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Abstract

In the present work we introduce a Consensus-Based algorithm for global

optimization on hypersurfaces. The method constitutes a metaheuristic opti-

mization technique where a set of interacting particles are driven by instanta-

neous stochastic and deterministic decisions in order to establish a consensus

among particles on the location of a global minimizer within the domain.

The dynamics is represented by a system of SDEs and it is studied under the

formal framework of kinetic theory for individual-based models.

First, we demonstrate the well-posedness of the system and formally de-

rive the mean-�eld limit. Next, we study analytically and computationally

the consensus mechanism focusing on the di�culties the constrained opti-

mization setting entails. We conclude with computational experiments on

benchmark functions.

Sommario

In questo elaborato viene presentato un algoritmo Consensus-Based per

l'ottimizazione vincolata a ipersuper�ci. Il metodo consiste in una tecnica

di ottimizazione di tipo metaeuristico dove un insieme di particelle intera-

genti si muove secondo un meccanismo che unisce movimenti deterministici

e stocastici per creare un consenso attorno ad un luogo del dominio dove è

presente un minimo della funzione. La dinamica è governata da un sistema

di SDE ed è studiata attraverso il formalismo della teoria cinetica per modelli

di particelle interagenti.

Innanzitutto, viene dimostrato che il sistema è ben posto e viene formal-

mente derivato il suo limite di campo medio. Il meccanismo di consenso

viene poi studiato analiticamente e computazionalmente so�ermandosi sulle

di�coltà che il rispetto del vincolo comporta. In�ne, vengono condotti es-

perimenti computazionali su classiche funzioni test.
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Introduction

Optimization plays an important role in several �elds of science, engi-

neering, economics, and industry. Lately, with the progress made in data

analytics, developing e�cient algorithms for the optimization of high di-

mensional functions has become a crucial problem as optimization is a key

component of most of Machine Learning techniques. Indeed, the learning

process often consists of �nding a minimum of the so-called cost function,

a typically non-convex, non-di�erentiable function which makes the task ex-

tremely challenging and computationally expensive.

Even though, for such problems, gradient-based algorithms have been

dominating the �eld thanks to their low computational complexity, they are

not naturally de�ned when applied to mixed-integer problems or to the op-

timization of non-di�erentiable functions. Moreover, they are local search

algorithms and, hence, they privilege the exploitation of the current solution

above the exploration of new and unknown areas in the search space.

Exploration and exploitation are, indeed, two contradictory strategies and

a good search algorithm must �nd a trade-o� between these two [29]. Meta-

heuristic is a class of alternative algorithms that implement nature-inspired

heuristic methods to combine these two strategies. These algorithms are de-

signed to �nd global or near optimal solutions within acceptable search time,

at reasonable computational cost [31]. Keeping in mind that all optimiza-

tion techniques are often biased towards a speci�c class of problems (�no free

lunch� Theorem [43]), it is important to explore di�erent approaches in order

to get more insight into the optimization problem, for instance the landscape
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2 INTRODUCTION

of the loss function in Machine Learning, and eventually complement the

conventional gradient-based algorithms.

For this purpose, a new metaheuristic gradient-free Consensus-Based Op-

timization (CBO) method has been introduced and studied, presenting em-

pirical success in the optimization of high dimensional functions [8,19,28,33].

The purpose of this Thesis is to further analyze this method in the context

of constrained optimization on hypersurfaces.

Consensus-Based Optimization is an optimization technique in the area

of Swarm Intelligence, a class of metaheuristic algorithms that is mostly in-

spired by biological systems [32, 35]. These algorithms are typically made

of a system of particles that are placed in the search space of some prob-

lems or functions, and each particle evaluates the objective function at its

current location. Each particle, then, determines its movement through the

search space by interacting with the other particles and following a speci�c

mechanism, di�erent for every algorithm. Eventually, the set of particles,

or swarm, is likely to move close to a minimizer of the objective function.

As we will discuss, the mechanism often involves random components that

make, together with the high number of dependencies, the system di�cult

to analyze mathematically.

The Consensus-Based Optimization method represents an element of nov-

elty in this regard. As a matter of fact, the dynamics is investigated under

the framework of the individual-based models where techniques from kinetic

theory are employed to study the large time behavior of the system. More

speci�cally, the particles motion is determined by a system of N SDEs. The

solution to such system is then approximated by mean-�eld limit by a PDE,

whose solution represents the particles' density. Hence, the consensus mech-

anism is investigated on the continuous PDE level rather than on the discrete

particle system.

In order to underline the properties and the innovation aspects of the

Consensus-Based Optimization, we �rst present in Chapter 1 the basic con-

cept of Swarm Intelligence Optimization and describe a well-studied method,
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the Particle Swarm Optimization (PSO). Then, we introduce the central topic

of the Thesis in detail; that is, the CBO method for constrained optimization

on a generic hypersurface Γ.

Chapter 2 will focus on the well-posedness of the model and the derivation

of the mean-�eld approximation for large particle limit whose proof consists

of a generalization of the results contained in [16].

Furthermore, in Chapter 3, we will analyze the consensus mechanism by

considering the evolution of the solution of the mean-�eld PDE. In particular,

we will present the main techniques that have been employed to study the

CBO method for unconstrained optimization and optimization on the sphere.

Where possible, we will attempt to employ these techniques to generalize the

results obtained in these cases. Moreover, we will discuss how the geometry

of Γ can in�uence the consensus mechanism and the decay of the system

variance.

In Chapter 4, we �nally investigate, from a computational point of view,

the behavior of the method on benchmark problems, speci�cally the opti-

mization of the Ackley and the Rastrigin functions constrained on the three-

dimensional torus.
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Chapter 1

Swarm Intelligence Optimization

Notable algorithms within this class include the Ant Colony Optimization

(AOC) [12], the Arti�cial Bee Colony optimization (ABC) [25] and the Parti-

cle Swarm Optimization (PSO) [27,35]. As the names suggest, these methods

attempt to create a system of simple agents, or particles, showing an �intel-

ligent� collective behavior capable of solving an optimization task [27, 35].

A vast number of these algorithms has been suggested in literature and the

variants di�er with respect to memory e�ects, stochasticity, time discretiza-

tion and other features. In order to provide a well-studied example of this

class, the next section illustrates the mechanism of PSO. This will allow us to

make a comparison with the Consensus-Based Optimization methods in Sec-

tion 1.2. To conclude the chapter, we introduce the main topic of the Thesis,

the Consensus-Based Optimization method for constrained optimization on

hypersurfaces.

1.1 Particle Swarm Optimization

The original PSO has been proposed by Kennedy et al. [26] as a method

for the optimization of nonlinear functions, i.e. to solve the problem

min
v∈Rd
E(V )

5



6 CHAPTER 1. SWARM INTELLIGENCE OPTIMIZATION

given a certain objective function E : Rd → R, which we assume, without

loss of generalization, to be a non-negative function.

A set of N particles is considered. Each individual of the particle swarm

is described at every time t by a triplet (V i
t ,W

i
t , P

i
t ) ∈ RN×3 of d-dimensional

vectors of the search space Rd. These are: the current position V i
t , the ve-

locity W i
t and the previous best position P i

t , which is de�ned as the location

where the particle i attained its smaller value of the objective function, for-

mally

P i
t = arg min

{V is :s≤t}
E(V i

t ) .

The current position V i
t can be considered as a set of coordinates describ-

ing a point in space. At each iteration of the algorithm, the current position

is evaluated as a problem solution. If that position is better than any that

has been found so far, then the coordinates are stored in the vector P i
t . The

objective is to keep �nding better positions and updating P i
t . New points

are chosen by adding W i
t coordinates to V i

t , and the algorithm operates by

adjusting the velocity W i
t which can e�ectively be seen as a step size.

The particles are organized according to some sort of communication

structure or topology. In view of the comparison between CBO and PSO,

we consider the topology where every particle interacts with the rest of the

swarm; namely, the topology of a fully-connected graph. We refer to [35] for

examples where more complex topologies are taken into account. According

to this topology, the global best P g
t is de�ned as the optimal value between

the personal best P i
t , i.e.

g = arg min
i=1,...,N

E(P i
t ) .

In the PSO process, the velocity of each particle is iteratively adjusted

so that the particle stochastically oscillates around the P i
t and P

g
t locations.

The PSO's system (as proposed in [37]) reads as follow:
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W i
t+1 = ωW i

t + U(φ1) ◦ (P i
t − V i

t ) + U(φ2) ◦ (P g
t − V i

t )

V i
t+1 = V i

t +W i
t+1 ,

(1.1)

where ω is the �inertia weight�, U(φ) is a random variable which is uni-

formly distributed on [0, φ], φ > 0 and ◦ is the Hadamard product.

The parameters φ1 and φ2 determine the magnitude of the random forces

in the direction of personal best P i
t and global best P g

t . Moreover, these

forces depend on |P i
t − V i

t | and |P
g
t − V i

t | and, therefore, the step size of a

particle i is large if V i
t is far from the personal best P i

t or the global best

P g
t . The inertia weight ω is capable of regulating the exploration behavior,

but large values of ω may make the swarm unstable. We refer to [35] for a

complete discussion about the role of the parameters in the PSO dynamics.

In the update equations (1.1) we can recognize the two main features of

the particles behavior in Swarm Intelligence algorithms:

1. particles share knowledge in order to move towards regions of the ob-

jective function domain where a minimizer is likely to be found;

2. a stochastic component is introduced in the step choice to partially

explore the search space independently of the knowledge of the system.

Despite of its usefulness, a rigorous convergence analysis of such swarm

intelligence algorithms is often missing: the high number of dependencies and

the random components make the asymptotic analysis of these mechanisms

extremely hard, especially when long-term dependencies through memory

mechanisms are encoded.

In order to overcome this de�ciency, the CBO method was �rst proposed

in [33]. At the expense of a simpler metaheuristic mechanism with respect to

PSO, CBO implements these features also allowing for a rigorous asymptotic

analysis in the framework of statistical physics.
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1.2 Consensus-Based Optimization

Individual-based models have been widely used in the investigation of

complex systems that manifest self-organization or collective behavior. Ex-

amples of such complex systems include the already-mentioned swarming

behavior, but also crowd dynamics, opinion formation, synchronization, and

many more, that are present in the �eld of mathematical biology, ecology

and social dynamics, see for instance [1, 4, 6, 7, 39].

CBO has been introduced in [33] and consists of a stochastic Swarm In-

telligence algorithm that bears a particularly strong resemblance to opinion

dynamics. In general, opinion dynamics within an interacting population can

lead to either consensus, polarization or even fragmentation. A thorough un-

derstanding of such phenomena would, initially, require the formulation of

mathematical models which describe the evolution of opinions in the popu-

lation under investigation. CBO can be considered as one of these models,

the stochastic Kuramoto-Vicsek model, introduced in [41] to study the co-

operative behavior of animals.

In the context of global optimization, the model focuses on instantaneous

stochastic and deterministic decisions in order to establish a consensus among

particles or agents, on the location of a global minimizers within the domain.

The particles are described only by their current position V i
t at the time t.

Thanks to the instantaneous nature of the dynamics, the evolution can be

interpreted as a system of �rst-order stochastic di�erential equations (SDEs)

de�ned as:

dV i
t = −λ(V i

t − vα,E(ρNt )) + σ|V i
t − vα,E(ρNt )|dBi

t , (1.2)

where vEα is the weighted average

vα,E(ρ
N
t ) =

∑N
j=1 V

j
t e
−αE(V jt )∑N

j=1 e
−αE(V jt )

. (1.3)

The positional change of a particle is given by two components. The
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�rst component is an attraction component towards vα,E whose magnitude is

given by the distance |V i
t − vα,E | and a drift parameter λ. We note that vα,E

is weighted with respect to the Gibbs distribution corresponding to E ; hence,
it promotes the consensus among regions of the domain where E attains the

minimum value. We will discuss in detail the reason for such distribution in

the next section.

The second component is a random search term, which is modeled as in-

dependent Brownian motions σBi
t with a uniform di�usion parameter σ. The

individual variances are scaled with the distance towards vα,E , enabling them

to explore their current area, while agents near vα,E display no randomness,

emphasizing their current position.

Even though we recognize the two main features of Swarm Intelligence

Optimization in the system (1.2), knowledge sharing and random exploration,

CBO presents important di�erences compared to PSO. Namely,

→ the dynamics is de�ned for every t ∈ R≥0;

→ the model does not use the evaluation of the global best, arg mini=1,·,N ;s≤t E(V i
s ),

or personal best, arg mins≤t E(V i
s ) by employing the weighted average

(1.3);

→ the model neglects memory e�ects and the inertia of the particles.

These characteristics certainly make the metaheuristic mechanism much

simpler with respect to PSO, but this representation in the context of individual-

based models allows us to perform a rigorous mathematical analysis of the

method convergence. Indeed, the dynamics is approximated by its mean-�eld

mono-particle process whose distribution is the solution of the correspond-

ing Fokker-Planck equation. The aim is to acquire a deeper understanding

of the performance of the particle-based algorithm through the mean-�eld

perspective, especially regarding convergence properties. In the next section,

we will present the mean-�eld process and the mean-�eld PDE for the CBO

method on hypersurfaces in detail.
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It is worth noting that, despite the simplicity of the mechanism, the

algorithm seems to be powerful and robust enough to tackle many interesting

non-convex optimizations of practical relevance, showing great scalability

even for d � 1. We refer to [9, 17] for examples where the algorithm has

been successfully employed to solve high dimensional tasks such as the Robust

Subspace Detection problem and the training of a two-layer Neural Network.

We refer to [40], instead, for a comparison between CBO and PSO on the

optimization of benchmark functions.

1.3 CBO method on hypersurfaces

We now present the main topic of the Thesis, a new CBO method de-

signed for global optimization on hypersurfaces. The setting of constrained

optimization is motivated by the fact that several applications in Machine

Learning can be seen as a constrained optimization task on manifolds [16,17].

Thus, the analysis of CBO on hypersurfaces should be seen as a �rst step

towards the analysis of a wider class of CBO methods for constrained opti-

mization on manifolds.

The metaheuristic technique we present, thus, attempts to solve the fol-

lowing constrained optimization problem

v∗ ∈ argmin
v∈Γ
E(v) , (1.4)

where 0 ≤ E : Rd → R is a given continuous cost function, which we wish to

minimize over a hypersurface Γ. The settings of Γ, as used in [11], are the

following:

De�nition 1.1. Γ is a connected C2 compact hypersurface embedded in Rd,

which is represented as the 0-level set of a signed distance function γ with

|γ(v)| = dist(v,Γ). This means that:

Γ =
{
v ∈ Rd| γ(v) = 0

}
.
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The gradient ∇γ is, then, the outward unit normal on Γ where γ is de�ned,

|∇γ(v)| = 1 ∀ v ∈ Γ, while P (v) = I −∇γ(v)∇γ(v)t

is the linear projection operator P (·). Both the operator norm ‖.‖2 of the

Hessian matrix, de�ned as ‖A‖2 := supv∈Rm |Av|/|v| for A ∈ Rn×m, and the

L2-norm of the Laplacian will also be bounded by a constant cγ:

‖∇2γ(v)‖2, |∆γ(v)| ≤ cγ ∀v ∈ Γ

where cγ could, in general, depend on the dimension d.

Moreover, we assume that there exists an open neighborhood Γ of Γ such

that γ ∈ C3(Γ) and that, if ∂Γ = ∅, then γ < 0 in the interior of Γ and γ > 0

at the exterior.

Example 1.1. Examples of hypersurfaces Γ in this setting are

� the unit sphere Sd−1, in which case γ(v) = |v| − 1, ∇γ(v) = v
|v| and

∆γ(v) = d−1
|v| ;

� a torus radially symmetric about the vd-axis and of inner radius r > 0

and external radius R > 0 that is expressed in Cartesian coordinates as

the 0-level set of the signed distance function

γ(v) =

√
(
√
|v|2 − (vd)2 −R)2 + (vd)2 − r,

where v = (v1, . . . , vd).

The system constituting the method is a system of N interacting parti-

cles ((V i
t )t≥0)i=1,...,N satisfying the following stochastic di�erential dynamics

expressed in Itô's form

dV i
t = −λP (V i

t )(V i
t − vα,E(ρNt ))dt+ σ|V i

t − vα,E(ρNt )|P (V i
t )dBi

t

− σ2

2
(V i

t − vα,E(ρNt ))2∆γ(V i
t )∇γ(V i

t )dt , (1.5)



12 CHAPTER 1. SWARM INTELLIGENCE OPTIMIZATION

where λ > 0 is a suitable drift parameter, σ > 0 a di�usion parameter,

ρNt =
1

N

N∑
i=1

δV it (1.6)

is the empirical measure of the particles (δv is the Dirac measure at v ∈ Rd),

while

vα,E(ρ
N
t ) =

∑N
j=1 V

j
t e
−αE(V jt )∑N

j=1 e
−αE(V jt )

=

∫
Rd vω

E
α(v)dρNt∫

Rd ω
E
α(v)dρNt

with ωEα(v) := e−αE(v) .

(1.7)

This stochastic system is considered complemented with independent and

identically distributed (i.i.d.) initial data V i
0 ∈ Γ with i = 1, · · · , N , and

the common law is denoted by ρ0 ∈ P(Γ). The trajectories ((Bi
t)t≥0)i=1,...N

denote N independent standard Brownian motions in Rd.

As already mentioned, e−αE(v) is the Gibbs distribution corresponding

to E(v). This choice comes from the well-known Laplace principle [10, 30,

34], a classical asymptotic method for integrals, which states that for any

probability measure ρ ∈ P(Γ), it holds

lim
α→∞

(
− 1

α
log

(∫
Γ

e−αE(v)dρ(v)

))
= inf

v∈supp (ρ)
E(v) . (1.8)

The right-hand side of equation (1.5) is made of three terms, all of which

play a di�erent role in the mechanism of the dynamics. The �rst deterministic

term −λP (V i
t )(V i

t −vα,E(ρNt ))dt imposes a drift to the dynamics towards vα,E ,

which is the current consensus point at time t as approximation to the global

minimizer. The second stochastic term σ|V i
t −vα,E(ρNt )|P (V i

t )dBi
t introduces

a random decision to favor exploration, whose variance is a function of the

distance of the particles to the current consensus points. The last term

−σ2

2
(V i

t −vα,E(ρNt ))2∆γ(V i
t )∇γ(V i

t )dt combined with P (·) is needed to ensure

that the dynamics stays on the hypersurface despite the Brownian motion

component.

We further notice that the dynamics does not make use of any derivative
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of E , but only of its pointwise evaluations. We will require below regularity

assumptions on E exclusively to ensure formal well-posedness of the evolution.

Through the same approach used in [16], in Chapter 2 we will show

the well-posedness of (1.5) and its rigorous mean-�eld limit to the following

nonlocal, nonlinear Fokker-Planck equation

∂tρt = λ∇Γ ·
(
(P (v)(v−vα,E(ρt)))ρt

)
+
σ2

2
∆Γ(|v−vα,E(ρt)|2ρt), t > 0, v ∈ Γ ,

(1.9)

with the initial data ρ0 ∈ P(Γ) and where ρ = ρ(t, v) ∈ P(Γ) is a Borel prob-

ability measure on Γ, while the operators ∇Γ· and ∆Γ denote the divergence

and Laplace-Beltrami operator on the hypersurface Γ, respectively.

The mean-�eld limit will be achieved through the coupling method [5,

15, 22, 38] by introducing an auxiliary mono-particle process, satisfying the

self-consistent nonlinear SDE

dV t = −λP (V t)(Vt − vα,E(ρt))dt+ σ|V t − vα,E(ρt)|P (V t)dBt

− σ2

2
(V t − vα,E(ρt))2∆γ(V t)∇γ(V t)dt , (1.10)

with the initial data V 0 distributed according to ρ0 ∈ P(Γ). Here, we require

ρ to be the law of the random process (Vt)t≥0, ρt = law(Vt). Formally, (Vt)t≥0

is considered to be a continuous stochastic process on the probability space

(Ω,F , P ) and it induces a function

ΦV : Ω→ R≥0 × Rd

(ΦV (ω))(t) := Vt(ω).

The law ρ of the process is, then, de�ned as the pushforward measure:

ρ := (P ) ◦ Φ−1
V .

In the next chapter, we will show that ρ(t, ·), as a measure on Γ, solves

the PDE (1.9).
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We call the SDE (1.10) �mean-�eld dynamics�, and the PDE (1.9) �mean-

�eld PDE�.



Chapter 2

Well-Posedness and Mean-Field

Limit

In this chapter, we will focus on the CBO method designed for con-

strained optimization on a hypersurface Γ of the objective function E . In

particular, we analyze the well-posedness of the equations involved and de-

rive the rigorous mean-�eld limit. We remark that the rigorous derivation of

the mean-�eld limit is an open issue for unconstrained CBO [8], due to the

di�culties in establishing bounds on the moments of the particles probabil-

ity distribution. This theoretical gap, indeed, was one of the reasons why

the CBO method for constrained optimization on the sphere Sd−1 was �rst

introduced in [16, 17] and for which the mean-�eld limit can be rigorously

proven. Following the approach of [16], we will generalize these results to

generic hypersurfaces Γ.

In order to do so, we require the following smoothness assumption on E
throughout the chapter:

Assumption 2.1. The objective function 0 ≤ E : Rd → R is locally Lipschitz

continuous.

We recall the model comprises a system ofN interacting particles ((V i
t )t≥0)i=1,...,N

satisfying the following stochastic di�erential dynamics expressed in Itô's

15



16 CHAPTER 2. WELL-POSEDNESS AND MEAN-FIELD LIMIT

form

dV i
t = −λP (V i

t )
(
V i
t − vα,E(ρNt )

)
dt+ σ|V i

t − vα,E(ρNt )|P (V i
t )dBi

t

− σ2

2
(V i

t − vα,E(ρNt ))2∆γ(V i
t )∇γ(V i

t )dt , (2.1)

where λ > 0 is a suitable drift parameter, σ > 0 a di�usion parameter, ρNt is

the empirical measure of the particles, and

vα,E(ρ
N
t ) =

∫
Rd vω

E
α(v)dρNt∫

Rd ω
E
α(v)dρNt

with ωEα(v) := e−αE(v) . (2.2)

The mean-�eld limit of (2.1) is the mean-�eld PDE

∂tρt = λ∇Γ ·((P (v)(v − vα,E(ρt))ρt)+
σ2

2
∆Γ(|v−vα,E(ρt)|2ρt), t > 0, v ∈ Γ ,

(2.3)

with the initial data ρ0 ∈ P(Γ). Here ρ = ρ(t, v) ∈ P(Γ) is a Borel probability

measure on Γ and vα,E(ρt) is de�ned as in equation (2.2).

The mean-�eld dynamics is the following self-consistent nonlinear SDE

dV t = −λP (V t)(V t − vα,E(ρt)dt+ σ|V t − vα,E(ρt))|P (V t)dBt

− σ2

2
(V t − vα,E(ρt))2∆γ(V t)∇γ(V t)dt , (2.4)

with the initial data V 0 distributed according to ρ0 ∈ P(Γ) and ρt = law(V t).

As already mentioned, the results we present in this chapter can be con-

sidered as a generalization of the analysis in [16] for the CBO method for

the constrained optimization on the sphere where Γ = Sd−1. For this reason,

only the idea of the proof will be included and we will focus on the di�erences

led by the general setting.

We will start from the well-posedness results for the particle system (2.1)

in Section 2.1. Then, we will show the well-posedness of the mean-�eld

dynamics (2.4) and the mean-�eld PDE (2.3) in Sections 2.2 and 2.3 respec-

tively. Finally, we conclude the chapter by proving the mean-�eld limit in
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Section 2.4. For this purpose, we �rst recall a crucial tool for our analysis,

the Itô's formula.

Theorem 2.1 (Multidimensional Itô's formula). Let

dXt = u(t)dt+ v(t)dBt (2.5)

be a d-dimensional Itô process, where Xt ∈ Rd, u(t) ∈ Rd, v(t) ∈ Rd×d′, and

Bt = (Bt,1, . . . , Bt,d′) is a d′-dimensional Brownian motion.

Assume ϕ(x) to be a C2 map from Rd to R, then it holds

ϕ(Xt) = ϕ(X0) +

∫ t

0

(
∇ϕ(Xs) · u(s) +

1

2

d∑
i,j=1

∂2ϕ

∂xi∂xj
(Xs)vi(s)vj(s)

t

)
ds

+

∫ t

0

∇ϕ(Xs) · v(s)dBs (2.6)

with vi(s) being the i-th row of the matrix v(s).

Remark 2.1. Equation (2.5) should be read in integral form;
∫
v(t)dBt is a

d-dimensional vector whose components are de�ned as:

d′∑
j=1

∫
vk,j(t)dBt,j ∀ k = 1, . . . , d ,

where vk,j(t) = (v(t))k,j.

2.1 Well-posedness for the interacting particle

system

Similarly to [16], we note that the system is embedded in Rd instead of

being de�ned on the hypersurface Γ directly. This setting has been chosen

because it provides an explicit and computable representation of the system

and it allows for a global description.
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The di�culty in showing the well-posedness of (2.1) in the ambient space

Rd is that the projection P (V i
t ), ∆γ(V i

t ) and ∇γ(V i
t ) may not be well de�ned

outside Γ. In the case of the sphere Sd−1, this complication appears only on

one single point, the origin. Indeed, when V i
t = 0

P (V i
t ) = I − V i

t (V i
t )t

|V i
t |2

and ∆γ(V i
t )∇γ(V i

t ) = (d− 1)
V i
t

|V i
t |2

are not de�ned. By simple computations, it is also possible to show that,

when γ de�nes the torus Td−1, the gradient ∇γ(v) is not well-de�ned for

v ∈ {v ∈ Rd | |v|2 − v2
d = R2 ∧ vd = 0} ∪ {0}.

For a general hypersurface Γ, we consider the neighborhood Γ of Γ in

which γ ∈ C3(Γ) and, in order to overcome this problem, we regularize the

di�usion and drift coe�cients outside Γ.

We replace them with some appropriate functions P1, P2 and P3 respec-

tively: let P1 be a d× d matrix valued map on Rd with bounded derivatives

such that P1(v) = P (v) for all v ∈ Γ, P2 be a Rd valued map on R with

bounded derivatives such that P2(v) = ∆γ(v) if v ∈ Γ, and P3 be a Rd val-

ued map on Rd, again with bounded derivatives such that P3(v) = ∇γ(v) if

v ∈ Γ.

It is also useful to mention that, since for v ∈ Γ

P (v)∇γ(v) = (I −∇γ(v)∇γ(v)t)∇γ(v) (2.7)

= ∇γ(v)−∇γ(v)|∇γ(v)|2 = 0 (2.8)

it holds for any y ∈ Rd

∇γ(v)tP (v)y = 0. (2.9)

Additionally, we further regularize the locally Lipschitz function E : let us
introduce Ẽ(v) satisfying the following assumptions.



2.1. WELL-POSEDNESS FOR THE INTERACTING PARTICLE SYSTEM19

Assumption 2.2. The regularized extension function Ẽ : Rd → R is globally

Lipschitz continuous and satis�es the properties

1. Ẽ(v) = E(v) when v ∈ Γ;

2. Ẽ(v)− Ẽ(u) ≤ L|v − u| for all u, v ∈ Rd for a suitable global Lipschitz

constant L > 0;

3. −∞ < Ẽ := inf Ẽ ≤ Ẽ ≤ sup Ẽ =: Ẽ < +∞ .

We stress the fact that Ẽ is introduced as an auxiliary function for the

proof of well-posedness and mean-�eld limit only, and it does not play any

role in the actual optimization problem, which is de�ned on Γ. Indeed, as

we can see in Theorem 2.3 below, particles stay on the hypersurface Γ all the

time, which means that certainly v ∈ Γ, so one has Ẽ(v) ≡ E(v). From this

point on, E and Ẽ are always expected to satisfy Assumptions 2.1 and 2.2.

Given such P1, P2, P3 and Ẽ , we introduce the following regularized par-

ticle system

dV i
t = −λP1(V i

t )(V i
t − vα,Ẽ(ρ

N
t ))dt+ σ|V i

t − vα,Ẽ(ρ
N
t )|P1(V i

t )dBi
t

− σ2

2
(V i

t − vα,Ẽ(ρ
N
t ))2P2(V i

t )P3(V i
t )dt , (2.10)

for i ∈ {1, . . . , N} =: [N ], where

vα,Ẽ(ρ
N
t ) =

∫
Rd vω

Ẽ
α(v)dρNt∫

Rd ω
Ẽ
α(v)dρNt

, ωẼα(v) = e−αẼ(v) . (2.11)

We, thus, study the existence of a unique process (VN
t )t with VN :=

(V 1,N , . . . , V N,N)t ∈ RNd satisfying the regularized particle system (2.10)

which we can rewrite, for an arbitrary but �xed N ∈ N, as

dVN
t = −Fn(VN

t )dt+ Mn(VN
t )dBN

t , (2.12)
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where B = (B1,N , . . . , BN,N)t is the standard Wiener process in RNd, and

FN = (F 1
N(V), . . . , FN

N (V))t ∈ RNd ,

F i
N(V) = λP1(V i)(V i − vα,Ẽ(ρ

N)) +
σ2

2
(V i − vα,Ẽ(ρ

N))2P2(V i)P3(V i) ,

MN = diag(M1
N(V), . . . ,MN

N (V))t ∈ RNd×Nd ,

M i
N(V) = σ|V i − vα,Ẽ(ρ

N)|P1(V i).

We will show that (2.12), and consequently (2.10), admits a pathwise

strong solution by employing the following standard SDE well-posedness re-

sult [13, Chap. 5, Theorem 3.1]:

Theorem 2.2. If FN and MN are locally Lipschitz continuous and have

linear growth, (2.12) admits a pathwise unique local strong solution.

Thanks to the regularity Assumption 2.2, we can apply Theorem 2.2 for a

�xed N . More precisely, the following result allows us to check the Lipschitz

continuity.

Lemma 2.1. Let N ∈ N, α > 0 be arbitrary and Ẽ satisfy Assumption

2.2. Then for any VN , V̂N ∈ RNd, and corresponding empirical measures

ρN = 1
N

∑N
i=1 δV i , and ρ̂

N = 1
N

∑N
i=1 δV̂ i , it holds

|vα,Ẽ(ρ
N)| ≤ 1

N
Cα,Ẽ‖V

N‖1 (2.13)

and

|vα,Ẽ(ρ̂
N)− vα,Ẽ(ρ

N)| ≤
(
Cα,Ẽ
N

+
2αLCα,Ẽ

N
‖V̂N‖∞

)
‖VN − V̂N‖1 , (2.14)

where Cα,Ẽ = eα(Ẽ−Ẽ). Here we used the notations for norms of vectors

‖V‖∞ = maxi∈[N ] |V i| and ‖V‖1 =
∑N

i=1 |V i|.

Idea of the proof. The boundedness of Ẽ plays a key role in allowing us to

have lower and upper estimates of the Gibbs distribution ωẼα(V j):
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e−αẼ ≤ ωẼα(V j) = e−αẼ(V j) ≤ e−αẼ . (2.15)

This gives an estimate of the di�erence vα,Ẽ(ρ̂
N)− vα,Ẽ(ρN) in terms of |V j−

V̂ j|

|ωẼα(V j)− ωẼα(V̂ j)| = |e−αẼ(V j) − e−αẼ(V̂ j)| ≤ αe−αẼ |Ẽ(V j)− Ẽ(V̂ j)|

≤ αLe−αẼ |V j − V̂ j|

through the derivative of ωẼα .

Theorem 2.3. Under Assumptions 2.1 and 2.2, let ρ0 be a probability mea-

sure on Γ and, for every N ∈ N, (V i
0 )i∈[N ] be N i.i.d. random variables with

the common law ρ0.

For every N ∈ N, there exists a pathwise unique strong solution ((V i
t )t≥0)i∈[N ]

to the particle system (2.1) with the initial data (V i
0 )i∈[N ]. Moreover, it holds

that V i
t ∈ Γ for all i ∈ [N ] and any t > 0.

Idea of the proof. Given P1, P2, P3 and Ẽ , Lemma 2.1 shows that the SDE

(2.12) has locally Lipschitz coe�cients, so it admits a local, pathwise-unique,

strong solution by Theorem 2.2.

Moreover, we apply Itô's formula (2.6) with ϕ(x) = γ(x) to show that

V i
t ∈ Γ for all i ∈ [N ] and any t > 0. The process is indeed continuous and

we can consider a smooth extension of γ outside the neighborhood Γ of Γ.

If the �rst deterministic λ-dependent terms immediately vanish thanks to

the orthogonality property (2.9), we understand here the role played by the

correction term on the stochastic equation (2.1).

Simple computations where we employ that |∇γ| = 1 lead to

dγ(V i
t )

dt
= 0 (2.16)

and hence γ(V i
t ) = γ(V i

0 ) = 0 for all t > 0, which ensures that the solution

is bounded at �nite times, hence we have a global solution. Since all V i
t ∈ Γ,

the solution to the regularized system (2.10) is a solution to (2.1), which
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provides the global existence of a solution to (2.1).

2.2 Well-posedness for the mean-�eld dynam-

ics

From this section on, we will be working with Borel probability measures

on Rd with �nite second moment, namely

P2(Rd) :=

{
µ ∈ P(Rd) such that

∫
Rd
|z|2µ(dz) <∞

}
that we equip with the 2-Wasserstein metric. From [3], we recall the de�nition

of the p-th Wasserstein distance for p ≥ 1.

De�nition 2.1 (Wasserstein Metric). Let 1 ≤ p < ∞ and Pp(Rd) be the

space of Borel probability measures on Rd with �nite p-th moment. We equip

this space with the Wasserstein distance

W p
p (µ, ν) := inf

{∫
Rd×Rd

|z − ẑ|p dπ(µ, ν)
∣∣ π ∈ Π(µ, ν)

}
(2.17)

where Π(µ, ν) denotes the collection of all Borel probability measures on Rd×
Rd with marginals µ and ν in the �rst and second components respectively.

The Wasserstein distance can also be expressed as

W p
p (µ, ν) = inf

{
E[|Z − Z|p]

}
(2.18)

where the in�mum is taken over all joint distributions of the random variables

Z, Z with marginals µ, ν respectively.

For Rd and p ∈ [1,∞), the Wasserstein distance Wp is compatible with

the weak topology in Pp(Rd) [3, Chapter 11]. Therefore, W2 metrizes the

weak convergence in P2(Rd) and convergence in W2 implies convergence of

the �rst two moments (see [42, Chapter 6] for more details).
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Notice that, for any ρ ∈ P2(Rd)

ωẼα(v)

‖ωẼα‖L1(ρ)

≤ e−αẼ

‖e−αẼ‖L1(ρ)

≤ eα(Ẽ−Ẽ) =: Cα,Ẽ ∀v ∈ Rd . (2.19)

A direct application of the above leads to

vα,Ẽ(ρ) :=

∫
Rd vω

Ẽ
α(v) dρ∫

Rd ω
Ẽ
α(v) dρ

=

∫
Rd ve

−αẼ(v) dρ∫
Rd e

−αẼ(v) dρ
≤ Cα,Ẽ

∫
Rd
|v|dρ ≤

Cα,Ẽ(1 +m2)

2
,

(2.20)

with m2 := m2(ρ) :=
∫
Rd |v|

2dρ(v).

The existence of a unique process satisfying the mean-�eld dynamics (2.4)

is shown through the well-known Leray-Schauder �xed point theorem for

in�nite dimensional spaces, see for instance [18, Chapter 10].

Theorem 2.4. Let T be a compact mapping of a Banach space B into itself,

and suppose there exists a constant C such that

‖x‖B < C

∀x ∈ B and ϑ ∈ [0, 1] satisfying x = ϑT x. Then T has a �xed point.

The proof of the well-posedness follows closely the calculations carried

out both for the unconstrained CBO method in [8] and for Γ = Sd−1 in [16].

Before we state the theorem, let us start with the following stability estimate:

Lemma 2.2. Assume that ρ, ρ̂ ∈ Pc(Rd) (with compact support), it holds

|vα,Ẽ(ρ)− vα,Ẽ(ρ̂)| ≤ CWp(ρ, ρ̂) , (2.21)

for any 1 ≤ p <∞, where C = C(Cα,Ẽ , α, L) > 0.

Idea of the proof. First of all, we notice that the di�erence can be rewritten
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as

vα,Ẽ(ρ)− vα,Ẽ(ρ̂) =

∫
Rd ve

−αẼ(v) dρ(v)

‖e−αẼ‖L1(ρ)

−
∫
Rd v̂e

−αẼ(v̂) dρ̂(v̂)

‖e−αẼ‖L1(ρ̂)

=

∫∫
Rd×Rd

ve−αẼ(v)

‖e−αẼ‖L1(ρ)

− v̂e−αẼ(v̂)

‖e−αẼ‖L1(ρ̂)

dπ(v, v̂)

where π ∈ Π(ρ, ρ̂) is an arbitrary coupling of ρ and ρ̂. Using standard

estimates of the kind of (2.15), we can bound the integrand norm in terms

of |v − v̂|p and obtain

|vα,Ẽ(ρ)− vα,Ẽ(ρ̂)| ≤ C

(∫∫
Rd×Rd

|v − v̂|pdπ(v, v̂)

) 1
p

, (2.22)

where C depends only on Cα,Ẽ and α,L. Lastly, we need to optimize the last

expression over all couplings π, which yields (2.21).

The following theorem states the well-posedness for the mean-�eld dy-

namics (2.4).

Theorem 2.5. Let E and Ẽ satisfy Assumptions 2.1 and 2.2. Then, there

exists a unique process V ∈ C([0, T ],Rd), T > 0, satisfying the nonlinear

SDE (2.4)

dV t = λP (V t)vα,E(ρt)dt+ σ|V t − vα,E(ρt)|P (V t)dBt−
σ2

2
(V t − vα,E(ρt))2∆γ(V t)∇γ(V t)dt ,

in strong sense for any initial data V 0 ∈ Γ distributed according to ρ0 ∈ P(Γ),

where

vα,E(ρt) =

∫
Rd ve

−αE(v) dρt∫
Rd e

−αE(v) dρt
,

and ρt = law(V t) for all t ∈ [0, T ]. Moreover V t ∈ Γ for all t ∈ [0, T ].

Idea of the proof. As already mentioned, the proof is based on Theorem 2.4

and it is carried out in several steps.
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Primarly, we underline that for some given ξ ∈ C([0, T ],Rd), a distribution

ρ0 on Γ and V 0 with law ρ0, we can uniquely solve the SDE

dV t = λP1(V t)ξtdt+ σ|V t − ξt|P1(V t)dBt −
σ2

2
(V t − ξt)2P2(V t)P3(V t)dt .

(2.23)

We note that the same argument as before, see equation (2.16), shows

that γ(V t) = 0 for all times t. This introduces ρt = law(V t) and ρ ∈
C([0, T ],P2(Rd)). By setting T ξ := vα,Ẽ(ρ) ∈ C([0, T ],Rd), we de�ne the

map

T : C([0, T ],Rd)→ C([0, T ],Rd), ξ 7→ T (ξ) = vα,Ẽ(ρ) , (2.24)

which we prove to be compact. In order to verify the compactness of T , we
�rst notice that, by Itô's isometry and by de�nition of Wasserstein distance

we have

W2(ρt, ρs) ≤ C|t− s|
1
2 (2.25)

and, afterwards, we apply Lemma 2.2 obtaining

|vα,Ẽ(ρt)− vα,Ẽ(ρs)| ≤ C|t− s|
1
2 . (2.26)

This provides the Hölder continuity of t→ vα,Ẽ(ρt). Thus, one has T (C([0, T ],Rd)) ⊂
C0, 1

2 ([0, T ],Rd) ↪→ C([0, T ],Rd), which implies the compactness of the map

T .

After checking the boundedness of the set

A :=
{
ξ ∈ C([0, T ],Rd) : ξ = ϑT ξ for some 0 ≤ ϑ ≤ 1

}
. (2.27)

For ξ ∈ A, there exists some V t satisfying (2.23) with law ρ ∈ C([0, T ],P2(Rd))

such that ξ = ϑvα,Ẽ(ρ). Due to (2.20), for any t ∈ [0, T ]

|ξt|2 = ϑ2|vα,Ẽ(ρt)|
2 ≤ ϑ2

(∫
Rd ve

−αẼ(v)dρt(v)

‖e−αẼ‖L1(ρt)

)2

≤ C (2.28)
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and we apply the Leray-Schauder �xed point theorem. Hence, there exists a

�xed point ξ for the mapping T and thereby a solution of

dV t = λP1(V t)vα,Ẽ(ρt)dt+ σ|V t − vα,Ẽ(ρt)|P1(V t)dBt

− σ2

2
(V t − vα,Ẽ(ρt))

2P2(V t)P3(V t)dt (2.29)

with law(V t) = ρt.

In order to prove the uniqueness of the solution of (2.29), we consider

two �xed points ξ1 and ξ2, and their corresponding processes V
1

t , V
2

t . In

particular, applying the Itô's isometry and standard estimates on E[|Zt|2] we

obtain the inequality

E[|Zt|2] ≤ CE[|Z0|2] + C

∫ t

0

E[|Zs|2]ds . (2.30)

Therefore, thanks to the Grönwall's inequality with E[|Z0|2] = 0, we can

conclude E[|Zt|2] = 0 for all t ∈ [0, T ] and hence ξ1 ≡ ξ2 by Lemma 2.2.

Finally, similar to the argument in Theorem 2.3, the unique solution to the

regularized SDE (2.29) is also the unique solution to the mean-�eld dynamics

(2.4) due to the fact that γ(V t) = 0 for all t ∈ [0, T ].

2.3 Well-posedness for the mean-�eld PDE

In this section we will brie�y show how to obtain a weak solution to the

mean-�eld PDE (2.3) by construction.

We start from the solution {V t : t ≥ 0} to (2.4) obtained in the last

section, with the initial data V 0 distributed according to ρ0. For any ϕ ∈
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C∞c (Rd), it follows from Itô's formula (2.6) that

dϕ(V t) = ∇ϕ(V t)·
(
λP (V t)vα,E(ρt)−

σ2

2
(V t − vα,E(ρt))2∆γ(V t)∇γ(V t)

)
dt

+ σ|V t − vα,E(ρt)|∇ϕ(V t) · P (V t)dBt

+
σ2

2

(
V t − vα,E(ρt)

)2∇2ϕ(V t) :
(
I −∇γ(V t)∇γ(V t)

t
)
dt , (2.31)

where ∇2ϕ is the Hessian and A : B := Tr(ATB). Taking the expectation

on both sides of (2.31), the law ρt of V t as a measure on Rd satis�es

d

dt

∫
Rd
ϕ(v)dρt(v) =

∫
Rd
∇ϕ(v) ·

(
λ(I −∇γ(v)∇γ(v)t)vα,E(ρt)

− σ2

2
(v − vα,E(ρt))2∆γ(v)∇γ(v)

)
dρt(v)

+

∫
Rd

σ2

2
(v − vα,E(ρt))2∇2ϕ(v) :

(
I −∇γ(v)∇γ(v)t

)
dρt(v) . (2.32)

As we have proved that V t ∈ Γ almost surely, that is, the density ρt is

concentrated on Γ for any t, we have supp(ρt) ⊂ Γ. Let us now de�ne the

restriction µt of ρt on Γ by∫
Γ

Φ(v)dµt(v) =

∫
Rd
ϕ(v)dρt(v) (2.33)

for all continuous maps Φ ∈ C(Γ), where ϕ ∈ Cb(Rd) equals Φ on Γ.

Next, we de�ne the projection

ΠΓ(v) = v − γ(v)∇γ(v) ∈ Γ, for v ∈ Rd .

In the case of Γ = Sd−1 a unique projection can be de�ned on Rd \ {0},
but for generic hypersurfaces we need to take into account a strip of width

δ > 0 about Γ, Γδ ⊂ Rd, where δ > 0 is small enough to ensure that the

decomposition

v = ΠΓ(v) + γ(v)∇γ(v) (2.34)
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is unique for v ∈ Γδ. We know such δ exists since γ ∈ C2(Γ), see for example

[11, Section 2.1]. Let now Φ ∈ C∞(Γ) and de�ne a function ϕ ∈ C∞c (Rd) such

that

ϕ(v) = Φ (ΠΓ(v)) for all v ∈ Γδ . (2.35)

Then, ϕ de�ned above is 0-homogeneous in v in the strip Γδ, so that

∇ϕ(v) · ∇γ(v) = 0 for all v in the support Γ of ρt, which leads to ∇2ϕ(v) :

∇γ(v)∇γ(v)t = 0. Hence,

d

dt

∫
Γ

Φ(v)dµt(v) =
d

dt

∫
Rd
ϕ(v)dρt(v)

= λ

∫
Rd
∇ϕ(v) ·

(
(I −∇γ(v)∇γ(v)t)vα,E(ρt)

)
dρt(v)

+

∫
Rd

σ2

2
(v − vα,E(ρt))2 ∆ϕ(v)dρt(v) .

Let us now relate the Euclidean di�erential operators to corresponding

operators on Γ, so that for v ∈ Γ it holds ∇ΓΦ(v) = ∇ϕ(v) and ∆ΓΦ(v) =

∆ϕ(v). Therefore, we obtain

d

dt

∫
Γ

Φ(v)dµt(v) = λ

∫
Γ

∇ΓΦ(v) ·
(
(I −∇γ(v)∇γ(v)t)vα,E(µt)

)
dµt(v)

+

∫
Γ

σ2

2
(v − vα,E(µt))2 ∆ΓΦ(v)dµt(v) , (2.36)

where

vα,E(µt) =

∫
Γ
ve−αE(v) dµt∫

Γ
e−αE(v) dµt

. (2.37)

Thus, by this construction, we obtain a weak solution µt to the PDE (2.3).

Next, we prove the uniqueness of solutions to (2.3). We assume that ρ1
t

and ρ2
t are two solutions to (2.3) with the same initial data ρ0, and that at

each time t we treat them as measures on Rd concentrated on the hypersurface
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Γ. Then, we construct two linear processes (V
i

t)t≥0 (i = 1, 2) satisfying

dV
i

t = λP1(V
i

t)vα,E(ρ
i
t)dt+ σ|V i

t − vα,E(ρit)|P1(V
i

t)dBt

− σ2

2
(V

i

t − vα,E(ρit))2P2(V
i

t)P3(V
i

t)dt , (2.38)

with the common initial data V 0 distributed according to ρ0. Let us denote

law(V
i

t) = ρ̄it (i = 1, 2) as measures on Rd, which are solutions to the following

linear PDE

∂tρ̄
i
t = ∇ ·

(
ρ̄it

(
−λP1(v)vα,E(ρ

i
t) +

σ2

2
(v − vα,E(ρit))2P2(v)P3(v)

))
+
σ2

2

d∑
k,`=1

∂2

∂vk∂v`

(
|v − vα,E(ρit)|2(P1P

T
1 )k`ρ̄

i
t

)
. (2.39)

Since the uniqueness for the above linear PDE holds and ρit is also a

solution to the above PDE on Rd (see (2.32)), it follows that ρ̄it = ρit (i =

1, 2). Consequently, the processes (V
i

t)(t≥0) are solutions to the nonlinear

SDE (2.4), for which the uniqueness has been obtained. Hence, (V
1

t )(t≥0) and

(V
2

t )(t≥0) are equal, which implies ρ1
t = ρ̄1

t = ρ̄2
t = ρ2

t . Thus, the uniqueness

is obtained.

2.4 Mean-�eld limit

The well-posedness of (2.1), (2.3) and (2.4) obtained in the last section

provides all the tools we need for the mean-�eld limit. Let ((V
i

t)t≥0)i∈[N ] be

N independent copies of solutions to the mean-�eld dynamics (2.4). They

are i.i.d. with the same distribution ρt and we assume that ((V i
t )t≥0)i∈[N ] is

the solution to the particle system (2.1). Since V
i

t, V
i
t ∈ Γ for all i and t,

((V
i

t)t≥0)i∈[N ] and ((V i
t )t≥0)i∈[N ] are solutions to the corresponding regularized

systems, (2.29) and (2.10) respectively. We denote below ρNt = 1
N

∑N
j=1 δV jt

and ρt = law(V t).

Before stating our theorem on the mean-�eld limit, let us introduce the
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following lemma on a large deviation bound.

Lemma 2.3. Let E and Ẽ satisfy Assumptions 2.1 and 2.2. Let ((V
i

t)t≥0)i∈[N ]

be the solution to the mean-�eld dynamics (2.29), which are i.i.d. with com-

mon distribution ρ ∈ C([0, T ],P2(Rd)). Then, there exists a constant C de-

pending only on Cα,Ẽ and M = diam(Γ) such that

sup
t∈[0,T ]

E
[
|vα,Ẽ(ρ

N
t )− vα,Ẽ(ρt)|

2
]
≤ CN−1 . (2.40)

Idea of the proof. The calculations can be carried out exactly as in [16]: we

bound quantities

Z
j

t := V
j

te
−αẼ(V

j
t ) −

∫
Rd
ve−αẼ(v)dρt , (2.41)

thanks to the existence of a supremum and an in�mum of Ẽ .

We note that C ∝ C3
α,E and it goes to in�nity exponentially in α as

α→∞ and that C here depends on M . We can now present the mean-�eld

limit result, which relates the empirical measure ρNt to ρt, the solution of the

mean-�eld PDE.

Theorem 2.6. Under the Assumptions 2.1 and 2.2, for any T > 0, let

((V i
t )t∈[0,T ])i∈[N ] and ((V

i

t)t∈[0,T ])i∈[N ] be respective solutions to (2.1) and (2.4)

up to time T with the same initial data V i
0 = V

i

0 and the same Brownian

motions ((Bi
t)t∈[0,T ])i∈[N ]. Then, there exists a constant C > 0 depending

only on α, σ, ‖∇P1‖∞, ‖P1‖∞, ‖∇P2‖∞, ‖P2‖∞, ‖∇P3‖∞, ‖P3‖∞, L, M
and Cα,Ẽ , such that

sup
i=1,··· ,N

E[|V i
t − V

i

t|2] ≤ CT
(
1 + CTeCT

) 1

N
, (2.42)

holds for all 0 ≤ t ≤ T .

We remark that the estimate above guarantees the weak convergence of
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the empirical measure ρNt towards ρt, in the following sense

sup
t∈[0,T ]

E
[
|〈ρNt , φ〉 − 〈ρt, φ〉|2

]
→ 0 as N →∞ (2.43)

for any test function φ ∈ C1
b (Rd).

Indeed, one has

E
[
|〈ρNt , φ〉 − 〈ρt, φ〉|2

]
= E

∣∣∣∣∣ 1

N

N∑
i=1

φ(V i
t )−

∫
Rd
φ(v)dρt(v)

∣∣∣∣∣
2


≤2E
[
|φ(V 1

t )− φ(V
1

t )|2
]

+ 2E

∣∣∣∣∣ 1

N

N∑
i=1

φ(V
i

t)−
∫
Rd
φ(v)dρt(v)

∣∣∣∣∣
2
 ≤ C

N
‖φ‖2

C1 .

Idea of the proof. Given that ((V
i

t)t≥0)i∈[N ] and ((V i
t )t≥0)i∈[N ] are also solu-

tions to the corresponding regularized systems (2.29) and (2.10) respectively,

the following holds

d(V i
t − V

i

t) = λ
(
P1(V i

t )vα,Ẽ(ρ
N
t )− P1(V

i

t)vα,Ẽ(ρt)
)
dt

+ σ
(
|V i
t − vα,Ẽ(ρ

N
t )|P1(V i

t )− |V i

t − vα,Ẽ(ρt)|P1(V
i

t)
)
dBi

t

− σ2

2

(
(V i

t − vα,Ẽ(ρ
N
t ))2P2(V i

t )P3(V i
t )− (V

i

t − vα,Ẽ(ρt))
2P2(V

i

t)P3(V
i

t)
)
dt .

Then, we then Itô's formula to d(V i
t −V

i

t)
2 and carry out the calculations

in order to obtain an estimate in terms of |V i
t − V

i

t|2 itself.

If we examine the expectation afterwards, it holds:

E[|V i
t − V

i

t|2] ≤ E[|V i
0 − V

i

0|2]

+ C

∫ t

0

∑N
i=1 E[|V i

s − V
i

s|2]

N
ds+ C

∫ t

0

E[|V i
s − V

i

s|2]ds

+ C

∫ t

0

E
[
|vα,Ẽ(ρ

N
s )− vα,Ẽ(ρs)|

2
]
ds (2.44)
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We use Lemma 2.3 and Grönwall's inequality together with E[|V i
0 −V

i

0|2] = 0

to get

sup
i=1,··· ,N

E[|V i
t − V

i

t|2] ≤ CT
(
1 + CTeCT

) 1

N
, (2.45)

for all t ∈ [0, T ], which completes the proof.

Let us draw the attention to the constant C > 0 appearing in the estimate

above. C may depend on the dimension through the norm of P2 or ∇P2.

Nevertheless, we expect this dependency to scale at most linearly as d − 1.

In fact, for the case Γ = Sd−1, we have P2(v) = ∆γ(v) = d−1
|v| . Fornasier et al.

suggest in [16] that, in general, there is no curse of dimensionality involved

in estimates of the type of (2.45).



Chapter 3

Convergence Estimates

In this chapter we will attempt to analyze the large time behavior of the

solution ρt ∈ P2(Γ) of the mean-�eld PDE, the Fokker-Planck equation

∂tρt = λ∇Γ · ((P (v)(v − vα,E(ρt))ρt) +
σ2

2
∆Γ

(
|v − vα,E(ρt)|2ρt

)
, (3.1)

for t > 0, v ∈ Γ and with initial data ρ0 ∈ P2(Γ). As in [8] and [17], we focus

on the moments

E(ρt) =

∫
Γ

v dρt(v) and V (ρt) =
1

2

∫
Γ

|v − E(ρt)|2dρt(v)

in order to study the evolution of ρt.

Ideally, we would like to provide su�cient conditions on E , the parameters

{λ, σ, α} and ρ0 such that a uniform consensus formation among a minimizer

v∗ happens, more precisely, such that

ρt −→ δv∗ as t→∞ . (3.2)

In practice, this has been shown to be a challenging task both for the CBO

method for unconstrained optimization and for the method developed for

constrained optimization on the sphere, see [8] and [17]. The main di�culties

lie on the fact that, if on one hand we need to choose α to be large in order to

33
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apply the Laplace principle (1.8), on the other hand this makes the moments

estimation much harder.

What it is possible to prove, both when the domain Ω of the objective

function E is Rd and when Ω = Sd−1 is that, for any ε > 0, there exists a

choice of the parameters α, λ, σ and speci�c conditions on the initial datum

ρ0, such that at some time T > 0 it holds

|E(ρT )− v∗| ≤ ε , (3.3)

where v∗ is a minimizer of E . Even though this is a di�erent result from

(3.2), the analysis sheds some light on the evolution of ρt and, hence, on the

particles dynamics of the CBO method.

Section 3.1, illustrates the main techniques that have been employed in

[8,17]. We start by studying the consensus formation of CBO systems and by

focusing on how to prove the exponential decay of the variance. In Section

3.2, we attempt to adapt these techniques to the solution ρt of the mean-�eld

PDE (3.1) de�ned on the hypersurface Γ and discuss the main di�culties that

the constraint involves. We will computationally investigate the presented

results with an example of constrained optimization on the three-dimensional

torus, Section 3.3, and provide the proof of the auxiliary lemmas, Section 3.4.

Before we start, we present the class of functions we will consider through-

out this chapter. The objective function E is a C2(Ω) function within its

domain Ω. Depending on the context, Ω will be the whole space Rd, or a

neighborhood of Sd−1 or of Γ, a generic hypersurface. Moreover, we assume

E to satisfy the following properties.

Assumption 3.1.

1. E is bounded and 0 ≤ E := inf E ≤ sup E =: E <∞;

2. ‖∇E‖∞ ≤ c1;

3. max{‖∇2E‖∞, ‖∆E‖∞} ≤ c2;
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4. For any v ∈ Ω, there exists a minimizer v∗ ∈ Ω of E (which may depend

on v) such that it holds

|v − v∗| ≤ C0|E(v)− E|β ,

where β, C0 are some positive constants.

The boundedness of E , as we will see, is a key factor in the analysis of the

consensus. This is automatically ful�lled (as soon as smoothness is provided)

when we consider a compact Ω. The inverse continuity assumption 4., which

needs to be veri�ed depending on the speci�c application, is more technical

and it is another key assumption for the proofs since it will allow us to use

the Laplace principle.

In the next section, we show how we can obtain convergence guarantees

for the CBO method designed for the unconstrained optimization method

introduced in [33].

3.1 Convergence guarantees for unconstrained

CBO

In this section, we brie�y present the CBO method introduced in [33] to

solve the problem

min
v∈Rd
E(v)

and its convergence guarantees. We remark that, even if the proof strategy is

similar, the results we illustrate di�er from the original analysis made in [8]

since some of the arguments presented important issues. In particular, we

will observe that, in order to have convergence in sense of (3.3), the initial

datum ρ0 needs to be already well-concentrated, in the sense that V (ρ0) needs

to be su�ciently small.

In these simple settings, the particles (V i
t )i=1,...,N satisfy the system of



36 CHAPTER 3. CONVERGENCE ESTIMATES

SDEs

dV i
t = −λ(V i

t − vα,E(ρNt ))dt+ σ|V i
t − vα,E(ρNt )|dBi

t (3.4)

where, as before, ρNt denotes the empirical measure at time t. We then

consider ρt ∈ P(Rd) which describes the evolution of the one-particle process

resulting from the mean-�eld limit. The Fokker-Planck equation in this case

reads

∂tρt = λ∇ · ((v − vα,E(ρt))ρt) +
σ2

2
∆
(
|v − vα,E(ρt)|2ρt

)
, (3.5)

for t > 0, v ∈ Rd and with initial datum ρ0.

We �rst enunciate two auxiliary lemmas and, then, the statement of the

convergence guarantees, together with the main results the proof is based on.

Lemma 3.1. Let vα,E be de�ned as the expectation with respect to the measure

ωαE /‖ωαE ‖L1(ρt)dρt, it holds∫
Ω

|v − vα,E |2 dρt(v) ≤ 2Cα,EV (ρt) , where Cα,E := e−α(E−E) . (3.6)

Lemma 3.2. The derivatives of ωαE (v) = e−αE(v) are:

∇ωαE = −αe−αE∇E ∈ Rd ;

∇2ωαE = −α(−α∇E ⊗∇E +∇2E) ∈ Rd×d ;

∆ωαE = α2e−αE |∇E|2 − αe−αE∆E ∈ R .

Theorem 3.1. Let ρt be the solution of (3.5). For any ε > 0 there exists

a choice of parameters α, λ, σ such that, if the initial datum ρ0 satis�es the

condition

V (ρ0) ≤ ‖ωαE ‖2
L1(ρ0) (3.7)

for some T > 0, it holds

|E(ρt)− v∗| ≤ ε (3.8)

for some minimizer v∗ of E.

Remark 3.1. The reason why we need to assume (3.7) will become clear in
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the proof of Proposition 3.1. The condition characterizes the result as local.

The initial distribution ρ0 (and so the particles) needs to be concentrated in

order to have a convergent behavior at later times t > 0 . Moreover, we recall

that since

‖ωαE ‖L1(ρ0) =

∫
e−αE(v)dρ0(v)

vanishes as α→∞, the condition is more restrictive if α is large.

Remark 3.2. The original analysis attempted to show that, for any given

0 < ε � 1 there exist some parameters {α, λ, σ} such that ρt −→ ṽ for

t → ∞, with |ṽ − v∗| ≤ ε (see [8, Theorem 4.2]). It is certainly possible to

show that, if the parameters are carefully chosen, ρt concentrates around a

point ṽ. However, limiting the evolution to a time horizon T seems to be a

necessary condition for proving the concentration of the solution ρt around

a minimizer (informally, ṽ ∈ Bε(v
∗)). Indeed, the reason why we have to

consider t to be bounded by the time horizon T will become clear in the proof

of Proposition 3.1.

Idea of the proof of Theorem 3.1. As in the sphere case, the proof of the the-

orem is based on the inverse continuity assumption, which assumes that there

exists a minimizer v∗ such that

|E(ρt)− v∗| ≤ C0|E(E(ρt))− E|β . (3.9)

An estimate of the RHS is then given by triangular inequality as follows:

|E(E(ρt))− E| ≤
∣∣∣∣E(E(ρt))−

−1

α
log ‖ωαE ‖L1(ρt)

∣∣∣∣+

∣∣∣∣−1

α
log ‖ωαE ‖L1(ρt) − E

∣∣∣∣ .
The �rst term can be bounded by showing the variance decay, whereas for

the second term one needs to make use of the Laplace principle. In view

of our purpose, we focus now on how we can demonstrate the variance de-

cay. Indeed, this will be interesting for later analysis when we consider the

dynamics on hypersurfaces.
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By the dual representation of 1-Wasserstein distance W1, we know that

∣∣‖ωαE ‖L1(ρt) − ωαE (E(ρt))
∣∣ =

∣∣∣∣∫
Rd
e−αEd(ρt(v)− δE(ρt)(v))

∣∣∣∣
≤ αe−αE‖∇E‖∞W1(ρt, δE(ρt))

≤ αc1e
−αEW2(ρt, δE(ρt)) ≤

√
2αc1e

−αEV (ρt)
1
2 ,

which implies∣∣∣∣E(E(ρt))−
−1

α
log ‖ωαE ‖L1(ρt)

∣∣∣∣ =

∣∣∣∣ 1α logωαE (E(ρt))−
−1

α
log ‖ωαE ‖L1(ρt)

∣∣∣∣
≤ eαE

α

∣∣‖ωαE ‖L1(ρt) − ωαE (E(ρt))
∣∣

≤
√

2c1Cα,EV (ρt)
1
2 .

We show now that, if the condition

2λ > dσ2Cα,E (3.10)

holds, then the variance V (ρt) decays exponentially. A simple computation

of the evolution of the variance through the corresponding Itô's formula gives

d

dt
V (ρt) = −λ

∫
Rd

(v − E(ρt))
t(v − vα,E)dρt(v) +

dσ2

2

∫
Rd
|v − vα,E |2dρt(v)

(3.11)

= −2λV (ρt) +
dσ2

2

∫
Rd
|v − vα,E |2dρt(v)

≤ −
(
2λ− dσ2Cα,E

)
V (ρt) (3.12)

and, thus, we can conclude

V (ρt) ≤ V (ρ0)e−(2λ−dσ2Cα,E)t (3.13)

by the Grönwall's inequality.
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As we will see in Section 3.3, this simple argument is extremely di�cult to

generalize in the case of generic hypersurfaces Γ, mainly because the operator

P (v) breaks the symmetry we have in (3.11).

3.2 Converge estimate on hypersurfaces

In this section, we will study the evolution of ρt, the solution of the (3.1)

de�ned on the hypersurface Γ. We will attempt to adapt the techniques

presented in Section 3.1 and in [17] and discuss what the major complications

caused by considering the dynamics to be constrained on Γ are. Indeed, even

though we are able to formally derive the mean-�eld limit process, which is

still an open issue for unconstrained CBO, the drawback of these settings is

that the geometry of Γ makes it extremely hard to prove the variance decay

through arguments like the ones employed in Theorem 3.1.

Given that the inverse continuity property holds only for v ∈ Γ, we slightly

modify the previous approach, inequality (3.9), and we bound |E(ρt) − v∗|
in the following way

|E(ρt)− v∗| ≤ |E(ρt)− Π(E(ρt))|+ |Π(E(ρt))− v∗| , (3.14)

where Π(·) is the projection de�ned on a neighborhood of Γ such that Π(w) =

argminv∈Γ |v − w|. We assume here that Π(E(ρt)) is well-de�ned for any t

we consider. Similarly to (3.9), we obtain

|Π(E(ρt))− v∗| ≤ C0|E(Π(E(ρt)))− E|β . (3.15)

The main result of this section is how we can further bound these es-

timates in terms of the variance V (ρt) and through the use of the Laplace

principle. The results we present consist of a generalization of the analysis

carried out in [17] where Γ is considered to be Sd−1.

Theorem 3.2. For any ε > 0, �xed parameters λ, σ and time horizon T ,
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there exists α� 1 such that, if ρ0 satis�es

VT = sup
t∈[0,T ]

V (ρt) ≤ ‖ωαE ‖4
L1(ρ0), (3.16)

it holds for any t ∈ [0, T ]

|E(ρt)− v∗| ≤
√

2V (ρt)
1
2 + C(C0, c1, β)

(
Cβ
α,EV (ρt)

β
2 + εβ

)
. (3.17)

Before we provide the proof of the Theorem, let us �rst discuss how we

can adapt the same technique that has been used in Section 3.1 to �t our

case.

Firstly, we need to estimate the RHS in equation (3.15) as follows:

|E(Π(E(ρt)))− E| ≤
∣∣∣∣E(Π(E(ρt)))−

−1

α
log ‖ωαE ‖L1(ρt)

∣∣∣∣
+

∣∣∣∣−1

α
log ‖ωαE ‖L1(ρt) − E

∣∣∣∣ . (3.18)

We note that, in order to estimate the second term above, we will make use

of the Laplace principle. Proposition 3.1 will allow us to investigate what the

relation between the Laplace principle and the evolution of the distribution

ρt is. In particular, we show that if

− 1

α
log ‖ωαE ‖L1(ρ0) − E ≤ ε

and if α is su�ciently large, we expect this bound to hold also for ρt for any

t ∈ [0, T ], where T > 0 is a �xed time horizon.

In order to do so, we will require V (ρt) to be bounded by ‖ωαE ‖4
L1(ρ0) for

all t ∈ [0, T ]. Even though this seems a strong assumption, especially be-

cause ‖ωαE ‖4
L1(ρ0) goes to 0 as α → ∞, we claim it is a reasonable condition

given the exponential decay of the variance we showed in Section 3.1 for the

unconstrained settings and the results obtained in [17]. We will computa-

tionally investigate the variance decay for our CBO method on hypersurfaces
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in Section 3.3.

In view of the proof of Proposition 3.1, we present the following auxiliary

Lemma which provides us with a lower bound on the norm of the weights

‖ωαE ‖L1(ρt).

Lemma 3.3. Let c1, c2 be the bounds on the derivatives of E and cγ the bound
on the second derivatives of γ (see De�nition (1.1)). Then we have:

d

dt
‖ωαE ‖2

L1(ρt)
≥ −σ2b1(cγ, α, c1, c2, E)V (ρt)− λb2(α, c1, E)V (ρt)

1
2 (3.19)

with b1, b2 ≥ 0 and b1, b2 → 0 as α→∞.

Proposition 3.1. For any ε > 0, �xed parameters λ, σ and time horizon T ,

there exists α� 1 such that, if ρ0 satis�es

VT := sup
t∈[0,T ]

V (ρt) ≤ ‖ωαE ‖4
L1(ρ0), (3.20)

it holds for any t ∈ [0, T ]

− 1

α
log ‖ωαE ‖L1(ρt) − E ≤ ε. (3.21)

Proof. From Lemma 3.3,

‖ωαE ‖2
L1(ρt)

≥ ‖ωαE ‖2
L1(ρ0) − σ2b1(α)

∫ t

0

V (ρs)ds− λb2(α)

∫ t

0

V (ρt)
1
2

≥ ‖ωαE ‖2
L1(ρ0) − σ2b1(α)VT t− λb2(α)V

1
2
T t ≥

≥ ‖ωαE ‖2
L1(ρ0) − σ2b1(α)‖ωαE ‖2

L1(ρ0)t− λb2(α)‖ωα,E‖2
L1(ρ0)t,

where we used that condition (3.20) implies:

VT ,V
1
2
T ≤ ‖ωαE ‖2

L1(ρ0).
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We then have the following estimate for any t ∈ [0, T ]:

− 1

α
log ‖ωαE ‖L1(ρt) ≤ −

1

α
log ‖ωαE ‖L1(ρ0) −

1

2α
log(1− σ2b1(α)t− λb2(α)t).

By the Laplace principle, (1.8), it holds that for any α greater than a

certain α0,

− 1

α
log ‖ωαE ‖L1(ρ0) − E ≤

ε

2
.

Moreover, as b1, b2 −→ 0 as α→∞, see Lemma 3.3,

− 1

2α
log(1− σ2b1(α)t− λb2(α)t) ≤ ε

2

if α > α1 for a certain α1 > α0 su�ciently large. We can, thus, conclude

that

− 1

α
log ‖ωαE ‖L1(ρt) − E ≤ ε ∀ t ∈ [0, T ] .

We now estimate the �rst term in (3.18), by adapting the technique used

in the proof of Theorem 3.1.

Proposition 3.2. The following inequality holds for any ρt ∈ P2(Γ):∣∣∣∣− 1

α
‖ωαE ‖L1(ρt) − E

(
Π(E(ρt))

)∣∣∣∣ ≤ 2c1Cα,EV (ρt)
1
2 . (3.22)

Proof. The dual representation of 1-Wasserstein distanceW1, see for instance

[36, Theorem 4.12, Chapter 1], states that if µ, ν ∈ P have bounded support,

then the 1-Wasserstein distance can be equivalently expressed in terms of the

dual formulation

W1(µ, ν) := sup

{∫
Rd
f(v)d(µ− ν)(v)

∣∣∣ f ∈ Lip(Rd),Lip(f) ≤ 1

}
.
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We can make an estimate as the following∣∣∣∣‖ωαE ‖L1(ρt) − ωαE
(
Π(E(ρt))

)∣∣∣∣ =

∣∣∣∣ ∫ e−αE(v)d
(
ρt(v)− δ

(
Π(E(ρt))

)
(v)
)∣∣∣∣ ≤

≤ αe−αE‖∇E‖∞W1

(
ρt, δ

(
Π(E(ρt))

))
≤

≤ αc1e
−αEW2

(
ρt, δ

(
Π(E(ρt))

))
≤

≤ 2αc1e
−αEV (ρt)

1
2 .

Where the last inequality follows from:

W2(ρt, δΠ(E(ρt)))
2 ≤

∫
|v − Π(E(ρt))|2dρt =

=

∫
|v − E(ρt) + E(ρt)− Π(E(ρt))|2dρt

≤ 2V (ρt) + γ(E(ρt))
2 ≤ 4V (ρt).

Above we used the de�nition of γ as the signed distance, |γ(w)| = dist(w,Γ)

for all w ∈ Rd, which implies, by considering w = E(ρt),

|γ(E(ρt))| ≤ |E(ρt)− v|

for any v ∈ Γ. Therefore, we get

γ(E(ρt))
2 ≤

∫
|E(ρt)− v|2dρt(v) = 2V (ρt) .

Finally, we obtain the desired estimate in terms of V (ρt).∣∣∣∣− 1

α
‖ωαE ‖L1(ρt) − E

(
Π(E(ρt))

)∣∣∣∣ =

∣∣∣∣− 1

α

(
log ‖ωαE ‖L1(ρt) − logωαE

(
Π(E(ρt))

))∣∣∣∣
≤ eαE

α

∣∣∣∣‖ωαE ‖L1(ρt) − ωαE
(
Π(E(ρt))

)∣∣∣∣
≤ 2c1Cα,EV (ρt)

1
2 .
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We will now prove Theorem 3.2.

Proof of Theorem 3.2. As above, |E(ρt)− Π(E(ρt))| = |γ(E(ρt)| implies

|E(ρt)− Π(E(ρt))| ≤
∫
|E(ρt)− v|dρt

≤
√

2V (ρt)
1
2

by Hölder's inequality.

Moreover, by collecting the results from Propositions 3.1 and 3.2, there

exists α large enough such that

|E(Π(E(ρt)))− E| ≤
∣∣∣∣E(Π(E(ρt)))−

−1

α
log ‖ωαE ‖L1(ρt)

∣∣∣∣+

∣∣∣∣−1

α
log ‖ωαE ‖L1(ρt) − E

∣∣∣∣
≤ 2c1Cα,EV (ρt)

1
2 + ε.

We can, then, conclude that there exists a constant C that depends only on

C0, c1, β for which it holds

|E(ρt)− v∗| ≤ |E(ρt)− Π(E(ρt))|+ |Π(E(ρt))− v∗|

≤ |E(ρt)− Π(E(ρt))|+ C0|E(Π(E(ρt)))− E|β

≤
√

2V (ρt)
1
2 + C(C0, c1, β)

(
Cβ
α,EV (ρt)

β
2 + εβ

)
.

Theorem 3.2 states that, provided the parameter α is su�ciently large, if

the distribution ρt concentrates, it concentrates around a minimizer v∗ of E .
Therefore, in the next section, we analyze the behavior of the variance as ρt

evolves.

3.3 Variance decay

As Theorem 3.2 shows, the variance V (ρt) not only gives a measure on

how concentrated ρt is, but also on how well E(ρt) approximates a global
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minimizer v∗. For this reason, being able to bound and to show the decay of

V (ρt) is a key aspect if our goal is to provide convergence guarantees for the

CBO method around a minimizer v∗.

In this section, we will try to understand why the geometry of Γ makes

this task extremely hard and we will computationally show how the choice

of the parameters α, λ, σ in�uences the behavior of ρt. We remark that, in

the speci�c case where Γ = Sd−1, it is possible to show an exponential decay

of the V (ρt) thanks to the simple geometry of the sphere [17].

We start by demonstrating the following estimate on the derivative of

V (ρt).

Proposition 3.3. Let ρt be the solution of (3.1) with initial datum ρ0, it

holds for any t > 0

d

dt
V (ρt) ≤ −λ

∫
Γ

|P (v)(v − E(ρt))|2dρt(v)

+ 8λcγV (ρt)
3
2 + 8σ2V (ρt)Cα,E(cγ + d− 1) . (3.23)

Remark 3.3. Even if Proposition 3.3 does not imply the variance decay, it

gives interesting insights into the evolution of V (ρt). First of all, it shows

analytically that, in order to have consensus, we need λ � σ. Indeed, only

one of the three terms comprising the RHS of (3.23) is negative and depends

on λ. The term that depends on σ is positive and, hence, does not contribute

to the variance decay.

Similarly, it suggests that a large α inhibits the variance zeroing. We will

attempt to computationally investigate these aspects at the end of this section.

Lemma 3.4. Let P be de�ned as P (v) = I −∇γ(v)∇γ(v)t. For all u, v ∈ Γ

and w ∈ Rd, it holds

‖P (u)− P (v)‖2 ≤ 2cγ|u− v| (3.24)

where with ‖.‖2 we denote the operator norm.
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Proof of Proposition 3.3. Let us �rst calculate the derivative of V (ρt) through

the Itô's formula (2.6):

d

dt

1

2

∫
v2dρt(v) = −λ

∫
v · P (v)(v − vα,E)dρt + σ2

∫
v · |v − vα,E |2∆γ(v)∇γ(v)dρt

+ σ2(d− 1)

∫
|v − vα,E |2dρt

d

dt

1

2
E(ρt)

2 = E(ρt)
d

dt
E(ρt)

= E(ρt)

(
− λ

∫
P (v)(v − vα,E)dρt + σ2

∫
|v − vα,E |2∆γ(v)∇γ(v)ρt

)
which implies

d

dt
V (ρt) =

d

dt

1

2

∫
v2 − E(ρt)

2dρt

= −λ
∫

(v − E(ρt))P (v)(v − vα,E)dρt + σ2

∫
(v − E(ρt))∇γ(v)|v − vα,E |2∆γ(v)dρt

+ σ2(d− 1)

∫
|v − vα,E |2dρt =: Iλ + Iσ .

Let us �rst consider Iλ, which we rewrite in the following way:

Iλ = −λ
∫

(v − E(ρt))
tP (v)(v − vα,E)dρt

= −λ
∫

(v − E(ρt))
tP (v)(v − E(ρt))dρt − λ

∫
(v − E(ρt))

tP (v)(E(ρt)− vα,E)dρt

≤ −λ
∫
|P (v)(v − E(ρt))|2dρt − λ(E(ρt)− vα,E)

∫
P (v)(v − E(ρt))dρt .

where we used that P (v) = P (v)P (v). In fact, keeping in mind that |∇γ(v)| =
1 for all v ∈ Rd,

P (v)P (v) = (I −∇γ(v)∇γ(v)t)(I −∇γ(v)∇γ(v)t)

= I − 2∇γ(v)∇γ(v)2 +∇γ∇γt∇γ∇γt

= I −∇γ(v)∇γ(v)t = P (v) .
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Now, we know that ∫
P (E(ρt))(v − E(ρt))dρt = 0

and, hence, by Lemma 3.4 and the Cauchy-Schwarz inequality it holds

−
∫
P (v)(v − E(ρt))dρt = −

∫
(P (v)− P (E(ρt))) (v − E(ρt))dρt

≤
∫
‖P (v)− P (E(ρt))‖2|v − E(ρt)|dρt

≤ 2cγ

∫
|v − E(ρt)|2dρt = 4cγV (ρt) .

Moreover, by Jensen's inequality and Lemma 3.1 we can bound |E(ρt)−vα,E |
as follows

|E(ρt)− vα,E | ≤ 2Cα,EV (ρt)
1
2 .

Finally, we obtain an upper bound for Iλ

Iλ ≤ −λ
∫
|P (v)(v − E(ρt))|2dρt + 8λcγCα,EV (ρt)

3
2 . (3.25)

The second integral depends on σ2 and can be estimated through Cauchy-

Schwarz inequality and Lemma 3.1

Iσ = σ2

∫
(v − E(ρt))∇γ(v)|v − vα,E |2∆γ(v)dρt + σ2(d− 1)

∫
|v − vα,E |2dρt

≤ σ2

∫
|v − E(ρt)||v − vα,E |2cγdρt + σ2(d− 1)

∫
|v − vα,E |2dρt

≤ σ2
(

8Cα,EV (ρt)
3
2 + 4(d− 1)Cα,EV (ρt)

)
≤ 8σ2Cα,E(cγ + d− 1).

We note that Iσ goes to zero as σ → 0. This concludes the proof.

Proposition 3.3 illustrates how the analysis is made more complicated by

considering the dynamics to be constrained on a hypersurface Γ. In detail,

this is attributed to the singularity of the projection matrix P (v).
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Indeed, let us focus on a simple example, where Γ is the Torus. In these

settings, projection Π(w) is well-de�ned for any w ∈ Rd and, by simple

geometric arguments, it is possible to show that

P (Π(E(ρt))) (Π(E(ρt))− E(ρt)) = 0. (3.26)

We remark that Π(E(ρt)) ∈ Γ and so it is not possible to directly claim that

there exists δ > 0 such that

|P (v)(v − E(ρt))|2 ≥ δ|v − E(ρt)|2

for all v ∈ Γ and consequently that

−
∫
|P (v)(v − E(ρt))|2dρt ≤ −δ

∫
|v − E(ρt)|2dρt. (3.27)

In practice, this means that, as the system evolves, if a particle belongs to

a region of Γ such that (v−E(ρt)) is close to be a singular value of P (v), then

the step size of the particle will be particularly small. We conjecture that, in

pathological situations, a particle could also be captured in this region and,

hence, prevent the mechanism from creating a complete consensus around a

minimizer.

In Figure 3.3 we plot the quantity

δ(v) =
|P (v)(v − E(ρt))|2

|v − E(ρt)|2
(3.28)

for v ∈ Γ = T2 and E(ρt) = (0, 1, 0.5)t. The �gure shows that in large

regions of the Torus, δ(v) is small and, hence, P (v) has a big impact on the

dynamics.

Remark 3.4. As already mentioned, [17] shows that, when considering Γ =

Sd−1, it is possible to prove the exponential decay of the Variance, at the price

of a correction term of the type O(δ
d−2
4 ). More formally, if δ > 0 and the

parameters {λ, α, σ} are carefully chosen, there exist θ > 0 (θ ∼ λδ) and



3.3. VARIANCE DECAY 49

Figure 3.1: Plot of the quantity δ(v) = |P (v)(v−E(ρt))|2/|v−E(ρt)|2, which
gives a measure of the impact of the operator P (·) on the dynamics. Indeed,
if a particle belongs to a region where δ(v) is small, P (·) reduces the particle
motion. E(ρt) is considered to be the point (0, 1, 0.5)t.
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C > 0 such that:
d

dt
V (ρt) ≤ −θV (ρt) + Cδ

d−2
4

for t ∈ [0, T ]. Hence, by Grönwall's inequality one can conclude that

V (ρt) ≤ V (ρ0)e−θt +
Cδ

d−2
4

θ

for any t up to the time horizon T > 0.

We conclude the chapter by brie�y analyzing the in�uence of the parame-

ters α, λ, σ on the variance decay. As we have already discussed, Proposition

3.3 suggests that, in order to create consensus, we need

λ� σ2Cα,E . (3.29)

Naturally, we would expect that a large drift parameter λ boosts the con-

sensus mechanism, while a large stochastic component, i.e. σ large, inhibits

it. In �gure 3.3 we recognize this behavior. Namely, large values of λ drasti-

cally improve the variance decay. At the same time, when large values of σ

are considered, we note several oscillations in the evolution of the variance,

indicative of an unstable system.

On the other hand, condition (3.29) suggests that large values of α have

a negative impact on the variance decay. In Figure 3.3, we consider di�erent

values of α and we plot both the variance evolution (left) and approximation

of the quantity

V (ρt)
∗ :=

∫
|v − v∗|dρt(v)

which gives as a measure of the concentration of ρt around the minimizer.

We note that even large values of α do not impede a fast variance decay.

A possible explanation could be that estimates of the type of Lemma 3.1,∫
|v − vα,E |2dρt(v) ≤ 2Cα,EV (ρt)

are inaccurate, since the constant Cα,E increases exponentially as α → ∞.
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Figure 3.2: Plots of the variance decay for di�erent values of λ (left), σ
(right). The solution of the mean-�eld PDE is approximated by considering
a stochastic system of 104 particle uniformly distributed on T2 at the time
t = 0, with ∆t = 0.05 up to T = 7.5. The variance is de�ned as V (ρNt )
where ρNt is the empirical measure. We plot the result of a single simulation
in order to underline the presence of variance oscillations.

Nevertheless, large values of α slightly improve the convergence around the

minimizer. As we will see in Chapter 4, this behavior is stronger when we

consider the microscopic system and not its mean-�eld approximation.

3.4 Proofs of auxiliary lemmas

Proof of Lemma 3.1. Thanks to the Jensen's inequality, we obtain∫
Ω

|v − vα,E |2 dρt(v) =
∫

Ω

∣∣∣v − ∫Ω
u e−αE(u)

‖ωαE ‖L1(ρt)
dρt(u)

∣∣∣2 dρt(v)

≤
∫

Ω
|v − u|2 e−αE(u)

‖ωαE ‖L1(ρt)
dρt(u)dρt(v).

We now employ the inequalities e−αE(v) ≤ e−E and ‖ωαE ‖L1(ρt) ≥ e−αE and

conclude that∫
Ω

|v − vα,E |2 dρt(v) ≤ Cα,E

∫
Ω

|u− v|2dρt(u)dρt(v) = 2Cα,EV (ρt). (3.30)
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Figure 3.3: Plots of the variance decay and of V ∗(ρt) for di�erent values of
α. The solution of the mean-�eld PDE is approximated by considering a
stochastic system of 104 particle, with ∆t = 0.05, T = 7.5. V (ρt) and V

∗(ρt)
are approximated by considering ρNt , the empirical measure.The results are
the average of 100 simulations.

We remark that from this estimate, it directly follows by Hölder's in-

equality ∫
Ω

|v − vα,E | dρt(v) ≤ 2Cα,EV (ρt)
1
2 . (3.31)

Proof of Lemma 3.4. Let w ∈ Rd, we have that

∣∣(P (v)− P (u))w
∣∣ =

∣∣(∇γ(u)∇γ(u)t −∇γ(v)∇γ(v)t
)
w
∣∣

=
∣∣(∇γ(u)∇γ(u)t −∇γ(v)∇γ(u)t

)
w
∣∣

+
∣∣(∇γ(v)∇γ(u)t −∇γ(v)∇γ(v)t

)
w
∣∣

=
∣∣(∇γ(u)−∇γ(v)

)
∇γ(u)tw

∣∣+
∣∣∇γ(v)

(
∇γ(u)t −∇γ(v)t

)
w
∣∣

≤ 2
∣∣(∇γ(u)−∇γ(v)

)t
w
∣∣

≤ 2 sup ‖∇2(ξ)‖2 |u− v||w| ≤ 2cγ|u− v||w|.
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Proof of Lemma 3.3. By Itô's formula (2.6), it holds

d

dt
‖ωαε ‖L1(ρt) =

∫
Rd
∇ωαε ·

(
− λP (v)(v − vα,E)(ρt)−

σ2

2
(v − vα,E(ρt))2∆γ(v)∇γ(v)

)
dρt(v)

+

∫
Rd

σ2

2
(v − vα,E(ρt))2∇2ωαε : P (v)dρt(v)

= −
∫
Rd
∇ωαε · (λP (v)(v − vα,E)(ρt))dρt(v)

+

∫
Rd
−∇ωαε ·

σ2

2
(v − vα,E(ρt))2∆γ(v)∇γ(v)

+
σ2

2
(v − vα,E(ρt))2∇2ωεα : P (v)dρt(v) =

=: Iλ + Iσ .

We now separately estimate from below these two integrals. By Lemma

3.2, Iσ can be rewritten as the following

Iσ =

∫
Rd

σ2

2
(v − vα,E)2

(
−∇ωαE ·∆γ∇γ +∇2ωαE : P (v)

)
dρt

=
σ2

2

∫
Rd
|v − vα,E |2e−αE

(
α∇E · ∇γ∆γ + (α2|∇E|2 − α∆E)

−∇γ(v)⊗∇γ(v) : [α∇E ⊗∇E +∇2E ]

)
dρt

≥ σ2

2
e−αE

∫
Rd
|v − vα,E |2

(
− αc1|∆γ(v)| − αc2 − α2c1 − αc2

)
dρt

≥ −ασ
2

2
e−αE(c1cγ + 2c2 + αc1)

∫
Rd
|v − vα,E |2dρt

where we used that ‖∇E‖∞ ≤ c1, |∆γ(v)| ≤ cγ and that |∇γ(v)| = 1 for all
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v. By the Jensen's inequality, we obtain

Iσ ≥ −α
σ2

2
e−αE(c1cγ + 2c2 + αc1)

∫
Rd
|v − E(ρt)|2

e−αE(v)

‖ωα,E‖L1(ρt)

dρt(v)

≥ −ασ
2

2
e−2αE(c1cγ + 2c2 + αc1)

1

‖ωα,E‖L1(ρt)

∫
Rd
|v − E(ρt)|2dρt(v)

≥ −σ2b1(cγ, α, c1, c2, E)
V (ρt)

‖ωα,E‖L1(ρt)

(3.32)

with b1 −→ 0 as α→ 0, b1 ≥ 0.

Furthermore, we can estimate Iλ as the following:

Iλ = λα

∫
e−αE∇E · P (v)(v − vα,E)dρt

= λα

∫∫
e−α(E(u)+E(v))

‖ωα,E‖L1(ρt)

∇E · P (v)(v − u) dρt(u)dρt(v)

≥ −λαc1
e−2αE

‖ωα,E‖L1(ρt)

∫∫
|v − u|dρtdρt

≥ −λαc1
e−2αE

‖ωα,E‖L1(ρt)

2V (ρt)
1
2 = −λb2(α, c1, E)

V (ρt)
1
2

‖ωα,E‖L1(ρt)

(3.33)

Now we combine the inequalities, (3.32) and (3.33), and conclude

1

2

d

dt
‖ωα,E‖2

L1(ρt)
= ‖ωα,E‖L1(ρt)

d

dt
‖ωα,E‖L1(ρt) ≥ −σ2b1V (ρt)− λb2V (ρt)

1
2 .



Chapter 4

Implementation and Tests

In this chapter, we report an example application of the Consensus-Based

Optimization method on the stochastic Kuramoto-Vicsek (sKV) model for

constrained optimization on hypersurfaces.

Firstly, we present the discretization scheme of the sKV system and dis-

cuss some practical aspects of the implementation. Then, we present the

algorithm and employ it for the optimization of two benchmark functions on

the three-dimensional torus, namely the Rastrigin and the Ackley functions.

We will examine the convergence rate of the method paying special attention

to the the evolution of the empirical variance and the parameter choice.

To conclude, we present some practical implementations that have been

proposed in [17] and [28] to speed up the algorithm in case of high dimensional

functions optimization.

4.1 Discretization of the sKV system

We discuss the discretization of the sKV system in Itô's form

dV i
t = −λP (V i

t )(V i
t − V

α,E
t )dt+ σ|V i

t − V
α,E
t |P (V i

t )dBi
t

− σ

2
(V i

t − V
α,E
t )2∆γ(V i

t )∇γ(V i
t )dt (4.1)

55
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with V i
t ∈ Γ, i = 1, . . . , N and

V α,E
t =

N∑
j=1

V i
t ω
E
α(V j

t )∑N
i=1 ω

E
α(V i

t )
= vα,E(ρ

N
t ) . (4.2)

A natural approach to the numerical solution of di�erential equations on

manifold is by projection [20], hence, we consider a one-step size discretiza-

tion of (4.1) followed by the projection operator Π. This class of schemes

has the general formṼ
i
n+1 = V i

n + Φ(∆t, V i
n, V

i
n+1, ξ

i
n)

V i
n+1 = Π

(
Ṽ i
n+1

) (4.3)

where the function ΦΓ(∆, ·, ·, ξin) : R2d → Rd de�nes the method, ∆t > 0

is the time step, V i
n ≈ V i

t |t=tn , tn = n∆t and ξin = are independent random

variables. The operator Π is de�ned on a strip of width δ > 0, Γδ, where δ

is su�ciently small such that Π is well de�ned as:

Π : Γδ → Γ, Π(Ṽ ) = argmin
V ∈Γ
||Ṽ − V ||2. (4.4)

Hence, for the computation of Vn+1 = Π
(
Ṽ i
n+1

)
we need to solve the

constrained optimization problem

min
Rd
|Vn+1 − Ṽn+1| subject to γ(Vn+1) = 0 (4.5)

which for an arbitrary hypersurface Γ could be a complex task, we refer

to [20, Chapter 4] for more details regarding projection methods on manifolds.

Nevertheless, Π(·) has a closed form de�nition in case of Γ = Sd−1 or Γ being

the torus T2:

ΠSd−1 : Rd \ {0} → Sd−1, ΠSd−1(Ṽ ) =
Ṽ

‖Ṽ ‖
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and, respectively, for Γ = T2:

ΠT2 : R3 \ {z = 0} → T2,

ΠT2(Ṽ ) = r
Ṽ −RVd
‖Ṽ −RVd‖

+RVd, with Vd =
Ṽ − 〈Ṽ , e3〉
‖Ṽ − 〈Ṽ , e3〉‖

where r > 0 is the inner radius, R > 0 is the outer radius, and e3 = (0, 0, 1).

In order to solve (4.1) on the torus, we will use the simple Euler-Maruyama

scheme

Ṽ i
n+1 = V i

n − λ∆tP (V i
n)(V i

n − V α,E
n ) + σ|V i

n − V α,E
n |P (V i

n)ξin

−∆
σ2

2
(V i

n − V α,E
n )2∇γ(V i

n)∆γ(V i
n). (4.6)

In [17] it is shown that it is possible to construct implicit methods where

the dynamics remains on the sphere without employing the projection Π(·),
i.e.

V i
n+1 = V i

n + Φ(∆t, V i
n, V

i
n+1, ξ

i
n), ‖Vn+1‖ = ‖Vn‖ = 1. (4.7)

This can be done by simply modifying the Euler-Maruyama method or by

considering implicit methods of weak order higher than one, which preserves

the solution norm. Due to the nonlinearity of the projection operator P (·),
implicit methods require the solution of a large nonlinear system. This con-

stitutes a serious problem because our aim is to design a scalable optimization

algorithm. Therefore, a simple scheme like the one presented in (4.6) was

considered in [17]. The scheme has to be followed by the projection Π(·).
We are now ready to present the algorithm and discuss some implemen-

tation aspects.

4.2 Algorithm and implementation

First, we highlight that the set of three computational parameters ∆t, σ, λ

can be reduced by setting λ = 1 to obtain a scheme depending only on ∆t
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and σ2. We de�ne nT to be the maximum number of iterations.

Starting from a set of parameters {∆t, σ, α,N, nT}, a given objective func-
tion E(·) de�ned on Γ and the projection operator ΠΓ, the KV-CBO method

is described in Algorithm 1.

Algorithm 1: KV-CBO on Γ

Input: ∆t, σ, α,N, nT and the functions E(·), ΠΓ(·)
1 Generate V i

0 , i = 1, . . . , N sample vectors uniformly on Γ ;

2 for n = 0 to nT do

3 Generate ∆Bi
n, independent normal random vectors N (0,∆t) ;

4 Compute V α,E
n ;

5 if consensus then

6 break

7 end

8 Ṽ i
n+1 ← V i

n − λ∆tP (V i
n)(V i

n − V α,E
n ) + σ|V i

n − V α,E
n |P (V i

n)∆Bi
n −

−∆σ2

2
(V i

n − V α,E
n )2∇γ(V i

n)∆γ(V i
n);

9 V i
n ← ΠΓ(Ṽ i

n+1);

10 end

We note that the computational cost for a single time step of KV-CBO

is O(N), which is the minimum cost to evolve a system of N particles, since

V α,E
n is the same for all agents.

The stopping criterion depends on the way we de�ne the consensus status.

As proposed in [8, 17], for a given tolerance ε, a suitable condition is

1

N

N∑
i=1

|V i
n − V α,E

n | < ε, (4.8)

or, alternatively, as in [28], for some a priori selected p ≥ 0 we can check if

|V α,E
n+1 − V

α,E
n−p| ≤ ε . (4.9)

As we will discuss later, the computational parameters ∆t, σ and α can in
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practice be adaptively modi�ed from step to step to improve the performance

of the method.

We remark that the computation of V α,E
n , point 4 of Algorithm 1, is crucial

and that a straightforward evaluation using

V α,E
n =

1

Nα

N∑
j=1

ωEα(V j
n )V j

n , Nα :=
N∑
j=1

ωEα(V j
n ) , (4.10)

where ωEα(V j
n ) = exp(−αE(V j

n )), is generally unstable since for large values of

α� 1, the value of Nα is close to zero. On the other hand, the use of large

values of α is essential for the performance of the method. A well-known way

to overcome this issue is based on the following trick

ωEα(V i
n)

Nα

=
ωEα(V i

n)∑N
j=1 ω

E
α(V j

n )
· ω
E
α(V ∗n )

ωEα(V ∗n )

=
e−α(E(V in)−E(V ∗n ))∑N
j=1 e

−α(E(V jn )−E(V ∗n ))

where

V ∗n := argmin
V in

E(V ) (4.11)

is the location of the particle with the minimal function value in the current

population. This ensures that for at least one particle V j
n = V ∗n , we have

E(V j
n ) − E(V ∗n ) = 0 and hence, exp(−α(E(V j

n ) − E(V ∗n ))) = 1. For the sum,

this leads to Nα ≥ 1, so that the division does not induce a computational

di�culty. In the simulations, we will always compute the weights by the

above strategy. Note that the evaluation of (4.11) has a linear cost and does

not have an impact on the asymptotic computational cost of the algorithm.

The computation of V α,E
n may be accelerated by using the random ap-

proach presented in [2]. The approach considers a random subset JM of size

M < N of the indexes {1, . . . N} and computes

V α,E,JM
n =

1

NJM
α

∑
j∈JM

ωEα(V j
n )V j

n , NJM
α :=

∑
j∈JM

ωEα(V j
n ) . (4.12)
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Similarly, the above computation can be stabilized by centering it to

V JM ,∗
n := arg min

V jn ,j∈JM
E(V ) . (4.13)

The random subset is typically chosen at each time step in the simulation.

As a further randomization variant, at each time step, we may partition

particles into disjoint subsets JkM , k = 1, . . . , S of sizeM such that SM = N ,

and compute the evolution of each batch separately, see [24, 28] for more

details. We note that, since the computational cost is already linear, these

randomization techniques can accelerate the simulation process and, eventu-

ally, improve the particles exploration thanks to additional stochasticity, but

cannot reduce the overall asymptotic cost O(N).

In the next section, we present computational experiments where we ap-

ply Algorithm 1 on a low dimensional optimization problem on the three-

dimensional torus.

4.3 Computational experiments

We study the performance of the consensus-based optimization algorithm

and investigate, in particular, how the choice of the parameters modi�es

the computational outcome. We employ two standard test cases from the

optimization literature [23], namely the Ackley function:

EA(v) = −20 exp

(
−0.2√

d
‖v −B‖

)
−exp

(
1

d

d∑
i=1

cos(2π(vi −B))

)
+20+e+C

(4.14)

and the Rastrigin function

ER(v) =
1

d

d∑
i=1

[
(xi −B)2 − 10 cos(2π(vi −B)) + 10

]
+ C, (4.15)

where d ∈ N is the dimension of the search space and B,C ∈ R are con-

stant shifts. Both functions attain multiple local minima but only one global
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Figure 4.1: Particles trajectories along the simulation for the Ackley function
(left) and the Rastrigin function (right) for α = 100, σ = 0.25, N = 50, and
∆t = 0.05. We notice that, compared to the Ackley function, the local
minima of the Rastrign function on the torus are much closer to the global
minimum, so it is harder to �nd its global minimum.

minimum.

We consider the constrained optimization problem on the torus

min
v∈T2
E(v), T2 = {v ∈ R3 | γ(v) = 0}

where, for v = (v1, . . . , vd) and R = 1, r = 0.5:

γ(v) =

√
(
√
|v|2 − (vd)2 − 1)2 + (vd)2 − 0.5 .

In all our simulations, we initialize the particles with a uniform distri-

bution over the torus and we employ the simple Euler-Maruyama scheme

with projection, by using Algorithm 1. We report in Figure 4.3 the parti-

cle trajectories during a simulation for t ∈ [0, 15] in the case of N = 50,

∆t = 0.05, σ = 0.25 and α = 100. In both cases, the minimum is obtained

at v∗ = (0, 1, 0.5)t .

Next, in Figure 4.3 we consider the convergence to consensus measured

using two di�erent values of α for the optimization of the Ackley function.



62 CHAPTER 4. IMPLEMENTATION AND TESTS

The results have been averaged 1000 times and in Table 4.3 we summarize

the success rates. As considered in [17, 28, 33], we count as successful a run

when at the �nal time it holds

‖V α,E
nT
− v∗‖∞ := max

k=1,...,d
|(V α,E

nT
)k − (v∗)k| ≤

1

4
. (4.16)

We remark that condition (4.16) excludes V α,E
nT

from being any local min-

imizer in the benchmarks functions taken into account. We also compute

the expected error in the computation of the minimum by considering time

averages of ‖V α,E − v∗‖∞ and we report the quantity ‖V α,E − v∗‖/d used

in [17,28,33].

α = 1 α = 500
Ackley 99.3% 100%
Rastrigin 73% 92.9%

Table 4.1: Success rates over 1000 runs.

As shown in Figure 4.2 and Table 4.1, where σ = 0.25, the accuracy of the

computation of the minimum is higher when α = 500 than when we consider

α = 5. Clearly, if α1 > α2, we expect to have V α1,E(ρN) closer to v∗ than

V α2,E(ρN), even for the same distribution ρN . The reason lies in the fact that

V α,E(ρN) −→ argmin
V i
E(V i), as α→∞.

Still, we also claim that the indicators show that a large α speeds up the

concentration of all particles around the global minimizer and, consequently,

the consensus mechanism.

Furthermore, as the minima of the Ackley function are more separated

than the minima of the Rastrigin, we note that the converge is slower and

less accurate when we try to optimize the latter.

We now investigate the in�uence of σ in the accuracy of the algorithm. For

this purpose, we consider the Rastrigin function which presents several local

minima close to the global minimum. In particular, we compare the success
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Figure 4.2: Behavior of various converge indicators in time for the Ackley
and Rastrigin functions in the case of d = 3, N = 50, ∆t = 0.05. The graphs
show the accuracy of KV-CBO for σ = 0.25. We choose α = 1 (left) and
α = 500 (right). The results have been averaged 1000 times, see Table 4.1
for the success rates.
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Figure 4.3: Optimization of the Rastrigin function, with parameters α = 100,
∆t = 0.05. On the left, the success rate as function of σ for three di�erent
values of N . The plot underlines how large values of σ are necessary in order
to generate consensus among the global minimum in case of a small batch
of particles. On the right, we plot the convergence rate for selected values
of σ averaged only on successful runs. We notice that, as σ decreases, the
variance decays faster when the run is successful.

rate of the algorithm for several values of σ when we consider three di�erent

numbers of particles N . Figure 4.3 (left) shows that having a su�cient

number of particles is essential in order to create consensus around the global

minimum. Nevertheless, if we consider larger values of σ, the success rate

improves signi�cantly even for a small particle batch. This suggests that

boosting the stochastic component of the system could counterbalance the

lack of particles.

A drawback of this approach is represented by a slower convergence rate

when large values of σ are employed in the computation. Indeed, in Figure

4.3 we notice that, as σ decays, the system - in case of a successful run -

generates consensus faster. This can be seen as evidence of the theoretical

results we presented in Chapter 3, where the variance decay rate was shown

to be larger for smaller values of σ.

To conclude, we present some corrections to SK-CBO that have been

proposed in [17] to improve the performance of the algorithm.
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4.4 Adaptive parameters

Our theoretical analysis of the mean-�eld approximation ρt, suggests that,

once N is large, for σ small enough and α large enough, Algorithm 1 will

converge near a global minimizer. One important aspect, therefore, concerns

the choice of the parameters. In this section, we present some adaptive

strategies that have been proposed in [17,28] to improve the accuracy of the

method and speed up the consensus generation.

The adaptation of hyperparameters in multi-particle optimization is a

well-known problem, we refer to [14] for a complete discussion. In our case,

we observed that large values of σ increase the success rate of the method,

whereas small values of σ accelerate the consensus dynamic. One strategy,

therefore, would be to start with a large σ and to progressively reduce it over

time as a function of a suitable indicator of convergence, for example the

average variance of the solution or the relative variation of V α,E over time.

A simple adaptive strategy, proposed in [17], is to start from a value σ0 and

continue the computation while decreasing it as

σn+1 =
σn
τ
, (4.17)

where τ is a constant.

Another technique that can be used to decrease σ is, for instance, the

cooling strategy as in the Simulated Annealing approach [21]. [28] proposes

to reduce σ independently of the solution behavior, as a function of the initial

value σ0 and the number of iterations. This corresponds to taking

σn+1 =
σn

σ0 log(n+ 1)
.

As a result of these strategies, the noise level in the system will decrease

in time but we are allowed to start with a larger σ which permits to explore

the surrounding area well before entering the consensus regime.

Similarly, it might not be bene�cial to start with a large α from the
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beginning. As a matter of fact, in this case the weighted average V α,E would

right away equal the particle with the lowest energy and all the other particles

will be forced to move towards the �rst particle, with a lower impact on

the initial exploration mechanism. Therefore, we can start with an initial

value α0 and gradually increase it to a maximum value αmax according to

an appropriate convergence indicator, or independently as a function of the

number of iterations. In particular, large values of α at the end of the

simulation process are essential in achieving high accuracy in the computation

of the minimum.

The number of particles of the system can be considered a parameter that

needs to be tuned during the computation as well. Since in the CBO methods

the variance of the system tends to vanish because of the consensus dynamics

(see Theorem 3.1), we may accelerate the simulation by discarding particles

in time according to the variance of the system [2]. This also in�uences

the computation of V α,E
n , by increasing the randomness and reducing the

possibilities to get trapped in local minima. We now illustrate a practical

implementation of such a strategy as has been presented in [17].

For a set of Nn particle we de�ne the empirical variance at time T n = n∆t

as

Σn =
1

Nn

Nn∑
j=1

(V j
n − V n)2 , V n =

1

Nn

Nn∑
j=1

V j
n .

When the trend consensus is monotone, that is Σn+1 ≤ Σn, we can discard

particles uniformly in the next time step tn+1 = (n + 1)∆t according to the

ratio Σn+1/Σn ≤ 1, without a�ecting their theoretical distribution. One way

to make this possible is to de�ne the new number of particles as

Nn+1 =

⌊
Nn

(
1 + µ

(
Σ̂n+1 − Σn

Σn

))⌋
(4.18)
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where µ ∈ [0, 1] and

Σ̂n+1 =
1

Nn

Nn∑
j=1

(V j
n+1 − V̂n+1)2, V̂n+1 =

1

Nn

Nn∑
j=1

V j
n+1 .

If µ = 0, we have the standard algorithm where no particles are discarded,

whereas for µ = 1 we achieve the maximum speed up.

We conclude by brie�y discussing another variant of the CBO method,

proposed in [9], for the global optimization of high dimensional Machine

Learning problems. The modi�cation directly involves the de�nition of the

stochastic system, by considering the component-wise geometric Brownian

motion. Namely, it is suggested to replace the stochastic term in equation

(4.1)

σ|V i
t − V

α,E
t |P (V i

t )dBi
t

with the following

σ|V i
t − V

α,E
t |P (V i

t )
d∑

k=1

dBi,k
t

where (Bi,k
t )t ≥ 0 are one-dimensional Brownian motions.

In case of unconstrained optimization, it is analytically proved in [9]

that such a modi�cation relaxes the convergence conditions, see inequality

(3.10), by making them independent from the dimension d. This is a great

achievement as the the scalability of the method is a key characteristic of the

Consensus-Based Optimization. The new algorithm is then employed in [9]

for the optimization of shallow two-layers Neural-Network showing encour-

aging results.
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Conclusions and perspectives

In this work, we introduced and studied a Consensus-Based Optimization

method for constrained optimization on compact, implicitly de�ned hyper-

surfaces. By employing kinetic theory techniques, we analyzed the evolution

of the system through its mean-�eld approximation which we have been able

to derive thanks to the compactness of the domain. In particular, we in-

vestigated the variance decay which describes the formation of consensus in

the particles dynamics. We noted that choosing the parameters is crucial in

order to guarantee that the consensus is generated around a minimizer of the

function and that the geometry of the hypersurface could make this process

extremely di�cult. Moreover, the algorithm has been tested on benchmark

functions showing capability of escaping from local minima and fast conver-

gence.

The analysis of CBO methods shed some light on the promising charac-

teristics of these algorithms. Nevertheless, the convergence guarantees, both

in the constrained and unconstrained settings, are still restrictive and it is

claimed [17] that further improvements could be done by studying the mean-

�eld equation with di�erent techniques. Moreover, after designing CBO

methods for hypersurfaces, the next step consists of developing algorithms

to solve constrained optimization problems on manifolds with a particular

focus on matrix manifolds. To conclude, only the Kuramoto-Vicsek model

has been considered so far and, hence, employing other (e.g. second-order)

individual-based models is still left to be investigated.
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