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To my family who always encouraged me to not give up in every situation:

”Are you frustrated to the fact that you are the weakest one?
If so, hold on to that feeling. That’s proof that you haven’t given up yet, on yourself.

Listen, don’t give up saying that you’re living within your boundaries.
Don’t be a boring person like that.

If you have the guts to not give up, you can become anything you want to be.
We’re living creatures that don’t have wings, but still went to the moon.”

- Chivalry of a Failed Knight
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Introduction

The aim of this thesis is the definition of the differential calculus’ objects and the
Laplace operator in metric measure spaces, following the presentation of [16]. It is
well known that the classical weak definition of the condition ∆g = h is

∫

〈∇f,∇g〉dx =

∫

fhdx

for every test function f . Through the duality between tangent and cotangent space,
the scalar product of the gradients can be expressed as the differential Df of f applied
to the gradient ∇g of g. We will see that this definition can be extended to metric
measure spaces, because it is expressed in terms of the properties of the measure and
the metric of space.

In the first chapter we introduce the definitions and properties of metric measure
spaces (in particular, (X, d,m) is a metric measure space, (X, d) a Polish space and
m a non-negative Radon measure). In the second chapter we study the properties of
Lipschitz functions and define the metric derivative for absolutely continuous curves.

In general, the norm does not derive from a scalar product and the Laplacian can-
not be defined in the distributional sense as above. Therefore in the third chapter we
define the concept of minimal p-weak upper gradient |Dg|w as in [4] and [15] and the
Sobolev class Sp of the functions with finite minimal p-weak upper gradient.

In the fourth chapter we study the generalization of the concept of the differential
of f applied to the gradient of g and this gives two objects:

D+f(∇g) := inf
ε>0

|D(g + εf)|pw − |Dg|pw
pε|Dg|p−2

w

, D−(∇g) := sup
ε<0

|D(g + εf)|pw − |Dg|pw
pε|Dg|p−2

w

In general they are different, but if they agree the space will be called q-infinitely
strictly convex because in the normed case it corresponds to the one in which the
norm is strictly convex.

We will prove some chain rules for D±f(∇g), including the Leibniz rule but in a
different way with respect to the Euclidian case: the tangent space is not available for
the metric measure spaces (in the classical sense), so we’ll study the duality between
the space Sp and a suitable space of q-test plans, where q is the conjugate exponent of p.
In particular, using the theory of optimal transport, with reference to [4] and [6], we’ll
be able to associate a transport plan to the gradient of a function in Sp, and the Leibniz
rule will be a consequence of its validity on the real line.

Once D±f(∇g) has been defined, in the fifth chapter we define the p-Laplacian by
saying that a function g : X → R is in its domain, g ∈ D(∆), if it belongs to the class
Sp and if there is a Radon measure µ such that

−
∫

D+f(∇g)dm ≤
∫

fdµ ≤ −
∫

D−f(∇g)dm

1



2 Introduction

for every L1(X,m) Lipschitz function f with support of finite m-measure. We then
write µ ∈ ∆g. The chain and Leibniz rules proved previously will be used to prove
the analogous ones for ∆.

An important class of spaces are the so-called infinitesimally Hilbert spaces, i.e.
those for which W 1,2(X, d,m) is a Hilbert space. In this case the Laplacian is single-
valued and is linearly dependent on g. Furthermore the space is also 2-infinitesimally
strictly convex, soDf(∇g) is well defined and it can be proved thatDf(∇g) = Dg(∇f),
i.e. an identification (duality) between differentials and gradients analogous to the one
possible through the Riesz theorem.

In the last part of the fifth chapter we show an application of what we previously
proved to the Heisenberg group, considering it as a metric measure space endowed
with the Korany metric and the Lebesgue’s measure. We show that on the whole space
the metric Laplacian coincides with the sub-Laplacian that Hörmander in [17] proved
to be an hypoelliptic operator. Then we consider the submanifold X = {x = 0}: in this
case with the differential approach we get the sub-Laplacian restricted to X and this
is not an hypoelliptic operator. Hence we study what kind of operator we get if we
apply the previous definitions to X, using the Cheeger’s energy functional as defined
in [1].



Introduzione

L’obbiettivo di questa tesi è la definizione del calcolo differenziale e dell’operatore
di Laplace in spazi metrici di misura, seguendo la presentazione di [16]. Come è ben
noto la classica definizione debole della condizione ∆g = h è

∫

〈∇f,∇g〉dx =

∫

fhdx

per ogni funzione test f . Attraverso la dualità tra spazio tangente e cotangente, il
prodotto scalare dei gradienti può essere reinterpretato come il differenziale Df di f
applicato al gradiente ∇g di g. Vedremo che questa definizione si può estendere a
spazi metrici di misura, perché è espressa in termine delle proprietà della misura e
della metrica dello spazio.

Nel primo capitolo vengono introdotte le definizioni e proprietà principali degli
spazi metrici di misura (in particolare, se (X, d,m) è lo spazio metrico di misura, (X, d)
è uno spazio polacco e m una misura di Radon non negativa) mentre nel secondo
quelle riguardanti le funzioni lipschitziane e la derivata metrica di curve assoluta-
mente continue.

In generale la norma non deriva da un prodotto scalare e il laplaciano non si può
definire in modo distribuzionale come sopra. Nel terzo capitolo quindi viene definito
il concetto di p-supergradiente debole |Dg|w come in [4] e [15] attraverso l’utilizzo
della derivata metrica e delle curve assolutamente continue e di conseguenza la classe
di Sobolev Sp delle funzioni che hanno p-supergradente debole finito.

Nel quarto capitolo viene studiata la generalizzazione del concetto di differenziale
di f applicato al gradiente di g che da luogo a due oggetti:

D+f(∇g) := inf
ε>0

|D(g + εf)|pw − |Dg|pw
pε|Dg|p−2

w

, D−(∇g) := sup
ε<0

|D(g + εf)|pw − |Dg|pw
pε|Dg|p−2

w

In generale risultano diversi, ma se concincidono lo spazio verrà detto q−infinite-
simamente strettamente convesso perché nel caso normato corrisponde al caso in cui
la norma è strettamente convessa.

Vengono quindi dimostrate alcune regole della catena per D±f(∇g) fra cui anche
la regola di Leibniz ma in modo diverso rispetto al caso normato: non avendo a dispo-
sizione lo spazio tangente per gli spazi metrici di misura, viene studiata la dualità fra
lo spazio Sp e un opportuno spazio di misure dette q-piani test, dove q è l’esponente co-
niugato di p. In particolare mediante l’introduzione del funzionale energia di Cheeger,
analogo a quello di Dirichlet nel caso euclideo, e lo studio del suo flusso-gradiente sarà
possibile associare un piano di trasporto al gradiente di una funzione in Sp come in [4]
e [6], e la regola di Leibniz sarà una conseguenza della sua validità sulla retta reale.

Una volta definito D±f(∇g) nel quinto capitolo viene definito il p-laplaciano affer-
mando che una funzione g : X → R è nel suo dominio, g ∈ D(∆), se appartiene alla
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4 Introduzione

classe Sp ed esiste una misura di Radon µ tale che

−
∫

D+f(∇g)dm ≤
∫

fdµ ≤ −
∫

D−f(∇g)dm

per ogni funzione lipschitziana f sommabile con supporto di m-misura finita. Si scrive
quindi µ ∈ ∆g. Le regole della catena e di Leibniz provate precedentemente saranno
usate per provare quelle per ∆.

Una classe importante di spazi sono quelli infitesimamente di Hilbert, cioè quelli
per cui W 1,2(X, d,m) è uno spazio di Hilbert. In questo caso il laplaciano assume
un solo valore e risulta linearmente dipendente da g. Inoltre lo spazio è anche 2-
infinitesimamente strettamente convesso, per cui Df(∇g) è ben definito e si dimostra
che Df(∇g) = Dg(∇f), cioè un’identificazione tra differenziali e gradienti analoga a
quella possibile attraverso il teorema di Riesz.

Nell’ultima parte del quinto capitolo infine viene mostrata un’applicazione del cal-
colo differenziale in spazi metrici di misura al gruppo di Heisenberg, considerandolo
uno spazio metrico di misura munito della metrica di Korany e la misura di Lebesgue.
Nella prima parte si mostra che il laplaciano metrico coincide con quello subrieman-
niano che Hörmander in [17] ha mostrato essere un operatore ipoellittico. Viene poi
considerata nella seconda parte la sottovarietà X = {x = 0}: in questo caso attraverso
l’approccio differenziale si ottiene il laplaciano subriemanniano ristretto a X e questo
non è un operatore ipoellittico. Quindi viene applicata la teoria del calcolo in spazi
metrici precedentemente sviluppata per studiare quale genere di operatore si ottiene,
usando il funzionale energia di Cheeger definito come in [1].



Chapter 1

General measure theory and
differentiation theorems

In this chapter we define and prove the essential tools from the Measure Theory
we will use throughout the thesis, following [16]. We will define doubling spaces and
state the Vitali’s covering theorem, which we will use to introduce the Vitali spaces
and to prove the main two results of the chapter: the Lebesgue’s differentiation and
the Radon-Nikodym’s theorems. Finally, we will recall some notions from functional
analysis regarding weak convergence of measures the duality between continuous
functions and measures given by the Riesz theorem.

1.1 First definitions

We assume that X 6= ∅ and denote the power set of X as P(X).

Definition 1.1.1. A family of sets S ⊆ P(X) is called σ-algebra over X if:

• ∅, X ∈ S

• A ∈ S ⇒ Ac ∈ S

• {Ai}i∈N ⊂ S ⇒
⋃∞
i=1Ai ∈ S

Definition 1.1.2. A set function m : S → [0,+∞] is called measure if:

• m(∅) = 0;

• {Ai}i∈N ⊂ S e Ai ∩ Aj = ∅, i 6= j ⇒ m(
⋃∞
i=1Ai) =

∑∞
i=1 m(Ai) (σ-additivity).

If S isn’t a σ-algebra m is called pre-measure. La triple (X,S , µ) is called measure space.
If m(X) = 1 then X is called probability space and m probability measure.

Remark 1.1.1. From the σ-additivity of m, ifA ⊆ B then using the De Morgan’s relations
we have

B = A ∪ (Ac ∩B)⇒ (A ∪Bc)c ∈ S ⇒ Ac ∩B ∈ S

so m(B) = m(A) + m(Ac ∩B)⇒ m(B) ≥ m(A). This property is called monotonicity.

5



6 1. General measure theory and differentiation theorems

Definition 1.1.3. Given any measure we can associate to it a σ-algebra whose sets are
called (Carathéodory-)measurable: A ∈ S is said measurable if

m(T ) = m(T ∩ A) + m(T \A), ∀T ∈ S .

We say that A is m-negligible if m(A) = 0.

The collection of measurable sets M (m) is a σ-algebra from definitions and the
monotonicity property. Finally m is complete over M (m), i.e. all the m-negligible sets
are m-measurable. The following theorem collects some properties of m, called conti-
nuity of the measure (see [7] or [2] for the proof):

Theorem 1.1.1. Let {Ak}+∞
k=1 be a sequence of m-measurable sets. Then

I) The sets
⋃+∞
k=1Ak,

⋂+∞
k=1Ak are m-measurable.

II) If the Ak are pairwise disjoint then m
(⋃+∞

k=1Ak

)
=
∑+∞

k=1 m(Ak)

III) If A1 ⊆ · · · ⊆ Ak ⊆ . . . , then ∃ lim
k→+∞m(Ak) = m

(⋃+∞
k=1 Ak

)
IV) If A1 ⊇ · · · ⊇ Ak ⊇ . . . and m(A1) < +∞, then ∃ lim

k→+∞m(Ak) = m
(⋂+∞

k=1Ak

)
From now on if it is clear which measure we are referring to we call the m-measurable

or m-negligible sets simply measurable or negligible. We consider also m always re-
stricted to M (m).

Definition 1.1.4. We say that a function f : X → Y from a measure space (X,S ,m) to
a measurable space (Y,T ) is measurable w.r.t. M (m) if f−1(A) ∈M (m) for any A ∈ T .

Generally if X is a measurable space then the measurability is defined w.r.t. any
σ-algebra S over X requiring just that f−1(A) ∈ S .

Proposition 1.1.2. Let f, g be real measurable function over X . Then also f + g, fg, αf with
α ∈ R are measurable and f ∨ g := max{f, g} e f ∧ g := min{f, g} are too. Moreover,
composition of measurable function is measurable.

Using the properties of m we have also the following proposition.

Proposition 1.1.3. Let {fn}n∈N be a sequence of extended real-valued measurable functions.
Then supn∈N fn, infn∈N fn, limn∈N fn and limn∈N fn are measurable.

Proof. For example, (supn∈N fn)−1((a,+∞]) =
⋃
n∈N f

−1((a,+∞]) ∈M (m).

1.2 Borel σ-algebra, Borel measures and restrictions

For every topological space X it can be defined a ”natural” σ-algebra B, called
Borel σ-algebra, generated by open sets. More precisely, B is the smallest σ-algebra
containing the open sets of X . In general, the smallest σ-algebra containing a fixed
family of sets is the intersection of all the σ-algebras containing it. Notice that this
intersection is surely not empty because P(X) contains it, so that the definition makes
sense.

We consider now X as the base set of a metric space (X, d).
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Definition 1.2.1. Let X be a non-empty set. A function d : X ×X is called distance if

• d(x, y) ≥ 0 ∀x, y ∈ X e d(x, y) = 0 if and only if x = y;

• d(x, y) = d(y, x) ∀x, y ∈ X ;

• d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z ∈ X .

The couple (X, d) is called metric space.

Definition 1.2.2. A measure m overX is said Borel measure if open sets are measurable.
A Borel set is any set in a topological space that can be formed from open sets through
operations of countable union, countable intersection and relative complement. We
say that a measure is regular if for each measurable set A there exists a Borel set B such
that A ⊂ B and m(A) = m(B). Finally, Borel regular measure is a Borel measure that is
also regular.

We recall the following useful result.

Theorem 1.2.1 (Carathéodory’s criterion). A measure m over a metric space (X, d) is a
Borel measure if and only if

m(E1 ∩ E2) = m(E1) + m(E2), ∀E1, E2 ∈M (m) | d(E1.E2) > 0.

Proof. Without loss of generality we can prove that all closed sets are measurable. Let
C be a closed set and let us define

D0 := {x ∈ X | d(x,C) ≥ 1}, Dn :=

{
x ∈ X | 1

2n
≤ d(x,C) <

1

2n−1

}
.

We want to prove that for every F

m(F ) ≥ m(F ∩ C) + m(F ∩ Cc),

so that we choose F such that m(F ) < +∞. We notice that Di and Dj are disjoint
if i 6= j, so that for an arbitrary index m, using the monotonicity property and the
σ-additivity, we have

m(F ) ≥ m

(
F ∩

m⊔
j=0

D2j

)
=

m∑
j=0

m(F ∩D2j).

The same inequality holds with 2j replaced by 2j+1. Then the series in the right-hand
side is convergent. From the fact that C and

⊔m
j=0 Dj are disjoint we have that ∀m ≥ 0

m(F ) ≥ m

(
(F ∩ C) ∪

(
F ∩

m⊔
j=0

Dj

))
= m(F ∩ C) + m

(
F ∩

m⊔
j=0

Dj

)
≥ m(F ∩ C) + m(F ∩ Cc)−

∑
j>m

m(F ∩Dj),

where the last inequality follows from the fact that m(F ∩ Cc) ≤ m(F ∩
⊔m
j=0Dj) +

m(F ∩
⊔
j>mDj). Taking the limit as m → +∞ we obtain the inequality, noticing that∑

j m(F ∩Dj) < +∞.
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For every measure m over a set X it can be defined another measure over any
subset Y ⊂ X simply restricting m to Y . We denote it by mY . If m is a Borel measure
or Borel regular then mY is too. In fact if U ⊂ Y is open and T ⊂ Y then U = O ∩ Y for
some open set O ⊂ X . Hence

mY (T ) = m(T ) = m(T ∩O) + m(T \O) = m(T ∩ U) + m(T \U)

= mY (T ∩ U) + mY (T \U),

so that U is measurable. If m is Borel regular let E ⊂ Y and B ⊂ X a Borel set
containing E and such that m(E) = m(B). Then B ∩ Y is a Borel set of Y , E ⊂ B ∩ Y
and

mY (E) ≤ mY (B ∩ Y ) ≤ m(B) = m(E) = mY (E).

Another type of restriction can be defined: if m is a measure over a set X and Y ⊂ X
then we define the m-measure concentrated over Y m Y in X as

m Y (E) := m(E ∩ Y ), ∀E ⊂ X.

Lemma 1.2.2. If m is a Borel measure over a topological space X and Y ⊂ X then m Y is a
Borel measure over X . Moreover, if m is Borel regular then also m Y is Borel regular if and
only if Y admits a partition Y = B0 ∪N with B0 a Borel set of X and N a negligible set.

Proof. The first part follows proceeding exactly as before in the case of restrictions.
Assume now that m is Borel regular. If also m Y is Borel regular then there exists a
Borel set B ⊃ Z \Y such that m Y (B) = m Y (Z \Y ) = 0 by definition. Putting
B0 := Z \Y and N := Y \B0 we obtain the direct implication. Vice versa, assuming
that this partition exists, let E ⊂ X . Being m Borel regular, we can pick the Borel sets
B ⊃ E ∩ Y and B′ ⊃ N such that m(B) = m(E ∩ Y ) and m(B′) = m(N) = 0. Hence
B1 := B′ ∪B ∪ (Z \B0) is a Borel set of X that contains E, so that

m Y (E) ≤ m Y (B1) ≤ m Y (B′) + m Y (B) + m Y (Z \B0)

≤ m(B′) + m(B) + m(N) = m(E ∩ Y ) = m Y (E).

Naturally the same conclusions hold if we consider extensions of measures: more
precisely, if m is a measure over Y ⊂ X then it can be extended to a measure m over
the whole X defining

m(E) := m(E ∩ Y ) ∀E ⊂ X.

If m is a measure over X then mY = m Y .

Lemma 1.2.3. Let m be a Borel measure over a subset Y of a topological space X . Then the
extension m is a Borel measure over X . Moreover, if m is Borel regular then m is too if and
only if there exists a partition Y = B0 ∪N with B0 a Borel set of X and N negligible.

In the following we will use sometimes the following extension result for measur-
able functions:

Lemma 1.2.4. If U is a measurable subset of X and f : U → [−∞,∞] is measurable then
the extension of f given by F : X → [−∞,∞] with F (x) = f(x) if x ∈ U or 0 otherwise, is
measurable.
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Proof. To prove the measurability of F it is sufficient to prove that for any t ∈ R the set
{x ∈ X | F (x) > t} ∈ M (m). Let A ⊂ X . Then if E ⊂ U is mU−measurable then we
know that

m(A ∩ U ∩ E) + m((A ∩ U) \E) = m(A ∩ U).

Hence, being A ∩ E = (A ∩ U) ∩ E and A \E = (A \U) ∪ ((A ∩ U) \E),

m(A) ≤ m(A ∩ E) + m(A \E) = m(A ∩ U ∩ E) + m((A \U) ∪ ((A ∩ U) \E))

≤ m(A ∩ U ∩ E) + m(A \U) + m((A ∩ U) \E) = m(A ∩ U) + m(A \U) = m(A),

so that E is m−measurable. This concludes the proof because if t ≥ 0, then the set
{x ∈ X | F (x) > t} is equal to {x ∈ U | f(x) > t} and if t < 0 is equal to {x ∈ U |
f(x) > t} ∩ U c. Thus to prove that F is measurable it is enough to prove that if E ⊂ U
is mU−measurable then it is also m−measurable.

Definition 1.2.3. We say that a function f : Y → Z, with Y, Z topological spaces, is a
Borel function if the preimage of every open set is a Borel subset of Y .

From this definition it follows that the preimage of every Borel set is a Borel set as
well. Actually a more general result holds:

Theorem 1.2.5. We have the following properties

• If f : Y → Z is a Borel function then the family {B ⊂ Z | f−1(B) ∈ B(Y )} is a
σ-algebra.

• Continuous functions and the composition of Borel functions are Borel functions.

A measurable function f between to sets Y andZ and a measure m over Y naturally
induces a measure over Z:

Definition 1.2.4. We call pushforward-measure of m through f the measure f]m over Z
defined by

f]m(E) := m(f−1(E)) ∀E ⊂ Z.

For example, the extension m is the pushforward of m through the inclusion map.

Proposition 1.2.6. Let Y, Z topological spaces, m a Borel measure over Y and f : Y → Z a
Borel function. Then f]m is a Borel measure over Z. If f]m is also Borel regular then Y admits
a partition Y = B0 ∪N with f(B0) a Borel set of Z and N m−negligible.
Moreover, if m is also Borel regular, f is a bijection between Y and its image and Y admits a
partition Y = B0 ∪N as before, then f]m is Borel regular.

Proof. By definition f]m is a measure over Z. To prove that it is Borel regular if also m
is Borel regular, let T ⊂ Z and U ⊂ Z be an open set. Then

f]m(T ) , m(f−1(T )) = m(f−1(T ) ∩ f−1(U)) + m(f−1(T ) \ f−1(U))

= m(f−1(T ∩ U)) + m(f−1(T \U)) , f]m(T ∩ U) + f]m(T \U).



10 1. General measure theory and differentiation theorems

Now we assume that f]m is Borel regular. Then there exists a Borel set B of Z contain-
ing Z \ f(Y ) such that

m(f−1(B)) , f]m(B) = f]µ(Z \ f(Y )) = 0.

Choosing B0 := f−1(Z \B) and N := f−1(B) we get the thesis.
Finally we assume that m is Borel regular, that f : Y → f(Y ) is a bijection and that Y
admits a partition Y = B0∪N as above. LetE ⊂ Z. Being m Borel regular, then it exists
a Borel set B′ ⊂ Y containing f−1(E) such that m(B′) = m(f−1(E)). But f is a bijection
then f(B′) = B′′ ∩ f(Y ) for some Borel set B′′ ⊂ Z. Putting B := (Z \ f(B0))∪B′′ then
B is a Borel set of Z, E ⊂ B and

f]m(E) ≤ f]m(B) = m(f−1(B))

≤ m(N) + m(B′) = m(f−1(E)) , f]m(E).

Definition 1.2.5. We define diameter of a subset A of a metric space (X, d) the real
number

diam(A) := sup{d(x, y) | x, y ∈ A}

We now state without proof the Vitali’s covering theorem (for the proof we refer to
[16]). It is a purely metric result that does not involve any measure. We recall that a
topological space X is separable if it contains a dense and countable subset.

Theorem 1.2.7 (Vitali’s covering theorem). Let (X, d) be a metric space. Then every family
F of balls of X with uniformly bounded diameter has a subfamily G of pairwise disjoint balls
such that for any B ∈ F exists B′ ∈ G with B ∩ B′ 6= ∅ and diam(B) < 2 diam(B′).
Moreover, we have that ⋃

B∈F

B ⊂
⋃
B∈G

5B. (1.1)

If X is also separable then G is necessarily countable.

Finally we define a property of topological spaces that will be fundamental for the
following chapters.

Definition 1.2.6. We say that a topological space X has the Lindelöf property if every
open cover admits a countable subcover. A separable and complete metric space is
called Polish space.

Corollary 1.2.8. Every separable metric space has the Lindelöf property.

Proof. Let {U} =: U be an open cover of X . Fixing k ∈ N, for every x ∈ X we consider
an open set U ∈ U and a ball Bx := B(x, rx) such that rx ≤ k e 5Bx ⊂ U . Then by
the Vitali’s covering theorem from the family F := {Bx | x ∈ X} we can extract a
subcover G := {Bi} such that

X =
⋃

Bx∈F

Bx ⊂
⋃
Bi∈G

5Bi.

If for every i we choose an open set Ui ∈ U such that 5Bi ⊂ Ui then we obtain the
subcover U we are looking for, taking the countable union for k.
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1.3 Integration in measure spaces

In this section we define integrals in measure spaces, i.e. integration w.r.t. any type
of measure. Being classical results, we state them without proof.

Definition 1.3.1. Let (X,S ) be a measurable space. A measurable function f : X → R
is said simple if it has finite image, i.e. if there exist α1, . . . , αn ∈ R and A1, . . . , An ∈ S
disjoint such that

f =
n∑
i=1

αiχAi
,

where χAi
(x) = 1 if x ∈ Ai and 0 otherwise (characteristic function ofAi). We will denote

the family of real-valued simple functions with SR.

Remark 1.3.1. SR is a R-vector space.

The following lemma is the classical starting point for the integration in measure
spaces.

Lemma 1.3.1. Let f : X → R a positive measurable function. Then there exists a sequence
{φn}n∈N ⊂ SR+ such that φn ↗ f for n→∞.

Definition 1.3.2. Let φ ∈ SR+ , φ =
∑n

k=1 akχAk
. We define

Jm(φ) :=
n∑
k=1

akm(Ak).

If f is positive and measurable, thanks to the preceding lemma we define the integral
∫

f dm := sup{Jm(φ) | φ ∈ SR+ , φ→ f}.

The two integrals defined above are linear and satisfy the monotonicity property.
We recall the following fundamental theorems:

Theorem 1.3.2 (Beppo Levi). If {fn}n∈N is an increasing sequence of positive measurable
functions and f := supn∈N fn then

∫

f dm = sup
n∈N

∫

fn dm

Lemma 1.3.3 (Fatou). If {fn}n∈N is a sequence of non-negative measurable functions then
∫

lim
n∈N

fn dm ≤ lim
n∈N

∫

fn dm.

Definition 1.3.3. A measurable function f is called integrable if
∫

f+ dm < ∞ and
∫

f− dm < ∞, with f+ := f ∨ 0 and f− := f ∧ 0, and we write f ∈ L1(X,m). We
say that f ∈ Lp(X,m) if |f |p is integrable. The integral of f over a subset A of X is by
definition the integral of χAf .

Remark 1.3.2. L1(X,m) is a R−vector space.
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Definition 1.3.4. We say that a property P holds m−almost everywhere (m−a.e.) ifN :=
{x ∈ X | P is false} is negligible.

Directly from definitions, the following statements hold.

Proposition 1.3.4. Let (X,S ,m) be a measure space and u, v ∈ L1(X,m). Then u ∧ v,
u∨ v ∈ L1(X,m). Moreover, if u ≤ v then

∫

u dm ≤
∫

v dm. It always holds that
∣∣∣ ∫ u dm

∣∣∣ ≤
∫

|u| dm.

Proposition 1.3.5. If f ∈ L1(X,m) and
∫

A f dm = 0 for every A ∈ S then f = 0 m−a.e..

The last classical result is the following theorem.

Theorem 1.3.6 (Lebesgue’s dominated convergence theorem). If {fn}n∈N is a sequence of
measurable functions such that there exists g ∈ Lp(X,m) such that |fn| ≤ g for every n ∈ N,
fn → f m−a.e. as n→∞, then

∫

|f − fn|p dm
n→∞−→ 0.

Theorem 1.3.7. If f : Y → Z and h : Z → R+
are measurable and m is a measure over Y

then
∫

h df]m =

∫

h ◦ f dm.

We can also define another measure associated to any non-negative integrable
function g.

Definition 1.3.5. We define gm with the following formula:

gm(A) :=

∫

A

g dm.

We say that g is a density for gm w.r.t. m.

Proposition 1.3.8. If f : X → R is measurable then
∫

f dgm =

∫

f g dm.

Hence f is integrable w.r.t. gm if and only if f g is integrable w.r.t. m.

1.4 Metric measure spaces

Definition 1.4.1. A measure m over a non-empty set X is said

• σ-finite if X can be decomposed in a countable union of measurable sets each
with finite measure;

• locally finite if for every x ∈ X there exists a neighbourhood of x with finite
measure.
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Definition 1.4.2. We call metric measure space the triple (X, d,m), where we assume that
(X, d) is a separable metric space and m is a locally finite Borel regular measure over
X . Sometimes we’ll denote by X the triple (X, d,m).

Being (X, d) separable then it has the Lindelöf property. Then the following two
lemmas follow

Lemma 1.4.1. Every metric measure space can be decomposed in a countable union of balls
each with finite measure.

Lemma 1.4.2. Let E be a subset of a metric measure space X . If for every x ∈ E there exists
a neighbourhood Ux of x such that m(E ∩ Ux) = 0 then m(E) = 0.

Notice that the thesis of the second lemma is false if (X, d) is not separable: in
fact, if X is not countable and not separable and endowed with the discrete distance
function d(x, y) = 1 if x 6= y, then if we define m over E as 0 if E is countable and∞ if
E is uncountable then locally m is 0 but m(E) =∞.

Definition 1.4.3. In a metric measure space (X, d,m) we define the support of m as

supp(m) := X \
⋃
{O | O ⊂ X open and m(O) = 0}.

Thanks to the Lemma 1.4.2 we have

m(X \ supp(m)) = 0.

A fundamental property of Borel regular measures is that they can be approximated
using open and closed sets.

Proposition 1.4.3. Let (X, d,m) be a metric measure space. Then

m(A) = sup{m(C) | C ⊂ A,C ⊂ X closed}, (1.2)
m(E) = inf{m(O) | E ⊂ O,O ⊂ X open} (1.3)

for every A,E ∈M (m).

Proof. Notice that for every measurable set A of finite measure there exists two Borel
sets such that m(B′) = m(A) = m(B). The existence of B follows from the Borel
regularity of m. For the existence of B′, there exists B′′ ⊂ X containing B \A such that
m(B′′) = m(B \A) = 0, so it is enough to consider B′ := B \B′′. Now we assume that
m(X) <∞ and the general case will follow from Lemma 1.4.1.
Assume that A is a Borel set of X and we consider the family F of over subsets of X
for which (1.2) holds. It contains all open sets but also the closed ones because from the
separability of X they can be decomposed into countable unions of open sets. Being
m(X) < ∞ then the measure of these unions can be calculated using those open sets.
Using the fact that F is ∩−closed and ∪−closed then the family

G := {A ∈ F | X \A ∈ F}

is a σ-algebra that contains all closed sets, so it must contain also all the Borel sets.
To prove (1.3), from the Borel regularity of m we obtain a set E0 ⊃ E such that m(E) =
m(E0). As before we assume that X has finite measure and fix ε > 0. Thanks to (1.2)
we have a closed set C ⊂ X \E0 such that m(C) > m(X \E0)− ε. Hence O = X \C is
open, contains E and satisfies m(O) < m(E0) + ε = m(E) + ε.
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Definition 1.4.4. A Borel measure m over a metric space X is called Radon measure if
m(K) <∞ for every compact set K ⊂ X , (1.3) holds and

m(O) = sup{m(K) | K ⊂ O,K ⊂ X compact} ∀O ⊂ X open. (1.4)

Notice that a Radon measure is also Borel regular.

Proposition 1.4.4. Let (X, d,m) be a metric measure space and m a Radon measure. Then

m(A) = sup{m(K) | K ⊂ A compact} ∀A ⊂ X measurable. (1.5)

Proof. We can assume, thanks again to Lemma 1.4.1, that m(X) < ∞. Let A ⊂ X be
a measurable set and fix ε > 0. Being m Borel regular there exists a closed set C ⊂ A
and an open set O ⊃ A such that m(O \C) < ε then thanks to (1.2). By definition of
Radon measure, we can find a compact set K ⊂ O such that m(K) > m(O)− ε, so that
the compact set K ∩ C ⊂ A satisfies

m(A) ≥ m(K ∩ C) = m(K)−m(K\C) > m(O)− 2ε ≥ m(A)− 2ε.

If (X, d) is a Polish space then it has quite interesting properties.

Proposition 1.4.5. Let (X, d,m) be a metric measure space with (X, d) a Polish space. Then
m is a Radon measure. Moreover, X can be decomposed in a countable union of compact sets
plus a negligible set.

Proof. We first observe that being m locally finite then it is possible to cover every
compact set with a finite number of balls each of finite measure, hence every compact
set of X has finite measure.

Let now A ⊂ X be a closed set such that m(A) < ∞ and ε > 0. Being X separable
for every n ∈ N we can find a countable family of closed ballsBn1, Bn2, . . . with centers
in A and radii 1

n
such that

A ⊂
∞⋃
i=1

Bni.

We now choose in such that m(A ∩ Cn) > m(A) − ε
2n

, with Cn := Bn1 ∪ · · · ∪ Bnin .
Denoting

K :=
∞⋂
n=1

Cn,

and choosing T ⊂ K we fix δ > 0 such that d(x, y) > δ for every x, y ∈ T . Being T ⊂ Cn
for every n, if n satisfies 2

n
< δ then we can’t find two different points of T both in a

single Bni which union is Cn. Hence T is finite and K is totally bounded and, being
closed, it is also compact. Moreover, thanks to the continuity of m,

m(A ∩K) = lim
m→∞

m(A ∩ C1 ∩ · · · ∩ Cm).

Hence

m(A) ≤ m(A ∩ C1 ∩ · · · ∩ Cm) +
m∑
n=1

m(A \Cn)

≤ m(A ∩ C1 ∩ · · · ∩ Cm) + ε,
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so m(A ∩K) > m(A) + ε.
Finally, we can cover X with a countable family of Bi each one of finite measure. Be-
ing m a Radon measure, for every i ∈ N we can find a compact set Ki,j ⊂ Bi such that
m(Ki,j) ≥ m(Bi)− 1

j
. Hence m(Bi \

⋃
jKi,j) = 0 and we obtain the desired decomposi-

tion of X .

1.5 Differentiation: Lebesgue’s and Radon-Nikodym’s the-
orems

Definition 1.5.1. A covering B of closed balls of a subset A ⊂ X is called fine if

inf{r | r > 0, B(x, r) ∈ B} = 0, ∀x ∈ A. (1.6)

When m is the Lebesgue’s measure, a corollary of the Vitali’s covering theorem
ensures that from every fine covering B of a subset A ⊂ Rn made of closed balls it is
possible to extract a subcover C ⊂ B such that the measure of A \

⋃
B∈C B is 0 (see for

instance [12]). We want to mimic this corollary to define a new class of metric measure
spaces.

Definition 1.5.2. We say that a metric measure space (X, d,m) is a Vitali space if for
every subset A of X and every covering B of A made of closed balls, for every x ∈ A
there exists a subcover C ⊂ B of pairwise disjoint balls such that

m

(
A
∖ ⋃

B∈C

B

)
= 0. (1.7)

Theorem 1.5.1. Let (X, d,m) be a metric measure space such that

D(x) := lim
r→0

m(B(x, 2r))

m(B(x, r))
<∞ (1.8)

for almost all x ∈ X . Then X is a Vitali space.

Proof. Let A ⊂ X and let B be a fine subcover of A made of closed balls. We assume
that the balls B has uniformly bounded radius, so we can apply the Vitali covering
theorem repeatedly. Thanks to Lemma 1.4.1 we can decompose X as

X =
∞⋃
k=1

Dk, Dk open, Dk ⊂ Dk+1, m(Dk) <∞ ∀k ∈ N.

Put Ak := {x ∈ A | D(x) < 2k} ∩ Dk. Clearly Ak ⊂ Ak+1 and A =
⋃∞
k=1Ak. Using

induction, we’ll build a finite number of families of balls Cl ⊂ B such that Cl ⊂ Cl+1

and that

m

(
Ak

∖ ⋃
B∈Cl

B

)
≤ 2−lm(Ak) (1.9)

every time 1 ≤ k ≤ l. Then the family

C=

∞⋃
l=1

Cl = {B | B ∈ Cl, l ∈ N}
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will satisfy the Vitali condition (1.7).
To prove it, let B1 be the family of balls B(x, r) ∈ B with r ≤ 1 such that x ∈

A,B(x, r) ⊂ D1 and that

m(B(x, 5r)) ≤ 23 m(B(x, r)). (1.10)

We have that B1 is a fine covering ofA1 made of balls with uniformly bounded radius.
Then using the Vitali’s covering theorem we can extract from B1 a subcover C ′1 made of
pairwise disjoint balls such that ifB ∈ B1 then it exists a ballB′ ∈ C ′1 such thatB∩B′ 6=
∅ and that diam(B) < 2 diam(B′). Enumerate the elements of C ′1 = {B1

1 , B
1
2 , . . . }. Being

the balls B1
i closed and the covering fine there exist a positive integer N such that for

every x ∈ A1 \ (B1
1 ∪ · · · ∪B1

N) there exists a ball B ∈ B1 with x as center that does not
intersect B1

1 ∪ · · · ∪ B1
N . Hence this ball intersects another one B1

i ∈ C ′1 for some i > N
such that diam(B) < 2 diam(B1

i ). In particular we have that

A1 \ (B1
1 ∪ · · · ∪B1

N) ⊂
⋃

i≥N+1

5B1
i .

From this and from (1.10) we have that

m(A1 \ (B1
1 ∪ · · · ∪B1

N)) ≤
∑
i≥N+1

m(5B1
i ) ≤ 23

∑
i≥N+1

m(B1
i )

When N → ∞, the right-hand side of this inequality tends to 0 being C ′1 made of
disjoint balls of a fixed subset of X , i.e. D1, of finite measure. We pick N1 such that

m(A1 \ (B1
1 ∪ · · · ∪B1

N1
) ≤ 1

2
m(A1)

and we set C1 := {B1
1 , . . . , B

1
N1
}. For the induction step, we assume that all the families

C1 ⊂ · · · ⊂ Cl satisfy (1.9). Let Bl+1 be a family of closed balls B(x, r) such that
x ∈ Al+1, B(x, r) ⊂ Dl+1 \

⋃
B∈Cl

B and that

m(B(x, 5r)) ≤ 23(l+1) m(B(x, r)).

Consequently the family Bl+1 is a fine covering of Al+1\
⋃
B∈Cl

B made of closed balls
with uniformly bounded radius. By the Vitali’s covering theorem we can extract a
subcover C ′l+1 of pairwise disjoint balls of Bl+1 such that if B ∈ Bl+1 and B′ ∈ C ′l+1

then B ∩ B′ 6= ∅ and such that diam(B) < 2 diam(B′). Enumerate as before C ′l+1 =
{Bl+1

1 , Bl+1
2 , . . . } and reasoning in the same way we have that

Al+1

∖[ ⋃
B∈Cl

B ∪ (Bl+1
1 ∪Bl+1

2 ∪ · · · ∪Bl+1
N )

]
⊂

⋃
i≥N+1

5Bl+1
i .

Hence

m

(
Al+1

∖[ ⋃
B∈Cl

B ∪ (Bl+1
1 ∪Bl+1

2 ∪ · · · ∪Bl+1
N )

])
≤ 23(l+1)

∑
i≥N+1

m(Bl+1
i ). (1.11)

As before the right-hand side of this inequality tends to 0 if N →∞, being C ′l+1 made
of pairwise disjoint balls of Dl+1. Now let Nl+1 ∈ N such that when N = Nl+1 the
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expression in (1.11) is less or equal to 2−(l+1)m(Ak) for every 1 ≤ k ≤ l + 1 for which
m(Ak) > 0, i.e.∑

i≥Nl+1+1

m(Bl+1
i ) ≤ 2−4(l+1) min{m(Ak) | 1 ≤ k ≤ l + 1,m(Ak) > 0}.

Then the family

Cl+1 := Cl ∪ {Bl+1
1 , . . . , Bl+1

Nl+1
}

completes the induction step of the proof.

We now introduce a fundamental property for the two main theorems of this chap-
ter.

Definition 1.5.3. A Borel regular measure over a metric space (X, d) is called doubling
measure if every ball in X has positive finite measure and there exists C ≥ 1 such that

m(B(x, 2r)) ≤ C m(B(x, r)) (1.12)

for every x ∈ X and r > 0.

The doubling constant Cm is the minimal constant in (1.12). We notice that if we
iterate this inequality then

m(B(x, λr)) ≤ λlog2 Cmm(B(x, r)),

where λ ≥ 1 and the number log2Cm is sometimes called ”dimension” of the metric
measure space (X, d,m) if m is a doubling measure.

The following theorem is the first fundamental one of this chapter:

Theorem 1.5.2 (Lebesgue’s differentiation theorem). Let (X, d,m) be a Vitali space and
f : X → R be a locally integrable function. Then almost every x ∈ X is a Lebesgue point, i.e.

lim
r→0

1

m(B(x, r))

∫

B(x,r)

|f(y)− f(x)| dm(y) = 0 (1.13)

for almost every x ∈ X . Moreover,

lim
r→0

1

m(B(x, r))

∫

B(x,r)

f(y) dm(y) = f(x) (1.14)

for almost every x ∈ X .

Proof. We assume that f is non-negative, that m(X) < ∞ and that m(B(x, r)) > 0 for
every x ∈ X e r > 0. Let c > 0 and define

Fc :=

{
x ∈ X | lim

r→0

1

m(B(x, r))

∫

B(x,r)

f dm > c

}
.

We fix c and let O be an open set containing Fc. The family

B :=

{
B(x, r) ⊂ O | x ∈ Fc,

1

m(B(x, r))

∫

B(x,r)

f dm > c

}
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is a fine covering of Fc. By the Vitali’s theorem we can extract a subcover C of balls of
B that covers Fc almost everywhere. It follows that

cm(Fc) ≤ c
∑
B∈C

m(B) ≤
∑
B∈C

∫

B

f dm ≤
∫

O

f dm ≤
∫

X

f dm <∞,

so limr→0
1

m(B(x,r))

∫

B(x,r) f dm <∞.
Now, for c > 0 we define

Ec :=

{
x ∈ X | lim

r→0

1

m(B(x, r))

∫

B(x,r)

f dm < c

}
.

The set of points of X for which the limit (1.14) does not exist is contained in a count-
able union of sets Gs,t := Es ∩ Ft, with s < t and s, t ∈ Q. Being m(Gs,t) ≤ m(X) < ∞
we have that m(Gs,t) = 0. We fix Gs,t and a Borel set A containing it such that
m(Gs,t) = m(A). For every open set O containing A, reasoning in the same way as
before, we have that

tm(Gs,t) ≤
∫

O

f dm ≤
∫

A

f dm +

∫

O\A
f dm.

Taking the infimum over the open sets O, using the Borel regularity of m and the
continuity of the integral we obtain

tm(Gs,t) ≤
∫

A

f dm.

We fix then ε > 0 and choose 0 < δ < ε such that
∫

H f dm < ε for every measurable
H ⊂ X with m(H) < δ. Thanks to the Borel regularity of m, we can find an open set
O ⊃ A such that m(O) ≤ m(Gs,t) + δ. Using again the Vitali property of m we can find
a covering C made of pairwise disjoint balls in O such that

∫

B

f dm < sm(B),

for every B ∈ C and m(Gs,t \
⋃
B∈C B) = 0. In particular we have that

m(Gs,t) ≤ m

(
Gs,t

∖ ⋃
B∈C

B

)
+ m

( ⋃
B∈C

B

)
= m

( ⋃
B∈C

B

)
.

Hence

m

(
A
∖ ⋃

B∈C

B

)
≤ m(O)−m

( ⋃
B∈C

B

)
≤ m(Gs,t) + δ −m

( ⋃
B∈C

B

)
≤ δ,

so that
∫

A

f dm ≤
∫

A\
⋃

B∈C B

f dm +
∑
B∈C

∫

B

f dm ≤ ε+ sm(O) ≤ ε+ sm(Gs,t) + sδ.

Then if ε→ 0 we have that
∫

A

f dm ≤ sm(Gs,t)
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from which we get

tm(Gs,t) ≤ sm(Gs,t). (1.15)

Thus the limits in the thesis is finite x−a.e..
We want to prove now that the function in the left-hand side of (1.14) defined by

g(x) := lim
r→0

1

m(B(x, r))

∫

B(x,r)

f(y) dm(y) (1.16)

is measurable. We can rewrite this function as the pointwise limit of the sequence gn
defined by

gn(x) :=
1

m(B(x, r))

∫

B(x, 1
n

)

f dm

so it is sufficient to prove that for fixed δ > 0

u(x) := m(B(x, δ)), v(x) :=

∫

B(x,δ)

f dm

are measurable over Uδ = {x | B(x, 2δ) ⊂ B}. Fix x ∈ Uδ and let {xi}i∈N ⊂ X be a
sequence converging to x. Fix an open set O containing B(x, δ). The balls B(xi, δ) ⊂ O
for i large enough, so

lim
i→∞

u(xi) ≤ m(O), lim
i→∞

v(xi) ≤
∫

O

f dm.

Taking the infimum over the open setsO, we get limi→∞ u(xi) ≤ u(x) and limi→∞ v(xi) ≤
v(x). It follows that both u and v are upper semicontinuous, so that also g is measur-
able.

The last step consists in proving that g = f x−a.e.. To this end, let A ⊂ X be a
measurable set and fix t > 1. A can be expressed, modulo a negligible set, as a disjoint
union of the following measurable sets, for n ∈ N:

An := A ∩ {x ∈ X | tn ≤ g(x) < tn+1}, (1.17)

A−(n+1) := A ∩ {x ∈ X | t−(n+1) ≤ g(x) < t−n}, (1.18)
A∞ := A ∩ {x ∈ X | g(x) = 0}. (1.19)

We notice that
∫

A∞

f dm = 0 =

∫

A∞

g dm. (1.20)

The reasoning made before can be used for every A of Fc or of Ec, hence observing
that An ⊂ {g > sn} for every s < t and letting s→ t we have that

tnm(An) ≤
∫

An

f dm,

∫

An

f dm ≤ tn+1m(An). (1.21)

Hence
1

t

∫

An

f dm ≤ tnm(An) ≤
∫

An

g dm ≤ tn+1m(An) ≤ t

∫

An

f dm.

1

t

∫

A−(n+1)

f dm ≤
∫

A−(n+1)

g dm ≤ t

∫

A−(n+1)

f dm.
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Summing over n and using (1.20) together with (1.21) we get

1

t

∫

A

f dm ≤
∫

A

g dm ≤ t

∫

A

f dm.

So if t→ 1 we obtain
∫

A

f dm =

∫

A

g dm.

Being A chosen arbitrarily, it follows that f = g x−a.e..

We now introduce the definition of a derivative of a measure w.r.t. another one.

Definition 1.5.4. Let (X, d,m) be a metric measure space and h a Borel regular locally
finite measure over X . The derivative of h w.r.t. m at a point x ∈ X is the limit, if it exists
and it is finite,

lim
r→0

h(B(x, r))

m(B(x, r))
=:

dh

dm
(x) (1.22)

Remark 1.5.1. Being m locally finite, we have that m(B(x, r)) > 0 for every x ∈ supp(m)
and for any r > 0 so the limit in the definition exists x−a.e..

Theorem 1.5.3 (Lebesgue-Radon-Nikodym’s theorem). Let (X, d,m) be a Vitali space
and h be a Borel regular locally finite measure over X . Then there exist and are univocally
determined two Borel regular locally finite measures hs and ha over X such that

h(A) = hs(A) + ha(A) (1.23)

for every Borel subset A ⊂ X and that there exists D ⊂ X such that hs(D) = 0, ha(Dc) = 0
and that ha = h D. Moreover, the derivatives of h and ha w.r.t. m exist almost everywhere
over X , are m−measurable and locally integrable over X , with

ha(A) =

∫

A

dh

dm
(x) dm(x) =

∫

A

dha

dm
(x) dm(x) (1.24)

for every Borel subset A ⊂ X . In particular,

dh

dm
=

dha

dm
m-a.e. in X. (1.25)

Proof. We first prove how to obtain the Lebesgue’s decomposition (1.23). Let E ⊂ X and
we define

ha(E) := inf h(B),

where the infimum is taken over the Borel subsets B ⊂ X such that m(E \B) = 0. ha

is a measure and ha(E) ≤ h(E) for every E thanks to the regularity of h and ha(N) = 0
for every N such that m(N) = 0. it is also locally finite. We have to prove that it is
Borel regular: let E1, E2 ⊂ X such that d(E1, E2) > 0. Let B ⊂ X a Borel set such
that m((E1 ∪E2) \B) = 0 and let O1, O2 be two open set containing E1, E2 respectively
such that d(O1, O2) > 0 and we put B1 := B ∩ O1 e B2 := B ∩ O2. Then m(E1 \B1) =
m(E2 \B2) = 0 and so

h(B) ≥ h(B1 ∪B2) = h(B1) + h(B2) ≥ ha(E1) + ha(E2).
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Taking the infimum over all the Borel setsB as before we can conclude, by Carathéodory’s
criterion, that ha is a Borel measure.
To prove that it is also regular, let E ⊂ X and we assume that ha(E) < ∞. Taking a
decreasing sequence of Borel sets B1 ⊃ B2 ⊃ · · · such that m(E \Bj) = 0 for every
j ∈ N and that limj→∞ h(Bj) = ha(E). By the continuity of m this sequence exists be-
cause if m(E \B′) = m(E \B′′) = 0 then m(E \ (B′ ∩ B′′)) = 0. For the same reason
there exists also a Borel set B0 ⊃

⋃
j∈N(E\Bj) such that m(B0) = 0. Finally we put

B := (
⋂
j∈NBj) ∪B0. Then B ⊃ E, is a Borel set and

ha(E) ≤ ha(B) ≤ ha
(⋂
j∈N

Bj

)
≤ ha(Bk) ≤ h(Bk) ∀k ∈ N.

Hence ha(E) = ha(B) and this proves the regularity of ha. Moreover, setting D =⋂
j∈NBj , we have that D is a Borel set and m(E\D) = 0. Hence ha(E) ≤ ha(D) ≤

limj∈N h(Bj) = limj∈N h
a(Bj) = ha(E), i.e. ha(E) = h(D).

Now, ifE is a Borel set we setD′ := D∩E whereD is the same as before. Then alsoD′ is
a Borel set such that m(E \D′) = m(E \D) = 0 and so ha(E) ≤ h(D′) ≤ h(D) = ha(E),
i.e. ha(E) = h(D′). Now we want to prove that

ha(B) = h(B ∩D′) ∀B ⊂ E Borel set. (1.26)

In fact, if B ⊂ D is a Borel set then

ha(B) + ha(E\B) = ha(D) = h(D′) = h(B ∩D′) + h(D′\B).

But being m(B \D′) = 0 and m((E \B) \ (D′ \B)) ≤ m(E \D′)) = 0, then ha(B) ≤
h(B ∩D′) and ha(D \B) ≤ h(D′ \B), so we have (1.26).
Consider now the decomposition of X in a countable family of pairwise disjoint Borel
sets {Di}i∈N, possible thanks to Lemma (1.4.1), such that m(Di) and h(Di) are finite for
every i ∈ N. Applying the preceding construction we obtain the Borel sets D′i ⊂ Di

such that m(D′i) = m(Di) and ha(B) = ha(B ∩ D′i) for every B ⊂ Di Borel set. We set
D :=

⋃
i∈ND

′
i, so m(X \D) = 0 and fix E ⊂ X and B ⊃ E such that ha(E) = ha(B).

Then

ha(E) =
∑
i∈N

ha(B ∩Di) =
∑
i∈N

h(B ∩D′i) = h(B ∩D) ≥ h(E ∩D)

and h(B \D) = 0. Hence ha(E \D) ≤ ha(B \D) = 0 and we get

ha(E) ≤ ha(E ∩D) + ha(E \D) = ha(E ∩D) ≤ h(E ∩D).

So ha(E) = h(E ∩D) for every E ⊂ X and then ha = h D.
As last step for the decomposition we set hs := h − ha. Then the preceding reasoning
gives us hs(D) = 0 and that hs is a Borel regular measure being so h and ha.
Assume now that m(X) and h(X) are finite and that m(B(x, r)) > 0 for every x ∈ X
and for every r > 0. Let c > 0 and we define

Ec :=

{
x ∈ X | lim

r→0

h(B(x, r))

m(B(x, r))
< c

}
, Fc :=

{
x ∈ X | lim

r→0

h(B(x, r))

m(B(x, r))
< c

}
.

We fix c > 0 and let E ′c ⊂ Ec be any of his subsets. Then we fix ε > 0 and pick an open
set O ⊃ E ′c such that m(O) ≤ m(E ′c) + ε. We can use a fine covering E ′c made of closed
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balls B(x, r) ⊂ O, x ∈ E ′c, such that h(B(x, r)) < cm(B(x, r)) and the hypothesis of m
having the Vitali property permits us to conclude that there exists a countable family
of pairwise disjoint balls C := {B} in O such that h(B) < cm(B) for every B ∈ C and
m(E ′c \

⋃
B∈C B) = 0. Hence

ha(E ′c) ≤ h

( ⋃
B∈C

B

)
≤ c

∑
B∈C

m(B) ≤ cm(O) ≤ cm(E ′c) + c ε,

and letting ε→ 0 we conclude that

ha(E ′c) ≤ cm(E ′c). (1.27)

Now we want to prove the opposite inequality, with F ′c in place of E ′c. To this aim, for
every fixed c > 0, let F ′c ⊂ Fc be any of its subsets and let ε > 0. We choose an open set
O ⊃ F ′c ∩D such that h(O) ≤ h(F ′c ∩D) + ε, with D such that ha = h D, D ⊂ X and
m(Dc) = 0. Exactly as before, using the Vitali property and a fine covering we have
that

cm(F ′c) = cm(F ′c ∩D) ≤ h(O) ≤ h(F ′c ∩D) + ε = ha(F ′c) + ε.

Letting as before ε→ 0 we obtain

cm(F ′c) ≤ ha(F ′c). (1.28)

Moreover,

cm(Fc) ≤ ha(Fc) ≤ h(X) <∞

for every c > 0 hence

lim
r→0

h(B(x, r))

m(B(x, r))
<∞ x-a.e..

Arguing in the same way as in the Lebesgue’s differentiation theorem, the set of points
x ∈ X such that (1.22) does not hold is contained in countable union of sets in the form
Gs,t := Ec ∩ Ft, where s < t, s, t ∈ Q. So from (1.27), (1.28) and the assumption that
m(Gs,t) ≤ m(X) <∞, we get that m(Gs,t) = 0 and the function g(x) := dh(x)

dm(x)
exists and

is finite m−a.e.. Let then A ⊂ X be a Borel set and fix t > 1. We define the sets An as
in (1.17). Then, modulo a m−negligible set, A can expressed as the union of the Ans.
Using (1.27) and (1.28) in place of (1.15) and (1.21) we conclude that ha(A∞) = 0 and
that

1

t
ha(A) ≤
∫

A

g dm ≤ t ha(A).

Letting t→ 1 we get the thesis.
The second equality in (1.24) follows from the first and from the Lebesgue’s differen-
tiation theorem. (1.25) follows directly from the preceding ones.

Definition 1.5.5. We say that a measure h over X is absolutely continuous w.r.t. m, and
we write h � m, if for every measurable set A ⊂ X such that m(A) = 0 we have that
h(A) = 0. (1.23) is called Lebesgue’s decomposition of h in its singular part hs and absolutely
continuous part ha w.r.t. m.
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So now it is justified the name ”absolutely continuous” for ha. The function dh
dm

often
is called Radon-Nikodym’s derivative or density of h w.r.t. m and has the same properties
of an ordinary derivative, for example the linearity and the chain rule. Historically the
Radon-Nikodym’s theorem and the Lebesgue’s decomposition were two different re-
sults (in fact the Radon-Nikodym’s theorem is usually stated for two measures one ab-
solutely continuous w.r.t. the other), but they are closely related as the theorem shows.

Remark 1.5.2. In the proof we used coverings made of closed balls because the Lebesgue’s
differentiation theorem was stated for closed balls since it uses the Vitali property of
the base space X . it is possible to use also open balls: if (X, d,m) is a metric measure
space and f : X → R is a locally integrable function then

1

m(B(x, r))

∫

B(x,r)

|f(y)− f(x)| dm(y) ≤ m(B(x, 2r))

m(B(x, r))

1

m(B(x, 3r
2

))

∫

B(x, 3r
2

)

|f(y)− f(x)| dm(y)

x−a.e. and for every r > 0 small enough. In particular, if m is a doubling measure then
we get

lim
r→0

1

m(B(x, r))

∫

B(x,r)

|f(y)− f(x)| dm(y) = 0 (1.29)

x−a.e., hence

lim
r→0

1

m(B(x, r))

∫

B(x,r)

f(y) dm(y) = f(x) (1.30)

x−a.e.. Now using (1.25) and (1.30) we obtain

dh

dm
(x) = lim

r→0

h(B(x, r))

m(B(x, r))
, (1.31)

m−a.e. x ∈ X if m is a doubling measure and if h is a Borel regular locally finite
measure over X . The same holds if (X,m) is a doubling space.

For future usage, we collect here some properties and definitions about signed and
vector measures.

Definition 1.5.6. Let X be a set and M ⊂ P(X) be a σ−algebra. A function m : M →
Rn is called a vector-valued measure if m is countably additive, in the sense that

m

( ∞⊔
i=1

Ai

)
=
∞∑
i=1

m(Ai), Ai ∩ Aj = ∅ if i 6= j and Ai ∈M . (1.32)

Moreover, given m as above we define the function |m| : M → [0,∞) as

|m|(A) := sup

{ ∞∑
i=1

‖m(Ai)‖ : A =
∞⊔
i=1

Ai Ai ∈M

}
. (1.33)

The function |m| is called variation of m and the quantity |m|(X) is called total variation
of m.

Proposition 1.5.4. Let X , M and m as before. Then the following hold:

I) Every infinite sum in (1.32) is absolutely convergent.

II) The variation |m| is countably on M and therefore it is a measure itself.

III) The quantity |m|(X) is finite, hence |m| is a finite measure.
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1.6 Weak convergence of measures

Definition 1.6.1. Given a normed space V we say that a sequence {vn} ⊂ V weakly
converges to v ∈ V and we write vn ⇀ v if for all f ∈ V ∗ we have f(vn)

n→∞−→ f(v).

We distinguish this type of convergence from the usual one on V simply calling the
latter strong convergence. The first properties of the weak convergence are the follow-
ing. Denote with J : X → X∗∗ the classic isometry from V to its bidual V ∗∗, namely
JV (v)(f) := f(v) for all v ∈ V, f ∈ V ∗.
Theorem 1.6.1. If vn ⇀ v in the normed space V then {‖vn‖V }n∈N is bounded and limn→∞ ‖vn‖V ≥
‖v‖V .

Proof. Thanks to the Hahn-Banach theorem there exists f ∈ V ∗ such that ‖f‖V ∗ = 1
and that f(v) = ‖v‖V . But being vn ⇀ v in V we have that f(vn) → f(v). So we can
conclude that

‖v‖V = f(v) = lim
n→∞

f(vn) = lim
n→∞

f(vn) ≤ lim
n→∞

‖f‖V ∗‖vn‖V = lim
n→∞

‖vn‖V .

Being vn ⇀ v in V then JV (vn)(f) → JV (v)(f) for every f ∈ V ∗. Thus {JV (vn)}n∈N
converges pointwise to JV (v) in V ∗. Hence

sup
n∈N
|JV (vn)(f)| <∞ ∀ f ∈ V ∗.

Finally, using the uniform boundedness principle we can conclude:

sup
n∈N
‖vn‖V = sup

n∈N
‖JV (vn)‖V ∗∗ <∞.

A tool that sometimes we will use is the following lemma. Recall that the convex
hull of a subset A of V is the intersection of all convex sets of V containing A.

Lemma 1.6.2 (Mazur). Let {vn}n∈N ⊂ V be a normed space and vn ⇀ v ∈ V . Then v
belongs to the convex hull of the sequence {vn}n∈N.

Proof. Denote with H the convex hull of {vn}n∈N. We can replace {vn} with {vn − h},
for h ∈ H if 0 /∈ H , so we assume that this is not the case. Suppose that there exists
ε > 0 such that

‖v − w‖V > 2ε ∀w ∈ H.

Thus v 6= 0. If ‖a − a′‖V < ε and ‖b − b′‖V < ε then we would have that ‖(ta + (1 −
t)b)− (ta′ + (1− t)b′‖V < ε if a, a′, b, b′ ∈ V and t ∈ [0, 1], so

Hε := {w ∈ V | (.w,H) < ε} ⊂ H

is convex and is an open set containing 0 ∈ V . So we define the functional (called
Minkowski functional)

|w|ε := inf{λ > 0 | λ−1w ∈ Hε} w ∈ V.

Applying the Hahn-Banach theorem to the linear map tv 7→ t|v|ε there exists v∗ : V →
R such that v∗(v) = |v|ε e v∗(w) ≤ |w|ε for all w ∈ V . So we get

1 < |v|ε = lim
n→∞

v∗(vn) ≤ lim
n→∞

|vn|ε ≤ 1

that is a contradiction.
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Thanks to the Mazur Lemma, if vn ⇀ v in V then there exists a sequence {vk} of
convex combinations

vk =

mk∑
n=1

λn,kvn, λn,k ≥ 0, λk,k + · · ·+ λmk,k = 1

strongly convergent to v in V (slightly more informally, we can extract from a weakly
convergent sequence a strongly convergent one).

Proposition 1.6.3. Let (X,m) be a measure space with m a σ-finite measure and p ∈ [1,∞).
If a sequence {fn}n∈N in Lp(X,m) weakly converges to f ∈ Lp(X,m) and

lim
n→∞

fn(x) = g(x) x− a.e.

then g = f almost everywhere.

Proof. From the Mazur Lemma there exist a (sub-)sequence {fk}made of convex com-
binations of fn convergent to f in Lp(X,m). We can assume that this convergence is
pointwise almost everywhere X . Being fk → g almost everywhere then by the as-
sumptions f = g almost everywhere.

If X is a topological space, then Cc(X,Rn) denotes the space of all vector-valued
functions with compact support in X , normed with

‖f‖∞ := sup{‖f(x)‖Rn : x ∈ X}.

The completition of Cc(X,Rn) w.r.t. the above norm is the Banach space C0(X,Rn)
of all continuous functions vanishing at infinity, i.e. of all continuous f such that for
every ε > 0 there exists a compact set K such that ‖f(x)‖ < ε whenever x ∈ X \K.

The following two theorems provide an useful link between linear functionals on
C0(X,Rn) and measures. For the proof see [2] and [7].

Theorem 1.6.4 (Riesz). Suppose that X is a locally compact Hausdorff topological space and
let L be a positive linear functional on C0(X,R). Then there exists a unique Borel measure
m : B(X)→ [0,∞], finite on compact sets, such that

L(f) =

∫

X

f dm ∀f ∈ C0(X,R).

If L is a bounded linear functional on C0(X,Rn) then there exists a vector-valued measure
m = (m1, . . . ,mn) : B(X)→ Rn such that

L(f) =

∫

X

f dm :=
n∑
i=1

∫

X

fi dmi, ∀f = (f1, . . . , fn) ∈ C0(X,Rn).

Moreover, there holds
‖L‖C0(X,Rn) = |m|(X).

Corollary 1.6.5. The vector spaceM(X,n) of all vector-valued measures m : B(X) → Rn,
endowed with norm ‖m‖ := |m|(X), is a Banach space.
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Definition 1.6.2. Given V a normed space we say that a sequence of functionals {fn} ⊂
V ∗ converges weakly∗ to f ∈ V ∗, writing fn

∗
⇀ f , if for every v ∈ V we have fn(v)

n→∞−→
f(v).

In V ∗ weak convergence implies the weakly∗ one by definition but in general the
converse does not hold.

Applying the definition on the space M(X,n) we can define the weak∗ conver-
gence in this space, induced by C0(X,Rn). Given a sequence {mk} in M(X,n) we
have

mk
∗
⇀ m ⇔ lim

k→∞

∫

X

f dmk =

∫

X

f dm ∀f ∈ C0(X,Rn).

Remark 1.6.1. We remark that if the space X is separable then the space C0(X,Rn) is
itself separable, hence the weak∗ topology restricted to bounded sets ofM(X,n) can
be proven to be metrizable. In particular, from any sequence {mk} ⊂ M(X,n) with
equibounded total variations one can extract a subsequence {mjk} such that mjk

∗
⇀ m

for some m ∈M(X,n) (Banach-Alaoglu theorem).

Now we’ll show some properties concerning the weak∗ convergence of measures,
and remand to the Definition 2.1.4 for lower/upper semicontinuous functions and to
Proposition 2.7 for the approximation from below by Lipschitz function of a lower
semicontinuous function.

Proposition 1.6.6. If {mh} is a sequence of Radon measures on the locally compact, separable
metric space X , such that mh

∗→ m, then

I) If the measures mh are positive, then for every lower semicontinuous function u : X →
[0,∞]

lim
h→∞

∫

X

u dmh ≥
∫

X

u dm

and for every upper semicontinuous function v : X → [0,∞) with compact support

lim
h→∞

∫

X

v dmh ≤
∫

X

v dm.

II) If |mh| locally weakly∗ converges to h, then h ≥ |m|. Moreover, ifX is relatively compact
and h(∂X) = 0 then mh(X)→ m(X) as h→∞. More generally,

∫

X

u dm = lim
h→∞

∫

X

u dmh

for any bounded Borel function u : X → R with compact support such that the set of its
discontinuity points is h−negligible.



Chapter 2

Lipschitz functions and curves in
metric spaces

We prove in this chapter the density property of Lipschitz functions in the Lp

spaces, studying their properties and the connection with lower semicontinuous func-
tions. Another tool that we introduce are the Lipschitz partitions of unity, for which
the properties of doubling spaces studied Chapter 1 will be useful. Finally, we will
study the metric derivative of asbolutely continuous curves in a metric measure space,
that is the key tool we will use to introduce the weak upper gradients in the following
chapter.

2.1 Lipschitz functions

Definition 2.1.1. Let(X, dX) and (Y, dY ) be two metric spaces. A function f : X → Y
is called L-Lipschitz if there exists a constant L ≥ 0 such that

dY (f(a), f(b)) ≤ LdX(a, b) ∀a, b ∈ X. (2.1)

The smallest L for which (2.1) holds is called Lipschitz constant.

Lipschitz functions will be the substitute of test functions in the Euclidian spaces
(smooth with compact support). The first result on Lipschitz functions is the following
extension theorem:

Theorem 2.1.1 (Whitney-Mc. Shane extension theorem). Let (X, d) be a metric space,
A ⊂ X and f : A → R a L−Lipschitz function. Then there exists a L−Lipschitz function
F : X → R such that F |A = f .

Proof. Assume A 6= ∅. Given x ∈ X we define the function

F (x) = inf{f(a) + Ld(a, x) | a ∈ A}. (2.2)

Fixing a point a0 ∈ A we have that

f(a) + Ld(a, x) ≥ f(a) + Ld(a, a0)− Ld(a0, x) ≥ f(a0)− Ld(a0, x), (2.3)

so F (x) > −∞ for all x ∈ X . The function x 7→ f(a) + Ld(a, x) is L-Lipschitz for
fixed a ∈ A, then F is the pointwise infimum of a family of L-Lipschitz functions,

27
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hence also F is. In fact, if x, y ∈ X , fixing ε > 0 we can find ayε ∈ A such that F (y) ≥
f(ayε) +Ld(ayε , y)− ε. By the definition of F , we have that F (x) ≤ f(ayε) +Ld(ayε , y), so

F (x)− F (y) ≤ Ld(ayε , y)− Ld(ayε , x) + ε ≤ Ld(x, y) + ε.

Letting ε → 0 we have F (x) − F (y) ≤ Ld(x, y). By symmetry, also F (y) − F (x) ≤
Ld(x, y): F is L−Lipschitz. Finally, from (2.3) we have that F (a) = f(a) if a ∈ A.

Remark 2.1.1. Formula (2.2) gives the largest extension of f that is L−Lipschitz, in the
sense that if G : X → R is L−Lipschitz and such that G|A = f then G ≤ F . Similarly,

F (x) = sup{f(a)− Ld(a, x) | a ∈ A} (2.4)

defines the smallest extension of f that is L−Lipschitz.

Remark 2.1.2. The Kirszbraum theorem states that the conclusion of the preceding the-
orem still holds if X = Rm and Y = Rn, with n,m ≥ 1.

Applying the preceding theorem to the coordinate functions of a vector function
with values in Rn we get the following corollary.

Corollary 2.1.2. Let (X, d) be a metric space, A ⊂ X and f : X → Rn a L−Lipschitz
function. Then there exists a L

√
n−Lipschitz function F : X → Rn such that F |A = f .

A tool that we will use sometimes in the following chapters will be Lipschitz parti-
tion of unity, i.e. partitions of unity made by Lipschitz functions. To this aim, we need
to introduce a new class of measure spaces.

Definition 2.1.2. A metric space (X, d) is called ε-separable if every two distinct points
of the space have distance at least ε. The space X is called doubling space with constant
N , N ≥ 1 an integer, if for every ballB(x, r) every subset ofB(x, r) that is r

2
−separable

contains at most N points.

Remark 2.1.3. If the metric measure space (X, d,m) is a doubling space then also (X, d)
is a doubling space. In fact, if a subset of B(x, r) r

2
−separable contains k points that

we denote by x1, . . . , xk then for the doubling properties of m and being the B(xi,
r
4
)

pairwise disjoint for every i = 1, . . . , k

k

C4
m

m(B(x, 2r)) ≤
k∑
i=1

1

Cm

m

(
B

(
xi,

r

2

))
≤

k∑
i=1

m

(
B

(
xi,

r

4

))
≤ m(B(x, 2r)).

Hence, being the balls of finite measure, k ≤ C4
m. The same reasoning shows that if X

is endowed with a locally finite doubling measure then X is separable.

Open subsets of doubling spaces can be covered by balls that constitute a covering
akin to the classical Whitney decomposition of open subset of Rn:

Theorem 2.1.3 (Whitney decomposition). Let (X, d) be a doubling metric space with dou-
bling constant N and let Ω be an open subset of X sich that Ωc 6= ∅. There exists a countable
family of balls in Ω WΩ := {B(xi, ri)}i∈N such that

Ω =
⋃
i∈N

B(xi, ri)

∑
i∈N

χB(xi,2ri) ≤ 2N5, where ri =
1

8
d(xi, X \Ω).
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Proof. For x ∈ Ω, denote d(x) := d(x,X \Ω). Notice that if we use ∂Ω in place of X \Ω
it can happen that B(x, d(x, ∂Ω)) ∩X \Ω 6= ∅. For k ∈ Z set

Fk :=

{
B

(
x,
d(x)

40

)
| x ∈ Ω, 2k−1 < d(x) ≤ 2k

}
.

By the Vitali theorem, we can consider a subfamily Gk ⊂ Fk of disjoint balls such that⋃
B∈Fk

B ⊂
⋃
B∈Gk

5B.

We want to prove that we can consider for the thesis the family

WΩ :=
⋃
k∈N

{5B | B ∈ Gk}.

By construction we just have to prove
∑

i∈N χB(xi,2ri) ≤ 2N5. Suppose that there is
a point in Ω that belongs to M balls of the form 2B,B ∈ WΩ and label them as
B(xj,

1
4
d(xj)), with d(x1) ≥ d(xi), j = 1, . . . ,M . Using the triangle inequality

d(xi) ≥
3

5
d(x1), B

(
xi,

1

4
d(xi)

)
⊂ B

(
x1,

3

4
d(x1)

)
, i = 1, . . . ,M. (2.5)

If xi and xj are the centers of balls of the same family Fk then

d(xi, xj) ≥
1

20
min{d(xi), d(xj)} ≥

1

40
d(x1)

if i 6= j.
Remark 2.1.4. Being X a doubling space with doubling constant N , every ball with
radius r > 0 can be covered by N balls of radius r

2
. If the vice versa holds, then X is a

doubling space with doubling constant N2. So every set that is r
2k
−separable in a ball

B(x, r) has at most Nk points.
By this remark, in our case at mostN5 of these balls can have centers in Fk for fixed

k. Suppose now that x1 ∈ Fk1 , so d(x1) ≥ d(xi) ≥ 3
5
d(x1), i = 2, . . . ,M . Hence all the

centers must be contained in Fk1−1 ∩Fk1 .

Let X be a doubling metric space with doubling constant N . If Ω is an open subset
of X such that X \Ω 6= ∅ and let WΩ be the family constructed with the Whitney
extension theorem. Given a ball B(xi, ri) ∈ WΩ we define

ψi(x) := min

{
1

ri
d(x,X \B(xi, 2ri)), 1

}
.

By definition, ψi is 1
ri
−Lipschitz. Moreover,

1 ≤
∑
i∈N

ψi(x) ≤ 2N5.

Set

φi(x) :=
ψi(x)∑
k ψk(x)

. (2.6)

The functions φi satisfy the following properties for some constant C ≥ 1 that depends
only by N :
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• φi(x) = 0 for x /∈ B(xi, 2ri) and for every x ∈ Ω we have that φi(x) 6= 0 for at
most C indices i;

• 0 ≤ φi ≤ 1 and φ|B(xi,ri) ≥ 1
C

;

• φi is C
ri
−Lipschitz;

•
∑

i φi(x) = 1 for every x ∈ Ω.

Definition 2.1.3. We call a family of function {φi} as above a Lipschitz partition of unity.

Using these partitions it can be shown that a L−Lipschitz function over doubling met-
ric space can be extended with a CL−Lipschitz function, where C ≥ 1 depends only
on the doubling constant of X .

We then want to prove an essential density property concerning Lipschitz func-
tions, but before we need some definitions.

Definition 2.1.4. Let (X, d) be a metric space. A function f : X → (−∞,∞] is said to
be lower semicontinuous if the set {x ∈ X : f(x) > a} =: {f > a} is open for each a ∈ R.
it is said upper semicontinuous if −f is lower semicontinuous.

By definition it follows that f is lower semicontinuous if and only if

lim
y→x

f(y) ≥ f(x) ∀x ∈ X. (2.7)

Thus, if f is lower semicontinuous and f(x) = ∞ for a point x ∈ X then f is continu-
ous at x in the extended sense.

If f and g are lower semicontinuous and if x ≥ 0 then both cf + g and min{f, g} are
lower semicontinuous. Moreover, the pointwise supremum of an arbitrary family of
lower semicontinuous functions if lower semicontinuous.

Proposition 2.1.4. Let (X, d) be a metric space, c ∈ R and f : X → [c,∞] be lower
semicontinuous. Then there exists a sequence {fi} of Lipschitz functions on X such that
c ≤ fi ≤ fi+1 ≤ f and limi→∞ fi(x) = f(x) for each x ∈ X .

Proof. Define, for each i = 1, 2, . . . a function fi on X by

fi(x) := inf{f(y) + id(x, y) : y ∈ X}.

Following the argument in the proof of the Whitney-Mc. Shane extension theorem we
have that each fi is i−Lipschitz with c ≤ fi(x) ≤ fi+1(x) ≤ f(x) for each X ∈ X . Fix
x ∈ X . Assume first that f(x) = ∞. Let M > 0 and choose ε > 0 such that f > M
on the ball B(x, ε). Therefore fi(x) is at least the minimum of the numbers M and
c+ iε. For every i large enough that c+ iε > M we have that fi(x) ≥M , which implies
limi→∞ fi(x) = f(x) =∞.
Next, assume that f(x) < ∞. Let M < f(x), and choose ε > 0 such that f > M on
the same ball as before. As above, we find fi(x) ≥ M for all large i and hence that
limi→∞ fi(x) = f(x) in this case as well.

Combining the dominated convergence theorem and Proposition 2.1.4 we get the
following corollary.
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Corollary 2.1.5. Let X = (X, d,m) be a metric measure space, p ∈ [1,∞) and let f : X →
[0,∞] be a p−integrable lower semicontinuous function. Then there exists a sequence {fi} of
Lipschitz functions on X such that 0 ≤ fi ≤ fi+1 ≤ f and fi → f both pointwise and in
Lp(X,m) as i→∞.

Quite similarly, in every metric measure space non-negative p−integrable func-
tions can be approximated in Lp by a pointwise decreasing sequence of lower semi-
continuous functions.

Theorem 2.1.6 (Vitali-Carathéodory). Let (X, d,m) be a metric measure space and let p ∈
[1,∞). For every p−integrable function f : X → [0,∞] there exists a pointwise decreasing
sequence {gi} of lower semicontinuous functions on X such that f ≤ gi+1 ≤ gi and gi → f in
Lp(X,m).

Proof. Let f : X → [0,∞] be a p−integrable function on X . Pick an increasing se-
quence {φi} of non-negative simple functions converging pointwise to f . By using the
representation

f = φ1 +
∞∑
i=2

(φi − φi−1)

we find that f admits the following expression:

f =
∞∑
j=0

ajχEj
.

Here a0 = ∞, aj ∈ (0,∞) for j ≥ 1 and Ej ⊂ X is a measurable set for all j = 0, 1, . . .
and note that m(E0) = 0.

Fix then ε > 0. By (1.3) we can choose for each g ≥ 1 an open set Uj ⊃ Ej such that

m(Uj) ≤ m(Ej) + εp 2−jp a−pj .

Moreover, we can choose a sequence of open sets Vj ⊃ E0 such that

m(Vj) ≤ εp 2−jp

for j = 1, 2, . . . . Then for the lower semicontinuous function

g :=
∞∑
j=1

ajχUj
+
∞∑
j=1

χVj

we have that both f ≤ g on X and

‖g − f‖Lp(X,m) ≤
∞∑
j=1

ajm(Uj \Ej)
1
p +

∞∑
j=1

m(Vj)
1
p ≤ 2ε.

Being ε arbitrary, and being the minimum of two lower semicontinuous functions
lower semicontinuous the theorem follows.

Combining the Vitali-Carathéodory theorem with Corollary 2.1.5 we get the main
result.

Theorem 2.1.7. Let X = (X, d,m) be a metric measure space and p ∈ [1,∞). Then Lips-
chitz functions are dense in Lp(X,m). If in addition (X, d) is locally compact then Lipschitz
functions with compact support are dense in Lp(X,m).
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2.2 Absolute continuity and curves in metric spaces

To introduce the concept of (weak) upper gradients and Sobolev classes we need
some definitions and properties of absolute continuous curves.

Definition 2.2.1. Let (X, d) be a complete metric space and let γ : [0, 1]→ X be a curve.
We say that γ belongs to AC([0, 1],R) if there exists f ∈ L1([0, 1]) such that

d(γ(s), γ(t)) ≤
∫ t

s

f(r) dr ∀t, s ∈ (a, b) (2.8)

For p = 1 γ will be called absolutely continuous curve. If f ∈ Lq([0, 1]), q ∈ [1,∞]
then the curve will be called q-absolutely continuous and set of such curves denoted
by ACq([0, 1], X).

With a little abuse of the notation we will use often the term ”curve” both for the
map γ and its image γ([0, 1]).
Remark 2.2.1. In general the domain of γ is an open interval (a, b), but observe that in
this case the limit for t ↓ a and t ↑ b of γ exist being X complete by assumptions, even
if a or b are∞. Recall also that a curve in ACq([0, 1], X) is uniformly continuous.

Among all the possible choices of f in (2.8) there exists a minimal one, which is
provided by the following theorem.

Theorem 2.2.1. Let p ∈ [1,+∞]. Then for any curve γ ∈ ACq([0, 1], X) the limit

|γ̇t| := lim
s→t

d(γs, γt)

|s− t|
(2.9)

exists for L1−a.e. t ∈ [0, 1]. Moreover, the function t 7→ |γ̇t| ∈ Lp([0, 1]) is an admissible
integrand for the right-hand side of (2.8), and it is minimal in the following sense:

|γ̇t| ≤ f(t) L1 − a.e. t ∈ [0, 1] ∀f satisfying (2.8). (2.10)

Proof. Let {yn}n∈N be a dense subset of γ([0, 1]) ⊂ X and define

dn(t) := d(yn, γt), n ∈ N.

By continuity of the distance function all the dn’s are absolutely continuous on [0, 1].
Hence the function

d(t) := sup
n∈N
|ḋn(t)|

is well defined L1−a.e. in [0, 1]. If t ∈ [0, 1] is a point where all the functions dn are
differentiable notice that by the reverse triangle inequality

lim
h→0

d(γt+h, γt)

|h|
≥ sup

n∈N
lim
h→0

|dn(t+ h)− dn(t)|
|h|

, d(t).

From the Definition 2.2.5 we have d ≤ f L1−a.e., therefore d ∈ Lp([0, 1],L1) being so f
by definition. But from the definition of d we have that

d(γt+h, γt) = sup
n∈N
|dn(t+ h)− dn(t)| ≤

∫ t+h

t

d(r)dr

and so
lim
h→0

d(γt+h, γt)

|h|
≤ d(t),

at any Lebesgue point t of d.
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Definition 2.2.2. Given a curve γ : [0, 1] → X we define its length L (γ) ∈ R as the
supremum of the numbers

k∑
i=1

d(γti , γti−1
) (2.11)

over all the scompositions of [0, 1] in 0 = t0 < t1 < · · · < tk = 1. If L (γ) < ∞ we say
that γ is rectifiable.

Given a rectifiable curve γ : [0, 1]→ X , if f : X → Y is a L−Lipschitz map between
metric spaces then f ◦ γ is rectifiable and

L (f ◦ γ) ≤ LL (γ). (2.12)

Moreover, all Lipschitz curves are locally rectifiable.

Definition 2.2.3. If γ : [0, 1] → X is rectifiable then we define its length function sγ :
[0, 1]→ [0,L (γ)] as

sγ(t) := L (γ|[0,t])

By definition, it follows that

d(γt2 , γt1) ≤ L (γ|[t1,t2]) = sγ(t2)− sγ(t1) (2.13)

Lemma 2.2.2. The function sγ associated to a rectifiable curve γ : [0, 1] → X is increasing
and continuous.

Proof. sγ is increasing by (2.11). To prove that it is also continuous, fix 0 ≤ t0 ≤ 1. Since
sγ is increasing, both the right and left sided limit s−γ (t0) and s+

γ (t0) exist. Suppose first
that sγ(t0)− s−γ (t0) > δ > 0. Then t0 > 0 and let 0 < t1 < 1. Since we have

L (γ|[t1,t0]) = sγ(t0)− sγ(t1) = sγ|[t1,t0](t0) > δ,

by continuity of γ there exist t1 =: a0 < · · · < ak < t0 such that

k∑
j=1

d(γaj , γaj−1
) > δ.

Define t2 := ak. Then L (γ|[t1,t2]) > δ and

L (γ|[t2,t0]) = sγ(t0)− sγ(t2) > δ.

By induction we build a sequence {ti} of times t1 < t2 < · · · < ti < · · · < t0 such that
L (γ|[ti,ti+1]) > δ. This means that

L (γ|[t1,t0]) ≥ L (γ|[ti,ti+1]) > (i− 1)δ ∀i = 2, 3, . . .

and this contradicts the rectifiability of γ. We conclude that s−γ (t0) = sγ(t0).
Similarly s+

γ (t0) = sγ(t0) and the thesis follows.

Proposition 2.2.3. A rectifiable curve γ : [0, 1] → X is absolutely continuous if and only if
its associated length function sγ is absolutely continuous.
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Proof. The absolute continuity of γ follows from the one of sγ thanks to formula (2.13).
Suppose that γ absolutely continuous. Let ε > 0 and δ > 0 and we assume to have a
family of k disjoint intervals [ai, bi], i = 1, . . . , k of [0, 1] such that

∑k
i=1 bi−ai < δ. Then,

being

sγ(bi)− sγ(ai) = L (γ|[ai,bi]) <∞,

we can decompose each interval [ai, bi] in ki subintervals [aji , b
j
i ] such that

ki∑
j=1

d(γbji
, γaji

) > sγ(bi)− sγ(ai)−
ε

k
.

Hence
∑k

i=1

∑ki
j=1 b

j
i − a

j
i =

∑k
i=1 bi − ai < δ and

k∑
i=1

|sγ(bi)− sγ(ai)| ≤ 2ε,

that is the definition of absolute continuous function.

Definition 2.2.4. The arc-length reparametrization γs of a rectifiable curve γ : [0, 1] → X
is the function γs : [0,L (γ)]→ X defined by

γs(t) := γ(s−1
γ (t)),

where s−1
γ (t) := sup{s | sγ(s) = t} = max{s | sγ(s) = t} exists from the continuity of

sγ .

Notice that s−1
γ is continuous from the right, i.e. limt→t+0

s−1
γ (t) = s−1

γ (t0). If limt→t−0
s−1
γ (t) =

s0 < s−1
γ (t0) then γ is constant on [s0, s

−1
γ (t0)]. Hence γs : [0,L (γ)] → X is the unique

curve satisfying

γ(t) = γs(sγ(t)) ∀ t ∈ [0, 1].

By definition it follows that

L (γs|[t,t+h]) = h t ∈ [0,L (γ)].

and so we have the following proposition

Proposition 2.2.4. The arc-length reparametrization γs of a compact rectifiable curve γ is
1−Lipschitz, hence absolutely continuous and |γ̇s(t)| = 1 t−a.e. in [0,L (γ)].

Definition 2.2.5. We define the integral of a Borel function f : X → [0,∞] along a
rectifiable curve γ : [a, b]→ X as

∫

γ

f ds :=

∫ L (γ)

0

f(γs(t)) dt (2.14)

Notice that f ◦γs is a non-negative Borel function over [0,L (γ)] so that the integral
in (2.14) exists. Moreover, line integrals are always defined over curves that are locally
rectifiable.
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Proposition 2.2.5. Let γ : [0, L]→ X be a 1−Lipschitz curve. Then

∫

γ

f ds ≤
∫ L

0

f(γt) dt

for every Borel function f : X → [0,∞].

Proof. Being γ 1−Lipschitz also the associated length function sγ : [0, L]→ [0,L (γ)] is
1−Lipschitz and absolutely continuous. Hence

∫

γ

f ds =

∫ L (γ)

0

f(γs(t)) dt =

∫ L

0

f(γs(sγ(t)))s
′
γ(t) dt ≤
∫ L

0

f(γs(sγ(t))) dt =

∫ L

0

f(γt) dt.





Chapter 3

Sobolev classes and q−test plans

With the notion of absolutely continuous curve and metric derivative we can now
define the analogous of a norm of a gradient. Recall that given a function f ∈ C1(Rn,R)
and a curve γ ∈ C1([0, 1],Rn) then by the chain rule, the fundamental theorem of cal-
culus and the Cauchy-Schwarz inequality, we have

|f(γ1)− f(γ0)| =
∣∣∣∣ ∫ 1

0

〈∇f(γs), γ̇s〉 ds
∣∣∣∣ ≤ ∫ 1

0

‖∇f(γs)‖ ‖γ̇s‖ ds.

Then we define the Sobolev classes and the properties of Sobolev functions, proving
three fundamental inequalities (Proposition 3.2.4). Finally we introduce the Cheeger’s
energy functional and from the study of its gradient flow we will get a density result
of Lipschitz functions in Sobolev spaces.

3.1 Upper gradients and Sobolev classes

Definition 3.1.1. Given a Borel function f : X → R we say that a Borel function
G : X → [0,∞] is an upper gradient of f if

|f(γ1)− f(γ0)| ≤
∫ 1

0

G(γt)|γ̇t| dt, ∀γ ∈ AC([0, 1], X).

The following definition is the most simple example of an upper gradient.

Definition 3.1.2. Given f : X → R we define the local Lipschitz constant lip(f) : X →
[0,∞] as

lip(f)(x) := lim
y→x

|f(y)− f(x)|
d(x, y)

if x is not an isolated point, 0 otherwise. If in the numerator we consider the positive
part (respectively the negative part) of f we get the definition of lip+(f) and respec-
tively of lip−(f).

Remark 3.1.1. If f is locally Lipschitz then lip±(f) and lip(f) are upper gradients of f
by definition.

What we are going to do now is to bring all these metric definitions on the space
P(X) of probability measures over X because this will allow us to get a duality for
particular measures and to get a gradient in a metric measure space.

37
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Definition 3.1.3. Let P(X) be the set of probability measures over X . We define the
Wasserstein space as

Pq(X) :=

{
µ ∈P(X) :

∫

X

d(x, x0) dm <∞ ∀x0 ∈ X
}

We endow it with the q−Wasserstein distance defined by

Wq(µ, ν) := inf
γ

(
∫

X

dq(x, y) dγ(x, y)

) 1
q

,

where the infimum is taken over all the measures γ ∈ P(X × X) with marginals µ
and ν (γ’s are called transport plans or couplings).

Remark 3.1.2. it is possible to prove that if X is a Polish space then there exists always
a transport plan between two probability measures.

Proposition 3.1.1. Wq is a distance.

Proof. The symmetry of Wq follows from the symmetry of d.
For the triangle inequality (called also gluing lemma) let µ1, µ2, µ3 ∈ Pq(X), γij be
transport plans from µi to µj , for i, j ∈ {1, 2, 3}, and µ ∈Pq(X×X×X) with marginals
γ12 and γ23. Then

Wq(µ1, µ3) ≤
(
∫

X×X
dq(x, z) dγ13(x, z)

) 1
q

=

(
∫

X×X×X
dq(x, z) dµ(x, y, z)

) 1
q

≤
(
∫

X×X×X
dq(x, y) dµ(x, y, z)

) 1
q

+

(
∫

X×X×X
dq(y, z) dµ(x, y, z)

) 1
q

=

(
∫

X×X
dq(x, y) dγ12(x, y)

) 1
q

+

(
∫

X×X
dq(y, z) dγ23(y, z)

) 1
q

, Wq(µ1, µ2) +Wq(µ2, µ3).

For the homogeneity of Wq consider f : X → ∆ ⊂ X ×X defined by f(x) = (x, x) and
let

ν := f]µ,

with µ ∈Pq(X). Then we have that ν ∈Pq(∆) and if we define π ∈Pq(X ×X) as

π(A) := ν(A ∩∆) ∀A ∈ B(X ×X)

then π is a transport plan from µ to µ (not optimal in general) and by its definition
π(∆c) = 0 (∗). Hence by the homogeneity of d (∗∗)

W q
q (µ, µ) ≤
∫

X×X
dq(x, y) dπ(x, y)

=

∫

∆

dq(x, y) dπ(x, y) +

∫

∆c

dq(x, y) dπ(x, y)

(∗)
=

∫

∆

dq(x, x) dπ(x, x) + 0
(∗∗)
= 0⇒ Wq(µ, µ) = 0.
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Definition 3.1.4. We define the evaluation map et : C([0, 1], X) → X and the restriction
map restrst : C([0, 1], X)→ C([0, 1], X) for s, t ∈ [0, 1] as

et(γ) := γt, (restrst(γ))r := γt+r(s−t).

Notice that for t > s we have a change of orientation. The following theorem is the
first metric result in (Pq(X),Wq), called also superposition principle, and we will use it
often in the nexe chapter:

Theorem 3.1.2 (Lisini). Let (X, d) be a Polish space, q ∈ (1,∞) and µt : [0, 1] → Pq(X) a
q−absolutely continuous curve w.r.t. Wq. Then there exists a measure π ∈ P(C([0, 1], X))
concentrated on ACq([0, 1], X) such that

(et)]π = µt ∀t ∈ [0, 1],
∫

|γ̇t|q dπ(γ) = |µ̇t|q t− a.e.

For the proof we refer to [3].

Remark 3.1.3. For π ∈ P(C([0, 1], X)) such that
∫∫ 1

0 |γ̇t|
qdt dπ(γ) < ∞ and (et)]π = µt

for all t, the following inequality always holds
∫

|γ̇t|qdπ(γ) ≥ |µ̇t|q t− a.e.

Proof. Firstly we have to prove that |γ̇t| exists π−a.e. for any γ ∈ C([0, 1], X).
The set

Λ := {(t, γ) ∈ [0, 1]× C([0, 1], X) | |γ̇t| does not exist}
is a Borel subset of [0, 1] × C([0, 1], X) being the map (t, γ) 7→ d(γt+h,γt)

|h| continuous for
all h 6= 0. Since π is concentrated on ACq([0, 1], X) we have that if γ ∈ C([0, 1], X) then
L1({t ∈ [0, 1] | (t, γ) ∈ Λ}) = 0. Hence by Fubini’s theorem, t−a.e. and π−a.e. we have
that

π({γ ∈ C([0, 1], X) | (t, γ) ∈ Λ}) = 0.

We now prove that µt = (et)]π ∈Pq(X) for all t ∈ [0, 1]. Fixed x ∈ X we have that
∫

X

dq(x, x) dµt(x) =

∫

dq(γt, x) dπ(γ) ≤ 2q−1

∫

(dq(γ0, x) + dq(γ0, γt)) dπ(γ)

≤ 2q−1

∫

(
dq(γ0, x) +

(
∫ t

0

|γ̇t|(r) dr

)q)
dπ(γ)

≤ 2q−1

∫

(
dq(γ0, x) +

∫ T

0

|γ̇t|(r) dr

)
dπ(γ)

and it is finite by our assumptions.
Pick now t, s ∈ [0, 1], s < t and let γs,t := (es, et)]π be the pushforward measure of π
through (es, et) with marginals µs, µt. Then by hypotheses and Hölder’s inequality we
have

W q
q (µs, µt) ≤
∫

X×X
dq(x, y) dγs,t(x, y) =

∫

dq(es(γ), et(γ)) dπ(γ)

≤
∫

(
∫ t

s

|γ̇t|(r) dr

)q
dπ(γ) ≤
∫

|s− t|q−1

∫ t

s

|γ̇t|(r) dr dπ(γ)

= |s− t|q−1

∫ t

s

∫

|γ̇t|(r) dπ(γ) dr,
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i.e. the absolute continuity of µt w.r.t. Wq. Then the thesis follows applying the
Lebesgue’s differentiation theorem.

Assume from now on that

(X, d) is a Polish space,
m is a non-negative Radon measure on X .

(3.1)

From the fact that m is locally finite and (X, d) is separable, by the Lindelöf property
there exists a Borel probability measure m̃ ∈P(X) such that

m� m̃ ≤ Cm, C > 0,

with dm̃
dm

locally bounded from below by a positive constant
(3.2)

where locally bounded from below means that for any x ∈ X there exists a neighbour-
hood Ux and a constant cx > 0 such that m−a.e. on Ux it holds dm̃

dm
≥ cx. It also can be

proven that m̃ can be chosen so that
∫

X

dq(x, x0) dm̃ <∞ ∀q ≥ 1, for some, and thus for any, x0 ∈ X . (3.3)

Now we want to define the Sobolev classes on X with a different approach from
the classic one used in Rn, although it can be shown that they are equivalent.

Definition 3.1.5. Let (X, d,m) be a metric measure space as in (3.1) and consider π ∈
P(C([0, 1], X)). We say that π has bounded compression if there exists C > 0 such that

(et)]π ≤ Cm ∀t ∈ [0, 1].

For q ∈ (1,∞) we call π a q−test plan if it has bounded compression, is concentrated
on ACq([0, 1], X) and if

∫∫ 1

0

|γ̇t|q dt dπ(γ) <∞.

Definition 3.1.6. Let (X, d,m) be a metric measure space as in (3.1), p, q ∈ (1,∞) con-
jugate exponents. We say that a Borel function f : X → R belongs to the Sobolev class
Sp(X, d,m) (respectively Sploc(X, d,m)) if there exists a function G ∈ Lp(X,m) (respec-
tively in Lploc(X, d,m)) such that

∫

|f(γ1)− f(γ0)| dπ(γ) ≤
∫∫ 1

0

G(γs)|γ̇s| ds dπ(γ), for every q − test plan π.

In this case G is called p−weak upper gradient of f .

Remark 3.1.4. The class of q−test plans contains the one of q′−test plans if q ≤ q′, for
the inclusions among Lp−spaces. Hence if Sp(X, d,m) ⊂ Sp

′
(X, d,m) for p ≥ p′ and

if f ∈ Sp(X, d,m) and G is a p−weak upper gradient then G is also a p′−weak upper
gradient of f .

As G in the preceding definition we want the minimal one, if it exists. Hence first
of all we need to prove that f ◦ γ admits an absolutely continuous representative-
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Proof. If π is a q−test plan, then also (restrst)]π is a q−test plan. Hence ifG is a p−weak
upper gradient of f such that

∫

γ g <∞ a.e., then for every t, s ∈ [0, 1] we have that

|f(γs)− f(γt)| ≤
∫ s

t

G(γr)|γ̇r| dr.

We then apply the Fubini theorem to the product measure L2⊗π over the set (0, 1)2×
C([0, 1], X). So the function f satisfies

|f(γs)− f(γt)| ≤
∣∣∣∣ ∫ s

t

G(γr)|γ̇r| dr
∣∣∣∣ (t, s)− a.e.

Similarly, {
|f(γs)− f(γ0)| ≤

∫ s

0 g(γr)|γ̇r| dr
|f(γ1)− f(γs)| ≤

∫ 1

s g(γr)|γ̇r| dr
s− a.e.

Lemma 3.1.3. Let f : (0, 1) → R, q ∈ [1,∞] and g ∈ Lq((0, 1)) be a non-negative function
such that

|f(s)− f(t)| ≤
∣∣∣∣ ∫ t

s

g(r) dr

∣∣∣∣ (t, s)− a.e..

Then f ∈ W 1,q
(
(0, 1)

)
and |f ′| ≤ g a.e. in (0, 1).

Proof. Let N ⊂ (0, 1)2 be a L2−negligible set for which the thesis is false. By the
Fubini’s theorem we can choose s ∈ (0, 1) such that (s, t) /∈ N t−a.e. so that f ∈
L∞(0, 1). Since the set {(t, h) ∈ (0, 1)2 | (t, t + h) ∈ N ∩ (0, 1)2} is L2−negligible, we
can use again the Fubini’s theorem to claim that h−a.e. (t, t + h) /∈ N t−a.e.. Hence
if {hi}i∈N is a sequence of points with this property and such that hi ↓ 0, using the
identity

∫ 1

0

f(t)
φ(t+ h)− φ(t)

h
dt = −
∫ 1

0

f(t+ h)− f(t)

−h
φ(t) dt

with φ ∈ C1
0(0, 1) and h = hi small enough we obtain∣∣∣∣ ∫ 1

0

f(t)φ′(t) dt

∣∣∣∣ ≤ ∫ 1
0

g(t)|φ(t)| dt.

Hence we can interpret the distributional derivative of f as a signed measure η with
finite total variation satisfying

−
∫ 1

0

fφ′ dt =

∫ 1

0

φ dη,

∣∣∣∣ ∫ 1
0

φ dη

∣∣∣∣ ≤ ∫ 1
0

g|φ| dt for all φ ∈ C1
0(0, 1).

So η � L1 with |η| ≤ gL1. Hence |f ′| ≤ g a.e. in (0, 1). The case q > 1 follows using the
same argument with g ∈ Lq(0, 1).

Being g ◦γ|γ̇| ∈ L1(0, 1) π−a.e., thanks to the lemma we have that f ◦γ ∈ W 1,1(0, 1)
π−a.e. and that ∣∣∣∣ d

dt
(f ◦ γ)

∣∣∣∣ ≤ g ◦ γ|γ̇| a.e. in (0, 1) and π − a.e.. (3.4)

But from the arbitrariness of π we have that f ◦ γ ∈ W 1,1(0, 1) γ−a.e. so it admits an
absolutely continuous representative fγ .
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With the same argument γ−a.e. if G1, G2 are two p−weak upper gradients of f
then min{G1, G2} is a p−weak upper gradient of f too. Hence there exists a minimal
function G ≥ 0 m−a.e. in Lp(X,m) such that the preceding definition holds.

Definition 3.1.7. We call this function minimal p−weak upper gradient of f and we de-
note it by |Df |w.

Remark 3.1.5. With this notation however it is not explicit the dependence on p of the
definition (or potential). Thanks to the Cheeger’s results in [10], if the measure m is
doubling and the space support a local and weak version of the Poincaré inequality,
then for f ∈ Sploc(X, d,m), p ≥ p′ we have that |Df |w,p′ = |Df |w,p m−a.e.. Hence in this
case the dependence on the Sobolev exponent p can be omitted.

3.2 Properties of functions in Sp(X, d,m)

Using definitions and the triangle inequality we get those first two properties:

• Sp(X, d,m) and Sploc(X, d,m) are R−vector spaces and for α, β ∈ R we have that
m−a.e.

|D(αf + βg)|w ≤ |α||Df |w + |β||Dg|w.

• The spaces Sp(X, d,m) ∩ L∞(X,m) and Sploc(X, d,m) ∩ L∞loc(X,m) are algebras for
which m−a.e.

|D(fg)|w ≤ |f ||Dg|w + |g||Df |w.

We can now prove also other two fundamental properties that we will use for several
proofs in the following chapters.

• (Locality principle): for every f ∈ Sploc(X, d,m) we have that |Df |w = 0 m−a.e.
over f−1(N ), ∀N ⊂ R L1−negligible. Moreover, ∀f, g ∈ Sploc(X, d,m), m−a.e. on
{f = g} it holds that

|Df |w = |Dg|w.

Proof. Denoting with

G(x) :=

{
|Df |w(x) f(x) ∈ R \N ,
0 f(x) ∈ N ,

G is a p−weak upper gradient (considering the case of R−valued absolutely con-
tinuous functions) and so the thesis follows from the minimality of |Df |w.

• (Chain rule for f ∈ Sp(X, d,m)): if φ : R→ R is a Lipschitz function, then φ ◦ f ∈
Sp(X, d,m) and m−a.e.

|D(φ ◦ f)|w = |φ′ ◦ f ||Df |w. (3.5)

Proof. As in (3.4) we can prove that |D(φ ◦ f)|w ≤ |φ′ ◦ f ||Df |w. To get the
equality, assume φ ∈ C1 (the Rademacher’s theorem ensures that the right-hand
side makes sense even in the Lipschitz case) and 0 ≤ φ′ ≤ 1. By definition,
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(1− φ′ ◦ f)|Df |w and (φ′ ◦ f)|Df |w are upper gradients of f − φ ◦ f and f respec-
tively. Hence

|Df |w ≤ |D(f − φ ◦ f)|w + |D(φ ◦ f)|w ≤
(
(1− φ′ ◦ f) + φ′ ◦ f)

)
|Df |w = |Df |w.

and so all the inequalities are equalities and we have the thesis.

Proposition 3.2.1. Let (X, d,m) be a metric measure space as in (3.1), p ∈ (1,∞) and Ω ⊂ X
an open set. Then the following hold:

I) For f ∈ Sp(X, d,m) (resp. f ∈ Sploc(X, d,m), f |Ω ∈ Sp(X, d,m) (resp. f ∈ Sploc(X, d,m)
and m−a.e.

(|Df |w)X = (|Df |w)Ω, (3.6)

where (|Df |w)X (resp. (|Df |w)Ω) denotes the minimal p−weak upper gradient of f in
(X, d,m) (resp. of f |Ω in (Ω, d,m)).

II) Conversely, if f ∈ Sp(Ω, d,m) (resp. f ∈ Sploc(X, d,m)) with supp(f) ⊂ Ω such that
d(supp(f), X \Ω) > 0 then extending f over all X setting it equal to 0 on X \Ω we
have have that f ∈ Sp(X, d,m) and (3.6) holds.

Proof. I) Since the class of curves to test if f is Sobolev in Ω is smaller w.r.t. the
X’s one then f |Ω ∈ Sp(X, d,m). Moreover, we have that (|Df |w)Ω ≤ (|Df‖w)X
m−a.e. in Ω so it is sufficient to prove the converse inequality. Define the function
G : X → [0,∞] as

G(x) :=

{
(|Df |w)Ω(x) x ∈ Ω,

+∞ otherwise.

By definition G is a p−weak upper gradient of f in X . But (|Df |w)X is the mini-
mal p−weak upper gradient so (|Df |w)X ≤ G m−a.e. in X .

II) We denote with C := supp(f). Then we need the following coarea lemma, for
which we refer to [13]:

Lemma 3.2.2 (Eilenberg inequality). Let f : X → R be a map over a Polish space X
and denote by N(f, y) := ]f−1{y} the cardinality of f−1{y} for y ∈ R. Then if f is
Lipschitz, for m ∈ [0,∞] and A Borel subset of X the following inequality holds, with
Hm the m-dimensional Hausdorff measure on X :

(Lip(f))m · Hm(A) ≥
∫

N(f |A, y) dHm(y).

For any absolutely continuous curve γ the set Lr := {t ∈ [0, 1] | d(γt, C) = r} is
finite r−a.e. thanks to the Eilenberg inequality with m = 0, noticing also that the
left-hand side is finite by assumptions. Setting R := d(C, ∂Ω) > 0 and choosing
r ∈ (0, R) such that Lr is finite we can use Lr a set of times to decompose γ in a
finite number of curves, some in Ω and others that does not intersect C. Hence
the inequality (3.6) follows by locality and (I).
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We endow Sp(X, d,m) with the seminorm

‖f‖Sp(X,d,m) := ‖|Df |w‖Lp(X,m)

and define the Sobolev space W 1,p(X, d,m) := Sp(X, d,m) ∩ Lp(X,m) endowed with
the norm, mimicking the Euclidian case,

‖f‖pW 1,p(X,d,m) := ‖f‖pLp(X,m) + ‖f‖Sp(X,d,m).

it is not known if Sp(X, d,m) is complete w.r.t. its seminorm. However, W 1,p(X, d,m)
is always a Banach space thanks to the following proposition, that follows from defi-
nitions and the Mazur’s lemma:

Proposition 3.2.3. Let (X, d,m) be a metric measure space as in (3.1), p ∈ (1,∞), {fn} ⊂
Sp(X, d,m) and {Gn} ⊂ Lp(X,m). Assuming that Gn is a p−weak upper gradient for fn
∀n ∈ N, that fn → f pointwise m−a.e. and that Gn ⇀ G in Lp(X,m) then f ∈ Sp(X, d,m)
and G is a p−weak upper gradient of f .

We now prove two results concerning the duality between q−test plans and func-
tions Sp(X, d,m) that will be useful for the next chapter.

Definition 3.2.1. We define the q−energy Eq,t : C([0, 1], X) → [0,∞] of a curve γ ∈
C([0, 1], X), with q ∈ (1,∞), as

Eq,t(γ) :=

{
t q

√
1
t

∫ t

0 |γ̇s|q ds, if restrt0(γ) ∈ ACq([0, 1], X),

+∞ otherwise.
(3.7)

Proposition 3.2.4. Let (X, d,m) be a metric measure space as in (3.1), p ∈ (1,∞) and q its
conjugate, f ∈ Sp(X, d,m) and π a q−test plan. Then the following inequalities hold:∣∣∣∣f(γt)− f(γ0)

Eq,t

∣∣∣∣p ≤ 1

t

∫ t

0

|Df |pw(γs) ds π − a.e.,∀γ ∈ [0, 1], (3.8)

lim
t↓0

∫

∣∣∣∣f(γt)− f(γ0)

Eq,t

∣∣∣∣p dπ(γ) ≤
∫

|Df |pw(γ0) dπ(γ), (3.9)

lim
t↓0

∫

f(γt)− f(γ0)

t
dπ(γ) ≤ 1

p

∫

|Df |pw(γ0) dπ(γ) + lim
t↓0

1

qt

∫∫ t

0

|γ̇s|q ds dπ(γ). (3.10)

Proof. From the definition of minimal p−weak upper gradient we immediately get
(3.8):

|f(γt)− f(γ0)| ≤
∫ t

0

|Df |w(γs)|γ̇s ds
Hölder
≤ p

√
∫ t

0

|Df |pw(γs) ds q

√
∫ t

0

|γ̇sq| ds.

Diving both sides by q

√
∫ t

0 |γ̇s
q| ds and using the definition of Eq,t we obtain the thesis.

For (3.9) if ρs is the density of (es)]π w.r.t. m, integrating (3.8) we have that

∫

∣∣∣∣f(γt)− f(γ0)

Eq,t

∣∣∣∣ dπ(γ) ≤ 1

t

∫ t

0

∫

|Df |pw d(es)]π ds =

∫

|Df |pw
(

1

t

∫ t

0

ρs ds

)
dm.
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By definition, |Df |pw ∈ L1(X,m) and ρsm
∗
⇀ ρ0m hence ρs → ρ0 as s→ 0. Hence

lim
t↓0

∫

|Df |pw
(

1

t

∫ t

0

ρs ds

)
dm =

∫

|Df |pw(γ0) dπ(γ).

Finally, for(3.10), using Young’s inequality we get

|f(γt)− f(γ0)|
t

=
|f(γt)− f(γ0)|

Eq,t(γ)

Eq,t(γ)

t

Young
≤ 1

p

∣∣∣∣f(γt)− f(γ0)

Eq,t(γ)

∣∣∣∣p +
1

q

∣∣∣∣Eq,t(γ)

t

∣∣∣∣q. (3.11)

The thesis follows integrating w.r.t. π and using (3.9) in passing to the limit as t ↓ 0.

Proposition 3.2.5. Let (X, d,m) be a metric measure space as in (3.1), p ∈ (1,∞) and q its
conjugate, f ∈ Sp(X, d,m) and π a q−test plan. Then

lim
t↓0

p

√
1

t

∫ t

0

|Df |pw ◦ es ds = |Df |w ◦ e0 in Lp(π). (3.12)

Furthermore, if the family of functions Eq,t

t
is dominated in Lq(π) then the family of functions

f(γt)−f(γ0)
t

is dominated in L1(π).

Proof. it is sufficient to prove that

lim
t↓0

1

t

∫ t

0

|Df |pw ◦ es ds = |Df |pw ◦ e0 in L1(π). (3.13)

Let h ∈ L1(X,m) and define Ht ∈ L1(π), for t ∈ [0, 1], as

Ht :=
1

t

∫ t

0

h ◦ es ds, H0 := h ◦ e0.

Notice that if h is L−Lipschitz then

|Ht(γ)−H0(γ)| ≤ L
1

t

∫ t

0

d(γs, γ0) ds ≤ L

∫ t

0

|γ̇s|ds

so that ‖Ht − H0‖L1(π)
t↓0→ 0. Using the density of Lipschitz functions in L1(X,m) and

by definition there exists a constant C > 0 such that (et)]π ≤ Cm ∀t ∈ [0, 1], we have
∫

1

t

∣∣∣∣ ∫ t
0

h(γs) ds

∣∣∣∣ dπ(γ) ≤ 1

t

∫∫ t

0

|h(γs)| ds dπ(γ) ≤ C‖h‖L1(X,m),

∫

|h(γ0)| dπ(γ) ≤ C‖h‖L1(X,m).

We get the thesis choosing h = |Df |pw. For the second part, from (3.11) and (3.8) we
have that

|f(γt)− f(γ0)|
t

≤ 1

pt

∫ t

0

|Df |pw(γs) ds+
1

q

∣∣∣∣Eq,t(γ)

t

∣∣∣∣q,
and from (3.13) the family of functions 1

pt

∫ t

0 |Df |
p
w(γs) ds is dominated in L1(π) and we

obtain also the second thesis.
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3.3 The Cheeger energy

In this section we define the Cheeger’s energy functional that will be useful in sev-
eral proof later. It will be useful also to establish some connections between gradient
flows in L2 and the Wasserstein geometry.

This first result, proven in section 8.2 of [4], concerns the dependence of Sploc(X, d,m)
on the reference measure m of the metric measure space X :

Theorem 3.3.1. Let (X, d) be a Polish space and m,m′ two non-negative Radon measures on
X . Assume that

m� m′ � m and that
dm′

dm
is locally bounded from below by a positive constant.

Then for every p ∈ (1,∞) the spaces Sploc(X, d,m) and Sploc(X, d,m
′) coincide and for f ∈

Sploc(X, d,m) = Sploc(X, d,m
′) a function G is a p−weak upper gradient of f in Sploc(X, d,m) if

and only if it is so in Sploc(X, d,m
′).

In summary, the notion of being a Sobolev function is unchanged if we replace the
reference measure m with an equivalent one m′ such that ln(dm′

dm
) ∈ L∞(X,m).

Remark 3.3.1. Let (X, d,m) be a metric measure space as in (3.1) and m̃ ∈ P(X) as in
(3.2) and (3.3). Since m̃ ≤ Cm for some C > 0 and from Proposition 3.3.1 we have that

Sp(X, d,m) ⊂ Sp(X, d, m̃)

Definition 3.3.1. Let p ∈ (1,∞). We define the Cheeger energy functional Chp : L2(X,m)→
[0,∞] by

Chp :=

{
1
p

∫

|Df |pw dm f ∈ Sp(X, d,m) ∩ L2(X,m),

+∞ otherwise.
(3.14)

Similarly, we define C̃hp : L2(X,m)→ [0,∞] in the same way using m̃ instead of m.

Proposition 3.3.2. Chp is convex, lower semicontinuous and has dense domain, hence for
f ∈ L2(X,m) there exists a unique gradient-flow of Chp starting from f .

Proof. The energy is convex by definition. Let {fn} be convergent to f in L2(X,m) and
assume, after possibly extracting a subsequence and with no loss of generality, that
Chp(fn) converges to a finite limit.

If we first assume that all the fn have p−weak upper gradient then |Dfn|w is uni-
formly bounded in Lp(X,m). Let fn(k) be a subsequence such that |Dfn(k)|w converges
weakly to g in Lp(X,m). Then g is p−weak upper gradient of f and

Chp(f) ≤ 1

q

∫

X

|g|q dm ≤ lim
k→∞

1

q

∫

X

|Dfn(k)|pw dm = lim
n→∞

Chp(fn).

Denote now by fN := max{−N,min{f,N}} and set

C := {f : X → R : fN has a p−weak upper gradient for all N ∈ N}.
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In the general case when fn ∈ C , we consider the functions fNn and to conclude is
sufficient to notice that from |DfNn |w ≤ |Dfn|w we have that fNN has p−weak upper
gradient for any N ∈ N and
∫

X

|DfN |pw dm ≤ limn→∞
∫

X

|DfNn |pw dm ≤ lim
n→∞

∫

X

|Dfn|pw dm.

Passing to the limit as N → ∞ the conclusion follows by monotone convergence.
Since the finiteness domain of Chp is dense in L2(X,m), the Hilbertian theory of gra-
dient flows (see, for instance, [9]) can be applied to Cheeger’s energy functional to
provide, for all f0 ∈ L2(X,m) a locally absolutely continuous map t 7→ ft from (0,∞)
to L2(X,m) with ft → f0 as t ↓ 0, whose derivatives satisfies

d

dt
ft ∈ −∂−Chp(ft) (0∞) 3 t− a.e..

We then collect here some properties of the gradient-flow of the Cheeger energy,
for the proof see [3] and [4]:

Theorem 3.3.3. Let (X, d,m) be a metric measure space as in (3.1) and m̃ ∈P(X) as in (3.2)
and (3.3). Moreover, let p ∈ (1,∞), f ∈ L2(X, m̃) and (ft) ⊂ L2(X, m̃) be the gradient-flow
of C̃hp starting from f . Then the following hold:

I) Mass preservation:
∫

ft dm̃ =

∫

f dm̃ ∀ t ≥ 0.

II) Maximum principle: if f ≤ C (resp. f ≥ c) m̃−a.e. then ft ≤ C (rrsp. ft ≥ c) m̃−a.e.
for any t ≥ 0.

III) Entropy dissipation: if c ≤ f ≤ C m̃−a.e. and u : [c, C] → R is a C2−function then
t 7→
∫

u(ft) dm is a C1(0,∞)−function and the following equality holds

d

dt

∫

u(ft) dm̃ = −
∫

u′′(ft)|Dft|pw dm̃ ∀t > 0. (3.15)

IV) Dissipation at t = 0: if with the same assumptions as in (III) we also assume that
f ∈ Sp(X, d,m) then (3.15) holds also at t = 0 and it holds that

lim
t↓0

d

dt

∫

u(ft) dm̃ = −
∫

u′′(f)|Df |pw dm̃. (3.16)

V) Kuwada’s lemma: assume that c ≤ f ≤ C with c, C > 0 and that
∫

f dm̃ = 1. Then
the curve t 7→ µt := ftm̃ is q−absolutely continuous w.r.t. Wq, with q the conjugate
exponent of p, and for its metric derivative |µ̇t| we have that

|µ̇t|q ≤
∫ |Dft|pw

f q−1
t

dm̃ t− a.e.. (3.17)
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The first application of this theorem is to prove the following ones as in [1], [4] and
[6] and they can be regarded as a metric version of the Meyers-Serrin theorem.

Theorem 3.3.4. Let (X, d,m) be a metric measure space as in (3.1), p ∈ (1,∞) and assume
that m is finite on bounded sets. Then, for every f ∈ W 1,p(X, d,m) there exists a sequence
{fn} ⊂ W 1,p(X, d,m) of Lipschitz functions such that

lim
n→∞

‖fn − f‖Lp(X,m) = 0,

lim
n→∞

‖fn‖Sp(X,d,m) = lim
n→
‖|Dfn|‖Lp(X,m) = lim

n→
‖|Dfn|‖Lp(X,m) = ‖f‖Sp(X,d,m),

where given h : X → R, |Dh| : X → [0,∞] is set by definition to 0 at isolated points and

|Dh|(x) := inf
r>0

sup
y1 6=y2∈Br(x)

|h(y1)− h(y2)|
d(y1, y2)

.

Corollary 3.3.5. With the same definition as before, assuming also that W 1,p(X, d,m) is uni-
formly convex then LIP(X) ∩W 1,p(X, d,m) is dense in W 1,p(X, d,m).



Chapter 4

Differentials and gradients

We now want to study how the differential of a function f operates on the gradi-
ent of another function g. To this aim, we first define the two functions D±f(∇g) and
define for the following the infinitesimally strictly convex spaces, where the two func-
tions agree. Next we will prove the duality between test plans and gradients which
will allow us to get the gradient∇g, justifying the expression D±f(∇g) because |Dg|w
in the smooth setting is the norm of the gradient. Finally we prove the chain and Leib-
niz rules for D±f(∇g) and how they turns into equalities in infinitesimally strictly
convex spaces.

4.1 Basic definitions and first properties

Considering a, b ∈ R+ we have

an − bn = (a− b)(bn−1 + abn−2 + · · ·+ an−2b+ an−1).

With a convex function φ : R → R+ and using the preceding equality, for p ∈ (1,∞)
we get

φ(ε)p − φ(0)p

pεφ(0)p−2
=
φ(ε)− φ(0)

pεφ(0)p−2

(
φ(ε)p−1 + φ(ε)p−2φ(0) + · · ·+ φ(0)p−1

) ε→0+−→ φ′(0+)φ(0).

Hence the two quantities

inf
ε>0

φ(ε)p − φ(0)p

pεφ(0)p−2
, sup

ε<0

φ(ε)p − φ(0)p

pεφ(0)p−2

are independent of the value of p and are equal to φ(0)φ′(0+) and φ(0)φ′(0−) respec-
tively if φ(0) 6= 0. Moreover, the convexity of φ allows us to replace the sup and inf
with the right and left limit respectively for ε ↓ 0 and ε ↑ 0.

So now we fix p ∈ (1,∞) and let f, g ∈ Sploc(X, d,m). Thanks to the upper gradients’
properties we have that the map ε 7→ |D(g + εf)|w is convex w.r.t. ε, i.e.

|D(g + ((1− λ)ε0 + λε1)f |w ≤ (1− λ)|D(g + ε0f)|w + λ|D(g + ε1f)|w, m− a.e.,

for every λ ∈ [0, 1], ε0, ε1 ∈ R so mimicking the preceding argument we have the
following definition:

49
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Definition 4.1.1. Let (X, d,m) be a metric measure space as in (3.1), p ∈ (1,∞) and
f, g ∈ Sploc(X, d,m). The two functions D±f(∇g) : X → R are well defined m−a.e. by
the formulas

D+f(∇g) := inf
ε>0

|D(g + εf)|pw − |Dg|pw
pε|Dg|p−2

w

, (4.1)

D−f(∇g) := sup
ε<0

|D(g + εf)|pw − |Dg|pw
pε|Dg|p−2

w

, (4.2)

on {x ∈ X : |Dg|w(x) 6= 0} and are equal to 0 by definition on the complement.

If we apply this definition in the Euclidian case we get the p−Laplacian. To see it
more clearly, recall that by Riesz theorem we have

Df(∇g) = 〈∇f,∇g〉, |Dg|w = ‖∇g‖Rn ,

and the formulas (4.1) and (4.3) agree. For example, if p = 2 once integrated we just get
the first variation of the Dirichlet energy functional (also, we remark that the metric
equivalent of the Dirichlet energy is the Cheeger’s one).

Remark 4.1.1. In our notations we omit the explicit dependence on the Sobolev ex-
ponent p in writing D±(∇g). By Remark 3.1.5, if the space X is doubling and sup-
ports a (1 − p′)−Poincaré inequality, D±f(∇g) is unambiguously defined for f, g ∈
Sploc(X, d,m), where p ≥ p′.

Remark 4.1.2. From now on, the expressions D±f(∇g)|Dg|p−2
w on the set {x ∈ X :

|Dg|w(x) = 0}will always be taken 0 by definition. In this way we obtain m−a.e. on X

D+f(∇g)|Dg|p−2
w = inf

ε>0

|D(g + εf)|pw − |Dg|pw
pε

,

D−f(∇g)|Dg|p−2
w = sup

ε<0

|D(g + εf)|pw − |Dg|pw
pε

.

Thanks to the inequality |D(g+εf)|w ≤ |Dg|w+ |ε||Df |w we have, setting |Dg|w = a
and |Df |w = b, that

|D±f(∇g)| ≤ (a+ εb)p − ap

pε ap−2
=
ap + ε ap−1b+ o(ε)− ap

pε ap−2

ε→0±−→ ab

so that

|D±f(∇g)| ≤ |Df |w|Dg|w m− a.e. (4.3)

In particular, we have also that D±f(∇g)|Dg|p−2
w ∈ L1(X,m) for all f, g ∈ Sp(X, d,m)

(respectively in L1
loc(X,m) for all f, g ∈ Sploc(X, d,m)).

Setting gε := g + εf , the convexity of f 7→ |D(g + εf)|pw yields

D−f(∇g) ≤ D+f(∇g), m− a.e. (4.4)

and

D+f(∇g)|Dg|p−2
w = inf

ε>0
D−f(∇g)|Dg|p−2

w = inf
ε>0

D+f(∇g)|Dg|p−2
w , m− a.e., (4.5)

D−f(∇g)|Dg|p−2
w = sup

ε<0
D+f(∇g)|Dg|p−2

w = sup
ε<0

D−f(∇g)|Dg|p−2
w , m− a.e.. (4.6)
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Moreover, from the definition it directly follows that

D+(−f)(∇g) = −D−f(∇g) = D+f(∇(−g)), m-a.e.. (4.7)

Setting f = g we get

|D(g + εg)|pw − |Dg|pw
pε|Dg|p−2

w

=
(|1 + ε|p − 1)|Dg|pw

pε|Dg|p−2
w

=
1

pε
|Dg|2w

p∑
i=0

(
p

i

)
εi

ε→0±−→ |Dg|2w,

therefore

D±(∇g) = |Dg|2w, m− a.e.. (4.8)

As a consequence of the locality properties we also have

D±f(∇g) = 0, m− a.e. on f−1(N ) ∪ g−1(N ), ∀N ⊂ R : L1(N ) = 0, (4.9)

D±(∇g) = D±f(∇g̃), m− a.e. on {f = f̃} ∩ {g = g̃}. (4.10)

Some further properties of D±f(∇g) are collected in the following proposition

Proposition 4.1.1. Let (X, d,m) be a metric measure space as in (3.1), p ∈ (1,∞) and g ∈
Sploc(X, d,m).Then the function

Sploc(X, d,m) 3 f 7→ D+f(∇g)

is positively 1−homogeneous, convex m−a.e. in the sense that

D+((1− λ)f0 + λf1)(∇g) ≤ (1− λ)D+f1(∇g) + λD+f2(∇g), m− a.e.,

for all f0, f1 ∈ S+
loc(X, d,m) and λ ∈ [0, 1], and 1−Lipschitz in the following sense:

|D+f1(∇g)−D+f2(∇g)| ≤ |D(f1 − f2)|w|Dg|w, m− a.e. ∀ f1, f2 ∈ Sploc(X, d,m).
(4.11)

Similarly, the function

Sploc(X, d,m) 3 f 7→ D−f(∇g)

is positively 1−homogeneous, concave and 1−Lipschitz.
Conversely, for all f ∈ Sploc(X, d,m) it holds

• Sploc(X, d,m) 3 g 7→ D+f(∇g) is positively 1−homogeneous and upper semicontinu-
ous,

• Sploc(X, d,m) 3 g 7→ D−f(∇g) is positively 1−homogeneous and lower semicontinu-
ous,

where the upper semicontinuity is intended as follows: if gn, g ∈ Sploc(X, d,m), n ∈ N, and
for some Borel set E ⊂ X we have that

∫

E |Df |
p
w dm < ∞, supn∈N

∫

E |Dgn|
p
w dm < ∞ and

∫

E |D(gn − g)|pw dm→ 0, then

lim
n→∞

∫

E′
D+f(∇gn)|Dgn|p−2

w dm ≤
∫

E′
D+f(∇g)|Dg|p−2

w dm, ∀Borel setE ′ ⊂ E.

Similarly for lower semicontinuity.
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Proof. The positive 1− homogeneity in f, g follows from definitions.
For convexity (respectively concavity) in f , we have that

|Dg + ε((1− λ)f0 + λf1)|w − |Dg|w ≤ (1− λ)
(
|D(g + εf0)w − |Dg|w

)
+λ
(
|D(g + εf1)|w|Dg|w

)
,

so dividing by ε > 0 (resp. ε < 0) and letting ε ↓ 0 (resp. ε ↑ 0) we get the thesis.
For the Lipschitz continuity, just notice that using convexity and adding and sub-

tracting |Dg|w
ε

we get∣∣∣∣ |D(g + εf)|w − |Dg|w
ε

− |D(g + εf̃)|w − |Dg|w
ε

∣∣∣∣ ≤ |D(f − f̃)|w, ∀ ε 6= 0.

Finally let ε→ 0.
For the semicontinuity in g, let E ⊂ X be a Borel set as in the assumptions and let

V :=

{
g ∈ Sploc(X, d,m) :

∫

E

|Dg|pw dm <∞
}
.

Endow V with the seminorm ‖g‖Sp,E := p
√
∫

E |Dg|
p
w dm and notice that ∀ ε 6= 0 the real

valued map

V 3 g 7→
∫

E′

|D(g + εf)|pw − |Dg|pw
pε

dm

is continuous. Hence by the properties of the weak convergence the map

V 3 g 7→
∫

E′
D+f(∇g)|Dg|p−2

w dm = inf
ε>0

∫

E′

|D(g + εf)|pw − |Dg|pw
pε

dm

is lower semicontinuous. Similarly for D−f(∇g).

In general D+f(∇g) 6= D−f(∇g), but for example in strictly convex normed spaces
then they agree m−a.e.. So we have the following definition.

Definition 4.1.2. Let (X, d,m) be a metric measure space as in (3.1), p ∈ (1,∞) and q
its conjugate exponent. We say that (X, d,m) is q−infinitesimally stricly convex (shortly
q−i.s.c.) if
∫

D+f(∇g)|Dg|p−2
w dm =

∫

D−f(∇g)|Dg|p−2
w dm, ∀ f, g ∈ Sp(X, d,m). (4.12)

Remark 4.1.3. In the case X normed space the condition (4.12), whatever q is, is equiv-
alent to the strict convexity of the norm, as analyzed in the introduction.

From inequality (4.4) we get that the integral equality (4.12) is equivalent to the
pointwise one:

D+f(∇g) = D−f(∇g) m− a.e. ∀ f, g ∈ Sp(X, d,m). (4.13)

Then thanks to the locality properties and using a cut-off argument we have that (4.13)
is true also for f, g ∈ Sploc(X, d,m). Furthermore, from Remark 3.1.5 we know that if m
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is a doubling measure and the space supports a p′−weak Poincaré inequality, if X is
q′−i.s.c. then is also q−i.s.c. for every q ∈ (1, q′), with q′ conjugate exponent of p′.

If X is q−i.s.c.then se denote

D+f(∇g) = D−f(∇g) =: Df(∇g) f, g ∈ Sploc(X, d,m).

Directly from Proposition 4.1.1 we deduce the following corollary.

Corollary 4.1.2. Let (X, d,m) be a metric measure space as in (3.1), p, q ∈ (1,∞) conjugate
exponents. Assume that X is q−i.s.c.. Then

• for any g ∈ Sploc(X, d,m) the map

Sploc(X, d,m) 3 f 7→ Df(∇g)

is linear m−a.e., i.e.

D(α1f1 + α2f2)(∇g) = α1Df1(∇g) + α2Df2(∇g) m− i.e.

for any f1, f2 ∈ Sploc(X, d,m), α1, α2 ∈ R.

• For any f ∈ Sploc(X, d,m) the map

Sploc(X, d,m) 3 g 7→ Df(∇g)

is 1−homogeneous and continuous: if gn, g ∈ Sploc(X, d,m), n ∈ N and for some Borel
set E ⊂ X it holds supn∈N

∫

E |Dg|
p
w dm <∞ and

∫

E |D(gn − g)|pw dm→ 0 then

lim
n→∞

∫

E′
Df(∇gn)|Dgn|p−2

w dm =

∫

E′
Df(∇g)|Dg|p−2

w dm, ∀Borel set E ′ ⊂ E.

Remark 4.1.4. From Proposition 4.1.1 we get the weak lower semicontinuity of f in
Sp(X, d,m): for p ∈ (1,∞) and g ∈ Sploc(X, d,m) the map

Sploc(X, d,m) 3 f 7→
∫

D+f(∇g)|Dg|p−2
w dm

is weakly lower semicontinuous, i.e. if L(fn)
n→∞−→ L(f) for every L ∈

(
Sploc(X, d,m)

)∗
then

lim
n→∞

∫

D+fn(∇g)|Dg|p−2
w dm ≥
∫

D+f(∇g)|Dg|p−2
w dm.

In fact just notice that that f 7→
∫

D+f(∇g)|Dg|p−2
w dm is convex and continuous and

f 7→
∫

D−f(∇g)|Dg|p−2
w dm is weakly upper semicontinuous in Sp(X, d,m).

4.2 Duality between test plans and gradients

In the preceding section we defined how the differential of f operates on the gradi-
ent of g, for f, g ∈ Sp(X, d,m). But recall that |Dg|w is the equivalent of the norm of the
gradient of g, so we need to define a real gradient, justifying the expression D±(∇g).
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On a flat normed space, for any two smooth functions f, g it can be proven that the
following equalities hold

inf
ε>0

‖D(g + εf)(x)‖2
∗ − ‖Dg(x)‖2

∗
2ε

= max
v∈∇g(x)

Df(v),

sup
ε<0

‖D(g + εf)(x)‖2
∗ − ‖Dg(x)‖2

∗
2ε

= min
v∈∇g(x)

Df(v).

We study in this section the validity of this statement in our metric setting. More
precisely, we will prove that

inf
ε>0

‖D(g + εf)(x)‖2
∗ − ‖Dg(x)‖2

∗
2ε

≥ Df(v) ≥ sup
ε<0

‖D(g + εf)(x)‖2
∗ − ‖Dg(x)‖2

∗
2ε

(4.14)

for all v ∈ ∇g(x).
The two functions D+f(∇g) e D−f(∇g) will replace the leftmost and rightmost

sides in (4.14).

Definition 4.2.1. Let q ∈ (1,∞) and π ∈P
(
C([0, 1], X)

)
. We define the q−norm ‖π‖q ∈

[0,∞] of π by

‖π‖q := q

√
lim
t↓0

∫

(
Eq,t
t

)q
dπ , q

√
lim
t↓0

1

t

∫∫ t

0

|γ̇s|q ds dπ(γ) (4.15)

if (restrT0 )]π is concentrated on absolutely continuous curves for some T ∈ (0, 1] and
+∞ otherwise.

Remark 4.2.1. By calling ‖·‖q a ”norm” we are abusing the notation because P
(
C([0, 1], X)

)
is not a vector space.

Remark 4.2.2. If π has bounded compression and ‖π‖q <∞ then not necessarily π is a
q−test plan because it might happen that

∫∫ 1

0 |γ̇t|
q dt dπ(γ) = ∞. However, for T > 0

small enough (restrT0 )]π is q−test plan.

Hence, if p, q ∈ (1,∞) are conjugate exponents and π has bounded compression
with ‖π‖q <∞ and g ∈ Sp(X, d,m) from (3.10) we have that

lim
t↓0

∫

g(γt)− g(γ0)

t
dπ ≤

‖|Dg|w‖qLp(X,(e0)]π

p
+
‖π‖qq
q

. (4.16)

Notice that the left-hand side of this inequality reminds a derivative along absolutely
continuous curves. Hence we have the following definition:

Definition 4.2.2. Let (X, d,m) be a metric measure space as in (3.1), p, q ∈ (1,∞) conju-
gate exponents and g ∈ Sp(X, d,m). We say that π ∈P

(
C([0, 1], X)

)
q−represents∇g if

π has bounded compression, ‖π‖q < ∞ and the following inequality holds (converse
of (4.16)):

lim
t↓0

∫

g(γt)− g(γ0)

t
dπ ≥

‖|Dg|w‖qLp(X,(e0)]π

p
+
‖π‖qq
q

. (4.17)
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Remark 4.2.3. Given the disintegration {πx}x∈X of π w.r.t. e0 we get a Borel map X 3
x 7→ πx ∈ P

(
C([0, 1], X)

)
that associates to (e0)]π−a.e. x a set of curves that is a

gradient-flow at time t = 0 of g starting from x. In this way for every measure µ such
that µ ≤ C(e0)]π for some C > 0 the plan

πµ :=

∫

πx dµ(x)

also q−represents ∇g, as we will prove later.
Remark 4.2.4. Assume that π q−represents∇g. By Lisini Theorem, the curve t 7→ µt :=
(et)]π is q−absolutely continuous w.r.t. Wq in a neighbourhood of 0. Now consider the
plan π̃ ∈P

(
C([0, 1], X)

)
associated to (µt) by Theorem 3.1.2. We have that

∫

g(γt)− g(γ0)

t
dπ(γ) =

1

t

(
∫

g dµt −
∫

g dµ0

)
=

∫

g(γt)− g(γ0)

t
dπ̃(γ),

‖|Dg|w‖Lp(X,(e0)]π) = ‖|Dg|w‖Lp(X,µ0) = ‖|Dg|w‖Lp(X,(e0)]π̃) and by Remark 3.1.3 and by
Lisini Theorem we get

lim
t↓0

1

t

∫∫ t

0

|γ̇t|q dt dπ(γ) ≥ lim
t↓0

1

t

∫ t

0

|µ̇t|q dt = lim
t↓0

1

t

∫∫ t

0

|γ̇t|q dt dπ̃(γ). (4.18)

Consequently π̃ q−represents ∇g. Moreover, the inequalities in (4.18) have to be be
equalities otherwise (4.16) would fail for π̃.

We defined the two objects D±f(∇g) using the quantity |D(g+εf)|pw−|Dg|pw
pε|Dg|pw

and q−test
plans representing ∇g by (4.16) and (4.17). We want to compare those two definitions
and this is the key technical point that will allow us to get the desired duality.

Theorem 4.2.1. Let (X, d,m) be a metric measure space as in (3.1), p, q ∈ (1,∞) conju-
gate exponents and f, g ∈ Sp(X, d,m). Then for every plan π ∈ P

(
C([0, 1], X)

)
which

q−represents∇g then the following inequalities hold
∫

D+f(∇g)|Dg|p−2 d(e0)]π ≥ lim
t↓0

∫

f(γt)− f(γ0)

t
dπ(γ)

≥ lim
t↓0

∫

f(γt)− f(γ0)

t
dπ(γ) ≥
∫

D−f(∇g)|Dg|p−2 d(e0)]π.

Proof. From (4.16) applied to g + εf we get

lim
t↓0

∫

(g + εf)(γt)− (g + εf)(γ0)

t
dπ(γ) ≤

‖|D(g + εf)|w‖pLp(X,(e0)]π)

p
+
‖π‖qq
q

.

We know that π q−represents ∇g, hence

lim
t↓0

∫

g(γt)− g(γ0)

t
dπ(γ) ≥

‖|Dg|w‖pLp(X,(e0)]π)

p
+
‖π‖qq
q

.

Subtracting the second inequality from the first we get

lim
t↓0

ε

∫

f(γt)− f(γ0)

t
dπ(γ) ≤
∫ |D(g + εf)|pw − |Dg|pw

p
d(e0)]π

and dividing for ε > 0 (respectively for ε < 0) and using the dominated converge
theorem we get the first (respectively the third) inequality of the thesis.
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it is also possible to characterize the plans q−representing a gradient as follows:

Theorem 4.2.2. Let (X, d,m) be a metric measure space as in (3.1), p, q ∈ (1,∞) conjugate
exponents, g ∈ Sp(X, d,m) and π ∈ P

(
C([0, 1], X)

)
a q−test plan with bounded compres-

sion. Then π q−represents∇g if and only if

lim
t↓0

g ◦ et − g ◦ e0

Eq,t
= lim

t↓0

(
Eq,t
t

) q
p

= |Dg|w ◦ e0 in Lp
(
C([0, 1], X),π

)
. (4.19)

Proof. If the thesis is true then π q−represents ∇g by definition.
Suppose that π q−represents∇g. Then by definition, (4.16) the Young’s inequality, we
have

lim
t↓0

∫

g ◦ et − g ◦ e0

t
dπ = lim

t↓0

∫

g ◦ et − g ◦ e0

t
dπ = ‖π‖qq = ‖|Dg|w‖pLp(X,(e0)]π) =: L

(4.20)

Now define the three functions At, Bt, Ct : C([0, 1], X)→ R ∪ {±∞} as follows

At :=
g ◦ et − g ◦ e0

Eq,t
, Bt :=

Eq,t
t
, Ct := p

√
1

t

∫ t

0

|Dg|pw ◦ es ds.

From (3.8) we get

|At| ≤ Ct π − a.e. (4.21)

and from (3.12)

Ct → |Dg|w ◦ e0 in Lp(π). (4.22)

Using (4.20), (4.21) and (4.22) we conclude that

L = lim
t↓0

∫

g ◦ et − g ◦ e0

t
dπ = lim

t↓0

∫

AtBt dπ ≤ lim
t↓0

∫

|At|Bt

≤ lim
t↓0

(
‖At‖pLp(π)

p
+
‖Bt‖pLq(π)

q

)
≤ lim

t↓0

‖At‖pLp(π)

p
+ lim

t↓0

‖Bt‖pLq(π)

q
(4.23)

≤ lim
‖Ct‖pLp(π)

p
+
‖π‖qq
q

= L.

But we have also the equality

lim
t↓0

(
‖At‖pLp(π)

p
+
‖Bt‖pLq(π)

q

)
= lim

t↓0

‖At‖pLp(π)

p
+ lim

t↓0

‖Bt‖pLq(π)

q

that implies that the limits of ‖At‖pLp(π) and ‖Bt‖qLq(π) exist as t ↓ 0. From here we
deduce that limt↓0 ‖At‖pLp(π) = limt↓0 ‖Ct‖pLp(π) which together with (4.21) and (4.22)
guarantees that |At| → |Dg|w◦e0 as t ↓ 0 in Lp(π). Noticing that also the first inequality
in (4.23) is an equality then

At
t↓0−→ |Dg|w ◦ e0 in Lp(π).
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Using again (4.23) we have that limt↓0 ‖Bt‖qLq(π) = L. Let B ∈ Lq(π) be any weak limit
of Bt as t ↓ 0 in Lq(π). Since

L = lim
t↓0

∫

AtBt dπ =

∫

|Dg| ◦ e0B dπ ≤
‖|Dg|w ◦ e0‖pLp(π)

p
+
‖B‖qLq(π)

q
≤ L, (4.24)

then ‖B‖qLq(π) so that Bt → B (i.e. the weak convergence is actually strong because we
have the weak convergence of Bt and the convergence of the norms). But in (4.24) the
first inequality is an equality, so Bq = |Dg|pw ◦ e0 π−a.e..

Thanks to this characterization of q−test plans, we have that if g ∈ Sp(X, d,m) then

• if π1,π2 are q−test plans that q−represent∇g then

π := λπ1 + (1− λ)π2 q − represents∇g, λ ∈ [0, 1]; (4.25)

• if π is a plan that q−represent ∇g and F : C([0, 1], X) → R is a non-negative
bounded Borel function such that

∫

F dπ = 1, then

π̃ := Fπ q − represents∇g. (4.26)

Now we have only to prove the existence of such plans. To this aim we will take
advantage of the measure m̃ ∈ P(X) and of the Cheeger’s energy functional C̃hp :
L2(X,m)→ [0,∞] defined before.

Lemma 4.2.3. Let (X, d,m) be a metric measure space as in (3.1), m̃ as in (3.2) and (3.3),
p, q ∈ (1,∞) conjugate exponents and g ∈ Sp(X, d,m) ∩ L∞(X,m). Then there exists a plan
π which q−represents∇g and such that

cm̃ ≤ (e0)]π ≤ Cm̃,

with c, C > 0.

Proof. Define the function uq : [0,∞)→ R by

uq(z) :=
z3−q − (3− q)
(3− q)(2− q)

if q 6= 2, 3,

u2(z) := z ln z − z,
u3(z) := z − ln z.

The computation of the derivatives of uq shows that this function is convex for every q.
If q = 2 we put ρ0 := c̃e−g otherwise we choose a ∈ R such that 1+(a−g)(2−q) > b > 0
m−a.e. and we define

ρ0 := c̃
(
1 + (a− g)(2− q)

) 1
2−q

where in both cases c̃ is chosen so that
∫

ρ0 dm = 1 (i.e. ρ0 is a density for (e0)]π). By
construction, c ≤ ρ0 ≤ C m−a.e., with c, C > 0, u′q(ρ0) = −g + cost. and, by chain rule
ρ0 ∈ Sp(X, d,m) ⊂ Sp(X, d, m̃).

Now we consider the gradient flow (ρt) of the Cheeger energy C̃hp in L2(X, m̃)
starting from ρ0. (II) of Theorem 3.3.3 ensures that the densities ρt are non-negative
and uniformly bounded in L∞(X, m̃), while (I) of the same theorem grants

∫

ρt dm̃ = 1
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for every t ≥ 0. Hence if we define µt := ρtm̃ ∈P(X) then µt ∈Pq(X) for every t ≥ 0.
Moreover, by (V) of Theorem 3.3.3 we have that the curve t 7→ µt is q−absolutely
continuous w.r.t. Wq. Hence we can use Lisini Theorem to associate to (µt) a plan
π ∈P

(
C([0, 1], X)

)
concentrated on ACq([0, 1], X).

Since the ρts are uniformly bounded and m̃ ≤ C̃m for some C̃ > 0, π has bounded
compression. Using again (V) of the Theorem 3.3.3 we have that

∫∫ t

0

|γ̇s|q ds dπ(γ) =

∫ t

0

|µ̇s|q ds ≤
∫∫ t

0

|Dρs|pw
ρq−1
s

ds dm =

∫∫ t

0

u′′q(ρs)|Dρs|pw ds dm.

Since ρ0 ∈ Sp(X, d,m), then applying (3.16) we get

‖π‖qq = lim
t↓0

1

t

∫∫ t

0

|γ̇s|q ds ≤ lim
t↓0

1

t

∫∫ t

0

u′′q(ρs)|Dρs|pw ds dm̃
(3.16)
=

∫

u′′q(ρ0)|Dρ0|pw dm̃.

(4.27)

But the uqs are convex so that

∫

g(γt)− g(γ0)

t
dπ(γ) =

∫

u′q
(
ρ0(γ0)

)
− u′q

(
ρ0(γt)

)
t

dπ(γ) =
1

t

∫

u′q(ρ0)(ρ0 − ρt) dm̃

≥ 1

t

∫ (
uq(ρ0)− uq(ρt)

)
dm̃.

Now using (III) and (IV) of Theorem 3.3.3 we have

lim
t↓0

∫

g(γt)− g(γ0)

t
dπ(γ) ≥
∫

u′′q(ρ0)|Dρ0|pw dm̃. (4.28)

But u′′q(ρ0)|Dρ0|pw = ρ0|Dρ0|pw m−a.e., so that

∫

u′′q(ρ0)|Dρ0|pw dm̃ = ‖|Dg|e‖pLp((e0)]π)

and the thesis follows from (4.27) and (4.28).

Now we are ready to prove the existence of plans representing gradients:

Theorem 4.2.4. Let (X, d,m) be a metric measure space as in (3.1), m̃ as in (3.2) and (3.3),
p, q ∈ (1,∞) conjugate exponents, g ∈ Sp(X, d,m) and µ ∈ P(X) a probability measure
such that µ ≤ Cm̃ for some C > 0.

Then there exists π ∈P
(
C([0, 1], X)

)
which q−represents∇g and such that (e0)]π = µ.

Proof. Let φ : R→ [0, 1] be defined by

φ(x) :=

{
x− 2n, if x ∈ [2n, 2n+ 1), for some n ∈ Z,
2n− x, if x ∈ [2n− 1, 2n), for some n ∈ Z,

and ψ := 1 − φ. Being linear both φ and ψ are 1−Lipschitz. Applying the preceding
lemma to φ ◦ g and to ψ ◦ g we get the plans π1 and π2 which q−represent respectively
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∇(φ ◦ g) and ∇(ψ ◦ g), with cm̃ ≤ (e0)]π
i ≤ Cm̃, i = 1, 2, for some c, C > 0. We put

A := {g−1(
⋃
n∈Z[2n, 2n+ 1))} and define the two functions F 1, F 2 : C([0, 1], X)→ R by

F 1(γ) := χA(γ0)
dµ

d(e0)]π1
(γ0),

F 2(γ) := χX \A(γ0)
dµ

d(e0)]π2
(γ0).

By the assumptions the d(e0)]π
i

dm̃
s are bounded from below, i = 1, 2, hence F 1 and F 2

are bounded. Moreover, by locality, m̃−a.e. in g−1(Z) it holds |Dg|w = |D(−g)|w = 0,
being Z negligible because is countable. Now if

π := F 1π1 + F 2π2,

by (4.25) and (4.26) π q−represents∇g and by construction (e0)]π = µ.

4.3 Differential calculus for D±f (∇g)
In this section we prove the chain and Leibniz rules for D±f(∇g).

Theorem 4.3.1. Let (X, d,m) be a metric measure space as in (3.1), p ∈ (1,∞) and f, g ∈
Sploc(X, d,m). Also, let φ : R → R be a locally Lipschitz function such that for every
x ∈ X there exists a neighbourhood Ux ⊂ X of x and an open interval Ix ⊂ R such that
m
(
(Ux \ f−1(Ix)

)
= 0 and φ|Ix is Lipschitz.

Then φ ◦ f ∈ Sploc(X, d,m) and the following relation holds:

D±(φ ◦ f)(∇g) = (φ′ ◦ f)D±sgn(φ′◦f)f(∇g) m− a.e. (4.29)

where at points x where φ is not differentiable at f(x) the value φ′ ◦ f is taken arbitrarily.
Similarly, if φ : R → R is locally Lipschitz, for any x ∈ X there exists a neighbourhood

x ∈ Ux ⊂ X and an open interval Ix ⊂ R such that m
(
Ux \ g−1(Ix)

)
= 0 and φ|Ix is Lipschitz

then φ ◦ gSploc(X, d,m) and the following relation holds:

D±f
(
∇(φ ◦ g)

)
= (φ′ ◦ g)D±sgn(φ′◦g)f(∇g) m− a.e. (4.30)

where at points x where φ is not differentiable at g(x) the value φ′ ◦ g is taken arbitrarily.

Proof. From assumptions and formula (3.5) both φ ◦ f and φ ◦ g belong to the space
Sploc(X, d,m). Without loss of generality we can assume that f, g ∈ Sp(X, d,m) and that
φ : R→ R is Lipschitz.

We start with (4.29). Let N ⊂ R be the L1− negligible set of non-differentiability
points of φ (negligible by Rademacher’s Theorem). Then thanks to locality φ(N ) is
L1−negligible so the thesis holds m−a.e. on f−1(N ) being both sides of (4.29) equal to
0. If φ is affine the thesis is true and arguing as before it holds also if φ is piecewise
affine. Now take a general φ. Let {φn} be a sequence of piecewise affine functions such
that φ′n → φ′ L1−a.e.. Let N ′ be the L1−negligible set of points z such that either φ or
φn is not differentiable at z or φ′n(z) does not converge to φ′(z). Arguing as before, we
still get the thesis m−a.e. on f−1(N ′) being both sides of (4.29) equal to 0. On the set
X \ f−1(N ′) we use the continuity property (4.11) and the chain rule (3.5) to obtain

|D±(φ ◦ f)(∇g)−D±(φn ◦ f)(∇g)| ≤ |D
(
(φ− φn) ◦ f

)
|w |Dg|w

=
(
|φ′ − φ′n| ◦ f

)
|Df |w |Dg|w.
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By construction the right-hand side tends 0 m−a.e. on X \ f−1(N ′) as n→∞.
Now we prove (4.30). Using (4.7) we only need to prove that

D+f
(
∇(φ ◦ g)

)
= (φ′ ◦ g)Dsgn(φ′◦g)f(∇g).

Notice that the identity

|D(ag + εf)|pw − |D(ag)|pw
pε|D(ag)|p−2

w

= a
|D(g + ε

a
f)|pw − |Dg|pw

p ε
a
|Dg|p−2

w

holds m−a.e. for every ε, a 6= 0 and thanks to (4.29) it implies that the thesis is true for
a linear φ. Hence (4.30) holds also for an affine φ, and by locality also for a piecewise
affine φ, arguing as in (4.29).

Let J̃ ⊂ J an interval where φ is Lipschitz and let {φn} be a sequence of uniformly
Lipschitz and piecewise affine functions such that φ′n → φ′ L1−a.e. on J̃ . By construc-
tion, for every E ⊂ g−1(J̃) the sequence of functions (φ′n ◦ g)Dsgn(φ′n◦g)f(∇g)|D(φn ◦
g)|p−2

w is dominated in L1(E,m|E) and pointwisely m−a.e. converges to the function
(φ′ ◦ g)Dsgn(φ′◦g)f(∇g)|D(φn ◦ g)|p−2

w . Since
∫

E |D(φn ◦ g − φ ◦ g)|pw dm
n→∞−→ 0, from the

semicontinuity statement of Proposition 4.3 we deduce that
∫

E

D+f
(
∇(φ ◦ g)

)
|D(φ ◦ g)|p−2

w dm ≥ lim
n→∞

∫

E

D+f
(
∇(φn ◦ g)

)
|D(φn ◦ g)|p−2

w dm

= lim
n→∞

∫

E

(φ′n ◦ g)Dsgn(φ′n◦g)f(∇g) |D(φn ◦ g)|p−2
w dm

=

∫

E

(φ′ ◦ g)Dsgn(φ′◦g)f(∇g) |D(φ ◦ g)|p−2
w dm.

By the arbitrariness of J̃ and E we get

D+f
(
∇(φ ◦ g)

)
≥ (φ′ ◦ g)Dsgn(φ′◦g)f(∇g) m− a.e.. (4.31)

To conclude it is sufficient to apply this inequality with φ ◦ g replacing g and φ−1 re-
placing φ. To make this rigorous, assume that φ ∈ C1

loc. Notice that (4.31) holds m−a.e.
on g−1({φ′ = 0}). Pick z such that φ′(z) 6= 0 (we can assume that φ′(z) > 0 since the the
proof is similar if φ′(z) < 0). Set g̃ := min{max{g, a}, b} and notice that φ is invertible
on g̃(X) with C1

loc−inverse. Hence using (4.31) we have that

D+f(∇g̃) = D+f
(
∇(φ−1 ◦ (φ ◦ g̃))

)
≥ (φ−1)′ ◦ (φ ◦ g̃)D+f

(
∇(φ ◦ g̃)

)
=

1

φ′ ◦ g̃
D+f

(
∇(φ ◦ g̃)

)
m− a.e..

Thanks to locality and to the arbitrariness of z we can conclude that (4.30) holds for
any function φ ∈ C1

loc. The general case follows by approximating φ with a sequence
{φn} ⊂ C1

loc such that L1({φn 6= φ} ∪ {φ′n 6= φ′}) n→∞−→ 0 and using again the locality
principle.

To prove the Leibniz’s rule, we will use the following lemma:

Lemma 4.3.2. Let (X, d,m) be a metric measure space as in (3.1), p, q ∈ (1,∞) conjugate
exponents, f1, f2 ∈ Sp(X, d,m) ∩ L∞(X,m), g ∈ Sp(X, d,m) and π ∈ P

(
C([0, 1], X)

)
a

plan q−representing∇g.
Then

lim
t↓0

∫

∣∣∣∣
(
f1(γt)− f1(γ0)

)(
f2(γt)− f2(γ0)

)
t

∣∣∣∣ dπ(γ) = 0.
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Proof. Let F i
t (γ) := fi(γt)− fi(γ0), i = 1, 2, t ∈ (0, 1]. From (4.19) the family of functions

Eq,t

t
is dominated in Lq(π), so that from the second part of Proposition 3.2.5 the family

F 1
t

t
is dominated in L1(π). By definition

‖F 2
t ‖L∞(π) ≤ 2‖f2‖L∞(m) t ∈ (0, 1].

Hence to conclude is sufficient to notice that π−a.e. F 2
t

t↓0−→ 0 being also F 2
t

t
dominated

in L1(π).

Theorem 4.3.3. Let (X, d,m) be a metric measure space as in (3.1), p ∈ (1,∞), f1, f2 ∈
Sploc(X, d,m) ∩ L∞(X,m) and g ∈ Sploc(X, d,m).

Then m−a.e. the following inequalities hold:

D+(f1f2)(∇g) ≤ f1D
sgnf1f2(∇g) + f2D

sgnf2f1(∇g),

D−(f1f2)(∇g) ≥ f1D
−sgnf1f2(∇g) + f2D

−sgnf2f1(∇g).

Proof. Thanks to the locality property (4.9) and using a cut-off argument we can as-
sume that f1, f2 ∈ Sp(X, d,m)∩L∞(X,m) and that g ∈ Sp(X, d,m). Moreover, replacing
f1 and f2 with |f1| e |f2| and using the chain rule we can reduce ourselves to consider
the case f1, f2 ≥ 0.

With these assumptions, we want to prove that for every measure µ ∈P(X) with
µ ≤ Cm̃ for some C > 0 (m̃ as in (3.2) and (3.3)) the following assertion holds
∫

D+(f1f2)(∇g)|Dg|p−2
w dµ ≤
∫ (

f1D
+f2(∇g) + f2D

+f1(∇g)
)
|Dg|p−2

w dµ (4.32)

and from the arbitrariness of µ and from the fact that m � m̃ we will get the thesis.
The second inequality will follow using −g instead of g and from (4.7).

Fix µ and notice that if f1f2 = 0 µ−a.e. then the thesis is obvious, hence we can
assume that

∫

fi dµ > 0, i = 1, 2.
We fix ε > 0 and set gε := g + εf1f2 ∈ Sp(X, d,m). Let πε be a q−test plan

q−representing ∇g such that (e0)]π
ε = µ. We know that it exists from Theorem 4.2.4

(with q conjugate exponent of p). Using (4.5) and Theorem 4.2.1 we have that
∫

D+(f1f2)(∇g)|Dg|p−2
w dµ ≤
∫

D−(f1f2)(∇gε)|Dgε|p−2
w dµ

≤ lim
t↓0

∫

f1(γt)f2(γt)− f1(γ0)f2(γ0)

t
dπε(γ)

≤ lim
t↓0

∫

f1(γt)f2(γt)− f1(γ0)f2(γ0)

t
dπε(γ).

Thanks to Lemma 4.3.2 we have that

lim
t↓0

∫

f1(γt)f2(γt)− f1(γ0)f2(γ0)

t
dπε(γ)

= lim
t↓0

∫

(
f1(γ0)

f2(γt)− f2(γ0)

t
+ f2(γ0)

f1(γt)− f1(γ0)

t

)
dπε(γ)

= lim
t↓0

∫

f1(γ0)
f2(γt)− f2(γ0)

t
dπε(γ) + lim

t↓0

∫

f2(γ0)
f1(γt)− f1(γ0)

t
dπε(γ).
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From (4.26) we know that the plans πε
i := fi◦e0
∫

fi dµ
πε, i = 1, 2 q−represent ∇gε with

(e0)]π
ε
i = fi◦e0
∫

fi dµ
µ. Hence using again 4.2.1 we have that

lim
t↓0

∫

f1(γ0)
f2(γt)− f2(γ0)

t
dπε(γ) ≤
∫

f1D
+f2(∇gε)|Dgε|p−2

w dµ,

lim
t↓0

∫

f2(γ0)
f1(γt)− f1(γ0)

t
dπε(γ) ≤
∫

f2D
+f1(∇gε)|Dgε|p−2

w dµ.

Now we have proved that for every ε > 0 it holds
∫

D+(f1f2)(∇g)|Dg|p−2
w dµ ≤
∫ (

f1D
+f2(∇gε)|Dgε|p−2

w + f2D
+f1(∇gε)|Dgε|p−2

w

)
dµ.

But the right-hand side of the preceding inequality id dominated in L1(X,m) by the
assumptions, so that using (4.5) the limit for ε ↓ 0 allows us to conclude.

Remark 4.3.1. If (X, d,m) is q−i.s.c. with q conjugate exponent of p, then with the same
assumptions of the preceding two theorems, the following equalities hold m−a.e.:

D(φ ◦ f)(∇g) = (φ′ ◦ f)Df(∇g), (4.33)

Df
(
∇(φ ◦ g)

)
= (φ′ ◦ g)Df(∇g), (4.34)

D(f1f2)(∇g) = f1Df2(∇g) + f2Df1(∇g). (4.35)

Remark 4.3.2. A natural question is whether a Leibniz’s rule of the form

Df
(
∇(g1g2)

)
= g1Df(∇g2) + g2Df(∇g1) ∀ f, g1, g1 ”smooth” (4.36)

is valid, possibly with equality replaced by an inequality and with appropriate sign
choices in D±.

In general this is false: for example, in a flat normed space the preceding equality
would be true if the norm comes from a scalar product. Indeed, recalling that ∇g =
Dual−1(Dg) then (4.36) holds for any f, g1, g2 if and only if

Dual−1
(
D(g1g2)

)
= g1 Dual−1(Dg2) + g2 Dual−1(Dg1).

Thanks to the Leibniz rule for differentials we know that the left-hand side is equal to

Dual−1(g1Dg2 + g2Dg1).

Hence, since Dual−1 is always 1−homogeneous, then (4.36) holds if and only if Dual−1

is linear: i.e. if the norm comes from a scalar product. We will analyze this problem in
the next chapter introducing the infinitesimally Hilbertian spaces.

Remark 4.3.3. In Theorem 4.2.1 that links the derivativesD±f(∇g) and limt↓0
∫ f◦et−f◦e0

t
dπ,

limt↓0
∫ f◦et−f◦e0

t
dπ, the first ones are called vertical derivatives because obtained per-

turbating the dependent variable while the second ones horizontal derivatives because
obtained perturbing the independent variable instead.

We have got the chain rule as a consequence of the vertical derivatives and the
Leibniz rule as a consequence of the horizontal ones. Actually we can get the Leibniz
rule via the ”vertical” approach only: as in the proof of Theorem 4.3.3 we can reduce
ourselves to prove

D+(f1f2)(∇g) ≤ f1D
+f2(∇g) + f2D

+f1(∇g) m− a.e.,
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considering f1, f2 ∈ Sp(X, d,m) ∩ L∞(X,m) positive and g ∈ Sp(X, d,m). Using the
chain rule (4.29) and the convexity and 1-homogeneity of the map f 7→ D+f(∇g) we
get

D+(f1f2)(∇g) = f1f2D
+
(

ln(f1f2)
)
(∇g) ≤ f1f2

(
D+(ln(f1))(∇g) +D+(ln(f2))(∇g)

)
= f1D

+f2(∇g) + f2D
+f1(∇g) m− a.e..





Chapter 5

Laplacian

In this final chapter we define the Laplacian and prove the Leibniz and chain rule
for it, checking also its stability under convergence and proving the locality property.
We then focus our attention to the linear case by introducing the infinitesimally Hilber-
tian spaces and prove the duality property between differentials and gradients, pos-
sible essentially because in this spaces D+f(∇g) and D−f(∇g) agree. Recalling that
in the smooth setting the Laplacian can be defined via the Dirichlet’s energy, in this
metric setting we give a different definition of the Laplacian based on the Cheeger’s
energy and study the compatibility of this definition with the first one we give. In
the last part we will apply the construction of the Laplacian to the Heisenberg group,
observing how different can be the differential approach and the Cheeger’s one.

5.1 Definition and first properties

Thanks to the results of the preceding section we are now ready to define the Lapla-
cian operator. Notice first that Proposition 3.2.1 allows us to define the Sobolev class
Sploc(Ω) in this way:

Definition 5.1.1. Let (X, d,m) be a metric measure space as in (3.1), Ω ⊂ X an open
subset and p ∈ (1,∞). Define the space

Sploc(Ω) := {g Borel functions | gχ ∈ Sploc(X, d,m) ∀χ : X → [0, 1] Lipschitz function
with d(supp(χ), X \Ω) > 0}

Thanks to the locality property if g ∈ Sploc(Ω) then |Dg|w ∈ Lploc(Ω,m|Ω) is well
defined as

|Dg|w := |D(gχ)|w m− a.e. on {χ = 1}, (5.1)

with χ : X → [0, 1] any Lipschitz function such that d(supp(χ), X \Ω) > 0. Again by
locality the functions D±f(∇g) are well defined m−a.e. on Ω and m−a.e. the chain
rules (4.29) and (4.30) and the Leibniz rule hold for every couple of functions f, g ∈
Sploc(Ω), p ∈ (1,∞).

We need some form of integrability |Dg|w in order to define the Laplacian.

Definition 5.1.2. Let (X, d,m) be a metric measure space as in (3.1) and Ω ⊂ X an open
subset. We define the class

Int(Ω) := {Ω′ ⊂ Ω | Ω′ is bounded , d(Ω′, X \Ω) > 0 and m(Ω′) <∞}.

65
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If p ∈ (1,∞) we define the space Spint(Ω) of functions Sobolev internally in Ω as

Spint(Ω) :=

{
g ∈ Sploc(Ω) :

∫

Ω′
|Dg|pw dm <∞,∀Ω′ ∈ Int(Ω)

}
.

We need also a space of test functions: as said many times before, maximum regu-
larity is achieved by Lipschitz functions so we have the following definition.

Definition 5.1.3. Let (X, d,m) be a metric measure space as in (3.1) and Ω ⊂ X an open
subset. We define the space

Test(Ω) :=
{
f ∈ Lip(X) : supp(f) ⊂ Ω′,Ω′ ∈ Int(Ω)

}
.

Remark 5.1.1. Recall that if f : X → R is Lipschitz then f ∈ Sploc(X, d,m) ∀p ∈ (1,∞)
and its minimal p−weak upper gradient |Df |w is uniformly bounded by Lip(f).

Naturally, if g ∈ Spint(Ω) and f ∈ Test(Ω) we have that g + εf ∈ Spint(Ω) for every
ε ∈ R. Thus, if g ∈ Spint(Ω) and f ∈ Test(Ω) then thanks to (5.1) the functions D±f(∇g)
are defined m−a.e. on Ω as

D±f(∇g) := D±f(∇(gχ)) on {χ = 1} (5.2)

for everyχ : X → [0, 1] Lipschitz function with that supp(χ) ⊂ Ω′ for some Ω′ and from
the fact that m(supp(f)) <∞we have that D±f(∇g) ∈ L1(Ω,m|Ω).

Now we are ready to define the distributional Laplacian.

Definition 5.1.4. Let (X, d,m) be a metric measure space as in (3.1), Ω ⊂ X an open
subset and g : Ω → R a Borel function. We say that g is in the domain of the Laplacian
and write g ∈ D(∆,Ω) if g ∈ Spint(Ω) for some p > 1 and there exists a Radon measure
µ on Ω such that for every f ∈ Test(Ω) ∩ L1(Ω, |µ|) it holds

−
∫

Ω

D+f(∇g) dm ≤
∫

Ω

f dµ ≤ −
∫

Ω

D−f(∇g) dm. (5.3)

In this case we write µ ∈∆g|Ω. If Ω = X then we write g ∈ D(∆) and µ ∈∆g.

Notice that ∆ is a set of measures that can be multi-valued.

Remark 5.1.2. As for |Df |w andD±f(∇g) the choice of p as Sobolev exponent may affect
the definition of the Laplacian. But in the definition we required that g ∈ Spint(Ω) for
some p > 1 to ensure to compute |D(g + εf)|w and hence D±f(∇g).

Remark 5.1.3. We have already observed that |Df |w ∈ L∞. In the Euclidian case (i.e.
X = Rn and m = Ln) to write ∆g = µ in the distributional sense it is sufficient to
require g ∈ L1

loc. Thanks to the Sobolev embedding theorems, if ∆g = µ in the distri-
butional sense then its distributional gradient ∇g ∈ Lploc for every p ∈ [1, 1 + 1

n
). Thus,

in the Euclidian case we may not know n but we are still sure that ∆g = µ implies
∇g ∈ Lploc(Ω,Ln) for p > 1.

The Laplacian defined in (5.3) can be multi-valued as the following example shows:
consider the metric measure space X = (X, d,m) = (R2, d,L2) with d the distance



5.1 Definition and first properties 67

induced by the 1−norm (i.e. if (x1, y1), (x2, y2) ∈ X then d((x1, y1), (x2, y2)) = |x1 −
x2|+ |y1 − y2|). As said before, now |Dg|w = ‖∇g‖1 = |∂xf |+ |∂yf |. If p = 2 then

‖∇(g + εf)‖2
1 − ‖∇g‖2

1

2ε
=

(
|∂x(g + εf)|+ |∂y(g + εf)|

)2 −
(
|∂xg|+ |∂yg|

)2

2ε

=
2ε
(
(∂xg)(∂xf) + (∂yg)(∂yf)

)
+ 2|(∂xg + ε∂xf)(∂yg + ε∂yf)| − 2|∂xg||∂yg|+ o(ε)

2ε

=
ε
(
(∂xg)(∂xf) + (∂yg)(∂yf)

)
+ |(∂xg)(∂yg) + ε

(
(∂xg)(∂yf) + (∂xf)(∂yg)

)
+ o(ε)|

ε
−

− |∂xg||∂yg|+ o(ε)

ε
.

Now using the triangle inequality first and the converse triangle inequality then we
get

≤
(
(∂xg)(∂xf) + (∂yg)(∂yf)

)
+ |(∂xg)(∂yf)|+ |(∂xf)(∂yg)|+ o(1),

≥
(
(∂xg)(∂xf) + (∂yg)(∂yf)

)
+ |(∂xg)(∂yf) + (∂xf)(∂yg)|+ o(1).

Therefore both D ± f(∇g) are bounded by(
(∂xg)(∂xf) + (∂yg)(∂yf)

)
+ |(∂xg)(∂yf) + (∂xf)(∂yg)| ≤ D±f(∇g) ≤

≤
(
(∂xg)(∂xf) + (∂yg)(∂yf)

)
+ |(∂xg)(∂yf)|+ |(∂xf)(∂yg)|

and so the Laplacian is multivalued.
Nevertheless we have some immediate properties:

• homogeneity:

g ∈ D(∆,Ω), µ ∈∆g|Ω ⇒ λg ∈ D(∆,Ω), λµ ∈∆(λg)|Ω, ∀λ ∈ R; (5.4)

• translations invariance:

g ∈ D(∆,Ω), µ ∈∆g|Ω ⇒ c+ g ∈ D(∆,Ω), µ ∈∆(c+ g)|Ω, ∀c ∈ R;

• ∆g|Ω is convex and weakly closed, i.e. if {µn} ⊂∆g|Ω and µ is a Radon measure
over Ω such that f ∈ Test(Ω) ∩ L1(X, |µ|) then f ∈ L1(Ω, |µn|) for n large enough
and

lim
n→∞

∫

f dµn =

∫

f dµ,

then µ ∈∆g|Ω;

• locality:

Ω̃ ⊂ Ω open sets, g ∈ D(∆,Ω), µ ∈∆g|Ω ⇒ g ∈ D(∆, Ω̃), µ|Ω̃ ∈∆g|Ω̃;
(5.5)

• The measures in ∆g| are concentrated on supp(m).
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Theorem 5.1.1. Let (X, d,m) be a metric measure space as in (3.1), Ω ⊂ X an open subset,
p ∈ (1,∞) and g ∈ Sint(Ω) ∩ D(∆,Ω). Suppose that (X, d,m) is q−i.s.c. with q conjugate
exponent of p.

Then ∆g|Ω contains only one measure.

Proof. From (5.2) and (4.13), for all f ∈ Test(Ω) we have that D+f(∇g) = D−f(∇g)
m−a.e. on Ω.

Now we give a different definition of the Laplacian based on the Ch2 : L2(X,m) →
[0,∞] (analogous in the Euclidian case to defining the 2-Laplacian weakly through the
Dirichlet energy) and recall that it is convex and lower semicontinuous.

Definition 5.1.5. Let (X, d,m) be a metric measure space as in (3.1) and g ∈ L2(X,m).
We say that g is in the domain of the Laplacian if Ch2(g) < ∞ and the subdifferential
∂−Ch2(g) 6= ∅. In this case the Laplacian of g is defined as the element with minimal
L2(X,m)−norm in −∂−Ch2(g).

Theorem 5.1.2. Let (X, d,m) be a metric measure space as in (3.1), g ∈ L2(X,m) and h ∈
L2(X,m). Assume that Ch2(g) <∞ and −h ∈ ∂−Ch2(g). Then g ∈ D(∆) and hm ∈∆g.

Proof. Fix f ∈ L2(X,m) with Ch2(f) < ∞ and notice that applying the definition of
subdifferential to Ch2 we have that

Ch2(g)− ε
∫

fh dm ≤ Ch2(g + εf) ∀ε ∈ R.

So for ε > 0 we have that

−
∫

fh dm ≤
∫ |D(g + εf)|2w − |Dg|2w

2ε
dm.

Letting ε ↓ 0 and using the dominated convergence on the right-hand side of this
inequality we have

−
∫

fh dm ≤
∫

D+f(∇g) dm

and this holds for f ∈ Test(X) ⊂ {Ch2 < ∞} ∩ L1(X, |h|m). Replacing f with −f we
get the other inequality of (5.3) and so the thesis.

Remark 5.1.4. Notice that the choice of representing the Laplacian with the element of
minimal norm has been done just to identify it in a unique way but w.r.t the definition
5.1.4 and thanks to the preceding theorem every element in −∂−Ch2(g) is admissible
for representing the Laplacian.

Remark 5.1.5. it is natural to ask if the converse of theorem 5.1.2 holds: suppose that
g ∈ D(Ch2) ∩ D(∆) and for some µ ∈ ∆g we have that µ � m with density h ∈
L2(X,m). Can we say that −h ∈ ∂−Ch2(g)? We want to understand that if from

Ch2(g)−
∫

fh dm ≤ Ch2(g + f) ∀f ∈ Test(X)

we can deduce that the same inequality holds or not for all f ∈ L2(X,m). The answer
lies in the density of Lipschitz functions in W 1,2(X, d,m) and it can be proven to be
affirmative if W 1,2(X, d,m) is uniformly convex and m is finite on finite sets.
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5.2 Calculus rules with the Laplacian

In this section we collect the basic calculus rules of the Laplacian proving also that
they are very similar to the ones in the Euclidian setting.

Theorem 5.2.1. Let (X, d,m) be a metric measure space as in (3.1), Ω ⊂ X an open set and
g ∈ D(∆,Ω). Suppose that g is Lipschitz on Ω′ for any Ω′ ∈ Int(Ω) and let φ : g(Ω) → R a
C1,1

loc map. Then φ ◦ g ∈ D(∆,Ω) and for any µ ∈∆g|Ω we have that

∆(φ ◦ g)|Ω 3 µ̃ := (φ′ ◦ g)µ+ (φ′′ ◦ g) |Dg|2wm. (5.6)

Proof. Being g continuous (φ′ ◦ g)µ makes sense and defines a locally finite measure.
Similarly for (φ′′ ◦ g)|Dg|2w ∈ L∞loc(Ω,m|Ω).

Moreover φ′ ◦ g is Lipschitz on Ω′ and (φ′′ ◦ g)|Dg|2w is bounded on Ω′ for any Ω′ ∈
Int(Ω). Therefore if f ∈ Test(Ω) ∩ L1(Ω, |µ̃|) then f(φ′ ◦ g) ∈ Test ∩ L1(|µ|). Now fix
such f and using the chain rules (4.29) and (4.30) and the Leibniz rules and (4.8) we
have that m−a.e. on Ω

D+f∇(φ ◦ g) = (φ′ ◦ g)Dsgn(φ′◦g)f(∇g) ≥ D+
(
f(φ′ ◦ g)

)
(∇g)− fDsgnf (φ′ ◦ g)(∇g)

= D+
(
f(φ′ ◦ g)

)
(∇g)− f(φ′′ ◦ g)Dsgn(f(φ′′◦g))g(∇g)

= D+
(
f(φ′ ◦ g)

)
− f(φ′′ ◦ g)|Dg|2w.

Integrating we obtain
∫

D+f
(
∇(φ ◦ g)

)
dm ≥ −
∫

f dµ̃.

Replacing f with −f we conclude.

Remark 5.2.1. The Lipschitz-continuity assumption on Ω′ on g was needed to ensure
that f ∈ Test(Ω) implies f(φ′ ◦ g) ∈ Test(Ω), so that from the assumption one could
deduce

∫

D+
(
f(φ′ ◦ g)

)
(∇g) dm ≥ −

∫

f dµ.

it is well known, apart technicalities, that in the Euclidian setting a non-negative
distribution can be seen as a non-negative measure. The next theorem proves a similar
statement for the metric Laplacian providing a sufficient condition on g that ensures
that it is in the domain of the Laplacian, giving also a bound on elements of ∆g|Ω.

Theorem 5.2.2. Let (X, d,m) a metric measure space as in (3.1) and assume also that (X, d)
is a proper space. Let Ω ⊂ X be an open set, g ∈ Spint(Ω), p ∈ (1,∞) and µ̃ a Radon measure
on Ω. Assume that for any non-negative f ∈ Test(Ω) ∩ L1(Ω, |µ̃|) it holds

−
∫

Ω

D−f(∇g) dm ≤
∫

Ω

f dµ̃. (5.7)

Then g ∈ D(∆,Ω) and for any µ ∈∆g|Ω it holds µ ≤ µ̃.

Proof. Consider the R−valued map

Test(Ω) 3 f 7→ T (f) := −
∫

Ω

D−f(∇g) dm.
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From Proposition 4.1.1 T is a sublinear map so by the Hahn-Banach Theorem there
exists a linear map L : Test→ R such that L(f) ≤ T (f) ∀f ∈ Test(Ω). By (4.7) we then
have

−
∫

Ω

D+f(∇g) dm ≤ L(f) ≤ −
∫

Ω

D−f(∇g) dm ∀f ∈ Test(Ω).

By (5.7) it holds
∫

Ω

f dµ̃− L(f) ≥ 0 ∀f ∈ Test(Ω), f ≥ 0.

Fix a compact setK ⊂ Ω and a function χK ∈ Test(Ω) such that 0 ≤ χK ≤ 1 everywhere
and χK ≡ 1 onK. Let VK ⊂ Test(Ω) be the set of those χK with support contained inK.
For any non-negative f ∈ VK the fact that (max f)χK − f ∈ Test(Ω) and non-negative
yields

L(f) = −L
(
(max f)χK − g

)
+ L

(
(max f)χK

)
≥ −
∫ (

(max f)χK − f
)

dµ̃+ L
(
(max f)χK

)
≥ −(max f)

(
µ̃(supp(χK)) + L(χK)

)
.

Thus for a generic f ∈ VK it holds

L(f) = L(f+ − f−) = L(f+)− L(f−) ≤
∫

Ω

f+ dµ̃+ (max f−)
(
µ̃(supp(χK)) + L(χK)

)
≤ (max |f |)

(
µ̃(K) + µ̃(supp(χK)) + L(χK)

)
,

so L : VK → R is continuous w.r.t the supremum norm. Hence it can be extended to a
linear bounded functional on the set CK ⊂ C(Ω) of continuous functions with support
contained in K and this extension is unique by the density of Lipschitz functions in
the uniform norm. Being K arbitrary, by the Riesz’s Theorem there exists a Radon
measure µ such that

L(f) =

∫

f dµ ∀f ∈ Test(Ω).

Thus g ∈ D(∆,Ω) and µ ∈∆g|Ω.
By (5.7) it is immediate to get that for any µ′ ∈∆g|Ω it holds µ′ ≤ µ̃.

Remark 5.2.2. If (X, d,m) is q−i.s.c. and g ∈ Spint(Ω), with p and q conjugate exponents,
the map T is linear.

The next one is a convergence result for the Laplacian (stability under convergence).

Theorem 5.2.3. Let (X, d,m) a metric measure space as in (3.1), Ω ⊂ X an open set and p ∈
(1,∞). Let {gn} ⊂ Spint(Ω) be a sequence and g ∈ Spint(Ω) be such that

∫

Ω′ |D(gn−g)|w dm→ 0
for every Ω′ ∈ Int(Ω). Assume also that gn ∈ D(∆,Ω) for every n ∈ N, let µn ∈ ∆gn|Ω and
suppose that for some locally finite measure µ on Ω it holds

f ∈ Test(Ω) ∩ L1(Ω, |µ|) ⇒ f ∈ L1(Ω, |µn|) for n large enough and µn
∗
⇀ µ. (5.8)

Then g ∈ D(∆,Ω) and µ ∈∆g|Ω.
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Proof. For any f ∈ Test(Ω) and g ∈ Spint(Ω) it holds
∫

D+f(∇g) dm = inf
ε>0

∫

|Dg|w
|D(g + εf)|w − |Dg|w

ε
dm,

∫

D−f(∇g) dm = sup
ε<0

∫

|Dg|w
|D(g + εf)|w − |Dg|w

ε
dm.

By our assumptions for any f ∈ Test(Ω) it holds
∫

supp(f)

|D(gn − g)|w dm→ 0,

the sequence |D(gn+εf)|w−|Dgn|w
ε

is uniformly bounded in L∞(Ω,m|Ω) by Lip(f) and con-
verges to |D(g+εf)|w−|Dg|w

ε
in L1(Ω,m|Ω) for any ε 6= 0. Hence

lim
n→∞

∫

Ω

D+f(∇gn) dm ≤
∫

Ω

D+f(∇g) dm, (5.9)

lim
n→∞

∫

Ω

D−f(∇gn) dm ≥
∫

Ω

D−f(∇g) dm. (5.10)

If furthermore f ∈ L1(Ω, |µ|) (5.8) ensures that f ∈ L1(Ω, |µn|) for n sufficiently large.
So from µn ∈∆gn|Ω we have

−
∫

D+f(∇gn) dm ≤
∫

f dµn ≤ −
∫

D−f(∇gn) dm ∀n� 0.

Using (5.9) and (5.10) we can pass to the limit in these inequalities and get the thesis.

The next statement shows that the definition we gave for the Laplacian is compat-
ible with the Cheeger’s one.

Proposition 5.2.4. Let (X, d,m) be a metric measure space as in (3.1), Ω ⊂ X an open set
and g ∈ S2

int(Ω) with
∫

Ω |Dg|
2
w dm <∞. If we assume that

∫

Ω

|Dg|2w dm ≤
∫

Ω

|D(g + h)|2w dm ∀h ∈ S2(X, d,m) : supp(h) ⊂ Ω,

then g ∈ D(∆,Ω) and 0 ∈∆g|Ω.

Proof. First of all, if f ∈ Test(Ω) we certainly have supp(f) ⊂ Ω and f ∈ S2(X, d,m).
Thus for f ∈ Test(Ω) and ε ∈ R the additional assumption made yields

∫

Ω

|D(g + εf)|2w dm ≥
∫

Ω

|Dg|2w dm.

Therefore
∫

Ω

|D(g + εf)|2w − |Dg|2w
2ε

dm Q 0 if ε ≶ 0.

By letting ε tend to 0 we get the thesis.

The Laplacian also has a local-to-global property, explained in the next theorem:
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Theorem 5.2.5. Let (X, d,m) be a metric measure space as in (3.1) and suppose that (X, d)
is a proper space. Let p ∈ (1∞) and q its conjugate exponent and assume (X, d,m) q−i.s.c..
Let Ω ⊂ X be an open, {Ωi}i∈I a family of open sets such that Ω =

⋃
i∈I Ωi, g ∈ S2

int(Ω) with
g ∈ D(∆,Ωi) ∀i ∈ I and µi the only element of ∆g|Ωi

. Then

µi|Ωi∩Ωj
= µj|Ωi∩Ωj

∀i, j ∈ I, (5.11)

g ∈ D(∆,Ω) and the measure µ on Ω defined by

µ|Ωi
:= µi ∀i ∈ I (5.12)

is the only element of ∆g|Ω.

Proof. Being (X, d) proper, for any Ω ⊂ X open and for any Radon measure ν on Ω
and any f ∈ Test(Ω) it holds f ∈ L1(Ω, |ν|) because the support of f is compact.

Let i, j ∈ I , f ∈ Test(Ωi ∩ Ωj). By definition we have that

−
∫

Ωi∩Ωj

f dµi =

∫

Ωi∩Ωj

Df(∇g) dm = −
∫

Ωi∩Ωj

f dµj,

which yields (5.11). In particular the measure µ is well defined by (5.12).
Fix now f ∈ Test(Ω). Since the support of f is compact there exists a finite set

If ⊂ I of indices such that supp(f) ⊂
⋃
i∈If Ωi. From the fact that (X, d) is proper we

can build Lipschitz partition of unity {χi}i∈If . Hence fχi ∈ Test(Ωi) for any i ∈ If and
by the linearity of the differential expressed by the Corollary 4.1.2 we have

∫

Df(∇g) dm =

∫

D

(∑
i∈If

χif

)
(∇g) dm =

∑
i∈If

∫

D(fχi)(∇g) dm

= −
∑
i∈If

∫

fχi dµi = −
∫

f d

(∑
i∈If

χiµi

)
.

We conclude this section showing the effect of a change of the reference measure m.
As for the previous proposition we need the infinitesimally strict convexity to express
the formula.

Theorem 5.2.6. Let (X, d,m) be a metric measure space as in (3.1) and V : X → R a
locally Lipschitz function, which is Lipschitz when restricted to bounded sets. Defining the
new measure

m′ := e−Vm

let ∆′ be the Laplacian in (X, d,m′). Let Ω ⊂ X be an open set, g ∈ D(∆) ∩ Spint(Ω) for some
p ∈ (1,∞) and assume that (X, d,m) is q−i.s.c. with q the conjugate exponent of p. Then
g ∈ D(∆′,Ω) and the measure

µ′ := e−V µ−DV (∇g)e−Vm

is the only element in ∆′g|Ω, where µ is the only element of ∆g|Ω.
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Proof. Since e−V and |DV |w are locally bounded then µ′ is a locally finite measure so
the statement makes sense. For f ∈ Test′(Ω) ∩ L1(Ω, |µ′|), where Test′(Ω) is the set
Test(Ω) with m replaced by m′, the fact that supp(f) is bounded yields that V |supp(f) is
Lipschitz and bounded. It follows that fe−V ∈ Test(Ω) ∩ L1(Ω, |µ|) so from the chain
rule (4.33) and the Leibniz’s one (4.35) we get
∫

f dµ′ ,
∫

fe−V dµ−
∫

fDV (∇g)e−V dm

= −
∫ (

D(fe−V )(∇g)− fD(e−V )(∇g)
)

dm = −
∫

e−VDf(∇g) dm.

5.3 The linear case

In this section we introduce a sufficient condition in order for the Laplacian to be
linear.

Definition 5.3.1. Let (X, d,m) be a metric measure space as in (3.1). We say that
(X, d,m) is infinitesimally Hilbertian if the seminorm ‖ · ‖S2(X,d,m) on S2(X, d,m) satis-
fies the parallelogram rule.

Remark 5.3.1. Recall that if (A, ‖ · ‖) is a normed space then the parallelogram rule
(called also polarization identity) reads as

‖x‖2 + ‖y‖2 =
‖x+ y‖2

2
+
‖x− y‖2

2
∀x, y ∈ A

and (A, ‖ · ‖) is a Hilbert space if and only if the parallelogram rule is satisfied.

Being the infinitesimally Hilbertian spaces 2−i.s.c. then ∀f, g ∈ S2
loc(X, d,m) the

function Df(∇g) is well defined m−a.e. and for g ∈ D(∆) ∩ S2(X, d,m) the set ∆g
contains only one element which we will denote again by ∆g with a little abuse of
notation.

The most beautiful property of this kind of spaces is that we can prove a duality
between differential and gradients, analogous to the one possible via Riesz Theorem.

Theorem 5.3.1. Let (X, d,m) be a metric measure space as in (3.1). Then is it infinitesimally
Hilbertian if and only if it is 2−i.s.c. and ∀f, g ∈ S2

loc(X, d,m) it holds

Df(∇g) = Dg(∇f) m− a.e.. (5.13)

Proof. Assume first that the space is 2−i.s.c. and that (5.13) holds. Fix f, g,∈ S2(X, d,m)
and notice that

‖g + f‖2
S2(X,d,m) − ‖g‖2

S2(X,d,m) , ‖|D(g + f)|w‖2
L2(X,m) − ‖|Dg|w‖2

L2(X,m)

=

∫ 1

0

d

dt
‖|D(g + tf)|w‖2

L2(X,m) dt

= 2

∫∫ 1

0

Df
(
∇(g + tf)

)
dt dm = 2

∫∫ 1

0

D(g + tf)(∇f) dt dm

= 2

∫

Dg(∇f) dm + ‖f‖2
S2(X,d,m).
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Then replacing f with −f and adding up we can conclude.
For the converse, with a cut-off argument we can reduce to the case f, g ∈ S2(X, d,m)∩

L∞(X,m). Now we’re assuming that ‖ · ‖S2(X,d,m) satisfies the parallelogram rule so we
have that
‖g + εf‖2

S2(X,d,m) − ‖g‖2
S2(X,d,m)

ε
=
‖f + εg‖2

S2(X,d,m) − ‖f‖2
S2(X,d,m)

ε
+O(ε) ∀f, g ∈ S2(X, d,m).

So by definition of Df(∇g) and using (4.8) we get
∫

Df(∇g) dm =

∫

Dg(∇f) dm ∀f, g ∈ S2(X, d,m). (5.14)

Our goal now is to pass from this integral equality to the pointwise statement (5.13).
Fix h ∈ S2(X, d,m) ∩ L∞(X,m) and using (4.8), the Leibniz rule (4.35), the chain rule
and (5.14) we have
∫

h|Df |2w dm =

∫

hDf(∇f) dm =

∫ (
D(hf)(∇f)− f Dh(∇f)

)
dm

=

∫

D(hf)(∇f) dm− 1

2

∫

Dh
(
∇(f 2)

)
dm

=

∫

D(hf)(∇f) dm− 1

2

∫

D(f 2)(∇h) dm.

From Corollary 4.1.2 the map S2(X, d,m) 3 g 7→
∫

Dg(∇h) dm is linear, hence the map

S2(X, d,m) ∩ L∞(X,m) 3 f 7→
∫

D(f 2)(∇h) dm

is a quadratic form and similarly, being S2(X, d,m)∩L∞(X,m) 3 g 7→
∫

D(hg)(∇f) dm
and S2(X, d,m) 3 g 7→

∫

D(hf)(∇g) dm linear then

S2(X, d,m) ∩ L∞(X,m) 3 f 7→
∫

D(hf)(∇f) dm

is a quadratic form.
So the map

S2(X, d,m) ∩ L∞(X,m) 3 f 7→
∫

h|Df |2w dm

is a quadratic form for any h ∈ S2(X, d,m) ∩ L∞(X,m) and this gives the thesis.

On infinitesimally Hilbertian spaces we’ll denote Df(∇g) by ∇f · ∇g in order to
highlight its symmetry. A first consequence of (5.13) and the linearity of the differential
(Corollary 4.1.2) is the bilinearity of∇f · ∇g, i.e.

∇(α1f1 + α2f2) · ∇g = α1∇f1 · ∇g + α2∇f2 · ∇g, ∀f1, f2, g ∈ S2
loc(X, d,m), α1, α2 ∈ R,

(5.15)

∇f · ∇(β1g1 + β2g2) = β1∇f · ∇g1 + β2∇f · ∇g2 ∀f, g1, g2 ∈ S2
loc(X, d,m), β1, β2 ∈ R,

(5.16)

and from (4.35) we also get m−a.e.

∇(f1f2) · ∇g = f1∇f2 · ∇g + f2∇f2 · ∇g, ∀f1, f2 ∈ S2
loc(X, d,m) ∩ L∞loc(X,m), g ∈ S2

loc(X, d,m)
(5.17)

∇f · ∇(g1g2) = g1∇f · ∇g2 + g2∇f · ∇g1 ∀f ∈ S2
loc(X, d,m), g1, g2 ∈ S2

loc(X, d,m) ∩ L∞loc(X,m).
(5.18)
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Theorem 5.3.2. Let (X, d,m) be a metric measure space as in (3.1). Then the following are
equivalent:

I) (X, d,m) is infinitesimally Hilbertian.

II) For any Ω ⊂ X open with m(∂Ω) = 0 the space (Ω, d,m|Ω) is infinitesimally Hilbertian.

III) W 1,2(X, d,m) is an Hilbert space.

IV) The Cheeger’s energy Ch2 : L2(X,m)→ [0,∞] is a quadratic form, i.e.

Ch2(f + g) + Ch2(f − g) = 2
(
Ch2(f) + Ch2(g)

)
∀f, g ∈ L2(X,m). (5.19)

Proof. We have that:

I)⇒II) Follows from Proposition 3.2.1 and the equivalence stated in Proposition 5.3.1.

II)⇒I) Just take Ω := X .

I)⇒III) It follows from the definition of the W 1,2(X, d,m)−norm.

III)⇒I) We already know that W 1,2(X, d,m) 3 f 7→ ‖|Df |w‖2
L2(X,m) is a quadratic form.

Proceeding exactly as in the proof of Theorem 5.3.1 above we have that

W 1,2(X, d,m) 3 f 7→ |Df |2w ∈ L2(X,m) (5.20)

is a quadratic form. Using the Lindelöf property of (X, d) and the local finiteness
of m we can build an increasing sequence {Kn}n∈N of compact sets such that
m(X

⋃
n∈NKn) = 0 and an increasing sequence {χn}n∈N of Lipschitz bounded

functions such that m(supp(χn)) < ∞ and χn ≡ 1 on Kn for every n ∈ N. Then
for every f ∈ S2(X, d,m) ∩ L∞(X,m) and n ∈ N it holds fχn ∈ W 1,2(X, d,m).
Since |Df‖w = |D(fχn)|w m−a.e. on Kn, from (5.20) and letting n → ∞ we get
that

S2(X, d,m) ∩ L∞(X,m) 3 f 7→ |Df |2w ∈ L1(X,m)

is a quadratic form as well. With a truncation argument we get also that S2(X, d,m) 3
f 7→ |Df |2w ∈ L1 is a quadratic form. Integrating we can conclude.

III)⇔IV) The formula ‖f‖W 1,2(X,d,m) = ‖f‖2
L2(X,m) + 2Ch2(f) shows that Ch2 satisfies the

parallelogram rule if and only if it so does the W 1,2(X, d,m)−norm.

The importance of infinitesimally Hilbertian spaces is that the Laplacian is linear,
as explained by the following theorem. We will denote by

Difm(∆,Ω) ⊂ D(∆,Ω)

the set of those g’s whose Laplacian has finite internal mass, i.e. for any µ ∈ ∆g|Ω it
holds |µ|(Ω′) <∞ for any Ω′ ∈ Int(Ω).

Remark 5.3.2. If (X, d) is proper then Difm(∆,Ω) = D(∆,Ω).
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Theorem 5.3.3. Let (X, d,m) an infinitesimally Hilbertian space. Then for any Ω ⊂ X open
the set Difm(∆,Ω) ∩ S2

int(X, d,m) is a vector space and for g ∈ Difm(∆,Ω) ∩ S2
int(X, d,m)

∆g|Ω is single-valued and linearly depends on g.

Proof. Fix Ω ⊂ X open. We already know from Theorem 5.1.1 that ∆g|Ω is single
valued for any g ∈ S2

int(Ω) ∩ D(∆,Ω) being (X, d,m) 2−i.s.c.. With a cut-off argu-
ment we deduce that (5.15) and (5.16) are satisfied also for functions in S2

int(Ω). Pick
g1, g2 ∈ Difm(∆,Ω) ∩ S2

int(Ω) and β1, β2 ∈ R. We have that |∆gi|
(
supp(f)

)
< ∞

for any f ∈ Test(Ω) so that in particular Test(Ω) ⊂ L1(Ω, |∆g|Ω|), i = 1, 2. Also,
Test(Ω) ⊂ S2(X, d,m). Let f ∈ Test(Ω) and conclude with

∫

Ω

f d(β1∆g1|Ω + β2∆g2|Ω) = β1

∫

f d∆g1|Ω + β2

∫

Ω

f d∆g2|Ω

, −β1

∫

Ω

∇f · ∇g1 dm− β2

∫

Ω

∇f · ∇g2 dm

= −
∫

Ω

∇f · ∇(β1g1 + β2g2) dm.

Now on infinitesimally Hilbertian spaces from (5.19) we deduce that the formula

E (f, g) := Ch2(f + g)− Ch2(f)− Ch2(g)

defines a symmetric bilinear form on W 1,2(X, d,m). Now we will take from [14] some
definitions regarding the theory of bilinear forms on Hilbert spaces.

Definition 5.3.2. Let (H, 〈·, ·〉) be an Hilbert space. Given a symmetric bilinear form

E : D(E )×D(E )→ R

with D(E ) a dense linear subspace of H we say that E is closed if D(E ) is complete
w.r.t. the metric induced by E , i.e.

{un}n∈N ⊂ D(E ), E1(un − um, un − um)
n,m→∞−→ 0⇒ ∃u ∈ D(E ) : E1(un − u, un − u)

n→∞−→ 0

where E1(u, v) := E (u, v) + 〈u, v〉.

Definition 5.3.3. Let (X,m) be a σ−finite measure space and consider the Hilbert space
H := L2(X,m). A symmetric form E on H is called Markovian symmetric if the follow-
ing property holds: for any ε > 0 there exists a real function φε such that

φε(t) = t ∀t ∈ [0, 1], −ε ≤ φε(t) ≤ 1 + ε t ∈ R and 0 ≤ φε(t
′)− φε(t) ≤ t′ − t, t < t′,

u ∈ D(E )⇒ φε(u) ∈ D(E ), E (φε(u), φε(u)) ≤ E (u, u).

A Dirichlet form is by definition a symmetric form on H that is not only Markovian
but also closed.
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Taking as E the one previously defined then the chain rule (3.5) ensures that it is
Markovian and the semicontinuity of Ch2 means that it is closed. Hence E is a Dirichlet
form on L2(X,m). The generator of this form will be denoted by ∆ so that

∆ : D(∆) ⊂ L2(X,m)→ L2(X,m)

and ∆ and its domain D(∆) are defined by

g ∈ D(∆), h = ∆g ⇔ E (f, g) = −
∫

fh dm ∀f ∈ D(E ). (5.21)

Remark 5.3.3. Notice that D(E ) = D(Ch2) = W 1,2(X, d,m).

Theorem 5.3.4. Let (X, d,m) be an infinitesimally Hilbertian space, g ∈ W 1,2(X, d,m) and
h ∈ L2(X,m). Consider the following:

I) g ∈ D(∆) and ∆g = hm,

II) h ∈ −∂−Ch2(g),

III) g ∈ D(∆) and ∆g = h.

Then

(II) ⇔ (III) ⇒ (I),

and if m is finite on bounded sets it also holds

(I) ⇒ (II), (III).

Proof. We proceed by steps:

(III)⇒(II) We need to prove that for any f ∈ L2(X,m) it holds

Ch2(g)−
∫

(f − g)h dm ≤ Ch2(f). (5.22)

If f /∈ D(Ch2) = D(E ) there is nothing to prove. Otherwise f − g ∈ D(E ) and by
definition of ∆ we have that

−
∫

(f − g)h dm = E (f − g, g) = E (f, g)− E (g, g) ≤ 1

2
E (f, f)− 1

2
E (g, g).

(II)⇒(III) We pick f ∈ D(E ) and notice that by definition of ∂−Ch2(g) it holds

Ch2(g)−
∫

εfh dm ≤ Ch2(g + εf), ∀ε ∈ R.

We conclude by observing that Ch2(g+εf) = Ch2(g)+ε2Ch2(f)−εE (f, g), diving
by ε and letting it to tend to 0.

(II)⇒(I) This is a particular case of Theorem 5.1.2.
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(I)⇒(III) We now assume that m is finite on bounded sets. We know that

−
∫

∇f · ∇g dm =

∫

fh dm ∀f ∈ Test(X) ∩ L1(X, |h|m)

and we want to conclude that the same is true for any f ∈ W 1,2(X, d,m). Pick
f ∈ W 1,2(X, d,m) and assume for the moment that supp(f) is bounded. Let χ
be a Lipschitz bounded function with bounded support and identically equal to
1 on supp(f). Also, let {fn}n∈N be a sequence of Lipschitz functions converging
to f in W 1,2(X, d,m) (Corollary 3.3.5). Then fnχ → f in W 1,2(X, d,m) and fnχ ∈
Test ∩ L1(X, |h|m) for any n ∈ N. Thus passing to the limit in

−
∫

∇(fnχ) · ∇g dm =

∫

fnχh dm

we get

−
∫

∇f · ∇g dm =

∫

fh dm

for any f ∈ W 1,2(X, d,m) with bounded support.
To achieve the general case let {χn}n∈N be an increasing sequence of non-negative
1−Lipschitz functions with bounded support and such that χn ≡ 1 on Bn(x0),
x0 ∈ X fixed. Fixing f ∈ W 1,2(X, d,m) we have that fχn ∈ W 1,2(X, d,m) and has
bounded support. Using the dominate convergence theorem we get that

‖f − fχn‖L2(X,m)
n→∞−→ 0.

Also, we have that

|D(f − fχn)|w
n→∞−→ 0 m− a.e.

|D(f − fχn)|w ≤ |Df |w|1− χn|+ |f | m− a.e.

so by dominated convergence we have

|D(f − fχn)|w
n→∞−→ 0 in L2(X,m)

So we can conclude by letting n→∞ in

−
∫

∇(fχn) · ∇g dm =

∫

fχnh dm.

Recall that a metric space (X, d) is said proper is every closed ball is compact.

Lemma 5.3.5. Let (X, d,m) be a proper infinitesimally Hilbertian space, Ω ⊂ X an open set
and g ∈ D(∆,Ω) ∩ S2

int(Ω). Then for every ψ ∈ S2(X, d,m) ∩ Cc(X) with support contained
in Ω it holds

−
∫

Ω

∇ψ · ∇g dm =

∫

Ω

ψ d∆g|Ω.
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Proof. Since (X, d) is proper supp(ψ) is compact and therefore has ∆g|Ω−finite mea-
sure. Similarly m(supp(ψ)) < ∞ and thus ψ ∈ L2(X,m). Hence ψ ∈ W 1,2(X, d,m)
and from Corollary 3.3.5 we know there exists a sequence {ψn}n∈N ⊂ W 1,2(X, d,m) of
Lipschitz functions converging to ψ in W 1,2(X, d,m). Define ψt,+, ψt,− : X → R by

ψt,+(x) := inf
y∈X

{
ψ(y) +

d2(x, y)

2t

}
, ψt,−(x) := sup

y∈X

{
ψ(y) +

d2(x, y)

2t

}
.

It can be proven that these two functions are Lipschitz, equibounded and it holds
ψt,+(x) ↑ ψ(x), ψt,−(x) ↓ ψ(x) as t ↓ 0 for any x ∈ X . Putting

ψn,t := min{max{ψn, ψt,+}, ψt,−}

we observe that ψn,t is Lipschitz for any n ∈ N and t > 0. Let χ ∈ Test(Ω) be identically
1 on supp(ψ) and consider the functions χψn,t ∈ Test(Ω). Since ψt,+, ψt,− and χ are
Lipschitz we can use the dominate convergence theorem to ensure that for any t > 0
the sequence {ψn,t}n∈N converges to ψ in W 1,2(X, d,m)−energy as n → ∞. Thus this
convergence is also w.r.t. the W 1,2−norm and from the fact that supp(χψn,t) ⊂ supp(χ)
and m(supp(χ)) <∞we get

lim
n→∞

∫

Ω

∇(χψn,t) · ∇g dm =

∫

Ω

∇ψ · ∇g dm ∀t > 0. (5.23)

By construction, {ψn,t}n∈N is bounded in both n and t and pointwise converges to
ψ as t → 0 uniformly w.r.t. n. Taking into account that supp(χψn,t) ⊂ supp(χ),
|∆g|Ω|(supp(χ)) <∞ as said before and the dominated convergence theorem we get

lim
t↓0

∫

Ω

χψn,t d∆g|Ω =

∫

Ω

ψ d∆g|Ω uniformly on n. (5.24)

Since χψn,t ∈ Test(Ω) then (5.23) and (5.24) together with a diagonalization argument
give the thesis.

Lemma 5.3.6. Let (X, d,m) be a proper infinitesimally Hilbertian space, Ω ⊂ X an open set
and g ∈ D(∆,Ω) ∩ S2

int(Ω) with ∆g|Ω � m with density h ∈ L2
loc(Ω,m|Ω). Then for every

ψ ∈ W 1,2(X, d,m) with bounded support contained in Ω it holds

−
∫

Ω

∇ψ · ∇g dm =

∫

Ω

ψh dm.

Proof. By Corollary 3.3.5 we know there exists a sequence {ψn}n∈N ⊂ W 1,2(X, d,m) of
Lipschitz functions converging to ψ in W 1,2(X, d,m). Let χ ∈ Test(Ω) be identically 1
on supp(ψ) and notice that χψn ∈ Test(Ω) ∩ L1(Ω, |h|m) and χψn → ψ in W 1,2(X, d,m).
Hence we can pass to the limit in

−
∫

Ω

∇(χψn) · ∇g dm =

∫

Ω

χψnh dm

getting the thesis.

Now we can establish the validity of the chain rule for the Laplacian.
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Theorem 5.3.7. Let (X, d,m) be an infinitesimally Hilbertian metric measure space, Ω ⊂ X
an open set and g ∈ D(∆,Ω) ∩ S2

int(Ω), I ⊂ R an open interval such that m(g−1(R \ I)) = 0
and φ ∈ C1,1

loc (I). Then the following holds:

I) Assume that g|Ω′ is Lipschitz for every Ω′ ∈ Int(Ω). Then

φ ◦ g ∈ D(∆,Ω) and ∆(φ ◦ g)|Ω = φ′ ◦ g∆g|Ω + φ′′ ◦ g|Dg|2wm|Ω. (5.25)

II) Assume that (X, d) is proper and g ∈ C(Ω). Then (5.25) holds.

III) Assume that (X, d) is proper, g ∈ L2
loc(X,m) and ∆g|Ω � m with Radon-Nikodym

derivative in L2
loc(X,m|Ω). Then (5.25) holds.

Proof. The first is just a particular case of Theorem 5.2.1.

II) Let Ω′ ∈ Int(Ω) and observe that since Ω
′

is compact then its image under g
is compact as well and thus φ′′ is bounded on g(Ω′). It easily follows that the
formula

µ̃ := (φ′ ◦ g)∆g|Ω + (φ′′ ◦ g)|Dg|2wm|Ω

defines a locally finite measure on Ω, so that the statement makes sense.
Being Test(Ω) ⊂ L1(Ω, |µ̃|) pick f ∈ Test(Ω) and use (5.17) and (5.18) to get

∇f · ∇(φ ◦ g) = (φ′ ◦ g)∇f · ∇g = ∇(fφ′ ◦ g) · ∇g − f∇(φ′ ◦ g) · ∇g
= ∇(fφ′ ◦ g) · ∇g − f(φ′′ ◦ g)|Dg|2w m− a.e..

Integrating we obtain

−
∫

∇f · ∇(φ ◦ g) dm = −
∫

∇(fφ′ ◦ g) · ∇g dm +

∫

f(φ′′ ◦ g)|Dg|2w dm. (5.26)

Hence to conclude is sufficient to show that

−
∫

∇(fφ′ ◦ g) · ∇g dm =

∫

fφ′ ◦ g d∆g|Ω (5.27)

but this is a consequence of Lemma 5.3.5 applied to ψ := fφ′ ◦ g which by our
assumptions belongs to S2(X, d,m) ∩ Cc(Ω).

III) By hypotheses we know that φ′ ◦ g ∈ L2
loc(Ω,m|Ω) and φ′′ ◦ g ∈ L∞loc(Ω,m|Ω).

Therefore, since ∆g|Ω � m with L2
loc density w.r.t.m the same formula as before

for µ̃ defines a locally finite measure on Ω and the statement makes sense. As
before, we have Test(Ω) ⊂ L1(Ω, |µ̃|). With the same computations we get (5.26)
as well so we reduce to show that (5.27) holds also in this case. But this is a
consequence of Lemma 5.3.6 applied to ψ :)fφ′◦g which belongs toW 1,2(X, d,m)
and has bounded support contained in Ω.

The last thing we want to prove is that also the Leibniz rule holds for the Laplacian
(analogous to the Euclidian case) in this setting, so it is not available in the general
non-linear setting.
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Theorem 5.3.8. Let (X, d,m) be an infinitesimally Hilbertian metric measure space, Ω ⊂ X
an open set and g1, g2 ∈ D(∆,Ω) ∩ S2

int(Ω). Then the following holds.

I) If g1, g2 are Lipschitz on Ω′ for every Ω′ ∈ Int(Ω) and g1, g2 ∈ Difm(∆,Ω), then g1, g2 ∈
D(∆,Ω) and

∆(g1g2)|Ω = g1∆g2|Ω + g2∆g1|Ω + 2∇g1 · ∇g2m. (5.28)

II) If (X, d) is proper and g1, g2 ∈ C(Ω) then g1g2 ∈ D(∆,Ω) and (5.28) holds.

III) if (X, d) is proper, g1, g2 ∈ L2
loc(Ω,m|Ω)∩L∞loc(Ω,m|Ω) and ∆gi|Ω� m withL2

loc(Ω,m|Ω)−
density, i = 1, 2, then g1g2 ∈ D(∆,Ω) and (5.28) holds.

Proof. We proceed case by case.

I) Being Lipschitz, g1 and g2 are bounded on Ω′ for any Ω′ ∈ Int(Ω), hence g1g2 ∈
S2

int(Ω). It is also clear that the right hand side of (5.28) defines a locally finite
measure µ on Ω, so the statement makes sense. The fact that |∆gi|Ω|(Ω′) is finite
for every Ω′ ∈ Int(Ω), i = 1, 2, grants that Test(Ω) ⊂ L1(Ω, |∆gi|Ω|), i = 1, 2, and
Test(Ω) ⊂ L1(Ω, |µ|). To conclude, pick f ∈ Test(Ω) and notice that fg1, fg2 ∈
Test(Ω) and take the Leibniz’s rule (5.17) and (5.18) into account to get

∇f · ∇(g1g2) = g1∇f · ∇g2 + g2∇f · ∇g1 = ∇(fg1) · ∇g2 +∇(fg2) · ∇g1 − 2f∇g1 · ∇g2,
(5.29)

which integrated gives the thesis.

II) As before, the right hand side of (5.28) defines a locally finite measure µ and as
before g1g2 ∈ S2

int(Ω), Test(Ω) ⊂ L1(Ω, |∆gi|Ω|), i = 1, 2, and Test(Ω) ⊂ L1(Ω, |µ|).
Pick f ∈ Test(Ω) and notice that with the same computations done in (5.29) the
thesis follows if we show that

∫

Ω

∇(fg1) · ∇g2 dm = −
∫

Ω

fg1 d∆g2|Ω, (5.30)
∫

Ω

∇(fg2) · ∇g1 dm = −
∫

Ω

fg2 d∆g1|Ω. (5.31)

These are a consequence of Lemma 5.3.5 applied to ψ := fg1, g := g2 and ψ := fg2

and g := g1 respectively.

III) Same as in (II) but using Lemma 5.3.6 in place of Lemma 5.3.5 to justify (5.30)
and (5.31).

5.4 An example: the Heisenberg group H
The first Heisenberg group H1 = (R3, ◦), where ◦ is its standard group law, owns a

sub-Riemannian structure given by the horizontal distribution S generated by the 2
left invariant vector fields X = ∂x − (y/2)∂t and Y = ∂y + (x/2)∂t, whose commutator
is [X, Y ] = ∂t. Since these vectors X and Y and their commutator generate all the
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tangent space of R3, L. Hormander in [17] was able to show that the sub-Laplacian,
defined by ∆H1 = X2 + Y 2, is an hypoelliptic operator. However when we consider
a surface S immersed in H1 the intersection between the tangent space TpS and the
distribution Sp is given by a one dimensional space. Therefore from the differential
point of view the sub-Laplacian restricted to S is given by the second derivative in
the horizontal direction tangent to S and this clearly is not an hypoellitic operator.
In order to understand this problem we can consider as immersed surface the plane
X := {x = 0}. Since we have developed a general theory for the Laplacian in metric
spaces we want to understand if this metric Lapacian coincide with the differential
one or give us a different hypoellitic operator.

5.4.1 The sub-Laplacian

Consider
R3 with coordinates x, y and t

and the three vector fields

X := ∂x −
y

2
∂t, Y := ∂y +

x

2
∂t and T := [X, Y ] = ∂t.

We define the degree of a vector field as the number of commutators +1, done on the
basis vector fields, required to obtain it. In our case,X and Y are vector fields of degree
1 while T of degree 2. Notice also that X, Y are Hörmander vector fields because X, Y
and T generate the tangent space of R3. Hence if we consider the distribution

S := span(X, Y ),

the triple (R3,S , g), with g the Riemannian metric w.r.t. which X, Y and T are or-
thonormal, is a sub-Riemannian manifold called the Heisenberg group H1.

To obtain a metric measure space, we need to compute the distance function d
induced by X , Y and T . Since S satisfies the Hörmander condition ∀ξ, ξ0 ∈ H1 there
exists an integral curve γ with values in H1 and endpoints ξ, ξ0. Therefore we can
define d between ξ, ξ0 as the minimum length of the integral curves connecting ξ and
ξ0. A first estimate of d is given by this theorem:

Theorem 5.4.1 (Nagel, Stein, Wainger). If (M,S , g) is a sub-Riemannian manifold and
X1, . . . , Xn form a base of the tangent space adapted to a distribution S satisfying the Hörman-
der condition then ∀ξ0 ∈ M there exists a neighbourhood U of ξ0 such that we can represent
any ξ ∈ U as

ξ := exp{t1X1 + · · ·+ tnXn}(ξ0) (5.32)

where (t1, . . . , tn) are called canonical coordinates. Moreover, for all K ⊂ U compact subset
there exist two positive constants C1, C2 such that

C1

n∑
i=1

|ti|
1

deg(Xi) ≤ d(ξ, ξ0) ≤ C2

n∑
i=1

|ti|
1

deg(Xi) (5.33)

In our case with X, Y and T as vector fields we have that

d(ξ, ξ0) ∼ |tX |+ |tY |+
√
|tT |
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Putting γ(s) := (x(s), y(s), t(s)), with s ∈ [0, 1], by definition of integral curve we need
to solve the following system of differential equations{

γ′(s) = (tXX + tY Y + tTT )I
(
γ(s)

)
,

γ(0) = ξ0, γ(1) = ξ

Integrating the system we get the expressions for tX , tY and tT :
tX = ξx − ξ0x ,

tY = ξy − ξ0y ,

tT = (ξt − ξ0t)−
ξxξ0y+ξyξ0x

2
.

If we consider ξ0 = (0, 0, 0) we get

d(ξ, 0) ∼ |ξx|+ |ξy|+
√
|ξt|,

which tells us that this distance is similar to the Euclidian one in all directions except
for the vertical one t. It can be defined a norm on H which defines an equivalent
distance, called Korany metric:

‖ξ‖K := 4
√

(x2 + y2)2 + t2, ξ = (x, y, t)

We can compute d also as the Carnot-Carathéodory distance dCC by writing the
geodesic equations: as in [8] we write λ := ξdx + ηdy + θdt for any element λ in the
cotangent space. BeingX and Y orthonormal w.r.t. g the Hamiltonian function is, with
q ∈ R3,

H(q, λ) :=
1

2

((
ξ − 1

2
θy

)2

+

(
η +

1

2
θx

)2)
.

The Hamiltonian system and the initial conditions are

ẋ = ξ − 1
2
θy,

ẏ = η + 1
2
θx,

ṫ = 1
2
(ηx− ξy) + 1

4
θ(x2 + y2)

ξ̇ = −1
2
ηθ − 1

4
θ2x

η̇ = −1
2
ξθ − 1

4
θ2y,

θ̇ = 0,

{
x(0) = y(0) = t(0) = 0,

ξ(0) = ξ0, η(0) = η0, θ(0) = θ0.

Integrating the system and reducing it to a system containing only the variables (x, y, t)
we get that the solution γ(s) = (x(s), y(s), t(s)) is

x(s) =
ξ0

|θ0|
sin(|θ0|s)−

η0

|θ0|
(cos(|θ0|s)− 1),

y(s) = − ξ0

|θ0|
(cos(|θ0|s)− 1)− η0

|θ0|
sin(|θ0|s), if θ0 6= 0

t(s) =
ξ2

0 + η2
0

2|θ0|2
(|θ0|s− sin(|θ0|s)),
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and

x(s) = ξ0s, y(s) = η0s, t(s) = 0, if θ0 = 0.

Computing the length of the geodesics now we get the dCC distance:{
dCC(0, (x, y, t)) = C(|t|+ x2 + y2), C > 0,

dCC((x, y, t), (x, y, t′)) =
√
π|t− t′|.

As reference measure m we consider the 3−dimensional Lebesgue’s measure L3, so
that we can consider the metric measure space

H := (H1, dK ,L3).

We want to compute the Laplacian over all H, considering |Dg|w = ‖∇Hg‖K with
∇Hg := (Xg, Y g) (actually this can be proven).

Remark 5.4.1. We already know that the space is 2-i.s.c., so the two functions D±f(∇g)
agree. Moreover, we can compute Df(∇g) as 〈∇f,∇g〉H1 , so we expect that the metric
Laplacian coincides with the sub-Riemannian one defined by X2 + Y 2.

By definitions we have that

‖∇Hg‖2
K ,

{[(
∂xg −

y

2
∂tg
)2

+
(
∂yg +

x

2
∂tg
)2] 4

2
· 1
4
}2

,

= (∂xg)2 + (∂yg)2 +
x2 + y2

4
(∂tg)2 − (∂tg)

[
x(∂yg)− y(∂xg)

]
‖∇H(g + εf)‖2

K = ‖∇Hg‖2
K + ε

[
2(∂xg)(∂xf) + 2(∂yg)(∂yf) +

x2 + y2

2
(∂tg)(∂tf)

− x(∂tg)(∂yf) + y(∂tg)(∂xf)− x(∂tf)(∂yf) + y(∂tf)(∂xf)
]

+ o(ε).

Now inserting those two quantities in the definition Df(∇g) we obtain

Df(∇g) := inf
ε>0

|D(g + εf)|2w − |Dg|2w
2ε

=
1

2

[
2(∂xg)(∂xf) + 2(∂yg)(∂yf) +

x2 + y2

2
(∂tg)(∂tf)

− x(∂tg)(∂yf) + y(∂tg)(∂xf)− x(∂tf)(∂yf) + y(∂tf)(∂xf)

]
and integrating by parts
∫

H
Df(∇g) dL3 =

∫

H

[
∆R2g +

x2 + y2

4
(∂2
ttg)− x(∂2

ytg) + y(∂2
xtg)
]
f dL3

As expected, we got the sub-Laplacian.

5.4.2 The submanifold {x = 0}
We now consider the submanifold X := {x = 0} of H with the distance function dK

restricted to X and as reference measure m the 2−dimensional Lebesgue measure L2,
so that we have the metric measure space

X := (X, dK |X,L2).
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The gradient of the function f(x, y, t) = x is a base for the normal subspace to X and
is given by (1, 0, 0). So the unique vector field orthogonal to ∇f that is both in S
and in the tangent space of X is (0, 1, 0), i.e. ∂y. Hence the distance function now
is the Euclidian one in direction y but is equal to +∞ in direction t. With just one
derivation available we do not have a subriemannian structure so we have to compute
the Laplacian through the tools developed in this thesis.

First we use the two functions D±f(∇g). We now have that

|Dg|w = ‖∇Xf‖K = |∂yf |

and if we do the same computations as before we get(
∂y(g + εf)

)2 − (∂yg)2

2ε

ε→0−→ (∂yg)(∂yf)

which integrated by parts w.r.t L2 gives us the degenerate second order operator

∆H1|X = ∂2
yy.

Therefore from the differential point of view the sub-Laplacian restricted to X is given
by the second derivative in the horizontal direction tangent to X, and clearly this is not
an hypoelliptic operator.

Now we want to use the Cheeger’s energy to define the Laplacian, using the defi-
nition of Ch2 given in [1]:

Ch2(f) := inf

{
lim
i→∞

∫

X
|∇fi|p dL2 : fi

Lp

−→ f, fi ∈ Lipb(X, dK)

}
and the slope |∇fi| of fi is the function defined by

|∇fi|(x) := lim
y→x

|f(y)− f(x)|
dK(y, x)

.

Being on X we can consider the points z0 = (y0, t0) and z1 = (y1, t1) as x and y in the
above definition. The distance dK between z0 and z1 is

d(z0, z1) = |y1 − y0|+
√
|t1 − t0|.

We plug this in the slope’s definition and approximate each fi with a product function
gihi, with gi = gi(y) and hi = hi(t) for every i ∈ N, being the product functions dense
in L2, the domain of Ch2. Hence we have that

|∇fi|(z0) , lim
z1→z0

|gi(y1)hi(t1)− gi(y0)hi(t0)|
|y1 − y0|+

√
|t1 − t0|

= lim
z1→z0

|gi(y1)
(
hi(t1)− hi(t0)

)
+ hi(t0)

(
gi(y1)− gi(y0)

)
|

|y1 − y0|+
√
|t1 − t0|

≤ lim
z1→z0

∣∣∣∣gi(y1)
hi(t1)− hi(t0)

|y1 − y0|+
√
|t1 − t0|

+ hi(t0)
gi(y1)− gi(y0)

|y1 − y0|+
√
|t1 − t0|

∣∣∣∣
≤ lim

t1→t0
|gi(y0)| |hi(t1)− hi(t0)|√

|t1 − t0|
+ lim

y1→y0
|hi(t0)| |gi(y1)− gi(y0)|

|y1 − y0|
.
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If gi and hi are Lipschitz, then

∃Lgi > 0 : |gi(y1)− gi(y0)| ≤ Lgi |y1 − y0|,
∃Lhi > 0 : |hi(t1)− hi(t0)| ≤ Lhi |t1 − t0|,

hence we can continue the computations as:

≤ lim
t1→t0

Lhi |gi(y0)| |t1 − t0|√
|t1 − t0|

+ lim
y1→y0

Lgi |hi(t0)| |y1 − y0|
|y1 − y0|

= Lgi |hi(t0)|,

so that

|∇fi|(z0) ≤ Lgi|hi(t0)|. (5.34)

Remark 5.4.2. Consider X = R and d(t1, t0) =
√
|t1 − t0|. In this case we have that

|∇fi|(t0) = lim
t1→t0

|fi(t1)− fi(t0)|√
|t1 − t0|

as before

≤ Lfi lim
t1→t0

|t1 − t0|√
|t1 − t0|

= 0.

Hence Ch2(f) ≡ 0 so that ∂Ch2(f) = {0} and the metric Laplacian is the null operator.

We assume that the opposite inequality in (5.34) holds. By definition of D±f(∇g)
and denoting f = φfψf and g = φgψg with φf , φg functions in y and ψf , ψg functions in
t, we have that

|∇(g + εf)|2 − |∇g|2 =
∣∣|ψg|Lφg + ε|ψf |Lφf

∣∣2 − |ψg|2L2
φg

= 2ε|ψf ||ψg|LφfLφg + o(ε)

so that

D+f(∇g) = D−f(∇g) = |ψf ||ψg|LφfLφg .

Integrating we aim to find a measure µ that satisfies

−
∫

X
|ψf ||ψg|LφfLφg dL2 =

∫

X
f dµ

If we formally integrate by parts, recalling that f = φfψf and interpreting Lφf as φ′f
and Lφg as φ′g, we get

µ = φ′′gψg L2,

which tells us that the metric Laplacian µ can ”see” the vertical direction t (expressed
by the presence of ψg = ψg(t)). With the differential approach we only obtained ∂2

yy,
which is not hypoelliptic nor can ”detect” the t direction.

Remark 5.4.3. This phenomenon does not occur in case of submanifolds immersed the
Riemannian manifolds (that inherits the Riemannian structure by the ambient space)
and in case of hypersurfaces immersed in the higher dimensional Heisenberg group
Hn, with n > 1, where the new distribution given by the intersection of the ambient
distribution and the tangent space to the hypersurface still induces a sub-Riemannian
structure on the hypersurface.
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matematici durante i pasti. In particolare, ringrazio mio padre per avermi permesso
di entrare nel mondo del lavoro, mettendomi cosı̀ di fronte a una visione più realistica
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