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Scuola di Scienze
Dipartimento di Fisica e Astronomia

Corso di Laurea in Fisica

Large-Eddy Simulation of an Anabatic

Wind on an Idealised Geometry

Relatore:

Prof. Federico Porcú
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Abstract

La presente tesi propone una simulazione numerica Large-Eddy Simulation (LES) con
Near-Wall Resolution (NWR) in OpenFOAM di un flusso anabatico all’interno di una
geometria semplificata. Il caso proposto consiste nella riproduzione del flusso che si
instaura al di sopra di un piano inclinato di 30◦, liscio e infinitamente esteso, avendo
imposto una buoyancy costante sulla superficie, il numero di Grashof Gr = 2.1×1011 e il
numero di Prandtl Pr = 1. La prima parte del lavoro offre una panoramica dei principali
aspetti caratterizzanti la fluidodinamica computazionale e utili a fornire un contesto
teorico per il caso presentato. In particolare, si descrivono i fondamenti del metodo di
discretizzazione ai volumi finiti impiegato in OpenFOAM. Con l’intento di mostrare le
principali motivazioni che giustificano l’introduzione dell’approccio LES, si forniscono le
basi della teoria della turbolenza di Kolmogorov. La discussione del metodo LES viene
conclusa con la presentazione del modello di Smagorinsky, impiegato nella simulazione.
La seconda parte si focalizza sull’esposizione del caso simulato. Una volta introdotte
le equazioni che governano il sistema, si forniscono i dettagli delle impostazioni della
simulazione, esponendo le modifiche apportate al solutore. Attraverso i grafici prodotti,
la simulazione viene validata tramite il confronto con i risultati dalla Direct Numerical
Simulation (DNS) effettuata da Giometto et al. [MG17]. Contestualmente, si offre una
discussione dei risultati dal punto di vista fisico, individuando le principali proprietà delle
componenti medie e della turbolenza, nonchè mostrando le strutture che caratterizzano
istantaneamente il moto.



Abstract

This bachelor thesis proposes a Large-Eddy Simulation (LES) with Near-Wall Resolution
(NWR) of an anabatic flow using a simplified geometry. The case is simulated in Open-
FOAM and it reproduces the flow developing over a smooth, infinite, 30◦ inclined plane,
having imposed a constant buoyancy on the surface, the Grashof number Gr = 2.1×1011

and the Prandtl number Pr = 1. The first part of this work offers an overview on the
main features of the computational fluid dynamics, so as to provide a theoretical con-
text for the presented case. In particular, the Finite Volume Method (FVM) employed
in OpenFOAM is described in its fundamental aspects. With the purpose to motivate
the introduction of the LES approach, the bases of the Kolmogorov’s theory on tur-
bulence are presented. The Smagorinsky model adopted in the simulation, concludes
the discussion on the LES method. The second part focuses on the description of the
simulated case. Having introduced the set of the governing equations, the simulation
settings are provided, and the modifications brought to the solver are described. The
simulation is validated by comparing the results with the Direct Numerical Simulation
(DNS) performed by Giometto et al.[MG17]. At the same time, the data are analysed
from a physics perspective, so as to point out the most relevant mean flow and turbulence
features, as well as instantaneous flow characteristics.
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Introduction

Complex and inclined terrains are quite likely to produce the phenomenon of anabatic
and katabatic winds. Both these phenomena are induced by the differential heating of
the ground and the surrounding atmosphere, caused by the Sun on a daily basis. Their
names come from the Greek terms ανάβασις and κατάβασις, meaning respectively
upwards and downwards: they are also known as up-slope and down-slope winds.

Anabatic winds are generated when the solar radiation heats up the ground surface,
generating convective motions in the adjacent boundary layer. Depending on the slope
angle, the wind generated tends to follow the ground surface, showing occasional plumes
upwards, towards the outer layers. In some cases, along with this upward flow, colder
and denser air is pulled downwards following an outer path, typically approaching the
ground surface at the starting point of the slope. Since up-slope winds occur daily, a fully
developed Convective Boundary Layer (CBL) characterizes the atmospheric background,
making their study more challenging [CR05].

Katabatic winds, on the other side, usually occur in the shadowed sides of the moun-
tains or at night. A less intense or absent solar radiation characterizes these slopes,
causing the air within the boundary layer to be colder than that in the outer profile at
the same height. As a result, this layer tends to sink downwards, while warmer air takes
its place at the top of the slope. When occurring at night-time, unlike anabatic winds,
down-slope flows develop within a stable boundary layer [CR05].

The interaction between the ground and the adjacent boundary layer is at the heart of
these phenomena and turbulence plays a fundamental role in the complex thermodynamic
processes arising.

Considering the anabatic flows, recently, many studies have been conducted so as to
understand their properties. One of the most relevant field of research is that concerning
the diffusion and transport of air pollutants, whose prediction is particularly important
in areas with complex terrains [TK89]. The effect of the interaction between the air
pollutants and these mountain flows is connected with the characteristics of the under-
lying CBL, which are highly dependent on the circulations on a synoptic scale. The
problem has been faced both experimentally and numerically, in the latter case trying
to reproduce increasingly complex situations.

Considering the numerical simulations, a few Direct Numerical Simulations (DNS)
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and Large-Eddy Simulations (LESs) have been performed. Let us briefly introduce the
ones relevant for the present simulation. Following the one-dimensional, laminar slope
flow described by Prandtl [Pra42], Schumann [Sch90] was one of the first to tackle the
problem fully considering three-dimensional features and turbulent effects. Towards the
end of the 80s, he performed a LES of an infinite planar slope surrounded by a strat-
ified atmosphere, by imposing a fixed heat flux through the rough surface. In 2009,
Fedorovich and Shapiro [EF09] conducted a DNS simulation of an infinite, thermally
perturbed, planar slope. In this case, a homogenous surface buoyancy flux was imposed.
In 2017, Giometto et al. [MG17] carried out a DNS simulation of both anabatic and
katabatic flows over an inclined, smooth, infinite planar slope at high Grashof numbers.

In the present thesis, one of the cases reported by Giometto et al [MG17]. has been
reproduced by means of a LES. This numerical approach resolves the large scales of mo-
tion and models only the small sub-grid scales, that are less energetic and more universal
(hence, they can be more effectively modelled). The LES allows to reproduce a com-
plex thermodynamic system using a fraction of the number of the computational grid
required by DNS: in the present case, the computational mesh have been 1/64 smaller
than the equivalent DNS mesh. Nonetheless, all the transient flow features of the flow
are reproduced with satisfactory accuracy.

In the first part, an overview on the basic concepts of computational fluid dynamics
is offered, so as to provide a theoretical background for the presented case. The LES
approach is introduced, outlining the fundamental premises involved. In the second part,
the simulated case is presented, the results are discussed and compared with the DNS
reported by Giometto et al. [MG17]. The data are analysed from a physics perspective
to point out the characteristic phenomena underlying the idealised anabatic flow under
study.
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Chapter 1

Numerical methods

In computational fluid dynamics, mathematical models are numerically solved to study
in details specific physical systems. The basic equations governing a fluid modelled as a
continuum are the mass, the momentum and the energy conservation equations. These
three equations are coupled together with a certain amount of closure constraints, whose
choice is made according with the physical model adopted to describe the system. For
example, let us consider a physical system similar to that considered for the present
simulation. Taking into account a Newtonian and incompressible fluid in the Boussinesq
approximation with kinematic viscosity ν and thermal diffusivity κ, then the set of
governing equations reads as follows [PK04]:

∂uj
∂xj

= 0

Dui
Dt

= −∂Π

∂xi
+
ρ− ρ0

ρ0

gi +
∂

∂xj

[
ν
∂ui
∂xj

]
DT

Dt
=

∂

∂xj

[
κ
∂T

∂xj

]
ρ = ρ0 [1− α (T − T0)]

(1.1)

where ρ is the fluid density, α its thermal expansion coefficient, T the temperature, Π is
the deviation of the kinematic pressure from the hydrostatic background and ρ0 = ρ(T0),
being T0 a costant reference temperature. Also, in this last set of equations, D/Dt is the
material derivative, defined as follows:

D

Dt
=

∂

∂t
+ uj

∂

∂xj
(1.2)

In Eq.1.1, the first equation represents the mass conservation for an incompressible fluid,
the second the momentum conservation, the third the energy conservation and the fourth
is part of the Boussinesq approximation (such approximation will be explained in the
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next chapter). It is worth underlining that the material derivative in the momentum
equation entails the presence of a non-linear velocity term, namely the advective term.
Hence, the set in Eq.1.1 is a system of coupled, non-linear partial differential equations.

In order to numerically solve the system of equations in Eq.1.1, a discretization of both
space and time needs to be specified. The calculation of the relevant field is performed
at a discrete number of spatial points, which form the computational grid.

In general, according to the graph theory, meshes are classified in two main categories,
namely, structured and unstructured meshes. The first ones are characterized by a grid
of cells whose connectivity is regular, i.e. internal cells are connected with a fixed number
of adjacent cells. This feature entails that a mesh of this type can be made up by either
hexahedra (in a three-dimensional space) or quadrilateral (in two dimensions), and its
data can be stored in lists. On the other hand, unstructured meshes show irregular
connectivity, providing more flexibility when dealing with complex geometries, at the
cost of a greater computer memory consumption and worse performances [FM16].

Usually, space discretization is provided before the simulation is started, and it re-
mains the same throughout the temporal iterations. In some cases, however, it may
be useful or necessary to define dynamic meshes, whose geometrical properties may be
changed according to relevant parameters of the simulation [Jas09]. Similarly, temporal
discretization may be defined as a constant step, or may vary, as well. In this case, a
typical parameter used to adjust the time step is the Courant number, which will be
defined in the next section.

Given a space-time discretization, the system of partial differential equations is con-
verted into a linear system. This procedure can be obtained through different methods,
the most common ones being the finite volumes, finite differences and finite elements
methods. In the following section, the finite volumes method is briefly described. This
is the method employed in the OpenFOAM code and it will be exposed using the as-
sumptions actually imposed on the present simulation.

1.1 Finite volumes method

To introduce the Finite Volumes discretization Method (FVM), it may be useful to recall
the prototype of the conservation equation for a scalar φ:

∂ (ρφ)

∂t
+
∂ (ρujφ)

∂xj
=

∂

∂xj

[
Γφ

∂φ

∂xj

]
+Qφ (1.3)

where ρ is the fluid density, Γφ is the diffusion coefficient of the scalar φ and Qφ represents
a source term. For the sake of clarity, let us underline that Einstein’s convention of
summation over repeated indexes is hereafter adopted. Considering Eq.(1.3), the first
term on the left hand side represents the transient term, while the second one is the
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convection term. On the right hand side, the first one is the diffusion term and the
second one a source term.

The purpose of any discretization procedure is to replace a differential equation in
the continuum with a set of algebraic equations. In the finite volumes approach, the first
step is to integrate over a time step ∆t and over a computational cell volume VC and then
to use the divergence theorem to transform volume integrations into surface integrations
[FM16]. In the following, a static, structured and orthogonal mesh is assumed, while,
the time step is maintained constant1. Under these assumptions, the first steps can be
summarised as follows:∫

∆t

∫
VC

∂ (ρφ)

∂t
dV dt+

∫
∆t

∫
VC

∂ (ρujφ)

∂xj
dV dt =

=

∫
∆t

∫
VC

∂

∂xj

[
Γφ

∂φ

∂xj

]
dV dt+

∫
∆t

∫
VC

QφdV dt

∫
∆t

∫
VC

∂ (ρφ)

∂t
dV dt+

∫
∆t

∮
∂VC

ρujφdSjdt =∫
∆t

∮
∂VC

Γφ
∂φ

∂xj
dSjdt+

∫
∆t

∫
VC

QφdV dt (1.4)

Now, let us first consider the transient term. Assuming sufficiently smooth solutions,
this term reads as follows:∫

∆t

∫
VC

∂ (ρφ)

∂t
dV dt =

∫
∆t

∂

∂t

[∫
VC

ρφdV

]
dt ∼=

∫
∆t

∂ (ρφ)C
∂t

VCdt (1.5)

In the last equivalence in Eq.(1.5), (ρφ)C specifies that ρφ is evaluated at the cell centroid,
thus leading to a first order approximation. Such approximation is often referred to as
the midpoint rule [FM16], and it must be underlined that more complex and accurate
interpolation are available. Now, let us consider the flux integrals. It may be useful to
group these terms and to introduce the following notation:

Ji = ρuiφ− Γφ
∂φ

∂xi
(1.6)

Since each cell surface is composed by six faces, the surface flux integral can be decom-
posed into the sum of the integrals over each single cell face. As a consequence, dSi is
constant over a single face. Therefore, considering a second-order Gaussian quadrature

1This last assumption differs from the settings of the present simulation and it is assumed for the
sake of brevity.
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integration, each term of the sum can be obtained by evaluating Ji at the face centroid,
leading to: ∫

∆t

∮
∂VC

JjdSjdt =

∫
∆t

∑
fi

∮
fi

JjdSjdt ∼=

∼=
∫

∆t

∑
fi

(Jj)fi S
(fi)
j dt (1.7)

where, (Jj)fi indicates that Jj is evaluated at the face centroid. Taking into account the
source term, it is possible to apply the midpoint rule, and the production term reads as
follows: ∫

∆t

∫
VC

QφdV dt ∼=
∫

∆t

(Qφ)C VCdt (1.8)

If the production term contains a gradient (for example, the pressure gradient in the
Navier-Stokes Equation), it can be linearized using the Gauss theorem. In what follows,
Qφ will be treated like in Eq.(1.8). By substituting Eq.(1.5), Eq.(1.7) and Eq.(1.8) into
Eq.(1.4), one gets the following equation:∫

∆t

∂ (ρφ)C
∂t

VCdt+

∫
∆t

∑
fi

(Jj)fi S
(fi)
j dt =

∫
∆t

(Qφ)C VCdt (1.9)

Now, let us consider time integrals. So far, only ∆t has been shown to indicate the
extent in time of such integration. Indeed, in terms of its limits, the integral is to be
computed over the range [t−∆t/2, t+ ∆t/2]. Any term in Eq.(1.9) but the transient
one, is integrated using the midpoint rule: again, this is a second order approximation.
On the other side, the transient term can be explicitly evaluated, though a scheme needs
to be provided to express the fields in t+ ∆t/2 and t−∆t/2 as a function of their values
at some instant t+n∆t (here, n is an integer). The most suitable scheme can be chosen
among the ones defined in the finite differences methods. For example, here the Second
Order Upwind Euler Scheme2 (SOUE) is considered [FM16]:

(ρφ)
t+∆t/2
C =

3

2
(ρφ)tC −

1

2
(ρφ)t−∆t

C

(ρφ)
t−∆t/2
C =

3

2
(ρφ)t−∆t

C − 1

2
(ρφ)t−2∆t

C

(1.10)

Similarly, a finite difference scheme is to be specified to compute the diffusion component
in the flux (see Eq.(1.6)) and to interpolate the data to face centroids. For example, the
diffusion component may be evaluated using a linear interpolation between adjacent cells,
while interpolation may be done via central or upwind differencing [Gre15].

2This is the actual time scheme employed in the present simulation.
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As a result, any term in Eq.(1.9) except the transient one can be linearized and it
can be expressed as a function L

(
φtCi

)
of φtCi

, where i ranges over the present cell and
the adjacent ones. By substituting these last observations and Eq.(1.10) into Eq.(1.9),
one gets to the following result:

3 (ρφ)tC − 4 (ρφ)t−∆t
C + (ρφ)t−2∆t

C

2∆t
VC + L

(
φtCi

)
= 0 (1.11)

The result in Eq.(1.11) represents the sought-after set of algebraic equations and it can
be solved iteratively in time.

Boundary conditions must specified, and this requires to impose constraints on all
bounding surfaces. In addition, for transient problems, initial conditions are to be set
for all the internal fields.

The Courant–Friedrichs–Lewy Condition

As far as convergence is concerned, the previous approximation methods require the
Courant–Friedrichs–Lewy (CFL) condition to be satisfied. For a three-dimensional prob-
lem, the condition can be defined as follows [Ope]:

Co ≡ ∆t

2VC

∑
fi

∣∣∣(uj)fi S(fi)
j

∣∣∣
Co ≤ Cmax

(1.12)

where (uj)fi is the velocity interpolated on the cell face fi and S
(fi)
j is the face normal

surface vector. Cmax can be set equal to 1, even though lower Cmax values are recom-
mended (for example, Cmax = 0.5). As anticipated in the previous section, Co is often
employed to adjust ∆t so that the CFL requirement is met.

The most relevant implications of the results exposed in this section can be outlined
as follows:

1. The CFL condition is a useful tool to adjust the time step during a simulation,
contributing to its efficiency and economy.

2. FVM is intrinsically conservative. Indeed, any flux leaving the computational cell
is seen as an opposite, in-going flux from the adjacent cell.

3. FVM requires averaging the field values over a computational cell. This entails a
loss of information about any field property whose characteristic space length is
smaller than the grid size. In case of nonlinear equations (such as the momentum
equation in fluid dynamics, see Eq.1.1), any scale length interacts with each other,
each of them contributing to produce the total field solution. As a consequence,
the grid size plays a fundamental role in the accuracy of the solution, and a certain
knowledge of the specific phenomenon is crucial to set it correctly.
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CFD simulations might need very refined meshes, thus having a very high computational
cost. Therefore, two options are offered, which are relevant for the present simulation:
first, to enhance the computing power in order to resolve every scale of motion in any
setup, second, to introduce models for the sub-grid scales of motion, so that coarser
meshes may be used without losing in accuracy. The first approach leads to the Direct
Numerical Simulations (DNSs), while the second one characterizes the Large-Eddy Sim-
ulations (LESs). It must underlined that a third main approach exists, which will not
be taken into account here, namely that of Reynolds Averaged Navier-Stokes (RANS).
In what follows, the LES approach will be discussed.

1.2 Turbulent flows: an overview

Turbulence is a kinematic condition in which a flow exhibits random-like variations
of its kinematic quantities and it is characterized by three-dimensional vorticity. A
comprehensive, quantitative description of this phenomenon is still to be found and even
its definition is challenging. For the sake of brevity, the main features shared by turbulent
flows can be outlined as follows [PK04]:

1. Randomness can be considered as the basic qualitative first impression of turbu-
lence. At the same time, this stochastic behavior seems to produce certain distin-
guishable patterns, even showing approximate self-similar shapes. Swirls, vortexes,
plumes and jets are just a few examples of these structures.

2. Non-linearity is probably at the heart of turbulence. In certain conditions, small
perturbations in the flow may be enhanced and cause a cascade of collateral phe-
nomena and structures, eventually leading to the turbulent regime. If this happens,
all the main variables vary in an apparently unpredictable way.

3. Three-dimensional vorticity is a key feature in turbulent flows. In fact, an extremely
rich spectrum of vortex sizes characterizes these flows, going from those as wide as
the entire domain, to those whose typical length is of the order of the Kolmogorov
scale (see Eq.(1.17)). Most of the energy is contained in larger vortexes, and three-
dimensional stretching makes them collapse into smaller ones. This process leads
to a cascade, bringing energy from the largest down to the smallest scales. At this
stage, the extremely intense curl of these structures is associated with significant
spatial variations in the velocity field, leading to high viscous dissipation rates.
As a result, all turbulent phenomena exhibit an increase in momentum and heat
transfer, as well as in friction and drag.

To summarize these points, turbulence is a stochastic fluid state, in which non-linearity
and three-dimensional vorticity cause an increase in diffusivity and viscous dissipation.
As a consequence of its random behavior, a statistical analysis is useful to extract the
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average features of a turbulent flow. Hence, both first and second order statistics are
usually computed: the main ones are mean values, standard deviations, covariances
and auto-correlations. In addition, spectral analysis may be performed, in order to
understand how energy is distributed over the whole length scale range.

The Kolmogorov’s Theory of Turbulence

In 1940s, Kolmogorov developed his theory on turbulent energy spectra. Without going
into much detail, the basic concepts of the theory advanced by Kolmogorov are discussed.
First of all, let us introduce the so-called Reynolds velocity decomposition:

ui = 〈ui〉+ u′i (1.13)

where 〈·〉 denotes an ensemble mean, while u′i is the fluctuation from the average. It
is useful to introduce the variable k′ defined as the average Turbulent Kinetic Energy
(TKE) [MG17]:

k′ =
1

2
〈u′ju′j〉 (1.14)

and, finally, the viscous dissipation ε, defined as follows:

ε = 2ν〈sijsij〉

sij =
1

2

(
∂u′i
∂xj

+
∂u′j
∂xi

)
(1.15)

Since k′ is defined through the velocity fluctuations, it gives a qualitative indication of
how much the flow is turbulent. Using the Fourier analysis, it is also possible to obtain
the spectrum function E associated with k′. Thus, these two quantities are related by
the following equation:

k′ =

∫ ∞
0

E(k)dk (1.16)

where k2 = kjkj, being ki the wave number vector of Fourier transforms. By analyzing
E and its evolution, Kolmogorov was able to find out some general patterns character-
izing turbulence at high Reynolds numbers. The three fundamental hypotheses of his
theory are the following [Pop00]: first, the small scale turbulent motions are assumed
to be statistically isotropic. This statement seems to be reasonable if one considers the
theory from Richardson [Ric22]. Indeed, according to his observations, energy is almost
entirely dissipated at the smallest scales, so that a cascade occurs which transfers en-
ergy from the largest to the smallest ones. Hence, in this process, there must be a loss
of information about the domain boundaries, thus leading to the local isotropy. The
second hypothesis states that the statistics of the small scale motions are universally
and uniquely determined by ν and ε. In other words, since any external information is
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lost during the cascade, the small scales must be described only in terms of the rele-
vant, local parameters, namely ν and ε. Third, the smallest scales are universally and
uniquely described by ε when k is such that 2π/L � k � 2π/η, L being a length scale
characterizing the largest turbulent structures. Such range is referred to as the inertial
sub-range. Following from the last two hypothesis, there is a unique combination of ν
and ε to define length, velocity and time scales. These are as follows:

η =

(
ν3

ε

) 1
4

uη = (νε)
1
4 τη =

(ν
ε

) 1
2

(1.17)

where η in Eq.(1.17) is the Kolmogorov length scale. This last quantity is fundamental,
since it represents the typical length scale of the smallest turbulent structures in any flow.
Indeed, the most of the dissipation occurs at this scale: this can be seen by computing
the local Reynolds number from the parameters in Eq.(1.17), obtaining Reη = 1. Under
the validity of the above mentioned hypothesis, Kolmogorov derived a universal energy
spectrum E for k in the inertial sub-range. This is given by:

E(k) = αKε
2
3k−

5
3 (1.18)

where αK is a universal constant.
The assumptions made by Kolmogorov have led to two main results. First, η provides

a quantitative estimate of the smallest scales involved in any turbulent flow, thus sug-
gesting a lower limit when creating a mesh for CFD simulations. Second, considering the
universality of the energy spectrum in Eq.(1.18), the Kolmogorov’s theory opens up the
possibility of finding closure models to account for sub-grid scales motions in relatively
coarse meshes. As already hinted in the previous section, from this discussion at least
two types of simulations follow. On the one hand, Direct Numerical Simulations (DNSs)
simulate fluid flows resolving every motion scale down to the Kolmogorov length scale.
Hence, DNSs offer the maximum accuracy available, even though with high and often
prohibitive computational costs. On the other hand, in Large-Eddy Simulations (LESs),
since the mesh size is larger than the Kolmogorov length scale, models are developed in
order to consider the contributes coming from the more universal, sub-grid scales.

1.3 Large-eddy simulations

In Large-Eddy Simulations, only a certain range of scales of motions are resolved, while
the remaining ones needs to be modelled. This is a consequence of the observations made
in the previous section, according to which, while the largest flow structures depend on
the specific flow through the boundary constraints, the smallest ones may exhibit a
more universal behavior. Considering CFD codes, any discretization procedure implies
solving the system of equations on a finite grid of points or cells. As a consequence,
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the governing equations are implicitly filtered by the grid, since no sub-grid scale can
be resolved. Thus, from a mathematical point of view, the effect of discretization on a
generic physical variable φ can be seen as that of filtering it with a kernel function G
[Pop00]:

φ̄ (x, t) ≡
∫

Ω

G (r,x)φ (x− r, t) dr (1.19)

where Ω represents the entire fluid domain. The kernel function G must satisfy the
following normalization condition: ∫

Ω

G (r,x) dr = 1 (1.20)

Hence, the original field φ is split accordingly:

φ (x, t) = φ̄ (x, t) + φ′ (x, t) (1.21)

having defined the residual field as:

φ′ (x, t) ≡ φ (x, t)− φ̄ (x, t) (1.22)

The filtering operation defined in Eq.(1.19) is linear and it commutes with time deriva-
tives. Space derivation commutes with ·̄ only if G does not depend on x, i.e. if G is
homogeneous. Even though this is not always true, this last property is assumed to hold
in case of implicit filtering. Empirically, the errors deriving from such assumption are
relatively small [BH18].

For the sake of simplicity, let us consider the Navier-Stokes equation assuming no
gravity force and an incompressible Newtonian fluid with density ρ and kinematic vis-
cosity ν:

∂ui
∂t

+
∂ujui
∂xj

= − ∂p

∂xi
+

∂

∂xj

[
ν
∂ui
∂xj

]
(1.23)

where p is the kinematic pressure, defined as p = P/ρ, being P the pressure. It is possible
to apply the transformation in Eq.(1.19) to ui and p, obtaining:

∂ūi
∂t

+
∂ūjūi
∂xj

= − ∂p̄

∂xi
+

∂

∂xj

[
ν
∂ūi
∂xj

]
−
∂τRij
∂xj

(1.24)

In the last equation, τRij is defined as τRij = uiuj − ūiūj and is the residual stress tensor.
Now, τRij can be decomposed into the sum of an isotropic and anisotropic component:

τRij =
1

3
τRkkδij + τ rij

τ rij ≡ τRij −
1

3
τRkkδij

(1.25)
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Then, by redefining p̄ as:

p̄+
1

3
τRkk, (1.26)

one gets to the following equation for the filtered velocity:

∂ūi
∂t

+
∂ūjūi
∂xj

= − ∂p̄

∂xi
+

∂

∂xj

[
ν
∂ūi
∂xj

]
−
∂τ rij
∂xj

(1.27)

Finally, it is useful to introduce the rate of production of residual energy as:

Pr = −τ rijS̄ij. (1.28)

This quantity indicates how much energy per unit time and unit mass is transferred from
the resolved scales down to sub-grid scales.

The Smagorinsky Sub-Grid Scales Model

The system in Eq.(1.27) is not closed and a model is to be provided to compute τ rij.
Many closure models have been proposed to this end. In the following, the first and
most fundamental one, advanced by Smagorinsky [Sma63], is shown. This model is
based on the introduction of an eddy turbulent viscosity νt, emerging from the residual
motions and affecting the resolved ones. The eddy-viscosity hypothesis, introduced by
Boussinesq, yields the following linear equation for τ rij:

τ rij = −2νtS̄ij (1.29)

where S̄ij is the filtered strain rate, defined as:

S̄ij ≡
1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
(1.30)

Smagorinsky proposed the following model for νt:

νt = (CS∆)2
√

2S̄ijS̄ij (1.31)

where CS is the Smagorinsky coefficient, ∆ is the filter width and CS∆ represents the
Smagorinsky length (lS). In case of implicit filtering, it is customary to assume ∆ = 3

√
VC ,

where VC is the cell volume. Using the energy spectrum obtained by Kolmogorov, it can
be verified that the Smagorinsky length is actually proportional to ∆ when ∆ is in the
inertial sub-range. In the same context, CS is estimated to have the value 0.173[Lil66].
It must be stressed that this strict proportionality does not hold in general, especially

3It must be underlined that this is just a theoretical approximated prediction, and that CS should
be tuned depending on the case.
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when ∆ lies below the inertial range. This causes some issues when considering a wall
bounded flow, which will be addressed shortly.

Let us consider the consequences of the Smagorinsky sub-grid model on the momen-
tum equation and on the rate of production of residual energy. Considering the Eq.(1.27),
Eq.(1.29) entails:

∂ūi
∂t

+
∂ūjūi
∂xj

= − ∂p̄

∂xi
+

∂

∂xj

[
(ν + νt)

∂ūi
∂xj

]
(1.32)

Hence, it is shown that the sub-grid scale motions affect the resolved ones by increasing
the effective viscosity. As far as the energy is concerned, the Eqs.(1.29)-(1.31) imply
that there is no energy backscatter from the residual to resolved scales. Indeed, by
substituting τ rij from Eq.(1.29) in Eq.(1.28), one obtains:

Pr = 2νtS̄ijS̄ij ≥ 0

since νt ≥ 0 from Eq.(1.31). Thus, Pr is always a sink term for the resolved energy
budget.

The Near-Wall Layer

To have a better understanding of the problems occurring in a wall bounded flow, let
us briefly introduce the basic properties of boundary layers. When a flow is limited by
a smooth wall, the fluid velocity approaches a zero value as the distance from the wall
tends to zero. Therefore, considering the case of flat plate channel, the boundary layer
may be defined as the region of the fluid domain characterized by velocities lower than
their asymptotic value at great distances from the wall. In the following, x̂ direction
the streamwise direction, while ŷ is the wall-normal direction. Near-wall motions are
dominated by viscous effects and both the viscosity ν and the wall shear stress τw are
fundamental parameters. τw is defined as:

τw = ρν
∂ux
∂y

∣∣∣∣
y=0

(1.33)

By using ν and τw, the characteristic viscous length-scale can be defined:

δν = ν

√
ρ

τw
(1.34)

Then, the distance from the wall can be measured in units of δν by defining the wall
distance y+:

y+ =
y

δν
(1.35)

The wall distance allows for a general analysis of the near-wall region. Indeed, for
y+ < 50, in the so-called viscous layer, viscous effects dominate the flow: in particular,
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when y+ < 5 (viscous sub-layer) the shear stress is completely dominated by the viscous
stresses. On the contrary, when y+ > 50, viscous effects become negligible. In addition,
it can be shown that in the near-wall region, the velocity profiles are described by a
universal function: this is referred to as the Law of the Wall.

LES-NWR and LES-NWM

Let us turn back to LES simulations. From the previous discussion, in the near-wall
region, it follows that the sub-grid model must obey to the constraints imposed by the
universal profiles. Thus, two approaches have been developped.

The first one is to resolve down to the smallest, near-wall scales. In this kind of
simulations, called LES-NWR (Near-Wall Resolution), the first wall-adjacent cell layer
must be within y+ ≈ 1, thus resulting in an increase in the computational cost. In
addition, a crucial correction is needed in the Smagorinsky model. As already pointed
out, the strict proportionality between the Smagorinsky length scale and the ∆ is valid
in the inertial range only. This is not true in the viscous wall region. Hence, the
Smagorinsky length is corrected by the Van Driest dumping function [PM82]:

lS = CS∆
[
1− exp

(
−y+/A+

)]
(1.36)

where A+ is an empirical constant.
The second approach is that of LES-NWM (Near-Wall Model). In this case, the first

cell layer is required to be within y+ < 300, thus allowing for coarser meshes in the
near-wall region. The main downside of LES-NWM simulation is the need to introduce
a model to account for the near-wall processes.

In short, LES simulations share with DNS simulations the ability to simulate transient
turbulent flows, even though not every scale of motion is resolved. While this results
in less expensive simulations, the filtering operation makes LES strongly dependent on
the accuracy of the sub-grid model. Overall, LESs seem to offer a valuable compromise
between accuracy and computational costs.

1.4 OpenFOAM

OpenFOAM (OF) is an open source software used to perform computational fluid dy-
namics simulations. The version employed in the present simulation is OpenFOAM 6,
developed and freely distributed by the OpenFOAM Foundation under the General Pub-
lic License (GPL). Its code is written in C++ programming language, extensively using
the object-oriented paradigm and polymorphism. Its versatile algorithms allow the user
to tackle quite a wide range of physical and mathematical problems, going from what
strictly concerns fluid dynamics (with compressible, incompressible or transonic flows
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solvers, for example) to other physical and mathematical problems, such as electromag-
netism or financial modelling. In addition, it is also possible to modify the source codes
of any solver, so that the customized version best fits for a specific problem. OpenFOAM
also provides many utilities for pre-processing, monitoring and post-processing data. As
far as pre-processing is concerned, one can find applications for meshing (like blockMesh
or snappyHexMesh) or to prepare for a parallel run (like decomposePar). Monitoring
can be made at run time through function objects like probes (to sample data in speci-
fied positions) or after a solution has been computed. Lastly, post-processing is mainly
provided by the postProcess utility, while parallel case reconstruction is accomplished
by reconstructPar. The output of an OF simulation can be visualized in Paraview, an
open-source data analysis and visualization application, freely distributed by Kitware
Inc. under BSD license.
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Chapter 2

LES of an anabatic flow in
OpenFOAM

2.1 Problem Definition

The present simulation aims to reproduce and analyze an anabatic flow over a smooth,
infinite, inclined plane in the presence of a stratified external atmosphere. An LES ap-
proach has been considered and validated against the DNS simulation U30H in Giometto
et al. [MG17].

As already underlined in Par.1.2, anabatic flows occur over complex terrains, as the
Sun-heated ground surface causes warmer air to ascend along the inclined slope. Hence,
such type of flow is deeply dependent on the small-scale, turbulent phenomena taking
place within the near-slope boundary layer. In order to obtain a complete e reliable
analysis, a LES-NWR approach has been considered. The simulation has been performed
using the OpenFOAM 6 software. A detailed description of the case will follow in the
next sections. Let us start by introducing the set of governing equations.

2.1.1 Governing Equations

Following [Sch90, EF09, MG17], the problem of anabatic flows can be conveniently de-
scribed in a rotated frame of reference. For the sake of clarity, let us consider a conven-
tional coordinate system, in which the gravitational acceleration is opposite to the ẑ∗

direction, and x̂∗ and ŷ∗ lie on a horizontal plane. The smooth, infinitely-extended slope
is represented by a plane whose normal vector is inclined by an angle α in the x̂∗Oẑ∗

plane. An inclined frame of reference can be defined accordingly, so that x̂ points into
the stream-wise direction, ŷ into the span-wise direction, while ẑ into the slope-normal
direction (see Fig.2.1). Following [Pra42, MG17], the potential temperature θ is decom-
posed into the sum of the background profile θR and its fluctuations θ′′. Assuming the
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Figure 2.1: Inclined frame of reference

base state to vary linearly with the absolute height z∗, the Brunt-Väisälä frequency is
defined as:

N ≡
√
β
dθR

dz∗
(2.1)

where β ≡ g/θ0, being g the magnitude of the gravity acceleration and θ0 a reference,
constant temperature. The Boussinesq approximation is adopted, so that the density ρ
is considered as a constant except when it compares multiplied by gi. This assumption is
valid when the density fluctuations are considerably small. As reported by Ferziger and
Perić [3], considering the air, the Boussinesq approximation introduces errors less than
1% for temperature variations of 15K. In the inclined frame of reference, the momentum,
the continuity and the temperature equations can be written as follows:

∂uj
∂xj

= 0 (2.2)

∂ui
∂t

+
∂ujui
∂xj

= −kiβθ′′ −
∂Π

∂xi
+

∂

∂xj

[
ν
∂ui
∂xj

]
(2.3)

∂θ′′

∂t
+
∂ujθ

′′

∂xj
= −∂ujθ

R

∂xj
+

∂

∂xj

[
κ
∂θ′′

∂xj

]
(2.4)

where:

� ki = −(sin(α), 0, cos(α)) is the gravity unit vector;

� Π = (P − ρ0gixi) /ρ0 is the deviation from the kinematic hydrostatic pressure,
being ρ0 = ρ (θ = θ0);

� ν is the kinematic viscosity;

� κ is thermal diffusivity coefficient.
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In Eq.(2.4), since θR only depends on z∗ and ẑ∗ = x̂sin (α) + ẑcos (α), the term with θR

can be computed explicitly. Hence, having defined the buoyancy b ≡ βθ′′, Eq.s (2.2)-(2.4)
are rewritten as:

∂uj
∂xj

= 0

∂ui
∂t

+
∂ujui
∂xj

= −kib−
∂Π

∂xi
+

∂

∂xj

[
ν
∂ui
∂xj

]
∂b

∂t
+
∂ujb

∂xj
= N2ujkj +

∂

∂xj

[
κ
∂b

∂xj

] (2.5)

Normalization Procedure

As in [MG17], the following set of typical constant parameters can be defined (respec-
tively, time, length, buoyancy and velocity):

T ≡ N−1 L ≡ |bS|
N2

B ≡ |bS| U ≡ |bS|
N

(2.6)

where bS > 0 is the surface buoyancy. Through Eq.(2.6), the following set of dimension-
less variables can be introduced:

t? ≡ t/T x?i ≡ xi/L b? ≡ b/B u?i ≡ ui/U Π? ≡ Π/U2 (2.7)

whereby the governing equations are cast in a dimensionless form:

∂u?j
∂x?j

=0 (2.8)

∂u?i
∂t?

+
∂u?ju

?
i

∂x?j
=− kib? −

∂Π?

∂x?i
+Gr−1/2 ∂

∂x?j

∂u?i
∂x?j

(2.9)

∂b?

∂t?
+
∂u?jb

?

∂x?j
=u?jkj + (Gr−1/2Pr−1)

∂

∂x?j

∂b?

∂x?j
(2.10)

where Pr = ν/κ is the Prandtl number and the Grashof number has been introduced
as Gr ≡ b4

Sν
−2N−6. As reported in [MG17, FM16], Pr represents the ratio between the

the hydrodynamic boundary layer and the thermal boundary layer, while the Grashof
number the ratio between buoyancy and viscous forces. For later convenience, it is
useful to introduce the conservation equation for the dimensionless turbulent kinetic
energy k′? ≡ k′/U2. Recalling Eq.(1.13), the conservation equation for k′? reads:

∂k′?

∂t?
+
∂〈u?j〉k′?

∂x?j
=− 〈b′?u′?j 〉kj −

∂〈Π′?u′?j 〉
∂x?j

−
〈
u′?i u

′?
j

〉 ∂〈u?i 〉
∂x?j

− ∂

∂x?j

(
1

2
〈u′?i u′?i u′?j 〉

)
+Gr−1/2 ∂

∂x?j

∂k′?

∂x?j
−Gr−1/2〈∂u

′?
i

∂x?j

∂u′?i
∂x?j
〉 (2.11)

20



Given the symmetry of both the equations and the domain, 〈·〉 can be taken to denote a
space-time average on the homogeneity directions (x, y). Thus, it is possible to assume
spatial homogeneity on the x̂ and ŷ directions (∂〈·〉/∂x = ∂〈·〉/∂y = 0) and a zero mean
velocity in the ẑ direction [MG17]. The dimensionless TKE equation reduces to:

∂k′?

∂t?
=− 〈b′?u′?j 〉kj −

∂〈Π′?u′?z 〉
∂z?

− 〈u′?x u′?z 〉
∂〈u?x〉
∂x?z

− ∂

∂z?

(
1

2
〈u′?i u′?i u′?z 〉

)
+Gr−1/2∂

2k′?

∂z?2
−Gr−1/2〈∂u

′?
i

∂x?j

∂u′?i
∂x?j
〉 (2.12)

This last equation is used in Giometto et al. [MG17] to compute the TKE budget, and
it has been taken as reference so as to reproduce the corresponding terms from the LES.

LES Filtered Equations

Let us turn back to the set of equations in Eq.(2.5). Since OpenFOAM employs di-
mensioned variables, Eq.(2.5) is taken as the fundamental governing set for the present
simulation. As explained in Par.1.3, in the LES approach the Eq.(2.5) is filtered. In
the present simulation, a Smagorinsky sub-grid scale model has been employed for the
momentum and the buoyancy equation through the use of the Reynolds analogy. Taking
into account both the momentum and the continuity equations, the filtered equations
read:

∂ūj
∂xj

= 0 (2.13)

∂ūi
∂t

+
∂ūjūi
∂xj

= −kib̄−
∂Π̄

∂xi
+

∂

∂xj

[
(ν + νt)

∂ūi
∂xj

]
(2.14)

where the Smagorinsky model has been employed (see Eq.(1.31)), and Π̄ is redefined as
Π̄ + 1/3τRkk, in the same way as in Eq.(1.26). Considering now the buoyancy equation,
the filtering operation yields:

∂b̄

∂t
+
∂ūj b̄

∂xj
= N2ūjkj +

∂

∂xj

[
κ
∂b̄

∂xj

]
− ∂Bj

∂xj
(2.15)

where Bi ≡ bui − b̄ūi is the analogous of the residual stress tensor (see Eq.(1.25)) and it
represents the residual buoyancy flux. In analogy with the Fourier’s Law, the hypothesis
proposed by Reynolds states:

Bi = −κt
∂b̄

∂xi
(2.16)

where κt is the sub-grid thermal diffusion. By substituting the last equation into the
filtered buoyancy equation and rearranging the terms on the right-hand side, one obtains:

∂b̄

∂t
+
∂ūj b̄

∂xj
= N2ūjkj +

∂

∂xj

[(
ν

Pr
+

νt
Prt

)
∂b̄

∂xj

]
(2.17)
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having defined the turbulent Prandtl number as Prt = νt/κt. Hence, the following set
of filtered equations can be derived:

∂ūj
∂xj

= 0 (2.18)

∂ūi
∂t

+
∂ūjūi
∂xj

= −kib̄−
∂Π̄

∂xi
+

∂

∂xj

[
(ν + νt)

∂ūi
∂xj

]
(2.19)

∂b̄

∂t
+
∂ūj b̄

∂xj
= N2ūjkj +

∂

∂xj

[(
ν

Pr
+

νt
Prt

)
∂b̄

∂xj

]
(2.20)

The equations from (2.18) to (2.20) represent the actual set of governing equations
solved in the OpenFOAM code. For later convenience, it is also useful to introduce
the dimensioned conservation equation for the resolved turbulent kinetic energy K. This
equation corresponds to Eq.(2.11) for the resolved quantities. Indeed, recalling Eq.(1.13)
and Eq.(1.14), K is defined as:

K = 1/2〈ū′jū′j〉 (2.21)

where ū′i = ūi−〈ūi〉 is the filtered velocity fluctuation. Hence, the conservation equation
for K reads:

∂K

∂t
+
∂〈ūj〉K
∂xj

=− 〈b̄′ū′j〉kj −
∂〈Π̄′ū′j〉
∂xj

−
〈
ū′iū
′
j

〉 ∂〈ūi〉
∂xj

− ∂

∂xj

(
1

2
〈ū′iū′iū′j〉

)
+

∂

∂xj

[
(ν + νt)

∂K

∂xj

]
− (ν + νt) 〈

∂ū′i
∂xj

∂ū′i
∂xj
〉

(2.22)

Again, considering the symmetry of the problem, the last equation reduces to the fol-
lowing:

∂K

∂t
=− 〈b̄′ū′j〉kj −

∂〈Π̄′ū′z〉
∂z

− 〈ū′xū′z〉
∂〈ūx〉
∂z

− ∂

∂z

(
1

2
〈ū′iū′iū′z〉

)
+

∂

∂z

[
(ν + νt)

∂K

∂z

]
− (ν + νt) 〈

∂ū′i
∂xj

∂ū′i
∂xj
〉

(2.23)

2.1.2 Geometry and Mesh

Following [MG17], the set of governing equations has been integrated using a regular
domain with normalized dimensions [0, 0.241] × [0, 0.241] × [0, 0.324]. For the sake of
clarity, the slope surface will be referred to as the floor, while the upper face, opposite to
the floor, as the ceiling. A static, structured, orthogonal mesh has been produced using
the blockMesh utility in OF. The grid is 96× 96× 256 cells in the three directions, and
it is shown in Fig.2.2. A hyperbolic stretching has been performed on the ẑ direction,
so that the mesh is mostly refined in the floor’s proximity. The stretching parameters
have been tuned considering as reference the grid proposed in [MG17]. In particular, the

22



Figure 2.2: Mesh adopted in the present simulation displaying the stretching along the
vertical direction.

height of first layer of cells next to the floor has been taken to be equal to that employed
in the DNS by Giometto et al. Since for the DNS a 384× 384× 1032 grid was employed,
the mesh adopted in the present simulation is considerably smaller, having ≈ 98% less
cells.

2.1.3 Simulation

The case has been set up considering a α = 30◦ inclined slope, for a fluid with kinematic
viscosity ν = 1.5 × 10−5m2/s. The surface buoyancy has been bS = 1m/s2, while the
Prandtl number Pr = 1. The Brunt-Väisälä frequency N has been conveniently chosen in
order to obtain a Grashof number Gr = 2.1×1011, equal to the one employed in [MG17].
Thus, the adopted value has been N ∼= 0.526s−1. A sponge region has been applied
the top 15% of the domain, so as to avoid internal-waves reflection and a non-physical
accumulation of turbulent kinetic energy in the upper part of the domain.

Considering the laminar counterpart of this case, it can be demonstrated that 〈ux〉
and 〈b〉 represent a set of coupled oscillators, whose period is given by Tp = 2π/Nsin(α)
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[McN82]. Hence, as proposed in [MG17], the total run time Tmax has been set equal to
6Tp. The statistics have been computed only in the last 3Tp, discarding the first 3 periods
to allow the flow to develop and to approach a statistical steady-state configuration.
Table 2.1 reports the characteristic parameters of the simulation.

Tmax/T α [◦] ν [m2/s] bS [m/s2] N [s−1] Gr

24π 30 1.5× 10−5 1 0.526 2.1× 1011

Table 2.1: Set of parameters employed in the simulation.

The boundary conditions employed are presented in Tab.2.2. Since the fluid starts
from rest, as initial condition, a zero-value has been set in the internal fluid domain for
all the fields.

face ūi b̄ Π̄ ν̄t κ̄t

floor ūi = 0 b̄ = bS zero-gradient zero-gradient zero-gradient

ceiling zero-gradient b̄ = 0 Π̄ = 0 zero-gradient zero-gradient

vertical faces cyclic cyclic cyclic cyclic cyclic

Table 2.2: Boundary conditions. Here, ”zero-gradient” indicates a standard Neumann
condition, in which the face-normal gradient is set to zero.

The simulation has been performed in OpenFOAM 6 and the solver has been adapted
from buoyantBoussinesqPimpleFoam, included in the official release. The most relevant
changes have been brought to the files for the momentum (UEqn.H) and the tempera-
ture equations (TEqn.H, renamed as bEqn.H), with a modification in the pressure file
(pEqn.H) for consistency. For the sake of brevity, the files UEqn.H and bEqn.H are
entirely reported in the following, while the change in pEqn.H is only mentioned. Start-
ing from the momentum equation, the pressure decomposition originally included in the
solver has been modified. In the previous version the solved pressure (named p rgh) was
defined as follows:

p rgh = (P − ρgixi) /ρ0 (2.24)

where P is the pressure and ρ is the density, a linear function of the temperature in
the Boussinesq approximation. Therefore, the original Navier-Stokes equation was as
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follows:
∂ui
∂t

+
∂ujui
∂xj

= −∂p rgh

∂xi
+

∂

∂xj

[
ν
∂ui
∂xj

]
+ kjxj

∂b

∂xi
(2.25)

where b is the buoyancy. In the last equation, the last term on the right-hand side
is explicitly dependent on the position. Considering the frame of reference defined in
Par.2.1.1, it is found that two points at the same height (i.e. same z values) located
on opposite vertical faces, exhibit different kjxj values, whose difference is |∆(kjxj)| =
sin(α)Lx, being Lx the domain length in the x̂ direction. Therefore, since the position-
dependent term appears in the momentum equations [PO01], cyclic conditions on vertical
boundaries lead to unphysical solutions. Hence, the following pressure decomposition has
been introduced:

p rgh = (P − ρ0gixi) /ρ0 (2.26)

Indeed, this last definition coincides with that of Π (see Eq.(2.3)). In this case, as
shown in List 2.1 at line 29, no position-dependent term is needed, allowing for cyclic
boundary conditions. The pressure file pEqn.H has been modified accordingly, removing
the term ”phig” from line 6. The transposition of Eq.(2.19) into the UEqn.H file has
been completed by adding the buoyancy source term (List 2.1, line 12).

1 // Solve the momentum equation

2

3 MRF.correctBoundaryVelocity(U);

4

5 fvVectorMatrix UEqn

6 (

7 fvm::ddt(U)

8 + fvm::div(phi , U)

9 + MRF.DDt(U)

10 + turbulence ->divDevReff(U)

11 ==

12 - b*k

13 + fvOptions(U)

14 );

15

16 UEqn.relax ();

17

18 fvOptions.constrain(UEqn);

19

20 if (pimple.momentumPredictor ())

21 {

22 solve

23 (

24 UEqn

25 ==

26 fvc:: reconstruct

27 (

28 (
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29 // - khf*fvc:: snGrad(rhok)

30 - fvc:: snGrad(p_rgh)

31 )*mesh.magSf ()

32 )

33 );

34

35 fvOptions.correct(U);

36 }

Listing 2.1: UEqn.H

Taking into account the buoyancy file, the velocity source term appearing in Eq.(2.20) has
been included (see List 2.2, lines 14-15), so as to account for the background stratification.
A mixed implicit-explicit configuration has been adopted: the purpose of this solution
is to increase the diagonal dominance of the solution matrix, thus making it numerically
more stable [Gre15].

1 {

2 alphat = turbulence ->nut()/Prt;

3 alphat.correctBoundaryConditions ();

4

5 volScalarField alphaEff("alphaEff", turbulence ->nu()/Pr + alphat);

6 volScalarField source("source", N2*(U & k) );

7

8 fvScalarMatrix bEqn

9 (

10 fvm::ddt(b)

11 + fvm::div(phi , b)

12 - fvm:: laplacian(alphaEff , b)

13 ==

14 fvm::Sp(four*source ,b) // implicit -

15 + source *(1.0 - four*b) // -explicit source term

16 + fvOptions(b)

17 );

18

19 bEqn.relax ();

20

21 fvOptions.constrain(bEqn);

22

23 bEqn.solve ();

24

25 //radiation ->correct (); -> Not necessary in this case

26

27 fvOptions.correct(b);

28 }

Listing 2.2: bEqn.H

Using the OpenFOAM nomenclature, the numerical schemes adopted are summarised
in the following list:
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� time derivatives: backward scheme (already presented as the SOUE scheme in
Eq.(1.10));

� gradients: Gauss integration with linear interpolation;

� divergences: Gauss integration with linear interpolation;

velocity advection: bounded Gauss integration with the Gamma scheme (the
limit has been 0.2);

buoyancy advection: Gauss integration with MUSCL scheme;

� laplacians: Gauss integration with linear interpolation

� interpolations: linear scheme

Given the orthogonality of the mesh, orthogonal corrections do not affect the present
simulation. An overall second-order accuracy has been maintained.

2.2 Results

In this section the results from the present LES simulation are shown. Let us recall that,
in what follows, 〈·〉 indicates a space-time average on the homogeneity directions (x, y),
and that only the last 3Tp time periods have been employed. Also, all the quantities are
normalized using the set of parameters defined in Eq.(2.6). When considering the vertical
profiles, a dotted horizontal line is used to mark the lower boundary of the sponge layer.
Let us start by taking into account the comparison between the results from the present
LES and the DNS solution shown in [MG17]. The latter has been graphically acquired
from the figures reported in the article, hence the uncertainty deriving from this method
is to be taken into account.

Mean Quantities

In Fig.2.3a and Fig.2.3b, respectively, the vertical profiles of the normalized stream-
wise velocity and the normalized mean buoyancy are shown. Qualitatively, the LES
velocity profile shows a satisfactory agreement with the results from the DNS. The back-
flow region around z/L ≈ 10−1 and the near-wall region below z/L ≈ 10−3 are well
reproduced, though 〈ūx〉/U is underestimated in the LES in the region in between. In
particular, the position of the maximum and the profile’s shape in its proximity do not
fit at best with the DNS profile. This may be explained by an excessive dissipation of the
Smagorinsky sub-grid scale model in this region. Considering Fig.2.3b, the normalized
mean buoyancy profile is well reproduced. Three distinct zones can be identified and
some correspondences can be found with the stream-wise velocity vertical profile.
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� The near-wall region below z/L ≈ 3 · 10−3 is characterized by an approximately
exponential mean buoyancy profile, which tends to bS approaching the floor. In this
layer, a corresponding increase in the mean stream-wise velocity can be outlined,
thus verifying the correlation between positive buoyancy values and an the flow
development.

� An intermediate region can be found from z/L ≈ 3 · 10−3 up to z/L ≈ 6 · 10−2

in which the buoyancy decrease is less intense, capped above by a local, slightly
negative buoyancy minimum. This is the region were the flow is fully developed,
as shown in the mean velocity vertical profile.

� In the outer layer, the buoyancy remains constant at a zero-value, with a corre-
sponding stable zero-value for the stream-wise mean velocity.

Figures 2.4a and 2.4b superpose the profiles obtained through the one-dimensional,
laminar model first proposed by Prandtl [Pra42] (in this case, a linear scale on the
vertical axis is used). This simplified approach provides an analytic expression for both
the stream-wise velocity and the buoyancy as a function of the normalized height. The
solution obtained by Prandtl (also referred to as the constant-K solution), using the
dimensionless parameters introduced in Eq.(2.7), is as follows [MG17]:

u? = −bSPr−1/2sin(σz?)exp(−σz?) z? ∈ [0,∞[ (2.27)

b? = bScos(σz
?)exp(−σz?) z? ∈ [0,∞[ (2.28)

where σ = (GrPr−1)1/4(sin(α))1/2. In Eq.(2.27), the normalized one-dimensional ve-
locity u? corresponds to the normalized mean stream-wise velocity, thus allowing for a
direct comparison. Taking into account Fig.2.4b, the Prandtl’s solution is characterized
by a narrower region with fully developed flow and the negative-buoyancy region is pre-
dicted to be at a lower height. Considering the results in Fig.2.4a, it is apparent that
the constant-K solution displays considerably higher stream-wise velocity values, show-
ing the fundamental influence of the turbulent phenomena for this case. Despite that,
the constant-K solution is still able to reproduce the height of the maximum velocity
quite faithfully. Also, the possibility to find an analytic solution for a laminar anabatic
flow, still provides a useful and straightforward tool to guide to the interpretation of the
phenomenon.

Standard Deviations and Turbulent Kinetic Energy

In Fig.2.5a the vertical profile of the normalized velocity root-mean square (RMS) for
each component is displayed, showing a good agreement with the DNS data. The dis-
crepancies between the data sets can be described as follows. In the LES, both the RMSs
of the x and the y velocity components are underestimated roughly from z/L ≈ 3×10−3
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(a) Normalized mean streamwise velocity vertical profiles. Comparison between the results
from the present simulation and those from the DNS U30H in Giometto et al. (DNS data do
not represent resolved quantities).

(b) Normalized mean buoyancy vertical profiles. Comparison between the results from the
present simulation and those from the DNS U30H in Giometto et al. (DNS data do not
represent resolved quantities).
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(a) Normalized mean streamwise velocity vertical profiles (linear scale on the vertical axis).
Comparison between the results from the present simulation, the profile from the laminar
solution by Prandtl and those from the DNS U30H in Giometto et al. (DNS data do not
represent resolved quantities).

(b) Normalized mean buoyancy vertical profiles (linear scale on the vertical axis). Compari-
son between the results from the present simulation, the profile from the laminar solution by
Prandtl and those from the DNS U30H in Giometto et al. (DNS data do not represent resolved
quantities).
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to z/L ≈ 8× 10−2, while the z component shows a stable underestimate in the near-wall
region, approximately below z/L ≈ 5 × 10−2. Such deviations may be explained by an
excess in the TKE dissipation caused by the Smagorinsky model, in the same manner as
for the case of the mean velocity profiles. It is worth noting the differences characterizing
the relative importance of the three components in the near-wall region. In particular,
the standard deviation of the z component is considerably smaller than that in the x and
y directions, in accordance with the turbulence anisotropy, which will be shown later in
the scatter plots.

It is also customary to report the TKE vertical profile. This is displayed in Fig.2.5b.
As a consequence of the already mentioned discrepancies shown by the velocity standard
deviations, the TKE values are underestimated in the intermediate region, from z/L ≈
2×10−3 to z/L ≈ 7×10−2, whereas a good agreement can be found in the other regions.
Considering the vertical profile of the normalized buoyancy standard deviation in Fig.2.6,
the data from LES correctly reproduce the DNS profile in the outer part of the domain
(above z/L ≈ 1.6 × 10−3), where the RMS exhibits a marked maximum value. In the
near wall region, the buoyancy standard deviation is constantly underestimated, thus
probably showing issues in the near-wall modelling of the turbulence. Indeed, in the
present simulation, the turbulent thermal diffusivity is taken to be proportional to the
turbulent kinematic viscosity by means of the constant turbulent Prandtl number (see
Eq.(2.20)). Therefore, an excess in the dissipation caused by the Smagorinsky model
results in an overestimate of the buoyancy turbulent diffusion, thus possibly explaining
lower values in the near-wall buoyancy standard deviation.

Turbulent Fluxes

Taking into account the turbulent fluxes, the normalized vertical momentum and buoy-
ancy fluxes are shown, respectively, in Fig.2.7a and Fig.2.7b. Considering the vertical
momentum flux in Fig.2.7a, the results from the LES reproduce the DNS data quite accu-
rately, only slightly underestimating the maximum value. The profiles in the figure show
a net upward turbulent diffusion of momentum, thus proving the active role played by tur-
bulence in the overall statistical stationary equilibrium. Turning to the buoyancy flux in
2.7b, it can be seen to be underestimated in the inner regions for z/L < 2.5×10−2, while
in the outer layers the agreement is good. Similarly to the vertical momentum flux, a sig-
nificant upward buoyancy diffusion characterizes the inner regions, while a non-negligible
negative buoyancy flux layer can be found from z/L ≈ 6× 10−2 to z/L ≈ 1.3× 10−1. In
addition, the mean buoyancy flux can be commented by means of the gradient-diffusion
hypothesis [Pop00]. For a scalar φ, it reads:

〈ū′iφ̄′〉 = −ΓT
∂〈φ̄〉
∂xi

(2.29)
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(a) Normalized velocity standard deviations vertical profiles. Comparison between the results
from the present simulation and those from the DNS U30H in Giometto et al. (DNS data do
not represent resolved quantities).

(b) Normalized K vertical profile. Comparison between the results from the present simula-
tion and those from the DNS U30H in Giometto et al. (DNS data do not represent resolved
quantities).
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Figure 2.6: Normalized buoyancy standard deviation vertical profiles. Comparison be-
tween the results from the present simulation and those from the DNS U30H in Giometto
et al. (DNS data do not represent resolved quantities).

where primes indicate fluctuations from mean values (in the sense of Reynolds decompo-
sitions) and ΓT is a scalar representing the turbulent diffusivity. The gradient-diffusion
hypothesis can be used to make a crossed comparison between the computed mean buoy-
ancy flux and its mean vertical profile. Since spatial derivatives of mean values in the
homogeneity directions are null, the gradient-diffusion hypothesis for the buoyancy reads
as follows:

〈ū′z b̄′〉 = −ΓT
∂〈b̄〉
∂z

(2.30)

As a consequence, stationary points for the mean buoyancy profile are expected in cor-
respondence with zero values in the buoyancy vertical flux. This is confirmed by the
results, since a minimum in the mean buoyancy can be found at z/L ∼= 6.5×10−2, where
the buoyancy vertical flux crosses a zero value.
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(a) Normalized 〈ū′xū′z〉 vertical profile. Comparison between the results from the present simu-
lation and those from the DNS U30H in Giometto et al. (DNS data do not represent resolved
quantities).

(b) Normalized 〈b̄′ū′z〉 vertical profile. Comparison between the results from the present simu-
lation and those from the DNS U30H in Giometto et al. (DNS data do not represent resolved
quantities).
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Turbulent Kinetic Energy Budget

The turbulent kinetic budget resulting from Eq.(2.23) is reported here for convenience:

∂K

∂t
=− 〈b̄′ū′j〉kj −

∂〈Π̄′ū′z〉
∂z

− 〈ū′xū′z〉
∂〈ūx〉
∂z

− ∂

∂z

(
1

2
〈ū′iū′iū′z〉

)
+

∂

∂z

[
(ν + νt)

∂K

∂z

]
− (ν + νt) 〈

∂ū′i
∂xj

∂ū′i
∂xj
〉

(2.31)

Focusing on the production and destruction of TKE, it is useful to define the following
terms [MG17]:

Ps ≡ −〈ū′xū′z〉
∂〈ūx〉
∂z

Pb,1 ≡ 〈b̄′ū′x〉sin(α)

Pb,3 ≡ 〈b̄′ū′z〉cos(α)

ε ≡ − (ν + νt) 〈
∂ū′i
∂xj

∂ū′i
∂xj
〉

(2.32)

where Ps is the shear production of TKE, Pb,1 and Pb,3 account for the buoyant production
of TKE, and ε represents the viscous dissipation. In this case, when computing ε, the
turbulent viscosity νt has been added to ν, so as to correct the filtered quantities to
include the sub-grid effects. The comparison between the terms obtained with the LES
and those from the DNS is shown in Fig.2.8. Both the buoyant production terms exhibit
a good agreement with the DNS data. The shear production term is quite accurately
reproduced in the outer layer, whereas in the inner region it presents some discrepancies.
In particular, in the intermediate layer the LES overestimates Ps, while in the near-wall
region this term is underestimated (or overestimated, considering its absolute value).
The viscous dissipation shows discrepancies in the entire profile, exhibiting larger values
(smaller, if the absolute value is considered) in most of the domain height, while peaking
with a more negative value only at the point closest to the wall. Especially for the
viscous dissipation term, further investigation is needed. Overall, the TKE budget from
LES confirms the following main features, as reported in [MG17]. It is verified in the
LES the importance of both the buoyant production terms, which are the most relevant
ones for the production of TKE in the intermediate and inner layers. It is confirmed
that both these terms take only positive values, in fact representing production terms.
Considering the shear production Ps, a negative-value region is reproduced in the upper
part of the near-wall layer, verifying the presence of a sink of TKE due to the shear
stress. This implies a reversed energy transfer from the turbulence to the mean flow. A
positive peak in Ps is correctly shown in the outer region, where the shear production
becomes the leading term. The small, positive maximum in the near wall region is not
reproduced by the LES.
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Figure 2.8: Vertical profile of the normalized turbulent kinetic budget. Comparison be-
tween the results from the present simulation and those from the DNS U30H in Giometto
et al. (DNS data do not represent resolved quantities).

Anisotropy of the Turbulence

Let us now evaluate the anisotropy characterizing the turbulence. This is achieved
through the scatter plots in Fig.2.9a to Fig.2.9d. The x and z components of the velocity
fluctuations have been computed at fixed positions considering a subset of the computed
time steps and using the output from the probes functions, available in OpenFOAM.
Such positions have been taken on the vertical of the domain centre (here, the centre is
taken on a x̂Oŷ plane). The points have been fixed prior to starting the simulation by
checking the figures shown in [MG17] and considering heights corresponding to relevant
flow features. The following z/L values have been chosen: z/L = 10−3, z/L = 4× 10−3,
z/L = 10−2 and z/L = 10−1, corresponding, respectively, to the Fig.2.9a, Fig.2.9b,
Fig.2.9c and Fig.2.9d. The first point (z/L = 10−3) is located in the near-wall region,
where the flow is almost fully developed and the velocity standard deviations in the same
x and z directions are markedly different. A strong anisotropy can be seen in Fig.2.9a.
The second one (z/L = 4 × 10−3, Fig.2.9b) lies in the transition between the near-wall
and the intermediate layers and it is characterized by a fully developed flow and a still
remarkable anisotropy. Considering the third point (z/L = 10−2, Fig.2.9c), located in
the back-flow zone, the flow exhibits a less intense anisotropy, in accordance with a
lower difference in the RMS values of the x and z velocity components. The last figure
(z/L = 10−1, Fig.2.9d) corresponds to the point positioned in the outer region. While
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this figure confirms the general trend of decreasing anisotropy at increasing heights,
it also shows an interesting deviation in the z component of the velocity. Indeed, such
behavior is explained by visualizing a vertical section of the fluid domain passing through
the probe point.

Figures 2.10a and 2.10b show the velocity magnitude (colour plot) and the velocity
projection on that plane (arrow plot), considering two time instants selected in proximity
of the above mentioned fluctuation (in these figures and in the following one, only the
lower part of the domain is visualized). By looking in a neighborhood of the probe point
(in the figure, marked with a red dot), it is apparent that the deviation observed in the
vertical component of the velocity is caused by the transit of an upward plume. It can be
also shown that the plume in Fig.2.10a is a turbulent one, thus direct responsible of the
transport of TKE. Indeed, as displayed in Fig.2.11a, a notable increase in the turbulent
kinetic energy is co-located with the upward structure in Fig.2.10a.

Vertical Sections of the Instantaneous Fields

In Fig.2.12, plots of instantaneous fields are collected. In the top-right and bottom-left
panels, respectively, the x and z velocity components are shown. In the former, an in-
stantaneous back-flow region can be seen at approximately z/L ≈ 0.1, in accordance
with the mean behavior shown in Fig.2.3a, while, in the latter, both upward and down-
ward flows characterize the vertical section. The same upward flows (indeed organized
in plumes), are displayed in the bottom-right 3D plot, showing the 3-dimensional shape
of these flow structures.

νt/ν Ratio

Figure 2.13 displays the ratio between the kinematic turbulent viscosity νt and the kine-
matic viscosity ν. Overall, the ratio remains below 0.4, thus showing that the performed
LES simulation is well resolved. In addition, this figure allows to visualize the sharp
damping effect induced by the Van Driest correction to the cube-root grid size ∆. By
decreasing the distance from the floor, a certain height is reached at which the ∆ value
becomes greater than that computed with the Van Driest correction. Hence, below this
point, the Van Driest damping is adopted, so as to guarantee a zero-valued turbulent
viscosity on the floor.

Summary

The results from the LES simulation have been compared with DNS data reported in
[MG17], showing an overall good agreement. Some discrepancies have been noted in the
vertical mean profiles and in the RMS values, often characterized by underestimates.
Such behavior may be explained by an excess in the dissipation caused by the Smagorin-
sky model, especially in the near-wall region. As far as the viscous dissipation ε, some
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(a) (b)

(c) (d)

Figure 2.9: Scatter plots showing ū′z/U vs ū′x/U at the probe points located on the
vertical of the domain centre: (a) z/L = 10−3, (b) z/L = 4× 10−3, (c) z/L = 10−2 and
(d) z/L = 10−1.
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(a) Vertical section passing through the domain centre and showing the velocity magnitude
(colour plot) and the velocity projection on that plane (arrow plot) at time t/T = 43.23. The
probe position is marked with a red dot. Only the lower part of the domain is visualized.

(b) Vertical section passing through the domain centre and showing the velocity magnitude
(colour plot) and the velocity projection on that plane (arrow plot) at time t/T = 43.44. The
probe position is marked with a red dot. Only the lower part of the domain is visualized.
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(a) Vertical section passing through the domain centre and showing TKE (colour plot) at time
t/T = 43.23. The probe position is marked with a red dot. Only the lower part of the domain
is visualized.

discrepancies have been noticed, which require further investigation. In general, it has
been possible to distinguish three main zone in the vertical profile. A near-wall region
(below z/L ≈ 3 ·10−3) is characterized by an exponential decrease in the mean buoyancy
and a corresponding increase in the mean stream-wise velocity. This layer shows a strong
anisotropy, as demonstrated by both the velocity RMS vertical profiles and the scatter
plot, and it is responsible for the flow development. Also, a thin zone is found in which
the shear production is negative, thus showing an energy transfer from the turbulent to
the mean flow. The intermediate region (from z/L ≈ 3 · 10−3 to z/L ≈ 6 · 10−2) exhibits
fully developed mean stream-wise velocity and a slower decrease in the mean buoyancy,
with intense upward buoyancy and momentum fluxes. In this region, both the velocity
RMSs and the TKE reach the maximum value, being the buoyant production terms the
main contributes in TKE budget. The anisotropy, conversely, progressively reduces at
increasing distances from the floor. Far from the wall, in the outer layer (at z/L greater
than z/L ≈ 6 · 10−2), the flow intensity decreases, showing a narrow back-flow region
and a negative-valued buoyancy layer. All the RMSs and the TKE decrease, while the
buoyancy flux is characterized by a negative-value zone. Even though the flow is weaker,
occasional upward flow structures may form, as verified in Fig.2.10a. In addition, the
instantaneous fields have been displayed, showing the vertical plumes characterizing this
type of flow. Finally, a test has been proposed to assess the simulation settings, verifying
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(a) (b)

(c)

(d)

Figure 2.12: (a) Vertical section of the buoyancy at a fixed time; (b) vertical section of
the x velocity component at a fixed time; (c) vertical section of the z velocity component
at a fixed time; (d) 3D clipping, showing the upward flows organized in plumes. The
surface is at a constant buoyancy value (conveniently chosen to show the flow structures),
while the colour plot displays the vertical velocity component.
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Figure 2.13: Vertical profile of the νt/ν ratio as a function of the normalized height.

that the mesh is appropriate to perform a LES-NWR.

42



Conclusion

Anabatic flows are of increasing importance in the atmospheric sciences. Their impact on
the local circulations is known, but still under study. Phenomena like the air transport
of pollutants are considerably affected by these currents in areas with complex terrains.
Given the importance of the boundary layer in the flow development and the numeri-
cal cost of its resolution, the contribution offered by the Large-Eddy Simulation (LES)
approach is valuable in this context.

For the present thesis, an anabatic flow has been successfully simulated through a
LES with Near-Wall Resolution in OpenFOAM using a rectangular domain with a fixed
inclination of 30◦. A fixed homogenous buoyancy value has been imposed on the floor
surface and a background stratification has been assumed. The Grashof number has
been set to 2.1× 1011, the Prandtl number to 1.

Given the specific geometrical and physical features of the simulated case, the orig-
inal OpenFOAM solver has required modifications. The modified solver accounts for
a background stratification and it allows for cyclic boundary conditions on the vertical
faces. Since the results of the simulation have shown an overall good agreement when
compared with the DNS in [MG17], the case has been successfully validated. The ad-
vantages of the LES approach over the DNS is that the solution has been reproduced at
a satisfactory level with a considerably smaller grid.

From the analysis of the results, three main layers can be recognized. First, a near-
wall layer (below z/L ≈ 3·10−3) is characterized by the development of the flow, showing
an increase in the mean stream-wise velocity and an exponential decrease in the buoyancy.
In this region, the anisotropy of the turbulence is maximum. Second, an intermediate
layer (from z/L ≈ 3 · 10−3 to z/L ≈ 6 · 10−2) exhibits a fully developed flow, with a
maximum in the mean stream-wise velocity and in the TKE. Third, an outer region
(above z/L ≈ 6 · 10−2) is characterized by a significant decrease in the kinematic quan-
tities. In particular, it can be pointed out the presence of a weak back-flow region and
a negative-valued buoyancy layer. In the outer layer, the anisotropy is minimum and
occasional plumes may be seen.

The impact of turbulence has been discussed by comparing the mean velocity and
buoyancy profiles with the laminar solution proposed by Prandtl [Pra42]. Overall, the
presence of turbulence determines lower values in the maximum stream-wise velocity
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and it widens the near-wall and the intermediate layers, being characterized by intense
upward momentum and buoyancy fluxes.

Some discrepancies have been noticed, especially in the dissipation of turbulent ki-
netic energy, which require further investigations. In addition, future development may
include the simulation of cases with higher Grashof numbers, so as to take full advantage
of the LES’s economy when compared to DNSs.
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