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Abstract

During the digital revolution there has been an explosion in the amount of data
produced by humanity. The capacity of conventional storage devices has been struggling
to keep up with this aggressive growth, highlighting the need for new means to store
digital information, especially cold data. In this dissertations we will build upon the
work done by the I3S MediaCoding team on utilizing DNA as a novel storage medium,
thanks to its incredibly high information density and effectively infinite shelf life. We will
expand on their previous works and adapt them to operate on the Nanopore MinION
sequencer, by increasing the noise resistance during the decoding process, and adding a
post-processing step to repair the damage caused by the sequencing noise.

Keywords: DNA, DNA data storage, long-term storage, Biologically con-

strained encoding solution, Image coding, Biological information theory, Ro-

bust encoding, Outlier detection, Damage detection, Image inpainting, Blind

inpainting, Inpainting in the wavelet domain
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Introduction

The amount of data produced and consumed by humanity has been steadily increasing
for years, with an estimated 90% of all data available on the internet having been produced
over the last two years. Most of this data is due to an explosion in multimedia content.
However, much of this new content is also very rarely accessed, with close to 80% being
effectively “cold” data. Nonetheless, this content must be stored and maintained for
security and legal compliance. The sheer volume of data produced forces large companies
to invest into entire data centers to house the conventional storage mediums, incurring in
exorbitant costs to build all the security, power supply and environmental infrastructure
surrounding one such endeavor. Additionally, this investment risks being just the tip of
the iceberg. The mean time between failures of traditional storage solutions, like Hard
Disk Drives and magnetic tapes, is measured in years, a couple of decades at most. This
means that every few years the data must be migrated to a new set of devices to ensure
reliability, adding a sizable recurring cost to the whole enterprise.

A novel alternative, that has become of great interest over the past few years [46], is
to use DNA as a storage medium. DNA is a complex organic molecule, constituted by
four building blocks, commonly referred to as nucleotides (nt): Adenine (A), Thymine
(T), Cytosine (C), and Guanine (G). As the support for heredity used by living organisms,
DNA possesses several properties that could make it a very effective medium to hold
human generated data. Firstly, it can be an extremely dense medium, information wise,
with a single gram of DNA being theoretically capable of storing up to 455 Exabytes
of data under optimal conditions. This extreme data density is due to both its three-
dimensional structure and quaternary encoding base. Secondly, it can retain information
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for incredibly long periods of time, persisting for centuries and even millennia in a still
readable state.

To use DNA as a storage medium is a very involved process, but it can be schematized
as follows. Firstly, the digital data has to be encoded into a quaternary schema using the
four DNA symbols A, T, C and G. Then, the DNA string needs to be synthesized. As the
synthesis process is error free as long as the sequences produced are less than 300nt in
length, the encoded data must first be split into smaller chunks. These are referred to as
“oligos” and are formatted in a way that includes Headers to carry the meta-information
needed to reconstruct the original encoded sequence, by aligning the oligos in the right
order. The oligos are then finally synthesized and stored in a hermetically sealed capsule.
This prevents contact with damaging agents and ensures their durability.

When the information needs to be retrieved, the capsule can be opened and the oligos
read via specific machines called sequencers. This step is one of the sticking points for
the whole process, as the sequencing tends to be a very error prone step. However, the
sequencing error can be minimized (but for now not eliminated) by abiding to some
biological constraints. These include limiting the total length of the synthesized DNA
strands, as well as avoiding excessive repetitions of nucleotides and patterns in the oligos.
The encoding algorithm must then be able to respect these restrictions, as is the case
for the code previously proposed in [54]. Then, to complete the decoding, the sequenced
oligos are amplified through a process called Polymerase Chain Reaction , filtered, and
finally used to reconstruct and decode the originally encoded data.

In addition to the noisiness of the sequencing, the high cost of DNA synthesis and
sequencing has remained one of the main drawbacks to biological data storage. However,
over the last few years the nanopore sequencing technology [47], along with its portability,
affordability and speed in data production has been revitalizing the idea of DNA storage.
There are, of course, drawbacks. The faster sequencing times come with a much higher
error rate when compared to other slower, more expensive, but more reliable sequencers.

To deal with the increased noise, abiding by the biological restrictions of the process is
fundamental, but not necessarily sufficient. A host of works (see for example [50] and [56])
have focused on tackling this higher error rate by relying on error correction techniques
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that increase the redundancy of the encoding. This however incurs into an increase of the
encoding cost. The approach developed during the internship with the I3S MediaCoding
[64] team marries a biologically constrained encoding process with noise resilience and
post-processing techniques.

This work was originally developed during a year-long Erasmus mobility period,
hosted by the Sophia Antipolis Polytechnique. The work was conducted as a six months
internship at the CNRS’s I3S Labs in Sophia Antipolis, as part of the MediaCoding team,
and as continuation of a previous month-long project exploring the barcoding process. In
this dissertation we will cover the work done during these six months.

We will provide the reader with a background on the current state of the art in
chapter 1, regarding the current works on DNA data storage as well as most common
inpainting techniques utilized for occlusion removal. In chapter 2 We will then proceed to
outline a comprehensive workflow that allows for reliable encoding, storage, decoding, and
repair of digital images onto synthetic DNA. This workflow, built upon the previous work
done by the I3S MediaCoding team, will be geared toward operating on the Nanopore
MinION[55], a much more portable and cheap sequencer than the classical Illumina[42]
machine. During the exposition of this workflow we will highlight and discuss the novel
additions brought by us during the internship, along with the effects of these contributions
and the circumstances that necessitated them. For reference, these contributions will be
covered in subsection 2.1.1, subsection 2.2.3, section 2.4 and section 2.6.

Lastly, in chapter 3 we will show the results of the encoding, decoding and post-
processing workflow on two different images at different levels of sequencing noise. After
that, in chapter 4, we will offer our view of the proposed work and possible future
improvements and extensions.
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Chapter 1

State of the Art

In this chapter we will provide a brief overview of the current literature. We will start
by quickly analyzing the evolution of DNA data storage over the years in section 1.1,
from its first implementations in the early 2010s [29] to the previous works done by the
I3S MediaCoding team, that we will be expanding upon. This is done to provide the
reader with a background into the current state of the art of DNA encoding, as well as
the sticking points of common approaches. In section 1.2 we will then perform a more
expansive analysis of the literature regarding image inpainting. We will focus mostly on
the pros and cons of different inpainting approaches, rather than their evolution over
time, as we want to provide a background on the various families of inpainting algorithms.
We will refer back to this analysis when discussing how to repair the damage caused by
the sequencing noise and our choice of algorithm for the Wavelet Inpaiting in section 2.6.

1.1 Works on DNA data storage

There have been several proposed implementations to encode data, especially media
files, onto DNA. The first attempt was done in [29], which also provided an analysis of the
main cause for biological errors. Later studies focused on guaranteeing noise resistance,
as the error rate of the process became a sticking point for all works concerning the
practicalities of DNA data storage. In [34] and [44] the problem was approached by
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1. State of the Art

Figure 1: Storage capacity of modern magnetic tapes compared to DNA[29].

splitting the encoded data into overlapping segments, so that each fragment is represented
multiple times. This technique, however, is not scalable and adds excessive redundancy.
Other approaches include the use of Reed-Solomon code to treat erroneous sequences and
guarantee the recovery of missing oligos [41], and performing forward error correction by
utilizing more than one dictionary during encoding, so as to encode each symbol with
more than one nucleotide sequence [45]. Lastly, [58] proposed a method that integrates
Huffman coding in the encoding, in order to store quantized images onto DNA. This work
also introduced the idea of utilizing post-processing techniques to correct the discoloration
in the reconstructed image.

These approaches, however, are all based on introducing redundancy, which increase
the global cost of the synthesis, rather than consider the input’s characteristics. Other
works have focused on introducing compression to DNA coding which, coupled with
avoiding unnecessary redundancy, can help minimize the synthesis cost. The team’s
previous works [51],[54] focused on one such approach. Additionally, in [57], was proposed
a novel DNA encoding algorithm for quantized images, capable of respecting the biological
constraints, while providing a new way to map the Vector Quantization (VQ) indexes to
DNA codewords so as to minimize the impact of errors in the decoded image. This adds
resistance to noise without having to rely entirely on error correction.

Most of the presented works, including the previous ones from the MediaCoding team,
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1. State of the Art

focused on the Illumina sequencer due to its higher accuracy. The work we are introducing
here, instead, is geared toward Nanopore sequencing, in order to speed up the process
and reduce its cost. To do so we will extend the work presented in [57] by applying the
novel mapping algorithm to the DWT decomposition of an image, and adding an extra
post-processing step, based on the inpainting algorithm described in [18], so as to reduce
the visual artifacting in the reconstructed image.

1.2 Related works of image inpainting

Image inpainting is an approach aimed at repairing damage (or at removing unwanted
objects) from images in a way that is seamless to the human eye. What sets image
inpainting apart from other restoration techniques like haze-removal is that there is
virtually no information to be gained from inside the damaged area. An inpainting
algorithm must operate on information taken either from the undamaged parts of the
image or, at most, from the contour between these and the target (damaged) area.

There are many families of inpainting algorithms and, similarly, a lot of different
classifications are possible. A first macro division can be seen between structural inpainting
techniques, textural inpainting methods and hybrid approaches [40]. The first type of
approach focuses on the structure of the image, generally the isophote lines and the
edges of shapes in the undamaged part of the image. These are then propagated into the
damaged area via mathematical means. Texture-based approaches instead focus more on
the replication, propagation, or synthesis of textures in the image. Hybrid approaches
take aspects of both inpainting families.

A second, more detailed, classification could divide these macro families based on
their algorithmic approaches. We would then have Partial Derivative Equations (PDE)
based approaches, semi-automatic inpainting algorithms, texture synthesis methods,
model/template based methods and a catchall family of hybrid algorithms that exhibit
specific characteristics [38],[30]. We will focus more on a couple of these approaches,
namely PDE, texture synthesis and exemplar-based approaches, and cover the others
more briefly. The goal here is to highlight what are the strengths and weaknesses of
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1. State of the Art

each approach, rather than present a comprehensive comparative review of the different
inpainting techniques.

PDE approaches rely on purely mathematical inpainting algorithms, inspired by the
partial differential equations that describe the flow of heat in the physical world. The idea
can be traced back to [11], where it was proposed a method through which the information
is propagated from the intact area into the damaged one, by following the isophote lines
crossing the boundary between the two. Already from this first approach one can see
the strength and weaknesses of PDE methods, as they have remained pretty much the
same since then. While these techniques are very good and efficient at covering narrow
damages, they cannot effectively reconstruct textures (see [25]). As such the blurring
effect they create becomes very noticeable when trying to cover up large damages. Several
other works have improved over PDE methods, with the introduction of second order
derivatives in [12] and high order PDE in [21], but the limitations of these approaches
remain the same.

Semi-automatic inpainting approaches require, as the name suggests, user interaction
for the process to complete. For example in [20] the user is prompted to sketch the contour
of the objects in the occluded area, before a texture synthesis algorithm applies the
inpainting. This is in addition to the detection of the damaged area, that in virtually all
the approaches mentioned in this chapter is assumed to be done outside of the algorithm
itself, presumably by the user. As already stated, we require a way to automate the entire
post-processing, and as such these methods are not what we are looking for.

Texture synthesis algorithms and exemplar-based approaches are often considered
separately, but for our purposes they fall under the same umbrella. Both focus on the
use of pixel color and texture to repair damaged areas without causing blur, and both
have similar pros and cons. Texture synthesis approaches take a small sample of true
texture and try to replicate it. This can be done pixel by pixels, starting from the
edges of the occluded area [10], or more efficiently by considering whole blocks of pixels
at a time [13]. Even with this optimization, the texture generation approach can be
computationally expensive and still struggle with more complex textures. Exemplar-based
methods side-step the texture generation problem by sampling and copying existing color
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1. State of the Art

values from a specified source. This is commonly done from the undamaged parts of
the image [15], but other solutions rely on entire databases of images similar to the
damaged one [23]. Nonetheless, all these methods tend to present similar behaviors: they
perform well when covering large, regular occlusions, but struggle with repairing complex
or irregular textures. Additionally, they risk causing artifacting due to the order in which
the textures are copied from the source to the damaged area. In this vein, Criminisi’s
algorithm [18] merits a special mention, as it is an exemplar-based approach that tries to
account for and prevent this drawback.

The hybrid approaches are generally intended as methods that rely on both structure
and texture information, usually gained by a decomposition of the image. From this
point of view [18] could be classified as hybrid, due to the way its priority-based filling
order is computed. Most of the works in this category try to split the image into a
structure and a texture component [14],[16] and inpaint them separately before merging
the results. Two sub-families merit mention here. The first are wavelet-based approaches.
While they are an important background, they relate less to our problem than one might
hope, as we will show in subsection 2.3.2. These inpainting algorithms [28],[32] rely on
Wavelet Transform as a decomposition tool, to split the image into structure and texture
information. While the approach is interesting, it does not match our situation. The
second sub-family of hybrid algorithms is that of machine-learning based approaches. It
is debatable whether this should be considered a family in and of itself, or whether the
work of the convolution layers matches the definition of “decomposing” the image into
structure and texture information. In any case, this is an approach that is becoming more
prominent lately, relying on both convolution [48],[53] and deep [31] neural networks.
These methods can be very good at handling blind-inpainting, where the mask of the
damage is not given a priori. This would be an excellent match for our needs, and
the approaches certainly merit further investigation in subsequent works. However, all
machine learning approaches require a large amount of data that we did not have easy
access to, as the pre-trained layers commonly used for these approaches were prepared
over much different images and visual distortions than the ones we had to contend with.
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Chapter 2

Workflow for DNA data storage

In this chapter we will first cover all the steps of the encoding and decoding process
to familiarize the reader with the structure of the work. Additionally, we will investigate
in more detail and provide some background for processes that appear often throughout
the workflows, or that are especially relevant to the project as a whole.

Several steps are required to encode an image onto DNA, and to subsequently decode
it correctly. The main steps are five, and can be seen exemplified in Figure 2. The
innovations brought by this work add three additional main steps and can be seen
exemplified in Figure 3. In the resulting workflow in addition to the five that are from the
original implementation, an outlier detection step is added to the consensus establishment
phase, and two new steps comprise a post-processing phase after the decoding is complete.
We will now cover each step in detail.

2.1 Compression

Firstly, a Discrete Wavelet Transform (DWT) is performed [9]. This takes advantage
of the spatial redundancies in the image to decompose it into subbands, by passing
through a series of low and high-pass filters. These are sub-images with width and height
equal to 2−# times those of the original image, where N is referred to as the “level” of the
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2. Workflow for DNA data storage

Figure 2: Previous workflow, presented and utilized in both [51] and [54].

Figure 3: Novel proposed workflow. Additional steps shown in red, and presented in
subsection 2.1.1, subsection 2.4.2, and section 2.6.

DWT. The HH, HL and LH subbands carry local variations in pixel color, meaning they
generally represent the details of the image, while the bulk of the information is carried
by the LL subband. An example of DWT applied to the image we will be utilizing during
the rest of this work can be seen in Figure 4. From here until the end of the decoding,
we will be working exclusively on this decomposition, rather than on the entire image.

Figure 4: 2 level Discrete Wavelet Transform.
Original image on the left, greyscale of the
wavelet subbands on the right.

After the decomposition, each result-
ing subband is quantized independently
from the others with a Vector Quantiza-
tion (VQ) algorithm [4]. To further ensure
optimal compression, a bit allocation [7]
algorithm is employed to provide the best
quantization codebooks for each subband,
in order to maximize the encoded bits per
nucleotide. These two processes (DWT and

13



2. Workflow for DNA data storage

VQ) comprise the compression step.

2.1.1 Computation of Damage Detection parameters

After the compression step we introduce the first contribution of this work that
expands the workflows already built in [51] and [54].

The damage detection step, that will be described in details in subsection 2.6.1,
depends on a series of parameters. The most obvious of these are the two thresholds
that determine whether a pixel is considered anomalous or not, but the definition of
“neighborhood” for a given pixel is also going to influence the behavior of the algorithm.
There are essentially two ways of determining these values: either the user can input
them by hand, or an algorithm can be used to try and determine them. As automation
of the damage detection was one of our main goals, we opted for the second option.

Normally, this would mean analyzing the noisy subbands obtained after the DNA
decoding. The obvious drawback would be that deriving the information from a corrupted
image might give erroneous results, causing us to set the thresholds to values that would
cause too many false positives or, more likely, too many false negatives. However, we are
in the unique position of having access to the ground truth, the undamaged image as it
was encoded before synthesis and sequencing, because we control the entire workflow.

We decided to exploit this by inserting a very small additional step after the compres-
sion. Here we define the neighborhoods for each subband and then analyze the image
in the same way we would during the post-processing. At the end of this analysis we
will have compiled a list of the values (difference from pixel’s neighborhood and variance
within neighborhood) that would be computed during steps one and two of the damage
detection process. We can then compute what are the acceptable thresholds from these
lists, either by setting them to the highest value or to a lower one and accepting a certain
number of false positives.

This parameter computation can be customized to the single subband. For example,
the easiest way to do this is to accept more false positives in larger and less meaningful
subbands, were loss of details is less problematic than distracting visual distortion.
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2. Workflow for DNA data storage

Another way would be to modulate the shape and size of the neighborhoods based on
those of the quantization vectors used for each specific subbands.

2.2 Encoding and Formatting

After the compression step (and the parameter computation step added by this work),
the quantized subbands are to be encoded into quaternary code. To do this we first use
the encoding algorithm proposed in [51] to create codebooks. This is done by merging
predefined symbols into codewords. The symbols are selected from two dictionaries:

�1 = �), ��, ��,) �,)�,)�,��,�), ��, �)

�2 = �,), �, �

Concretely, this means that we construct sequences of even length ! by concatenating
!
2 symbols from the first dictionary �1, and sequences of odd length by adding a single
symbol from the second dictionary �2 at the end. So, for example, we can construct all
the codewords of six nucleotides by computing all the permutations of three elements
from �1 (�) − �� − ��, �) − �� − )�, 4C2.), and the ones of seven nucleotides by
adding one element from �2 at the end (�) − �� − �� − �, �) − �� − �� − ), 4C2.).

The symbols that comprise these two dictionaries have been specifically chosen so that
their concatenation always leads to "viable" words, meaning they abide by the restrictions
indicated in subsection 2.2.1. Since the resulting codewords will be permutations of
elements from the two dictionaries, this helps making the encoding more robust to the
sequencing noise, without adding redundancy or overhead, as the words that would be
more prone to misdecoding are discarded. Additionally, this algorithm is capable of
encoding any type of input, rather than just binary.

After all the codewords have been constructed, the mapping binding these to the
numerical values in the subbands is performed. This is done by the method originally
presented in [5], that was expanded upon in [57]. The fundamental idea is to map
the input vectors obtained from the Vector Quantization algorithm to the codewords
generated by the coding algorithm. However, we also want to execute the binding in a
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2. Workflow for DNA data storage

Figure 5: Formatting schema for the three oligo types. Oligo identifiers in green,
metadata used during decoding in blue, metadata used during post-processing in
red, and encoded information in yellow.

way that can minimize the impact of errors on the quaternary sequence. To do this, we
map vectors that are close to each other, in terms of Euclidean distance, to codewords
that are similarly close to one another, here in the context of Hamming distances. This
means that, in case of a small distortion due to sequencing errors, erroneous words will
still have a small Hamming distance from the correct ones, reducing the visual distortion
that the errors cause in the reconstructed image. Again, this adds robustness against the
sequencing noise without having to introduce costly redundancy in the encoding process.

As we will mention in section 2.3, the DNA synthesis process is effectively error free
for short strands, in our case shorter than 250-300nt [65]. As such, the last process we
need to undergo in this step is cutting into chunks of the appropriate size the encoded
subbands that we just generated with the mapping and encoding algorithm. This also
implies the necessity to add to each of these oligos some form of metadata, to indicate the
position of the specific oligo in the input image. Not only that, we also need to similarly
encode metadata related not just to the single oligo, but to the encoding process itself,
as this information will be needed during the decoding. The end result is akin to the
classical approach used for data packets that are to be transmitted over a network: a
division of a large amount of information into smaller packets, each carrying one or more
Header fields and replicated several times for robustness. The specific formatting schema
we used can be seen in Figure 5.

As was the case in [51] and [54] we opted for a formatting schema revolving around
three distinct types of oligos. The Global (G) oligo carries information concerning the
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2. Workflow for DNA data storage

entire image, specifically its size and the levels of DWT used during encoding. A single
Subband (S) oligo for each subband encodes the information concerning its encoding. In
this case the VQ parameters: type (FLAG) and size (LEN) of the vectors used as well
as the length of the codewords (K); and the information needed by the post-processing
workflow: the threshold values (TH1 and TH2) and the size of the neighborhood (N) for
the damage detection algorithm. Data (D) type oligos are carrying the actual information
(PAYLOAD) as well as a field to identify the position of their Payload in the original
data (OFFSET). Finally, all three oligo types have an identifying field (HEADER) that
discriminates their type, and eventually the subband and level of DWT they belong to, to
allow for their correct decoding. All oligo types also have some padding at the beginning
and end as a concession to the distribution of the sequencing noise. This facet will be
covered in more details in subsection 2.3.3 and subsection 2.3.2, but the necessity here is
to try and preserve the Headers and metadata fields as much as possible, by protecting
them with disposable DNA. Additionally, we protect the most important fields (especially
the Header and Offsets fields) by relying on barcodes. These will be explored in more
details in subsection 2.2.2, but they can be considered a type of self-repairing inline
encoding. They are codewords specially chosen so that even in the presence of errors (up
to a certain threshold) a correction algorithm is able to recover the original sequences
from the noisy ones, without having to introduce any additional information other than
the quaternary string itself.

2.2.1 Preventing sequencing noise during Encoding

We will cover the sequencing in more details in subsection 2.3.1, but for now we simply
have to acknowledge that it is an extremely noisy process. While this noisiness cannot
be completely avoided, it can be reduced if some biological restrictions are observed
during the encoding process. Specifically, we must ensure that our DNA strands have the
following features:

• No homopolymers over a certain length. A homopolymer is a repetition of the
same nucleotide. The specific length varies between sequencer but can be assumed
to be between a maximum of 3 and 6 nucleotides, meaning that ideally the same
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2. Workflow for DNA data storage

nucleotide should not appear more than three times in a row in the final oligos.

• The percentage of CG content should be lower or at most equal to that of AT
content.

• There should be no pattern repetition in the oligos.

The first two points are relatively easy to ensure, and the Single Representation (SR)
encoding algorithm presented in [51] can guarantee that the oligos we create respect these
restrictions. The third restriction is more complex to observe and has to be taken into
account during the mapping.

To do this we can employ a technique called Double Representation (DR). This is
an encoding method in which we build a codebook that is twice as large as the one that
would be needed for traditional, SR, encoding. In SR, when a value needs to be encoded
it is mapped to a single codeword, in DR it is instead mapped to one of two codewords
chosen at random. This significantly reduces the repetitions of patterns in the Payloads of
the oligos. This is especially true for the case of VQ-based compression, in which several
adjacent indexes could be the same (for example, when encoding the background of an
image, or large patches of solid color). In this work we decided to not test this approach
and simply rely on SR, but the infrastructure needed to adapt the advanced encoding
from [57] to use DR is already in place, including the codebook clustering algorithm
described in subsection 2.2.3.

2.2.2 Barcoding process

As we already mention in subsection 2.2.1, it is possible to reduce the noisiness of
the sequencing process by abiding to some biological restrictions. This, coupled with
the redundancy added by the PCR amplification (covered further on is section 2.3),
can be considered acceptable for the preservation of the data itself. It is not, however,
sufficient protection for the metadata. Especially considering the findings of [43], we
must protect the most important fields of the oligo further. While padding helps, we
conducted several tests where crucial information (for example the Offset of the D oligos)
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2. Workflow for DNA data storage

was simply encoded as we would any other data, and the resulting loss of oligos was
unacceptable. As such we referred back to barcoding [33], a technique that the team had
already relied on in previous works.

The use of barcodes to protect sensitive parts of the DNA encoding is not new and
has been explored in several other studies over the years, see [24], [33], and [52] for some
examples. The idea is to create a set of codewords with a high enough distance between
them, so that in the case of an error we can correctly identify which codeword was the
original one. In our case the codewords were constructed via the same algorithm we
use for the encoding, guaranteeing that the barcodes themselves respect the biological
constraints of the sequencing process.

For constructing the barcode sets from these codebooks We are using a greedy
heuristic algorithm based on the work in [33] and shown in algorithm 1. Due to its greedy
nature, this algorithm does not guarantee finding the maximal barcode set for a given
codebook. It is much more efficient than an exhaustive search over the same set, as the
generation of barcode sets is a very computationally expensive process. Given a codebook
�∗ = 21, 22, . . . , 2# and the expected error tolerance ` the set construction procedure is
as follows:

• Set ( = 1, create a first barcode set �( and add the first codeword 21 of the codebook
�∗ to it.

• Foreach codeword 2: with : = 1, 2, . . . ,  do the following:

– Check the distance between all the codewords in each barcode set �8 with 8 =
1, 2, .., (.

– If the distance between all codewords in a barcode set �8 is bigger than
3<8= = 2 × ` + 1, add 2: to the set �8 and move to the next codeword 2(:+1).

– If this condition was not met for any existing barcode set then set ( = ( + 1,
create a new barcode set �( and add the codeword 2: to it.

Another way to see the problem is to consider the computation of the barcode set as
the identification of the maximum independent set over a graph, where the vertices are
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Algorithm 1: Barcode sets construction.

Input:
� = (21, 22, . . . , 2# ) : codebook
` : expected error tolerance.

Output:
� = (�1, �2, . . . , �() : barcode sets with error tolerance `.

( ← 1; �(() ← {21}
3<8= = 2 × ` + 1
for 8 ← 1 to # do

5 ;06 ← false
for : ← 1 to ( do

3� ← min distance between 28 and all the codewords 2� ∈ �:
if 3� ≥ 3<8= then

�(:) ← �(:) + 28
5 ;06 ← true
break

end
end

if ! 5 ;06 then
( ← ( + 1
�(() ← {28}

end
end
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the words in the codebook �∗ and the edges connect the vertices that have distance lower
than 3<8=. As this is a traditionally NP-hard problem, a non-greedy algorithm would
incur into an unsustainable computational overhead very quickly.

A quick aside is necessary regarding the distance that is used when constructing the
barcode sets. Until now we did not go into any specifics, but it is worth it to dig a little
bit deeper into this detail. For the entire of the barcoding process, both the assignment
and the reconstruction, we consider as metric the Sequence-Levenshtein distance that is
presented in [33]. An example of the difference between this and the classical Levenshtein
distance [1] can be seen in Figure 6. In short, both distance metrics measure the number
of steps needed to go from one string to another. The main difference is that classical
Levenshtein counts each added, removed or changed letter (or nucleotide, in our case) as
a distance of one, and sums these elemental steps to obtain the minimum total distance.

Figure 6: Example of difference between Leven-
shtein and Sequence-Levenshtein distance.

In the context of DNA however, this
is insufficient. Specifically, in the case of
deletions, the first nucleotide from the rest
of the DNA strand will appear at the end
of the barcode. This is the shifting we
previously mentioned, that makes Indels
so hard to deal with. This means that the
now noisy barcode will have a Levenshtein
distance of two from the original one (one
for the deleted nucleotide and one for the
nucleotide that was inserted at the end

from the rest of the oligo).

To remedy this, in [33] was introduced a new distance metric called Sequence-
Levenshtein, as an extension of the classical Levenshtein distance, in which adding
nucleotides at the end of a word does not increase the distance. The effect is twofold. On
one hand this allows us to utilize it in the construction of barcode sets that can ensure
recovery from deletions, on the other it also means that the classical Levenshtein distance
is an upper bound of the Sequence-Levenshtein distance, resulting in closer words and
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barcode sets of reduced size. This last detail can become an obstacle and forces a sort of
“ballooning” in the codeword length for the barcodes when either a high error tolerance is
needed (as it is for the identifying Header fields), or when the data to protect can have
many different values (as it happens with the Offset of D oligos, that can reach well into
the hundreds).

In Figure 7 we can see an example of the correction process. Let us suppose that a
certain information, for example the Offset of the D oligos, has been encoded with the
barcode set on the right. If the field containing the information suffers an error, in this
case a Deletion, we can recover the information by comparing the resulting (damaged)
barcode with the intact ones in the set. We can see that the damaged barcode (AATTA)
does not appear in the set. This is because the barcode set was built to be resistant to
one error, meaning each word has a distance of at least three from one another. As such,
during the decoding we can clearly see that an error has occurred and attempt to repair
it. This is done by comparing the erroneous barcode to each of the original ones and
picking as correct the one that is closest.

Figure 7: Example of how a barcode can be
recovered.

Of course, this does not guarantee that
the value will be correctly recovered. If the
number of errors is higher than the toler-
ance of the specific barcode set, the noisy
barcode could be unrecoverable (meaning
it has a distance higher than the tolerance
from every barcode in the set) or, even
worse, it could be recovered erroneously to
the wrong barcode. In the first case the
barcode and whatever information it was
carrying is lost, but the assumption is that
the added redundancy from the PCR is
sufficient to compensate for the loss. The
second case can be the source of potentially more impactful, and Byzantine, visual
distortions in the reconstructed image. The erroneous correction of the Offsets in the D
oligos is a big part of why we introduced an outlier detection step before the consensus,
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in order to prune away oligos with Byzantine Headers that could poison the consensus
for the oligo they were erroneously identified as.

2.2.3 Silhouette clustering for Double Representation

In subsection 2.2.1 we introduced the concept of Double Representation, an evolution
of the classical encoding schema utilized in [54] that could reduce the amount of pattern
repetitions in the formatted oligos. This method is very interesting, but cannot be
directly applied to the advanced encoding presented in [57]. This is because the DR
operates by selecting one of two random codewords to map to the numerical values
during encoding. This stochastic selection obviously conflicts with the idea behind the
DeMarca encoding, that tries to match close numerical values to close codewords to
reduce the visual distortion caused by erroneous decoding. To try and reconcile these two
encoding techniques, we developed in this work an ad-hoc clustering algorithm that given
a codebook can split it into clusters based on the similarity between the codewords. This
could allow us to map a value to one of two random codewords, while still guaranteeing
that the values close to the number being encoded would be mapped to other codewords
close to at least one of the randomly chosen ones.

Clustering as a whole is well treaded problem, that has been at the forefront of
data-analysis for years if not decades [3],[49],[67]. The general idea is to classify a set of
points, or objects, based on their position relative to each other. In most cases this is
applied to unsupervised machine learning models, where the task is to group together
unlabeled points to gleam some insight on the underlying structure of the data that is
being analyzed. In our case, we have a slightly different problem. We know precisely how
many clusters there must be in our data, the problem is finding which points belong to
which cluster. This in and of itself is not uncommon, k-means clustering [2] is a very
well-known method to separate a data-set into a given number of clusters. The problem
with using a traditional k-means method, is that we also have a constraint on the exact
number of points that must be in each cluster, as our mapping expects precise cluster
sizes. While there is some work investigating versions of k-means clustering that account
for underlying constraints of the data-set [68], adapting this approach to our needs was
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deemed too costly.

As such we steered ourselves toward building a quick ad-hoc clustering algorithm
based on the Silhouette Coefficient (SC), shown as pseudo-code in algorithm 2. Originally
proposed in [6], Silhouettes are a metric used to validate and interpret clustering results.
The SC (sometimes referred to as Silhouettes Index) is a tweak of this technique presented
in [8], and still used in some modern applications [66]. The SC is a measure, varying
between 1 and -1, that is calculated for every point, or object, in the data-set. The value
of the coefficient indicates how appropriate is the assignment of an object to its current
cluster, with 1 being a perfect assignment and -1 being the worst possible one. It is
calculated by considering the average distance of each point from every other point in
the cluster it is assigned to and comparing it to the average distance from all the other
clusters. If the point is closer to the other points in its cluster it will have a positive
coefficient. If it is closer to another cluster, the coefficient will be negative. Even from
this quick definition, it can be inferred that the SC can be an expensive metric to employ,
given that it requires the computation of the average distance with every point in the
data-set, for all points. As our clustering needs were for very small sets (rarely above
1000 words) this overhead was considered negligible.

The way our algorithm works is as follows:

• First, compute the adjacency matrix for the entire codeword set. This is done to
speed up the (� computation process.

• Assign to the set a random clustering, of course respecting the constraints on number
and size of the clusters. This is done to introduce entropy in the data-set and
eliminate any pattern that may be present in the original ordering of the codebook.

• Repeat the following steps until the Silhouettes of the clusters stops meaningfully
improving, or a maximum number of steps has been reached:

– Compute the (� for all codewords in the set. Additionally, keep a list % of
the preferred clusters for each codeword. This can be done during the (�
computation with no additional overhead.
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– Select a codeword 28 at random from the ones with (� ≤ 0. This stochastic
approach, rather than choosing for example the codeword with the minimum
(�, is done both to avoid tottering issues and hopefully help push past eventual
local minimum.

– Select the codeword 2 9 with the lowest (� in cluster %(28). Ideally the
coefficient of this second word will be negative, but it is possible that it might
be close to or above 0.

– Switch the two codewords.

– Compute the improvement and move to the next iteration.

In this way the total Silhouette Coefficient should generally be increasing, as at each
step we are assigning a word to its preferred clusters, while simultaneously removing
from that cluster a second word that either would fit better elsewhere, or was on the
edge between two clusters. If it does not, it means we have reached a plateau, or we are
having tottering between a handful of points. In these cases, the algorithm terminates.
Testing of the algorithm showed it to be reasonably performant on the codebooks we
employed it on, up to 4000-10000 words. Eventually, it was decided to move forward
with the noise simulation and post-processing testing described in chapter 3 without the
use of Double Representation, to avoid muddling the results of the experiments, meaning
this algorithm does not appear in the final work. But should a future work wish to use
both DR and DeMarca encoding, especially in the case of a wet experiment, this might
be a good way to join them together.

2.3 Biological procedures

The biological procedures step covers the “wet” parts of the process, that revolve
around actual physical DNA. We will be covering them very briefly in subsection 2.3.1,
as DNA synthesis and PCR exude from the scope of our work. In subsection 2.3.1 we
will cover the differences between two types of sequencers, the Illumina (used by most
older works regarding DNA data storage) and the Nanopore (whose behaviour we will be
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Algorithm 2: Silhouette Coefficient clustering.
Input:
� = {21, 22, . . . , 2# } : codebook to cluster
 : number of clusters
" : cardinality of clusters
Output:
�! = {�!1, �!2, . . . , �! } : clustering of the codebook

�! ← random clustering {�!1, �!2, . . . , �! }
(� = {(�21 , (�22 , . . . , (�2# } ← {−1,−1, . . . ,−1}
( (�, (�8<?A>E , % )← computeSilhouetteCoefficients(C,SC,CL)

while (�8<?A>E > 0 do
28 ← random 28 ∈ �, with (� ≤ 0
�!8 = {21, 22, . . . , 28 , . . . , 2" } : cluster containing 28
�! 9 = {21, 22, . . . , 2" } : preferred cluster %(28)
2 9 ← codeword ∈ �! 9 with min (� (2 9)
�!8 ← �!8 − {28} + {2 9}
�! 9 ← �! 9 − {2 9} + {28}
( (�, (�8<?A>E , % )← computeSilhouetteCoefficients(C,SC,CL)

Function computeSilhouetteCoefficients:
Input:
� = (21, 22, . . . , 2# ) : codebook
(� = ((�21 , (�22 , . . . , (�2# ) : Silhouette Coefficient for each codeword in �
�! = (�!1, �!2, . . . , �! ) : current clustering
Output:
(� ′ = ((� ′21 , (�

′
22
, . . . , (� ′2# ) : new Silhouette Coefficient for each codeword in �

(�8<?A>E : improvement of SC
% = (%21 , %22 , . . . , %2# ) : preferred clusters of each codeword in �

(�8<?A>E ← 0; for 8 ← 1 to #� do
28 = � (8)
�!8 = {21, 22, . . . , 28 , . . . , 2" } : cluster containing 28
0(8) ← 1

#�!8−1
∑
2 9 ∈�!8 , 9≠8 38BC (28 , 2 9)

1(8) ← min:≠8
1

#�!:

∑
2′
9
∈�!: 38BC (28 , 2′9)

%(28) ← cluster �!: with min average distance to 28

(� ′(28) ←


1 − 08

18
, if 08 < 18

0, if 08 = 18
18
08
− 1, if 08 > 18

(�8<?A>E ← (�8<?A>E + (� ′(28) − (� (28)
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simulating in this work). Lastly in subsection 2.3.2 and subsection 2.3.3 we will cover the
incidence and types of sequencing errors that arise when using the Nanopore sequencer.

Once the encoding is complete, the digital oligos are synthesized into biological DNA.
As stated before, we can ensure that this process remains error free as long as we only
construct synthetic DNA strands that are relatively short, in the 250-300nt range. The
synthesized DNA can then be stored in hermetically sealed capsule. This is done to
minimize the damage that DNA can incur in and is effectively the last step in the encoding
workflow.

The decoding workflow begins with the recovery of these hermetic capsules and the
extraction of the encoded DNA. This is then subjected to a process called Polymerase
Chain Reaction, or PCR amplification. This is a precursor to the sequencing process, and
is used to add redundancy to the oligos, by creating many copies of each one. While the
process is not error free, the incidence of this noise is minimal compared to the effect of
the sequencing of the oligos. As such, it is a very effective way to add a lot of redundancy
to the process, as the amplification can result in several hundreds or even thousands of
copies of each oligo being produced, without incurring in the exorbitant cost that such a
level of redundancy would imply if it was achieved before the synthesis.

The sequencing, often referred to simply as the “reading” of the oligos, is the process
with which the biological DNA strands are scanned and translated into a digital quaternary
representation. This is done by machines called sequencers. As stated in the introduction,
most of the work on DNA encoding, including the teams own work in [54], has been done
on the Illumina sequencer [42]. While the initial large presence in the literature was due
to it being among the first of the Next Generation Sequencers (NGS) [26], its staying
power is a testament to the accuracy and effectiveness of the machine. The drawbacks
of the Illumina sequencer are the natural flip-side of its strengths. The machine is very
large, and the sequencing process is cumbersome, slow, and very expensive.

2.3.1 Synthesis, Amplification and Sequencing
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(a) Illumina sequencer.

(b) Nanopore MinION.

The Oxford Nanopore sequencer, especially its Min-
ION version [47], are an up-and-comer of the sequencing
scene. It is much cheaper, faster, and more portable
than the Illumina and other classical NGS machines.
Examples of both these sequencers in action can be seen
in Figure 8b and Figure 8a. The main challenge keeping
the Nanopore technology from more widespread adop-
tion is the high error rate, especially when compared
with the Illumina sequencer.

As the focus of this work was partly developing an
encoding and decoding workflow that could be viable
for use on the Nanopore MinION, understanding the
types of errors that the sequencing could incur in was
a top priority. Several studies have been conducted in
this sense [43],[55].

2.3.2 Types and effects of sequencing errors

There are three types of errors that can be observed during the sequencing: Substi-
tutions, Insertions and Deletions. In Substitutions a nucleotide is read erroneously, for
example an Adenine (A) nucleotide is interpreted by the machine as being a Thymine (T).
This obviously does not affect the order or values of the other nucleotides in the sequence.
Insertions and Deletions, on the other hand, end up affecting all the nucleotides in the
sequence that follow the error. The names are quite self-explanatory, a Deletion occurs
when the sequencer “skips” a nucleotide during the reading, while an Insertion happens
when a nucleotide that was not present in the original strand is erroneously added by the
sequencer. Visual examples of all these errors can be found in Figure 9. As the figure
illustrates, Substitutions are the least damaging type of errors we can incur in. While
the nucleotide they affect is lost, the rest of the information encoded in the DNA strand
remains intact. Errors like this are relatively simple to deal with, and both our mapping
algorithm and barcoding process are designed to try and minimize the visual distortion

28



2. Workflow for DNA data storage

Figure 9: Visual example of Substitution, Insertion and Deletion on the same DNA
strand.

they could cause in the final image.

Insertions and Deletions, often grouped together as “Indels”, are much more difficult
to handle. The effects of the error are not limited to only the misread nucleotide but end
up affecting everything that comes afterwards in the strands, as the entire sequence ends
up being shifted in either one direction or the other by one nucleotide. A clear example
of the problem can be seen in Figure 10.

An Insertion in the Header of the oligo ends up affecting everything after it, including
the Payload. While Header and Offset can be corrected via the Barcode Correction process,
the Payload ends up being scrambled, with some codewords ending up as completely
undecodable. Although it should be noted that in this example, to avoid additional
complications, we are assuming a simple sequential mapping like the one originally
used in [51],[54], rather than the more complex DeMarca mapping from [57]. While a
more advanced encoding could have mitigated the damage showed in this example, the
distortion would have not been eliminated entirely, and this mitigation might not always
be possible. Very similar effects could be observed in the case of a Deletion.

2.3.3 Percentages and distributions of sequencing errors

Several studies have been compiled trying to determine the error percentage of the
Nanopore sequencer, as well as the distribution of the errors. It has been found that while
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Figure 10: Distortion caused by an Insertion. Headers in green, Offset in blue,
Payload in yellow. Codebook constructed with the algorithm from [54], mapping
executed with the simple mapping algorithm from [51],[54].

the accuracy of the Nanopore technology was only around 85% when first introduced,
it has since risen to 95% and above [59]. The incidence of each error type has similarly
been measured [60]. For our work in this report we estimated 2.3% of Deletions, 1.01%
of Insertions and 1.5% of substitutions, for a total error rate of 4.81%. Lastly, the
distribution of errors has also been analyzed [43], with the finding that the vast majority
of errors occur in the extremities of the oligo. In our simulations we estimated that up to
80% of all errors (Substitutions, Insertions and Deletions) occur in the first and last 20nt
of the DNA strands. This last statistic is why we decided to add a padding at the start
of the oligos. The advantage of having some disposable nucleotides in the areas most
likely to be lost is two-fold.

Most obviously, errors that happen during sequencing in the padding do not directly
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affect the Headers. While we are capable of repairing a limited number of errors, as we
have show in subsection 2.2.2, more than a few errors at a time could overwhelm our
barcode correction process. If this happens, and a Header becomes undecodable, we risk
losing an entire oligo of data. In the worst case an entire subband could be lost if the
Header identifying the S oligo for the subband is damaged beyond repair.

Additionally, while this helps minimizing the incidence of Substitutions and part of
the effect of Indels, we can also use the padding to our advantage to try and reduce the
damage caused by the shifting in the strand that follows Insertions and Deletions. Since
we know the size of the original oligo, we can compare it to the size of the sequenced
oligo before the barcode correction process shown in subsection 2.4.1 begins. This allows
us to either add or shave a few nucleotides from the ends of the oligo, operating on the
assumption that most of the Insertions or Deletions, if not all of them, happened in the
padded area of the oligo. As a result, the padding can also help us “realign” the oligo to
hopefully counteract the shifting caused by Indels.

2.4 Consensus establishment

After the PCR amplification and sequencing are complete, we find ourselves with
several hundred to several thousands of times the number of oligos that were originally
encoded. Before the start of the decoding we must take these potentially noisy oligos and
reduce them. This is done in two separate processes: firstly, the barcode correction tries
to repair the Headers of these oligos; then, the nucleotide sequences are sorted according
to these Headers and a consensus is built over them.

The details of the barcode correction process will be covered in subsection 2.4.1 but
for now we will focus on the need for a correction phase before the consensus computation.
After the PCR and sequencing we find ourselves with several copies of each of the original
oligos. As all these copies are potentially noisy, we can try to build a consensus from
them, in order to reconstruct the original oligos. But to do so, we must first be able to
correctly identify which of the nucleotide sequences are copies of the same oligos. Hence,
we rely on the properties of the barcodes to try and repair the damage to the Headers of
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these copies that identify their oligo type and position in the image.

Once this is done, we can cluster the nucleotide sequences based on these Headers. In
order to overcome the increased noisiness of the Nanopore sequencer, in this work we
introduce an additional filtering step. This is done by discarding all the copies that are
too different from the rest of the cluster. Here the similarity is computed by considering
the Levenshtein distance [1] between the sequences, given by the following formula:

;4E0,1 (8, 9) =



max(8, 9) ifmin(8, 9) = 0

min


;4E0,1 (8 − 1, 9) + 1

;4E0,1 (8, 9 − 1) + 1 otherwise.

;4E0,1 (8 − 1, 9 − 1) + 1(08≠1 9 )

The filtering is necessary to reduce the chance of “poisoning” the consensus with copies
that are either very noisy or that were assigned to the wrong cluster as their Headers
were corrupted to the point that the barcode reconstruction was erroneous. The details
of this process will be covered in subsection 2.4.2.

Once these outliers have been eliminated, we can be reasonably sure that each cluster
corresponds to one of the original oligos, and we can proceed to build a consensus from
them. We do this with a classical majority voting algorithm that reduces the cluster
of oligos to a single consensus sequence [63], which hopefully is going to resemble the
original oligo as much as possible.

2.4.1 Barcode correction

After the sequencing and PCR steps described in subsection 2.3.1 are done, we find
ourselves with a multitude of noisy oligos. In the case of the Illumina sequencing, the
error rate is low enough that simply selecting the ones presenting intact Headers might
be sufficient to build a good enough base for the consensus. When accounting for the
increased Nanopore noise, this naive approach is insufficient. We needed to reliably select
the oligos that best approximated the original ones, without of course having to rely on
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the ground truth, to which we would not have access to in a real scenario. The algorithm
we developed for this is divided in two parts. The first part will be quickly schematized
here, while the second one will be covered in subsection 2.4.2.

First, a round of barcode correction is performed in order to identify and fix the
Headers of the oligos. Thanks to the structure meta-modeling that we conduct before
the encoding, the barcode correction can rely on information on the structure of the
formatted oligos. With this data, our algorithm identifies the positions of the Header
fields in the oligos and pads any oligos that have lost nucleotides (due to Deletions). Once
the quaternary strings that comprise the noisy Header and Offset fields have been found,
we rely on a K Nearest Neighbors (KNN) search algorithm [61] to compare these strings to
the barcode sets used when encoding the original fields, utilizing the Sequence-Levenshtein
distance extension proposed in [33]. If no barcode can be found that is close enough
to the noisy string (under the max distance allowed by the barcode set) the Header is
considered lost and the oligo discarded. The same process is repeated for the Offsets of
the Data oligos.

At the end of this first step we are left with a large number of oligos, where the
Headers have been corrected (when possible), but where the Payloads are still noisy.
Among these oligos will be several dozens to hundreds of copies of each of the oligos
originally encoded. The next step is then to collapse all of these redundant copies to
a single value. However, simply building a consensus from these oligos might yield a
very low quality of results, especially when operating with very noisy sequencers like the
Nanopore. How to avoid this will be shown in subsection 2.4.2

2.4.2 Outlier detection

The barcode correction step alone is not sufficient to reduce the visual distortion.
For this, we perform a second step, where we filter away the outlier oligos that sneaked
through barcode correction but are too damaged to contribute to the consensus, or those
whose headers were corrected erroneously in the previous step. There are a great many
ways of performing outlier detection (see [19] for a survey on the topic), a lot of which
could be applied to our problem with relatively little effort. Rather than employ some
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of the more complex approaches, we steered ourselves toward a very simple statistical
detection that could still give us acceptable results, to avoid increasing too much the
complexity of the workflows. Nonetheless, a more advanced and nuanced outlier detection
algorithm could reduce the visual distortion even further and would be a good subject
for further study.

The algorithm we developed works as follows:

• group the oligos after the barcode correction by their Headers (and Offsets in the
case of Data oligos).

• For each group � do the following:

– Compute the adjacency matrix 039 of the group �.

– Compute the average distance of each oligo in � from the others.

– Discard the oligos that have an average distance more than one scaled Median
Absolute Deviation from the median [35].

– Compute a consensus sequence [63] from the remaining oligos. This (sometimes
called canonical sequence) is a standard form of consensus for nucleotide
sequences in microbiology and bio-informatics. The computation consists of
aligning the oligos, and then selecting for each nucleotide in the sequence the
one that appears most frequently in that position in the aligned sequences.

– If necessary truncate or pad the resulting oligo, so that the length is the one
expected by the deformatting step.

At the end of the barcode correction and consensus processes, we should be left with
a single copy of each oligo that was encoded. It is theoretically possible to be lacking
one or more oligos entirely if none of the copies were recoverable. This is unlikely, but it
happening could be a good indicator of a violation of the biological constraints, either by
the Headers or by the Payload of that oligo, since it would mean that not a single copy
of the oligo was left with a recoverable Header and/or an acceptable Payload. If this is
the case, the oligo is effectively lost and a visual distortion will appear in the final image.
Similarly, it is possible that a consensus sequence for an oligo never encoded might be
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constructed. This can happen if the Offset of a Data oligo is decoded erroneously several
times, as the consensus workflows cannot know which D oligos had been originally encoded.
This case does not have any associated visual distortion, as the deformatting workflow
is capable of detecting these oligos as “out of bounds” for the image and automatically
discards them.

2.5 Deformatting and Decoding

Once the consensus has been achieved, we can proceed with the decoding and de-
formatting of the oligos. These are programmatically involved, but conceptually simple
processes. The deformatting consists in first decoding the information carried by the
metadata in the oligos, in order to extract the information encoded by the Payload of
the Data oligos and recompose it in the correct order. The final result of it are the
reconstructions of the originally encoded subbands, as long strings of quaternary code.

These encoded subbands are then decoded and reshaped to retrieve the original
quantized subbands, ideally as they were just after the compression and before the
encoding process. Of course, in the presence of errors the decoded subbands will present
some form of visual distortion.

While a first attempt at error correction is done during decoding thanks to the
mapping we introduced in [57], this can only account for minor errors. To correct more
glaring visual distortions, this dissertation introduces in section 2.6 a new post-processing
step, with an ad-hoc workflow operated after the decoding is done but before reversing
the Discrete Wavelet Transform and reconstructing the image.

2.6 Post-processing

The addition of a post-processing workflow is one of the main innovations of this work
when compared to our previous ones. The necessity for it is born from the additional
noisiness of the Nanopore sequencer, as previous works had mostly focused on the
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2. Workflow for DNA data storage

(a) PSNR=48.12, SSIM=0.99 (b) PSNR=36.20, SSIM=0.74 (c) PSNR=38.70, SSIM=0.94

Figure 11: (a): image after compression; (b): image after the Barcode Correction
and Consensus; (c): image after post-processing.

Illumina machine. As can be seen in Figure 11, simply relying on Barcode Correction and
Consensus is not completely sufficient in removing the sequencing noise from the image in
Figure 11b, we must also perform post-processing to reduce the artifacting caused during
the sequencing Figure 11c.

Because of this, we decided to add an additional form of error detection and correction
as a post-processing step after the decoding of the synthesized DNA. This is not an
entirely novel idea, in [58] the DNA decoding had been enhanced in a similar fashion by
adding an inpainting step at the end of the process, with very convincing results. The
main difference from our work will lay in the type of inpainting approach chosen, as our
encoding and decoding workflows (and especially their reliance on the Discrete Wavelet
Transform) dictate a somewhat peculiar approach to post-processing and de-noising.

A first necessity is the identification of the damage, that we will discuss in subsec-
tion 2.6.1. This step, and its necessary automation, is a very difficult problem that both us
and the authors of [58] had to find our way around. While the resulting solutions are very
different, as each is tailored to the specifics of the work it is embedded in, this converging
speaks of an underlying problematic that any work approaching post-processing in this
way will need to prepare for.

After having identified where the damage is located, we need to try and correct it.
We chose to use a sample based inpainting, a technique that relies on covering damage
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2. Workflow for DNA data storage

using existing information from the rest of the image. The details of the chosen algorithm
are presented in subsection 2.6.2. Other approaches are possible, and might work better
with different types of encoding, but we performed extensive testing before choosing the
method that in our opinion best suited our existing workflows.

2.6.1 Automatic Damage Detection

Automating the detection of erroneous pixels is a very complex process. Several
methods have been proposed over the years, as the problem is central to a lot of image
quality issues. Most of these act at a very low level in cameras and sensors [17],[27],[39]
and are intended to detect either single or small clusters of erroneous pixels caused by
a defect in the device itself. Other algorithms focus more on detecting noisiness; the
algorithm from [21] can be used in this way, as can others [22]. Detection of the type
of damage our reconstructed images exhibit would normally require a more complex
approach, as the ones used in [37] and [36], to be viable.

Luckily, our encoding process puts us into a relatively rare position. As our image
was decomposed by the quantization process, each noisy subband carries less information
than a full-sized image. Coupled with the way our advanced mapping works, this means
that the visual distortion we incur in can be identified, in the subband, by a relatively
simple algorithm partially inspired by the ones used in physical cameras [62]. While more
advanced detection methods might have even more success, machine learning methods
might again be investigated in future works if enough training data is available, the
results we were obtaining with our own algorithm were deemed sufficient.

The damage detection process is composed of two separate steps. The first step is
used to detect the damage caused by Substitutions during the sequencing. These only
alter few pixels at a time, and generally result a type of damage resembling spots in
the final image, that will be described in points 1 and 2 of section 3.1. Detecting these
distortions is relatively straightforward since they only affect very small areas. As such, it
is comparable to classical salt and pepper noise, which can be detected by simply checking
the value of each pixel against that of its neighbors. The first step of the detection
algorithm works in this same way, comparing the value of each pixel in the subband to
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Algorithm 3: Damage detection.

Input:
( = ((1, (2, . . . , (=) : damaged subband
#����( = (N ((1),N ((2), . . . ,N ((=)) : neighborhoods of each value in (
)�1 : step-1 threshold
)�2 : step-2 threshold

Output:
" : damaged values mask

" ←[ 0 ]; ��+ ←[ 0 ]; "��# ←[ 0 ]

for 8 ← 1 to #( do
��+ (8) ← standard deviation(#����((8))
"��# (8) ← mean(#����((8))

"��#_��+ ← mean(��+)

for 8 ← 1 to #( do

if
√
(((8)−"��# (8))2

��+ (8) ≥ )�1 then
" (8) ← 1 // Indicate ((8) as potentially damaged.

if ��+ (8)
"��#_��+ ≥ )�2 then

" (8) ← 1 // Indicate ((8) as potentially damaged.
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that of its neighbors. Any pixel that has a variance from the rest of its neighborhood
above a certain threshold is considered damaged. Again, this detection technique is only
useful when working on the subbands rather than on the whole image, as the visual
distortions in higher level subbands will increase in size during the reversing of the DWT.
This first step, however, is not sufficient to detect more extensive damage. An example
can be seen in Figure 12c. The first step detects effectively all the isolated erroneous
pixels, but does not identify the large, black vertical line crossing the image.

This is in general true for all the distortions caused by lost Headers, or more rarely by
several errors in a row that invalidate a lot of quantization vectors close to one another.
In these cases where entire neighborhoods are affected, their average value might no
longer be a good indicator of whether a pixel was damaged or not. It can be observed,
however, that neighborhoods affected in this way tend to have a high internal variance.
As such, we can perform a second step where we detect as potentially damaged the pixels
whose neighborhoods have an internal variance above a certain threshold. The results of
these two steps can be seen in Figure 12d.

A final optional step is to enlarge the binary mask built by the algorithm. This might
not always be necessary, but it can help cover some of the imprecision of the previous
algorithm. It consists of simply increasing the size of the features of the mask, potentially
accounting for the shape and size of the quantization vectors. For example: a single pixel
that was detected as anomalous might belong to a vector that was not repaired fully
during the reversing of the advanced mapping. In this case it is possible that only the
variance for that pixel was above the detection thresholds, but the rest of the vector
could still be discolored, just within acceptable parameters. It might improve the visual
distortion of the image to enlarge the binary mask, so that it if a quantization vector
contains a damaged pixel, the whole vector is considered potentially damaged. This is
possible since we know the shape and size of the vectors for each subbands from the S
oligos and, since the VQ algorithm is deterministic, its behavior can be easily reproduced
during the post processing. This option is not done by default, as it can also lead to loss
of detail, but it is available in the workflow.
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2. Workflow for DNA data storage

(a) Damage free subband. (b) Damaged subband.

(c) Binary mask (in red) after phase 1. (d) Binary mask (in red) after phase 2.

Figure 12: Creation of the binary mask from a damaged subband, without mask
enlargement.
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2.6.2 Wavelet inpainting

For the inpainting itself we chose to use the algorithm from [18], with some small
modifications to adapt it to our case. Operating directly in the subbands allows us to
use a simple inpainting algorithm. While other inpainting approaches could be possible,
we opted for Criminisi’s solution for a variety of reasons. Chief among them is that
even when operating on the decomposition of the image we need to avoid blurring,
which pushes us toward a texture synthesis or exemplar-based method. Among those,
Criminisi’s approach is unique for how it tries to prevent artifacting caused by employing
a sub-optimal filling order, which could prove problematic for our approach. In this
paragraph we will briefly describe the main characteristic of the inpainting algorithm that
Criminisi et al. developed in [18], as it is an essential part of our post-processing. But, to
reiterate, we did not develop this algorithm, we simply implemented it. See Criminisi et
al.’s original paper for more information on its inner workings.

There are two main components to the inpainting proposed in the paper. The first one
is the patch selection process, that is common to almost all exemplar-based inpainting
approaches. A schematization of one step of this algorithm can be seen in Figure 13.

At the beginning of the algorithm a part of the image is designated as the target area,
that will be inpainted, while the rest of the picture is considered as the source area. In
our case this is done by the binary mask constructed during the damage detection phase,
where the true values indicate pixels belonging to the target region and vice versa. An
example situation can be seen in Figure 13a, with the source region (Φ), target region (Ω)
and its contour (XΩ) being clearly indicated. To perform one iteration of the inpainting
process, the algorithm designates a patch of pixels that will be inpainted. The patch (k?)
is centered on a point ? ∈ XΩ, so that it contains both intact pixels belonging to Φ and
pixels that will be inpainted belonging to Ω. This first step can be seen in Figure 13b.
After the patch has been selected, the algorithm searches over the image for the patch
that best approximates the viable pixels of Φ?. Once the best fitting one (in this example
Φ(@′′), centered on @ ′′) has been found, it is copied over the original patch, effectively
inpainting the pixels that belonged to the target region. This search and replace process
can be seen in Figure 13c and Figure 13d. If the same inpainting had been performed with
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(a) (b)

(c) (d)

Figure 13: Patch selection process for the Criminisi algorithm. (a): image with the
damaged area in white; (b): selection of patch k?; (c): search over the image for the
patch best matching k?; (d): damaged area shrinking after the inpainting iteration
is complete.

a PDE method the demarcation between yellow and azure areas would have been lost,
as the blurring effect would have caused them to bleed into each other. An unintended
but welcome upside of performing inpainting in the subbands, rather than on the whole
image, is that this type of algorithms scales poorly with the size of the image. Thus,
performing the inpainting over the decomposition of the image is much faster than doing
the same over the intact image.

Of course, the patch selection process is only one part of the inpainting process, and
it is performed similarly by most exemplar-based approaches. What sets Criminisi’s
inpainting method apart from the rest is the ordering in which the patch selection is
performed. In Figure 13b we placed point ? on the contour XΩ. This makes sense, as
picking a patch centered on the division between source and target regions strikes a
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(a) (b)

(c) (d)

Figure 14: Effects of Criminisi’s edge-driven ordering, compared with a classical
onion peel ordering. (a),(b): schematization and effects of onion peel ordering.
(c),(d): schematization and effects of priority-based ordering. Note the artifacting in
(b).

good balance between pixels to inpaint and pixels to be used for the selection of the
replacement patch. But we also, purposefully, picked a point on the intersection between
the yellow and azure textures that the source area is composed of. This is because of the
priority-based ordering used to determine which patch of pixels to inpaint. An example
of this ordering algorithm can be seen in Figure 14.

The classical way to decide which patch to inpaint next is called “onion peel” ordering.
Effectively, the algorithm simply goes around the contour XΩ, picking the patches in a
spiral concentric fashion. This can cause artifacting, an example of which is shown in
Figure 14b, somewhat exaggerated for visibility. This happens when the algorithm selects
a patch that should contain more than one type of feature (in the example both yellow
and azure texture) but, due to the ordering, the viable pixels from the original patch are
not a correct representation of these features (in the example, the patch selected only had
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one of the two textures, causing an overshoot of that texture past the diagonal). Similar
issues can be seen when inpainting concave, irregular and/or complex surfaces.

Criminisi’s priority-based, edge-driven ordering algorithm instead borrows from PDE
methods to try and determine a filling order that minimizes artifacting in the image. This
is done by balancing two terms. The first aims to prioritize patches where there is a lot
of known information (encouraging the selection of protruding parts of the target region,
that are surrounded by pixels belonging to the source region). The other term is the one
that is most inspired by Partial Derivative Equations, and it tries to prioritize patches
that lie on the edges of structures in the image. This is done by finding and propagating
into the target area the isophote lines from the source region (in the example, the diagonal
is an edge between two structures, one with a yellow texture and one with an azure
one). The result is an inpainting algorithm that first tries to complete the edges of the
structures that the damage is covering, prioritizing the patches it has a high confidence
in. This is especially useful when dealing with occlusion removal, even more so when the
original image is a photograph with complex textures and background structures.

While our situation is not exactly the one the algorithm was built to handle, its
characteristics match our needs well enough. As already stated, the possibility to cover
relatively large damage with no blurring was the thing that originally drew us to this, and
others, exemplar-based approaches, but the edge-driven ordering proved very relevant in
avoiding artifacting, once applied to the subbands rather than to the entire image. As
such we decided to implement the algorithm and apply it to the damaged area detected
in the first step of the post-processing workflow. The only modifications to the algorithm
presented in [18] concerned the implementation details, as in the original paper the
contour of the target region is defined by the user, while for us it is derived from the
binary mask. Additionally, our implementation is only designed to operate on grey-scale
images, but it could easily be expanded to operate on three channels, either separately or
taken as a single three-dimensional matrix.
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Chapter 3

Experimental results

In this chapter we will analyze the behaviour of the proposed workflow in simulations
of realistic environments, over multiple of images, error profiles, and simulated sequencers
with varying accuracy. Here we defined accuracy as how likely the sequencing machine is
to read a nucleotide without error. It can be treated simply as 100 minus the error rate
for that sequencer; so, for example, the Nanopore MinION simulated in section 3.2 would
register as having a sequencing accuracy of 95.19%, as it has a total error rate of 4.81%.
We will first show (section 3.1) some of the test done at the beginning of the work, to
better understand and categorize the visual damages cause by sequencing noise.

In section 3.2 we will then simulate our encoding and decoding workflow on two
different images, in order to observe its behaviour depending on the characteristics of
the image. For this first series of experiments we simulated a Nanopore sequencing
accuracy of 95.19%, with a rate of 1.5% for Substitutions, 1.01% for Insertions and 2.3%
for Deletions, adjusted from [60]. The simulated noise was concentrated at the ends of
the oligos, with 80% appearing in the first and last 20nt of the DNA strands, based on
the observations from [43], as well as our owns. It should be noted that these experiments
are meant as a proof of concept of the methods presented in this work. More in-depth
tests are recommended and laid out in chapter 4 after our conclusions.

In section 3.3 we simulated a much stronger noise, with an increased number of
Substitutions. The goal was to increase the effects of the noise on the image, to test the
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(a) Image "Rico", uncompressed. (b) Image "May-Lily", uncompressed.

Figure 15: Images used in the experiments shown in this chapter.

performance of the algorithms when approaching the Substitutions rate of 5.1% measured
originally in [43]. This is to be intended as a battery of experiments dealing with a
worst-case scenario, as more recent Nanopore sequencers have shown total error rates
closer to the ones utilized in section 3.2, with some even approaching 97-98% accuracy.

Lastly, in section 3.4 we compiled a table of numerical results, observing the behaviour
of the algorithm at different levels of sequencing accuracy. This was done to show how the
performance of the post-processing changes depending on the amount of noise introduced
during the sequencing.

Figure 15 shows The images chosen for these experiments. Figure 15a ("Rico") was
chosen as it presents fairly complex textures (especially in the fur). Additionally, the
human brain is wired to recognize facial features. While the face in question is feline
rather than human, it should still make damage concerning the eye and muzzle areas
especially evident to visual inspection. Figure 15b ("May-Lily") was chosen to contrast
the "Rico" image. The textures are simpler, and we can expect good performance on them,
but there are sharp edges between darker and lighter textures; in cases like this blurring,
artifacting, and texture bleed-out could be especially noticeable. When operating on this
image the algorithm has to properly discern the damage caused by noise and the rapid
switch from a light to a darker neighboring texture.
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(a) PSNR=36.78dB, SSIM=0.79 (b) PSNR=35.04dB, SSIM=0.71

Figure 16: Damage caused by Substitutions only. (a): damage applied only to
Payloads. (b): damage applied to both Headers and Payloads.

3.1 Analysis of the expected damage

After conducting a review of the literature to identify the strengths and weaknesses of
the different inpainting techniques, we started focusing on simulating the type of visual
distortion we could expect in the decoded images. The decision of which inpainting
method to utilize during post-processing would obviously depend on the characteristics
of the damage we would incur in this first battery of tests. Here we present two of these
experiments, in order to further discuss the expected types of visual distortions.

The tests shown in Figure 16 were conducted on the "Rico" (Figure 15a) image at the
start of the work and intended simply as a proof of concept for the inpainting process.
As such, only Substitutions were simulated, no Insertions or Deletions, and the noise was
uniformly distributed over the oligo, rather than concentrated in the ends as it is with
the Nanopore. Nonetheless, they can help schematize the types visual distortion we can
see at the end of the decoding process:

• Black and white spots, visible in both Figure 16a and Figure 16b. These are a
distortion caused by errors in the decoding of the LL subband, that carries most of
the information. Some of these errors cause only minor discolorations, thanks to
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the advanced mapping proposed in [57], while others are effectively unrecoverable
and appear as stark black and white stains. Crucially, these are several pixels in
radius, as opposed to most cases of salt and pepper noise. The specific dimensions
vary according to the size of the VQ vectors.

• Crisscross patterns, again visible in both Figure 16a and Figure 16b. These are
similar in size to the spots, and are caused by similar erroneous decoding, on the
other subbands (LH, HL and HH). As these subbands carry the details of the image,
the variations in pixel color, the distortion is less defined. Again, similarly to the
first type of distortion, the size and shape is depending on those of the vectors used
to quantize the image.

• Long lines only found in Figure 16b. These are caused by errors on the Headers,
and as such are only present in the image where noise was simulated on the Header
and Offset field of the oligos. The cause here is the complete loss of an oligo, either
because the Offset was decoded erroneously or because the identifying information
was lost. The result can be either a long black line (for example the vertical one
through the cat’s left eye), or a line of crisscross (they are harder to see, there
are two horizontal ones, one at the bottom of the image and one over the left
ear). The type depends on the subband of the oligo that was lost but they are
grouped together, as the problematic they present for the post-processing algorithm
is similar.

After having identified the characteristics of the damage, we tried repairing it with
traditional inpainting methods. We can see even just from a visual standpoint that the
results from our algorithm are more satisfactory than the ones obtained with classical
Criminisi inpainting. In the image where noise was applied only on the Payloads, we
gained 2.65dB of PSNR over the noisy image, and 2.35dB over the traditionally inpainted
image. Lower, but still comparable, results can be seen in the image with noise applied
to both the Headers and the Payloads, where we can see a 1.47dB gain over the damaged
image and 1.33dB over the image inpainted with Criminisi’s algorithm. The Structure
Similarity Index Measure is an even more telling indicator of the image fidelity than Peak
Signal to Noise Ratio in this case, and we can see the same gains in this metric as well.
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(a) PSNR=37.08dB, SSIM=0.84. (b) PSNR=39.43dB, SSIM=0.93.

Figure 17: Inpainting comparison, on Figure 16a. (a) repaired utilizing Criminisi’s
[18] algorithm; (b) inpainted as part of our workflows.

(a) PSNR=35.14dB, SSIM=0.77. (b) PSNR=36.47dB, SSIM=0.85.

Figure 18: Inpainting comparison on Figure 16b. (a) repaired utilizing Criminisi’s
[18] algorithm; (b) inpainted as part of our workflows.
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Our approach gains 0.14 structure similarity compared to the damaged image, and 0.09
compared to the traditionally inpainted one, for handling Payload noise. Similarly, we
gain 0.14 SSIM compared to the damaged image, and 0.08 compared to the inpainted
one, when noise is applied to both Payloads and Headers.

From these results we can infer that our inpainting approach could be effective at
repairing damage that might have slipped through the decoding process. While the
damage simulated here is only caused by substitutions, the test shows that the damage
detection and inpainting process can handle all the types of visual distortion that we can
expect from the sequencing. The next step was then to simulate several full encoding
and decoding workflows, complete of post-processing, to see how our algorithms behaved
in the presence of more realistic Nanopore noise.

3.2 Experiments with realistic Nanopore noise

These experiments were conducted according to the workflow presented in chapter 2
and visualized in Figure 3. The "Rico" and "May-Lily" images shown in Figure 15
were compressed, quantized, encoded, and formatted following the steps comprising the
encoding workflow, as explained in section 2.1 and section 2.2. Between the compression
and encoding process we also applied the parameter computation step described in
subsection 2.1.1, to best calculate the values that would be needed in the post-processing
workflows. These values were then added to the formatting of the oligos, according to
the oligo structure described in Figure 5. To simulate the Nanopore sequencing noise, we
created 200 noisy copies of each formatted oligo. This was done to mimic the process of
PCR amplification, followed by the introduction of noise during the sequencing, which
produces multiple noisy reads. At the end of this we similarly had a set of multiple copies
of the formatted oligos, each containing different errors in different positions, as it would
happen in a real wet experiment.

To decode the noisy oligos we similarly followed the procedures laid out in section 2.4
and section 2.5, starting by applying the barcode correction process detailed in subsec-
tion 2.4.1 to distinguish the oligos of different types from each other, and in order to
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(a) PSNR=37.92dB, SSIM=0.82. (b) PSNR=39.50dB, SSIM=0.90.

Figure 19: Realistic noise experiment from section 3.2, on "Rico". (a): picture after
the consensus; (b): picture after the post-processing is complete.

(a) PSNR=36.52dB, SSIM=0.84. (b) PSNR=38.28dB, SSIM=0.93.

Figure 20: Realistic noise experiment from section 3.2, on "May-Lily". (a): picture
after the consensus; (b): picture after the post-processing is complete.
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locate their position in the image. Once the barcode correction was done, we proceeded to
cluster the noisy oligos according to their Headers, and then pruned away the outliers to
ensure the quality of the consensus. Once each cluster had been cleaned, we aligned the
remaining oligos and used them to build a consensus sequence for each cluster, intended
to be the most representative version of each oligo. These consensus sequences were then
de-formatted and decoded, the result of which is shown in Figure 19a and Figure 20a. In
these figures we calculated the Peak Signal to Noise Ratio and Structure Similarity Index
Measure of both damaged and repaired images, with respect to the images in 15 after the
compression.

Finally, we applied the post-processing algorithms described in section 2.6, starting
with the damage detection shown in subsection 2.6.1, utilizing the parameters determined
during the encoding of the image and recovered by the deformatting process. Once the
damaged areas had been identified, we performed the inpainting directly in the subbands,
utilizing the algorithm described in subsection 2.6.2. The results can be seen in Figure 19b
and Figure 20b.

Analyzing the images, we observed a 1.5dB gain of Peak Signal to Noise Ratio in
the case of "Rico", one of 1.76dB in the case of "May-Lily", when compared to the
damaged image. The Structure Similarity Index has similarly increased, by 0.8 in the
first case and 0.9 in the second. We can note that the gain in PSNR is lower than it was
in the exploratory tests, while the SSIM increase is comparable. This is likely due to
the addition of insertions and deletions causing more damages. One the one hand, the
processes employed before the post-processing are capable of pruning the more impactful
effects of Indels. For example, the significant damage lines indicated in point three of
section 3.1 and visible in Figure 16 that are caused by missing or heavily damaged oligos
can be avoided thanks to the padding and added protection for the Headers, as well
as the outlier detection algorithm shown in subsection 2.4.2. On the other hand, the
increased noise causes a lot of damage to the detail subbands (HH, HL and LH), where
effectively identifying and repairing the erroneous pixels is a lot harder.

From a visual inspection we can see that most of the noise on the subbands has been
cleaned by the post-processing workflow. This is especially true for the black spots in
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both images, while lighter damages proved more difficult to identify due to the hue of
the images themselves. In the "May-Lily" image the result is generally better than in
the "Rico" image, as expected, and the post-processing caused little to no artifacting
between the texture areas. In both images the hardest damage to identify and repair
effectively came from the detail subbands; this is true especially in "Rico", where the
textures are busier than in "May-Lily" and thus it is harder to separate the noise from
the decomposition of the fur texture.

Overall the results of these tests are satisfactory. While they could be further improved,
as we will briefly discuss in chapter 4, they represent a solid proof of concept for the DNA
storage workflow as a whole and for the post-processing approach in particular.

3.3 Experiments with worst-case noise

Similarly to what was done in section 3.2, in this experiment we encoded, formatted,
decoded, and inpainted the images shown in Figure 15a and Figure 15b according to
the workflow presented in chapter 2. This was done twice, once with a high — but
still realistic — noise simulation, and once with very high and close to worst-case error
percentages. After the decoding and post-processing we again calculated the Peak Signal
to Noise Ratio and Structure Similarity Index of all the damaged and repaired images,
compared with their compressed, but undamaged, versions.

The results of the first experiment can be seen in Figure 21 and Figure 22. The
procedure and images utilized in the experiments shown here are the same as the ones
in section 3.2. The difference is the accuracy of the simulated sequencer. In this first
experiment we will simulate an accuracy of 93.69%, effectively doubling the expected
number of Substitutions.

Despite this the, results of the post-processing are comparable to that of the experiment
in section 3.2. The post-processing managed to gain 1.26dB of Peak Signal to Noise Ratio
in the case of "Rico" and 1.93dB in the "May-Lily" image. Structure Similarity Index
gains where similarly reminiscent of the results of the first experiments in section 3.2,
with a gain of 0.11 and 0.12 SSIM respectively. In the case of Figure 22b the improvement
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(a) PSNR=37.42dB, SSIM=0.79. (b) PSNR=38.68dB, SSIM=0.90.

Figure 21: First worst-case noise experiment from section 3.3, on "Rico". (a):
picture after the consensus; (b): picture after the post-processing is complete.

(a) PSNR=35.53dB, SSIM=0.80. (b) PSNR=37.46dB, SSIM=0.92.

Figure 22: First worst-case noise experiment from section 3.3, on "May-Lily". (a):
picture after the consensus; (b): picture after the post-processing is complete.

54



3. Experimental results

is actually more marked than before, although the final PSNR achieved is of course
lower, at 37.46dB versus 38.28dB for Figure 20b. Nonetheless, the results are interesting.
Even with an higher sequencing noise the post-processing can repair most of the obvious
damage, as evidenced by the increase in SSIM as well as qualitative visual examination.
The pitfalls remain the same ones underlined in the previous experiments: extensive
damage to the HL, LH and HH subbands is hard to identify and correct. While the
algorithm can still do so, at least for the bigger damages, it results into a loss detail. This
can be seen as blurring and loss of definition in both the fur in Figure 21b and on the
demarcation between light and dark textures in Figure 22b.

For the second experiment in this section we brought the Substitution rate to 5.1%,
in line with the original findings from [43]. This in turn gives us a sequencing accuracy of
91.68%. The results of this experiment can be seen in Figure 23 and Figure 24. Beyond
this threshold, the encoding starts breaking down, with the image becoming effectively
unrecoverable at less than 85% accuracy. It should be noted that this effect can be avoided,
or at least reduced, by strengthening the encoding scheme, protecting more the header
data, increasing the simulated PCR redundancy, and/or decreasing the compression rate
of the image (as it reduces the effect that a lost oligo or a damaged nucleotide has on the
reconstructed image). However, these methods are outside the context of this experiment,
as they revolve around the performance of the pre-existing workflow rather than the
behaviour of the post-processing step.

Numerically, the expected gains are still present. A PSNR increase of 2.7dB and
2.49dB in Figure 23b and Figure 24b respectively is very significant, and it brings the
final PSNR values for these images in line with the ones from the previous experiments.
The same is true for the SSIM gain and final values, despite the significant increase in
sequencing noise. From a visual inspection, however, we can infer that the algorithm is
starting to struggle at keeping up with the amounts of noise introduced. The lines of
missing and/or damaged oligos visible in both Figure 23a and Figure 24a are reminiscent
of Figure 16b, and similarly indicative of either Header damage, or at least some almost
undecodable Payloads. Damages like this are to be avoided rather than inpainted,
whenever possible, which is the purview of the outlier detection and consensus steps.
Evidently at this levels of noise the consensus sequences of some oligos are becoming
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(a) PSNR=35.98dB, SSIM=0.75. (b) PSNR=38.68dB, SSIM=0.90.

Figure 23: Second worst-case noise experiment from section 3.3, on "Rico". (a):
picture after the consensus; (b): picture after the post-processing is complete.

(a) PSNR=34.91dB, SSIM=0.77. (b) PSNR=37.40dB, SSIM=0.91.

Figure 24: Second worst-case noise experiment from section 3.3, on "May-Lily". (a):
picture after the consensus; (b): picture after the post-processing is complete.
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accuracy damaged image inpainted image gain
MayLily PSNR SSIM PSNR SSIM I-PSNR I-SSIM

99% 38.51 0.92 39.21 0.95 0.70 0.03
98% 38.48 0.90 39.09 0.95 0.61 0.05
97% 36.70 0.81 38.38 0.90 1.68 0.09
96% 35.90 0.81 37.67 0.91 1.77 0.10
95% 35.67 0.81 37.78 0.92 2.11 0.11
94% 35.64 0.80 37.21 0.90 1.57 0.10
93% 35.36 0.80 37.12 0.90 1.76 0.10
92% 34.97 0.78 36.65 0.89 1.68 0.11
91% 33.95 0.74 35.46 0.85 1.51 0.11
90% 29.36 0.40 29.78 0.53 0.42 0.13
Rico PSNR SSIM PSNR SSIM I-PSNR I-SSIM
99% 41.08 0.92 39.67 0.92 -1.41 0.00
98% 39.48 0.86 39.73 0.91 0.25 0.05
97% 37.30 0.80 38.21 0.87 0.91 0.07
96% 37.64 0.80 39.13 0.89 1.49 0.09
95% 37.49 0.79 38.98 0.88 1.49 0.09
94% 37.21 0.78 38.39 0.87 1.18 0.09
93% 36.47 0.77 37.55 0.85 1.08 0.08
92% 31.34 0.40 32.19 0.49 0.85 0.09
91% 29.02 0.18 29.32 0.21 0.30 0.03
90% 28.94 0.25 29.03 0.30 0.09 0.05

Table 1: PSNR and SSIM gains related to sequencing accuracy.

poisoned despite the presence of these steps, either due to a lower redundancy or less
header protection that it would be needed. While the algorithm can still repair these
types of damages in some cases (as can be seen on the cat right ear in Figure 23b) the
inpainting is not always seamless, and largely dependant on the area around the damage.

3.4 Numerical experiment

To close this experimental chapter we want to present a quantitative analysis. We will
be analyzing the performance of our proposed workflow in relation with varying levels of
sequencing accuracy. We will be comparing the Peak Signal to Noise Ratio and Structure
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Similarity Index of damaged and repaired images at various levels of sequencing accuracy,
from the 99% accuracy expected of classical Illumina sequencers down to 90% accuracy,
after which the encoding and decoding process starts breaking down. The tables relating
PSNR and SSIM with sequencing accuracy can be seen in Table 1.

From the tables we can see that the gain in terms of PSNR and SSIM presents a peak
at a sequencing accuracy of around 95%. This is not surprising. The work was developed
to operate on the Nanopore MinION, that has an effective accuracy of 95% to 97%. It
stands to reason that, given the default parameters, it would operate best around these
margins. At lower accuracy percentages the workflow struggles to cover up the more
extensive damage, with the image starting to become unreadable around 90% accuracy.
At higher fidelity, we have the opposite problem. In these cases the gains reduce as, after
having covered up what little damage was present in the image, the algorithm starts
inpainting over details. This is especially visible in the case of Rico, that has complex
textures. At 98% accuracy we have a minimal gain in the measured metrics, while at
99% we have an actual loss, as the algorithm causes blurring of details and especially fur
texture, in the image.

It must be noted, however, that his "bump" in the algorithm efficacy can theoretically
be moved. If the algorithm is supposed to operate on a sequencing machine with a
lower error rate, and thus an higher accuracy, the parameters used in the compression,
damage detection, and inpainting steps can be modified by the user before the start of
the encoding. For example, a user might specify a tighter behaviour in the computation
of damage detection parameters, tolerating fewer false positives. Indeed, it would be even
possible to utilize the meta-data carried by the Headers of the Global, Subband and Data
oligos to indicated if different inpainting or outlier detection algorithms should be used,
as they might be better suited to the specific image or noise level. Or even to indicate
the need to avoid post-processing entirely, in cases where it might be counterproductive.
The packet-like structure of the formatted oligos lends itself well to such uses.

Overall, the numerical results are satisfying. The post-processing can increase the
PSNR of most tested accuracy levels, even in case where the image is significantly
damaged. While it performs better over a small range of noise levels, this range can be
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moved by manipulating the configuration of the algorithms, rather than the algorithms
themselves. It should be noted that the composition of the sequencing noise is likely
to have as much of an impact , if not more, as the level of noise itself. As the tests in
the previous sections have shown, the algorithm excels at covering Substitution noise,
but can struggle with the larger damages caused by Indels. In these cases, it would
be the responsibility of the outlier detection and consensus steps to prune away all the
oligos that might be too damaged to contribute to an effective decoding. Again, this
can be ensure by properly configuring these steps, as well as minimizing the presence of
contiguous patterns in the DNA strands.
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Chapter 4

Conclusions

In this work we have developed a general workflow to store digital images into DNA,
utilizing the encoding algorithm proposed in [57] and expanding the previous works
shown in [51] and [54]. The proposed workflow (outlined throughout 2) increases the
noise resistance of the process by optimally assigning the vector indexes of an image
quantized using Vector Quantization, to reduce the visual impact of sequencing errors.
We also utilized an inline error correcting approach in the form of DNA barcodes [33]
to encode the Headers of the formatted oligos, which coupled with a custom outlier
detection step and a majority voting consensus algorithm allowed us to further reduce the
visual distortion caused by sequencing errors. Finally, we introduced a post-processing
step, utilizing an algorithm for detecting any remaining damaged areas and applying
inpainting to improve the final image quality. This novel workflow can provide redundancy
and inline error correction without increasing the cost of the synthesis and sequencing
process, complemented by a post-processing approach to further improve the quality of
the decoding.

Additionally, while most works up to date are focused on the Illumina sequencer
thanks to its higher accuracy, we explicitly introduced the Nanopore MinION sequencer
in our workflow in order to speed up the process and reduce the cost. We carried out an
analysis on the performance of the DNA encoding and decoding process in the presence
of simulated Nanopore sequencing noise, as well as higher error rates in order to test the
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noise resilience of the proposed workflow.

We also introduced some possible further avenues of research, for example the possi-
bility of improving the error detection and/or the inpainting performance in the post-
processing step by relying on other more advanced algorithms. Again, machine learning
based approaches could be of great help in both these steps, especially if treated as a
blind inpainting problem, should a sufficiently large training set be available to retrain
the convolution layers where needed.

Lastly, we proposed the possibility of further strengthening the error resistance of the
encoding algorithm in [57] by employing a Double Representation approach. This would
aim to reduce the amount of pattern repetitions in the oligos, reducing the sequencing
noise by more closely abiding by the biological constraints of synthetic DNA encoding.
To make this possible we developed an ad-hoc clustering algorithm, in order to maintain
the advantages of the DeMarca encoding algorithm utilized in this work and [57] while
still utilizing multiple codebooks during the encoding.

Nonetheless, this study was conducted by relying on a simulation of the Nanopore
noise and intended mostly as a proof of concept. As such a proper wet-lab experiment is
the most pressing priority to verify in practice the efficiency, as well as the efficacy, of the
proposed encoding, decoding and post-processing workflows.
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