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Abstract

A novel pipeline is presented for unsupervised trajectory prediction. As
part of this research, numerous techniques are investigated for trajectory
prediction of dynamic obstacles from an egocentric perspective (driver’s per-
spective). The algorithm takes images from a calibrated stereo camera as
input or data from a laser scanner and outputs a heat map that describes all
possible future locations of that specific 3D object for the next few frames.
This research has many applications, most notably for autonomous cars as
it allows them to make better driving decisions if they are able to anticipate
where another moving object is going to be in the future. The code is public
and available here: https://github.com/sarimmehdi/master_thesis

https://github.com/sarimmehdi/master_thesis
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Introduction

Self-driving cars are getting better every year. Full autonomous driving ca-
pability (Level 5, meaning no human driver needs to be present at all) is
still far off but the progress we have been witnessing is very encouraging. As
such, many self-driving cars make use of reinforcement learning algorithms
that take their environment as input using a diverse sensor suite. The out-
put is usually a steering angle and speed value. A big problem is avoiding
obstacles and maneuvering around them. This gets even more challenging in
densely packed urban areas. The problem is that even if the self-driving car
alone makes all the right decisions and abides by all traffic rules, everyone
around it cannot be expected to do the same. You can have pedestrians
trying to cross the road when they should not, other vehicles taking unex-
pected turns or behaving in an unusual way (braking all of a sudden etc.).
One must remember Isaac Asimov’s First Law of Robotics when deploying a
self-driving car in such a scenario: ”A robot may not injure a human being
or, through inaction, allow a human being to come to harm.”

Most reinforcement learning agents only consider the current position of
all dynamic obstacles when making driving decisions. This is not appropriate
and, in fact, we as humans do our best to anticipate where others will be
in the future when we are driving. It only makes sense for a self-driving
car to do the same. As such, making accurate predictions about other
moving objects is a very hard problem to solve in practice. Attempts to
model the motion of moving objects in a social context go as far back as
1998 [25]. Here, a social force model is presented which can be extended to
other areas like opinion formation and group dynamics. The force is simply
the sum of all the attractive (friends, street-exhibitions etc.) and repulsive
(strangers, obstacles etc.) forces with an extra term to take into account
the fluctuations (to model uncertain behavior like which path to follow when
navigating around an obstacle and so on). A more discretized approach was
adopted in [5] where each pedestrian has a 170 degree cone in front of him
and the cone is divided into three regions: Deceleration, Constant Speed
and Acceleration. The behavior of each pedestrian is influenced by other
pedestrians. However, this time, many parameters were introduced by the
authors and these had to be estimated to observe different kinds of behaviors.
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Motivations

The purpose of this research is to find an unsupervised approach towards
prediction that can, later on, be used in conjunction with a self-driving car to
help it make better decisions. Any given scenario can have multiple different
futures. To understand why this is the case, take the example of a situation
in which a person is standing on one side of the road and facing it. An
observer might say that there is a 50-50 chance of the person crossing and
not crossing the road. Another observer might say there is a 60-40 chance
of that happening.

The scope of this research is to provide a prediction ’heatmap’ using
a robust 3D object detection and prediction pipeline that can work with
images from a stereo camera.

Organization

The structure of the Master thesis is as follows. In the next section, relevant
research literature is presented and there is a discussion about how it tried
to tackle the problem of prediction in many different contexts. After that,
our approach is presented and its qualitative results discussed. Finally,
the research concludes with closing remarks and possible future research
questions that can be discussed as a consequence of this Master thesis.



Chapter 1

Related Works

Literature that deals with the problem of trajectory prediction can be di-
vided into two portions: Using traditional image processing techniques and
using neural networks. Both approaches are unique and deserve to be dis-
cussed in full to understand how the problem of prediction (and not just
trajectory prediction) has changed over the years.

1.1 Traditional computer vision techniques

Computer vision approaches towards predicting abnormal behavior were
used in [44]. Here, the Social Force model is employed by overlaying a
grid of particles on a video. The interaction forces between the particles for
every frame are used to model the crowd and this is modeled as a force field.
This is combined with LDA (Latent Dirichlet Allocation) to distinguish be-
tween normal and abnormal video frames. [68] looks at video surveillance
footage for intersections and roads and makes a prediction about abnormal
activities, single-agent activity prediction (whether a car would make a U-
turn for example), and discover interactions which might take place in the
future between traffic participants. The authors used hierarchical Bayesian
models to connect low level image features (pixel-level), atomic activities
(car driving etc.) and interactions between different video sequences (since
activities taking place in different video clips have underlying distribution
which can be linked together). The models are learned in an unsupervised
manner and can describe long video sequences. [48] uses an energy func-
tion to predict future velocities of pedestrians using images obtained from
a bird’s eye view. The model takes into account static as well as dynamic
obstacles (other pedestrians) and velocity prediction is done by minimizing
the energy function using a gradient descent approach with line search.

[81] concerns event prediction as well as telling us how unusual the
predicted event is. They use brief video clips and model each using trajec-
tories of keypoints over time. 2000 salient points are obtained for the first
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video frame and their trajectories computed using the KLT (Kanade-Lucas-
Tomasi) algorithm. The tracker seeks the distance that gives the minimum
dissimilarity for a given window around a selected point between two consec-
utive frames. A lost point (due to occlusion or severe luminosity changes) is
replaced by a new one. Each point is tracked and clustered with others using
a distance metric chosen by the authors and a 2000 by 2000 affinity matrix.
The authors used a fixed number of clusters (10). For each cluster, a velocity
histogram is computed (a regular grid with a cell spacing of 10 pixels is put
on top of the image frame to create a spatial histogram containing 8 sub-
bins at each cell in the grid) and the similarity between two clusters is given
by the intersection of their velocity histogram. This new metric is supposed
to represent spatial coherence and, therefore, videos without any unusual
event would give good values with respect to the ground truth video. The
authors also try to do event and anomaly prediction using a single image by
applying the above algorithm on the features obtained via SIFT and GIST.

[36] treats the problem of anomaly detection as a statistical model where
an unusual event would have a very low likelihood of occurring based on some
distribution under normal circumstances. An event is described temporally
and spatially. So, a normal event would happen continuously and happen
at the same location whereas it would be the opposite for unusual events.
A generative model for the Mixture of Dynamic Textures is defined and
the parameters are estimated using maximum likelihood from a collection
of video patches. The method looks for temporal and spatial abnormalities.

In [64] the authors model the spatial scene using a Gaussian Mixture
Model (GMM) in the training phase. The GMMs are fit to the training
data using the Expectation Maximization (EM) algorithm. Learning of
the scene structure is performed in an offline training phase and is not
updated online during system operation. To encode information about travel
patterns between entry, turning, and exit regions, a transition model is
learned in terms of region-to-region segments. This is used to predict the
next path segment the agent will choose upon arriving at its destination.
The prediction relies on the Markov assumption: The agent’s current state
depends on a finite number of previous states. The authors decide to only
go as far back as the immediate predecessor of the agent’s current position.
Afterwards, a particle filtering algorithm is used to classify trajectories in
two stages. In the prediction step, the particles are propagated forwards
according to the state transition model p(xt|xt−1). In addition, a weight or
importance factor is computed for each particle. The weight of a particle
is given by its observation likelihood p(zt|xt). Next, in the correction step,
the observation is incorporated by resampling the particles based on the
computed weights. This learned transition model is used to predict whether
a particle trajectory is unusual or not during live-execution.

[47] defines atomic actions and predicts the intent of agents using a
top down tree parsing method. The algorithm takes as input several parse
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graphs and event parsing is done by defining atomic actions at each frame
of the video. The parse graph that best explains the events happening up to
a given frame of the video is chosen and the future event is then predicted
using that graph.

[76] uses an energy function to model the speed, direction, collision
probability, grouping (pedestrians belong to a group based on how close
they are to each other and which direction they move in throughout the
video) and attraction. The overall energy function is a weighted sum of
energies for each of these properties and this is minimized to find the desired
future velocity of each pedestrian which is used to predict future positions
of each person several frames into the future. Parameters for the energy
function are estimated by finding the local minima of a complicated convex
problem. The authors also manually annotated the data for it to be used
according to their method (defining desired velocity for each pedestrian, its
final destination, and social group based on a histogram of positions and
velocities).

[31] predicts multiple trajectories for any given agent and assigns a prob-
ability to each trajectory. This is achieved using Inverse Optimal Control
where a reward function is learnt using demonstrations and that is used to
determine the optimal policy which describes the most likely path an agent
would take if it starts at a certain location. Their algorithm also takes into
account error due to a noisy tracker. At train time, a grid is overlayed on
the video sequence and IOC is applied and the reward function (which is
a weighted sum of features, where a feature describes the ease of travel)
determined. This is used at test time to get multiple trajectories.

[85] uses a new MDA (Mixture Model of Dynamic Pedestrian Agents)
to learn the collective behavior of a crowd using surveillance footage. Each
agent has its own dynamics and beliefs. Dynamics are modeled as a set of
discrete system equations with a state transition matrix, observation matrix,
system noise and observation noise. Beliefs are modeled using Gaussian Dis-
tributions with certain means and covariances. The parameters of dynamics
and beliefs are learnt using the EM algorithm (with training video footage)
and then the system is used, at test time, to predict the past and future
trajectories of pedestrians in new video sequences.

[32] uses a DBN (Dynamic Bayesian Network) for pedestrian path pre-
diction. The pedestrian’s decision to stop or continue crossing the road
depends on the approaching vehicle, their own awareness and their position
from the curb. These three factors are captured as latent states by a DBN
on top of an SLDS (Switching Linear Dynamical System) which outputs the
probability related to one of three actions: SV (saw vehicle), SC (situation
control) and HSV (has seen vehicle). [67] uses an unsupervised approach to
generate a prediction heat map. Mid-level features from a static image are
extracted using a sliding window approach. A detected feature has a transi-
tion probability for every new state (a car turning left, right etc.) and this
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probability is also influenced by other moving agents in the scene as well as
the semantics of the scene (whether a car is likely to move on the road or
get on the sidewalk). The interaction between different agents depends on
a reward function which is learned in an unsupervised manner. During the
training phase, the mid-level representation and transition probabilities are
learned using large quantities of spatio-temporal data.

[3] uses SAM (social affinity maps) to make predictions about crowd
movements. The idea is to represent subconscious social interaction be-
tween people (the leader-follower phenomenon is an example of this, where
people tend to form lanes in densely packed areas as the fast pedestrians
start passing the slower ones) using discrete maps which are represented
as radial histograms using Gaussian Mixture Models. Crowd forecasting is
done by creating a Markov chain where probabilities define the likelihood
of transitioning from one intermediate tracklet to the next one. Then, an
integer linear programming problem is solved to obtain a solution which
identifies the trajectory to which a certain intermediate tracklet belongs to
(and this can be followed all the way from the origin tracklet to the desti-
nation tracklet). [10] assumes that every person will try to follow the path
with the least amount of resistance in order to get to their destination. They
define a time surface (every node on this has a value that tells how long it
takes a person to reach it) and a minimal action surface (defined by the
number of people frequently crossing it within a given time frame). The
nodes in both surfaces are updated using a heuristic and then a final path
is computed for each agent with a probability associated to each path.

[78] uses energy maps to model pedestrian behavior and predict their
trajectory based on that. A particular region is a combination of higher
energy (easy for people to walk through it) or lower energy (the exact oppo-
site of higher energy). Lower energy areas are usually located close to other
pedestrians and stationary obstacles. While generating a path, repulsive
forces due to stationary obstacles and other groups of moving people are
modeled and taken into account.

1.2 Using neural networks

So far, the approaches we have discussed make use of loosely defined heuris-
tics and then parameters in those are either learned through training exam-
ples, in real-time, or in an unsupervised manner. There are obvious issues
with this approach. One being that they are only applicable to that partic-
ular version of the problem. Furthermore, many of the techniques discussed
so far use surveillance footage with a static background. Real-life appli-
cations of prediction almost always use non-static background (trying to
predict motion of objects while the ego-object, from whose perspective you
are making the prediction, is itself in motion).
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Neural networks have proved to be much better at capturing the non-
linear nature of problems like these. An example is the SORT (Simple Online
and Real-Time Tracking) algorithm [7] which tries to track the same object
by predicting its future location based on a Kalman Filter. The tracklets are
obtained using an object detection algorithm like YOLO (You Only Look
Once) [50] and a constant velocity Kalman filter is used to predict their fu-
ture location. The intersection over union between the predicted bounding
box and the detected bounding box (obtained from the YOLO neural net
every frame) is used as an association metric followed by the application of
the Hungarian algorithm to decide which predicted bounding box represents
which current detected object based on the IoU. This method was still not as
robust because an object that disappeared behind another object and reap-
peared after a few seconds would be assigned a new ID even though it was
the same object. To cope with occlusions, Deep SORT [73] was introduced.
The idea was to now use the cosine similarity between extracted feature
vectors from the detected and predicted bounding box as an association
metric as well as the IoU between predicted and detected bounding boxes.
This made tracking more robust to brief occlusions. However, the previous
two popular tracking algorithms cannot be used to predict the position of
detected objects too far into the future. This is because, as time goes on the
shape of the object and its texture can change quite a bit (due to change
in light intensity etc.). This is why, in these algorithms, the track IDs are
checked every frame instead of waiting for a few frames before checking to
see if the same object arrived at a given location in the image plane.
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Figure 1.1: Blue bounding box is the detection for the current frame, white
bounding box is the predicted position of object from previous frame/s [43]

1.2.1 Recurrent Neural Nets

Many have also tried to solve the prediction problem using RNNs (Recurrent
Neural Nets) [22]. RNNs have gained popularity in recent years because of
their usefulness in time-series prediction. An RNN consists of numerous
cells that take input at each step. Each cell has a hidden state which is
usually kept zero for the first cell and then updated in a non-linear fashion
using input at the current step and the hidden state from the previous cell.
The idea is to encode a sequence and then decode it to predict future values.
The encoder consists of numerous cells that take the input and update their
hidden state all the way till the last cell. The last cell then provides its
hidden state as input to the decoder which repeats the same process as
before. Only this time, the input to each cell after the first one is the
output of the previous cell. RNNs can be of four types: Many-to-Many,
One-to-One, One-to-Many, Many-to-One. Usage of each type depends on
the task. Many-to-Many can be used in speech recognition where the input
is an audio signal and an output is a sequence of words which the RNN
believes the person said [14]. One-to-Many can be used in image captioning
where the input is a picture and the output is a sentence describing what is
happening in it [65]. Many-to-One can be used for activity recognition where
the input is a video and the output is one of many possible actions [59]. On
the other hand, One-to-One is simply a generic neural network without the
hidden layer.

RNNs have found success in text classification [39], text translation [74],
text completion [20] and even text generation [23]. They have also been used
for image captioning [28]. A typical RNN cell is either a GRU (Gated Re-
current Unit) [15] or LSTM (Long Short Term Memory) [62]. The two have
different architectures and mainly deal with the vanishing and exploding
gradient problem for RNNs. The reason is that due to numerous multipli-
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cation operations, the gradient value might either get really big or small by
the time it backpropagates all the way till the first RNN cell. There are
also versions of the above two that do convolution instead of simple matrix
dot product. These are useful for encoding temporal features for a video
sequence [58]. The main difference between LSTM and GRU is in the num-
ber of gates. GRUs are less computationally expensive than LSTMs due to
having fewer gates.

Figure 1.2: GRU cell [71]

zt = σg(Wzxt + Uzht−1 + bz)

rt = σg(Wrxt + Urht−1 + br)

ht = zt � ht−1 + (1− zt)� φh(Whxt + Uh(rt � ht−1) + bh)

xt: input vector
ht: output vector
zt: update gate vector
rt: reset gate vector
W, U and b: parameter matrices and vector
Activation function/s:
σg: The original is a sigmoid function.
φh: The original is a hyperbolic tangent.
� denotes the Hadamard product
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Figure 1.3: LSTM cell [72]

Where the initial values are c0 = 0 and h0 = 0 and the operator ◦ denotes
the Hadamard product (element-wise product)

ft = σg(Wfxt + Ufht−1 + bf )

it = σg(Wixt + Uiht−1 + bi)

ot = σg(Woxt + Uoht−1 + bo)

c̃t = σh(Wcxt + Ucht−1 + bc)

ct = ft ◦ ct−1 + it ◦ c̃t
ht = ot ◦ σh(ct)

xt ∈ Rd: input vector to the LSTM unit
ft ∈ Rh: forget gate’s activation vector
it ∈ Rh: input/update gate’s activation vector
ot ∈ Rh: output gate’s activation vector
ht ∈ Rh: hidden state vector
c̃t ∈ Rh: cell input activation vector
ct ∈ Rh: cell state vector
W ∈ Rh×d, U ∈ Rh×h and b ∈ Rh: weight matrices
and bias vector parameters which need to be learned
during training

There are different types of RNN structures as well. An example is a
bi-directional RNN [53] where the encoder consists of a forward and back-
ward recurrent layer. Each recurrent layer has the same number of GRU
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cells and each cell at a specific step has the same input but the final output
at that step is formed by concatenating the output of both cells. In the
forward layer, the hidden state travels forward from the first step till the
last one while in the backward layer, the hidden state travels in the opposite
direction. The reason for doing this is to take advantage of the past and
future when encoding an input. For example, if you encode an image se-
quence in one direction only then the hidden state of each cell only encodes
information from the past. However, using a bi-directional RNN, allows us
to combine information from the future as well. As a result of this, each step
now contains information from both the past and future which captures the
context of the whole video in a more temporally-appropriate manner. This
makes sense because a simple image sequence of a car driving on the highway
could have multiple possibilities (car might stop, it might take a turn etc.)
and encoding this information in a uni-directional manner doesn’t fully cap-
ture the context of this image sequence as opposed to using a bi-directional
RNN.

Figure 1.4: bi-directional RNN (Picture by Christopher Olah on his blog)

Another type of RNN makes use of the attention mechanism [6] when
decoding to give the final output. At every step of decoding, a context vector
is used to compute the hidden layer at that step as well. This context vector
is computed as a weighted sum of all the encoder hidden states, where each
weight is computed using a non-linear function followed by softmax. An
example of combining bi-direction RNN with ConvGRUs and the attention
mechanism can be found here [24]. Here the authors predict feature maps
instead of the action itself. As a result, the encoder is trained to extract
a feature map from a sequence of images which is used as input to the
decoder. The encoder is trained to provide a feature map similar to the one
obtained by applying a temporal convolution to the input at the decoder
step. Backpropagation takes place without using the actual output (the
action label which the authors are trying to predict). Hence, this is an
example of self-supervised learning. After training the encoder and decoder
like this, a fully connected layer is put on top of the decoder and this is
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trained in a supervised fashion to predict the right action label for the video
sequence.

Figure 1.5: Global vs local attention [41]

[27] uses a sequence of driver facial expressions and outside information
(street maps and GPS information) to anticipate one of many possible dis-
crete driving behaviors (turn left, turn right etc.) Features from inside the
car (facial features and their trajectory obtained using KLT) and outside
the car are extracted and used as input to an LSTM-RNN at each step.
The goal is to predict the driving actions with as little temporal context as
possible.

[84] used a birdseye perspective to predict the trajectory of multiple
vehicles driving on a road or highway. An LSTM encoder is used to extract
a feature tensor from each vehicle using position values. This is then indexed
into a higher dimensional space based on the most recent position of each
vehicle. This higher dimensional space is passed through a U-Net to encode
spatial relationships between the different moving agents. The decoder is
then applied to this higher dimensional space and future position values for
each vehicle are predicted.

[4] applies LSTM on each mobile agent followed by social pooling of the
hidden layers of every agent at each time step. At each time step, a hidden
state tensor is defined with dimensions NoxNoxD. Where D is the depth of
the tensor (equal to the length of the hidden state vector) and the length
and width of the tensor correspond to the size of the nearby neighborhood.
The hidden state vectors are sliced into this bigger tensor and then pooled
before being passed to the next LSTM unit in the RNN.

[42] try to solve the problem of prediction from motion capture data.
They use highway connections to directly link the input of a decoder GRU
to the output before giving the final prediction. According to the authors,
doing this allows their predictions to be more fluid, meaning that there is no
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discontinuity between consecutive predictions. They compare their results
using previous state of the art work that only used an LSTM RNN with
no highway connections and, thus, suffered from breaks and jumps between
consecutive predictions.

1.2.2 Variational Autoencoder

Another popular architecture for trajectory prediction using deep learning is
the variational auto encoder. A simple autoencoder [30] is a self-supervised
neural net where the input and output have the same dimensions. The en-
coder squeezes the input to a lower dimensional latent representation using
multiple convolutions which is then expanded using a decoder (deconvolu-
tion where empty entries are treated as zero when computing values that
will be padded to the original feature map). The output of the decoder is
compared to the original input using a loss function and backpropagation
takes place to update the parameters in such a way so that the decoder
learns to generate the input as accurately as possible. One application of
this is in denoising images because since the auto-encoder already knows
what the data is supposed to look like, it can take corrupted data as in-
put (noisy images are fed but the loss function is computed with respect
to the clean image) and output a cleaner version of it with almost all the
noise removed. The variational autoencoder not only does dimensionality
reduction but can actually recreate different versions of the input data. In
a normal autoencoder, the latent space is directly connected to the decoder
and hence only one kind of output is possible. However, in VAEs, the latent
space is sampled. Sampling is done by randomly choosing a value from a
Gaussian distribution with a mean and variance defined by the latent rep-
resentation vectors. Running backpropagation through sampled neurons is
achieved using the reparamatrization trick.

Figure 1.6: VAE (Picture by Irhum Shafkat)

[66] uses a VAE to jointly encode an image with the trajectory of each
pixel in it. During training time, the trajectory of each pixel is obtained by
tracking each pixel’s location, from its original location in the first frame,
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along the entire length of the ground truth video. To train the VAE, the im-
age and trajectories both are encoded together. [86] experiment with VAEs
and LSTM recurrent nets to generate a picture of what the object would look
like in the future based on the first few frames. First they experiment with
a VAE where they encode and decode a sequence of images but, alongwith
the latent vector, there is also a one-hot vector which decides how far into
the future should the new representation be. Then they try the same VAE
architecture as before, only this time there are two separate encoder stages.
One gets an image at time step t and the other gets an image at time step
t+m and the latent representation of both encoders is used for the decoder
stage. Finally, they check the performance of a simple LSTM RNN encoder
combined with a decoder. [9] uses three different kinds of autoencoders to
predict human motion given mocap data. First they use a simple VAE on
the entire sequence of mocap data. Then they encode the input data using
temporal convolution (convolution in time, meaning previous k data points
are convolved with the same filter and the k points before those are con-
volved with a separate filter and so on). And finally, they try hierarchical
convolution where each body part is treated as a part of a larger group and
temporal convolution on that part is done separately.

[60] uses semantic and instance segmentation combined with depth maps
and LIDAR point clouds to predict future trajectories. A convolutional
encoder-decoder architecture with bridge connections between similar scales
on both ends is used to make the final prediction. Their method transfers to
other datasets quite well, meaning that they could train on the KITTI [19]
dataset and then use the pretrained network on Cityscapes [16]. [38] uti-
lizes semantic segmentation to not only predict future trajectories of all
participating agents but also to predict future activities. A person’s visual
and pose features are extracted and used to model any changes in their
behavior. A person interaction module is used to encode the interaction a
person has with their surroundings which are semantically labeled using a
pre-trained neural net. A Person-Object and Person-Scene Encoder provide
a feature tensor which is combined with the previous encoded features to
generate a trajectory and predict future activity as well. [83] uses LSTM
with state refinement to encode and decode multi-object trajectories for
prediction purposes. The state refinement module is trained to pay more
attention to the LSTM feature vector of some pedestrians as opposed to
others. Hence, this is an example of a macro attention mechanism only this
time the final context vector is generated by looking at the final cell state
of each LSTM encoder. [75] breaks down the problem of crowd motion pre-
diction into three separate modules. The location encoder module extracts
feature vectors from the most recent pedestrian positions. A motion encoder
module extracts feature vectors from an entire sequence of positions leading
up to the most recent one. The feature vectors from both modules are com-
bined in a separate crowd interaction module before being used to generate
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a displacement vector that is simply added to the most recent position of
each pedestrian. [8] used two separate RNN Encoder Decoder architectures
to predict future car steering and speed values and pedestrian bounding
boxes. The decoding process is aided with a separate CNN that extracts a
feature vector from the entire image sequence for this exact purpose.

1.2.3 Generative Adverserial Networks

Generative Adverserial Networks (GANs) [21] consist of two competing neu-
ral nets: Generator and Discriminator. The Generator takes a randomly
sampled noise vector as input to generate a fake sample which is then com-
pared with the actual ground truth to check if both are the same or not.
The latter task is accomplished by the Discriminator and the resulting back-
propagation is carried out all the way to the Generator. So, in essence, both
the Generator and Discriminator compete with each other. The Generator
is trying to fool the Discriminator into classifying its generated sample as
true while the Discriminator is hoping to be correct in classifying the ground
truth as real. This is an example of unsupervised learning. A popular use of
this is to generate real-life images [29] or to transfer the style of one image
and apply it to the content of another image [18]

Figure 1.7: GAN (Picture by Emiliano De Cristofaro)

min
G

max
D

Ex∼qdata(x)[log(D(x))] + Ez∼p(z)[1−D(G(z))]

The Discriminator wants to maximize this loss function meaning that
D(x) must give a large value and D(G(z)) must give a small value (so the
training sample should give a large value while the fake sample must give
a small value). As outlined in the paper by Ian Goodfellow, we start by
training the Discriminator and keeping the weights of the Generator fixed.
Discriminator weights are updated using gradient ascent. After some iter-
ations, the weights of the Discriminator are frozen and the weights of the
Generator are updated using gradient descent.
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[46] takes the idea of prediction a step further by predicting semantic
segmentations instead of the raw image itself. A semantically labeled im-
age consists of pixel-level labels where, instead of a bounding box, pixels
belonging to certain classes receive the same label. The authors use a mul-
tiscale X2X model with two spatial scales followed by adversarial training.
Adversarial training was combined with RNNs in [69]. An encoder takes
a time-series mocap data as input and a novel geodesic loss with respect
to the ground truth is used to train the encoder-decoder RNN structure.
Two discriminators are used to make the predictions more continuous and
real. The Fidelity Discriminator is trained to predict whether the predicted
sequence is possible or not. And the Continuity Discriminator is applied
on the entire sequence (input and predicted sequence) to check whether the
sequence is continuous or not. [40] uses Flownet [17] to predict the optical
flow for a sequence of images and a separate U-Net [52] is used to predict
the future sequence. An optical flow loss, intensity loss and gradient loss are
computed before finally using a Generator to check if the predicted sequence
is real or not. If the GAN classifies it as unreal, then it is marked as an
anomalous event.

[37] uses a VAE to encode and decode mean and variance values from
historical trajectories. A decision vector is sampled from the latent vector
and is used to aid an encoder by adding to its hidden state (the encoder
also received the original historical trajectories as input). The new hidden
state is then decoded before being sent to a discriminator which is trained
to decide whether the forecasted paths are real or not.

1.2.4 Reinforcement Learning

Figure 1.8: RL Agent plays Atari games (Picture by Ahmet Salim Bilgin)
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Reinforcement learning algorithms have also proved to be useful for the
task of trajectory prediction. The technique gained popularity in recent
years when it was used to play Atari games [45]. An RL agent learns the
best control policy using Q-Learning aided with Action Replay. A prepro-
cessing step is necessary for dimensionality reduction. Convolution is used
to extract features from a sequence of images which are finally fed to fully-
connected layers before outputting an action that the agent is supposed to
take in-game. In general, a reinforcement learning environment has an agent
that takes certain actions to maximize a reward function while going from
one state to the next. Doing this in a supervised fashion (an expert pro-
vides sample actions to take for given states) would be non-ideal since a lot
of examples would need to be taken and, in theory, the agent might never be
better than the expert. the alternative is to start with a random policy and
try to discover the best one using policy gradients. Instead of outputting
the action value, the network could provide probabilities associated to each
action and have the agent choose its next action under the guise of exploita-
tion (choose the action with the highest probability, the greedy approach) or
exploration (choose a random action that may not look like the best action
at that time but it can possibly pay off in the future). Another form of
RL is inverse RL where the reward function is estimated, probabilities are
computed using some optimal policy and then backprop is used to find a
better reward function. An example of this can be found in [1]. Here, a car
learns to master a driving simulator by trying to follow human examples as
closely as possible.

[35] uses a very elaborate neural net to do trajectory prediction from
an ego-centric and birdseye perspective [51]. The key idea behind their al-
gorithm is to capture the multimodal nature underlying each prediction. A
sample generation module creates the plausible trajectories using a combi-
nation of RNNs and CVAEs. These are refined using inverse reinforcement
learning and a decoder network that uses a Scene Context Fusion cell to bet-
ter capture the interaction between moving agents in a scene. [12] extracts
relevant parts from an image which are then activated using reinforcement
learning to decide what action will take place in the future.

1.3 Problems with previous approaches

The approaches mentioned so far are almost all supervised. This means
that they require ground truth values to train the neural network. Even
those neural networks that make multiple predictions, seem to almost al-
ways be biased towards certain values most commonly found in the dataset.
For example, the KITTI dataset shows cars mostly driving forward and
never making abrupt lane changes. Hence, a prediction algorithm trained
on the dataset will output biased predictions. Another glaring issue with
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this approach is predicting the trajectory of stationary objects. In KITTI,
Cityscapes, Berkley Deep Drive [80] and many other self driving datasets,
stationary objects almost always never move. This means that any predic-
tion algorithm trained on data like this will mostly predict static objects as
remaining at their location. This may not be true, for example, a car in a
parking place can decide to move out all of a sudden.

None of the previous approaches treat the problem of prediction, from an
egocentric perspective, as a 3D problem. This is a major oversight because
depth is an important factor since all real-life motion takes place in 3D and
is simply projected onto a 2D image plane where the notion of depth is lost.



Chapter 2

Methodology

Before talking about the final proposed method, it is important to talk
about the other methods that were used to get to the final approach. The
drawbacks of these approaches can help us understand the numerous aspects
of this problem. Then, as we build upon these numerous methods, we can
eventually get to the final approach in a more systematic way.

2.1 2D Kalman Filter

As mentioned before, the problem of prediction from an ego-centric per-
spective is a 3D problem and not a 2D problem. This is because, what we
see on the image plane is missing the notion of depth. To make a proper
prediction, the 3D aspect of the problem needs to be taken into account. To
demonstrate how a simple 2D approach can fail in certain scenarios, we look
at some examples with a Kalman filter. The constant velocity model is used
and the first 5 measurements are used to make a prediction 10 frames into
the future. For a given object, a state vector is defined as X = [x, ẋ, y, ẏ]
where x, y represent the position in the image plane and ẋ, ẏ represent rate
of change of x and y in the image plane. Let measurement vector be z =
[zx, zy] and the dynamics defining the relation between z and X be:

z =

[
1 0 0 0
0 0 1 0

]
X

Since the constant velocity model is being used, that means the measured
values are updated according to the following dynamics (n represents the
number of samples before the prediction process starts, in our case, n = 5):

x[t] = x[t− 1] + dt× ẋ[t− 1]

ẋ[t− 1] = ẋ[t]

25
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y[t] = y[t− 1] + dt× ẏ[t− 1]

ẏ[t− 1] = ẏ[t]

ẋ[0] = x[n]−x[n−1]
n−1

ẏ[0] = y[n]−y[n−1]
n−1

In the below examples, the Kalman Filter does a pretty good job for
straightforward situations like cars traveling straight down a road or simply
taking a turn. However, the Kalman Filter only predicts in the direction of
the vector along which the bounding box values are changing.

Figure 2.1: KITTI with Kalman Filter Example 1 (blue is the current ground
truth bounding box and green is the Kalman filter prediction) [43]
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Some corner cases where the Kalman filter fails to predict in the right
direction are given below.

Figure 2.2: KITTI with Kalman Filter Example 2 (blue is the current ground
truth bounding box and green is the Kalman filter prediction) [43]

We see the issue here is that Kalman filter is unable to accurately predict
the position of stationary objects. This is because, as the ego-car gets closer
to the stationary object, its bounding box gets bigger. And so, because the
Kalman filter only takes as input the 2D bounding box coordinates, it pre-
dicts the future coordinates based on that. Unsurprisingly, for a stationary
object, the predicted bounding box coordinates represent a bounding box
that is larger than the actual one because as we get closer to the stationary
object, its bounding box gets bigger and is displaced in either direction based
on how the ego-car approaches the object. This direction of displacement
may or may not be the correct one. In the middle picture, we see another
issue that arises due to the Kalman filter’s failure to predict multiple future
coordinates. We see that the car ahead of us has a prediction along its cur-
rent lane. While that may be reasonable, another possible situation could
arise if the car decides to change lanes in an effort to overtake the vehicle in
front of it. However, we see clearly that the Kalman filter is unable to do
that since the only information it receives are the bounding box coordinates.
To make better predictions, we need to utilize the whole 3D space and also
image information.
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2.2 3D Bounding Box Propagation

In this approach, 3D bounding boxes are combined with semantic informa-
tion to predict the likely future location of an object. The assumption here
is that an object like a car, cyclist or person will always continue in the
direction they are facing.The algorithm is summarized as follows:

Figure 2.3: 3D Bounding Box Propagation

First the 3D bounding box for the object is obtained. Given the point
cloud (obtained via laser scanner), 3D object detector is applied to it to get
the 3D bounding boxes (length, width, height, heading angle, and location
of the bounding box centroid). At this stage, many object detectors were
experimented with and their results on the KITTI dataset are given below
(from the KITTI 3D object detection leaderboard):
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Name inference
time

(s/im)

box AP
car

(hard)

box AP
pedes-
trian

(hard)

box AP
cyclist
(hard)

MMLab
PV-

RCNN
[54] [56]

[55]

0.08 38.6 40.29 57.65

3DSSD
[77]

0.04 74.55 40.23 56.90

Point-
GNN [57]

0.6 72.29 40.14 57.08

F-
ConvNet

[70]

0.47 66.69 38.80 56.54

Point-
Pillars
[12]

0.016 68.99 38.89 51.92

AVOD-
FPN [33]

0.1 65.73 39.04 44.93

F-
PointNet

[49]

0.17 60.59 38.08 49.01

The evaluation metric used for comparison is the box AP (average pre-
cision). For the hard AP, true positive is one which has an IoU, with the
ground truth box, of at least 50% for pedestrians and cyclists and at least
70% for vehicles. PointPillars was ultimately used due to its reasonable
compromise on speed and accuracy.

Another way to obtain the point cloud data was directly from stereo
images. Here, the Pseudo-LIDAR approach is used where the disparity map
is converted to a depth map, which is then converted to a point cloud using
the following formula:

(depth) z =
fU × b
Y (u, v)

(width) x =
(u− cU )× z

fU

(height) y =
(v − cV )× z

fV

Where Y(u,v) represents the intensity of the depth map at pixel value
(u,v). fU , fV , cU cV and b represent the horizontal and vertical focal lengths,
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pixel locations corresponding to the camera center and the baseline respec-
tively.

Three neural nets were primarily experimented with and MADNet [63]
was ultimately selected for its reasonable compromise on speed and accu-
racy. First PSMNet was tried [11] where two weight-sharing CNNs were
used for feature map calculation. An SPP (Spatial Pyramid Pooling) mod-
ule was used for feature harvesting by concatenating representations from
sub-regions with different sizes, and a convolution layer for feature fusion.
Output of this network is a depth map where the value of each (x, y) coor-
dinate is the distance from the camera. GANet [82] used semiglobal guided
aggregation (SGA) and local guided aggregation (LGA) layers. The authors
designed a new semi-global cost aggregation step which supports backprop-
agation. This is more effective than the traditional SGM and can be used
repetitively in a deep neural network model to boost the cost aggregation
effects. On the other hand, the local guided aggregation (LGA) layer re-
fines the thin structures and object edges. Real-Time Self-Adaptive Deep
Stereo [63] deals with domain shift by doing partial (MAD) or full backprop
during online operation. This means that the network is always in train-
ing mode as it fine tunes itself according to the unseen data. Comparative
results for all three on the KITTI dataset are given below (taken from the
KITTI Stereo Evaluation 2015 leaderboard). One thing to notice here is
that MADnet is significantly faster than the other two with a reasonable
drop in performance.

Name D1-bg D1-fg D1-all Runtime

GANet-
deep

1.48% 3.46% 1.81% 1.8s

PSMNet 1.86% 4.62% 2.32% 0.41s

MADnet 3.75% 9.20% 4.66% 0.02s

In the vehicle coordinate frame, an arc of 60 degrees is generated in front
of the 3D object bounding box based on its rotation angle (yaw angle). 60
degrees makes sense because most vehicles can steer upto 30 degrees in
both directions. Radius of the arc was kept at 1 meters. 10 points are
picked on the boundary of the arc such that they are equidistant from each
other. First, the farthest point is chosen as a likely future location for the
3D bounding box. The bounding box is redrawn on this point with the
same dimensions as before but with the rotation recalculated according to:
θnew = θoriginal−yaw + θnew−yaw. It is then projected back to the image
plane. The base of the bounding box must have an IoU of 90% with the
road/ pavement semantic labels. For semantic labeling of road, pavement
and grass, we use neural nets that provide panoptic segmentation. If the
IoU is less, then the next farthest point is chosen and the process is repeated
until a likely future location for the bounding box is discovered. Panoptic
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segmentation is a combination of instance and semantic segmentation. In
the former, specific instances of the object are separately labeled pixel-wise.
So, for example, you have multiple cars and each of those cars are detected
via 2D bounding box and then every pixel belonging to an instance of a
car is labeled as car 1 and the same is applied to all other detected cars
(their pixels are labeled as car 2, car 3 etc.). In semantic segmentation,
we do not discriminate between the different detected instances of a class.
So, in the previous example, all pixels belonging to an object labeled as car
would be classified simply as car and not as car 1, car 2 etc. In panoptic
segmentation, you assign two labels to each pixel: The instance label (car 1)
and the class label (car). This technique was used for generating a semantic
map for the road, pavement, and grass in the image. Below are some of the
neural nets that were experimented with (results compiled for the Cityscapes
Dataset). These results were taken from the Cityscapes leaderboard for
panoptic segmentation.

Name PQ PQST PQTH MIOU AP

Panoptic
DeepLab
(X71)
[13]

64.1 – – 81.5 38.5

Panoptic
FPN

(ResNet
101)
[34]

58.1 62.5 52 75.7 33

Mask
R-

CNN
+

COCO
[2]

– – 54.0 – –

TRI-
ML
[26]

58.8 63.7 52.1 – –

[26] was used to get the panoptic segmentation. The algorithm is recur-
sive in the sense that the prediction process of sweeping an arc with respect
to a position is repeated. Only this time, the verified position is used as the
new center and the arc is drawn with respect to it. Ideally, the recursion
would keep going on until a point comes where none of the chosen points
on the boundary of the arc are valid predictions (they have a low IoU with
the road/ pavement semantic labels, i.e. they are not completely on those
surfaces when projected back to the image plane). For cars, only IoU with
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road pixels is computed. For cyclists, IoU with both road and pavement
pixels is computed. And, for pedestrians, the IoU is computed with both
road, pavement, and grass pixels. Below, we can see that this algorithm can
predict 3D bounding boxes reasonably far into the future.

This algorithm is obviously much better than the Kalman Filter ap-
proach. It takes into account the 3D aspect of the problem and also uses
information from the image to make better predictions.

Figure 2.4: KITTI with 3D bounding box propagation upto a single level of
recursion (pink is the current bounding box and yellow is the prediction) [43]

Before, stationary objects were predicted to remain in the same position.
This is because the Kalman filter would look at the first five position val-
ues and since they were more or less the same, the predicted future values
wouldn’t be that different from the most recent bounding box values. This
is not the case here because we use information from the image and we also
assume that objects that are currently stationary might try to move in the
future and, the additional assumption, that they might try to move in the
direction they are currently facing.

This approach is good but it has two drawbacks. It is computationally
expensive as you recursively try to predict the bounding box as far as pos-
sible (or as far as you wish) until the road can no longer be observed in
the image plane. One can also use all the points on the boundary of the
arc and recursively predict the future bounding box in this way and obtain
many (multiple) future locations. However, this would not be feasible if
real-time operation is the main focus. A much better approach would be
to use a more continuous representation for the predictions instead of a dis-
cretized approach with several 3D bounding boxes represented at predefined
distances from the current position of the object.
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2.3 Potential Field

As in the previous approach, we use the current heading of the 3D bounding
box to obtain a future proposal by simply pushing the bounding box forward
in space by a few meters from its current position. After that, this newly
proposed bounding box is projected to the image plane using the camera
matrix and its validity is ascertained by computing the IoU of its base with
the road, pavement, and/ or grass pixels (semantically labeled by a neural
net). This means, that the proposed future bounding box location is actually
a good predicted position for the current object. Multiple proposals are
obtained in this way. Below, is a visual representation of this process:

Figure 2.5: top most picture shows the 3D bounding box in the original
image, middle picture shows the bounding box in the image plane with only
the semantically labeled pixels shown (for road and pavement), and the
bottom picture shows the same situation from a slightly elevated perspective
with only point cloud present
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Figure 2.6: Now the bounding box is pushed forward in space upto a maxi-
mum limit and all valid positions are selected based on the IoU of the base
of the projected 3D bounding box (the one being pushed forward from its
original position) with the road pixels (which were semantically labeled with
the help of a neural net). We can see that the proposed bounding box has
a very low IoU because there are other cars parked in front
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Figure 2.7: In order to look for better proposals, the bounding box is rotated
in the anticlockwise direction by 10 degrees (it is rotated upto a prescribed
maximum angle in the anticlockwise direction from its current heading angle
and then rotated upto the same prescribed maximum angle in the clockwise
direction)
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Figure 2.8: Now, better proposals are obtained since the new forward-
projected bounding box has a really high IoU with the road [43]
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Instead of displaying several bounding boxes, we can take the center of
the base of these proposals and use them to generate a potential field in front
of the object. So, imagine all future proposals as points within a cone in
front of the detected object and each point is the center of the base of a 3D
bounding box that was pushed forward in space from the current position
of the detected bounding box.
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Figure 2.9: A radial potential field growing outward (for each top-bottom
pair, the bottom picture represents the potential field in the point cloud
domain and the top picture represents the same in the image plane) [43]



39

The previous recursive approach is abandoned in favor of a continuous
expansion from the current position of the detected object upto a limit.
This is also much easier to understand as compared to plotting numerous
bounding boxes. However, despite being less discretized, this approach can
still be made better and more continuous and, also, more visually appealing.

2.4 Heatmap

In this section, the method that is ultimately used to do trajectory prediction
is presented. We started with simple 2D bounding box proposals and then
moved into the 3D domain where we formalized a method that combines 3D
bounding boxes with the panoptic segmentation to get future 3D bounding
boxes for a detected object. Then we simplify that process and obtain a
radial potential field. And now, we convert that radial potential field into a
heatmap that is ’hot’ close to the object and gets ’warmer’ and eventually
’cold’ at a certain limit from the object. To obtain this heatmap, we use
the same approach for getting the potential field but now a larger number
of points are used.
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Figure 2.10: A heatmap that grows outwards in the form of a 60 degree cone,
it is hot close to the object but gets colder as you move far away. Clearly, this
is visually appealing and more informative than all the previously mentioned
approaches [43]
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We can go a step further and utilize the heatmap to predict the future
motion of the object. Specifically, we can predict whether an object would
turn left, turn right or just go straight. To do this, we divide the cone into
three parts (left, right, and forward) and the size of the heatmap (determined
by the number of points) in each part is recorded and then the probability
is computed as the size of the heatmap in a given part divided by the total
size of the entire heatmap.
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Figure 2.11: Probability that an object might turn left, turn right, or go
straight (calculated using the heatmap) [43]
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2.5 Speed and Steering Value Recommendation
System Prototype

As a way to show the potential usefulness of the heatmap approach, a sim-
ple recommendation system was developed. This would provide the speed
and steering recommendation based on the heatmap. Since actual speed
and steering values were not provided for the KITTI dataset, some assump-
tions on the default values were made. Specifically, it is assumed that the
car, by default, always goes straight and would always move with the max-
imum possible speed. To make speed and steering recommendation, an arc
is generated in front of the ego-car and its intersection with the heatmap is
calculated. If, for example, the arc has a greater intersection with detected
objects and their heatmaps towards the left, as compared to the right side,
then that means there is heavy traffic in that direction. And so the recom-
mended steering is towards the right. The speed recommendation is based
on the number of times the arc intersects with 3D bounding boxes and their
heatmaps.
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Figure 2.12: Speed and steering recommendation based on 3D bounding box
and its heatmap [43]



Chapter 3

Results

Experiments were performed with different stereo depth generating neural
nets. All networks were trained on Google Colab (Tesla K80 GPU and 25
GB of RAM). MADNet (full backprop, partial backprop, and no backprop),
GANet, and PSMNet were used on the KITTI object detection dataset.
Pretrained neural nets were available for all three and were used to generate
the depth map for all the images in the dataset. Then, Pseudo-LIDAR
technique was used to convert the depth map to a point cloud and this was
made sparse [79] to decrease the size of the input to the 3D object detector
(PointPillars will process a less dense cloud much quicker than a denser
one with more 3D points). Below are the results in which PointPillars was
trained and used for 3D object detection on fake laser scanner data generated
using the Pseudo-LIDAR approach:

Name inference
time

(s/im)

box AP
car

(hard)

box AP
pedes-
trian

(hard)

box AP
cyclist
(hard)

GANet 1.52 59.08 25.6 40.29

PSMNet 0.41 55.6 24.03 40.01

MADNet
(full
back-
prop)

0.089 50.01 22.01 32.5

MADNet
(partial
back-
prop)

0.03 48.02 20.19 30.1

MADNet
(no back-

prop)

0.01 44.1 18.13 26.04
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Despite the decrease in accuracy over using actual laser scanner data,
because the panoptic segmentation is ultimately used to decide whether a
proposal for predicted future position is valid or not, an inaccurate bounding
box does not create that many problems. An example is given below:

Figure 3.1: Heatmap of inaccurate 3D bounding box is guided by the panop-
tic segmentation [43]
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However, there were some situations in which the slight inaccuracy of the
bounding box created problems. This usually happened on two-way narrow
roads where both sides were separated by a barrier:

Figure 3.2: Heatmap of inaccurate 3D bounding box is in the wrong lane [43]
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There were also cases where the panoptic segmentation did not perform
so well. This happened in the Waymo Open [61] Dataset, specifically during
the night time scenarios. However, this problem can easily be alleviated by
finding a better neural network to do panoptic segmentation.

Figure 3.3: Inaccurate panoptic segmentation, at night-time, has an effect
on the heatmap generation [43]
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Due to the use of real-time neural nets, the solution has a total time of
0.3s. Below is a block diagram that represents the entire pipeline:

Figure 3.4: Block diagram representing the entire process
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The pipeline is robust because, instead of end-to-end learning, separate
problems are solved and their solutions are combined to get the final desired
solution. In this case, the separate problems are 3D object detection and
panoptic segmentation and also depth generation (if only stereo images are
to be used). If a neural net is available for any of the mentioned tasks, we can
simply replace the current component in the pipeline with a new one. So,
for example, if a better 3D object detector is available, we can replace our
current detector in the pipeline with this new one. All previous solutions try
to do end-to-end learning and that suffers from the same kind of problems
that plague supervised learning. No such problem is encountered here.



Conclusions

In this research, a new method for trajectory prediction was presented which
can work with or without a LIDAR. A heatmap of possible future positions
is then generated and this is used to calculate the probability of an object
going left, right, or straight. A small prototype recommendation system was
also presented that provides a speed and steering value based on the detected
objects and their predicted trajectory. Future work and the obvious sequel
to this research is to experiment with different self-driving car algorithms
and see how a participating agent can use such a heatmap to make better
driving decisions.
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