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Introduction

On October 29, 1969, at 10:30 am, the Leonard Kleinrock’s team sent the
first text message over a super tiny internet network, called the ARPANET.
The team sent the letter ”L” from the University of California (UCLA) to
the Stanford Research Institute (SRI), and phoned the colleagues at SRI
asking: ”Which letter do you see?”, they answered: ”L”. Then UCLA sent
the letter ”O”, and SRI answered by phone: ”O”. When UCLA sent the
”G”, the computer at the SRI crashed. The complete word should have been
”LOGIN”. In the following two decades the ARPANET turned into internet,
and from those days, the internet had a revolutionary impact on our world.

Nevertheless, the fledgling quantum information technologies undertake
to provide a ground-breaking improvement, both in communications and
computing fields. In the last decade, the quantum information has received
a lot of interest, making the quantum internet an exciting topic, being now
at the same early stage as the classical internet was in 1969.

A long-term vision on the quantum internet anticipates the potential
applications, which would be impossible to implement using classical means.
However, the quantum internet is thought to work in collaboration with the
classical one. Some example of applications are quantum key distribution
(QKD), which is provably secure,1,2 extending the baseline of telescopes,3

and clock synchronization.4

The security of quantum communications, as the quantum information
technologies, are based on the laws of quantum mechanics, which describe
the physical property of the nature on an atomic scale. Instead of looking at
quantum systems purely as phenomena to be explained, quantum systems
can be designed so that they can be controlled. Since it does not matter
which is the physical support of the information, the basic idea is to as-
sociate the information with the state of a quantum particle. Controlling
the state and exploiting the properties of the particles, efficient information
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computations can be done. A machine that can do this is called quantum
computer. Quantum computers work with quantum bits (qubits) instead of
bits; a qubit represents the state of a quantum particle, so it represents the
quantum information.

Unfortunately, qubits and the operations on them are intrinsically noisy.
On one hand, classical gates have the property to regenerate the signal. In
fact, despite possible large input variations, classical gates produce a clear
two-level output. On the other hand, there are no information besides level
0 or 1. Conversely, before being measured, qubits carry a lot of information.
As a consequence, variations on them, caused by noise in physical circuits,
correspond to errors propagating across the quantum gates. Furthermore,
any operation on qubits increases the noise level, and then, the probability
of error.5 Since the quantum computation is limited by noise, quantum al-
gorithms must be designed to obtain a certain functionality using the least
number of quantum gates. For practical reasons, the noisy level of each quan-
tum computer is characterized by a parameter called Fidelity. The higher
the Fidelity, the lower the error rate introduced by quantum computing.
Noise is not the only enemy; in fact, one of the main difficulties in realizing
quantum computers is that quantum decoherence tends to destroy the infor-
mation held by qubits.1 This gives an insight about the central role of the
quantum error correcting codes (QECC), and the need to use fault-tolerant
quantum computation.6,7

Currently, few companies in the world have built their own quantum com-
puter. For example IBM, Google, Microsoft, Alibaba, Rigetti and Honeywell
built gate-based quantum computers. Nonetheless, many emerging spin-offs
are looking to build their own quantum computer. In addition, the Cana-
dian company D-Wave proposes quantum annealers, that are well suited to
minimize multidimensional functions having a large number of local minima.8

Although building quantum computers is a very challenging task, quan-
tum computation promises to solve problems that are untractable with clas-
sical computers. Many quantum algorithms have been developed for both
gate-based computers and quantum annealers. These algorithms have found
applications in many fields, like cryptography, chemistry, financial mod-
elling, drug development, quantum systems simulations and optimization.
A comprehensive catalog of quantum algorithms is available here: http:
//quantumalgorithmzoo.org/. A well-known task in which quantum com-
puters are exponentially faster than classical one is to solve the prime factor-
ization problem.9 The Shor’s Algorithm allows to solve this problem, and its

http://quantumalgorithmzoo.org/
http://quantumalgorithmzoo.org/
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fundamental building block is the Quantum Fourier Transform (QFT). This
algorithm undermines the security of the widely used RSA-based cryptog-
raphy, which relies on the not yet demonstrated, but true so far conjecture
that the prime factorization is an untractable problem for classical com-
puters. Another well-known quantum algorithm is the Grover’s Algorithm,
which provides a quadratic speed up in finding a unique input to an unknown
function, that produces a particular output.

These algorithms, like most of others, require a large number of high-
quality qubits in order to be useful, likely requiring QECC far beyond the
quantum resources available in known prototypical devices. In addition, the
current inability to load large quantities of input data efficiently, suggests
that many of these algorithms would be difficult to implement in practice.5

Despite the difficulties to building quantum computers, on October 2019
Google confirmed the ”quantum supremacy” over classical computers. This
is deemed as a milestone, and validates the theoretical anticipations about
the efficiency of quantum computation. Using the 53-qubits quantum com-
puter Sycamore, Google completed in about 200 seconds the task of sampling
a million times the output of simulated pseudo-random quantum circuits.
The state-of-the-art classical supercomputer counterpart would take approx-
imately 10,000 years to complete the same task.10

On the other hand, IBM affirms that, although Google’s experiment is an
excellent demonstration of the progress in quantum computing, it should not
be viewed as proof that quantum computers are ”supreme” over classical
computers. Indeed, as discussed in this link,11 IBM claims that a simulation
of the same task can be performed on a classical system in 2.5 days, and with
far greater fidelity.

After this brief introduction, the aims of the present thesis are to intro-
duce the fundamental quantum information concepts, discuss the main pro-
tocols allowing long-range quantum communications, and give a global view
of the current companies involved in quantum computing. Furthermore, the
piggybacking technique permitting to transmit classical information through
quantum networks, without involving classical channel is investigated. The
present work is organised as follows: in the chapter 1 the fundamental con-
cepts on qubits and entanglement are addressed; while, in chapter 2, the
communication protocols are discussed. The chapter 3 delves into the piggy-
backing technique, describing its implementation and experimental results.
At last, the chapter 4 draws the conclusions. To give a global view of the
quantum area of interest, the Appendix A reports the quantum solutions
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proposed by the companies all over the world. Also, the Appendixes B, C,
D and E provide further information about the covered topics.



Chapter 1

Fundamental Concepts of
Quantum Information

According to the Copenhagen interpretation of quantum mechanics, the state
of an isolated quantum system is completely characterized by its state vector.
The state vector is a mathematical entity, and by using the Dirac notation,
it is denoted as |ψ〉. For example, considering an isolated quantum system
composed by a single electron. The quantum theory indicates that the spin
of this electron is described by a state vector |ψ〉 ∈ C2.
The time evolution of the state vector is described by the time dependent
Schrödinger equation:

i~
∂ |ψ〉
∂t

= H |ψ〉 . (1.1)

Where i is the imaginary unit, ~ is the Planck’s constant divided by 2π, H is
the Hamiltonian hermitian operator for the closed system, and t is the time.
This equation means that starting from a known state vector, it is possible
to modify it as desired, by designing a proper Hamiltonian operator. This is
the basis of quantum computation.

1.1 Single Qubit

As said in the introduction, the physical support for the information is the
state of a quantum particle. For example, focusing on electron spin, the spin
direction of this quantum particle is mathematically described by a state
vector |ψ〉 in the two-dimensional Hilbert space. This state vector is a qubit,
and is the basic unit element of the quantum information.
An important property of qubits is the superposition. This property is a fun-
damental principle in quantum mechanics and represents the main difference

5
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between qubits and bits. Superposition is a linear combination of states, and
an insight into this feature comes still thinking about the spin of an isolated
single electron. Before the spin is observed, it can be up, it can be down,
or it can be in a superposition of the two at same time. Mapping up and
down into |0〉 and |1〉 respectively, the state vector associated to the spin of
a single electron in a superposition state is:

|ψ〉 = α0 |0〉+ α1 |1〉 . (1.2)

Where α0 and α1 are complex numbers. The vectors |0〉 and |1〉 are the
standard computational basis chosen as follows:

|0〉 =

[
1
0

]
|1〉 =

[
0
1

]
.

Note that |0〉 and |1〉 are an orthonormal basis for the two-dimensional
Hilbert space. The physical meaning of the equation (1.2) is that, upon
a measurement of the spin, the outcome probability of the state |0〉 is |α0|2,
(a 0 classical bit is obtained), and the outcome probability of the state |1〉
is |α1|2 (a 1 classical bit is obtained). As a consequence, the equation (1.3)
must hold:

|α0|2 + |α1|2 = 1 . (1.3)

A complex number has two degrees of freedom, then, apparently, the degrees
of freedom of the state vector are four. However, the equation (1.3) removes
a degree of freedom, and with a mathematical manipulation, an irrelevant
global phase turns out as follows:

|ψ〉 = eiγ
[
cos

(
θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉
]
. (1.4)

Since the probabilities are related to the square of the absolute value, the
global phase eiγ has no influence on the measurement of the qubit, and the
equation (1.4) can be simply rewritten as:

|ψ〉 = cos

(
θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉 . (1.5)

Therefore, the state vector of a single qubit has two degrees of freedom, θ
and ϕ.

Equation (1.5) leads to the Bloch sphere representation of the qubit. The
Bloch sphere has a unitary radius, and the real numbers θ and ϕ define a
point on the continuous sphere surface. Referring to figure 1.1, the north
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Figure 1.1: Bloch Sphere

and the south poles are typically chosen to correspond to the standard basis
vector |0〉 and |1〉. The infinite states of a qubit can thus be represented
mathematically by the state vector, or geometrically by the Bloch sphere.
The electron spin is just an example of physical support for qubits. For the
sake of completeness, in Appendix B some other examples of qubits physical
implementations are reported.

1.2 Multiple Qubits

To implement the applications mentioned in the introduction, more than one
qubit is required. Considering a two-qubit system, the state vectors of each
qubit can be composed by using the Kronecker product, also called tensor
product. For example:

|1〉︸︷︷︸
First qubit

⊗ |0〉︸︷︷︸
Second qubit

= |10〉 =


0
0
1
0

 .

Due to the superposition, the state vector of the whole two-qubit system can
be written as follows:

|ψ〉 = α00 |00〉+ α10 |10〉+ α01 |01〉+ α11 |11〉 . (1.6)

As for a single qubit, |αi|2 is the probability to obtain the ith vector basis
upon a measurement, and

∑
i|αi|2 = 1. More in general, the state vector

of a quantum system composed by an arbitrary number n of qubits can be
written as:

|ψ〉 =
∑

i∈{0,1}n
αi |i〉 . (1.7)

This means that the state of an n-particle system is represented by a 2n-
dimensional Hilbert space.
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1.3 Why qubits are so interesting?

Thinking about classical information, n bits can represent one of the 2n

possible combinations (state) at a time. On the other hand, using the qubits
and exploiting the superposition, it is possible to create a state in which all
the 2n combinations are present at the same time. Looking for a particular
combination, using classical computers no efficient algorithm is known. If
no further information about the correct combination is provided, the only
possible approach using classical computer is to try all the combinations,
one by one. Conversely, using quantum computers, all the combinations
can be checked at the same time, regardless of how big is n. Referring to
the equation (1.7), the idea behind quantum computation is to harness the
ability of nature to manipulate the exponential number of αi’s. This gives
to quantum computing a huge advantage.

1.4 Quantum gates

According to the Schrödinger equation (eq. 1.1), a state vector can be manip-
ulated by applying to it a proper unitary operator. Such unitary operators
applied to qubits are called quantum gates, and are the building blocks of
quantum circuits. The quantum gates are mathematically represented by
unitary matrices, and operate on a small number of qubits. The principal
quantum gates are represented by the four Pauli matrices I, X, Y and Z,
which operate on a single qubit.

X |0〉 =

[
0 1
1 0

] [
1
0

]
=

[
0
1

]
= |1〉 X |1〉 =

[
0 1
1 0

] [
0
1

]
=

[
1
0

]
= |0〉

Y |0〉 =

[
0 −i
i 0

] [
1
0

]
=

[
0
i

]
= i |1〉 Y |1〉 =

[
0 −i
i 0

] [
0
1

]
=

[
−i
0

]
= −i |0〉

Z |0〉 =

[
1 0
0 −1

] [
1
0

]
=

[
1
0

]
= |0〉 Z |1〉 =

[
1 0
0 −1

] [
0
1

]
=

[
0
−1

]
= − |1〉

Note that X, Y , and Z provide a rotation of π radians about the relative
axes of the Bloch sphere. I is the identity matrix and it does nothing when
applied to a qubit.

Among the single-qubit gates, probably the most important one is the
Hadamard gate. Starting from a standard computational basis, i.e. |0〉 and
|1〉, it gives a superposed state in which any outcome, upon a measurement,
has the same probability. More precisely:
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H |0〉 = 1√
2

[
1 1
1 −1

] [
1
0

]
= 1√

2

[
1
1

]
= |0〉+|1〉√

2
= |+〉

H |1〉 = 1√
2

[
1 1
1 −1

] [
0
1

]
= 1√

2

[
1
−1

]
= |0〉−|1〉√

2
= |−〉 .

Note that the states |+〉 and |−〉 are an orthonormal basis for the two-
dimensional Hilbert space, so they are an alternative computational basis.

Furthermore, two-qubit gates and three-qubits gates exist too. They are
very useful in quantum circuits as they allow to perform controlled operations
on qubits. The controlled X gate, also called CNOT, applies the X gate on
the target qubit only if the control qubit is |1〉, leaving unchanged the control
qubit; otherwise it does nothing. It follows an example of the CNOT gate
operation, in which the control qubit on the left and the target qubit is on
the right:

CNOT |10〉 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




0
0
1
0

 =


0
0
0
1

 = |11〉 .

More in general: CNOT |a, b〉 = |a, a⊕ b〉 with a, b ∈ {0, 1}.
Another two-qubit gate is the controlled Z gate. It applies the Z gate on the
target qubit only if the control qubit is |1〉, leaving unchanged the control
qubits; otherwise it does nothing.

Finally, the Toffoli gate, sometimes referred as CCNOT, works on three
qubits. It applies the X gate to the target qubit only if the two control qubits
are both |1〉, leaving unchanged the control qubit; otherwise it does nothing.

1.5 Bell pairs

Qubits are profoundly different from bits. If the aforementioned superposi-
tion property sounds weird, the entanglement property could leave stunned.
Let us consider a two-qubit system, and apply to it the simple quantum cir-
cuit shown in figure 1.2. The first gate is the Hadamard gate and the second
is the CNOT gate.
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Figure 1.2: Quantum circuit to generate the Bell pair |Φ+〉

Starting with all qubits in the state |0〉, the initial state vector |ψ〉 = |00〉
evolves as follows:

|ψ〉 = |00〉 H−−→
(
|0〉+ |1〉√

2

)
|0〉 =

1√
2

(|00〉+ |10〉)

CNOT−−−−−−→ 1√
2

(|00〉+ |11〉) = |Φ+〉 . (1.8)

The state |Φ+〉 is a Bell pair, and the other Bell pairs |Φ−〉, |Ψ+〉, |Ψ−〉
can be obtained starting with the states |10〉, |01〉, |11〉, respectively. The
Bell pairs, also called EPR states, represent entangled states.

The entanglement is a strong correlation that allows qubits to express
higher correlation than it is possible in classical systems. Mathematically,
the state of two (or more) quantum systems, is considered an entangled state
if it is not factorizable into two (or more) independent states. For example,
focusing on the |Φ+〉 Bell pair, since it is an entangled state, it is impossible to
find two quantum states |a〉, |b〉 such that |Φ+〉 = |a〉⊗|b〉. In other words, an
entangled state is not a composite state. To prove this statement it is possible
to compose two quantum states, |a〉 = a0 |0〉+ a1 |1〉 and |b〉 = b0 |0〉+ b1 |1〉,
resulting in

|a〉 ⊗ |b〉 = (a0 |0〉+ a1 |1〉)⊗ (b0 |0〉+ b1 |1〉)
= a0b0 |00〉+ a0b1 |01〉+ a1b0 |10〉+ a1b1 |11〉 .

To obtain the Bell pair |Φ+〉 it is necessary to keep only the states |00〉
and |11〉. Then, a0, b0, a1, b1 6= 0. However, this latter condition keeps also
the states |01〉 and |10〉, showing that it is impossible to obtain the Bell pair
by composing two quantum states. This holds for all Bell pairs, and proves
that an entangled state composed by two qubits is not factorizable into two
independent qubits.
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Looking at the equation (1.8), since the α coefficients are all equal to
1/
√

2, upon a measurement of the first qubit, both the states |0〉 or |1〉 have
the same outcome probability 1/2. However, despite the uncertainty about
the outcome, the knowledge about the first qubit implies the knowledge of
the second qubit, instantaneously. E.g. if the outcome of the first qubit
measurement is |1〉, instantaneously the state of the second qubit must be
|1〉 with probability 1. It does not matter which qubit is measured first, and
how physically far the two qubits are from each other.

1.6 CHSH Test

Two qubits can show a level of correlation unreachable by classical bits. In-
deed, by testing the maximum correlation reached by two systems, it is pos-
sible to declare whether they are quantum systems or not. To this purpose,
the CHSH test can be performed in form of game, playing it by using bits or
qubits. Let A and B be two classical systems, and let the bits x ∈ {0, 1} and
y ∈ {0, 1} be the inputs of A and B respectively. Each possible combinations
of x and y has the same probability of outcome, which is 1/4. Moreover, the
outputs of A and B are represented by a ∈ {0, 1} and b ∈ {0, 1} respectively.
To win the game, A and B must accomplish the condition x ·y = a⊕b. Since
A and B are two isolated systems, A guesses the output a knowing only its
input x. Similarly, B guesses the output b knowing only its input y. The
goal of the game is to maximise the probability of winning pwin, expressed
as follows:

pwin = Pr{x · y = a⊕ b} . (1.9)

Let a0 and a1 be the outputs of A when x = 0 and x = 1 respectively. Also,
b0 and b1 are the outputs of B when y = 0 and y = 1 respectively. Referring
to table 1.1, in the first row the winning condition is accomplished if a0 = b0.
In the second row, it is necessary that a0 = b1, then a0 = b0 = b1. Also, in
the the third row, it needs that a1 = b0, then a0 = b0 = b1 = a1. Since the
fourth row requires a1 6= b1, in this case it is impossible to win. Hence, the
maximum probability of winning is pwin = 3/4 = 0.75.12

x y x · y = a⊕ b
0 0 0 = a0 ⊕ b0

0 1 0 = a0 ⊕ b1

1 0 0 = a1 ⊕ b0

1 1 1 = a1 ⊕ b1

Table 1.1: Classical CHSH test
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By switching to the quantum case, A and B are quantum systems able
to measure qubits in different bases. In this quantum case, A and B share a
Bell pair. Referring to figure 1.3, if x = 0, A measures in the basis {|0〉 , |1〉},
producing the outputs a = 0 when the measure outcome is |0〉 and a = 1
when the outcome is |1〉. If x = 1, A measures in the basis {|+〉 , |−〉},
producing the outputs a = 0 or a = 1 respectively. As for B, if y = 0, it
measures in a basis rotated of π/8 with respect to {|0〉 , |1〉}, producing the
outputs b = 0 or b = 1, and if y = 1, B measures in a basis rotated of −π/8
with respect to {|0〉 , |1〉}, producing the outputs b = 0 or b = 1 as indicated
in figure.
Since for entangled pairs the rotation invariance property holds, neglecting
the multiplicative factor, the quantum state shared by A and B is described
as |00〉 + |11〉 = |++〉 + |−−〉. The system A holds the first qubit and B
holds the second one. Furthermore, after the A measurement, the quantum
state is leaved in one of the A bases elements, then, the probability that B
accomplishes the condition to win is always cos2 π

8
.

This can be showed by writing two quantum states |ψ〉 and |ϕ〉, one rotated
of π/8 with respect to the other, as follows:

|ψ〉 = cos θ |0〉+ sin θ |1〉

|ϕ〉 = cos(θ +
π

8
) |0〉+ sin(θ +

π

8
) |1〉 .

By measuring the state |ψ〉 in the basis {|ϕ〉 , |ϕ⊥〉}, the probability to obtain
|ϕ〉 is the squared module of the projection of |ψ〉 on |ϕ〉, i.e. the squared
module of the inner product | 〈ϕ|ψ〉 |2. By using the trigonometric identity
sinσ sin γ = cos(σ − γ) − cosσ cos γ, this probability can be expressed as
follows:

| 〈ϕ|ψ〉 |2 =
∣∣∣ cos(θ +

π

8
) cos θ + sin(θ +

π

8
) sin θ

∣∣∣2 = cos2 π

8
≈ 0.85 .

To conclude, the CHSH test provides a probability of winning pwin >
0.75. Therefore, using two quantum systems the correlation between them
is greater than any possible correlation achievable with classical systems.
Hence, this is a proof of quantumness.
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x = 0

y = 0

a = 0

|0〉

|1〉 a = 1 |+〉

x = 1

a = 0

b = 0

b = 0

y = 1

b = 1

|−〉

a = 1

b = 1

System A

System B

π
8

π
4

π
8

Figure 1.3: Measurement bases for quantum CHSH test
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Chapter 2

Quantum Internet

The quantum internet is a communication network, that enables quantum
communications among remote quantum nodes. The quantum internet is
composed by a set of new technologies, which support functionality with no
direct counterpart in the classical internet. Such technologies involve many
disciplines like physics, electronic engineering, telecommunication and com-
puter science. One of the biggest challenges in making quantum computers
and quantum internet, is to combine these fields by creating multidisciplinary
knowledge.

2.1 From qubits to quantum internet

Qubits can not be copied.13 This is stated by the no-cloning theorem, and
it represents a fundamental aspect of quantum information. To prove this
theorem, suppose that it exists a unitary operator U able to copy a qubit.
The inputs of U are the qubit to copy |ψ〉 = α0 |0〉 + α1 |1〉 and the qubit
|s〉, which is, for example, one element of the standard basis that U must
transform into |ψ〉. Therefore, it should be U |0〉 ⊗ |s〉 = |0〉 ⊗ |0〉 and
U |1〉 ⊗ |s〉 = |1〉 ⊗ |1〉. Then, for linearity, by coping |ψ〉 the outputs of U
will be the two qubits expressed as follows:

U [(α0 |0〉+ α1 |1〉)⊗ |s〉] = α0U |0〉 ⊗ |s〉+ α1U |1〉 ⊗ |s〉 (2.1)

= α0U |0s〉+ α1U |1s〉 = α0 |00〉+ α1 |11〉 .

Actually, the correct output should have been

|ψψ〉 = (α0 |0〉+ α1 |1〉)(α0 |0〉+ α1 |1〉) (2.2)

= α2
0 |00〉+ α0α1 |01〉+ α1α0 |10〉+ α2

1 |11〉 .

15
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The equation 2.1 is equal to the equation 2.2 only if α0 = 1, α1 = 0 or
α0 = 0, α1 = 1, proving that only the basis elements can be coped. In
other words, it proves that it is impossible to make independent copies of an
unknown quantum state.

The no-cloning theorem makes qubit well suited for security applications,
like secure communications and secure access to remote quantum computers
in the cloud. Moreover, any attempt to copy a qubit can be detected.14 The
best-known application is QKD, which enables two nodes to share a secret
key, whose security relies on the laws of quantum mechanics.
Another exclusive feature of qubits is the aforementioned quantum entan-
glement. Entanglement is a strong correlation between two particles, which
can not be shared with any other particle. These two particles could be,
for example, photons, which in turns represent two entangled qubits. This
feature matches with applications that require coordination; as, for example,
clock synchronization, leader election and efficient agreement on distributed
data. It is remarkable that these applications are out of reach for the classi-
cal internet. Since it is impossible for any third qubit to be entangled with
two already maximally entangled qubit, entanglement is an inherently pri-
vate feature. Hence, the entanglement is well suited for secure identification
applications too.14 Quantum internet is a new subject area, requiring new
concepts and new technologies, therefore, it is currently hard to predict all
its possible applications. Nevertheless, some other applications leveraging
it are discussed in the literature, like quantum sensor network, byzantine
agreement for distributed systems and quantum metrology.14

2.2 Communicating qubits

To communicate qubits from one place to another is the foundation of the
quantum internet. However, due to the nature of qubit, transmitting them
over long distances is a huge challenge. Because of qubits can not be copied,
or amplified, the classical signal repetition can not be used to extend the
communication range. Building quantum internet leads to redefine the in-
ternet elements. Beginning from a simple division, three hardware elements
are needed:

� Quantum channels

� Quantum repeaters

� Quantum end nodes
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The quantum channel is the physical layer, i.e. the physical connection, which
typically consists of optical fiber. Fibers are already in use today, therefore
the deployment of new physical connections is not required. However, quan-
tum channels are inherently lossy. For example, fiber transmissivity scales
down exponentially with distance. As a consequence, in order to reach long
distances, an intermediate quantum element is needed, namely, the quan-
tum repeater. Finally, the end nodes must be able to manipulate, send and
receive qubits.

2.2.1 Teleportation

Teleportation is a protocol used to transmit quantum information. The main
idea of teleportation is to send an unknown data qubit from the transmitter
to the receiver, exploiting the entanglement. Teleportation does not care
about how the entanglement is created. Indeed, the starting point of the
protocol is one of the four Bell pairs. For example:

|Φ+〉 = |00〉+|11〉√
2

in which each qubit is named communication qubit. The communication
qubits can be, for example, the representation of two photons in an entangled
state. The two communication qubits, after being created, are separated,
and each of them are sent to one end node. One might wonder if, due to
the physical distance, the two photons are still strongly correlated or not.
Anyway, the answer is yes, they are.15

Referring to figure 2.1, the transmitter (A end node) starts the teleporta-
tion manipulating two qubits: the data qubit |ψ〉A, and the communication
qubit |Φ+〉A, which is entangled with the receiver (B end node) communica-
tion qubit |Φ+〉B. The transmitter performs a Bell State Measurement on the
data qubit and the communication qubit, sending the result to the receiver.
The results of measurements are classical bits, thus a classical channel is
required. This is an example of why the quantum internet is thought as an
enhancement of the classical internet. Indeed, there are a lot of quantum
protocols that enable new quantum applications, but typically they need a
classical internet channel too.
As shown in figure 2.1, the receiver applies X and/or Z gates to its commu-
nication qubit, only if the control classical bit is 1, getting the data qubit
|ψ〉B = |ψ〉A.1 Note that the teleportation does not need information about
the data qubit. It destroys the state of the data qubit at the sender, and
recreates that state at the destination, teleporting information rather than
matter. In other words, teleportation moves quantum information, rather
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than transmitting it.16

Figure 2.1: Quantum teleportation circuit

A proof of the teleportation protocol is provided by describing the state
evolution of the system showed in figure 2.1. Considering an unknown data
qubit |ψ〉A = α0 |0〉+ α1 |1〉, the initial state of the system is expressed as:

|ψ〉A
1√
2

(|00〉+ |11〉) =
1√
2

[α0 |0〉 (|00〉+ |11〉) + α1 |1〉 (|00〉+ |11〉)] .

After the CNOT gate, the state evolves as:

1√
2

[α0 |0〉 (|00〉+ |11〉) + α1 |1〉 (|10〉+ |01〉)] .

The next step is to apply the Hadamard gate to the data qubit, and the state
can be expressed as:

1

2
[α0(|0〉+ |1〉)(|00〉+ |11〉) + α1(|0〉 − |1〉)(|10〉+ |01〉)] =

1

2
[α0(|000〉+ |011〉+ |100〉+ |111〉) + α1(|010〉+ |001〉 − |110〉 − |101〉)] =

1

2
[|00〉 (α0 |0〉+ α1 |1〉) + |01〉 (α0 |1〉+ α1 |0〉)+

|10〉 (α0 |0〉 − α1 |1〉) + |11〉 (α0 |1〉 − α1 |0〉)] .

The measurement of the first two qubits determines the state of the third
qubit, i.e. the data qubit at the receiver. Also, the measurement determines
which gate the receiver must apply to correct the state. The four possible
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outcomes are described as follows:

00 → α0 |0〉+ α1 |1〉 −−→ |ψ〉B = α0 |0〉+ α1 |1〉

01 → α0 |1〉+ α1 |0〉
X−−→ |ψ〉B = α0 |0〉+ α1 |1〉

10 → α0 |0〉 − α1 |1〉
Z−−→ |ψ〉B = α0 |0〉+ α1 |1〉

11 → α0 |1〉 − α1 |0〉
ZX−−→ |ψ〉B = α0 |0〉+ α1 |1〉

This shows that the received is always able to reconstruct the correct data
qubit, proving the teleportation protocol.

2.2.2 Entanglement swapping

In order to teleport data qubits, entangled pairs of communication qubits are
needed. As said before, fiber are lossy, and photons can be lost. Furthermore,
the greater the distance, the greater the probability that the photons detector
apparatus may not detect the incoming photon. To handle this problem,
quantum repeaters are placed along the path of the fiber connection, so that
each single link has its private entangled pair. However, the two end nodes
are not entangled. Entanglement swapping allows to overcome this latter
problem, ending up with an entangled pair between the two end nodes. This
means, at least in theory, that it is possible to perform a teleportation of an
unknown data qubit over arbitrary long distances.
Referring to figure 2.2, each end node shares a Bell pair with the repeater.
To perform the entanglement swapping, the repeater operates a Bell State
Measurement on its two qubits, after that it sends the classical bits to the
respective end node. Finally, the A end node corrects its qubit by applying
the Z gate if it receives a classical bit equal to 1; similarly, the B end node
corrects its qubit applying the X gate if it receives a classical bit equal to
1. Notice that classical channels are needed for the entanglement swapping
too.1,16

A proof of the entanglement swapping protocol is provided by describing the
state evolution of the system showed in figure 2.2. The initial state of the
system is expressed as:

1√
2

(|00〉+ |11〉) 1√
2

(|00〉+ |11〉) =
1

2
(|0000〉+ |0011〉+ |1100〉+ |1111〉) .

By applying the CNOT gate, the state evolves as:

1

2
(|0000〉+ |0011〉+ |1110〉+ |1101〉) .
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Figure 2.2: Entanglement swapping circuit

Next, the Hadamard gate is applied to the second qubit

1

2
√

2
[|0〉 (|0〉+ |1〉) |00〉+ |0〉 (|0〉+ |1〉) |11〉+

|1〉 (|0〉 − |1〉) |10〉+ |1〉 (|0〉 − |1〉) |01〉] =

1

2
√

2
(|0〉 |00〉 |0〉+ |0〉 |10〉 |0〉+ |0〉 |01〉 |1〉+ |0〉 |11〉 |1〉+

|1〉 |01〉 |0〉 − |1〉 |11〉 |0〉+ |1〉 |00〉 |1〉 − |1〉 |10〉 |1〉) .

The repeater measures its two qubits, i.e. the second and the third qubit.
The measurement determines the state of the A end node, i.e. the first qubit,
and the state of the B end node, i.e. the fourth qubit. Also, depending
on measurement outcomes, A and B apply Z(A) and X(B) gates on their
qubit respectively. The four possible measurement outcomes are described
as follows:

00 → 1√
2

(|0〉 |0〉+ |1〉 |1〉) −−−−→ 1√
2

(|00〉+ |11〉 = |Φ+〉

01 → 1√
2

(|0〉 |1〉+ |1〉 |0〉) X(B)

−−−−→ 1√
2

(|00〉+ |11〉 = |Φ+〉

10 → 1√
2

(|0〉 |0〉 − |1〉 |1〉) Z(A)

−−−−→ 1√
2

(|00〉+ |11〉 = |Φ+〉

11 → 1√
2

(|0〉 |1〉 − |1〉 |0〉) Z(A)X(B)

−−−−→ 1√
2

(|00〉+ |11〉 = |Φ+〉

This shows that A and B always end up with a shared Bell pair, proving
the entanglement swapping protocol.
In a more complex scenario, where many quantum repeaters must be used,
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the entanglement swapping can be done in parallel. For example, if the
communication, due to the distance, needs to use three repeaters R1, R2, and
R3, the entanglement swapping on R1 and R3 can be executed in parallel.
Afterwards, the repeater R2 completes the process executing the swapping,
so that a shared entangled pair between the two end nodes is created in only
two steps.

2.2.3 QECC-based communication protocols

Entanglement swapping and teleportation allow quantum communication
over long distances. These protocols rely on existing techniques to create
and support entanglement across a link. Creating the physical entanglement
is a probabilistic mechanism, therefore an acknowledgement indicating which
attempt succeeded is needed. Although so far the entanglement is thought
as a service on-demand, as it is consumed by the teleportation, a possible
solution is to create a continuous stream of Bell pairs between end nodes
and repeaters.16 Nevertheless, resource management may be more difficult
in this approach.

Alternatively, QECC-based protocols can also be used to communicate
quantum information. In this approach, the qubits holding the quantum
information are called logical qubits and, as in the classical case, they are
encoded into a greater number of qubits, called physical qubits. The role of
the added qubits is to protect the quantum information against noise, since
the physical qubits are sent through the channel. On the other side, the
receiver waits for the physical qubits, storing them as they arrive. Finally, it
decodes them, getting the original logical qubits.
Since the quantum channels are lossy, and the longer the channel, the greater
the probability of error, large-scale QECCs should be employed to commu-
nicate qubits over long distances. This implies the ability to store many
qubits; but currently, making good quantum memories, that store qubits
for a useful period of time, is a very challenging task. As a consequence,
the QECC approach also requires to divide the quantum channel into many
low-loss segments, introducing the quantum repeaters.17 Therefore, using
the QECCs, the repeater decodes the received physical qubits getting the
original logical ones. After that, it re-encode the logical qubits, sending the
physical ones to the next repeater or to the end node. As a result, although
the quantum channel noise could modify some physical qubits, leveraging the
code capability to correct errors the quantum information gets through the
steps, reaching the receiver end node unchanged. It is worth noting that the



22 Quantum Internet

QECC approach needs neither entanglement nor a classical channel.

2.3 Classification of Quantum Repeaters

The different approaches to communicate qubits over long distances involve
quantum repeaters and quantum gates. Entanglement swapping and telepor-
tation require Bell State Measurements, while QECCs require encoding and
decoding blocks. As a consequence, both quantum channels and quantum
gates could introduce errors. Depending on different strategies to deal with
errors, quantum repeaters can be classified into three categories.
The first generation (1G) of quantum repeaters suppresses the quantum-
channel errors by implementing the entanglement swapping and teleportation
approach. Also, they suppress the quantum-gate errors by means of entan-
glement purification. In this latter protocol, multiple low-fidelity Bell pairs
are consumed to probabilistically generate a smaller number of higher-fidelity
Bell pairs.16 The second generation (2G) of quantum repeaters, although it
suppresses quantum-channel errors as the 1G does, it suppresses quantum-
gate errors by implementing QECCs. Thereby, 2G repeaters share Bell pairs
to communicate encoded states fault-tolerantly prepared using, for example,
the Calderbank-Shor-Steane (CSS) code. Finally, the third generation (3G)
of quantum repeaters implements QECCs to suppress both errors types.
Since these three generations need different hardware from each other, they
should not be viewed as one better than another, but rather as different
methods to suppress loss and operation errors. In fact, currently is not clear
which quantum repeater generation is more suitable for the different applica-
tions mentioned above. Nevertheless, a possible idea is to integrate different
generations to achieve a universal and secure quantum internet.18

2.4 Interim conclusion

Summing up, the basic concepts about qubits, their gate-based manipulation
and how to transmit them have been discussed in these first two chapters. By
composing the fundamental quantum gates, it is possible to create algorithms
that run on quantum computer; and as for the quantum communications,
thanks to quantum repeaters, the qubits can be transmitted from one end
node to another over long distances, using different approaches. In order to
design a quantum network, the next step is to tackle the problem of qubits
routing. For this reason, the focus of this thesis is to analyse this problem,
and propose a possible solution.



Chapter 3

Piggybacking Technique

Quantum repeaters are the key elements that enable to communicate qubits
over long distances. As described in the section 2.2, to perform the entangle-
ment swapping and teleportation protocols, the quantum repeaters must be
able to manipulate and measure qubits. Alternatively, employing the QECC
approach, quantum repeaters must be able to store and manipulate qubits.
So far the dissertation has referred to a single quantum link, however, in a
quantum network scenario, each quantum end node should be able to com-
municate with everyone else, and this means that quantum repeaters must
also implement router functionality.

For example, consider the simple network showed in figure 3.1. To send
a data qubit from the end node A to the end node B, how can the repeater
R1 be notified to forward the traffic toward B, instead of to repeater R2?
If the entanglement swapping and teleportation approach is employed, a pos-
sible way to properly route the traffic is to establish the path before sending
the data qubit. Therefore, using the classical channel, A informs the repeater
R1 that the destination is the end node B; thereby, as shown in figure 3.2,
R1 operates the entanglement swapping over the right pair of communica-
tion qubits, establishing the entanglement between A and B. For the sake
of clarity, it is assumed that the repeaters know the network topology. Af-
terwards, exploiting the end-to-end entanglement, the teleportation protocol
can transmit the data qubit over the right path.
Conversely, using the QECC approach, the classical channel is not required

to send qubits. By adopting this approach, in combination with the pig-
gybacking technique (described in the following section 3.2), the classical
information about the destination can be put over the quantum stream, al-
lowing not to involve the classical channel.19 Following the previous example,
A encodes the qubits to be transmitted, and piggybacks on them the classi-

23
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Figure 3.1: Example of a simple quantum network
(the repeaters do not route qubits)

cal information about the destination; then, it sends the quantum stream to
R1 through the quantum channel. After receiving the stream, R1 can read
the classical information and find out to forward the qubits to B. Finally, B
can decode the qubits, retrieving the quantum information sent by A. It is
worth noting that this technique has the remarkable property of leaving the
quantum information unchanged.19

Figure 3.2: Example of a simple quantum network
(the repeater R1 routes qubits)

By performing many times the processes described above, qubits can be
routed through many quantum repeaters, allowing all end nodes to commu-
nicate with any other. Although in both approaches the routing can be done,
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the ability to transmit and route qubits without using the classical channel
is very attracting. For this reason, the piggybacking technique is analysed in
detail.

3.1 Stabilizer Formalism and Stabilizer Codes

Referring to classical linear block codes, an efficient way to decode them is to
use the error syndrome. In the case of QECCs, the usage of error syndrome
is still possible; however, a new formalism is needed. This formalism is called
stabilizer formalism and it is based on group theory. The group of principal
interest is the Pauli group Gn on n qubits, composed by all the n-fold tensor
products of the four Pauli operators, together with the multiplicative factors
±1 and ±i. These factors ensure that Gn is closed under multiplication, and
thus forms a legitimate group. The simplest example is the Pauli group on
a single qubit, which is defined as follows:

G1
def
= {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ} ≡ 〈X, Y, Z〉 .

Consider a subgroup of Gn, called S, whose elements commute and do not
contain (−I). The n-qubits states |ψ〉 that satisfy the equation (3.1) form
the vector space Vs stabilized by S, and S is said to be the stabilizer of the
vector space Vs.

Si |ψ〉 = |ψ〉 i = 1, 2, ..., |S| . (3.1)

A clever and compact way to express a group, or a subgroup, is by using
its generators G1, ..., Gl. The generator set has at most log(|G|) elements,
and all the items of the group can be expressed as a product of elements in
the list G1, ..., Gl. As a consequence, the equation 3.1 can be simplified as:1

Gi |ψ〉 = |ψ〉 i = 1, 2, ..., l . (3.2)

Consider a Pauli group Gn and a set of n−k generators Gi ∈ Gn. Let these
generators create a subgroup whose elements commute and do not contain
(−I). Thereby, the stabilizer code C is defined as the set of quantum states
|ψ〉 satisfying the equation 3.2, where l = n− k.
Given an [[n, k]] QECC, and referring to figure 3.3, a k-qubit quantum state
|ϕ〉 is encoded in an n-qubit quantum codeword (q-codeword) |ψ〉 ∈ C. No-
tice that the single lines are used for qubits, and double lines for bits. After-
wards, the q-codeword is sent through the quantum channel which, in turn,
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could introduce an error E ∈ Gn. As for the quantum error correction, the
received state E |ψ〉 is measured according to the generators G1, ..., Gn−k,
resulting in an error syndrome s(E) = (s1, s2, ..., sn−k). Mathematically,
si = 〈ψ|E†GiE |ψ〉 where si = ±1, i.e. si is one of the two eigenvalues of Gi.
Finally, the syndrome is mapped into classical bits following the convention
+1 → 0, −1 → 1. It worth highlighting that the syndrome depends only
on the error E and not on |ψ〉; and the measurement of the syndrome can
be done leaving the state E |ψ〉 unchanged.
Since the possible syndromes are m = 2n−k, let S = {s(1), s(2), ..., s(m)} be
the set of possible syndromes, and Q = {Q(1), Q(2), ..., Q(m)} the set of the
operators corresponding to the errors that can be corrected. Thanks to the
stabilizer formalism, the quantum decoder, upon the measure of the syn-
drome s(i), applies the recovery quantum operator Q(i)† to produce a valid
q-codeword.19

Figure 3.3: Quantum link employing quantum error correction (QEC)
based on error syndrome (figure from19)

3.2 Piggybacking in Noiseless Quantum Chan-

nel Conditions

The basic idea of the piggybacking technique is to introduce an intentional
error after the encoding process. Referring to figure 3.4, the transmitter en-
codes the state |ϕi〉 in the state |ψi〉, and then it applies an operator Pi ∈ Q
on |ψi〉 introducing an intentional error on the q-codeword. Thereby, since
E = I, when the receiver measures the syndrome ŝi = s(Pi) = si, it gets the
n− k classical bits that have been put on the q-codeword as intentional er-
ror by the transmitter. Consequently, mapping si in the relative intentional
error Pi, the receiver can apply the operator P †i to reconstruct the original
q-codeword. Note that here the subscript i is a time index.
Consider for example a [[3, 1]] repetition QECC, that encodes a generic state
|ϕ〉 = α0 |0〉 + α1 |1〉 in the state |ψ〉 = α0 |000〉 + α1 |111〉. This code has
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generators G1 = ZZI and G2 = IZZ. Since it can correct at most one
qubit-flip error, i.e. an X-gate error per q-codeword, the set of correctable
error is Q = {III, IIX, IXI,XII}. Furthermore, being m = 2n−k = 4, the
set of syndromes is S = {s(1), s(2), s(3), s(4)}.
From a classical point of view, the resulting channel is a classical m-ary
discrete-input discrete-output channel with alphabet S, referred to as piggy-
backing syndrome channel (PSC).

Figure 3.4: Block diagram of piggybacking technique in noiseless quantum
channel conditions (figure from19)

Summing up, to inform the quantum repeaters about the destination ad-
dress, classical information can be piggybacked over quantum stream. More-
over, this paragraph shows that this can be done without using classical
channels, without consuming additional quantum resources, and without dis-
turbing entangled pairs.19

3.2.1 Method of Implementation

To further analyse the piggybacking technique, a quantum circuit simulating
transmitter, channel and receiver is designed. This quantum circuit is exe-
cuted on a classical computer, which in turn simulates a quantum computer.
In the present work, this process will be referred as simulation. In addition,
the same quantum circuit is also executed on a real quantum computer. To
these aims, the IBM Quantum Experience (IBMQ) cloud platform is used.
The IBM’s SKD is called Quantum Information Software Kit (QisKit), and it
is based on Python. By exploiting QisKit, IBMQ allows to execute quantum
circuits up to 32 qubits by means of classical computers that simulate quan-
tum computers (simulation). Also, IBMQ allows to execute quantum circuits
over a set of quantum computers up to 15 qubits. Moreover, it permits to
save the outputs in .txt files and download them. Finally, these outputs are
analysed and plotted using MATLAB, comparing the results of the simula-
tions with those of quantum computer.
IBM uses a parameter called quantum volume as a rank for its quantum
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computers, the higher the quantum volume, the better. This parameter
takes into account the architecture, the errors introduced by gates, by deco-
herence, by measurements, and the number of qubits. Among the available
quantum computers, the only one that reaches a quantum volume of 32 is the
5-qubit one called Santiago, which appears to be the best choice. Further-
more, QisKit allows to extract the noise model from a quantum computer,
and to use it in the simulations. This is useful when a circuit involves too
many qubits to be executed on a quantum computer. However, this is not
the case for the present thesis; but simulations implementing the noise model
of Santiago are done to assess the model. These simulations will be referred
as noisy simulations.

Consider the previous example of a [[3, 1]] repetition QECC. Let the log-
ical qubit be |ϕ〉 = |1〉, hence the encoded state is |ψ〉 = |111〉. Since all
qubits are initialized to the |0〉 state, the quantum circuit performing the
encoding is composed by two CNOT gates. As shown in figure 3.5, both
the CNOTs are controlled by the logical qubit q1. Such an arrangement of
qubits is due to fact that Santiago has a linear architecture, and to reduce
the CNOT error rate, the control and target qubits should be adjacent.
Suppose to piggyback the classical bits [0 1] over the q-codeword |ψ〉 by in-
tentionally applying the error IIX ∈ Q, i.e. an X gate to q0. Afterwards,
the three qubits are sent through the noiseless quantum channel represented
by three identity operators. As for the receiver, since the quantum gates are
reversible, the decoder is a mirrored copy of the encoder. Moreover, a clever
way to correct the logical qubit state is by using a Toffoli gate. Actually, the
two qubits controlling the Toffoli gate are the quantum version of the error
syndrome. Therefore, the receiver can measure them, obtaining the two-bit
syndrome [0 1].

3.2.2 Discussion of the Experimental Results

By simulating the quantum circuit, ideal outcomes are expected; on the
contrary, by executing it on quantum computer, the results will take into
account the error rate of quantum gates.
The figure 3.6 shows the results of 8192 (the maximum allowed by IBMQ)
simulation runs of the quantum circuit described in figure 3.5. The resulting
3-bit string is composed by the measure of the syndrome, in the first two
positions starting from the right; and the measure of the logical qubit in the
last position on the left. As expected, the receiver is able to retrieve the
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Figure 3.5: Quantum circuit to piggyback the [0 1] bit string over a 3-qubit
q-codeword

correct classical bits [0 1] and the correct logical qubit state |ϕ〉 = |1〉, whose
measure is 1.

Figure 3.6: Simulation results piggybacking the [0 1] bit string

Executing 8192 times the same quantum circuit on the quantum computer
Santiago, the probability of success, as expected, decreases. Indeed, as shown
in figure 3.7, the correct result is obtained in 88% of cases. This is due to the
fact that, as explained in the introduction, manipulating qubits by quantum
gates unavoidably introduces noise.
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Figure 3.7: Quantum computer results piggybacking the [0 1] bit string

To further analyse the quantum computer results, it might be interesting
to separate the error rate that occurs on logical qubit from those that occurs
on syndrome. Referring to figure 3.7, the resulting bit error rate (BER) of
bits composing the syndrome is BER = 1 − (0.0302 + 0.8824) = 0.0874,
and regarding the logical qubit, the resulting qubit error rate (QBER) is
QBER = 1 − (0.0405 + 0.8824 + 0.0042 + 0.0129) = 0.06. Actually, in this
case the Toffoli gate is not used, as the correction of the logical qubit is not
needed. To show how much the probability of success can decrease by adding
a gate in the computation, the intentional error is put on the qubit q1. In
this case the error syndrome is the bit string [1 1]. The figure 3.8 shows the
quantum circuit to be executed on quantum computer, and the results of the
execution are shown in figure 3.9.

Figure 3.8: Quantum circuit to piggyback the [1 1] bit string over a 3-qubit
q-codeword

As expected, the probability to obtain the correct result decreases, lowering
to 85%. Moreover, the BER and the QBER result to be BER = 1−(0.0402+
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0.8547) = 0.1051 and QBER = 1−(0.006+0.0237+0.024+0.8547) = 0.0916.
Comparing these values with those obtained when the Toffoli gate did not
act, it gives an insight about the importance to reduce as much as possible
the number of quantum gates to achieve a task.

Figure 3.9: Quantum computer results piggybacking the [1 1] bit string

To conclude, in figures 3.10 and 3.11 are reported the results of noisy
simulations. In these simulations the noise model of the quantum computer
Santiago has been added, and it appears to be conservative compared to
the quantum computer results. Indeed, the noise model predicts a success
probability of 87% when the intentional error is put on q0, and of 84% when
on q1. In both cases, about 1% less that the quantum computer.

Figure 3.10: Noisy simulation results piggybacking the [0 1] bit string
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Figure 3.11: Noisy simulation results piggybacking the [1 1] bit string

3.3 Piggybacking in Noisy Quantum Channel

Conditions

In a real quantum network scenario, quantum channels could introduce errors
and alter the information carried through them. It is still possible to pig-
gyback classical information over quantum stream, however, more complex
techniques are needed. As well as in the noiseless channel case, an intentional
error is introduced by applying Pi ∈ Q on the q-codeword |ψi〉; but now, as
shown in figure 3.12, the quantum channel could introduce an error Ei ∈ Gn.
As a consequence, the measured syndrome will be ŝi = s(EiPi).
Recalling that Q is the set of correctable errors, although Pi ∈ Q, the com-
posite operator EiPi may not be a correctable error, i.e. EiPi 6∈ Q, even
if Ei ∈ Q. For example, an intentional error Pi on the first qubit of a q-
codeword, combined with a channel error Ei on the second qubit of the same
q-codeword, produces an uncorrectable error for a QECC with single qubit
error correction capability.
To deal with this problem, a possible solution proposed in the literature is to
introduce a classical error-correcting code (CECC). This CECC is applied to
the piggybacked classical bits, protecting them against channel noise. Con-
sider an (nc,kc) block CECC with alphabet S, i.e. the alphabet is the set
of possible syndromes. To handle with the CECC it might be convenient
to design the code in GF(|S|), then, each syndrome can be mapped into a
symbol, which in turn can be mapped into bits.
Referring to figure 3.12, to transmit kc syndromes, the CEC encoder block
encodes them into nc syndromes si, which compose the transmitted classi-
cal codeword (c-codeword) cw. Afterwards, the controlled error block maps
each syndrome si to the relative controlled error Pi. The nc q-codewords pass
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through the noisy quantum channel, whereupon the receiver side performs the
syndrome measurements ŝi = s(EiPi), i = 1, 2, ..., nc. The classical error
correction block, relying on the CECC, corrects the received syndromes pro-
viding a valid c-codeword c̆w composed by the syndromes s̆i = s(P̂i), where P̂i
is the estimated intentional error operator. Suppose that the CECC is able to
correct the errors introduced by the quantum channel, retrieving the correct
c-codeword. This means that the Pi’s are known, and if Ei ∈ Q the Ei’s oper-
ators can be determined. In fact, observing that ŝi = s(EiPi) = s(Ei)◦s(Pi),
where ◦ is the Hadamard product, since the syndrome elements are ±1, it
follows that s(Ei) = ŝi ◦ s(Pi).
The error computation block computes s(Êi) = ŝi ◦ s̆i; thereby, it can es-
timate which quantum channel error Êi is occurred. Finally, the quantum

error correction block, by applying the composite operator P̂i
†
Êi
†
, is able to

retrieve the correct quantum state.19

To conclude, if the CECC is able to successfully correct the errors on the
measured syndrome, the quantum state will be correctly retrieved, thus
|ψ̂i〉 = |ψi〉. On the other hand, if the classical error correction fails, i.e.
s̆i 6= si for some i, the quantum state will not be correctly retrieved, thus
|ψ̂i〉 6= |ψi〉. In other words, due to the piggybacking, the probability of error
of logical qubits is equal to the probability of the residual syndrome error
after decoding, i.e. Pr{s̆i 6= si}.

Figure 3.12: Block diagram of piggybacking technique in noisy quantum
channel conditions (figure from19)

3.3.1 Piggybacking Syndrome Channel Analysis

The PSC is a classical channel, thus it can be analysed by using classical
concepts like the Shannon entropy and channel capacity. Let the input of
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the PSC be s with probability distribution p(s), and ŝ be the output. Also,
let the errors process of the quantum channel be memoryless, i.e. Ei, Ej are
independent for i 6= j. Under the aforementioned hypothesis, the PSC can
be viewed as a classical discrete memoryless channel, whose capacity CPSC
is defined as:

CPSC = max
p(s)
{H(s)−H(s|ŝ)}

[
bits

q-codeword

]
. (3.3)

Where H(s) is the Shannon entropy.
The worst case for the PSC capacity is represented by a quantum channel
error that maps the transmitted syndrome into one of the others 2n−k − 1
syndromes with equal probability. Hence, defining the probability that the
received syndrome is different from the transmitted one as pPSC = Pr{ŝ 6=
s}, the PSC capacity in (3.3) can be written as:

CPSC = (n− k)− h(pPSC)− pPSC log2(2n−k − 1)

[
bits

q-codeword

]
. (3.4)

Where h(p) = −p log2 p− (1− p) log2(1− p) is the binary entropy function.
Notice that, if pPSC = 0, the capacity tends to the noiseless case, i.e. n −
k [bits/q-codeword]. In fact, as shown in the noiseless quantum channel
simulation results (figure 3.6), the capacity is n − k = 3 − 1 = 2 [bits/q-
codeword].
Consider a memoryless quantum depolarizing channel, and an n-qubit q-
codeword passing through it. Each qubit undergoes an error X, Y, or Z
with equal probability pd/3, and no errors with probability 1 − pd. Since
undetectable errors can be introduced by the quantum channel, i.e. s(EiPi) =
s(Pi), it follows that19

pPSC < Pr{Ei 6= I} = 1− (1− pd)n . (3.5)

Fixing a QECC, the exact pPSC can be evaluated, then, by substituting it
into the equation (3.4), the PSC capacity is provided.

3.3.2 Method of Implementation

Consider the same [[3, 1]] repetition QECC already used in the noiseless quan-
tum channel case. This code is able to work with X-type errors only, there-
fore, a qubit-flip quantum channel has been implemented. As before, let |ϕ〉
be |1〉, thus |ψ〉 = |111〉, also, let p be the probability of error per qubit,
hence pd = p. Referring to figure 3.13, the noisy qubit-flip quantum chan-
nel is implemented by applying the rotation operator on each qubit of the
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q-codeword. Recalling the Bloch sphere, by rotating a qubit of an angle
θ = 2 cos−1(

√
1− p) [rad] about the x-axis, a qubit-flip with probability p

is introduced. In fact, if a state |0〉 and p = 0.1 are considered, the angle
will be θ = 2 cos−1(

√
0.9) [rad]. By substituting θ in the equation (1.5), the

probability to obtain the state |0〉 upon a measurement is 0.9. An analogous
result can be obtained starting from the state |1〉.

Figure 3.13: Quantum circuit to piggyback the [1 0] bit string over a
3-qubit q-codeword

Since it is convenient to design the CECC in GF(4), a possible mapping
between the classical symbols, the syndromes and the intentional errors is
proposed below:

Classical symbols = {0, 1, 2, 3}

Syndromes S = {00, 01, 11, 10}

Intentional errors P = { III︸︷︷︸
q2q1q0

, IIX︸︷︷︸
q2q1q0

, IXI︸︷︷︸
q2q1q0

, XII︸︷︷︸
q2q1q0

}

(3.6)

The error rate of CECCs is defined as: #(c̆w 6=cw)
W

where W is the number
of c-codewords transmitted. As for the QECC error rate, as described in
paragraph 3.3, it corresponds to the CECC one.
In the literature no typical values for p are indicated. However, considering
that there are four possible syndromes, pPSC > 3

4
does not make sense.

Therefore, by using the equation 1 − (1 − p)n < 3
4
, it follows that p <

0.37. Nonetheless, a fiber with error rate 0.37 is considered very bad, so the
following values for p are used:

p = 0, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2 .
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Due to the fact that each q-codeword carries a classical symbol, and the
simulations, or the quantum computer executions, are limited to 8192 runs,
it is possible to transmit at most 8192/nc c-codeword. This means that the
resulting error rate of the CECC could not be statistically meaningful. To
get around this problem, a two-step strategy is adopted.
The first step is implemented in QisKit. By fixing a probability of error
per qubit p, the quantum circuit transmitting the symbol sym = 0, i.e.
no intentional errors, is run 8192 times. The measured syndromes ŝi are
mapped to the corresponding symbols, according to the convention in (3.6),
and these symbols are saved in a txt file. Afterwards, the quantum circuit
transmitting the symbol sym = 1, i.e. an intentional X-error on q0, is run,
generating another txt file; and so on for the other symbols. By repeating
this process, sweeping all the values of p, a set of 48 txt files is obtained.
Each file is referred to as p sym.txt, and it contains 8192 received symbols.
For example, by transmitting the symbol sym = 2 with probability of error
per qubit p = 0.01, the QisKit output will be the file 0.01 2.txt
The second step is implemented in MATLAB. Given a CECC, the possible
c-codewords are previously stored, and a probability of error per qubit p is
fixed. Then, the first symbol of the first c-codeword is set as transmitted
symbol sym. Therefore, the received symbol ˆsym is obtained by randomly
picking a symbol into the right txt file p sym.txt. The same procedure is
reiterated considering the second symbol of the first c-codeword; and so on
nc times. Thereafter, the resulting nc received symbols can be decoded by
computing the nearest c-codeword. For this purpose, the adopted convention
is: distance = 0 if the two symbols do not differ from each other, distance
= 1 if they do. If the resulting c-codeword at the output of the decoder and
the transmitted one are not the same, the #(c̆w 6= cw) is incremented.
The c-codewords are transmitted by picking them cyclically from first to
last, until 105 c-codeword transmissions are performed. Thereby, W = 105 c-
codewords have been transmitted, received end decoded, bypassing the limit
of 8192 runs. Finally, by sweeping the values of p and repeating the whole
process, the error rates of a CECC for each p are obtained.
In the decoding process described above, two tacit hypotheses are adopted:
i) all symbols have the same probability to occur, ii) all c-codewords have
the same probability to occur. Hence, from the decision theory, the adopted
maximum likelihood approach minimises the error rate.

The uncoded case is used as reference point to compare the performance
of the other codes. Its theoretical probability of error Pe coincides with pPSC ,
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and considering the [[3, 1]] QECC, the exact expression of pPSC is given by:

Pe = pPSC =
2∑
l=1

(
3

l

)
pl(1− p)3−l . (3.7)

Note that, as described in paragraph 3.3.1, pPSC < 1 − (1 − p)3. In fact, if
an X-error occurs on all the qubits of a q-codeword, the syndrome does not
change.
The considered CECCs in GF(4) are linear block codes designed by factor-
izing the polynomial Xnc − 1. These codes are listed below reporting the
minimum distances dmin between c-codewords and the number of correctable
errors t:

� (3,1) symbol repetition dmin = 3 → t = 1

� (4,2) dmin = 3 → t = 1

� (10,4) dmin = 5 → t = 2

� (17,9) dmin = 7 → t = 3

For the codes listed above, the upper bound of the theoretical probability of
error Pe is expressed as:

Pe ≤
n∑

l=t+1

(
n

l

)
plPSC(1− pPSC)n−l .

In addition, simple codes in GF(2) are considered:

� (3,1) bit repetition dmin = 3 → t = 1

� (5,1) bit repetition dmin = 5 → t = 2

� (7,4) Hamming code dmin = 3 → t = 1

Since these latter codes in GF(2) have an odd nc, and each q-codeword carries
two bits, a possible way to implement these codes is by concatenating two
c-codewords. Hence, there will be q-codewords carrying one bit belonging to
one c-codeword, and the other bit belonging to the other c-codeword. This
leads to more complex theoretical probabilities of error, for this reason the
Pe’s of these codes are discussed in Appendix C.
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3.3.3 Discussion of the Experimental Results

By analysing the obtained results in noisy quantum channel conditions, the
PSC behaviour can be further investigated and a PSC model can be inferred.
On the right side of figure 3.14, the resulting error rates for a fixed probability
of error per qubit p = 0.1 are shown. On the left side, the figure shows the
efficiencies of the codes in [info bits/channel use], i.e. [info bits/qubit]. Since
it is possible to piggyback two bits over a q-codeword, all the efficiencies are
less than 2/3.
Regarding the uncoded case and the CECCs in GF(2), as expected by equa-
tions (3.7), (C.1), (C.2) and (C.3), the probabilities of error Pe’s correspond
to the simulated error rates; while, for the codes in GF(4), Pe represents
an upper bound. Furthermore, comparing the noisy simulation results with
those of the quantum computer Santiago, the noise model confirms the trend
in predicting higher error rates. Another view of the gap between the noise
model and the quantum computer results is shown in figure D.2 in Appendix
D.

Figure 3.14: Error rates and efficiencies of piggybacked CECCs for p=0.1

From the point of view of error rates, the best code seems to be the (5,1)
bit-repetition. The reason is that this code is able to correct at least two bits
by transmitting only five q-codewords. For example, the (10,4) is also able
to correct at least two bits (two symbols), but it can do so by transmitting
ten q-codewords. The greater the number of q-codewords to be sent, the
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greater the probability of erroneous bits. However, as for the efficiency, the
(5,1) bit-repetition is the worst case. Moreover, as shown in figure 3.16, if
the probability of error per qubit p is increased, the longest used codes (i.e.
the most efficient) show very high error rates. This explains why longer and
more efficient codes are not being considered in the present work.
Since the figure 3.16 reports all the results for each code, it could be difficult
to read. Hence, the more clear figure D.1 reporting only the simulations
results is showed in Appendix D.

By setting p = 0.01, the code (17,9) in GF(4) becomes interesting. Indeed,
referring to figure 3.15, this code shows an error rate comparable to that of the
(5,1) bit-repetition code; thus, comparing the efficiencies, the (17,9) seems to
be the best choice. As for the quantum computer results, the error rates are
dominated by the errors introduced by the computer; so the errors introduced
by the channel are negligible. To prove this, is possible to compare the
quantum computer results in noiseless channel conditions (figure 3.7), where
the error rate is 1 − 0.8824 = 0.1176, with those in uncoded noisy channel
conditions (figure 3.16), where, for p = 0.01, the error rate is approximatively
the same. Since to deal with small p’s, quantum computers with higher
fidelity would be needed, for these p’s, the best way to compare the behaviour
of CECCs piggybacked over quantum stream is by the simulations results.

Figure 3.15: Error rates and efficiencies of piggybacked CECCs for p=0.01
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Furthermore, it is quite interesting that lowering the probability of error per
qubit from p = 0.1 to p = 0.01, as shown in figure 3.16, the error rates of
the longest codes decrease quickly. In fact, the uncoded case, the codes in
GF(2) and the (3,1) symbol-repetition in GF(4) all have a linear trend in a
log log scale; whereas, the other codes in GF(4) (i.e. (4,2), (10,4), (17,9)),
decreasing p, their error rates rapidly decrease, although for large p’s their
error rates are very high. Notice that, referring to these latter codes, for each
one of them there is a value of p beyond which the uncoded transmission is
better that the coded one.
However, an exception is represented by the concatenated (7,4) Hamming
code in GF(2). Due to the fact that it transmits relatively long c-codewords,
and only one erroneous bit can be corrected, this code shows error rates
always worse than the uncoded case.
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To further analyse the results, the PSC capacity can be determined. By
referring to equation (3.4), and substituting the pPSC for the [[3, 1]] repetition
QECC expressed in (3.7), the capacity CPSC is provided.
To compare the performance of CECCs with respect to the theoretical CPSC ,
an error rate of 10−3 is fixed. Then, by interpolating the data obtained from
the simulations results, the values of p for which each code reaches an error
rate of 10−3 are extrapolated.

Figure 3.17: CECCs performances with respect to the theoretical PSC
capacity

By evaluating the bits/q-codeword ratio for each code, is possible to identify
each code as a point under the capacity curve. However, as shown in figure
3.17, the considered codes are far away from the theoretical curve.

Lastly, exploiting the simulations results stored in txt files, a model for
the PSC is proposed. This model is valid only when a [[3, 1]] repetition QECC
is employed, and, to be more general, it does not take into account the errors
introduced by a particular quantum computer. The model is extrapolated by
counting the number of occurrences of each received symbol into a particular
txt file. For example, by transmitting the symbol 3 over a quantum channel
with probability of error per qubit p = 0.1, the error rate with which the
symbol 0 is received can be approximated by counting how many 0’s there
are in the file 0.1 3.txt, and dividing the result by 8192. The table E.1 in the
Appendix E shows the approximated values composing the model. Recalling
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the PSC capacity (equation 3.4), a quantum channel mapping the transmit-
ted symbol into one of the others 2n−k−1 symbols with equal probability was
supposed. It is worth notice that, although the model is an approximation,
it confirms the supposed behaviour of the quantum channel.
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Chapter 4

Conclusions

Quantum information is evolving very rapidly and dynamically. In the last
decade, the development of quantum technologies has reached the engineering
phase, allowing to execute quantum circuits on quantum computers through
cloud platforms. Moreover, small quantum networks have been implemented,
mainly for QKD experiments.
As shown in this work, considering the QECC approach to communicate
quantum information, the piggybacking technique allows to carry classical
information through noisy quantum channels. Hence, a possible application
of this technique is to provide routing information to quantum repeaters.
Since the quantum channels introduce noise, CECCs must be employed in
the PSC. By analysing the experimental results it comes out that, for large
probability of error per qubit p (approximatively p > 0.1), short CECCs, like
the repetition codes, show lower error rates, at the cost of lower efficiency.
Conversely, decreasing p, long and more efficient CECCs show error rates
comparable or better than short codes. Moreover, the approximated model
for the PSC allows to simulate the behaviour of any CECC piggybacked over
a [[3, 1]] repetition QECC.
A further investigation of the piggybacking technique could take into account
more efficient QECCs, implementing longer CECCs than those designed in
this work. For example, BHC or RS codes. Thereby, it should be possible
to approach the PSC capacity theoretical limit. However, it is worth noting
that, by using optical fiber, the probability of error per qubit is time inde-
pendent. As a consequence, the errors are spread along the stream, and not
positioned within bursts. For this reason, CECCs using long symbols might
lead to high error rates.
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Appendix A

Appendix: Companies Effort
and Software Segmentation

A lot of companies around the world, supported by universities, are involved
in quantum information, research and development. The table A.1 reports
the biggest companies that provide public access to their quantum comput-
ers. Even though many companies have already built their own quantum
computers, only IBM gives free access to its quantum computer in the cloud.
Other companies like Rigetti, D-Wave, and IonQ allow paid access to their
quantum computer through the AWS. As a consequence, simulating quan-
tum computer using a classical one is an alternative that must be considered.
Although the world of quantum information is at its early stage, it is growing
fast and changing rapidly.
To implement quantum algorithms, several SDKs, packages, and libraries
have been developed. Almost all of them are based on C/C++ or Python
programming languages; in addition, Microsoft has developed its own quan-
tum programming languages named Q# as part of the Microsoft QKD, which
in turns is a part of the .NET Framework.

To interface the high-level commands with the electronic devices control-
ling the qubits, low level quantum assembly languages are needed. One of the
most used open source assembly language is OpenQASM, which was initially
described in a 2017 paper,20 and the source code was later released by IBM.
As for the quantum computer simulators, the Oxford University has de-
veloped a multiplatform open source quantum simulation toolkit, named
QuEST. It works in C/C++ and it can be used both on laptops and on
supercomputers, exploiting GPU-accelerated, multithreaded and distributed
systems. Furthermore, it can be integrated in Wolfram’s software Math-

47
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ematica using the package QuESTlink. A lot of others software packages
to simulate quantum computers have been developed to date, some of they
are mentioned in this thesis, and many others are listed in this web site:
https://www.quantiki.org/wiki/list-qc-simulators.
Since software segmentation could hinder the quantum-algorithm develop-
ers, the Estonian company Quantastica proposes a software conversion tool.
Quantastica provides an editor to write quantum circuits in QASM or QUIL.
Afterwards, it is possible to convert the code in a large number of languages:
pyQuil (Rigetti), QUIL, QisKit (IBM), QASM, Qobj, Cirq (Google), Ten-
sorFlow Quantum, Q# (Microsoft), QuEST, Quirk, JavaScript and json.
Quantastica can also export the quantum circuit in SVG or PNG file, and
finally it can convert the circuit in a unitary matrix.

https://www.quantiki.org/wiki/list-qc-simulators


49

C
om

p
an

y
A

ffi
li

at
e

U
n

iv
er

si
ty

C
lo

u
d

A
cc

es
s

T
ec

h
n

ol
og

y
Q

u
an

tu
m

C
om

p
u

te
r

N
am

e
#

of
q
u

b
it

s
L

ay
ou

t
S

D
K

/P
ro

gr
am

m
in

g
la

n
gu

ag
e

IB
M

M
IT

Y
es

Su
p

er
co

nd
uc

ti
ng

IB
M

Q
M

el
b

ou
rn

e
15

L
at

ti
ce

2x
7+

1
Q

is
K

it
/P

yt
ho

n

IB
M

Q
L

on
do

n
5

T
Q

is
K

it
/P

yt
ho

n

IB
M

Q
Sa

nt
ia

go
5

L
in

ea
r

Q
is

K
it

/P
yt

ho
n

R
ig

et
ti

B
er

ke
le

y
T

hr
ou

gh
A

W
S

Su
p

er
co

nd
uc

ti
ng

A
sp

en
-8

32
C

on
ne

ct
ed

oc
ta

go
ns

A
m

az
on

B
ra

ke
t/

P
yt

ho
n

D
-W

av
e

-
T

hr
ou

gh
A

W
S

Su
p

er
co

nd
uc

ti
ng

,
Q

ua
nt

um
A

nn
ea

le
r

D
-W

av
e

20
00

Q
20

48
-

A
m

az
on

B
ra

ke
t/

P
yt

ho
n

Io
nQ

U
ni

ve
rs

it
y

of
M

ar
yl

an
d,

D
uk

e
U

ni
ve

rs
it

y
T

hr
ou

gh
A

W
S

T
ra

pp
ed

Io
n

-
79

Fu
lly

C
on

ne
ct

ed
A

m
az

on
B

ra
ke

t/
P

yt
ho

n

G
oo

gl
e

U
C

SB
N

o
Su

p
er

co
nd

uc
ti

ng
B

ri
st

le
co

ne
72

L
at

ti
ce

6x
12

C
ir

q/
P

yt
ho

n

Sy
ca

m
or

e
53

-
C

ir
q/

P
yt

ho
n

H
on

ey
w

el
l

C
al

te
ch

,
G

eo
rg

ia
T

ec
h

O
n-

de
m

an
d

T
ra

pp
ed

Io
n

Sy
st

em
M

od
el

H
Ø

6
Fu

lly
C

on
ne

ct
ed

-

X
an

ad
u

-
Y

es
P

ho
to

ni
c

Q
ua

nt
um

C
om

pu
ti

ng
-

12
-

St
ra

w
b

er
ry

F
ie

ld
s/

P
yt

ho
n

O
ri

gi
nQ

-
Y

es
Su

p
er

co
nd

uc
ti

ng
W

u
Y

ua
n

6
-

Q
P

an
da

/C
+

+

T
ab

le
A

.1
:

C
om

p
an

ie
s

th
at

h
av

e
b
u
il
t

q
u
an

tu
m

co
m

p
u
te

rs

https://www.ibm.com/us-en/
https://quantum-computing.ibm.com/
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https://qcloud.qubitonline.cn/
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Appendix B

Appendix: Physical
Implementations of Qubits

Physical support Name Information support |0〉 |1〉

Photon

Polarization encoding Polarization of light Horizontal Vertical

Number of photons Fock state Vacuum Single photon state

Time-bin encoding Time of arrival Early Late

Coherent state of light Squeezed light Quadrature
Amplitude-squeezed

state
Phase-squeezed

state

Electrons

Electron Spin Spin Up Down

Electron number Charge No electron One electron

Nucleus
Nuclear spin addressed

through NMR
Spin Up Down

Optical lattices Atomic spin Spin Up Down

Josephson junction

Superconducting charge qubit Charge
Uncharged superconducting

island (Q = 0)
Charged superconducting island
(Q = 2e), one extra Cooper pair)

Superconducting flux qubit Current Clockwise current Counterclockwise current

Superconducting phase qubit Energy Ground state First excited state

Singly charged quantum
dot pair

Electron localization Charge Electron on left dot Electron on right dot

Quantum dot Dot spin Spin Down Up

van der Waals
heterostructure

Electron localization Charge
Electron on

bottom sheet
Electron on top sheet

Table B.1: Examples of qubit physical implementation
(from Wikipedia)
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Appendix C

Appendix: Probabilities of
Error for CECCs in GF(2)

Consider the (3,1) bit-repetition CECC in GF(2). To maximize the efficiency,
the c-codeword are concatenated, then 6 bits (two c-codewords) are piggy-
backed over 3 q-codewords. As a consequence, as shown in figure C.1, the
first 5 qubits of the quantum stream influence the first c-codeword, and the
last 5 qubits of the quantum stream influence the second c-codeword.
Considering a c-codeword and the five qubits that can influence it, the errors
occurring on each qubit have different consequences on bits. For this reason,
all combination of errors must be examined separately.

q0

q1

q2

q3

q4

q5

q6

q7

q8

q-codeword

q-codeword

q-codeword

c-codeword

c-codeword

Figure C.1: Scheme of concatenated (3,1) bit-repetition CECC piggybacked
over [[3,1]] repetition QECC

The probability that no errors occur on the two bits piggybacked by the
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first 3 qubits is expressed as:

P
(3)
0 =

∑
l=0,3

(
3

l

)
pl(1− p)3−l .

Also, the probability that no errors occur on the bit piggybacked by the last
two qubits is expressed as:

P
(2)
0 =

∑
l=0,2

(
2

l

)
pl(1− p)2−l .

Furthermore, the probability that one error occurs on the two bits piggy-
backed by the first 3 qubits is expressed as:

P
(3)
1 = 2p(1− p)2 + 2p2(1− p) .

And the probability that one error occurs on the bit piggybacked by the last
two qubits is expressed as:

P
(2)
1 = 2p(1− p) .

By using the expression above, the probability of error of the (3,1) bit-
repetition CECC is:

Pe = 1− (P
(3)
0 P

(2)
0 + P

(3)
1 P

(2)
0 + P

(3)
0 P

(2)
1 ) . (C.1)

Considering the (5,1) bit-repetition CECC in GF(2), the 10 bits (two c-
codewords) are piggybacked over 5 q-codewords. Then, the first 8 qubits of
the quantum stream influence the first c-codeword, and the last 8 qubits of
the quantum stream influence the second c-codeword. The probability that
two errors occurs on the bits piggybacked by a q-codeword is:

P
(3)
2 = p(1− p)2 + p2(1− p) .

Therefore, considering a c-codeword and the 8 qubits that can influence it,
the probability of error of the (5,1) bit-repetition CECC is:

Pe = 1− (P
(3)
0 P

(3)
0 P

(2)
0 + P

(3)
1 P

(3)
0 P

(2)
0 + P

(3)
0 P

(3)
1 P

(2)
0 +

P
(3)
0 P

(3)
0 P

(2)
1 + P

(3)
2 P

(3)
0 P

(2)
0 + P

(3)
0 P

(3)
2 P

(2)
0 +

P
(3)
1 P

(3)
1 P

(2)
0 + P

(3)
1 P

(3)
0 P

(2)
1 + P

(3)
0 P

(3)
1 P

(2)
1 ) .

(C.2)

Finally, considering the (7,4) Hamming code, the 14 bits (two c-codewords)
are piggybacked over 7 q-codewords. Then, the first 11 qubits of the quantum
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stream influence the first c-codeword, and the last 11 qubits of the quantum
stream influence the second c-codeword. Considering a c-codeword and the
11 qubits that can influence it, the probability of error of the (7,4) Hamming
CECC is:

Pe = 1− (P
(3)
0 P

(3)
0 P

(3)
0 P

(2)
0 + P

(3)
1 P

(3)
0 P

(3)
0 P

(2)
0 + P

(3)
0 P

(3)
1 P

(3)
0 P

(2)
0 +

P
(3)
0 P

(3)
0 P

(3)
1 P

(2)
0 + P

(3)
0 P

(3)
0 P

(3)
0 P

(2)
1 ) .

(C.3)
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Appendix D

Appendix: Additional Figures
of Experimental Results

In the following pages the plots of experimental results are reported. The
figure D.1 shows the simulated error rates for all values of p, while the figure
D.2 shows the differences between the noise model proposed by IBM and the
quantum computer results.
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Appendix E

Appendix: PSC Model

In the following table the model of the PSC is reported. The table is divided
in sections referring to a fixed value of probability of error per qubit p. The
columns of each section represent the transmitted symbol, and the rows the
received one. In the intersections, the estimated probability of receiving the
symbol indicated in the rows is showed. For example, the probability to
receive the symbol 3 upon a transmission of the symbol 1, with p = 0.04 is
0.0381.

p=0.01 0 1 2 3
0 0.9729 0.0082 0.0112 0.0099
1 0.0098 0.9724 0.0099 0.0100
2 0.0092 0.0087 0.9698 0.0107
3 0.0082 0.0107 0.0090 0.9694

p=0.02 0 1 2 3
0 0.9421 0.0210 0.0199 0.0181
1 0.021 0.9404 0.0177 0.0183
2 0.0198 0.0204 0.9399 0.0155
3 0.0171 0.0182 0.0225 0.9481

p=0.04 0 1 2 3
0 0.8848 0.0369 0.0389 0.0354
1 0.0364 0.8851 0.0349 0.0347
2 0.0361 0.0399 0.8866 0.0387
3 0.0427 0.0381 0.0396 0.8912

p=0.06 0 1 2 3
0 0.8284 0.0530 0.0533 0.0593
1 0.0579 0.8308 0.0632 0.0607
2 0.0577 0.0581 0.8285 0.0536
3 0.0560 0.0581 0.0549 0.8264
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p=0.08 0 1 2 3
0 0.7806 0.0793 0.0701 0.0751
1 0.0732 0.7681 0.0699 0.0710
2 0.0725 0.0754 0.7852 0.0789
3 0.0736 0.0771 0.0748 0.7750

p=0.1 0 1 2 3
0 0.7207 0.0874 0.0923 0.0886
1 0.0948 0.7407 0.0852 0.0898
2 0.0905 0.0852 0.7329 0.0916
3 0.0940 0.0867 0.0896 0.7300

p=0.12 0 1 2 3
0 0.6907 0.1045 0.1090 0.1088
1 0.1045 0.6869 0.1044 0.1027
2 0.1038 0.1025 0.6863 0.1083
3 0.1011 0.1061 0.1003 0.6803

p=0.14 0 1 2 3
0 0.6274 0.1152 0.1271 0.1229
1 0.1209 0.6479 0.1172 0.1179
2 0.1278 0.1199 0.6344 0.1155
3 0.1238 0.1169 0.1213 0.6437

p=0.16 0 1 2 3
0 0.5988 0.1344 0.1375 0.1274
1 0.1346 0.5984 0.1288 0.1317
2 0.1279 0.1340 0.5964 0.1345
3 0.1388 0.1332 0.1373 0.6063

p=0.18 0 1 2 3
0 0.557 0.1412 0.1501 0.1423
1 0.1423 0.5601 0.1444 0.1520
2 0.1558 0.1473 0.5588 0.1498
3 0.1449 0.1514 0.1466 0.5559

p=0.2 0 1 2 3
0 0.5176 0.1561 0.1608 0.1670
1 0.1584 0.5220 0.1595 0.1569
2 0.1631 0.1559 0.5266 0.1599
3 0.1609 0.1660 0.1531 0.5162

Table E.1: Extrapolated model of the PSC over a [[3,1]] repetition QECC
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