

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

SCUOLA DI INGEGNERIA

DIPARTIMENTO di

INGEGNERIA DELL’ENERGIA ELETTRICA E DELL’INFORMAZIONE

“Guglielmo Marconi”

DEI

CORSO DI LAUREA MAGISTRALE IN

Advanced Automotive Electronic Engineering

TESI DI LAUREA

in
 Neural Network Computing, A.I. and Machine Learning for Automotive

3D StixelNet

Deep Neural Network for 3D object detection stixel-based

CANDIDATO RELATORE

Capuzzo Davide Chiar.mo Prof. Riccardo Rovatti

CORRELATORE

Dott. Lorenzo Baraldi

Stefano De Battisti

Andrea Zinelli

Riccardo Maiolani

Anno Accademico

2019/2020

Sessione

II

Sommario

In questa tesi è stato presentato un algoritmo di deep learning per il rileva-

mento di oggetti 3D da nuvola di punti in ambiente esterno. Questo algoritmo

è alimentato con stixel, un dato di tipo medio generato partendo da una nuvola

di punti o da una mappa di profondità. Uno stixel può essere pensato come un

piccolo rettangolo che inizia dalla base della strada e poi sale fino alla sommità

dell’ostacolo che riassume la superficie verticale di un oggetto. L’obiettivo

di stixel è comprimere i dati provenienti dai sensori in modo da avere una

trasmissione veloce senza perdere informazioni.

L’algoritmo per generare stixel è un nuovo algoritmo da me sviluppato che

può essere applicato sia dalla nuvola di punti generata dal LIDAR che dalla

mappa di profondità generata dalla camera stereo e mono.

I passaggi principali per creare questo tipo di dati sono:

• l’eliminazione dei punti che giacevano sul piano stradale;

• la creazione di una matrice che riassuma la profondità di gruppo degli

stixel;

• la creazione di stixel unendo tutte le celle che fanno parte dello stesso

oggetto.

La generazione di stixel riduce i punti da 40.000 a 1200 per la nuvola di punti

LIDAR e da 480.000 a 1200 per la mappa di profondità.

Per estrarre informazioni 3D dallo stixel, questi dati sono stati inseriti in

un algoritmo di deep learning adattato a ricevere in input questo tipo di dati.

L’adattamento è stato effettuato partendo da una rete neurale esistente per il

i

rilevamento di oggetti 3D in ambiente indoor. Questa rete è stata adattata per

superare la scarsità di dati e le grandi dimensioni della scena.

Nonostante la riduzione del numero di dati, grazie alla giusta messa a punto,

la rete creata in questa tesi ha potuto raggiungere lo stato dell’arte per il

rilevamento di oggetti 3D.

Questo è un risultato rilevante perché apre la strada all’utilizzo di dati di

tipo medio e sottolinea che la riduzione dei punti non significa una riduzione

delle informazioni se i dati vengono compressi in modo ottimale.

ii

Abstract

In this thesis it has been presented an algorithm of deep learning for 3D object

detection from the point cloud in an outdoor environment. This algorithm is

feed with stixel, a medium-type data generates starting from a point cloud or

depth map. A stixel can be think as a small rectangle that start form the base

of the road and then rises until the top of the obstacle summarizing the vertical

surface of an object. The goal of stixel is to compress the data coming from

sensors in order to have a fast transmission without losing information.

The algorithm to generate stixel is a novel algorithm developed by myself

that is able to be applied both from point cloud generated by lidar and also

from depth map generated by stereo and mono camera.

The main passage to create this type of data are:

• the elimination of points that lied on ground plane;

• the creation of an average matrix that summarizes the depth of group of

stixel;

• the creation of stixel merging all the cells that are of the same object.

The stixel generates reduce the points from 40 000 to 1200 for LIDAR point

cloud and to 480 000 to 1200 for depth map.

In order to extract 3D information from stixel this data has been feed into

a deep learning algorithm adapted to receive as input this type of data. The

adaptation has been made starting from an existing neural network use for 3D

object detection in an indoor environment. This network has been adapted in

order to overcome the sparsity of data and to the big size of the scene.

iii

Despite the reduction of the number of data, thanks to the right tuning the

network created in this thesis have been able to achieve the state of the art for

3D object detection.

This is a relevant result because it opens the way to the use of medium-type

data and underlines that the reduction of points does not mean a reduction

of information if the data are compressed in a smart way. oints not means a

reduction of information if the data are compressed in a smart way.

iv

Contents

1 Introduction 1

1.1 Sensors . 4

1.1.1 Stereo camera . 5

1.1.2 LIDAR . 6

1.2 The Kitti Dataset . 8

2 State of the art 11

2.1 Introduction . 11

2.2 Structured grid network . 13

2.2.1 VoxelNet . 13

2.2.2 Point Pillar . 16

2.2.3 STD: Sparse-to-Dense 3D Object Detector for Point Cloud 18

2.2.4 SVGA-Net: Sparse Voxel-Graph Attention Network . . . 21

2.3 Point based network . 24

2.3.1 PointNet . 24

2.3.2 PointNet ++ . 26

2.3.3 VoteNet . 29

2.3.4 3DSSD . 32

2.4 Mixed type network . 34

2.4.1 Frustum PointNet . 34

3 Stixel 37

3.1 State of the Art . 39

v

Contents

3.2 Procedure of creation . 40

3.2.1 Plane fitting . 41

3.2.2 Matrix generation . 46

3.2.3 Stixel creation procedure 48

3.3 Results . 51

4 3D StixelNet 55

4.1 The backbone . 56

4.1.1 The Set-Abstraction layers layer 57

4.1.2 The Feature Propagation layer 59

4.2 The voter . 60

4.3 The detector . 63

4.4 Loss Function . 63

5 Results 67

5.1 Evaluation metrics . 68

5.2 Experiment . 71

5.2.1 Stixels as points . 72

5.2.2 Stixels as stixels . 73

5.2.3 Change the type of Sampling layer 74

5.2.4 Data augmentation . 77

5.2.5 Reduction of number of seed points 82

5.2.6 Multi-scale grouping . 84

5.2.7 Change the width of stixels 86

5.2.8 Stixel derive from mono e stereo camera 88

5.3 Memory consumption and inference time 92

5.4 Comparison with the state of the art 94

5.5 Final consideration . 96

6 Final considerations 99

6.1 Future improvement . 100

vi

List of Figures

1.1 Example of stereo camera . 5

1.2 Stereo Camera Model . 5

1.3 Example of LIDAR sensor . 7

1.4 LIDAR 2D representation . 7

1.5 Kitti recording platform . 8

1.6 Kitti recording platform configuration 9

2.1 Structure of VoxelNet . 14

2.2 Structure of STD . 17

2.3 Structure of STD . 19

2.4 Structure of SVGA . 21

2.5 Structure of PointNet . 25

2.6 Structure of PointNet ++ . 27

2.7 Structure of VoteNet . 30

2.8 Structure of 3DSSD . 33

2.9 Structure of Frustum PointNet 35

3.1 Representation of threshold on selecting points on ground 42

3.2 Representation of segmentation of the piano 43

3.3 LIDAR points . 43

3.4 Obtained points on vertical surface 44

3.5 Starting images to generate mask 45

3.6 Obtained mask with VLDH . 45

3.7 Representation of grid of stixel 46

vii

List of Figures

3.8 Representation of cells scenario 47

3.9 Average matrix results . 47

3.10 Histogram matrix results . 49

3.11 Algorithm of stixel creation . 50

3.12 Stixel result . 51

3.13 Stixel in 3D prospective and stixel in BEV 52

3.14 Distribution of stixel generate from lidar point cloud 53

3.15 Distribution of stixel generate from stereo depth map 54

3.16 Distribution of stixel generate from mono depth map 54

4.1 Structure of VoteNet . 55

4.2 Grouping algorithm . 60

4.3 Example of feature extracted on coding book 61

5.1 2D Intersection over Unit representation. 68

5.2 Test of different batch size . 73

5.3 Test of different type of stixel 74

5.4 Test the type of Sampling layer 75

5.5 Scene without data augmentation 79

5.6 Scene with data augmentation 79

5.7 Test the data augmentation . 81

5.8 Test the reduction number of seed points 82

5.9 Test of multi-scale grouping . 86

5.10 Distribution of stixel generate from reduced width stixel 87

5.11 Test of change width of stixel 88

5.12 Test training network on stixel from point cloud and test on

stixel from stereo . 89

5.13 Test training on stixel derive from stereo camera 91

5.14 Test training on stixel derive from mono camera 91

5.15 Memory consumption of the weights 92

5.16 Inference time . 93

viii

List of Figures

5.17 Starting scene . 97

5.18 Starting points . 97

5.19 Ground truth stixel . 98

5.20 Prediction of the network . 98

ix

List of Tables

5.1 Backbone Set Abstraction layer 71

5.2 Backbone Feature propagation layer 71

5.3 Voter Set Abstraction layer . 71

5.4 Test 0: batch size 4; Test 1: batch size 8 72

5.5 Test 0: stixel 4 points; Test 4: stixel one point 73

5.6 Backbone Set Abstraction: Change the type of Sampling layer . 75

5.7 Test the type of Sampling layer 76

5.8 Test the type of Sampling layer 77

5.9 Data augmentation: starting network 80

5.10 Type of data augmentation test 80

5.11 Test the type of data augmentation 80

5.12 Test the type of data augmentation 81

5.13 Backbone Set Abstraction: Reduction of number of seed points . 83

5.14 Backbone Set Abstraction: Reduction of number of seed points . 83

5.15 Test the reduction of number of seed points 83

5.16 Test the reduction of number of seed points 84

5.17 Test 36: Multi-scale grouping 85

5.18 Test the Multi-scale grouping 86

5.19 Test of change width of stixel 88

5.20 Test training network on stixel from point cloud and test on

stixel from stereo . 89

5.21 Test training on stixel derive from stereo camera 90

5.22 Test training on stixel derive from mono camera 91

xi

List of Tables

5.23 Performance comparison on KITTI 3D object detection val set

for car class . 95

xii

Chapter 1

Introduction

Cars are becoming more and more smarting. The introduction of new sensors

and new electronic systems is a standard in the automotive world. The final

goal of this implementation is to create a driverless car in order to increase the

safety of the drivers and other occupants of the road, reduce the travel timing

and let people be free to apply the time travel to other interests.

The task that an autonomous car has to do at the same time in order to

provide a reliable service are:

• Perception: The perception is the analysis of the environment under-

standing the whole scene and analyzing the critical situations.

• Planning: the choice of the right path both from a high-level abstraction

like which road take in order to arrive at the destination and also from a

low level so which trajectory follow taking into account the environment.

• Control: Take the information provide by the low-level planning and

decide how to set the engine, the steering wheel, or other actuators in

order to follow the best trajectory.

This set of high-level service is provided in a reduced way also in the car

that is possible to buy nowadays.

1

Chapter 1 Introduction

In the automotive world, there are many levels of autonomy of a vehicle

defined by the SAE (Society of Automotive Engineers). These levels are divide

by which task a car has to do and which autonomy a car has. They are:

• Level 0: No Automation

Level 0 is the base level where all aspects of driving being fully human

and manually controlled.

• Level 1: Driver Assistance

Level 1 is the lowest level of automation. Only one single aspect of

driving is automated. In particular, the aspect that is automated is either

steering or acceleration/deceleration.

• Level 2: Partial Automation

In level 2 the vehicle is able to control both the steering and acceleration/

deceleration ADAS capabilities. At this level, the driver has complete

control of the vehicle at all times. Examples of level 2 include lane-keeping,

adaptive cruise control and self-parking features.

• Level 3: Conditional Automation

In level 3 a vehicle is able to detect the environment around it. level 3

vehicles contain the lowest-tier system that is classified as an automated

driving system as opposed to a manual system. With this more advanced

technology, level 3 vehicles can make informed decisions for themselves

such as overtaking slower-moving vehicles. However, with the expectation

that the human driver will respond appropriately to a request to intervene

in a hard task or system failure.

• Level 4: High Automation

In level 4 vehicles, even if a human driver does not respond appropriately

to a request to intervene car can pull over safely by the guiding system.

In this sense, these cars are left completely to their own devices without

2

any human intervention in the vast majority of situations. The option to

manually override does remain in difficult or preferable circumstances.

• Level 5: Full Automation

In level 5, human driving is completely eliminated. A level 5 vehicle must

have a perfect response to all the situations include off-road driving and

other terrains that Level 4 vehicles may not necessarily be able to detect

or intelligently comprehend. In other words, level 5 vehicles have a much

more advanced environment detection system.

In this class of automated vehicles, there aren’t the typical driving controls

such as steering wheels, gas and brake pedals, or others. At this level,

there is not the possibility of intervention from a human driver.

From level 2, the perception task is becoming relevant. And in order to have

a good understanding of the environdìment, a car needs to know not only the

roads and the generic obstacle but also understand the position and type of

occupants of the road. In order to achieve this task, many options and many

paths have been taken.

The most important way to understand the occupancy of the road is taking

the input from some sensor like LIDAR or stereo camera and elaborate this

input with a deep learning algorithm.

A deep learning algorithm is a set of operation that takes an input some

data and apply some operations like multiplication for some weights and

discretization functions like sigmoid in order to extract some information

independently. The weights of the multiplication are learned in a phase called

training where taking as input a annotate data set the algorithm tune this weight

in order to provide the right output. The differentiation of each network is

provided by the sequence of operations that, after many trials and consideration,

have been understood that is more suitable for each task.

After this training and tuning phase, each network is ready to do a specific

task.

3

Chapter 1 Introduction

The goal of this thesis is to create a deep learning algorithm for 3D object

detection for an autonomous vehicle using a medium type of data that has been

created starting from a point cloud or depth map generated from the stereo

and mono camera.

The dataset used for the training of the Neural Network is the Kitti dataset

that will be illustrated in the following paragraphs.

In the second chapter, it has been illustrated all the types of deep learning

algorithms which has been inspired the algorithm developed in this thesis.

The third chapter, it is shown the method of transformation of the point

cloud to medium type data that will be feed into the network.

The fourth chapter there is explained in detail the architecture of the network

adopted to extract the 3D object detection.

The fifth chapter there is illustrated the result and the trial of the network

training.

The sixth chapter is showed the conclusion and final considerations of the

thesis.

1.1 Sensors

In order to have a perception of the environment a key role is provided by

the sensors. A sensor suitable for 3D object detection should be reliable in all

the situation. It should have enough accuracy in order to provide a resolution

suitable for capturing the detail for 3D object detection. Other important

things, it should have also a sufficient range that allows having enough vision

of the scene. In order to achieve all this task, the sensors selected for 3D object

detection are stereo Cameras and LIDARs.

4

1.1 Sensors

1.1.1 Stereo camera

The stereo camera is sensors that use a pair of the camera to extract a depth

map through some algorithms that can be both deep learning algorithms or

computer vision algorithms.

Figure 1.1: Example of stereo camera

The concept is that knowing the position of two cameras and the potion

along the same axis of a camera of an object is possible to understand the

distance camera-object with a simple trigonometrical formula.

Figure 1.2: Stereo Camera Model

In Figure 1.2 it has been illustrated the working principle of a stereo camera.

In this figure:

• b represent the base distance between the two cameras focal centers;

• f represent the focal distance of the two cameras;

5

Chapter 1 Introduction

• uL and uR represent the object P in the camera reference frame;

In order to evaluate the distance of the point P the procedure is:

1. find the disparity d = uL − uR

2. evaluate the distance z = b×f
d

The real problem is to match each point in the left image with the one in

the right image in order to find the disparity. There are many ways to do that.

The most common is using a scanning algorithm but is slow and imprecise or

use deep learning to extract disparity maps.

The advantages of using cameras to evaluate depth map are:

• cameras are cheap sensors;

• cameras can achieve high resolution and high point density;

• cameras are mature technology.

The drawback is:

• the depth map obtained from camera nowadays is not so precise and

needs some computation to be extracted.

1.1.2 LIDAR

LIDAR is acronyms for Light Detection and Ranging. This sensor sends a

Laser pulse train, which is sent to the surface/target to measure the time and

it takes to return to its source.

The actual calculation for measuring how far a returning light photon has

traveled to and from an object is calculated by:

Distance = Speed of Light × Time of Flight
2

6

1.1 Sensors

Figure 1.3: Example of LIDAR sensor

Figure 1.4: LIDAR 2D representation

In an autonomous car, the LIDAR is composed of a sensor that sends up

to 8 rays and rotates by 360 degrees. These 8 rays rotating can capture the

distance of 8 points and then create a point cloud.

The advantage of using a LIDAR are:

• high precision and accuracy;

• less computation to extract the 3D point cloud.

The disadvantages of this technology are:

• Not a mature technology;

• High cost;

• Less resolution;

• Less robustness to vibration.

7

Chapter 1 Introduction

These draw-backs are referred to mechanical LIDAR where the rotation of

the laser is provided by mechanical motors. Nowadays new technology is going

to be developed like solid-state LIDAR that will provide high accuracy, less

cost, and high resolution.

1.2 The Kitti Dataset

The evaluation of 3D pose estimation of the vehicle is provided by a deep

learning algorithm that in order to be trained needs a robust dataset. The

dataset used in this thesis is Kitti dataset [1] [2], one of the most important

dataset use for research in autonomous driving.

This dataset has been created by Karlsruhe Institute of Technology recording

some driving around a mid-size city, in rural areas, and on highways.

Figure 1.5: Kitti recording platform

The recording platform is a Volkswagen station wagon equipped with two

high-resolution stereo camera systems (grayscale and color), a Velodyne HDL-

64E laser scanner that produces more than one million 3D points per second,

an OXTS RT 3003 localization system which combines GPS, GLONASS, an

IMU, and RTK correction signals. The cameras, laser scanners, and localization

systems are calibrated and synchronized, providing accurate ground truth.

8

1.2 The Kitti Dataset

Figure 1.6: Kitti recording platform configuration

In figure 1.6 it has been illustrating the dimensions and mounting positions

of the sensors (red) with respect to the vehicle body. Heights above ground are

marked in green and measured with respect to the road surface. Transformations

between sensors are shown in blue.

In total, the dataset contains 6 hours of traffic scenarios. The scenarios are

diverse, capturing real-world traffic situations, and range from freeways over

rural areas to inner-city scenes with many static and dynamic objects.

For each dynamic object within the reference camera’s field of view, it has

provided annotations in the form of 3D bounding box tracklets, represented in

Velodyne coordinates. For each bounding box, it is assigned class and its 3D

size (height, width, length) and 3D orientation on roll pitch and yaw angles.

The classes of this objects are: "Car", "Van", "Truck", "Pedestrian",

"Person (sitting)", "Cyclist", "Tram", "Misc" (e.g., Trailers, Segways)

This dataset constitutes the benchmark for most of the papers and studies

for autonomous driving perception tasks.

9

Chapter 2

State of the art

2.1 Introduction

The field of 3D object detection from point cloud is a quite new research field

so there is not yet a method that has take over the other. In this chapter it is

introduce a brief survive of the major research branches and the basis where

they pose on.

Point clouds are a group of points where each point is composed of one

coordinate in 3D space and a possible feature that can indicate the reflectance

or other characteristic of that point. The most common way to generate a

point cloud is using lidar or stereo cameras.

Lidar is a sensor that irradiates an environment with a rotating beam of

laser rays and each ray when hit a surface and it is reflected it returns to the

lidar and, measuring the time of flight, is possible to understand the position

of the point. Repeating this many times and for all the points it is possible to

obtain a group of the point that has more or less the shape of the environment.

The principle behind a stereo camera is the same as the human eye. First

measuring the disparity of the position of an object in two parallel cameras

then through a simple mathematical formula measures the depth of the object

and then repeats this procedure to the entire scene.

The most difficult challenge in 3D object detection based on point cloud are:

11

Chapter 2 State of the art

• Irregularity: not all the surface have the same amount of point, some

could be denser than other

• Unstructured: Point cloud data is not on a regular grid. Each point

is sample independently so the distance between two adjacent points is

not fixed. For example in an image that has a 2D fixed grid where the

distance between a pixel and another neighborhood pixel is always fixed

• Unorderdness: The order of point in a point cloud are into stored in a

specific order due to the fact that the intrinsic nature of this data makes

useless to find it

The main family of NN that work on point cloud differentiates from each

other regarding the approach to manage these three characteristics. They are

structured grid-based, point-based, and mixed data types.

The structured grid-based NN tries to transpose and adapt the knowledge of

the convolutional neural network in a tridimensional world. To achieve this

goal two main approaches are adopted: Voxel-based network and multi-view

network.

The voxel-based network takes the entire point cloud and then fill a 3D grid

with the point and then apply 3D convolution pooling and a fully connected

layer. The drawbacks of Voxel-based method is the high memory consumption

due to the fact that the necessity to Voxilize the whole scene, the waste

of resource because you need to convolve over empty Voxels and the lack of

resolution because you have to find a trade-off between resolution and resources.

Multi-view based network the object is projected into many 2D planes and

then it is applied a 3D image detection. The problem of that method is also a

waste of resources and the loss of 3D depth while projecting the image. The

advantages are: have more details and use of a solid method of detection like

2D detection.

The other family of detectors is the detection base directly on the point

cloud. In this family, the main network is PointNet that is used as backbone

12

2.2 Structured grid network

for many other networks. Due to the fact that points are unordered, PointNet

is composed of symmetric functions. Symmetric functions are functions whose

output is the same irrespective of the input order. PointNet is built on 2 basic

symmetric functions: multi-layer perception (MLP) with learnable parameters,

and a max-pooling function. The MLPs are a linear layer that works with the

same parameters on each point creating a feature. The max-pooling layer is

needed to aggregate the global feature. These symmetric functions are needed

to work on three different main operations: sampling, grouping, and mapping.

Sampling is reducing the number of points taking “the most relevant” points.

Grouping is the operation that groups the nearest point, and then a mapping

function that tries to map the features to a specific object class.

Mixed data types use two kinds of data like 2D images and point clouds to

extract the 3D position of the object.

2.2 Structured grid network

2.2.1 VoxelNet

VoxelNet[3] is a network for 3D object detection based on Voxels. Voxels are a

grid in a 3D dimensional space that encodes the geometrical feature of a point

cloud.

VoxelNet divides the point cloud into equally spaced 3D voxels, encodes each

voxel via stacked VFE (voxel feature encoding) layers, and then 3D convolution

further aggregates local voxel features, transforming the point cloud into a high-

dimensional volumetric representation. Finally, a Region Proposal Network

(RPN) consumes the volumetric representation and yields the detection result.

This efficient algorithm benefits both from the sparse point structure and

efficient parallel processing on the voxel grid.

Voxel feature encoding (VFE) layer, which enables inter-point interaction

within a voxel, by combining point-wise features with a locally aggregated

feature. Stacking multiple VFE layers allows learning complex features for

13

Chapter 2 State of the art

characterizing local 3D shape information.

Figure 2.1: Structure of VoxelNet

VoxelNet is composed from three functional blocks:

1. Feature learning network,

2. Convolutional middle layers

3. Region proposal network

Feature learning network

The most complex functional block is the Feature learning network. It is

subdivided into many sections:

• Voxel Partition: in this section, the 3D space is sub-divided into equally

spaced voxels composed by voxel of equal dimension

• Grouping: group all the point inside each voxel

• Random Sampling: random sampling a fixed number of points in voxel

that has a number of points higher than a certain threshold. This is done

in order to reduce computation and increase the balance between the

number of points in each voxel

14

2.2 Structured grid network

• Stacked Voxel Feature Encoding: this section is the core innovation of

the network. For each voxel first, it has been computed the local mean

centroid of all the points. Then for each point inside the voxel, the

relative offset from the centroid is evaluated obtaining an input feature

for a fully connected network (FCN). The FCN is composed of a linear

layer, a batch normalization (BN) layer, and a rectified linear unit (ReLU)

layer. Then the points are max-pooled and the output of max-pooling is

concatenated with the output of Relu layer

• Sparse Tensor Representation: group the non-empty voxel in order to

obtain a light sparse 4D tensor, of size C × D ′ × H ′ × W ′ to reduces

the memory usage and computation cost during backpropagation.

Convolutional Middle Layers

The convolutional middle layers aggregate voxel-wise features within a progres-

sively expanding receptive field, adding more context to the shape description.

It is composed of a 3D convolution, BN layer, and ReLU layer sequentially.

Region Proposal Network

The input to our RPN is the feature map provided by the convolutional middle

layers. The network has three blocks of fully convolutional layers. The first

layer of each block downsamples the feature map by half via convolution with

a stride size of 2, followed by a sequence of convolutions of stride 1. After each

convolution layer, BN and ReLU operations are applied. We then upsample

the output of every block to a fixed size and concatenate to construct the

high-resolution feature map. Finally, this feature map is mapped to the desired

learning targets: (1) a probability score map and (2) a regression map.

15

Chapter 2 State of the art

Loss Function

The loss function is a weighted sum composed of the center location, dimension,

and orientation of positive anchors and negative anchors.

Consideration

This network’s approach poses the starting point for many networks in particular

for the use of the Voxel Feature Encoding layer that has been replied to in

different architectures.

2.2.2 Point Pillar

The goal of Point Pillar[4] is to make 3D object detection with only 2D

convolutional layers. The name it’s derived from the novel encoder that learns

features on pillars (vertical columns) of the point cloud to predict 3D-oriented

boxes for objects. For the authors the advantages of this approach are:

• there is no need to tune the binning of the vertical direction by hand

(like for voxels);

• it is highly efficient because all key operations can be formulated as 2D

convolutions which are extremely efficient to compute on a GPU;

• point pillar requires no hand-tuning to use different point cloud configu-

ration so it can easily incorporate multiple lidar scans or even radar point

clouds.

• It is faster comparing to the state of the art

The network is composed of three main stages:

1. A feature encoder network that converts a point cloud to a sparse pseudo-

image;

2. A 2D convolutional backbone to process the pseudo-image into a high-level

representation;

16

2.2 Structured grid network

3. A detection head that detects and regresses 3D boxes.

Figure 2.2: Structure of STD

Pointcloud to Pseudo-Image

In this section, the point cloud is converted to a pseudo-image. In order to do

that these steps are applied:

The point cloud is discretized into an evenly spaced grid in the x-y plane,

creating a set of pillars.

It has been evalutated the distance from the center of all the point inside the

pillar and the distance from x, y center of the pillar so a point now have D=9

dimension (x, y, z, xc, yc, yc, xp, yp).

Inside each pillar, a linear layer, batch norm, and ReLu are applied (as Pointnet).

Backbone

In this phase, it is applied a backbone as VoxelNet compose of two sub-networks:

One top-down network that produces features at increasingly small spatial

resolution;

A second network that performs upsampling and concatenation of the top-down

features.

The top-down backbone is composed of a series of 2D convolutional layers and

batch norm and ReLu that decrease each time the size of the output.

In the second part, all the features are upsampled using a transposed 2D

convolution and then concatenate.

17

Chapter 2 State of the art

Detection Head

It has been used a Single Shot Detector (SSD).

Loss Function

The loss has been evaluated by computing a weighted sum of the loss of position,

direction, and classification.

Consideration

The advantage of this network it that is light weighted, but this rise a lack of

performance that it has to take into account.

2.2.3 STD: Sparse-to-Dense 3D Object Detector for Point

Cloud

STD: Sparse-to-Dense 3D[5] is a two-stage 3D object detection framework. This

network integrates advantages of both point-based and voxel-based and adds a

3D IoU prediction branch that increases the alignment between classification

score and localization, achieving an important improvement. Their innovation

is called the PointsPool layer. This layer is in charge of transforming the

un-order points into a more compact feature. Another new element is the

3D IoU branch for predicting 3D IoU between predictions and ground-truth

bounding boxes.

Proposal Generation Module (PGM)

Proposal Generation Module (PGM): the first step of PGM is the creation of

spherical anchors. The choice of spherical anchor instead of cuboid anchors is

derived by the consideration that a 3D object could be with any orientations.

These spherical anchors have a fixed radius according to the class of the object.

Then a 3D semantic segmentation network has involved to predict the class of

18

2.2 Structured grid network

Figure 2.3: Structure of STD

each point and produce a semantic feature for each point. After that, a non-

maximal suppression (NMS) is applied in order to remove redundant anchors.

The final score of each anchor is the segmentation score on the center point.

The IoU value is calculated based on the projection of each anchor to the BEV.

Proposal Generation Network: this section works on point in anchors (normal-

ized by the anchor center coordinates), and semantic features like in PointNet

after that an NMS based on classification score and oriented BEV IoU is applied

to eliminate redundant proposals.

Assignment Strategy: For the IoU has been evaluated a new strategy called

Points IoU is defined as the quotient between the number of points in the

intersection area of both regions and the number of points in the union area of

both regions.

Proposal Feature Generation

The goal of this section is to give semantic features from the segmentation

network for each point and refined proposals, constitute compact features for

each proposal.

In order to have a faster stage, it has been applied to a voxelization layer

named PointsPool. PointsPool layer is composed of three steps.

In the first step, it has been randomly chosen N interior points for each

19

Chapter 2 State of the art

proposal with their canonical coordinates and semantic features as the initial

feature. Then for each proposal, it has been obtained point canonical locations

by subtracting the proposal center (X, Y, Z) values and rotating them to the

proposal predicted orientation.

The second step is using the voxelization layer to sub-divide each proposal

into equally spaced voxels. Then has been applied a voxel feature encoding like

VoxelNet.

Box Prediction Network

The box prediction network has two branches for box estimation and IoU

estimation.

Box Estimation Branch: In this branch, we use 2 FC layers with channels to

extract features of each proposal. Then another 2 FC layers are applied for

classification and regression respectively.

IoU Estimation Branch: first it has been applied to a 3D IoU. Then, each

box’s classification score is multiplied with its 3D IoU as a new sorting criterion.

Loss

The loss used is a multitask loss that is the sum between the loss of the

proposal generation and the prediction loss. The proposal generation loss is

the summation of 3D semantic segmentation loss and proposal prediction loss.

The box prediction loss is almost the same as the proposal prediction loss with

two extra losses, which are 3D IoU loss and corner loss.

Consideration

The interesting part of this network is the combining of a Voxel-based logic and

a Point-based logic in order to achieve a greater improvement on the result.

20

2.2 Structured grid network

2.2.4 SVGA-Net: Sparse Voxel-Graph Attention Network

SVGA[6] is a voxel-based network, so it divides the point cloud into some

predefined space with a predefined shape. In this case, the point cloud has been

divided into 3D spherical space with a fixed radius. The real innovation of this

network is the use of an attention mechanism to extracted feature 3D. This

is used in the voxel-graph network that first construct local and global graph

for each voxel then it applies the attention mechanism providing a parameter

supervision factor for the feature vector of each point. In this way, the local

aggregated features are combined with the global point-wise features.

SVGA-Net architecture mainly consists of two modules: voxel-graph network

and spare-to-dense regression.

Figure 2.4: Structure of SVGA

Voxel-graph network

Spherical voxel grouping

The grouping phase has been done with farthest point sampling an iterative

algorithm that searches the center of the sphere and then with it searches the

neighborhood inside a fixed radius r. The Point cloud is now subdivided in N

3D spherical voxels B = {b1, b2, ..., bN}.

21

Chapter 2 State of the art

Local point-wise feature

For each voxel with a MLP it has been extract the local point-wise features

obtaining the local point-wise feature representation for each voxel sphere

F = {fi, i = 1, ..., t}.

Local point-attention layer

After that, the algorithm constructs a complete graph for each local node-set

and a KNN graph for all the spherical voxels. The information on each node

in aggregate according to the local and global attention score. The feature

aggregation of j − th node is represented as:

f ′
j = βm · fj +

∑︂
k∈⊔(pj)

αj,k · fj,k

f ′
j denotes the dynamic updated feature of node pj and fj is the input feature

of node pj . ⊔(pj) denotes the index of the other nodes inside the same sphere.

fj,k denotes the feature of the k − th nodes inside the same sphere. αj,k is

the local attention score between node pj and the other nodes inside the same

sphere. βm is the global attention score from the global KNN graph in the

m − th iterations. αj,k is evaluated as:

αj,k = softmaxj(fj, fj,k) =
exp(fT

j · fj,k)∑︁
k∈⊔(pj) exp(fT

j · fj,k)

Global attention layer

Its scope is to capture the global feature. First, it calculates the center of each

voxel, and each center is learned by a 3-layer MLP to get the initial global

feature. The KNN graph has been constructed for the N voxel sphere. For

each node fg,i, the attention score between node fg,i and its l − th neighbor is

calculated as follows:

βm =
fT

g,i · fg,i,l∑︁
l∈∪(fg,i) fT

g,i · fg,i,l

where ∪(fg,i) denotes the index of the neighbors of node fg,i . m is the number

of the point attention layers.

22

2.2 Structured grid network

Voxel-graph features representation

After each local attention layer, a 2 MLP layer has been applied. Then in the

end a max-pool is applied in order to aggregate the feature to obtain the final

feature vector.

Sparse-to-dense regression

SDR module first applies three similar blocks to generate smaller spatial

resolution from top to down. Each block consist of series of Conv2D layers,

followed by Batch-Norm and a ReLU. The stride size of the Conv2D is set

to 2 for the first layer of each block to down-sample the feature map by half,

followed by a sequence of convolutions with stride 1. The output of this block

is rename b1, b2, b3. In order to combine high-resolution features with large

receptive fields and low-resolution features with small receptive fields, the

output of the second and third modules are concatenated with the output of

the first and second modules after upsampling. Then a series of convolution

operations with an upsampling layer are performed in parallel on three scale

channels to generate three feature maps with the same scale size. The output

of this block is rename F1, F2, F3. After that the output b1, b2, b3 is up sampled

and combine with F1, F2, F3 by element-wise addition. The final output Fs is

obtained by concatenating the fused feature maps after a 3 × 3 convolution

layer. Fs is taken as input to perform category classification and 3D bounding

box regression.

Loss Function

The total loss is a multi-task loss composed of two parts, the classification

loss Lcls and the bounding box regression loss Lreg balanced using a correction

factor.

For the classification loss, it has been applied a classification binary cross-

entropy loss.

23

Chapter 2 State of the art

For the regression loss, it has been applied a sum of the normalized distance

between the point and the ground truth.

Consideration

This network use in a very interesting way the attention combining both local

feature and global feature achieving a very good result.

2.3 Point based network

2.3.1 PointNet

PointNet[7] is a very important neural network because it represents a revolution

in 3D object detection on point cloud. As said before a point cloud is a subset

in a Euclidean space, so it has three main properties:

• Unordered (need operations that don’t care about the order),

• Interaction among point (points have a geometric neighborhood)

• Invariance under transformations

In order to use these properties 3 different strategies have been adopted:

1. sorting input into a canonical order;

2. treating the input as a sequence to train an RNN, but augment the

training data by all kinds of permutations;

3. using a simple symmetric function to aggregate the information from

each point.

Asymmetric function Is a function where the output is invariant to the input

order like, for example, sum and multiplication.

24

2.3 Point based network

Figure 2.5: Structure of PointNet

Classification Network

The idea behind PointNet is to apply the same symmetric function to the entire

set of points :

f(x1, ..., xn) = g(h(x1), ..., h(xn))

In particular h is a multi-layer perception network (MLP) and g a max pooling

function. This constitutes the Classification Network whose goal is to classify

the object of the point cloud.

After this phase, there is the Local and Global Information Aggregation. In

this phase, the output from the above section ([f1, ..., fK]), (global feature) is

concatenated with each of the point features (the output of a previous MLP).

Segmentation Network

Then, after sending this vector to other MLP and max-pooling layer, it extracts

new per point features based on the combined local and global point features.

The goal of this phase is to make semantic segmentation of the scene, so this

phase is usually called Segmentation Network

Inside the Classification Network, there are two small networks called Joint

Alignment Network. The goal of this network is to find a rotation matrix that

has to rotate all the points or features in order to give a better orientation.

25

Chapter 2 State of the art

Consideration

This network works very well also if the number of points has been reduced

but a problem introduced is that it does not try to group the point and the

feature regarding the spatial distance between points. This has been overcome

by PointNet ++.

2.3.2 PointNet ++

As said before PointNet is not able to take the local structures induced by the

metric space points live in so it’s limit the ability of the network to recognize

fine-grained patterns and work in a complex scene.

The idea of PointNet ++ [8] is first work on each point as for PointNet and

then aggregate the point feature capturing the local structure. In particular, the

scene is partitioned into a set of points overlapping local regions and then the

local feature is extracted capturing fine geometric structures; such local features

are further grouped into larger units and processed to produce higher-level

features. This process is repeated until it has been obtained the features of the

whole point set.

The real challenge is how to create a group of neighborhoods and how to

select the centroid of this group. In this network, the algorithm used for the

selection of the centroids is the farthest point sampling (FPS) algorithm.

PointNet uses a multi-layer perception Network as a base concept in order

to work for every single point.

f(x1, ..., xn) = γ
(︂
MAXi=1,...,n{h(xi)}

)︂
f is invariant to input point perturbations and γ and h is the MLP.

The real innovation is that while PointNet uses a single max-pool layer to

aggregate the feature. In this network, there are many sequential grouping of

points and progressively abstract larger and larger local regions.

26

2.3 Point based network

Figure 2.6: Structure of PointNet ++

Set abstraction level

The hierarchical structure is composed of a number of set abstraction levels.

At each level, a set of points is processed and abstracted to produce a new set

with fewer elements.

The single abstraction level is made of three key layers: Sampling layer,

Grouping layer, and PointNet layer. It takes an N × (d + C) matrix as input

that is from N points with d − dim coordinates and C − dim point feature.

It outputs an N ′ × (d + C ′) matrix of N ′ sub-sampled points with d − dim

coordinates and new C ′ − dim feature vectors summarizing local context.

The Sampling layer selects the centroids of local regions. To achieve this

task ti use in a iterative way FPS to choose a subset of points {xi1, xi2, ..., xim}

from {x1, x2, ..., xn} input point, such that xij is the most distant point (in

metric distance) from the set {xi1, xi2, ..., xij−1} with regard to the rest points.

In this way the network is able to achieve better result because the centroids

are generate not randomly but they depend from the data.

The grouping layer constructs local region sets by finding “neighboring”

points around the centroids. It takes as input the entire point set of size

N × (d+C) and the coordinates o fa set of centroids of size N ′ ×d. The output

is groups of point sets of size N ′ × K × (d + C), where each group corresponds

to a local region and K is the number of points in the neighborhood of centroid

27

Chapter 2 State of the art

points. K is not a fixed value but it changes regarding the number of points in

the surround of the centroid.

PointNet layer uses a mini-PointNet to encode local region patterns into

feature vectors. In this layer, the input are N ′ local regions of points with data

size N ′ × K × (d + C). Each local region in the output is abstracted by its

centroid and local feature that encodes the centroid’s neighborhood. Output

data size is N ′ × (d + C ′). The coordinates of points in a local region are firstly

translated into a local frame relative to the centroid point: x̂(j)i = x̂(j)i − x̂(j)

where x̂ is the coordinate of the centroid. Then a simple PointNet is apply to

classify the local region.

Grouping strategies

A challenge to develop this network is to find a Robust Feature Learning under

Non-Uniform Sampling Density. The sampling has to work either where there

are many points so and either where there is less point, in order to do that two

different grouping strategies have been adopted:

Multi-scale grouping (MSG). A first way to capture multi-scale patterns is

to apply grouping layers with different scales and then concatenate it

Multi-resolution grouping (MRG). The MSG approach above is computa-

tionally expensive since it runs local PointNet at large scale neighborhoods

for every centroid point. In particular, since the number of centroid points is

usually quite large at the lowest level, the time cost is significant. In order to

reduce computational time in MRG. The features of a region at some level Li

is generated by the concatenation of two vectors. One vector is obtained by

summarizing the features at each sub-region from the lower level Li−1. The

other vector (right) is the feature that is obtained by directly processing all

raw points in the local region using a single PointNet.

28

2.3 Point based network

Point Feature Propagation for Set Segmentation

In a segmentation task, each point must be classified. During the many

abstraction layers, the points are sub-sampled. In order not to lose the global

information the feature are propagated. In order to propagate the features the

feature point is interpolated with inverse distance weighted average based on k

nearest neighbors. The interpolated features are then concatenated then are

passed through a “unit PointNet”, which is similar to one-by-one convolution

in CNNs. A few shared fully connected and ReLU layers are applied to update

each point’s feature vector. The process is repeated until we have propagated

features to the original set of points.

Consideration

This evolution of PointNet constitutes the real backbone for many networks for

3D object detection from the point cloud. In particular, the Set Abstraction

Layer constitutes the real innovation of this network.

2.3.3 VoteNet

VoteNet[9] is an end to end network that the primary goal is object detection

and segmentation. These networks use as backbone PointNet ++ and add

the idea of Hough voting that are used to generate new points that lie close

to objects centers, which can be grouped and aggregated to generate box

proposals.

Hough voting is based on the concept of Hough transformation, an algorithm

that translates the problem of detecting simple patterns in point samples to

detecting peaks in parametric space. This concept is used to sample a set of

seed points and generate votes from their features. These votes are designed to

reach object centers in order to be easier aggregated through a learning module

to generate box proposals.

VoteNet is composed of two parts: one that processes existing points to

29

Chapter 2 State of the art

Figure 2.7: Structure of VoteNet

generate votes; and the other part that operates on votes to propose and classify

objects.

Learning to Vote in Point Clouds

The goal of this piece of the network given as input a point cloud of size N × 3,

with a 3D coordinate for each of the N points, generate M votes, and each

vote has both a 3D coordinate and a high dimensional feature vector. It is

sub-divide into two steps:

Point cloud feature learning through a backbone network. The backbone

uses in VoteNet is PointNet++. The output of this network is a subset of input

points compose by M point and feature, M × (3 + C), where C is the number

of features. Each seed point generates one vote.

Hough voting with deep networks from seed points. In traditional Hough

voting, the votes (offsets from local key-points) are determined by look-ups

in a pre-computed code-book. In this network, this feature has been adapted

so the votes are generated with a deep network based voting module improve

efficiency and accuracy. Specifically, the voting module is realized with a

multi-layer perception (MLP) network with fully connected layers, ReLU, and

batch normalization. The MLP takes seed feature and gives as outputs the

Euclidean space offset ∆xi ∈ R3 and a feature offset ∆fi ∈ RC from a centroid

generate by the vote of the backbone. The predicted 3D offset ∆xi is explicitly

supervised by a regression loss. The goal of this section is to translate the

30

2.3 Point based network

feature and the point close to the centroid in order to have an easier recognition

of the object.

Object Proposal and Classification from Votes

After the previous phase, the vote needs to be aggregate. To create the small

cluster has been adopted a strategy of sampling and grouping according to

spatial proximity using farthest point sampling-based the center of votes. In

this way given K votes, it has been formed K cluster.

Proposal and classification from vote clusters

To aggregate the vote cluster it has been used a shared PointNet. First the

vote locations has been transformed to a local normalized coordinate system

by z ′
i = (zi − zj)/r. Then an object proposal for this cluster p(C) is generated

by passing the set input through a PointNet like module:

p(C) = MLP2{maxi=1,...,n

{︂
MLP1([z ′

i; hi])}
}︂

The votes from each cluster are independently processed by a MLP1 before

being max-pooled (channel-wise) to a single feature vector and passed to MLP2

where information from different votes are further combined. We represent the

proposal p as a multidimensional vector with an objectness score, bounding box

parameters (center, heading, and scale parametrized) and semantic classification

scores.

Loss function

The loss function is a multi-task loss that includes the voting loss, an objectness

loss, a 3D bounding box estimation loss, and a semantic classification loss. The

losses are weighted losses such that they are on similar scales.

The vote regression loss is an L1 distance. The objectness loss is a cross-

entropy loss for two classes and the semantic classification loss is also a cross-

31

Chapter 2 State of the art

entropy loss of NC classes. The box loss is composed of center regression,

heading estimation, and size estimation sub-losses.

Consideration

This network can be considered as the state of the art for 3D object detection,

nevertheless, it has some problems in grouping layers in an outdoor environment.

Further improvement and adjustment have been made in order to transpose

this network in a sparse environment. A deeper description of this network has

been provided in chapter 4.

2.3.4 3DSSD

VoteNet has been designed to work in a dense point environment like a room

where the points are relatively near from each other, the goal of 3DSSD[10] is to

adapt the VoteNet to work in a sparse environment like an urban environment.

In order to do that some change has been adopted. The main change has

been derived by observing that with the furthest point sampling based on 3D

Euclidean distance (D-FPS) the foreground instances with few interior points

may lose all points after sampling. Consequently, it is impossible for them to

be detected In order to overcome this issue a novel sampling strategy based

on feature distance, called F-FPS has been adopted. This sampling strategy

has been merged with the D-FPS. With this method, it has been possible to

consider not only spatial distance but also semantic information of each point

during the sampling process.

C(A, B) = λ Ld(A, B) + Lf (A, B)

Ld(A, B) and Lf (A, B) represent L2 XY Z distance and L2 feature distance

between two points and λ is the balance factor. This combination’s called

Fusion Sampling (FS) and has the advantages to retain more positive points

for localization and keep enough negative points for classification as well.

32

2.3 Point based network

Figure 2.8: Structure of 3DSSD

Another innovation in this network is the Box Prediction Network that

modifies the SA layer after the FS layer in order to make this process faster.

In this network, it has been introduced the candidate generation layer (CG)

before our prediction head, which is a variant of the SA layer. In this layer, it

has been used only the points generate by the F-FPS. Then as VoteNet both

the surrounding features and the surrounding candidate point are extract and

an MLP is applied.

Anchor-free Regression Head

In the regression head, for each candidate point, it has been predicted the

distance (dx, dy, dz) to its corresponding instance, as well as the size (dl, dw, dh)

and orientation of its corresponding instance. Since there is no prior orientation

of each point, it has been applied a hybrid of classification. An equally split

orientation angle bins predefined and classify the proposal orientation angle

into different bins.

3D Center-ness Assignment Strategy

For each candidate point, it has been defined as a Center-ness label through

two steps. First, it has been determined whether it is within an instance lmask,

which is a binary value. Then has been drawn a Center-ness label according to

its distance to 6 surfaces of its corresponding instance. The Center-ness label

is calculated as

33

Chapter 2 State of the art

lctrness = 3

⌜⃓⃓⎷ min(f, b)
max(f, b) × min(l, r)

max(l, r) × min(t, d)
max(t, d)

where (f, b, l, r, t, d) represent the distance to front, back, left, right, top and

bottom surfaces respectively. The final classification label is the multiplication

of lmask and lctrness.

Loss Function

The Loss Function is composed of weighted sum of classification loss, regression

loss and shifting loss.

Consideration

The Loss Function is composed of a weighted sum of classification loss, regression

loss, and shifting loss.

2.4 Mixed type network

2.4.1 Frustum PointNet

This method combines both 2D object detection from images and 3D object

detection from point cloud. Frustum PointNet[11] exploit the advantages of

2D object detection to defines a 3D search space for the object.

exploit the advantages of 2D object detection to defines a 3D search space

for the object. This network is composed of 3 stages:

1. Frustum proposal that extracts the 3D bounding frustum of an object by

extruding 2D bounding boxes from image detectors;

2. A 3D instance segmentation that applies PointNet;

3. Amodal 3D network that predicts the 3D mask of the object of interest

and regression network estimates the amodal 3D bounding box.

34

2.4 Mixed type network

Figure 2.9: Structure of Frustum PointNet

Frustum Proposal

First with a 2D object detector propose 2D object regions in RGB images, then

knowing the camera matrix is possible to lift the 2d bounding box and create a

frustum and fill it with the point in the point cloud. Due to the fact that the

generate frustums have different directions they are rotating them toward a

center view such that the center axis of the frustum is orthogonal to the image

plane in order to improve the rotation invariance of the algorithm.

3D Instance Segmentation

The network takes a point cloud in frustum and predicts a probability score for

each point that indicates how likely the point belongs to the object of interest.

Note that each frustum contains exactly one object of interest. This part of the

network is based on PointNet. This network also uses the information given by

the 2D detector concatenating it to the intermediate point cloud features. After

3D instance segmentation, points that are classified as the object of interest are

extracted. Then the coordinates of the extracted point are normalized. The

point cloud is then transformed into a local coordinate by subtracting XY Z

values by its centroid.

Amodal 3D Box Estimation

Given the segmented object points (in 3D mask coordinate), this module

estimates the object’s oriented 3D bounding box and it is composed of a

35

Chapter 2 State of the art

Learning-based 3D Alignment and an Amodal 3D Box Estimation.

Learning-based 3D Alignment: To estimate the true center of the complete

object is applied a T-Net derived by PointNet and then transform the coordinate

such that the predicted center becomes the origin.

Amodal 3D Box Estimation: This is similar to the classification network but

it predicts the 3D box. The center residual predicted by the box estimation

network is combined with the previous center residual from the T-Net and the

masked points centroid to recover an absolute center.

Cpred = Cmask + ∆Ct−net + ∆Cbox−net

The angle and the size is evaluated evaluating the score of predefined bins.

Loss Function

In order to have an optimization of the the three nets involved (3D instance

segmentation PointNet, T-Net and amodal box estimation PointNet) it has

been used a multi-task losses.

Lmulti−task = Lseg+λ(Lc1−reg+Lc2−reg+Lh−cls+Lh−reg+Ls−cls+Ls−reg+γLcorner)

Lc1−reg is for T-Net and Lc2−reg is for center regression of box estimation

net. Lh−cls and Lh−reg are losses for heading angle prediction while Ls−cls and

Ls−reg are for box size. Softmax is used for all classification tasks and smooth

L1 loss is used for all regression cases.

Consideration

In order to have an optimization of the three nets involved (3D instance

segmentation PointNet, T-Net, and amodal box estimation PointNet) it has

been used multi-task losses.

36

Chapter 3

Stixel

Perception is a very important task for the self-driving car because without

understanding the environment is impossible to move through. So, to have

a better and more reliable view of the surrounding areas there are use many

sensors like cameras, stereo cameras, and LIDARS. In order to ensure a complete

view, these sensors are installed in many places of the cars. They allow to

improve accuracy and redundancy, but they cause an increase in data that has to

be transmitted. An autonomous vehicle has to have a fast as possible response

to the stimulus provided by the sensors, but if the amount of data is too big it

is very hard to ensure real-time computing. So the amount of data transmitted

has to be reduced but without any loss of information. To overcome this has

been created the stixel a medium-level representation that overcomes the gap

between the pixel and the object level retaining the underlying information at

the same time.

To attempt all the task that an autonomous vehicle has to do, the data

should be:

1. compact: offering a significant reduction of the data volume;

2. complete: information of interest is preserved;

3. stable: small changes of the underlying data must not cause rapid changes

within the representation;

37

Chapter 3 Stixel

4. robust: outliers must have minimal or no impact on the resulting repre-

sentation.

Stixel has been thought especially for self-driving cars to work in a road

environment. The geometry in human environments is dominated by two basic

types: Horizontal and vertical planar surfaces. Horizontal surfaces generally

correspond to the ground, i.e. roads, sidewalks, or soil, the vertical ones relate

to objects, such as solid infrastructure, pedestrians, or cars. The most relevant

that has been detected are vertical surfaces because thanks to the knowledge

of vertical surfaces it has been possible to achieve many tasks for autonomous

driving.

A stixel can is a small rectangle that starts from the base of the road and

then rises until the top of the obstacle summarizing the vertical surface of an

object.

It is a medium level representation that allows structured access to the scene

data independent of the particular application without neither being too specific

nor too generalizing. Stixels provides compressed and structured access to all

relevant visual content of the scene. this type of compressed data can be used

for a multitude of automotive vision applications, including object detection,

tracking, segmentation, localization, and mapping.

In this thesis, the stixels are used for 3D object detection. In the following

paragraphs, it explains the procedure of creating starting from a point cloud

generated by the LIDAR sensor or from a depth map generate from a stereo or

mono camera.

Even if point cloud and depth map have different characteristics the only

thing that the procedure proposes a change from one type of data to another

is the plane fitting. This is done in order to exploit the advantages of this type

of data and to overcome the weakens.

38

3.1 State of the Art

3.1 State of the Art

The use of the stixel as a medium level representation is a filed that is not so

much explored even if the first idea of stixel has been presented in 2009 by

Hernán Badino [12]. In this paper, it has been defined the first idea of the

stixel and the requirement for a medium level data representation.

In the initial approach presented in 2009, the Stixel World is constructed by

cascading multiple independent algorithms: mapping disparities to occupancy

grids, a free space computation, a height segmentation, and a final Stixel

extraction step. However, such cascade is prone to errors, e.g. missed objects in

the free space computation can not be corrected in subsequent steps. Further,

the proposed scheme contains multiple thresholds and non-linearities. The

major limitation is that this algorithm takes into account only the first obstacle

along every viewing angle can cause missing relevant objects. the major

improvement proposes by Pfeiffer [13] is the creation of an algorithm that

allows multiple Stixels along every column of the image. Another improvement

is the adding of information related to each stixel, like for example the class

of the object of the stixel or further metadata. Pfeiffer applies the concept of

stixel not only depth math extract by a camera but also on point cloud for

LIDAR.

In 2012 Rodrigo Benenson [14] propose a fast method for generating stixel

to detect pedestrian without depth map. The assumption in this method was

that the object height is known and class-dependent. So identifying the object

and assuming know the height of the object is possible to identify how far it

is. The problem with this method is that it recognizes only one object and if

there is some occlusion it does not perform well.

In the Semantic Stixels: Depth is Not Enough [15][16] proposed by Lukas

Schneider and Marius Cordts the concept of stixel proposed by Stixel world is

fused with the information provided by a segmentation neural network in order

to obtain a compact 3D information of the environment.

39

Chapter 3 Stixel

The previous works have been improved in Slanted Stixels: Representing San

Francisco’s Steepest Streets [17] taking into account non-flat roads and slanted

objects and achieving real-time computation capabilities with only a slight drop

inaccuracy.

From 2018 a new way to generate stixel has been started. it is base on the

concept of fusing LIDAR and camera data improving both the geometric and

semantic accuracy and reducing the computational overhead. In Improved

Semantic Stixels via Multimodal Sensor Fusion[18][19] the concept of Stixel is

transposed into the LIDAR domain to develop a compact and robust mid-level

representation for 3D point clouds.

The method purpose in this thesis is focused on the stixel generate by depth

map and point cloud. The stixel contains only the depth information without

the adding of object class and other information due to the fact that the goal

of this stixel generation algorithm is to generate stixel that has to be feed into

a neural network based on 3D object detection from a point cloud.

3.2 Procedure of creation

The algorithm proposed in this thesis is articulated in three phases:

1. Plane fitting: fit the plane in order to remove the point that lies in the

ground;

2. Matrix depth creation: the creation of a matrix that for each cell contains

a depth value;

3. Stixel creation: the creation of the stixels.

The algorithm has been tested both on point cloud generated by lidar and

both on depth map generated by Neural Network starting from stereo or mono

images. The only change between the procedure on point cloud and depth map

is the procedure of plane fitting. This is due to the fact that the Point cloud

40

3.2 Procedure of creation

generates by lidar are more sparse than the depth map generated by stereo

cameras.

In lidar point cloud the procedure to delete the plane is driven by the Ransac

algorithm, this algorithm tries to fit the best plane discarding the outliers and

it works well when the number of points is relatively small due to the high

computational cost. Depth map generates by the stereo camera are denser due

to the fact that the algorithm associate at each pixel a depth so in an image

with size [375, 1242] we obtain 465 750 depth points instead of 40 000 points

generates from a lidar, this means a huge increase of computational size. In

order to exploit this characteristic a different kind of algorithm has been used.

3.2.1 Plane fitting

Plane fitting is the first step in the Stixel creation. This step is relevant because

the stixel ideally should represent only the shape of the vertical object so in

order to achieve this result the ground must be deleted otherwise a huge number

of small stixel is created, and this is not a good thing because the goal of the

stixel is to contain only the interest object and not the ground.

As explained in the section before, there is presented two way of deleting

the ground regarding the type of data as input. This differentiation has been

made in order to exploit at the best the qualities of these two data formats

and improve the result.

Plane fitting on lidar point cloud

To fit the plane for lidar point it has been used an algorithm call Ransac. This

algorithm iterative search for the best equation of the plane that fit the most

number of points.

The first step of the algorithm is to select the sub-sample of the point where

Ransac has to find the plane. It is useless to apply the Ransac search to the

whole set points because due to the research task it can be right to assume that

the points above a certain threshold can be declared not part of the ground.

41

Chapter 3 Stixel

This threshold cannot be a fixed value because the algorithm has to take into

account the possibility of change of the slope of the road. So the threshold to

take the first set of points has to increase according to how far the point is

from the car, farthest is the point higher is the level of acceptance.

Figure 3.1: Representation of threshold on selecting points on ground

So after a subsample on the first set of points, Ransac could be implemented.

It is composed of a for loop that iterative do this kind of operation:

1. from the subset of point select 3 random points;

2. Given these 3 points evaluate the equation of the plane that passes

through these points through SVD factorization;

3. counts the number of remaining points which Euclidean distance from

the plane previously evaluated is less than a certain threshold.

After a fixed number of iteration take the three points that fit the plane that

have a higher number of points that Euclidean distance is less than a certain

threshold. So after evaluating these three points find again all the set of points

that Euclidean distance is less than a certain threshold and apply for the last

time the Singular Value Decomposition to find the best plan that fits all the

points.

The last procedure is to delete all the points that Euclidean distance is less

than a certain threshold from the last plane finding.

After a few experiments, it comes out that a single plane fitting does not

delete all the ground points because the lidar has a range between 50/60 meters,

and in a ray of that distance the road can have several changes of slope. So in

42

3.2 Procedure of creation

order to adapt the algorithm to the various change of road, it has been created

a grid that subdivides the surface into squares with equal dimensions and for

each square Ransac algorithm has been evaluated running of the sub-set of

points that projection on x-y plane lie inside the square.

Figure 3.2: Representation of segmentation of the piano

(a) points projected on cam 2 (b) ground points

Figure 3.3: LIDAR points

Plane fitting on stereo image

In order to delete the plane from depth evaluating on stereo images a different

kind of algorithm has been used. This is due to the fact that the Ransac

algorithm evaluated in many points consumes too many resources and because

thanks to the fact that a depth map is a dense map another more convenient

approach can be used.

43

Chapter 3 Stixel

Figure 3.4: Obtained points on vertical surface

In order to extract the depth map from the stereo camera, it has been used

the network described in Pyramid Stereo Matching Network[20]. For the depth

map from a mono camera, the network applies to image of Kitti cam 2 is

From Big to Small: Multi-Scale Local Planar Guidance for Monocular Depth

Estimation [21].

The algorithm used in this thesis is called Vertically Local Disparity His-

togram (VLDH). The goal of VLDH is to create a binary mask that extracts

the pixel that has a disparity that is related only to the object excluding the

road surface and the surrounding. The working principle is that if a set of

depth in the pixel in the same column have more or less the same disparity

this group of pixel belongs to an object. Otherwise, if the greater number of

the pixel has a disparity that changes a lot from the disparity of the first pixel

in the set it means that group of pixels does not belong to an object but it

could be a road or background.

The first thing to do is to create a mask of zeros with dimensions of the

depth map. This algorithm subdivides each depth images into columns of fixed

size (ex 1 pixel) and for each column apply this procedure starting from the

bottom line of pixels :

1. extract the depth for the pixel j;

2. count the number of pixels in the next N pixel that depth is in a range of

±∆d of the depth on pixel j;

44

3.2 Procedure of creation

3. If this number is greater that a threshold k :

• set at 1 all N points in the mask and jump at the point j + N

restarting the algorithm;

If this number is smaller that a threshold k :

• jump at the point j + 1 and restart.

After this procedure in order to extract the points of interest in the depth

map the only operation to do is just multiply the mask with the depth map

and extract the points that have a depth that is different from zero.

In order to have a better parallelization and improve the execution of the

algorithm, it is possible to work in the entire raw creating a sub-mask that

memorizes the points where the algorithm has to work or the points that are

already set to one. In python, this improves the computation time from 5

seconds for an image to 0.06 seconds.

(a) original cam 2 image (b) depth map

Figure 3.5: Starting images to generate mask

Figure 3.6: Obtained mask with VLDH

45

Chapter 3 Stixel

3.2.2 Matrix generation

The second step of the creation of the stixel in this procedure is the creation

of a discretization matrix. The stixels are created working on the points that

are projected on the image generated by cam 2. A single stixel has a fixed

resolution with height 8 pixels and width 4 pixels. This means that a stixel

can be thought like a composition of small bricks.

Figure 3.7: Representation of grid of stixel

In order to create these small bricks, the entire picture is divide into N × M

cells and these cells are filled with the projected point cloud projected points.

Due to the sparsity of the point cloud and due to the fixed resolution of the

matrix many scenarios can be:

• fill with points of same object

• fill with points of different objects

• empty

Then for each cell, it has to be selected a depth that has to summarize all

the depth of all the points inside. For this task different ways have been tried.

Average matrix

The first simple way to summarize the distance of the points inside the cell is to

make the average of the depth. This simple method has a fast implementation

but it has not enough discretization. If the points inside a cell have a belong

46

3.2 Procedure of creation

Figure 3.8: Representation of cells scenario

to different objects that have different distances, this algorithm assigns at this

cell a distance that is in the middle between the two objects, creating a small

stixel that is not associated either with the object and background.

Figure 3.9: Average matrix results

Histogram matrix

In order to overcome the issue of the average matrix a new way to develop

the base matrix has been evaluated and this is has been called the Histogram

matrix. In the histogram matrix for each cell, it has assigned a value using the

average of the depth of the most relevant cluster of the depth of points inside

each cell.

Given a set of points that are inside a cell i, j: S[i,j]

The algorithm used in each cell can be summarized as:

47

Chapter 3 Stixel

if S[i,j] = ∅ =>

M[i,j]= 0

if |max(S[i,j])-min(S[i,j])| < dthreshold =>

M[i,j] = mean(S[i,j])

else:

if number of items of S[i,j] = 2 =>

M[i,j] = min(S[i,j])

else:

S[i,j]> = {x ∈ S[i,j] | x > mean(S[i,j])}

S[i,j]< = {x ∈ S[i,j] | x < mean(S[i,j])}

if (number of items S[i,j]>) > (number of items S[i,j]<) =>

M[i,j] = mean(S[i,j]>)

if (number of items S[i,j]>) < (number of items S[i,j]<) =>

M[i,j]= mean(S[i,j]<)

if (number of items S[i,j]>) = (number of items S[i,j]<) =>

if |max(S[i,j]>)-min(S[i,j]>)| > |max(S[i,j]<)-min(S[i,j]<)| =>

M[i,j] = mean(S[i,j]<)

if |max(S[i,j]>)-min(S[i,j]>)| < |max(S[i,j]<)-min(S[i,j]<)| =>

M[i,j]= mean(S[i,j]>)

This simple flow chart allows assigning to each cell of the matrix the most

suitable depth.

3.2.3 Stixel creation procedure

After the creation of the depth matrix, the last step of the algorithm is the

creation of stixels. The creation of stixel is the merging in one stixel of all the

48

3.2 Procedure of creation

Figure 3.10: Histogram matrix results

cells of the matrix in the same column that has a depth that is more or less

similar.

The algorithm of stixel creation can be summarized as a state machine with

two states:

• new = 1: allow the creation of new stixel ;

• new = 0: allow to keep the previous stixel and to merge cells of the

matrix.

This machine has also three working phases:

• create stixel where a new stixel is created;

• update stixel: where the height of the stixel is increase;

• update empty count where the counter of the number of empty cells is

updated in order to set a maximum number of consecutive empty cells.

The procedure starts in new = 1 state and the condition that affect the

transition from one state to another is the shift of the cells inside the matrix

M driving by the for cycle.

Starting from M [0, 0] and new = 1 the state machine is ready to create

a new stixel and when the cycle for moving toward the column find a cell

where M[i,j] > 0 the algorithm start to create a new stixel and it goes to state

new = 0.

49

Chapter 3 Stixel

Figure 3.11: Algorithm of stixel creation

Starting from M [0, 0] and new = 1 the state machine is ready to create

a new stixel and when the cycle for moving toward the column find a cell

where M[i,j] > 0 the algorithm start to create a new stixel and it goes to state

new = 0.

Here there is several options:

• M[i,j] > 0 and it is close to the depth of the stixel so the cell can be join

to the stixel;

• M[i,j] > 0 and it is far to the depth of the stixel so the cell is attach to a

new stixel;

• M[i,j] = 0 so it increase the counter of the empty cells.

The counter of the empty cells has been designed in order to overcome the

sparsity of the point cloud that sometimes produces an empty cell inside a

matrix M . In fact, there is the possibility that in a column of stixel, even

if they below the same object, there could be one o more empty cells in the

middle. In order to have a better aggregation, it has been chosen to count

the number of empty consecutive cells, and if this number is above a certain

threshold it starts the creation of a new stixel.

The counter of empty cells has to be reset when it starts the creation of a

new stixel or when it updates a previous stixel.

50

3.3 Results

The operation of updating the stixel means, after check if the difference of a

new value and the value of the stixel is under a certain threshold, the update

of the height of the stixel and update the value of depth of the stixel making

an average between the value of the depth of stixel and the value of M[i,j].

The passage from new = 0 to new = 1 is determined if the number of empty

cells in a column is above a certain threshold or if the algorithm starts a new

column.

After scanning all the cells the algorithm obtains an array of stixels which is

possible to save in many ways:

• As four points that compose the vertices of stixels;

• As two points that compose the opposite vertices of stixels;

• As one point of the center of the stixel and the height and width of this

stixel.

3.3 Results

The stixel summarizes in a good way the depth of the map and the point cloud.

And also in 3D and in bird’s eye view, it is possible to notice that the result is

quite confident to identify the position of the relevant objects.

Figure 3.12: Stixel result

An important analysis is the distribution of the number of stixel per image.

First, it has been examined the stixel coming out from the algorithm apply to

the point cloud.

51

Chapter 3 Stixel

(a) stixel in 3D prospective (b) stixel in BEV

Figure 3.13: Stixel in 3D prospective and stixel in BEV

In this analysis it come out that the number of stixel per image has:

• average: 1134;

• standard deviation: 367;

This small standard deviation implies that the number of stixel per image

is quite concentrated. One problem is the outliers. The images that have a

low number of stixel is due to the fact that in some scene the car runs in the

highway without founding any cars so the only stixel that are present are the

one come from guard rail so they are not a big number. More important is the

analysis of the images that have a high number of stixel. This high number is

due to the scatter generate in a scene where the car is crossing a forest so the

irregular form of the trees produces a high scatter and this is capture by the

stixels due to the fact that they are all vertical objects.

Although despite this outliers the number of stixel is around 1100 and the

number of point on the same images is around 40 000 so this cause a reduction

of 20 times fewer points.

52

3.3 Results

Figure 3.14: Distribution of stixel generate from lidar point cloud

Watching the number stixel generate starting from stereo depth map it is

possible to see that have:

• average: 580;

• standard deviation: 105;

This distribution is more close due to the fact that the algorithm VLDH, for

the elimination of the ground, also delete the background, where it changes to

much so the number of stixel, is also reduced because only with this filtering

only the points that are more or less at the same distance keep, so, thanks for

that it is possible to generate less, but bigger stixel than the one generated

from a point cloud.

This is confirmed also watching the distribution of the stixel generate starting

from the depth map generate by mono camera that have:

• average: 580;

• standard deviation: 105;

This is more or less the same distribution of the stixel generate from the

stereo depth map.

53

Chapter 3 Stixel

Figure 3.15: Distribution of stixel generate from stereo depth map

Figure 3.16: Distribution of stixel generate from mono depth map

So, it is possible to say that the stixel reduced a lot of dimension of the

information and now it is important to see if this reduction implies a reduction

of performance in the 3d object detection.

54

Chapter 4

3D StixelNet

In this chapter, it is present the Neural network use for 3D object detection.

This network is an adaptation of VoteNet, modified in order to be more suitable

for spare point cloud, like the one generated from LIDAR in the outdoor

environment.

The innovation is the adaptation of a neural network that works on Point

Cloud to working on stixels.

Figure 4.1: Structure of VoteNet

In the original implementation, the network was divided into two sections:

the voting and object proposal. In this thesis, their implementation has been

rearranged structuring the network into three sections.

1. The backbone: take the stixels and apply a first feature extraction.

2. The voter: group the feature in order to create a small cluster.

55

Chapter 4 3D StixelNet

3. The detector: assign for each cluster a label and a position.

This has been done in order to have a better highlight to the backbone that

is a fundamental part of the network.

In the following paragraphs, all these parts are deeply explained showing

their structure and the change from the original implementation.

4.1 The backbone

The backbone takes as input the vector of stixels of size N × (3 + 2), for each

N stixel, it is specified the 3D coordinate of the center of this stixel and his

height and width. So each stixel can be thought like a 3D point (the center)

and two adding features (the height and the width), this allows to feed VoteNet

in a simpler way than a normal point cloud.

The goal of this section is Point cloud feature learning through a deep neural

network without using any hand-crafted features.

The results of the backbone are M × (3 + C) seed point dimension. Each

seed point has both a 3D coordinate and a high dimensional feature vector.

Using the recent knowledge on neural network, that works on point cloud

the backbone used for feature learning is the one proposed in PointNet++.

The authors of VoteNet choose this as backbone due to its simplicity and

demonstrated success on tasks ranging from normal estimation, semantic

segmentation to 3D object localization.

The backbone network has several set-abstraction layers (SA layer) and

feature propagation (upsampling) layers (FP layer) with skip connections.

In particular, the network has three set abstractions (SA) layers and one

feature propagation/up-sampling (FP) layer.

The output of the FP layer is one vector of M seed point and each seed point

will generate one vote in the following part of the network.

56

4.1 The backbone

4.1.1 The Set-Abstraction layers layer

The set abstraction layer has been proposed in PointNet++, its goal is to make

a feature extraction, and taking a set of points it produces a new set with fewer

elements.

The set abstraction level is made of three layers:

1. Sampling layer: selects a set of points from input points, which defines

the centroids of local regions.

2. Grouping layer: constructs local region sets by finding “neighboring”

points around the centroids.

3. PointNet layer: uses a mini-PointNet to encode local region patterns into

feature vectors.

Each set abstraction level have as input a N × (d + C) matrix where each N

points have a d − dim coordinates and C − dim point feature. In this case the

d-dim is fixed a 3 and the C-dim change in each layer. The output of this layer

is an N ′ × (d + C ′) matrix of N ′ subsampled points with d − dim coordinates

and new C ′ − dim feature vectors summarizing local context.

Sampling layer

The first phase is to select the centroid which has to group the other points

in the next phase. There are many ways to perform this action and they are

iterative farthest point sampling (FPS) and Fusion Sampling (FS).

The farthest point sampling (FPS) is an algorithm that from a set of point

{xi1, xi2, ..., xim} select a point xij , such that xij is the most distant point from

the set {xi1, xi2, ..., xij−1} with regard to the rest points.

The original algorithm selects a subset of point basing on metric distance. In

order to improve the result, it has been also tried another type of grouping call

Fusion Sampling (FS) proposed in 3DSSD. This select the output subset joins

57

Chapter 4 3D StixelNet

two different subsets, the first part of the output is based on farthest point on

metric distance, the second part on farthest point on feature distance.

Then after founding these centroids they are passed on to the Grouping layer.

Grouping layer

The input to this layer is a point set of size N × (d + C) and the coordinates

of a set of centroids of size N ′ × d provide by the Sampling layer. The output

are groups of point sets of size N ′ × K × (d + C), each group corresponds to a

local region, and K is the number of points in the neighborhood of centroid

points. K can vary across the group due to the sparsity of the point cloud.

In a point set, the neighborhood of a point is defined by metric distance. The

algorithm group all the points inside a sphere of a certain radius. Another way

to grouping the point is through kNN, which selects the K Nearest neighbor of

the centroid. This method is not explored because according to the authors of

PointNet ++ fixing a radius help to make local region feature more generalize

across space, which is preferred for tasks requiring local pattern recognition.

PointNet layer

In PointNet layer, the input are N ′ local regions of points with data size

N ′ × K × (d + C). In the output the local region are abstracted by its centroid

and local feature that encodes the centroid’s neighborhood. Output data size

is N ′ × (d + C ′).

In a local region, the points are translated using as reference frame the

centroid. This is simply done by subtracting the center of the centroid in each

point that is inside the region.

Then for each point is applied PointNet in order to extract features capturing

the point-to-point relations in the local region. In this implementation, the

Multi Perception Layer proposed is a sequence of convolution with kernel one

that works as a fully connected layer, a batch normalization, and a ReLU.

As said in chapters before a point cloud has a non-uniform density, so it

58

4.1 The backbone

comes out that sometimes an object has a surface with a lot of points and

sometimes not. A requirement of this network is to capture the reference and

learned feature both when the points on surfaces are dense and not in order

to recognize both fine-grained local structures and sparsely sampled regions.

To achieve this requirement it has been proposed adaptive PointNet layers

that learn to combine features from regions of different scales when the input

sampling density changes. There are two types of combining way:

• Multi-scale grouping (MSG). a simple but effective way to capture multi-

scale patterns is to apply grouping layers with different scales followed

by PointNet to extract features of each scale. Features at different scales

are concatenated to form a multi-scale feature.

• Multi-resolution grouping (MRG). with this grouping, the features of

a region is a concatenation of two vectors. One vector is obtained by

summarizing the features at each sub-region from the lower level Li−1

using the set abstraction level. The other vector (right) is the feature

that is obtained by directly processing all raw points in the local region

using a single PointNet. In this way, the first part is more reliable when

the density is high, and the second part is more reliable when the density

of the points in the region is low.

The grouping algorithms tested in this thesis are the grouping with one radius

and the Multiscale grouping due to his simplicity and fast implementation.

4.1.2 The Feature Propagation layer

In the set-abstraction layer, the original point set is sub-sampled. This is due to

the fact that the algorithm wants to concentrate the information on some more

important points aggregating more features. This concentration causes also

a loss of information in order to overcome that there is a feature propagation

layer.

59

Chapter 4 3D StixelNet

(a) Multi-scale grouping
(MSG)

S
(b) Multi-resolution group-

ing (MRG)

Figure 4.2: Grouping algorithm

In a feature propagation layer, the point features are propagated from

Nl × (d + C) points to Nl−1 points where Nl−1 and Nl (with Nl ≤ Nl−1)

are point set size of input and output of set abstraction level l. The feature

propagation is do interpolating feature values f of Nl points at coordinates of

the Nl−1 points. For each point of Nl−1 it has been found the k closest point

in Nl layer and then find the distance of this k closest point. This distance

is used in the interpolation because it is used the inverse distance weighted

average based on k nearest neighbors (usually k = 3). Then the interpolated

features on Nl−1 points are concatenated with of Nl points. The concatenated

features are then passed through a small PointNet, which is composed of a

one-by-one convolution in CNNs a batch normalization, and ReLU layers.

4.2 The voter

The idea of the voting is based on the concept of 2D Hough voting [22]. The

2D Hough voting is the first kind of 2D object detector composed of an offline

and an online phase. In the offline phase, there is the creation of a code-book

of local appearances that are characteristic for (a particular viewpoint of) its

member objects. This is done by extracting local features around interest

60

4.2 The voter

points and grouping them with an agglomerative clustering scheme. So in the

codebook, there are stored mappings between image patches(or their features)

and their offsets to the corresponding object centers.

Figure 4.3: Example of feature extracted on coding book

In the online phase, interest points are selected from the image to extract

patches around them. These patches are then compared against patches in

the codebook to retrieve offsets and compute votes. As object patches will

tend to vote in agreement, clusters will form near object centers. Finally, the

object boundaries are retrieved by tracing cluster votes back to their generating

patches.

The idea takes from this Hough voting is that the :

• voting-base detection that is more suitable for sparse point cloud than

the region proposal network (RPN).

• bottom-up principle where small bits of partial information are accumu-

lated to generate a confident detection.

In VoteNet this concept has been fused with the knowledge of neural networks,

so interest feature points are described and selected by deep neural networks

61

Chapter 4 3D StixelNet

instead of depending on hand-crafted features. The Vote generation and

aggregation are also learned by a network instead of using a codebook. In this

way, VoteNet is a single end-to-end train-able network named VoteNet.

This part of the neural network takes as input the centroid obtain from the

second SA layer of the backbone and the feature extracting from the backbone.

So it has a shape that is M × (3 + C) where M is the number of seed points, 3

is the three dimension of the centroid xi ∈ R3 and C is the number of feature

fi ∈ RC .

The M × C feature are passing twice through a small point net composed of

a 1D convolution, a batch normalization, and a ReLU.

Then the output of this PointNet is a vector that has shape M × (3 + C),

this is used to generate an offset both for feature ∆fi ∈ RCand for seed point

∆xi ∈ R3 starting from the feature fi ∈ RC extracting from the backbone.

This offset is adding both to the centroid and to the input feature of the

Voter such that the vote vi = [yi; gi] where yi = xi + ∆xi and gi = fi + ∆fi.

The predicted 3D offset ∆xi is explicitly supervised by a regression loss

explain in the following paragraphs.

Votes have the same center as the centroid but their position is more close to

the center than the original seeds. This increase the combination of the feature

of different parts of the object in order to have an easier aggregation.

The second phase of the voter is the clustering. and this is done using a SA

layer presented before. Starting from a set of votes {vi = [yi; gi] ∈ R3+C}M
i=1,

first it’s sample a subset of K votes using farthest point sampling based on

{yi} in 3D Euclidean space, to get {vik} with k = 1, ..., K. After that K

clusters are formed finding neighboring votes to each of the vik’s 3D location:

Ck = {v
(k)
i |∥ vi − vik ∥≤ r} for k = 1, ..., K.

This clustering technique has been chosen due to its simplicity to integrate

into an end-to-end pipeline.

Then the output of this clustering is passed to the detector that its goal is

to find proposal and classification from vote clusters.

62

4.3 The detector

4.3 The detector

The detector is the last phase of the neural network and its goal is to extract

the 3D bounding box starting from the feature extracting and aggregate from

the voter.

It starts from a vote cluster that is in essence a set of high-dim points, so

it is possible to leverage a generic point set learning network to aggregate the

votes in order to generate object proposals. In VoteNet it has been used a

shared PointNet.

So, starting from the feature generating by the vote aggregation it first passes

the entire feature through an MLP composed of a 1D convolution, a batch

normalization, and a ReLU. This extracted feature is put inside two different

neural networks that one returns the class for each cluster and the other returns

the size, position, and orientation of the bounding box.

4.4 Loss Function

One important part of the Neural network is the Loss because a network without

a good loss cannot perform. This neural network has to perform many tasks so

a multi-task loss has been designed.

The loss is composed of a voting loss, an objectness loss, a 3D bounding box

estimation loss. In the original version, there is also a semantic classification loss

but the goal of the neural network presented in this thesis is not the semantic

classification, so, in order to perform in a better way, the more important loss

has been deleted. The overall loss can be expressed as:

LV oteNet = λ1Lvote−reg + λ2Lobj−cls + λ3Lbox

Where the losses has been weightd in order to be in similar scale so λ1 = 1,

λ2 = 0.5, λ3 = 1.

63

Chapter 4 3D StixelNet

Vote regression Loss

The 3D offset ∆xi predicted by the first MPL layer of the Voter is explicitly

supervised by a regression loss:

Lvote−reg = 1
Mpos

∑︂
i

∥ ∆xi − ∆x∗
i ∥ 1[si on object]

where 1[si on object] indicates whether a seed point si is inside an annotated

bounding box and Mpos is the count of total number of seeds on object surface.

∆x∗
i is the ground truth displacement from the seed position xi to the bounding

box center of the object it belongs to. In cases that a point is in multiple

ground truth boxes, it has been kept a set of up to three ground truth votes,

and consider the minimum distance between the predicted vote and any ground

truth vote in the set during vote regression on this point.

This loss can be easily thought of as a Mean Absolute Error, or L1 loss.

Objectness scores

The objectness loss is a cross-entropy loss for two classes. The cross-entropy

loss, or log loss, measures the performance of a classification model whose

output is a probability value between 0 and 1. Cross-entropy loss increases

as the predicted probability diverge from the actual label. So predicting a

probability of 0.012 when the actual observation label is 1 would be bad and

result in a high loss value. A perfect model would have a log loss of 0.

As the predicted probability approaches 1, log loss slowly decreases. As the

predicted probability decreases, however, the log loss increases rapidly. Log

loss penalizes both types of errors, but especially those predictions that are

confident and wrong.

In binary classification, where the number of classes M=2 cross-entropy can

be calculated as:

−(y log(p) + (1 − y) log(1 − p))

64

4.4 Loss Function

If M>2 (example in multi-class classification), first there is calculated a

separate loss for each class label per observation and then sum the result.

−
M∑︂

c=1
yo,c log(po,c)

Where y is binary indicator (0 or 1) if class label c is the correct classification

for observation o. p is the predicted probability observation o is of class c.

Box loss

The box loss is composed of center regression, heading estimation, and size

estimation sub-losses. It has been derived by the one proposed in frustum

PointNet [11].

Lbox = Lcenter−reg + 0.1Langle−cls + Langle−reg + Lcorner + Lsize−reg

In all regression in the box loss, we use the robust L1-smooth loss. Both

the box and semantic losses are only computed on positive vote clusters and

normalized by the number of positive clusters.

Lcenter−reg is for center regression of box estimation net; Langle−cls and

Langle−reg are losses for heading angle prediction while Lcorner and Lsize−reg are

for box size.

In frustum the proposed Lcorner and it has been thought in order to have

a better balance when the center and size are accurately predicted, but the

heading angle is off. Without this loss, a normal loss will penalize also the

predicted center and the size of the box. In order to overcome this issue, it has

been added Lcorner and it is formalized in this way:

Lcorner =
NS∑︂
i=1

NH∑︂
j=1

δijmin
{︃ 8∑︂

k=1
∥ P ij

k − P ∗
k ∥,

8∑︂
i=1

∥ P ij
k − P ∗∗tk ∥

}︃

The corner loss is the sum of the distances between the eight corners of

65

Chapter 4 3D StixelNet

a predicted box and a ground truth box. Since corner positions are jointly

determined by center, size, and heading, the corner loss is able to regularize

the multi-task training for those parameters. It has been designed firstly

constructing a NS × NH “anchor” boxes from all size templates and heading

angle bins. The anchor boxes are then translated to the estimated box center.

The anchor box corners are denoted as P ij
k , where i, j, k are indices for the size

class, heading class, and (predefined) corner order, respectively. To avoid large

penalty from flipped heading estimation, distances to corners are we further

computed (P ∗∗
k) from the flipped ground truth box and use the minimum of the

original and flipped cases. δij, which is one for the ground truth size/heading

class and zero else wise, is a two-dimensional mask used to select the distance

term we care about.

One difference from Frustum is that, instead of a naive regression loss, it has

been used a Chamfer loss [23] for Lcenter−reg (between regressed centers and

ground truth box centers).

The Chamber loss is defined as Chamber distance that is the distance between

S1, S2 ⊆ R3 as:

dCD(S1, S2) =
∑︂

x∈S1

miny∈S2 ∥ x − y ∥2
2 +

∑︂
x∈S2

miny∈S1 ∥ x − y ∥2
2

dCD is not a distance function because triangle inequality does not hold. For

each point, the algorithm of CD finds the nearest neighbor in the other set

and sums the squared distances up. Viewed as a function of point locations

in S1 and S2 , CD is continuous and piece-wise smooth. The range search for

each point is independent, so it is easy to parallelize.

66

Chapter 5

Results

One complexity of the neural network is that there are too many parameters

and too many ways to tune it. The tuning has to do with a freeway, leading by

intuition and personal experience. The most important thing is to record all

the results in order to have a better view of which path takes.

In order to compare all the results, there are common evaluation metrics

that change from dataset to dataset. In this case, the dataset used is Kitti its

specific metrics for the evaluation are based on the Average Precision (AP).

That is explained in the first part of this chapter.

The second part is dedicated to explain and analyze the experiments. In

order to have a better overview, many paths have been taken and some have

improved the results and others not. In this part has been reported the main

trials analyzing the advantages and the disadvantages of each setup.

In the third part of this chapter, there is a comparison between the other

Neural Networks that represent the state of the art in 3D object detection. The

normal test bench for the comparison is the Kitti test set. In this thesis has

been used only the evaluation split of the training set. This has been due to

the fact that it is difficult to be accepted to analyze the result of the training

on the test set that has been done by Kitti creators. Despite this problem, the

split of the training set can be adopted as a base for the comparison.

67

Chapter 5 Results

5.1 Evaluation metrics

The evaluation metrics adopted in this thesis is the one defined by Kitti dataset

[1] for 3D object detection. This metrics is average precision and this concept

is used to validate many parameters.

A key element for the Average precision is the Intersection over Union (IoU).

In 2D the IoU measures the overlap between two boundaries. It is used to

measure how much our predicted boundary overlaps with the ground truth

boundary (the real object boundary).

Figure 5.1: 2D Intersection over Unit representation.

The Intersection over Unions tells how much the predicted bounding box

and the ground truth bounding box overlap. The same can be applied to the

3D case. In this case, it is not referred to areas but to volumes, but the concept

can be kept as the same.

So the Average Precision is a measure that combines recall and precision for

ranked retrieval results.

The Precision (also called positive predictive value) measures how accurate are

your predictions. (i.e. the percentage of your predictions are correct). It can

be seen as the fraction of relevant instances among the retrieved instances.

Recall (also known as sensitivity) measures how good you find all the positives

results. It can be seen as the fraction of the total amount of relevant instances

that were actually retrieved.

68

5.1 Evaluation metrics

Their mathematical definitions are:

Precision = True Positive

True Positive + False Positive

Recall = True Positive

True Positive + False Negative

Let’s say we set IoU to 0.7, in that case:

• If IoU ≥ 0.7, classify the object detection as True Positive(TP);

• If IoU < 0.7, then it is a wrong detection and classifies it as False

Positive(FP);

• When ground truth is present in the image and the model failed to detect

the object, we classify it as False Negative(FN);

• True Negative (TN): TN is every part of the image where we did not

predict an object. This metrics is not useful for object detection, hence

we ignore TN.

So the formula for the Average Precision is:

AP = 1
GTP

n∑︂
k

Precisionk × relk

Where GTP refers to the total number of ground truth positives, refers to

the precision, and relk is a relevance function. The relevance function is an

indicator function which equals 1 if the result at rank k is relevant and equals

0 otherwise.

Another metric use is the Average Heading Similarity (AHS). The AHS is

the Average Orientation Similarity (AOS) but evaluated using 3D IOU and

global orientation angle instead of 2D IOU and observation angle. The AOS

can be defined as:

AOS = 1
11

∑︂
r∈{0,0.1,..,1}

max s(˜︁r) ˜︁r : ˜︁r≥r

69

Chapter 5 Results

r is the recall and is define as r = T P
T P +F N

where detected 2D bounding boxes

are correct if they over-lap by at least 50% with a ground truth bounding box.

s is the orientation similarity s ∈ [0, 1] at recall r is a normalized ([0..1]) variant

of the cosine similarity defined as:

s(r) = 1
|D(r)|

∑︂
i∈D(r)

1 + cos ∆θ(i)

2 δi

where D(r) denotes the set of all object detection at recall rate r and ∆(i)
θ

is the difference in angle between estimated and ground truth orientation of

detection i. To penalize multiple detection which explain a single object, it has

been set δi = 1 if detection i has been assigned to a ground truth bounding

box (overlaps by at least 50) and δi = 0 if it has not been assigned.

The change from AOS to AHS has been made in order to, removing the

metric’s dependence on localization accuracy.

In Kitti evaluation the metrics are:

• car detection AP: 2D Average Precision based on the bounding box

projected on cam 2 of Kitti;

• car detection BEV AP: 2D Average Precision based on the bounding box

projected Bird-eye view;

• car orientation BEV AHS. AHS orientation of the bounding box projected

Bird-eye view;

• car detection 3D AP: 3D Average Precision based on the 3D bounding

box;

• car orientation 3D AHS: AHS orientation of the 3D bounding box.

These evaluation metrics have been used on the evaluation test bench. The

evaluation test bench is a partition of the training set and this partition has

been created as a standard in order to have most of the type of Kitti scenes.

70

5.2 Experiment

5.2 Experiment

Due to the innovation of the type of data used for 3D object detection many

experiments have been done in order to find a better balance of the parameters.

The starting point of this experiment was the and adapted VoteNet that was

trained to work on the point cloud data provided by the Kitti dataset.

The tables 5.1, 5.2, 5.3 show the starting configuration of the VoteNet.

Table 5.1: Backbone Set Abstraction layer
parameters SA 1 SA 2 SA 3

number seed point 4096 512 256
number of grouping point for each
seed point 64 32 32

radius of the grouping seed point 0.4 1.6 3.2
Multi layer perception level [32,32,64] [64, 96, 128] [128, 256, 256]
sampling type D-FPS D-FPS D-FPS

Table 5.2: Backbone Feature propagation layer
parameters FP

number of grouping point for each
seed point 384

Multi layer perception level [256, 256]

Table 5.3: Voter Set Abstraction layer
parameters SA Detector

number seed point 256
number of grouping point for each
seed point 16

radius of the grouping seed point 0.75
Multi layer perception level [256, 256, 512]
sampling type D-FPS

71

Chapter 5 Results

Starting from this configuration the main changes have been done in the Set

Abstraction layer present on the backbone in order to adapt it to the new type

of data. The other layer has not to be modified because several tests confirm

that is the right setting.

5.2.1 Stixels as points

A first test was to consider the stixels as the combination of four 3D points that

represent the four vertices and then feed the network with this type of data.

Even if the data that feeds the network are points without any characteristics,

they are also derived from medium type data. They are not simple points

that represent the whole scene but only the vertical parts, so there is also a

reduction of points used.

The use of the network for these early trials is the original VoteNet. The

first change that was made was to set the batch size of the training. The size

of the batch under investment was 4 and 8.

Table 5.4: Test 0: batch size 4; Test 1: batch size 8
test 0 test 1

metrics easy medium hard easy medium hard

AP 87.58 76.12 73.54 85.18 72.82 67.22
BEV AP 84.39 71.01 66.83 81.07 69.04 64.34
BEV AHS 82.81 69.37 65.15 79.91 67.43 62.73
3D AP 70.17 55.10 53.63 65.55 51.57 49.20
3D AHS 68.88 54.05 52.57 64.73 50.74 48.35

Analyzing the accuracy of the test reported table 5.4 with batch size four for

test 0 and batch size eight in test 1 it comes out that the test with a smaller

batch size has a better result. This has been confirmed also from other further

tests that are not reported. According to On Large-Batch Training for Deep

Learning: Generalization Gap and Sharp Minima[24] this can be derived that

72

5.2 Experiment

Figure 5.2: Test of different batch size

using a larger batch there is a significant degradation in the quality of the

model, as measured by its ability to generalize.

5.2.2 Stixels as stixels

After that initial trial, it starts to consider the stixel not only with the com-

position of four points that summarize it but as one point that corresponds

to the center of the stixel and two feature that corresponds to the height and

width of the stixel. This has been done in order to fully exploit the properties

of stixel reducing the entire point set size at max 3200. This number can be

further reduced by deleting the outliers explained in chapter 3.

Table 5.5: Test 0: stixel 4 points; Test 4: stixel one point
test 0 test 4

metrics easy medium hard easy medium hard

AP 87.58 76.12 73.54 87.66 76.63 74.70
BEV AP 84.39 71.01 66.83 85.14 73.59 67.76
BEV AHS 82.81 69.37 65.15 84.02 71.94 66.10
3D AP 70.17 55.10 53.63 70.91 58.34 54.56
3D AHS 68.88 54.05 52.57 70.04 57.32 53.47

73

Chapter 5 Results

Figure 5.3: Test of different type of stixel

Despite using a reduced type of data results that the network has a better

behavior increasing a little bit the accuracy in particular for the 3D bounding

box and for the estimation of the pose in bird-eye of view. This is possible

to see in table 5.5 where test 0 is the previous test in which the stixel was

represented like four points and test 4 where the stixel were represented like

a single point with high and width as a feature. This is an important result

because it underlines that having a medium type data allows achieving better

accuracy with a number of points that is twenty-two times less than the original

dataset.

Thanks to this result, all the next trials have been made considering the

stixel as a center point, that has as a feature the height and the width of that

stixel.

5.2.3 Change the type of Sampling layer

A third trial done was to change the sampling layer in the set abstraction

layer. This has been done to modify the configuration of VoteNet in order

to extract the seed point not only based on the euclidean distance but also

combine the feature distance. This change has been made in order to add a

degree of freedom in the sampling layer according to 3DSSD [10].

Other changes involve are the reduction of the number of seed points extracted

74

5.2 Experiment

from this in the sampling layer. This change has been made in order to adapt

the network for the different types of sampling layers and adjust the data

according to the reduced number of input points. A further explanation has

been derived in the following paragraphs.

Table 5.6: Backbone Set Abstraction: Change the type of Sampling layer
test 4 test 6

parameters SA 1 SA 2 SA 3 SA 1 SA 2 SA 3

seed
point 4096 512 256 4096 256 128

grouping
point 64 32 32 64 32 32

radius 0.4 1.6 3.2 0.4 1.6 3.2
MLP 32,32,64 64,96,128 128,256,256 32,32,64 64,96,128 128,256,256
sampling D-FPS FS FS D-FPS FS FS

Figure 5.4: Test the type of Sampling layer

Analyzing the result it has emerged that changing the sampling layer is very

important in order to improve the performance.

This can be seen in test 10 where both in the second and the third layer it

has been applied the FS sampling layer.

Combining both Euclidean distance and feature distance it is possible to

achieve a better result more than use one type of sampling layer. This can

75

Chapter 5 Results

test 8 test 10
parameters SA 1 SA 2 SA 3 SA 1 SA 2 SA 3

seed
point 2048 512 256 2048 256 128

grouping
point 64 32 32 64 32 32

radius 0.4 1.6 3.2 0.4 1.6 3.2
MLP 32,32,64 64,96,128 128,256,256 32,32,64 64,96,128 128,256,256
sampling D-FPS D-FPS D-FPS D-FPS FS FS

voter
parameters SA SA

seed
point 256 256

grouping
point 16 16

radius 0.75 0.75
MLP 256,256,512 256,256,512
sampling D-FPS F-FPS

Table 5.7: Test the type of Sampling layer
test 4 test 6

metrics easy medium hard easy medium hard

AP 87.66 76.62 73.70 89.32 78.22 75.34
BEV AP 85.14 73.59 67.76 87.19 74.73 68.54
BEV AHS 84.02 71.94 66.10 86.14 73.29 67.15
3D AP 70.91 58.34 54.55 75.64 91.36 56.94
3D AHS 74.04 57.32 53.46 74.90 60.50 56.08

be derived due to the sparsity of the starting point cloud extracting from an

outdoor environment. In that type of environment, the point cloud is less

concentrated so the point (or stixel) that constitutes an object can be so far

that can be confused with the background. The feature helps to discriminate

the background and the object point increasing the accuracy of the network.

76

5.2 Experiment

Table 5.8: Test the type of Sampling layer
test 8 test 10

metrics easy medium hard easy medium hard

AP 86.80 76.65 75.19 89.49 77.78 75.02
BEV AP 83.23 72.84 70.88 82.52 70.52 68.61
BEV AHS 82.08 70.86 68.69 86.41 72.49 67.25
3D AP 68.77 57.42 54.58 76.09 61.21 57.23
3D AHS 68.00 56.22 53.38 75.51 60.38 56.40

Decreasing the number of seed points also increases the accuracy of the

network. This can be derived from the reduced number of initial points

that need fewer seed points. If there are too many seed points there is an

overestimation of the number of the centers, so it may derive too much false

positive decreasing the accuracy of the network. This behavior is better

analyzing in the following paragraphs.

5.2.4 Data augmentation

An important improvement on the accuracy of the network has been obtained

adding the data augmentation on training data. Data augmentation are

techniques used to increase the amount of data by adding slightly modified

copies of already existing data or newly created synthetic data from existing

data. It acts as a regularize and helps reduce overfitting when training a

machine learning model.

The type of data augmentation used are:

• Global flip: Randomly mirroring the stixel and boxes using as mirror

plane the plane y-z of the camera;

• Global rotation: Rotate the entire scene around the y-axis of the camera;

• Local rotation: Rotate each car with a random rotation around each own

vertical axis;

77

Chapter 5 Results

• Local translation: Translate each car having as center each own vertical

axis.

An important operation was the tuning of the range where this random

movement can be selected. This was important because the stixels don’t

constitute the entire shape of a car but only the visible part from the camera

and the LIDAR, so if the range of the rotation and the translation are too

big they create a non-real combination of stixel that describe a shape of the

vehicle.

The last augmentation adopted is the Mixup augmentation. It consists of

the adding of the stixels of extra vehicle extracted from the other scenes. This

is used to enrich the scene in order to give the network more examples to learn.

The mixup augmentation is composed of two phases:

• Offline phase: where it is created a codebook containing the information

of all the vehicle of the scene and their stixel that compose that vehicle;

• Online phase: where randomly it has added to the scene some vehicles.

The policies for the enrichment of the scene were added vehicles until it

reaches the maximum number of the vehicles, taking into account also the

vehicles that were already present in the scene.

After this adding phase, the new vehicle also has an augmentation, and then

there is a resolution of conflict. It can happen that adding a vehicle collides

with another vehicle already present so in order to avoid this, there is a collision

resolution phase where the vehicle that creates conflicts are deleted and, if it is

possible, keeping the vehicles that were already present in the scene before the

mixup augmentation.

In order to have a better comparison of the result of a different kind of data

augmentation, it has been chosen to start from one single network and then

apply in the training phase the different types of data augmentation.

Table 5.9 show the starting network and table 5.10 the legend for the various

kind of test and which test ID is connected.

78

5.2 Experiment

Figure 5.5: Scene without data augmentation

Figure 5.6: Scene with data augmentation

The augmentation provides an improvement to the result of the neural

network increasing all the accuracy metrics.

This can be notice analyzing the result in 5.11 and 5.12.

The improvement is close to 10% and this is really relevant compared to the

other improvement obtained in other tests. It can be derived from the fact that

79

Chapter 5 Results

Table 5.9: Data augmentation: starting network
backbone voter

parameters SA 1 SA 2 SA 3 SA

seed
point 2048 256 128 256

grouping
point 64 32 32 16

radius 0.4 1.6 3.2 0.75
MLP 32,32,64 64,96,128 128,256,256 256,256,512
sampling D-FPS FS FS F-FPS

Table 5.10: Type of data augmentation test
test augmentation range

16 flip prob. flip 0.5
17 global rotation ±10 degree
18 local rotation ±30 degree
19 local transition ±2 meters
20 flip, local rotation, local transition

22 flip, local rotation, local transition,
mixup

Table 5.11: Test the type of data augmentation
test 16 test 17 test 18

metrics easy med. hard easy med. hard easy med. hard

AP 89.45 78.81 77.54 60.69 51.95 52.15 90.07 77.10 73.17
BEV AP 88.24 76.80 73.25 52.37 44.16 41.47 89.36 74.32 67.96
BEV AHS 87.8 75.99 72.28 52.01 43.33 40.69 88.52 73.04 66.66
3D AP 76.80 65.43 61.67 30.11 23.78 22.88 80.20 62.63 57.05
3D AHS 76.56 64.90 61.07 29.67 23.36 22.51 79.45 61.72 56.12

the increase of the variety of the object increases the number of scenes in the

training obtaining a better generalization.

80

5.2 Experiment

Table 5.12: Test the type of data augmentation
test 19 test 20 test 22

metrics easy med. hard easy med. hard easy med. hard

AP 89.96 79.15 76.82 90.13 79.23 76.07 90.33 82.23 78.20
BEV AP 88.66 77.43 72.95 89.29 77.43 72.89 89.94 79.09 76.52
BEV AHS 87.96 76.33 71.75 88.97 76.66 71.94 89.89 78.80 76.13
3D AP 80.80 66.02 61.50 83.16 66.99 62.06 88.18 69.51 67.48
3D AHS 80.16 65.31 60.75 82.94 66.55 61.55 88.13 69.35 67.25

Figure 5.7: Test the data augmentation

An important constrain of the augmentation is that the scene cannot change

too much otherwise the performance start to degrade has happened using the

global rotation. As is possible to see in the graph the global rotation in test

17 decreases the accuracy this could happen because it changes too much the

entire scene.

So important parameters to tune so are the max range of the augmentations:

it cannot be too small because otherwise there the scene remains more or

less the same, but it cannot change too much otherwise the network start to

degraded the performance.

After these important results, the data augmentation is applied in all the

next test, and in particular, the augmentation apply are :

• mixup augmentation;

81

Chapter 5 Results

• horizontal flip, prob. flip: 50%;

• local rotation: ±10 degrees;

• local shift: ±2 meters.

5.2.5 Reduction of number of seed points

After finding the better batch size, the type of augmentation, and the kind

of sampling layer now this section of the test is focused on finding the better

balance of the number of seed points extracted in the SA layer of the backbone.

Compared to the initial number of seed points now this number has been

reduced. This reduction has been made in order to improve the performance

of the network because the initial number of seed points was designed to a

higher number of input points. Having as input at least 3000 points it is useless

having a number of seed points that is 4096 because this means that there is

more center than points.

A reduction of seed points should allow the network to focusing only on the

most important points creating a better grouping without "disorientate" the

network.

This reduction has been made until the network start to degraded his

performance and it has been continued in order to understand the degradation

of the performance at the decreasing of the number of the seed points.

Figure 5.8: Test the reduction number of seed points

82

5.2 Experiment

Table 5.13: Backbone Set Abstraction: Reduction of number of seed points
test 22 test 24

parameters SA 1 SA 2 SA 3 SA 1 SA 2 SA 3

seed
point 2048 256 128 1024 256 128

grouping
point 64 32 32 64 32 32

radius 0.4 1.6 3.2 0.4 1.6 3.2
MLP 32,32,64 64,96,128 128,256,256 32,32,64 64,96,128 128,256,256
sampling FS FS FS FS FS FS

Table 5.14: Backbone Set Abstraction: Reduction of number of seed points
test 28 test 32

parameters SA 1 SA 2 SA 3 SA 1 SA 2 SA 3

seed
point 512 128 64 256 128 64

grouping
point 64 32 32 64 32 32

radius 0.4 1.6 3.2 0.4 2.0 4.0
MLP 32,32,64 64,96,128 128,256,256 32,32,64 64,96,128 128,256,256
sampling FS FS FS FS FS FS

Table 5.15: Test the reduction of number of seed points
test 22 test 24

metrics easy med. hard easy med. hard

AP 90.33 82.23 78.20 90.56 82.71 78.42
BEV AP 89.94 79.09 76.52 90.24 79.4 76.89
BEV AHS 89.89 78.80 76.13 90.18 79.21 76.52
3D AP 88.18 69.51 67.48 88.60 72.25 67.64
3D AHS 88.13 69.35 67.25 88.55 72.09 67.44

This analysis discovers the best trade off of the number of seed points in

each set abstraction level. The configuration of test 24 achieves a very good

83

Chapter 5 Results

Table 5.16: Test the reduction of number of seed points
test 28 test 32

metrics easy med. hard easy med. hard

AP 89.30 74.74 70.64 82.88 64.74 58.93
BEV AP 88.56 72.15 67.13 78.30 60.37 53.84
BEV AHS 88.36 71.60 66.47 76.99 58.94 52.34
3D AP 81.29 61.50 57.49 67.14 48.90 42.38
3D AHS 81.14 61.23 57.14 66.23 48.01 41.51

result. After that reducing the number of seed points there is a degradation of

the performance. This can be derived to the fact that if the number of seed

point is low one seed point have to group many points and the network is not

able to capture all the details increase the possibility of errors.

Another goal of this test was to verified if reducing the seed points there

is some reduction of memory occupy from the weights and some reduction of

inference time. This tried has to be done in order to find a light neural network

that is important in the next production phase.

The result discards this idea because reducing the number of seed point the

memory occupies for the weights has been kept stable at 9.35Mb and also the

inference time not change and it is fixed around 30 ms.

5.2.6 Multi-scale grouping

A characteristic of the point cloud in the outdoor environment is the sparsity.

In the same scene, it is possible to find areas where there are many points

concentrates and areas where there are fewer points. These areas can be also in

the same object so the network should be able to understand both fine-grained

local structures and sparsely sampled regions. The same concept can be applied

to scene composition with stixel.

In order to overcome this problem, it has been tried two kinds of grouping

layers. The first is the simple grouping layer where for each SA layer there is

84

5.2 Experiment

only one radius. This has been tested in all the previous tests.

The second type tested is the multi-scale grouping where in each sampling

layer there are many radii to group the points. Due to his simplicity of

implementation, the grouping applies in this thesis is the Multi-scale grouping

(MSG). MSG is a simple but effective way to capture multi-scale patterns is

to apply grouping layers with different scales followed by PointNet to extract

features of each scale. Features at different scales are concatenated to form a

multi-scale feature.

The degrees of freedom that has to be tune in these tests for each set

abstraction layer are:

• The size of radii of the grouping layer;

• the size of the network for each sampling;

• the number of final points.

Table 5.17: Test 36: Multi-scale grouping
backbone

parameters SA 1 SA 2 SA 3

seed point 1024 256 128
grouping point 64 32 32
radius 0.4 0.8 1.6 2.0 3.2 4.0

MLP 32,32,64
32,32,64

64,96,128
64,96,128

128,256,256
128,256,256

sampling FS FS FS

As it is possible to see in table 5.18 the use of the multi-scale grouping

improve the result of the network. This confirmed that the sparsity of the point

cloud is more suitable for multi-scale grouping.

According to the many tests not cited it is possible to see that a symmetric

MLP of the SA layer allow achieving better results but the change are very small

85

Chapter 5 Results

Table 5.18: Test the Multi-scale grouping
test 24 test 36

metrics easy med. hard easy med. hard

AP 90.56 82.71 78.42 95.63 86.92 83.03
BEV AP 90.24 79.4 76.89 90.39 84.74 79.14
BEV AHS 90.18 79.21 76.52 90.07 84.49 78.88
3D AP 88.60 72.25 67.64 89.05 76.88 72.35
3D AHS 88.55 72.09 67.44 89.05 76.88 72.35

Figure 5.9: Test of multi-scale grouping

compared to the whole results and this can be due to the normal fluctuation in

the training phase.

A drawback of this setup is the increasing of the memory occupied by the

weight, which passes from 8.5Mb of the standard configuration to 14Mb. The

inference time also increases from 30 ms to 50 ms.

Despite the drawbacks thanks to multi-scale grouping, the network has been

able to achieve the state of the art.

5.2.7 Change the width of stixels

The last group of tests based on stixel generate from point cloud has been

focused on changing the size width of the stixel. The goal of this test is to

verify if having a group of stixel that can potentially have a better resolution

86

5.2 Experiment

increase the accuracy of the network.

The network setup with this test has been evaluated was the one on test 24

and test 36. This two network has been choose because have allowed achieving

the best result with and without multi-scale grouping.

The test is to reduce the size of the width of the cells of the matrix from 8

to 4 pixels.

With this configuration of stixel the average double from the previous config-

uration:

• average: 1996;

• standard deviation: 664;

Figure 5.10: Distribution of stixel generate from reduced width stixel

As is possible to see in table 5.19 despite the doubling of the number of stixel

the precision not increase. This means that with the right resolution of stixel

it is possible to achieve very good results reducing also the global number of

stixel.

The configuration of the network adopted in test 40 is the configuration of

test 24 and the configuration adopted in test 42 is the configuration of test 36.

In other tests that have not been reported it has increased the number of

seed points in order to adapt this number to the increasing number of stixel.

87

Chapter 5 Results

Table 5.19: Test of change width of stixel
test 40 test 42

metrics easy med. hard easy med. hard

AP 92.63 87.33 83.90 96.07 88.46 86.87
BEV AP 90.12 85.65 82.57 89.97 87.51 84.23
BEV AHS 90.08 85.36 82.26 89.95 87.28 83.22
3D AP 88.91 77.79 72.65 88.67 78.25 76.44
3D AHS 88.87 77.62 72.45 88.66 78.11 76.25

Figure 5.11: Test of change width of stixel

Despite this change, the network does not improve the performance, so it has

not to be reported.

5.2.8 Stixel derive from mono e stereo camera

Another group of tests was focus on the stixel obtaining from depth maps

generated by the stereo camera and monocular camera. A first trial was to

evaluate the network training on point cloud’s stixel on stereo’s stixels. This

has been done in order to test a kind of transfer learning.

The base on this transfer learning is that stixels are a medium type data that

summarize a point cloud where each point indicates the distance. It does not

care where the point has been extracted because the information of each point

88

5.2 Experiment

is the same if it has been derived from lidar or a stereo camera. This transfer

learning can be very useful because it means that could be possible to train the

network with stixel extracted from lidar and in inference use stixel extracted

from the camera. This can be useful in order to implement interoperability

of the network abstracting this from the sensor used to extrapolate the point

cloud and the stixel.

Test 52 is the network trained on test 24 and executed with stixel generate

from a stereo camera. Test 53 is the network trained on test 36 and executed

with stixel generate from a stereo camera.

Table 5.20: Test training network on stixel from point cloud and test on stixel
from stereo

test 24 test 52 test 53
metrics easy med. hard easy med. hard easy med. hard

AP 90.56 82.71 78.42 36.77 22.79 19.57 35.77 22.31 18.57
BEV AP 90.24 79.4 76.89 33.22 21.18 18.76 32.81 21.55 18.29
BEV AHS 90.18 79.21 76.52 30.91 19.82 17.63 31.06 20.44 17.38
3D AP 88.60 72.25 67.64 11.24 9.31 9.09 8.27 5.41 5.08
3D AHS 88.55 72.09 67.44 11.18 9.30 9.09 8.13 5.37 5.06

Figure 5.12: Test training network on stixel from point cloud and test on stixel
from stereo

As is possible to see in table 5.20 despite the good intent the result does not

89

Chapter 5 Results

satisfy this theory. This could be happening because the depth map generates

by stereo and mono camera is less precise than the one generated by the lidar

so a network that was training on this kind of data makes a lot of mistakes.

Analyzing the result of the inference of the network it can be noticed that the

cars that are far from the camera weren’t fitted so well from the depth map

this decreases the level of accuracy.

This problem can overtake using a more precise network that extracts the

depth map.

After this kind of test, it has been decided to training directly the network

with stixel generate from stereo and mono camera. In order to exploit the

know-how establish from the previous trial for the test, it has been kept the

configuration of test 24 and test 36. These configurations have been chosen

in order to have a test bench starting with the network that achieves the best

result with and without multi-scale grouping.

Table 5.21: Test training on stixel derive from stereo camera
test 24 test 56 test 57

metrics easy med. hard easy med. hard easy med. hard

AP 90.56 82.71 78.42 69.05 46.22 39.97 71.78 47.97 44.68
BEV AP 90.24 79.4 76.89 56.40 36.62 31.07 57.99 37.65 32.03
BEV AHS 90.18 79.21 76.52 55.80 36.17 30.66 57.24 36.96 31.41
3D AP 88.60 72.25 67.64 48.02 32.35 27.24 49.01 32.32 26.94
3D AHS 88.55 72.09 67.44 47.57 32.06 26.96 50.07 32.61 26.65

The configuration of the network adopted in test 56 and 62 is the configuration

of test 24 and the configuration adopted in test 57 and 63 is the configuration

of test 36. Is it possible to see comparing the table 5.20 and table 5.21 training

the network directly on stixel generate by stereo camera allow to increase the

performance comparing the results the network training with stixel generate

on lidar and evaluate on stixel generate by the depth map.

This result underlines that this network can perform on both types of stixel,

90

5.2 Experiment

Figure 5.13: Test training on stixel derive from stereo camera

Table 5.22: Test training on stixel derive from mono camera
test 24 test 62 test 63

metrics easy med. hard easy med. hard easy med. hard

AP 90.56 82.71 78.42 54.98 37.30 31.83 56.56 38.29 34.06
BEV AP 90.24 79.4 76.89 32.15 23.28 20.86 33.65 23.67 21.21
BEV AHS 90.18 79.21 76.52 31.88 23.08 20.68 33.44 23.49 21.04
3D AP 88.60 72.25 67.64 21.84 15.97 14.85 22.62 16.00 14.67
3D AHS 88.55 72.09 67.44 21.74 15.93 14.81 22.52 15.95 14.63

Figure 5.14: Test training on stixel derive from mono camera

but an important part is the accuracy of the starting data. Having rough and

imprecise data decrease the performance of the network.

This has been confirmed from the result on stixel derived by the mono camera.

91

Chapter 5 Results

Evaluate a depth map from a mono camera is a very difficult task so nowadays

the accuracy of this network is low comparing to that accuracy on a stereo

camera or lidar. Due to this lack of accuracy, the results 3d object detection

on mono-camera is lower than others.

According to the result on stixel extracted from a lidar better result could

be achieved by increasing the accuracy of the network that extract depth map

on stereo and mono cameras.

5.3 Memory consumption and inference time

Analyzing the memory consumption of the weights in the tests presented in

this thesis is possible to notice that the only change that modifies the memory

is the adding of the multiple radii on the SA layer. This is an important result

because underline that changing the number of seed points and the type of

sampling does not change the memory consumption of the weights.

The weight is fixed a 9,35Mb for the weights of the networks with the SA

layer with a single radius, and 13.5Mb for the weights of networks with the

SA layer with multiple radii. This simple change increasing on 50% memory

consumption and increase the performance by 2%. So in the production phase,

it should be avoided in order to have a lighter neural network.

Figure 5.15: Memory consumption of the weights

Another metrics useful for the choice of the set up of the network is the

92

5.3 Memory consumption and inference time

inference time. The final goal of this network is to achieve a kind of real time

computation due to his final usage, autonomous driving. An ideal network

should be lighter, faster, and precise. The inference time is linked by the

hardware used in this case the GPU where the network has been evaluated is

an Nvidia Tesla. The comparison of these metrics is useful in order not to find

the absolute inference time but to find the relative inference time regarding

the network setup.

Figure 5.16: Inference time

The figure 5.16 summarize all the inference time obtained in all the tests.

Analyzing them, it can be noticed that using the configuration of stixel with

one point instead of the one with four points halves the inference time. This

can be derived from the fact that the network has to analyze four times fewer

points. This is a relevant result because means with the configuration with one

point and allow to improve the result and reduce the inference time keeping

the memory usage of the weight constant.

Starting reducing the number of seed points from 4096 to 2048 the network in-

crease the inference time and the standard deviation of this measure. This is not

a usual behavior and can be derived from some specific low-level configuration

93

Chapter 5 Results

of CUDA that optimize the network for some specific configuration.

Keeping as a reference point test 10 it is possible to notice that by changing

the type of sampling layer the inference time has a small variation so we can

figure it as constant.

Reducing the number of seed points there is a reduction of inference time.

This can be derived from the fact that each SA layer has to sample and group

fewer seed points.

Increasing the number of sampling radius the network increase the inference

time. Despite test 36 allow achieving the best result it has both high inference

time and memory consumption.

Changing the configuration of input data from stixel generate from stereo

camera or stixel generate from mono the inference time not change. This

underlines the portability of the network that can ideally achieve the same

performance changing the type of input data.

5.4 Comparison with the state of the art

The last part of the result analysis is the comparison with the state of the art.

This type of network is quite new taking into account that the oldest paper

has less than two years.

The Kitti dataset is split into two subsections the training set and the test

set.

The training is also split into two subsections: the training data and the

validation data. This split has been officially delivered from the Kitti and it

takes into account all the different types of scenes. The training data is used

to train the network and the validation data to have a first validation test.

The goal of the test set is to have a standard test bench to verify the result.

The ground truth of the test bench is not public so in order to have a result, it

has to be submitted on the official Kitti website. This submission has to be

approved and it is not so easy. For this thesis, the submission has not been

94

5.4 Comparison with the state of the art

approved so the network has been evaluated only on validation data. The

validation data can be used also for a common test bench but it has not the

official approval.

Table 5.23: Performance comparison on KITTI 3D object detection val set for
car class

3D AP car BEV
Method Modality easy med. hard easy med. hard

VoxelNet L 81.97 65.46 62.85 89.60 84.81 78.57
Point Pillar L 79.05 74.99 68.30 88.35 86.10 79.83
STD L 89.70 79.80 79.30 90.50 88.50 88.10
SVGA L 90.59 80.23 79.15 90.27 89.16 88.11

3DSSD L 89.71 79.45 78.67

Frustum R+L 83.76 70.92 63.65 88.16 84.02 76.44

Test 24 L 88.60 72.25 67.64 90.24 79.4 76.89
Test 36 L 89.05 76.88 72.35 90.39 84.74 79.14

Analyzing the result on validation split on training data the network presented

in this thesis achieves high-level results comparing whit the state of the art.

The fluctuations on one point are common in the training phase so it can be

considered that the network is at the same level comparing with the other

networks.

This final result is very important taking into account that the network works

on 20 times fewer points. This underlines that having a good compression of

rough data and adapt the network to work on that type allows achieving a

result that is comparable to the state of the art.

As is possible to see from table 5.23 all the networks achieve at most 90% of

accuracy. This can be derived from a bottleneck of the training, generate due

to a lack of precision of Kitti dataset annotation. Observing more in the detail

the 3D annotation in the images it is possible to see that in some scenes there

are cars that are not annotated and in evaluation, phase could be classified as

95

Chapter 5 Results

false positive decreasing the performance of the evaluation.

5.5 Final consideration

In this chapter, it has been presented all the tests and paths take in order to

adapt the network to 3D object detection from stixel. The discovery made

during this tuning are:

• A smaller batch size equal to 4 allow to improve the performance during

the training due to the increase of the ability of the network to generalize;

• The configuration of the stixel composed with one point and width and

height as a feature has multiple advantages: it reduces the memory of the

dataset, improve the accuracy of the network and reduce the inference

time;

• The sampling layer of set abstraction level have a better performance if

it samples the seed points taking into account both Euclidean distance

and feature distance;

• The use of data augmentation in the training phase increase the perfor-

mance in a significant way. In particular, the use of global flip, local

translation, local rotation, and mixup augmentation increases accuracy.

The use of global rotation should be avoided because decrease the perfor-

mance;

• Adapting and reducing the number of seed point sampled in the SA layer

allows to improve the performance adapting the network to the reduced

number of data;

• Due to the sparsity of the point cloud, the use of the multi-scale grouping

in the Set abstraction level of the backbone increases the performance, but

increase also the memory consumption of the weights and the inference

time;

96

5.5 Final consideration

• Changing the width of stixel increase the resolution and the number of

stixel but not increase the accuracy of the network;

• Training the network with data coming from a more precise sensor like

lidar and using them on data coming from a less precise sensor like

stereo camera decreases the performance of the network becoming it not

reliable. Despite that the network achieves a relevant performance on

stixel extrapolate both from the stereo camera, mono camera, and lidar.

This network allows achieving a high-level accuracy despite the starting

data were 20 times less than a normal scene. This means that high accuracy

is possible to achieve if the starting data are compressed in a good way so

compression does not mean reduction of performance if this compression has

been made in a smart way.

Figure 5.17: Starting scene

Figure 5.18: Starting points

97

Chapter 5 Results

Figure 5.19: Ground truth stixel

Figure 5.20: Prediction of the network

98

Chapter 6

Final considerations

This thesis has presented an adaptation of a deep learning algorithm that is able

to extract the position 3D and class from a scene in an outdoor environment.

The deep learning algorithm uses as input data a medium type data called

stixel. A stixel can be thought like a small rectangle that starts from the base of

the road and then it rises until the top of the obstacle summarizing the vertical

surface of an object. The algorithm to generate stixel has been developed and

implemented in a novel way that has been described in chapter 3. The main

pass to create this type of data are:

• the elimination of points that lied on the ground plane;

• the creation of an average matrix that summarizes the depth of group of

stixel;

• the creation of stixel merging all the cells that belong on the same object.

The stixel has been created from a point cloud generated by LIDAR, from a

depth map generated by stereo and mono camera.

The stixel allows a reduction of points from 40 000 to 1100 from lidar point

and from 465 750 to 1000 for depth map points.

The neural network is an adaptation of VoteNet[9] composed of a backbone,

a voter layer, and a detector layer.

99

Chapter 6 Final considerations

This network, designed for an indoor environment, has been adapted to work

in an outdoor environment having as input medium type data like stixel.

After a documented tuning and designed phase, the network is able to

achieve the state of the art of 3D object detection on point cloud on the

outdoor environment despite the reduction of 40 times of points. This enforces

that it is possible to achieve an excellent result with the right compression of

data without losing information.

6.1 Future improvement

The future improvement of this thesis are:

• The creation of stixel starting from a depth map extracted from stereo

and mono camera using a more accurate neural network;

• the evaluation of the performance of the network on other datasets like

NuScene[25] or private dataset;

• Add other new types of layer like a self-attention layer in order to obtain

more accurate discrimination of false positive;

• Implement the network in order to work with real-time data.

100

Bibliography

[1] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving?

the kitti vision benchmark suite. pages 3354–3361, 2012.

[2] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun.

Vision meets robotics: The kitti dataset. International Journal of Robotics

Research (IJRR), 2013.

[3] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud

based 3d object detection. 2017.

[4] Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang,

and Oscar Beijbom. Pointpillars: Fast encoders for object detection from

point clouds. 2019.

[5] Zetong Yang, Yanan Sun, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Std:

Sparse-to-dense 3d object detector for point cloud, 2019.

[6] Qingdong He, Zhengning Wang, Hao Zeng, Yi Zeng, Shuaicheng Liu, and

Bing Zeng. Svga-net: Sparse voxel-graph attention network for 3d object

detection from point clouds. 2020.

[7] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet:

Deep learning on point sets for 3d classification and segmentation. 2017.

[8] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep

hierarchical feature learning on point sets in a metric space. 2017.

101

Bibliography

[9] Charles R. Qi, Or Litany, Kaiming He, and Leonidas J. Guibas. Deep

hough voting for 3d object detection in point clouds. 2019.

[10] Zetong Yang, Yanan Sun, Shu Liu, and Jiaya Jia. 3dssd: Point-based 3d

single stage object detector. 2020.

[11] Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J. Guibas.

Frustum pointnets for 3d object detection from rgb-d data. 2018.

[12] Hernán Badino, Uwe Franke, and David Pfeiffer. The stixel world - a

compact medium level representation of the 3d-world. 5748:51–60, 09

2009.

[13] David Pfeiffer and Uwe Franke. Towards a global optimal multi-

layer stixel representation of dense 3d data. pages 51.1–51.12, 2011.

http://dx.doi.org/10.5244/C.25.51.

[14] Rodrigo Benenson, Markus Mathias, Radu Timofte, and Luc Van Gool.

Fast stixel computation for fast pedestrian detection. pages 11–20, 10

2012.

[15] Lukas Schneider, Marius Cordts, Timo Rehfeld, David Pfeiffer, Markus

Enzweiler, Uwe Franke, Marc Pollefeys, and Stefan Roth. Semantic stixels:

Depth is not enough. pages 110–117, 06 2016.

[16] Marius Cordts, Timo Rehfeld, Lukas Schneider, David Pfeiffer, Markus

Enzweiler, Stefan Roth, Marc Pollefeys, and Uwe Franke. The stixel

world: A medium-level representation of traffic scenes. Image and Vision

Computing, 02 2017.

[17] Daniel Hernandez-Juarez, Lukas Schneider, Antonio Espinosa, David

Vázquez, Antonio López, Uwe Franke, Marc Pollefeys, and Juan Moure.

Slanted stixels: Representing san francisco’s steepest streets. 07 2017.

102

Bibliography

[18] Florian Piewak, Peter Pinggera, Markus Enzweiler, David Pfeiffer, and

J. Zöllner. Improved semantic stixels via multimodal sensor fusion. 09

2018.

[19] Olof Forsberg. Semantic stixels fusing lidar for scene perception. 2018.

[20] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo matching network.

2018.

[21] Jin Han Lee, Myung-Kyu Han, Dong Wook Ko, and Il Hong Suh. From big

to small: Multi-scale local planar guidance for monocular depth estimation.

2020.

[22] Bastian Leibe, Ales Leonardis, and Bernt Schiele. Robust object detection

with interleaved categorization and segmentation. International Journal

of Computer Vision, 77:259–289, 05 2008.

[23] Haoqiang Fan, Hao Su, and Leonidas Guibas. A point set generation

network for 3d object reconstruction from a single image. 2016.

[24] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail

Smelyanskiy, and Ping Tak Peter Tang. On large-batch training for

deep learning: Generalization gap and sharp minima. 2017.

[25] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin

Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar

Beijbom. nuscenes: A multimodal dataset for autonomous driving. 2020.

103

	Sommario
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Sensors
	Stereo camera
	LIDAR

	The Kitti Dataset

	State of the art
	Introduction
	Structured grid network
	VoxelNet
	Point Pillar
	STD: Sparse-to-Dense 3D Object Detector for Point Cloud
	SVGA-Net: Sparse Voxel-Graph Attention Network

	Point based network
	PointNet
	PointNet ++
	VoteNet
	3DSSD

	Mixed type network
	Frustum PointNet

	Stixel
	State of the Art
	Procedure of creation
	Plane fitting
	Matrix generation
	Stixel creation procedure

	Results

	3D StixelNet
	The backbone
	The Set-Abstraction layers layer
	The Feature Propagation layer

	The voter
	The detector
	Loss Function

	Results
	Evaluation metrics
	Experiment
	Stixels as points
	Stixels as stixels
	Change the type of Sampling layer
	Data augmentation
	Reduction of number of seed points
	Multi-scale grouping
	Change the width of stixels
	Stixel derive from mono e stereo camera

	Memory consumption and inference time
	Comparison with the state of the art
	Final consideration

	Final considerations
	Future improvement

