metropolis-Hastings postulates of ergodicity and detailed balance discussed
in 1.4.2. The approach followed in this thesis is to first illustrate a minimal set
of updates that allows the DMC procedure to be carried out, satisfying ergodicity
for the Holstein Hamiltonian. Then, more updates will be added to be able to
measure more observables and to improve the efficiency.

The main class of routines that a program implementing the DMC has to be
able to perform are:

• Tracking and managing the state of the system, that is, performing the
updates by changing the data structure where the current diagram is stored

• Calculating the acceptance probabilities from the current and proposed dia-
grams

2or even be independent of the state altogether
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• Extracting the relevant statistics from the distribution, which is done once
at every iteration to avoid the need of storing the full history

Consider the one-electron Green function for the many body polaron Hamilto-
nian:3

G(k, τ) = 〈Ψ0| ck(τ)c†k(0) |Ψ0〉 (3.2)

this quantity can be expanded in an infinite-order perturbation series by the
procedure described in Section 1.3.3 and recast in a series of integrals assimilable
to Eq. 3.1:

∞∑
n=0

∑
ξn

∫
dq1

(2π)D
. . .

dqn

(2π)D

∫
dτ1 . . . dτ2n Dn(ξn,k, τ, τ1, . . . , τ2n,q1, . . . ,qn) (3.3)

here τ1, . . . , τ2n,q1, . . . ,qn play the role of internal variables, while k, τ are the
external ones. D is the quantity to be summed over, and the target distribution
of the MCMC procedure. It will be referred to as diagram weight, and its math-
ematical expression is obtained by multiplying all the propagators appearing in
the diagram and the vertex factors. The continuum limit has been applied, so
that sums on qi were replaced by integrals containing the k-space density factor
aD/(2π)D, where a (the dimension of the primitive cell) was set to unity.

The integrand D can be expressed by the formula:

D(. . . ) = g2n
∏
i

exp (−ε(ki)∆τi)
∏
j

exp (−ω(qj)∆τj) (3.4)

where i runs over all the electron propagator and j over all the phonon propagators.
Mischenko et al. [21] improved the original method by introducing the one-

electron-N-phonons Green function, where the external variables include momenta
of the phonons that constitute the starting (0) and final (τ) state:

GN(k, τ,q1, . . . ,qN) = 〈Ψ0| bqN
(τ) . . . bq1(τ)ck(τ)c

†
k(0)b

†
q1
(0) . . . b†qN

(0) |Ψ0〉 (3.5)
3Here the formalism slightly differs from the one used in Section 1.3.2 in that we switch to

imaginary time defined as τ = it. This approach is known as Matsubara method. [3]
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Another quantity of interest will be the sum of all one-electron-N-phonons
Green functions, which is relevant when the DMC simulation explores states with
a number of external phonons:

P (k, τ) = G(k, τ) +
∞∑

N=1

∫
dq1

(2π)D
. . .

dqN

(2π)D
GN(k, τ,q1, . . . ,qN) (3.6)

Ground state properties from the propagator

The usefulness of the Green function is rooted in the fact that its long-imaginary
time behavior gives information about ground state properties of the system, such
as its energy. To prove this statement, insert a complete set of eigenstates of the
full Hamiltonian (with interaction) into the definition 3.2:

H |nk〉 = Ek (3.7)

1 =
∑
nk

|nk〉 〈nk| (3.8)

so that the Green function becomes:

G(k, τ) = −〈Ψ0| ck(τ) 1 c†k(0) |Ψ0〉 =
∑
nk

−〈Ψ0| ck(τ) |nk〉 〈nk| c†k(0) |Ψ0〉 (3.9)

Using the equivalent of 1.57 for the evolution of operators in imaginary time

ck(τ) = eHτck(0)e
−Hτ (3.10)

the above expression reduces to:

∑
nk

〈Ψ0| eHτck(0)e
−Hτ |nk〉 〈nk| c†k(0) |Ψ0〉

=
∑
nk

eEvacτe−Ekτ 〈Ψ0| ck(0) |nk〉 〈nk| c†k(0) |Ψ0〉

=
∑
nk

e−Ekτ
∣∣∣〈nk| c†k(0) |Ψ0〉

∣∣∣2 (3.11)

This means that the Green function is a sum of terms decaying exponentially
with τ . The behavior at large times is thus dictated by the term with the smallest
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coefficient Ek, that it is the ground state. After introducing the definition of
the quasiparticle weight Znk

, which represents the overlap between the polaron
(perturbed) state 〈nk| and the free electron state c†k(0) |Ψ0〉

Znk
=
∣∣∣〈nk| c†k(0) |Ψ0〉

∣∣∣2 (3.12)

one gets to the final result:

G(k, τ)
τ→∞−−−→ Z0(k)e

−E0(k)τ (3.13)

A similar result is found for the N-phonons Green function:

G(N)(k, τ,q1, . . . ,qN)
τ→∞−−−→ Z

(N)
0 (k,q1, . . . ,qN)e

−E0(k)τ (3.14)

and for P (k, τ), using the completeness relation:

P (k, τ)
τ→∞−−−→ e−E0(k)τ (3.15)

Scaling of the internal τi

In this thesis I chose to work with scaled internal τi in the DMC procedure rather
than absolute values, which means that τi is now a real number between 0 and 1

that, once multiplied by τ , gives the absolute imaginary time. The reason is that
it prevents some confusion when dealing with estimators (Section 3.4), and makes
the Green function estimator derivation clearer. Mischenko et. al [21] observe
that the relation 3.41 which is fundamental to the estimators derivation imply
that the internal parameters of Dν(x

′) and Dν(x) have one and the same domain
of definition, otherwise their ratio is not correctly defined. By introducing scaled
times, always the same domain of [0, 1] is achieved.

To be more precise, the scaled variables τ̄i ∈ [0, 1] are defined as:

τ̄i =
τi
τ

dτi = τdτ̄i (3.16)

As a result of the rules for the differentials, the diagram weight D must be modified
as follows (consider the case of two τ variables for notational simplicity):∫ τ

0

dτ2
∫ τ2

0

dτ1Dτ1τ2(τ) =

∫ 1

0

dτ̄2
∫ τ̄2

0

dτ̄1τ 2Dτ τ̄1,τ τ̄2(τ) (3.17)
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∫ 1

0

dτ̄2
∫ τ̄2

0

dτ̄1D̄τ̄1τ̄2(τ) D̄τ̄1τ̄2(τ) = τ 2Dτ τ̄1,τ τ̄2(τ) (3.18)

In the rest of the thesis the scaled times will be referred to simply as τi without
the line above for notational convenience.

As a result of this, 3.4 now becomes:

D(. . . ) = (gτ)2n
∏
i

exp (−ε(ki)τ∆τi)
∏
j

exp (−ω(qj)τ∆τj) (3.19)

3.2 Updates

In this section the updates implemented in the code for the Holstein Hamiltonian
are listed. The acceptance probability is calculated for each update and the dis-
tributions from which the parameters are drawn are shown. The usual [21] way to
present the updates is to categorize them into two types:

I: those which do not change the type of the diagram (change the values of
parameters but not the function Dn itself)

II: those which change the diagram order

Instead, here they will be listed in an order based on the information one would
like to collect. For example, the minimal updates one must implement in order
to get the perturbed one-electron Green function at a fixed imaginary time τ are
the add-internal and remove-internal updates, therefore these two are the most
“important” ones and should be discussed first. Further updates allow to obtain
more observables, and finally there are some extra updates that don’t expand the
space of possible diagrams, but are there just to increase the frequency of accepted
updates.

The naive way to calculate the weight ratio is to evaluate the formula 3.19
for the current diagram, copy the state into a temporary diagram, perform the
proposed update on the temporary diagram and evaluate again the formula. The
ratio between the two numbers will be the weight ratio, and this method holds
true in general for all updates. However, it is more efficient to calculate the ratio
explicitly for each update since the part of the diagram that doesn’t change gets
canceled and doesn’t need to be considered; also this way the diagram doesn’t
need to be traversed twice, but just once. This matters when the diagram order
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becomes big. Nevertheless, the first method is still good to check that the faster
but more error-prone update specific calculations are correct.

The acceptance probability, defined in general by 1.114, here assumes the form:

Dnew

Dcur

· prev
pupd

(3.20)

to be calculated for each update. pupd corresponds to p(x′|x) and is the probability
to transition to the new state x′, while prev is the probability for the reverse process.
The following discussion assumes that the choice of the type of update is uniformly
distributed: if this is not the case one must ensure that the probability of choosing
one type of update is the same as choosing its inverse4.

3.2.1 add-internal

The add-internal update adds an internal phonon propagator with momentum q

creating two new interaction vertices at times τ ′ and τ ′′, with τ ′′ > τ ′. An example
of this kind of update is provided in Figure 3.1, which highlights the portion of
the diagram which has changed.

It will now be described how to calculate the weight ratio explicitly for this
class of updates.

Dnew

Dcur

=
(gτ)2

(2π)d
exp

{
−τ

i′′∑
i=i′

∆τi[ε(ki − q)− ε(ki) + ω(q)]

}
(3.21)

The portions of the diagram before τ ′ and after τ ′′ are left unchanged by the
update, and since the weight of a diagram consists of the product of its propa-
gators (and vertices), they simply cancel. In this way, we are left with a sum
that goes from i′ to i′′, where these two indices refer respectively to the imaginary
time segment that starts with τ ′ and to the one that ends with τ ′′. Inside this
region, electron propagators change by being decreased by q, and a new phonon
propagator is added. These terms are respectively the first and third term in the
square brackets of 3.21, and they appear with the plus sign since they are part
of the proposed diagram, which is the numerator of the weight ratio. The second
term instead comes from the current diagram, and its sign is opposite because it
is in the denominator.

4if a class of updates contains its own inverse, this condition is trivially satisfied.
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After taking care of the propagators, one must consider the vertex factors: since
two vertices are added, there will be a factor of g2 multiplying the exponential. The
τ 2 factor comes instead from the fact that we chose to work with scaled imaginary
times, and 1/(2π)d comes from the continuum limit.

After the weight ratio, the second ingredient to be evaluated in order to obtain
the full acceptance probability is prev/pupd, which depends on which distributions
we draw the parameters of the update from. The simplest choice for both q and
τ ′, τ ′′ would be uniform distributions:

q← Ud(−π, π) τ ′ ← U(0, 1) τ ′′ ← U(τ ′, 1) (3.22)

pupd is just the product5 of the update distributions, while prev is the probability
that the reverse process happens, that is, the same phonon propagator is removed
from the diagram. At this point one realizes that the DMC code can’t run with
just the add-internal update, but also remove-internal is at least required6. For
this reason, the expression for prev will be justified later in Section 3.2.2.

prev
pupd

=
1/(n+ 1)

1/(2π)d · 1 · 1/(1− τ ′)
(3.23)

where n is the diagram order (number of phonon propagators). A better choice
that yields a higher acceptance ratio is to use an exponential distribution for τ ′′.
As discussed in Section 1.4.2, the most effective way to draw the parameters is
to use a distribution similar to the target equilibrium distribution, which contains
the exponential dependence due to the phonon propagator.

E(t;α, tmax, tmin) = Ce−α(t−tmin) C =
α

1− e−α(tmax−tmin)
(3.24)

so that:
τ ′′ ← E(t;ω(q)τ, 1, τ ′) (3.25)

and the new prev/pupd becomes:

prev
pupd

=
1/(n+ 1)

1/(2π)d · 1 · E(τ ′′;ω(q)τ, 1, τ ′)
(3.26)

At this point the total acceptance probability can be computed by 3.20.
5the variables are sampled independently
6the fundamental reason is that detailed balance must be satisfied in a Metropolis-Hastings

algorithm
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0 τ1 τ2 τ3 τ4 τ
k k− q1 k k− q2 k

q1
q2

(a) A possible configuration for the current diagram.

0 τ1 τ ′ τ2 τ3 τ ′′ τ4 τ
k k− q1 k− q1 − q k− q k− q− q2 k− q2 k

q1
q2

q

(b) A possible configuration for the proposed diagram.

Figure 3.1: An example of an add-internal update.
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3.2.2 remove-internal

For this update we can refer again to Figure 3.1, but this time the reverse happens.
The parameter of this update is an integer m ∈ [0, n] which selects the phonon
propagator to remove. The propagators are considered to be ordered by the time of
their left (first) vertex, and the choice happens uniformly. Now the formula 3.23 is
justified, since 1/(n+1) represents the probability that any particular propagator
is chosen, reverting the add-internal update.

The weight ratio is the analog of 3.21:

Dnew

Dcur

=
(2π)d

(gτ)2
exp

{
−τ

i′′∑
i=i′

∆τi[ε(ki + q)− ε(ki)− ω(q)]

}
(3.27)

here the factor multiplying the exponential is inverted, and signs inside the
square brackets must be changed to reflect the phonon removal. Similarly, prev/pupd
becomes:

prev
pupd

=
1/(2π)d · 1 · E(t;ω(q)τ, 1, τ ′)

1/n
(3.28)

where τ ′ is the left (first) vertex of the propagator about to be removed.

3.2.3 change-τ

After implementing the add-internal and remove-internal updates, the bare elec-
tron propagator can get dressed with virtual phonons and the perturbation comes
into play. But since those updates don’t change the total length (in imaginary
time) of the diagram, one gets information about the one-electron Green function
only at one fixed time, the one used to initialize the first diagram with zero virtual
phonons. Hence further updates to change τ must be devised.

Given that we work with scaled times, we can change τ to a new value τ ′

leaving the scaled τi as they are. This corresponds to “stretching” the diagram to
a new total length, maintaining the relative distances unaltered. The weight ratio
for such an update is:

(τ ′/τ)2n exp(−(τ ′ − τ)(Arg− µ)) (3.29)

where Arg is defined as:
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0 τ1 τ2 τ3 τ4 τ
k k− q1 k k− q2 k

q1

q2

(a) A possible configuration for the current diagram.

0 τ1 τ2 τ3 τ4 τ ′
k k− q1 k k− q2 k

q1

q2

(b) A possible configuration for the proposed diagram.

Figure 3.2: An example of a change-tau update.

Arg =
∑
i

ε(ki)∆τi +
∑
j

ω(qj)∆τj (3.30)

and i, j indicate respectively electron and phonon lines.
Note that this update is self-balancing: the kind of update that reverts an

instance of this class of updates belongs to this same class. But still, we must
calculate the ratio prev/pupd. If one chooses τ ′ uniformly distributed in [0, τmax],
the ratio becomes just 1 because each update and its reverse happen with the same
probability.

3.2.4 add-external

Like add-internal and remove-internal, add-external and remove-external consti-
tute a pair of updates that must exist at the same time in the code to fulfill the
detailed balance requirement. This update adds an external phonon pair with the
same q (momentum is conserved) to the beginning and end of the diagram, also
adding two interaction vertices (Figure 3.3).

The calculation of this weight ratio requires distinguishing between the cases
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t′ < t′′ and t′′ < t′. For t′ < t′′ the update only affects the beginning an the end of
the diagram:

Dnew

Dcur

=
(gτ)2

(2π)d
exp

{
−τ

[
i′∑
0

+
n−1∑
i′′

]}
(3.31)

where the summation symbols mean exactly the same kind of summation already
seen in add-internal:

i2∑
i1

=

i2∑
i=i1

∆τi[ε(ki − q)− ε(ki) + ω(q)] (3.32)

Instead, for t′′ < t′ the whole diagram is changed and ki is decreased by 2q in
the segment [t′′, t′] because of the presence of both the added propagators (Figure
3.3).

prev
pupd

=
1/(next + 1)

1/(2π)d · E(τ ′;ω(q)τ, 1, 0) · E(τ ′′;−ω(q)τ, 1, 0)
(3.33)

3.2.5 remove-external

remove-external complements add-external in the same way as in the internal
phonon case. We can once again refer to Figure 3.3 with the process happening
backwards. The weight ratio must be properly inverted, similarly to what was
done for 3.27. For example, for t′ < t′′ one gets:

Dnew

Dcur

=
(2π)d

(gτ)2
exp

{
−τ

[
i′∑
0

+
n−1∑
i′′

]}
(3.34)

i2∑
i1

=

i2∑
i=i1

∆τi[ε(ki + q)− ε(ki)− ω(q)] (3.35)

And prev/pupd becomes:

prev
pupd

=
1/(2π)d · E(τ ′;ω(q)τ, 1, 0) · E(τ ′′;−ω(q)τ, 1, 0)

1/next

(3.36)
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0 τ1 τ2 τ3 τ4 τ
k k− q1 k k− q2 k

q1

q2

(a) A possible configuration for the current diagram.

0 τ1 τ2 τ ′ τ3 τ ′′ τ4 τ
k− q k− q− q1 k− q k k− q2 k− q2 − q k− q

q1

q2

q q

(b) A possible configuration for the proposed diagram for τ ′ < τ ′′.

0 τ1 τ2 τ ′′ τ3 τ ′ τ4 τ
k− q k− q− q1 k− q k− 2q k− 2q− q2 k− q− q2 k− q

q1

q2

q q

(c) A possible configuration for the proposed diagram for τ ′′ < τ ′.

Figure 3.3: An example of an add-external update for both τ ′ < τ ′′ and τ ′′ < τ ′.
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0 τ1 τ2 τ3 τ4 τ
k k− q1 k k− q2 k

q1

q2

(a) A possible configuration for the current diagram.

0 τ1 τ2 τ3 τ4 τ
k k− q1 k k− q2 k

q1
q2

(b) A possible configuration for the proposed diagram.

Figure 3.4: An example of a shift-vertex update.

3.2.6 shift-vertex

The shift-vertex update was added to improve the total ratio of accepted diagrams.
A vertex of the diagram is chosen randomly, and its τi is shifted to a new value
τ ′i between the previous τl and next τr times, so that the topology stays the same
(Figure 3.4). It can be shown that the expression for the weight ratio is:

Dnew

Dcur

= exp(−τ∆E(τi − τ ′i)) ∆E = ε(kin)− ε(kout)± ω(q) (3.37)

where kin is the incoming electron wave vector from the left, kout is the outgoing
wave vector and the sign on the phonon term depends on whether it is absorbed
or emitted.

If τ ′i is drawn from the distribution:

τ ′i ← E(t; τ∆E, τr, τl) (3.38)

prev/pupd becomes exactly equal to the weight ratio and the acceptance ratio
for this kind of updates is unity, which is ideal.
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3.3 The histogram method

The histogram method allows the calculation of the one-electron Green function
from a single run of the simulation. It requires the implementation of the change-τ
update (in addition to the always required add-internal and remove-internal) since
one needs to probe diagrams with an arbitrary τ .

The idea behind this method is simple: one sets a maximum τmax and divides
the interval [0, τmax] into an arbitrary number of bins, which controls the resolution
with which the Green function is known. Then one keeps track of the number of
occurrences of diagrams in each bin: after an update is accepted or rejected, one
looks at the τ of the new diagram and increments the bin inside which this value
falls.

However, note that this procedure doesn’t directly yield the Green function:
the first thing to do is to turn this histogram into a proper probability density
histogram. This is a usual procedure that is accomplished by dividing each count
by the total number of occurrences N and the bin length δτ :

But this is not yet the Green function: being a probability distribution, it is
the Green function divided by a normalization constant C which is unknown (it
is the Green function integrated from 0 to τ). Nevertheless, this constant can be
estimated by observing that:

N0

N
≈ C0

C
→ C ≈ NC0

N0

(3.39)

where N0 is the number of order 0 diagrams, C0 is the normalization constant
for the unperturbed electron Green function, and the approximation is valid for
N big enough so that statistics approach the theoretical probability. C0 can be
obtained analytically.

Putting 3.39 together with the probability density normalization, one gets:

1

NδτC
=

C0

N0δτ
(3.40)

which is the total factor to rescale the histogram.
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3.3.1 The µ parameter

There is still an issue with the histogram method. Consider the bare electron
propagator at the bottom of the band: its energy is negative, and the propagator
has a minus sign in the argument of the exponential. This means that if one tries
to simulate the Green function as it is, the behavior will resemble an increasing ex-
ponential, with very high values at large times and very small ones near zero. This
is a problem since the statistics at small τ will be poor, leading to an inaccurate
normalization [23].

For this reason the factor eµτ is multiplied to the weight D. The parameter is
named µ because it has the same energy shifting effect as the chemical potential
would have in the many-electron case.7

However, µ cannot be too large, otherwise the diagrams at large τ will be too
few, which is bad for the exponential fit. So one has to tune µ to be a little lower
than the perturbed ground state energy E0 to obtain optimal results.

Of course, the effect of µ must be taken into account before extracting results
from the Green function.

Examples of simulations of the Green function are presented in Figure 3.5 and
3.6. Table 3.1 and 3.2 report the parameters used and the results of the exponential
fit to obtain E0 and Z0. Note that to obtain P (0, τ) the add-external and remove-
external updates were enabled. The intercept in this case is close to 1, which is
the expected result for the sum of the N-phonon quasiparticle weights.

N α γ k τmax µ E0 Z0

10M 0.5 0.5 0 50.0 -2.2 -2.172 0.82

Table 3.1: Parameters and fit results for Figure 3.5.

N α γ k τmax µ E0 intercept
50M 0.5 0.5 0 50.0 -2.2 -2.172 0.99

Table 3.2: Parameters and fit results for Figure 3.6.

7here we work at zero temperature and with a single electron, so µ is just an unphysical
addition that must be removed when collecting the results.
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Figure 3.5: The one-electron Green function compared to the bare propagator.

Figure 3.6: Sum of all the one-electron-N-phonons Green functions.
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3.4 Direct estimators

Direct estimators, introduced by Mischenko et al. [21] for the Fröhlich Hamilto-
nian, are a convenient alternative to obtain directly many properties of the system
without the need to compute the Green function histogram. The derivation of
all estimators are fundamentally based on the following Monte Carlo integration
result:

Q(x′)

Q(x)
=

∑
ν Dν(x

′)∑
µDµ(x)

=
∑
ν

Dν(x)∑
µDµ(x)

Dν(x
′)

Dν(x)
≈
〈
Dν(x

′)

Dν(x)

〉
MC

(3.41)

where the last passage follows from:

pMC =
Dν(x)∑
µDµ(x)

(3.42)

Derivations of specific estimators used in this work are presented in the follow-
ing subsections.

3.4.1 Energy estimator

Information about the ground state properties of the polaron is found in the long-
time behavior of the polaron propagator.

Let us consider the following ratio between polaron propagators, for τ ap-
proaching infinity:

P (k, (1 + λ)τ)

P (k, τ)
−−−→
τ→∞

e−E0(k)(1+λ)τ

e−E0(k)τ
= e−E0(k)λτ (3.43)

where λ is a real number. Expanding the previous expression for small λ:

e−E0(k)λτ = 1− λE0(k)τ +O(λ2) (3.44)
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Developing the right side of equation 3.41:

D(k, (1 + λ)τ)

D(k, τ)
= (1 + λ)2n

∏
i

exp {−λε(ki)τ∆τi}
∏
j

exp {−λω(qj)τ∆τj}

= (1 + λ)2n exp

{
−λτ

∑
i

ε(ki)∆τi − λτ
∑
j

ω(qj)∆τj

}

= (1 + 2nλ+O(λ2))

(
1− λτ

[∑
i

ε(ki)∆τi +
∑
j

ω(qj)∆τj

]
+O(λ2)

)

= 1 + λ

(
2n− τ

∑
i

ε(ki)∆τi − τ
∑
j

ω(qj)∆τj

)
+O(λ2)

= 1− λ

(
−2n+ τ

∑
i

ε(ki)∆τi + τ
∑
j

ω(qj)∆τj

)
+O(λ2) (3.45)

where n indicates the number of phonon propagators, and 2n is the number of
interaction vertices. Comparing 3.45 to 3.44 one obtains the final result:

E0(k) =

〈
− 2n

τ
+
∑
i

ε(ki)∆τi +
∑
j

ω(qj)∆τj

〉
MC

(3.46)

3.4.2 Effective mass and group velocity estimators

Similarly to the energy case, we look again at the long-time behavior of a ratio
involving P , but this time k is varied instead of τ :

P (k+ λe, τ)

P (k, τ)
−−−→
τ→∞

exp {−τ [E0(k+ λe)− E0(k, τ)]} (3.47)

Perform a Taylor expansion around k for small λ:

E0(k+ λe) = E0(k) +∇E0(k) · λe+ λeT
[
1

2
HE0(k)

]
λe+O(λ3) (3.48)

Inserting 3.48 in 3.47 we get:
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exp

{
−τ∇E0(k) · λe+ λeT

[
−1

2
τHE0(k)

]
λe+O(λ3)

}
= 1− τ∇E0(k) · λe+ λeT

[
−1

2
τHE0(k)

]
λe+

1

2
[τ∇E0(k) · λe]2 +O(λ3)

= 1− τ∇E0(k) · λe+
1

2
λeT[−τHE0(k) + τ 2∇E0(k)⊗∇E0(k)

]
λe+O(λ3)

(3.49)

where ⊗ is the outer product between two vectors, yielding a matrix that
consists of all the possible products between their components.

Perform the same expansion for the diagram weights:

D(k+ λe, τ)

D(k, τ)
=
∏
i

exp {−[ε(ki + λe)− ε(ki)]τ∆τi} (3.50)

ε(ki + λe)− ε(ki) = λ∇ε(ki) · e+
1

2
λ2eTHε(ki)e+O(λ3) (3.51)

exp

{
−
∑
i

[
λ∇ε(ki) · e+

1

2
λ2eTHε(ki)e+O(λ3)

]
τ∆τi

}
=

exp

{
−τ

[
λ
∑
i

∇ε(ki)∆τi · e+
1

2
λ2eT

∑
i

Hε(ki)∆τie+O(λ3)

]}
(3.52)

It is convenient to define the following quantities:

k? ≡
∑
i

∇ε(ki)∆τi (3.53)

H? ≡
∑
i

Hε(ki)∆τi (3.54)

1− τk? · λe− 1

2
λ2τeTH?e+

1

2
λ2τ 2(k? · e)2 +O(λ3) =

1− τk? · λe+ 1

2
λeT[−τH? + τ 2k? ⊗ k?

]
λe+O(λ3) (3.55)

• k 6= 0: Group velocity
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For k 6= 0 we get information about the group velocity. Comparing the first
order terms in the expansions 3.55 and 3.49:

∇E0(k) = 〈k?〉MC (3.56)

• k = 0: Effective mass

The effective mass is related to the Hessian matrix of the energy dispersion
relation, so the second order term must be considered. Note that the effec-
tive mass is calculated at the bottom of the band where the energy has a
minimum, which means that all the terms in 3.49 containing the gradient
vanish.

HE0(0) = 〈H? − τk? ⊗ k?〉MC (3.57)

Let us evaluate the gradient and Hessian of the energy dispersion in a couple
of particular cases:

• Free electron dispersion (Fröhlich Hamiltonian [22] case)

ε(k) =
k2

2
(3.58)

∇ε(k) = k (3.59)

Hε(k) = 1 (3.60)

from which follows:
k? =

∑
i

ki∆τi (3.61)

H? = 1

∑
i

∆τi = 1 (3.62)

• Tight binding dispersion (Holstein Hamiltonian case)

Assuming a simple cubic lattice:

ε(k) = −2t
∑
i

cos(ki) (3.63)

∇ε(k) = ∂nε(k) = 2t
∑
i

sin(ki)δin = 2t sin(kn) (3.64)
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Hε(k) = ∂m∂nε(k) = 2t cos(kn)δnm (3.65)

from which follows:
k?n = 2t

∑
i

sin (kn,i)∆τi (3.66)

H?
nm = 2tδnm

∑
i

cos(kn,i)∆τi (3.67)

where index i is over electron propagators.

3.4.3 Z factors and average number of phonons

Let’s start by observing that Z(N)
0 (k) may be obtained as the limit of the following

ratio for long times:

G(N)(k, τ)

P (k, τ)
−−−→
τ→∞

Z
(N)
0 (k)e−E0(k)τ

e−E0(k)τ
= Z

(N)
0 (k) (3.68)

Using the definitions 3.5 and 3.6 the ratio becomes:

G(N)(k, τ)

P (k, τ)
=

∫
dq1· · ·

∫
dqNG

(N)(k, τ,q1 . . .qN)∑
N ′

∫
dq1· · ·

∫
dqN ′G(N ′)(k, τ,q1 . . .qN ′)

=
∑
N ′′

∫
dq1· · ·

∫
dqN ′′

G(N ′′)(k, τ,q1 . . .qN ′′)δN ′′,N∑
N ′

∫
dq1· · ·

∫
dqN ′G(N ′)(k, τ,q1 . . .qN ′)

=
∑
ν′′

Dν′′(k, τ)∑
ν′ Dν′(k, τ)

δN ′′,N ≈ 〈δNm,N〉MC

(3.69)

where the Green functions were expressed in terms of diagram weights and the
collective index ν was used to summarize all summation/integration variables.

Putting together the two results we get that at large τ the N-phonon Z fac-
tors for the ground state is simply the frequency of generating a diagram with N
external phonons:

Z
(N)
0 (k) ≈ 〈δNm,N〉MC ≡

1

M

M∑
m

δNm,N (3.70)

This result also allows to obtain the average number of phonons in the polaronic
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cloud:

Nph =
∞∑

N=1

Z
(N)
0 (k) ·N (3.71)

3.4.4 Green function

The Green function itself may also be calculated via an estimator, providing a
better alternative to the histogram method. This estimator is derived for the case
of diagrams of order 2 for notational simplicity, the generalization to order n is
trivial. Let’s start by constructing the following estimator:

gτ0(τ1, τ2, τ) =

 1
size(Γτ0 )

Dτ1τ2 (τ0)

Dτ1τ2 (τ)
τ ∈ Γτ0

0 otherwise

where Γτ0 is an arbitrary interval containing τ0 and τ1, τ2 are scaled times. In this
way:

〈gτ0〉MC =

∫ τmax

0

dτ
∫ 1

0

dτ2
∫ τ2

0

dτ1gτ0(τ1, τ2, τ)
Dτ1τ2(τ)

C
=

1

C

∫
Γτ0

dτ
∫ 1

0

dτ2
∫ τ2

0

dτ1
Dτ1τ2(τ0)

size(Γτ0)
=
G(τ0)

C
(3.72)

So this estimator really reproduces the Green function, up to the multiplicative
constant C which can be obtained by 3.40. Note that a factor of (τ0/τ)2 arises in
the estimator as a consequence of the time scaling 3.18.

3.5 Implementation

In this section the implementation of the DMC algorithm that was written for this
thesis is presented. The code is mainly divided into two parts:

1. The main loop

2. The implementation of the update procedures

After all the parameters characterizing a particular run have been supplied, the
state is initialized with a zero-order diagram, and a burn-in loop of D thermalization
steps is started. These steps are simply discarded (no measurements are taken)
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because the initial steps of a MCMC procedure are clearly far away from the target
equilibrium distribution, and would give an unwanted bias if included.

At this point the main loop starts. At every iteration, one (or more) updates
are performed and statistics are collected on the resulting state. The variable
N_updates defines how many updates are performed before each measurement. The
structure in C code is:

1 init(diagram)
2

3 for (i=1; i<=D; i++)
4 // thermalization steps
5

6 for (i=1; i<=N; i++) {
7 for (j=1; j<=N_updates; j++) {
8 choice = rng_choice(n_sel_updates)
9 update[choice](diagram)

10 }
11 // collect statistics:
12 // histograms , estimators
13 }

update[] is an array of n_sel_updates procedures built dynamically depending
on which type of updates were enabled at program launch. rng_choice draws one
of them (for example, try-add-internal), and the chosen function is called. These
functions share a common structure:

1. Draw parameters of the update (τ1, τ2,q) from the distributions mentioned
in 3.2.

2. Evaluate the weight ratio.

3. Draw a random number ∈ [0, 1], and actually perform the update (changing
the state) if the number is less than the acceptance calculated in step 2.

For example, the try-add-internal must call two other subroutines in order to
do its job: eval-add-internal, which evaluates the weight ratio without changing
the state, and finally add-internal to actually perform the update if step 3 was
successful. Obviously, different types of updates require different parameters drawn
from arbitrary distributions.

Up to this point no specific assumption was made about how the diagrams are
represented in memory and how the updates are carried out. This is the second
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(and lower-level) layer of the code. Each type of update x must implement the
methods x and eval-x, like add-internal and eval-add-internal from the previous
example. The clear separation into two layers makes it possible to replace initial
implementations of the updates with eventual better performing ones without
having to touch the higher-level layer. Moreover, the updates implementation is
entirely deterministic, which means that it is easier to test for correctness.

Only the current state is kept in memory. The memory representation of
a diagram is a collection of numeric variables such as order, τ , k, number of
external phonons, etc. plus an array of vertices. A vertex contains information
about its τi, the τj which is connected to by the internal phonon propagator, the
phonon momentum q, whether the phonon is internal or external and whether it
is absorbed or emitted.

The representation just described is simple but not optimal. More details about
devising a more performant strategy for diagram representation in memory and
related update algorithms can be found in [24].

3.5.1 Testing

A preliminary form of testing was carried out by restricting the simulations over
low order diagrams to be compared with “exact” (non-random) standard numeri-
cal integration. Diagram order must be low enough so that numerical integration
can provide the answer in a comfortable time. As the number of integration vari-
ables increases, standard integration simply can’t compete with the Monte Carlo
approach because it suffers an exponential increase in the integrand evaluations
(this problem is commonly referred to as curse of dimensionality [25]). This test
ensures that at least for low orders the implementation is correct (Figure 3.7).

The update procedures constitute the most important and critical section of
the code. A small error could give totally wrong results and is difficult to spot
in general. For this reason the following testing mechanism was conceived: the
assumption is that a reference implementation that gives the correct results exists.
Here the reference implementation is another code written by the author, in a
higher level and safer language, with a focus on clarity rather than performance.
The code to be tested is referred to as fast implementation instead. As mentioned
in the previous section, updates are deterministic and they return a floating point
number (the acceptance probability). The test then consists in producing a random
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Figure 3.7: DMC agrees with standard N-dimensional integration by the quadra-
ture method for low orders. DMC data is in histogram form while integration is
represented by lines. The second order term needs to be calculated as a sum of
the integrals for the three possible topologies.

“path” in diagram space for a large enough number of steps, running both the
reference and fast implementations on it, and comparing the output of the update
procedures, which should be the same in the limit of floating point errors.
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Chapter 4

Results

In this part, results obtained with the author’s implementation of DMC applied
to the Holstein Hamiltonian are presented and discussed. The data is visualized
in a series of graphs focusing on the dependence of each observable on one or more
selected parameters.

Data from the author’s implementation is always displayed as discrete points
with associated error, which is then compared in the same graph to different kinds
of reference data, when available:

• Analytic results from perturbation theory, which give expected behavior for
limiting cases of the parameter space. These are labeled as “PT-hi” for
the strong coupling limit (high α) and “PT-lo” for the weak coupling limit
(α ≈ 0).

• Results from a different, independent implementation of the same DMC
method, taken from Macridin’s study [15] and labeled as “MACR”.

• Results from another analytical approximation, which unlike perturbation
theory allows to obtain good results at all couplings. It is based on the
calculation of the Green function by summing over the class of the self-energy
diagrams, but with each self-energy diagram averaged over the momenta of
its free propagators [26]. These are labeled as “GDV”.

• Results from the continuous-time path-integral quantum Monte Carlo algo-
rithm employed by Kornilovitch in [27][28], labeled as “KOR”. It is based on
Feynman’s integration of phonons and subsequent simulation of the resulting
single-particle self-interacting system.
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N τmax Omax D

5 M 12.0 300 1 M

Table 4.1: Standard initial settings employed in simulations (M = 106).

Settings

There are a few settings1 that must be carefully tuned in order to run the program
properly:

1. N , number of iterations. This is trivial because in a Monte Carlo simulation
results will converge only when the number of iterations is high enough.
The error introduced by this can be quantified by the size of the error bars
calculated via the blocking method.

2. τmax, diagram length. This parameter is important because in order to probe
the ground state, the diagram length must be sufficiently high. How much
exactly is not known a priori, so it must be discovered in a trial-and-error
approach.

3. Omax, maximum order (the maximum number of internal vertices that can
be placed in a diagram). If this number is reached by a diagram in a run,
the distribution is artificially limited by that and will not reflect the true
stationary distribution. The run must be restarted with a higher maximum
order.

4. D, burn-in iterations

Raising the values of each one of these settings improves the simulation in some
way, but it also increases the time required to complete it. Therefore I will refer
to a set of standard initial settings which was found to be a reasonable default for
most of the results presented in the following discussion. These settings are quick
for debug purposes. Every time these settings are not sufficient anymore for the
point of the physical parameter space that is being investigated, there will be a
mention on how to adjust them.

1“settings” refers to parameters of the program, in contrast to the physical parameters of the
Hamiltonian. τmax is physical but will be treated as a setting nonetheless.
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4.1 Ground state properties

4.1.1 1D

Energy

The values of the energy estimator as a function of the dimensionless coupling
parameter α are presented in Figure 4.1. The most important feature of this
graph is the possibility to recognize two regions with different behavior:

• A low-coupling region for α < 2. Near 0, this part is well described by low-
coupling perturbation theory and the dependence is approximately linear.

• A transition region near α = 2 where the behavior changes quite rapidly.

• A high-coupling region for α > 2. The dependence is again linear, but with
a different slope.

Recall that α was defined as 2.16, which means that the transition takes
place when the lattice deformation energy approaches the bare electron band-
width (2.44). This is why most authors redefine α to include the factor of 2 so
that the transition happens at the “normalized” value of 1.

The figure also shows how the other parameter of the Holstein Hamiltonian,
γ = ω0/t, affects the curve. A smaller adiabaticity ratio results in a sharper
transition (but there is no discontinuity, the curve is always smooth).

For the energy estimator, the agreement between data obtained in this work
and previous DMC results (Figure 4.1), as well as path-integral QMC results (Fig-
ure 4.2) is very good.

Quasiparticle weights

In the one-dimensional lattice Z0 drops at a steady rate which is determined by
the adiabaticity constant: the smaller ω0, the steeper the slope. This means that
the electron gets dressed rapidly as the coupling increases. At high coupling the
quasiparticle weight is zero, meaning that the perturbed state has no overlap with
the bare electron state without phonons: the character of the state becomes totally
different as expected from strong-coupling perturbation theory.
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N τmax Omax D

150 M 34.0 600 1 M

Table 4.2: Settings for 1D γ = 0.1.

Number of phonons

The polaron ground state is not an eigenstate of the phononic number operator,
but the average value of the observable can be considered. It follows directly from
the quasiparticle weight distribution over a given number of phonons.

Figure 4.4 shows the bare electron progressively “dressing up” as the coupling
increases, in a fashion consistent with 4.3. The number of phonons in the cloud
surrounding the electron increases with decreasing γ.

Here the agreement with Macridin’s results is still good, but not perfect as
the γ = 0.1 curve deviates a bit, probably due to different τmax settings used. In
this case the high-coupling perturbation limit is still not reached. The effective
mass results (Figure 4.5) show a similar trend, but reaching the high-coupling limit
becomes even more difficult.

Effective mass

The effective mass was generally the most problematic observable to compute
reliably. The main reason for this is apparent by its own definition: to get the
effective mass one has to invert the estimator 3.57, so a good accuracy in the
estimator is required for reliable results.

In the graph 4.5, the effective mass enhancement (ratio between the perturbed
effective mass and the bare effective mass) is plotted. This value spans several
order of magnitudes, so the logarithm is taken.

The cases γ = 1.0, γ = 0.5 could be obtained with the standard settings, while
for the case γ = 0.1 an increase in τmax and Omax was needed. Consequently, the
number of iterations must be also increased. Table 4.2 shows the new settings.

A linear dependence in Figure 4.5 corresponds to an exponential enhancement:
The polaron mass becomes quickly so high that external forces have little effect
on it. Its ground state has therefore the character of a localized, trapped state.
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Figure 4.1: Energy vs. coupling, 1D lattice.

Figure 4.2: Energy vs. coupling, 1D lattice, γ = 1
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Figure 4.3: Z0 q.p. weight vs. coupling, 1D lattice.

Figure 4.4: Nph vs. coupling, 1D lattice.
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Figure 4.5: Logarithm of the effective mass enhancement vs. coupling, 1D lattice.
The MCMC steps were increased to 400M, with measurements taken every 2 steps.
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To summarize, the transition happens around α = 2, the sharper the lower
γ. Around this value, the quasiparticle weight drops abruptly while the effective
mass starts to increase. In this region, the ground state is a mixture of both a
large-radius polaron state, with its main contribution from the bare electron state,
and a small polaron state, with a larger number of phonons.

4.1.2 2D and 3D

Adjusting the code for the N-dimensional case consisted basically in a couple of
straightforward modifications:

• Summing over dimensions in the electronic “kinetic” term of the Hamiltonian

• Vectorizing all the operations involving momenta

• Remembering to include a factor of 2π for each component in the acceptance
probability calculation when drawing a new q-vector

The bidimensional and tridimensional cases share the majority of features with
the one-dimensional case, but different behavior was found in some aspects.

Comparing the 2D energy-coupling in 4.6 to the 1D case, one notes that the
transition is sharper: the γ = 0.5 curve clearly shows the transition happening in
a region very highly localized around 2, whereas the 1D plot required raising γ

to higher values. Energies are overall scaled by a factor of 2 which is due to the
added term in the electronic “kinetic” part.

The 3D results further confirm this observation: here the transition is so local-
ized in coupling that the curve appears to possess almost a cusp-like singularity
(Figure 4.10). Figure 4.14 compares the behavior of different dimensionalities for
the same value of the γ parameter.

The Z0 observable is affected by dimensionality in a very specific way: from
1D to 2D the curve changes its concavity from positive to negative. This means
that the contribution of the bare electronic state decreases slower at the beginning

N τmax Omax D

60 M 34.0 1000 1 M

Table 4.3: Settings for 3D γ = 0.5.
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and falls off abruptly at a certain point. Also in this case, the 3D behavior is even
more pronounced, with the γ = 0.5 curve falling almost vertically.

Something similar happens to the Nph estimator, which directly depends on
phonon distribution. In the high coupling regime, the average number of phonon
increases much more rapidly compared to 1D, in agreement with the perturbation
theory results.

The effective mass was considerably more difficult to compute with respect
to the one-dimensional case. As previously discussed, it was found that proper
measurements could only be obtained by raising the total diagram length, which
severely impacts the time required for running the simulation. This is made worse
by the added time penalty due to vector operations in many dimensions.

Since we are working under the assumption of a simple cubic lattice, the
isotropy can be exploited to take an average over the diagonal of the effective
mass tensor, which has theoretically the same value along all directions. This
helps a bit to reduce the error because three measurements are taken into account
instead of a single one.

Similarly to the 1D case, the agreement with previous DMC data is overall
very good for the values of γ considered. However, it is difficult to reach the
high coupling perturbation limit for the effective mass as convergence gets more
and more computationally expensive (Figures 4.9 and 4.13). There is also a slight
deviation from Goodvin’s analytical approximation for the quasiparticle weight Z0

(Figure 4.7).
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Figure 4.6: Energy vs. coupling, 2D lattice.

Figure 4.7: Z0 q.p. weight vs. coupling, 2D lattice.
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Figure 4.8: Nph vs. coupling, 2D lattice.

Figure 4.9: Logarithm of the effective mass enhancement vs. coupling, 2D lattice.
The MCMC steps were increased to 200M, with measurements taken every 2 steps.
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Figure 4.10: Energy vs. coupling, 3D lattice.

Figure 4.11: Z0 q.p. weight vs. coupling, 3D lattice.
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Figure 4.12: Nph vs. coupling, 3D lattice.

Figure 4.13: Logarithm of the effective mass enhancement vs. coupling, 3D lattice.
The MCMC steps were increased to 200M, with measurements taken every 2 steps.
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Figure 4.14: Energy vs. coupling for different dimensionalities z, γ = 1.0

Figure 4.15: Logarithm of the effective mass enhancement vs. coupling, γ = 1.0
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4.2 Momentum dependence

The large momentum polaron state was found to be very different from the small
momentum state at both small and intermediate coupling:

• At small momentum, the electron is lightly dressed with a large quasiparticle
weight and a dispersion very similar to that of a bare electron. At small
coupling the number of phonons at large momentum is related to the number
of phonons of the ground state by Nph(k � 0) ≈ Nph(k = 0) + 1

• As momentum is increased, the polaron state starts to mix with the one-
electron plus one-phonon continuum, The polaron dispersion flattens and
looks more like the phonon dispersion. The Z0 quasiparticle weight ap-
proaches 0 as the energy approaches the continuum edge.

4.2.1 1D

Energy

The results for the case of small coupling (α = 0.5) and intermediate coupling
(α = 2.0) are reported in Figure 4.16. γ is kept at 0.5 throughout this section.

The weak coupling perturbation theory works well for small momentum, but
it starts to fail at some point, producing an unphysical maximum in the polaron
dispersion. This is due to the fact that below ω0 = 4 there is a momentum value
at which the denominator of the energy correction becomes zero, which causes the
perturbative expansion to diverge. [23]

In contrast, the DMC simulation shows that the polaron energy continues to
increase, up to a point near the middle of the positive half of the Brillouin zone
where the curve becomes almost flat, and tends towards the E(0)+ω0 value which
is the energy of a state containing one more phonon2. This indicates that the
polaron at large momentum is a weakly bound state.

In the intermediate coupling case perturbation theory fails as expected. The
same flattening of the polaron dispersion at large k can be seen but now there is less
difference from the k = 0 values due to the increased coupling with phonons. Its
limit is not E(0) + ω0 anymore, which hints at a state containing a larger number
of phonons, which is confirmed by the following results on phonon statistics.

2with respect to the k = 0 state of energy E(0)
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N τmax Omax D

α = 0.5 20 M 60.0 600 1 M
α = 2.0 10 M 12.0 600 1 M

Table 4.4: Settings for the upper half of the BZ in 1D momentum dependent
simulations (M = 106).

N τmax Omax D

α = 1.69 500 M 12.0 600 1 M

Table 4.5: Settings for the zone boundary in 2D momentum dependent simulations.

Phonon statistics

At small coupling and small k the Z0 quasiparticle weight is high, indicating that
the polaron is still a lightly dressed electron (Figure 4.17). Figure 4.18 confirms
that the high k state contains approximately one more phonon for α = 0.5, while
raising the coupling increases this number. The energy and average number of
phonons curves are strongly correlated, showing similar behavior.

4.2.2 2D

For the 2D lattice case, the following path in k-space was chosen:

(0, 0)→ (π, π)→ (π, 0)→ (0, 0)

The results are reported in figures 4.19, 4.20 and 4.21. The behavior was found
to be similar to the one-dimensional case:

• At the zone boundary the polaron is in the weakly bound state with a flat
dispersion

• At the zone center the Z0 quasiparticle weight is large, and is decreasing
very rapidly with increasing k

Here the number of phonons is again larger by more than one than the corre-
sponding k = 0 number, as in the one-dimensional case, but the effect seems to
be enhanced by the higher dimensionality: the difference is larger even though the
coupling is smaller (α = 1.69 vs. α = 2.0).
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Figure 4.16: Energy vs. momentum, 1D lattice, γ = 0.5.

Figure 4.17: q.p. weight Z0 vs. momentum, 1D lattice, γ = 0.5.
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Figure 4.18: Average phonon number vs. momentum, 1D lattice, γ = 0.5.

Figure 4.19: Energy vs. momentum, 2D lattice, γ = 0.5.
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Figure 4.20: q.p. weight Z0 vs. momentum, 2D lattice, γ = 0.5.

Figure 4.21: Average phonon number vs. momentum, 2D lattice, γ = 0.5.
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Conclusions and future work

The results showed good agreement with the reference data in general, which was
somewhat expected as the method was developed with the polaron problem in
mind, specifically the Fröhlich Hamiltonian, which differs just by the form of the
electron-phonon interaction and electron dispersion. The quality of the present
implementation has been validated with existing analytical perturbation theory
results and previous DMC simulations. This work represents a systematic analysis
of the main Holstein polaron properties in 1D, 2D and 3D, which was not fully
carried out in literature.

The strong coupling behavior of the ground state energy and average phonon
number was found to match very well the perturbation theory results (Figures 4.1
and 4.4), which means that the coupling range considered was enough to enter
the strong coupling regime for these estimators. For the energy only, this was
partly due to having included higher order term in the perturbative expansion. In
contrast, the effective mass is still a bit far from the perturbation theory limit in
the coupling range considered, especially for low values of the γ parameter (Figure
4.5): computing the effective mass in the coupling range where perturbation theory
becomes a reasonable approximation is very expensive, at least in the present
implementation.

Significant deviation from Macridin’s and Goodvin’s data was obtained for
the momentum dependence of the average phonon number in 2D (Figure 4.21).
This computation was expensive, and it can be seen that the data points still do
not quite converge to a smooth line. Particularly suspicious is the deviation with
respect to Macridin’s result, since the same method is employed. This point will
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be further explored in the future, as well as the computation of the 3D energy
dispersion.

The biggest difficulties encountered during this work were related to the con-
vergence of certain estimators for certain ranges of the parameter space. Simula-
tions require more time in order to produce reliable results when the dimensionless
coupling constant α and dimensionality are increased. Decreasing the adiabaticity
ratio γ (while keeping fixed the hopping t) is also problematic, because convergence
is attained at larger times due to the condition τ � (ω0)

−1 [21] for the validity of
the estimator expressions. Diagrams with a larger τ require more points to achieve
the same “density” than with smaller τ .

As for the momentum dependence, when the 1D results were obtained the first
time, the k region where the dispersion flattens was problematic: it was showing
fast “oscillations” in the values of the energy and average phonon number observ-
ables, meaning that convergence was not achieved. This was attributed primarily
to a too low total acceptance ratio, which was slowing down the development of the
Markov chain. To improve the results, a series of improvements were introduced
into the code: the total acceptance ratio was increased by both introducing a new
type of update which is always accepted, the shift-vertex update, and by switching
to better suited exponential distributions for the parameter τ2 in the add-internal
update and the parameters τ1, τ2 in the add-external update.

Since this implementation is single-threaded and results for different momen-
tum and coupling are obtained by running independent simulation with the pa-
rameter of interest varied, the different runs can be launched in parallel. This was
useful in particular when running the code on the Vienna Scientific Cluster, since
the larger number of cores in the node of a cluster can be exploited. On the cluster,
a batch of 16 simulations (one per core) was run each time on a single node.

This provided only limited benefit for the coupling dependence, since the overall
execution time is largely dominated by the runs with the biggest couplings.

For the momentum dependence instead, this provides a significant speed-up
since the time required to perform a certain number of iteration is spread out
more evenly (it increases in the beginning as momentum is increased but reaches
a plateau around the middle of the Brillouin zone).

Future improvements may consist in using a better memory representation for
diagrams and faster implementations of the update procedures, following advice
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contained in [24]. The algorithm could also be modified into the Self-Energy
Diagrammatic Monte Carlo, in which the self-energy is sampled instead of the
Green function. The self-energy diagram expansion has fewer terms and should
therefore prove faster [23]. An even faster technique is Bold Diagrammatic Monte
Carlo [29] where the bare propagator is replaced with a dressed propagator so that
each diagram accounts for many diagrams of the self-energy expansion at once.
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