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Abstract

The project is inspired by an actual problem of timing and accessibility in the anal-
ysis of histological samples in the health-care system. In this project, I address the
problem of synthetic histological image generation for the purpose of training Neural
Networks for the segmentation of real histological images. The collection of real histo-
logical human-labeled samples is a very time consuming and expensive process and often
is not representative of healthy samples, for the intrinsic nature of the medical analysis.
The method I propose is based on the replication of the traditional specimen preparation
technique in a virtual environment. The first step is the creation of a 3D virtual model
of a region of the target human tissue. The model should represent all the key features
of the tissue, and the richer it is the better will be the yielded result. The second step
is to perform a sampling of the model through a virtual tomography process, which
produces a first completely labeled image of the section. This image is then processed
with different tools to achieve a histological-like aspect. The most significant aesthetical
post-processing is given by the action of a style transfer neural network that transfers the
typical histological visual texture on the synthetic image. This procedure is presented in
detail for two specific models: one of pancreatic tissue and one of dermal tissue. The two
resulting images compose a pair of images suitable for a supervised learning technique.
The generation process is completely automatized and does not require the intervention
of any human operator, hence it can be used to produce arbitrary large datasets. The
synthetic images are inevitably less complex than the real samples and they offer an
easier segmentation task to solve for the NN. However, the synthetic images are very
abundant, and the training of a NN can take advantage of this feature, following the
so-called curriculum learning strategy.
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Introduction

In the last decades, the development of Machine Learning (ML) and Deep Learning (DL)
techniques has contaminated every aspect of the scientific world, with interesting results
in many different research fields. The biomedical field is no exception to this and a lot of
promising applications are taking form, especially as Computer-Aided Detection (CAD)
systems which are tools to support for physicians during the diagnostic process. Medical
doctors and the healthcare system in general collect a huge amount of data from patients
during all the treatment, screening, and analysis activities in many different shapes, from
anagraphical data to blood analysis to clinical images.

In fact in medicine, the study of images is ubiquitous and countless diagnostic proce-
dures rely on it, such as X-ray imaging (CAT), nuclear imaging (SPECT, PET), magnetic
resonance, and visual inspection of histological specimens after biopsies. The branch of
artificial intelligence in the biomedical field that handles image analysis to assist physi-
cians in their clinical decisions goes under the name of Digital Pathology Image Analysis
(DPIA). In this thesis work, I want to focus on a specific application of DPIA in the
histological images analysis field, with particular attention to some of the issues in the
development of DL models able to handle these procedure.

Nowadays the great majority of analysis of histological specimens occurs through
visual inspection, carried out by highly qualified experts. Some analysis, as cancer de-
tection, requires the ability to distinguish if a region of tissue is healthy or not with high
precision in very wide specimens. It is necessary to recognize structures and features
of the image on different scales, like the state of the single cell’s nucleus to the arrang-
ment or macrostructures in the specimens. The required level of detail is very high and
the analysis are performed on images of very high resolution. This kind of procedure
is typically very complex and requires prolonged times of analysis besides substantial
economic efforts. Furthermore, the designated personnel for this type of analysis is often
limited, leading to delicate issues of priority assignment while scheduling analysis, based
on the estimated patient’s preliminary prognosis development. Some sort of support to
this procedure could therefore lead to improvments to the analysis framework.

The problem of recognizing regions with different features within an image and de-
tect their borders is known in computer vision as the segmentation task, and it’s quite
widespread with countless different applications. In ML the segmentation problem is
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Figure 1: Interleaving of tumor (green annotation) and non-tumor (yellow
annotation) regions [29].

usually classified as a supervised task, because the algorithm in order to be trained
properly requires an appropriate quantity of pre-labeled images, from which learn the
rules through which distinguish different regions. This means that the development of
segmentation algorithms for a specific application, as would be the one on histological
images, would require a lot of starting material, previously analyzed from the same qual-
ified expert responsible for the visual inspection mentioned before. A human operator
is thus required to manually draw the boundaries, for example, between healthy and
tumoral regions within a sample of tissue and to label them with their identity, as shown
in Figure 1. The more the algorithm to train is complex the more starting material is
required to adjust the model’s parameters and reach the desired efficacy.

The latest developed segmentation algorithms are based on DL techniques, hence
based on the implementation of Neural Networks (NN) which process the input images
and produce the corresponding segmentation. These models are typically very complex,
with millions of parameters to adjust and tune, therefore they need a huge amount
of pre-labeled images to learn their segmentation rules. This need for data is exactly
the main focus of my thesis work. The shortage of ground truth images is indeed one
of the toughest hurdles to overcome during the development of DL-based algorithms.
Another important aspect to bear in mind is the quality of the ground truth material.
It’s impossible for humans to label boundaries of different regions with pixel-perfect
precision, while for machines the more precise is the input the more effective is the
resulting algorithm.

Different approaches have already been explored to overcome this problem, and they
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are mainly based on the generation of synthetic labeled data to use during the train-
ing phase. Some techniques achieve data augmentation manipulating already available
images and then generating new images, but as we will see this approach suffers from
different issues. Here, I want to make an overview of some other interesting works on
the generation of synthetic histological images, which have followed completely different
paths and strategies from mine.

The first work I want to cite is a work from Ben Cheikh et al. from 2017 [9]. In
this work, they present a methodology for the generation of synthetic images of different
types of breast carcinomas. They propose a method completely based on two-dimensional
morphology operations, such as successive image dilation and erosion. This method is
able to reconstruct realistic images reflecting different histological situations with the
modulation of a very restricted number of parameters, like the abundance and the shape
of the objects in the image. In Figure 2 is shown an example of generated material besides
a real histological H&E stained sample. Starting from a generated segmentation mask
which defines the tumoral pattern the production of the synthetic image passes through
successive steps, as the generation of characteristic collagen fibers around the structure,
the injection of all the immune system cells, and some general final refinements.

(a) (b) (c)

Figure 2: Example of generated tumoral pattern (left), which acts as seg-
mentation mask, of generated image (center) and a real example of the tissue
to recreate, from [9].

The second work I want to mention is based on a DL technique, which approaches
synthetic image generation using a specific cGAN architecture inspired by the “U-net”
[39] model, as will be described in section 1.3.1, and shown in Figure 1.15. This model
works with Ki67 stained samples of breast cancer tissue, and it is able to generate high-
fidelity images starting from a given segmentation mask. Those starting segmentation
masks tough are obtained through the processing of other real histological samples, via
a nuclei-detection algorithm. The differences between real and synthetic samples are
imperceptible, and the material generated in this work has effectively fooled experts,
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(a) (b) (c)

Figure 3: Example of generated tumoral pattern (left), which acts as seg-
mentation mask, of generated image (center) and a real example of the tissue
to recreate, from [39].

who qualified it has indistinguishable from the real one. In Figure 3 an example of a real
image, a generated one, and their corresponding segmentation mask.

Both of the two before-mentioned strategies produce realistic results, but they are
based on considerations and analysis limited only to the aspect of the images. In the
first work, the segmentation mask is produced in an almost full-random way, while in the
second the segmentation mask is extracted starting from actual real histological samples.
The target of the present work instead lies in between those two approaches and wants
to produce randomized new images following a plausible modelization based on physical
and histological considerations.

The technique I propose in this work follows a generation from scratch of entire
datasets suitable for the training of new algorithms, based on the 3D modelization of a
region of human tissue at the cellular level. The entire traditional sectioning process,
which is made on real histological samples, is recreated virtually on this virtual model.
This yields pairs of synthetic images with their corresponding ground-truth. Using this
technique one would be able to collect sufficient material for the training (the entire phase
or the preliminary part) of a model, overcoming the shortage of hand-labeled data. The
3D modeling of a region of particular human tissue is a very complex task, and it is
almost impossible to capture all the physiological richness of a histological system. The
models I implemented thus are inevitably less sophisticated respect the target biological
structures. I’ll show two models: one of pancreatic tissue and another of dermal tissue,
besides all the tools I used and the choices I made during the designing phase.

Furthermore, since the image production passes through a wide and elaborated model,
the resulting images contain a new level of semantic information that would not be
available otherwise. For example, the relationship between nuclei and their belonging
cells, or between the basins of blood irrigation and their corresponding blood vessel
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could be represented in the produced segmentation mask. Furthermore, an advanced
modelization can reproduce different physiological states of the tissue like the healthy
standard configuration or different pathological situations, which appear as particular
arrangments at the cellular level. This aspect is of great interest, in fact, there is a
strong lack of real histological of healthy tissue samples, given the intrinsic nature of the
medical analysis: biopsies are usually invasive procedures and are typically performed
only when there is a concern for a pathological situation, thus they typically collect a
sample of non-healthy tissue. The technology described in this thesis would circumvent
the problem of under-represented condition, and would allow us to collect a significative
sample of every particular condition.

In order to present organically all the steps of my work the thesis is organized in
chapters as follows:

1. Theoretical Background .
In this chapter, I will describe how real histological images are obtained and how
they are digitalized. Afterward, I will introduce the reader to the Deep Learning
framework, explaining the key elements of this discipline and how they work. Fi-
nally, I will dedicate a section to the image segmentation problem, and the state
of the art of segmentation DL-based algorithms, with particular attention to the
applications in the bio-medical field.

2. Technical Tools for Model Development .
I will dedicate this chapter to the thorough description of every technical tool I
needed during the designing phase of this project. The development has required
the harmonization of many different technologies and mathematical tools, some of
which are not so popular like quaternions and quasi-random number generation.
In this chapter, I will describe also the specialized algorithm I devised and imple-
mented for the sectioning of an arbitrary polyhedron, which is the key element for
the correct working of the virtual tomography technique described by this thesis
work. As a conclusion for this chapter, I will describe the working environment I
built for developing this project and I will mention all the code libraries I employed
in my work.

3. Tissue Models Development .
This third chapter is the heart of the project. I will describe in detail all the
steps necessary to create the two models, one of pancreatic tissue and the other
of dermal tissue, and how I am able to produce the synthetic images. The first
section is devoted to the modeling of the histological structures, while the second
in entirely dedicated to the sectioning process and the subsequent refinements to
the images.
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Chapter 1

Theoretical Background

In this first chapter, I will depict the theoretical context of the work. Section 1.1 will
be dedicated to histological images, and the different techniques used to prepare the
samples to analyze. Histological images recover a fundamental role in medicine and are
the pillar of many diagnosis techniques. This discipline borns traditionally from the
optical inspection of the tissue slides using a microscope, and it is gradually developing
and improving with the advent of computers and digital image processing. It is important
tough to understand how the samples are physically prepared, the final target of this
work is in fact the virtual reconstruction of this process. The section comes to an end
with an introduction to the anatomy of the two particular tissues under the attention of
this project, a brief introduction to the most common neoplasms that involve pancreas
and skin, and their evidences at the histological level. In section 1.2 I will introduce
the Deep Learning framework and describe how a Neural Network works and actually
learns. The most advanced techniques for the automatic image processing implement
Deep Learning algorithm, and understanding the general rules behind this discipline is
crucial for a good comprehension of this work. In section 1.3 I will discuss in particular
the problem of image segmentation and how it is tackled with different Neural Network
architectures, showing what it is the state of the art of this research field.

1.1 Histological Images Digitalization

Modern histopathology is essentially based on the careful interpretation of microscopic
images, with the intention of correctly diagnose patients and to guide therapeutic de-
cisions. In the last years, thanks to the quick development of scanning techniques and
image processing, the discipline of histology have seen radical improvements: the main
of which undoubtedly is the passage from the microscope’s oculars to the computer’s
screen. This digitalization process has brought several advantages, that were previously
impossible in classical histology, like telepathology and remote assistance in diagnosis
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Figure 1.1: An example of whole slide image, with its grid decomposition in
patches. It is visible the correspondence between a region of interest maually
anotated and the patches that matches that region. From [13]

processes, the integration with other digitalized clinical workflows, and patients’ history,
and most importantly the opening to applications of artificial intelligence.

The modern virtual microscopy discipline consists of scanning a complete microscope
slide and creating a single high-resolution digital file, and it is typically referred as Whole
Slide Imaging (WSI). The digitalization process is achieved capturing many small high-
resolution image tiles or strips and then montaging them to create a full image of a
histological section. The four key steps of this process are image acquisition (scansion),
editing, and on-screen image visualization.

In the field of Digital Pathology (DP) an essential concept in image understanding
is the magnification factor, which indicates the scale of representation of the image and
allows dimension referencing. This factor is usually indicated as the magnification power
of the microscope’s lenses used during the analysis. After the digitalization process,
this original magnification factor is prone to change, depending on the resolution of the
visualization screen. Therefore, image resolution is measured in µm per pixel, and it is set
by the different composition of the acquisition chain, as the optical sensor and the lenses.
Histological scanner are usually equipped with 20× or 40× objectives, which correspond
to 0.5 and 0.25 mm/pixels resolution values. Lenses with 20× magnification factor are
the most suitable for the great majority of histopathological evaluations, and it is the
golden standard for scansions, for its good trade-off between image quality and time of
acquisition. Scansions with 40× magnification could increase four-fold acquisition and
processing time, final file’s dimension, and storage cost. A single WSI image, acquired
with 20× will occupy more than 600 MB alone.

Despite the WSI is a relatively mature discipline, it still struggles to integrate itself in
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the standard primitive diagnosis phase in histopathological laboratories. This is primar-
ily due to some disadvantages, like images’resolution, image compression’s artifacts, and
auto-focusing algorithms, which plays a key role in the specimen interpretation. Fur-
thermore, the scansion of histological samples is an additional step in the analysis which
takes time. Despite the technological improvements the average time for the acquisition
of a sample is around 5/10 minutes, depending on the number of slices in the slide, for
just a single level of magnification. While in traditional histology, the pathologist has
access to all the magnification levels at the same time. The real advantage, in fact, is in
the long term. Once the images have been acquired they can be archived and consulted
remotely almost instantaneously, helping clinical analysis and allowing remote assistance
(telemedicine). Furthermore, the images now can be processed by artificial intelligence
algorithms, allowing the application of technologies like Deep Learning which could rev-
olutionize the research field, as already has been on many different disciplines in the
scientific world.

In order to automatically process images of such big dimensions, as the ones obtained
through WSI, it is necessary to subdivide them in smaller patches. The dimension of
which should be big enough to allow interpretation and to preserve a certain degree of
representability of the original image. In Figure 1.1 is shown an example of a whole
slide image, with its grid decomposition in patches. If the patches are too small, it
should be over-specified for a particular region of tissue, loosing its general features.
This could lead the learning algorithm to misinterpretation. However, this is not an
exclusive limit of digital pathology, for a human pathologist would be impossible too to
make solid decisions on a too limited sample of tissue. After the subdivision in patches, a
typical process for biomedical images is the so-called data augmentation of images, that
is the process of creating re-newed images from the starting material through simple
geometrical transformations, like translation, rotation, reflection, zoom in/out.

The analysis of histological images usually consists of detecting the different com-
ponents in the samples and to recognize their arrangement as a healthy or pathological
pattern. It is necessary to recognize every sign of the vitality of the cells, evaluating
the state of the nucleus. There are many additional indicators to consider like the pres-
ence of inflammatory cells or tumoral cells. Furthermore, samples which are taken from
different part of the human body present completely different characteristics, and this
increase greatly the complexity of the analysis. A reliable examination of a sample thus
requires a careful inspection made by a highly qualified expert. The automatization of
this procedure would be extremely helpful, giving an incredible boost both in timing and
accessibility. However, this is not a simple task and in section 1.3.1 I will show some
actual model for biomedical image processing in detail.
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Figure 1.2: A sample of tissue from a retina (a part of the eye) stained with
hematoxylin and eosin, cells’ nuclei are stained in blue-purple and extracellu-
lar material is stained in pink.

1.1.1 Slides Preparation for Optic Microscopic Observation

In modern, as in traditional, histology regardless of the final support of the image the slide
has to be physically prepared, starting from the sample of tissue. The slide preparation
is a crucial step for histological or cytological observation. It is essential to highlight
what needs to be observed and to immobilize the sample at a particular point in time
and with characteristics close to those of its living state. There are five key steps for the
preparation of samples [4]:

1) Fixation is carried out immediately after the removal of the sample to be observed.
It is used to immobilize and preserve the sample permanently in as life-like state
as possible. It can be performed immersing the biological material in a formalin
solution or by freezing, so immersing the sample in a tissue freezing medium which
is then cooled in liquid nitrogen.

2) Embedding if the sample has been stabilized in a fixative solution, this is the sub-
sequent step. It consists in hardening the sample in a paraffin embedding medium,
in order to be able to carry out the sectioning. It is necessary to dehydrate the
sample beforehand, by replacing the water molecules in the sample with ethanol.

3) Sectioning Sectioning is performed using microtomy or cryotomy. Sectioning is an
important step for the preparation of slides as it ensures a proper observation of the
sample by microscopy. Paraffin-embedded samples are cut by cross-section, using a
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microtome, into thin slices of 5 µm. Frozen samples are cut using a cryostat. The
frozen sections are then placed on a glass slide for storage at -80◦C. The choice of
these preparation conditions is crucial in order to minimize the artifacts. Paraffin
embedding is favored for preserving tissues; freezing is more suitable for preserving
DNA and RNA and for the labeling of water-soluble elements or of those sensitive
to the fixation medium.

4) Staining Staining increases contrasts in order to recognize and differentiate the dif-
ferent components of the biological material. The sample is first deparaffinized and
rehydrated so that polar dyes can impregnate the tissues. The different dyes can
thus interact with the components to be stained according to their affinities. Once
staining is completed, the slide is rinsed and dehydrated for the mounting step.

Hematoxylin and eosin stain (H&E) is one of the principal tissue stains used in
histology [45], and it is the most widely used stain in medical diagnosis and is often
the gold standard [36]. H&E is the combination of two histological stains: hematoxylin
and eosin. The hematoxylin stains cells’ nuclei blue, and eosin stains the extracellular
matrix and cytoplasm pink, with other structures taking on different shades, hues, and
combinations of these colors. An example of H&E stained is shown in Figure 1.2, in
which we can see the typical color palette of a histological specimen.

1.1.2 Pancreas Microanatomy and Evidences of Neoplasms

The Pancreas is an internal organ of the human body, part of both the digestive system
and the endocrine system. It acts as a gland with both endocrine and exocrine functions,
and it is located in the abdomen behind the stomach. Its main endocrine duty is the
secretion of hormones like insulin and glucagon which are responsible for the regulation
of sugar levels in the blood. As a part of the digestive system instead, it acts as an
exocrine gland secreting pancreatic juice, which has an essential role in the digestion of
many different nutritional compounds. The majority of pancreatic tissue has a digestive
role, and the cells with this role form clusters called acini around the small pancreatic
ducts. The acinus secrete inactive digestive enzymes called zymogens into the small
intercalated ducts which they surround, and then in the pancreatic blood vessels system
[27]. In Figure 1.3 is shown a picture of the pancreas, with its structure and its placement
in the human body. All the tissue is actually rich in other important elements as the
islets of Langerhans that have an important role in the endocrine action of the pancreas.
All over the structure is present a layer of connective tissue which are clearly visible in
the traditional histological specimens.

There are many tumoral diseases involving pancreas, they represent one of the main
causes of decease for cancer in occidental countries, and its incidence rate in Europe
and the USA has risen significantly in the last decades. There are two main kinds
of pancreatic neoplasms: endocrine and exocrine pancreatic tumors. The endocrine
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Figure 1.3: A picture of pancreas’ structure in its physiological context.
In this picture is clearly visible the macroscopic structure and the glandular
organization at microscopic level.

pancreas neoplasms derive from the cells constituting the Langherans’ islets and are
typically divided into functioning and non-functioning ones, depending on the capability
of the organs to secrete hormones. Those diseases might be benign or malignant and
they can have a different degree of aggressivity. Exocrine pancreatic tumors tough are
the most frequent ones. Among those, the great majority of episodes are of malignant
neoplasms, and in particular, the ductal adenocarcinoma is the most frequent form of
disease, responsible alone for the 95% of the cases. From a macroscopic point of view,
those tumors are characterized by an abundant fibrotic stroma1, which can represent
over 50% of the tumor’s mass and it is responsible for the hard-ligneous tumor’s aspect.
This disease is frequently associated to pancreatitis episodes.

From a microscopical point of view, this tumor is characterized by the presence of
glandular structures, made by one or more layers of columnar or cuboidal epithelial cells
embedded in fibrotic parenchyma. The histological inspection of a sample of pancreatic
tissue allows us to grade the stadium of the disease. While analyzing a specimen the
operator looks for some specific markers like the glandular differentiation in tubular
and ductal structure, the degree of production of mucin, the percentage of cells in the
mitotic phase, and the degree of tissue nuclear atypia. The evaluation of those characters
allows us to assign a degree of development form I to III to the specific case of ductal

1Stroma is the part of a tissue or organ with a structural or connective role. It is made up of all the
parts without specific functions of the organ like connective tissue, blood vessels, ducts, etc. The other
part, the parenchyma, consists of the cells that perform the function of the tissue or organ.
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adenocarcinoma.
During the microscopical analysis of a histological sample, there are other interesting

markers to be evaluated, as a specific set of lesions which goes under the name of PanIN
(Pancreatic Intraepithelial Neoplasia) and could not be appreciated with other diagnostic
techniques. PanIN describes a wide variety of morphological modifications, differentiated
on the degree of cytological atypia and architectural alterations [20]. A careful analysis
of a histological sample of tissue after a biopsy is a fundamental step in the treatment
of a patient.

1.1.3 Skin Microanatomy and Evidences of Neoplasms

Skin is the layer of soft, flexible outer tissue covering the body of a vertebrate animal,
with the three main functions of protection, regulation, and sensation. Mammalian skin
is composed of two primary layers: the epidermis, and the dermis. The epidermis is
composed of the outermost layers of the skin. It forms a protective barrier over the
body’s surface, responsible for keeping water in the body and preventing pathogens from
entering. It is a stratified squamous epithelium, composed of proliferating basal and
differentiated suprabasal keratinocytes. The dermis is the layer of skin beneath the epi-
dermis that consists of connective tissue and cushions the body from stress and strain.
The dermis provides tensile strength and elasticity to the skin through an extracellular
matrix composed of collagen fibrils, microfibrils, and elastic fibers, embedded in hyaluro-
nan and proteoglycans.

Melanoma is the most aggressive form of skin tumor. It is the second most fre-
quent tumors in men under 50 years, and the third for women under 50 years, with over
than 12.300 cases in Italy every year. Melanoma is considered nowadays a multifactorial
pathology, which originates from the interaction between genetic susceptibility and en-
vironmental exposure. The most important environmental risk factor is the intermittent
solar exposure, for the genotoxic effect of ultraviolet rays on the skin. Different studies
show also a strong correlation between the total number of nevi on the skin and the
incidence of melanoma: among the subjects with familiar medical history of melanoma,
the risk is greater for the subject affected by dysplastic nevus syndrome.

We can distinguish two separated phases in the growth of melanoma: the radial phase,
in which the proliferation of malignant melanocytes is limited to the epidermis, and the
vertical phase, where malignant melanocytes form nests or nodules in the dermis. The
dermatological analysis should distinguish which specific type of melanoma is affecting
the patient. There are many types of melanoma:

Superficial Spreading Melanoma : This is the most common subtype, and it rep-
resents alone more than the 75% of all melanoma cases. These neoplasms show
relatively large malignant melanocytes, inflammatory cells (epithelioid), and an
abundance of cytoplasm.
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Figure 1.4: (left) Microanatomical description of a region of dermal tis-
sue and all the interesting elements present in cutis, and subcutaneous layer.
(right) An actual histological specimen from a sample of dermal tissue.

Lentigo Maligna Melanoma : It typically arises in photodamaged skin regions. Ne-
plasmatic melanocytes are of polygonal shape, with hyperchromatic nuclei, and
they are followed by a reduction in the cytoplasm.

Acral lentiginous melanoma : It typically arises on palmar, plantar, subungual, or
mucosal surfaces. Melanocytes are usually arranged along the dermal-epidermal
junction. The progression of this type of melanoma is characterized by the pres-
ence of large junctional nests of atypical melanocytes, which are extended and
hyperchromatic, with a shortage of cytoplasm.

Nodular Melanoma : By definition, this is the melanoma with a pure vertical growth.
It is followed by the presence of numerous little tumoral nests of neoplastic melanocytes,
with a high rate of mitotic state, arranged to form a single big nodule.

The careful examination of histological samples extracted from the tissue under anal-
ysis is the most important step for the assessment of the actual form of neoplasms.
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1.2 Introduction to Deep Learning

Deep Learning is part of the broader framework of Machine Learning and Artificial In-
telligence. Indeed all the problems typically tackled using ML can also be addressed
with DL techniques, for instance, regression, classification, clustering, and segmentation
problems. We can think of DL as a universal methodology for iterative function ap-
proximation with a great level of complexity. In the last decades, this technology has
seen a frenetic diffusion and an incredible development, thanks to the always increasing
available computational power, and it has become a staple tool in all sorts of scientific
applications.

1.2.1 Perceptrons and Multilayer Feedforward Architecture

Like other artificial learning techniques, DL models aim to learn a relationship between
some sort of input and a specific kind of output. In other words, approximating nu-
merically the function that processes the input data and produces the desired response.
For example, one could be interested in clustering data in a multidimensional features
space, or in the detection of objects in a picture, or in text manipulation/generation.
The function is approximated employing a greatly complex network of simple linear and
non-linear mathematical operations arranged in a so-called Neural Network (typically
with millions of parameters). The seed idea behind this discipline is to recreate the
functioning of actual neurons in the human brain: their entangled connection system
and their “ON/OFF” behavior [42].

The fondamental unit of a neural network is called perceptron, and it acts as a digital
counterpart of a human neuron. As shown in Figure 1.5 a perceptron collects in input a
series on n numerical signals ~x = 1, x1, ..., xn and computes a linear wieghted combination
with the weights vectors ~w = w0, w1, ..., wn, where w0 is a bias factor:

f(~x, ~w) = χ(~x · ~w). (1.1)

The results of this linear combination are given as input to a non-linear function χ(x)
called the activation function. Typical choices as activation function are any sigmoidal
function like sign(x) and tanh(x), but in more advanced applications other functions
like ReLU [1] are used. The resulting function f(~x, ~w) has then a simple non linear
behaviour. It produces a binary output: 1 if the weighted combination is high enough
and 0 if it is low enough, with a smooth modulation in-between the two values.

The most common architecture for a NN is the so-called feed-forward architecture,
where many individual perceptrons are arranged in chained layers, which take as input
the output of previous layers along with a straight information flux. More complex ar-
chitectures could implements also recursive connection, linking a layer to itself, but it
should be regarded as sophistication to the standard case. There are endless possibilities
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Figure 1.5: Schematic picture of a single layer perceptron. The input vector
is linearly combined with the bias factor and sent to an activation function to
produce the numerical ”binary” output.

of combination and arrangement of neurons inside a NN’s layer, but the most simple
ones are known as fully-connected layers, where every neuron is linked with each other
neuron of the following layer, as shown in Figure 1.6. Each connection has its weight,
which contributes to modulate the overall combination of signals. The training of a NN
consists then in the adjustment and fine-tuning of all the network’s weights and param-
eters through iterative techniques until the desired precision in the output generation is
reached.

Although a fully connected network represents the simplest linking choice, the inser-
tion of each weight increases the number of overall parameters, and so the complexity
of the model. Thus we want to create links between neurons smartly, rejecting the less
useful ones. Depending on the type of data under analysis there are many different estab-
lished typologies of layers. For example, in the image processing field, the most common
choice is the convolutional layer, which implements a sort of discrete convolution on the
input data, as shown in Figure 1.7. While processing images, the convolution operation
confers to the perception of correlation between adjacent pixels of an image and their
color channels, allowing a sort of spatial awareness. Furthermore, the majority of tradi-
tional computer vision techniques are based on the discrete convolution of images, and
on the features extracted from them.

As a matter of principle a NN with just two successive layers, which is called a
shallow network, and with an arbitrary number of neurons per layer, can approximate
arbitrary well any kind of smooth enough function [33]. However, direct experience
suggests that networks with multiple layers, called deep networks, can reach equivalent
results exploiting a lower number of parameters overall. This is the reason why this
discipline goes under the name of deep learning: it focuses on deep networks with up
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Figure 1.6: Schematic representation of a fully connected (or dense) layer.
Every neuron from the first layer is connected with every output neuron. The
link thickness represent the absolute value of the combination weight for that
particular value.

to tents of hidden layers. Such deep structures allow the computation of what is called
deep features, so features of the features of the input data, that allows the network to
easily manage concepts that would be bearly understandable for humans.

1.2.2 Training Strategies in Deep Learning

Depending on the task the NN is designed for, it will have a different architecture and
number of parameters. Those parameters are initialized to completely random values,
tough. The training process is exactly the process of seeking iteratively the right values
to assign to each parameter in the network in order to accomplish the task. The best
start to understanding the training procedure is to look at how a supervised problem is
solved. In supervised problems, we start with a series of examples of true connections
between inputs and correspondent outputs and we try to generalize the rule behind those
examples. After the rule has been picked up the final aim is to exploit it and to apply
it to unknown data, so the new problem could be solved. In opposition to the concept
of supervised problems, there are the unsupervised problems, where the algorithm does
not try to learn a rule from a practical example but try to devise it from scratch. A task
typically posed as unsupervised is clustering, when different data are separated in groups
based on the values of their features in the feature space. Usually, only the number of
groups is taken in input from the algorithm, and the subdivision is completely performed
by the machine. However, in the real world, there are many different and creative shapes
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Figure 1.7: Schematical representation of a convolutional layer. The input
data are processed by a window kernel that slides all over the image. This
operation can recreate almost all the traditional computer vision techniques,
and can overcome them, creating new operations, which would be unthinkable
to hand-engineered.

between pure supervised and pure unsupervised learning, based on the actual availability
of data and specific limitations to the individual task.

An interesting mention in this regard should be made about semi-supervised learning,
which is typically used in biomedical applications. This learning technique combines a
large quantity of unlabeled data during training with a limited number of pre-labeled
example. The blend between data can produce a considerable improvement in learning
accuracy and leading to better results with respect to pure unsupervised techniques.
The typical situation of usage of this technique is when the acquisition of labeled data
requires a highly trained human agent (as an anatomopathologist) or a complex physical
experiment. The actual cost of building entire and suitable fully labeled training sets
in these situations would be unbearable, and semi-supervised learning comes in great
practical help.

Another important training technique which worth mentioning is the so-called cur-
riculum learning [5]. This is a learning technique inspired by the typical learning curve
of human beings and animals, that are used to resolve problems of always increasing
difficulty while learning something new or a new skill. The example presented to the
Neural Network are not randomly presented but organized in a meaningful order which
illustrates gradually more concepts, and gradually more complex ones. The experiments
show that through curriculum learning significant improvements in generalization can be
achieved. This approach has both an effect on the speed of convergence of the training
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Figure 1.8: Sample grid of images from the CIFAR10 dataset. Each one
of the 32 × 32 image is labeled with one of the ten classes of objects: plane,
car, bird, cat, deer, dog, frog, horse, ship, truck.

process to a minimum and, in the case of non-convex criteria, on the quality of the local
minima obtained. This technique is of particular interest for this work: the generated
images, which will be shown in section 3.3 , will offer a segmentation task much less
complex respect to the analysis of real histological tissue. In the view of training a DL-
based model the abundantly produced images can be used for the preliminary phase of
training, setting aside the more complex and more valuable hand-labeled images for the
finalization of the training process.

1.2.3 Training Algorithms - Error Back-Propagation

A good example of supervised problems tough is the classification of images. Let’s
assume we have a whole dataset of pictures of different objects (as cats, dogs, cars, etc.)
like the CIFAR10 [23] dataset. This famous dataset is made of over 60K labeled colored
images 32×32 divided into 10 categories of objects as shown in Figure 1.8. We could be
interested in the creation of a NN able to assign at every image its belonging class. This
NN could be arbitrarily complex but it certainly will take as input a 32×32×3 RGB
image and the output will be the predicted class. A typical output for this problem
would be a probability distribution over all the 10 classes like:
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~p = (p1, p2, . . . , p10), (1.2)
10∑
i=1

pi = 1, (1.3)

and it should be compared with the true label, that is represented just as a binary
sequence ~t with the bit correspondent to the belonging class set as 1, and all the others
value set to 0:

~t = (0, 0, . . . , 1, . . . , 0, 0). (1.4)

Every time an image is given to the model an estimate of the output is produced.
Thus, we need to measure the distance between that prediction and the true value, to
quantify the error made by the algorithm and try to improve the model’s predictive
power. The functions used for this purpose are called loss functions. The most common
choice is the Mean Squared Error (MSE) function that is simply the averaged L2 norm
of the difference vector between ~p and ~t:

MSE =
1

n

n∑
i=0

(ti − pi)2. (1.5)

Let’s say the NN under training has L consecutive layers, each one with its activation
function fk and its weights vector ~wk, hence the prediction vector ~p could be seen as the
result of the concesutive, nested, application through all the layers:

~p = fL(~wL · (fL−1(~wL−1 · ... · f 1(~w1 · ~x)))). (1.6)

From both equations 1.5 and 1.6 it is clear that the loss function could be seen as
a function of all the weights vectors of every layer of the network. So if we want to
reduce the distance between the NN prediction and the true value we need to modify
those weights to minimize the loss function. The most established algorithm to do so for
a supervised task in a feed-forward network is the so-called error back-propagation.

The back-propagation method is an iterative technique that works essentially com-
puting the gradient of the loss function with respect to the weights using the derivative
chain rule and updating by a small amount the value of each parameter to lower the
overall loss function at each step. Each weight is moved counter-gradient, and summing
all the contribution to every parameter the loss function approaches its minimum. In
equation 1.7 is represented the variation applied to the jth weight in the ith layer in a
single step of the method:

∆wij = −η ∂E
∂wij

, (1.7)
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where E is the error function, and η is the learning coefficient, that modulate the effect of
learning through all the training process. This iterative procedure is applied completely
to each image in the training set several times, each time the whole dataset is reprocessed
is called an epoch. The great majority of the dataset is exploited in the training phase
to keep running this trial and error process and just a small portion is left out (typically
10% of the data) for a final performance test.

The loss function shall inevitably be differentiable, and its behavior heavily influences
the success of the training. If the loss function presents a gradient landscape rich of
local minima the gradient descent process would probably get stuck in one of them.
More sophisticated algorithms capable of avoiding this issue have been devised, with
the insertion of some degree of randomness in them, as the Stochastic Gradient Descent
algorithm, or the wide used Adam optimizer [22].

While Error-Back Propagation is the most established standard in DL applications, it
suffers from some problems. The most common one is the so-called vanishing or explod-
ing gradient issue, which is due to the iterative chain derivation through all the nested
level of composition of the function. Without a careful choice of the right activation
function and the tuning of the learning hyper-parameters, it is very easy to bump into
this pitfall. Furthermore, the heavy use of derivation rises the inability to handle non-
differentiable components and hinders the possibility of parallel computation. However,
there are many alternative approaches to network learning besides EBP. The Minimiza-
tion with Auxiliary Variables (MAV) method builds upon previously proposed methods
that break the nested objective into easier-to-solve local subproblems via inserting auxil-
iary variables corresponding to activations in each layer. Such a method avoids gradient
chain computation and the potential issues associated with it [10]. A further alterna-
tive approach to train the network is the Local Error Signals (LES), which is based on
layer-wise loss functions. In [30], is shown that layer-wise training can approach the
state-of-the-art on a variety of image datasets. It is used a single-layer sub-networks
and two different supervised loss functions to generate local error signals for the hidden
layers, and it is shown that the combination of these losses helps with optimization in
the context of local learning.

The training phase is the pulsing heart of a DL model development and it could
take even weeks on top-level computers for the most complicated networks. In fact,
one of the great limits to the complexity of a network during the designing phase is
exactly the available computational power. There are many more further technical details
necessary for proper training, the adjustment of which can heavily impact the quality of
the algorithm. However, after the training phase, we need to test the performance of the
NN. This is usually done running the trained algorithm on never seen before inputs (the
test dataset) and comparing the prediction with the ground-truth value. A good way to
evaluate the quality of the results is to use the same function used as the loss function
during the training, but there is no technical restriction to the choice of this quality
metric. The average score on the whole test set is then used as a numerical score for
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the network, and it allows straightforward comparison with other models’ performances,
trained for the same task. All this training procedure is coherently customized to every
different application, depending on which the problem is posed as supervised or not and
depending on the more or less complex network’s architecture. The leitmotif is always
finding a suitable loss function that quantifies how well the network does what it has
been designed to do and trying to minimize it, operating on the parameters that define
the network structure.
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Figure 1.9: Example of the resulting segmentation mask of an image of an
urban landscape. Every interesting object of the image is detected and a solid
color region replaces it in the segmentation mask. Every color corresponds to
a different class of objects, for example, persons are highlighted in magenta
and scooters in blue. The shape and the boundaries of every region should
match as precisely as possible the edges of the objects.

1.3 Deep Learning-Based Segmentation Algorithms

In digital image processing, image segmentation is the process of recognizing and sub-
dividing an image into different regions of pixels that show similar features, like color,
texture, or intensity. Typically, the task of segmentation is to recognize the edges and
boundaries of the different objects in the image and assigning a different label to every
detected region. The result of the segmentation process is an image with the same dimen-
sions of the starting one made of solid color regions, representing the detected objects.
This image is called segmentation mask. In Figure 1.9 is shown an example of segmenta-
tion of a picture of an urban landscape: different colors are linked to different classes of
objects like persons in magenta and scooters in blue. This technology has a significant
role in a wide variety of application fields such as scene understanding, medical image
analysis, augmented reality, etc.

A relatively easy segmentation problem, and one of the first to be tackled, could
be distinguishing an object from the background in a grey-scale image, like in Figure
1.10. The easiest technique to perform segmentation in this kind of problem is based on
thresholding. Thresholding is a binarization technique based on the image’s grey-level
histogram: to every pixel with luminosity above that threshold is assigned the color
white, and vice versa the color black. However, this is a very primitive, yet very fast
method, and it manages poorly complex images or images with un-uniformity in the
background.

A lot of other traditional techniques improve this first segmentation method [11].
Some are based on the object’s edges recognition, exploiting the sharp change in lumi-
nosity typically in correspondence of the boundary of a shape. Other techniques exploit
instead a region-growing technology, according to which some seed region markers are
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Figure 1.10: Example of the resulting segmentation mask of an image of
a fingeprint obtained trhough a thresholding algorithm. The result is not ex-
tremely good, but this techinque is very easy to implement and runs very
quickly.

scattered on the image, and the regions corresponding to the objects in the image are
grown to incorporate adjacent pixels with similar properties.

Every development of traditional computer vision or of Machine Learning-based seg-
mentation algorithm suffers from the same, inevitable limitation. In every one of these
techniques a human operator should precisely decide during the designing phase which
features to extract from the data and how to process them for the rest of the analysis:
typical features that are used are different directional derivatives in the image plane,
image entropy, and luminosity distribution among the color channels. There is thus an
intrinsic limitation in the human comprehension of those quantities and in the possible
way to process them. The choice is made on the previous experimental results in other
image processing works, and on their theoretical interpretation. Neural Networks instead
are relieved from this limitation, allowing themselves to learn which features are best
suited for the task and how they should be processed during the training phase. The
complexity is then moved on to the design of the DL model and on its learning phase
rather than on the hand-engineering design of the features to extract. In Figure 1.11 an
example of high-level feature extracted from a DL model trained for the segmentation
of nuclei in a histological sample. The model learns the typical pattern of arrangement
of nuclei, which would have been impossible to describe equally in advance.

1.3.1 State of the Art on Deep Learning Segmentation

In a similar way to many other traditional tasks, also for segmentation, there has been
a thriving development lead by the diffusion of deep learning, that boosted the perfor-
mances resulting in what many regards as a paradigm shift in the field [28].

In further detail, image segmentation can be formulated as a classification problem of
pixels with semantic labels (semantic segmentation) or partitioning of individual objects
(instance segmentation). Semantic segmentation performs pixel-level labeling with a set
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Figure 1.11: (A) An extract from an histological samples, used as input
image for the model. (B) The exact segmentation mask. (C) Example of
accentuated features during the training: (1-4) for back-ground recognition,
(5-8) for nuclei detection. From [2].

of object categories (e.g. boat, car, person, tree) for all the pixels in the image, hence it
is typically a harder task than image classification, which requires just a single label for
the whole image. Instance segmentation extends semantic segmentation scope further
by detecting and delineating each object of interest in the image (e.g. partitioning of
individual nuclei in a histological image).

There are many prominent Neural Network architectures used in the computer vision
community nowadays, based on very different ideas such as convolution, recursion, di-
mensionality reduction, and image generation. This section will provide an overview of
the state of the art of this technology and will dwell briefly on the details behind some
of those innovative architectures.

Recurrent Neural Networks (RNNs) and the LSTM
The typical application for RNN is processing sequential data, as written text,
speech or video clips, or any other kind of time-series signal. In this kind of
data, there is a strong dependency between values at a given time/position and
values previously processed. Those models try to implement the concept of memory
weaving connections, outside the main information flow of the network, with the
previous NN’s input. At each time-stamp, the model collects the input from the
current time Xi and the hidden state from the previous step hi−1 and outputs a
target value and a new hidden state (Figure 1.12). Typically RNN cannot manage
easily long-term dependencies in long sequences of signals. There is no theoretical
limitation in this direction, but often it arises vanishing (or exploding) gradient
problematics during the training phase. A specific type of RNN has been designed
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Figure 1.12: Example of the structure of a simple Recurrent Neural Network
from [28].

to avoid this situation, the so-called Long Short Term Memory (LSTM) [19]. The
LSTM architecture includes three gates (input gate, output gate, forget gate),
which regulate the flow of information into and out from a memory cell, which
stores values over arbitrary time intervals.

Encoder-Decoder and Auto-Encoder Models
Encoder-Decoder models try to learn the relation between an input and the corre-
sponding output with a two steps process. The first step is the so-called encoding
process, in which the input x is compressed in what is called the latent-space rep-
resentation z = f(x). The second step is the decoding process, where the NN
predicts the output starting from the latent-space representation y = g(z). The
idea underneath this approach is to capture in the latent-space representation the
underlying semantic information of the input that is useful for predicting the out-
put. ED models are widely used in image-to-image problems (where both input
and output are images) and for sequential-data processing (like Natural Language
Processing, NLP). In Figure 1.13 is shown a schematic representation of this ar-
chitecture. Usually, these model follow a supervised training, trying to reduce the
reconstruction loss between the predicted output and the ground-truth output pro-
vided while training. Typical applications for this technology are image-enhancing
techniques like de-noising or super-resolution, where the output image is an im-
proved version of the input image, or image generation problems (e.g. plausible
new human faces generation) in which all the properties which define the type of
image under analysis should be learned in the representation latent space.

Generative Adversarial Networks (GANs)
The peculiarity of Generative Adversarial Network (GAN) lies in its structure.
It is actually made of two distinct and independent modules: a generator and a
discriminator, as shown in Figure 1.14. The first module G, responsible for the
generation, typically learns to map a prior random distribution of input z to a
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Figure 1.13: Example of the structure of a simple Encoder-Decoder Neural
Network from [28].

target distribution y, as similar as possible to the target G = z → y (i.e. almost
any kind of image-to-image problem could be addressed with GANs, as in [21]). The
second module, the discriminator D, instead is trained to distinguish between real
and fake images of the target category. These two networks are trained alternately
in the same training process. The generator tries to fool the discriminator and vice
versa. The name adversarial is actually due to this competition within different
parts of the network. The formal manner to set up this adversarial training lies in
the accurate choice of a suitable loss function, that will look like:

LGAN = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))].

The GAN is thus based on a min-max game between G and D. D aims to reduce
the classification error in distinguishing fake samples from real ones, and as a
consequence maximizing the LGAN . On the other hand, G wants to maximize the
D’s error, hence minimizing LGAN . The result of the training process is the trained
generator G∗, capable of produce an arbitrary number of new data (images, text,
or whatever else):

G∗ = arg minGmaxD LGAN .

This peculiar architecture has yielded several interesting results and it has been
developed in many different directions, with influences and contaminations with
other architectures [21].

Convolutional Neural Networks (CNNs)
As stated before CNNs are a staple choice in image processing DL applications.
They mainly consist of three types of layers:

i convolutional layers, where a kernel window of parameters is convolved with
the image pixels and produce numerical features maps.

ii nonlinear layers, which apply an activation function on feature maps (usually
element-wise). This step allows the network to introduce non-linear behavior
and then increasing its modeling capabilities.
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Figure 1.14: Schematical representation of a Generative Adversarial Net-
works, form [28].

iii pooling layers, which replace a small neighborhood of a feature map with some
statistical information (mean, max, etc.) about the neighborhood and reduce
the spatial resolution.

Given the arrangement of successive layers, each unit receives weighted inputs from
a small neighborhood, known as the receptive field, of units in the previous layer.
The stack of layers allows the NN to perceive different resolutions: the higher-
level layers learn features from increasingly wider receptive fields. The leading
computational advantage given by CNN architecture lies in the sharing of kernels’
weights within a convolutional layer. The result is a significantly smaller number
of parameters than fully-connected neural networks. In section 2.7 will be shown a
particular application of this architecture, known as style-transfer network, which
is a particular algorithm capable of implanting the visual texture of a style image
onto the content of a different image, producing interesting hybrid images. Some
of the most notorious CNN architectures include: AlexNet [24], VGGNet [41], and
U-Net [35].

For this work, U-net architecture is particularly interesting. The U-net model was
initially developed for biomedical image segmentation, and in its structure reflects char-
acteristics of both CNN and Encoder-Decoder models. Ronneberger et al.[35] proposed
this model for segmenting biological microscopy images in 2015. The U-Net architecture
is made of two branches, a contracting path to capture context, and a symmetric expand-
ing path (see Figure 1.15). The down-sampling flow is made of a Fully Convolutional
Network (FCN)-like architecture that computes features with 3 × 3 kernel convolutions.
On the other hand, the up-sampling branch exploits up-convolution operations (or de-
convolution), reducing the number of feature maps while increasing their dimensions.
Another characteristic of this architecture is the presence of direct connections between
layers of a similar level of compression in compressing and decompressing branches.
Those links allow the NN to preserve spatial and pattern information. The Network
flow eventually ends with a 1 × 1 convolution layer responsible for the generation of the
segmentation mask of the input image.
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Figure 1.15: Scheme of the typical architecture of a U-net NN. This par-
ticular model was firstly proposed by Ronneberger et al. in [35].

A recent example of a practical application of a CNN to histological images could
be found in [29]. In this work the Inception v3 is trained on hand-labeled samples of
pancreatic tissue (like in Figure 1) to recognize tumoral regions from healthy ones in a
pancreatic tissue specimen treated with Ki67 staining. The Inception v3 [34] network
is a deep convolutional network developed by Google, trained for object detection and
image classification on the ImageNet dataset [15]. Recognition of the tumoral region
of Ki67 stained pancreatic tissue samples is based on the detection and counting of
some specific marker cells. In Figure 1.16 is shown a pair of the original image and the
computed segmentation mask, which label in red tumoral regions and green the healthy
ones. This work is based on a technique called transfer learning, which consists of the
customization and specialization of a pre-trained NN previously trained for similar, but
essentially different, tasks. The final part of the training of this version of Inception v3
has been performed of a dataset of 33 whole slide images of Ki67 stained neuroendocrine
tumor biopsies acquired from 33 different patients, digitized with a 20× magnification
factor and successively divided in 64×64 patches.

1.3.2 Image Segmentation Datasets

Besides the choice of suitable architecture the most important aspect while developing
a NN is the dataset to use for the training process. Let’s confine the discussion only to
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Figure 1.16: (left) Original image of a Ki67 stained pancreatic tissue sam-
ple, (right) the corresponding segmentation mask, which label in red tumoral
regions and in green the healthy ones. From [29].

Figure 1.17: An example image from the PASCAL dataset and its corre-
sponding segmentation mask [17].

image-to-image problems, like segmentation problems. There are a lot of widely used
datasets, but I want to mention just a few of them to give the idea of their typical
characteristics.

A good example of segmentation is the Cityscapes dataset [12], which is a large-scale
database with a focus on semantic understanding of urban street scenes. The dataset
is made of video sequences from the point of view of a car in the road traffic, from 50
different cities in the world. The clips are made of 5K frames, labeled with extremely high
quality at pixel-level and an additional set of 20K weakly-annotated frames. Each pixel
in the segmentation mask contains the semantic classification, among over 30 classes of
objects. An example of an image from this dataset is shown in Figure 1.9.

The PASCAL Visual Object Classes (VOC) [17] is another of the most popular
datasets in computer vision. This dataset is designed to support the training of algo-
rithms for 5 different tasks: segmentation, classification, detection, person layout, and
action recognition. In particular, for segmentation, there are over 20 classes of labeled
objects (e.g. planes, bus, car, sofa, TV, dogs, person, etc.). The dataset comes divided
into two portions: training and validation, with 1,464 and 1,449 images, respectively. In
Figure 1.17 is shown an example of an image and its corresponding segmentation mask.
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As the last mention, I would report the ImageNet project [15], which is a large visual
database designed for use in visual object recognition software research. It consists of
more than 14 million images that have been hand-annotated by the project to indicate
what objects are pictured and in at least one million of the images, bounding boxes are
also provided. ImageNet contains more than 20,000 categories of objects. Since 2010,
the ImageNet project runs an annual software contest, the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC), where software programs compete to correctly classify
and detect objects and scenes. This kind of competition is very important for the research
field, as it inspires and encourages the development of new models and architectures.

It is worth mentioning that in the medical image processing domain typically the
available dataset is definitely not that rich and vast (that is actually the seed of this
work) and thus many techniques of data augmentation have been devised, to get the
best out of the restricted amount of material. Generally, data augmentation manipu-
lates the starting material applying a set of transformation to create new material, like
rotation, reflection, scaling, cropping and shifting, etc. Data augmentation has been
proven to improve the efficacy of the training, making the model less prone to over-
fitting, increasing the generalization power of the model, and helping the convergence to
a stable solution during the training process.

36



Chapter 2

Technical Tools for Model
Development

As mentioned in the introduction, this project wants to produce synthetic histological
images paired with their corresponding segmentation mask, to train Neural Networks
for the automatization of real histological images analysis. The production of artificial
images passes through the processing of a three-dimensional, virtual model of a histo-
logical structure, which is the heart of this thesis work. The detailed description of the
development of the two proposed histological models will follow the present chapter and
will occupy the entire chapter 3. Here I will dwell, instead, on every technical tool em-
ployed during the models’ designing phase. From the practical point of view, this project
is quite articulated and the development has required the harmonization of many dif-
ferent technologies, tools, and code libraries. The current chapter should be seen as a
theoretical complement for chapter 3, and its reading is suggested to the reader for any
theoretical gap or for any further technical deepening. The reader already familiar with
those technical tools should freely jump to the models’ description.

All the code necessary for the work has been written in a pure Python environment,
using several already established libraries and writing by myself the missing code for
some specific applications. I decided to code in Python given the thriving variety of
available libraries geared toward scientific computation, image processing, data analysis,
and last but not least for its ease of use (compared to other programming languages).
In each one of the following subsections, I will mention the specific code libraries which
have been employed in this project for every technical necessity.

2.1 Quaternions

Quaternions are, in mathematics, a number system that expands to four dimensions the
complex numbers. They have been described for the first time by the famous mathemati-
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cian William Rowan Hamilton in 1843. This number system define three independent
imaginary units i, j, k as in (2.1), which allows the general representation of a quaternion
q is (2.2) and its inverse q−1 (2.3) where a, b, c, d are real numbers:

i2 = j2 = k2 = ijk = −1, (2.1)

q = a+ bi + cj + dk, (2.2)

q−1 = (a+ bi + cj + dk)−1 =
1

a2 + b2 + c2 + d2
(a− bi− cj − dk). (2.3)

Furthermore, the multiplication operation between quaternions does not benefit from
commutativity, hence the product between basis elements will behave as follows:

i · 1 = 1 · i = i, j · 1 = 1 · j = j, k · 1 = 1 · k = k (2.4)

i · j = k, j · i = −k
k · i = j, i · k = −j
j · k = i, k · j = −i.

This number system has plenty of peculiar properties and applications, but for this
project, quaternions are important for their ability to represent, in a very convenient way,
rotations in three dimensions. The particular subset of quaternions with vanishing real
part (a = 0) has a useful, yet redundant, correspondence with the group of rotations in
tridimensional space SO(3). Every 3D rotation of an object can be represented by a 3D
vector ~u: the vector’s direction indicates the axis of rotation and the vector magnitude |~u|
express the angular extent of rotation. However, the matrix operation which expresses
the rotation around an arbitrary vector ~u it is quite complex and does not scale easily
for multiple rotations [7], which brings to very heavy and entangled computations.

Using quaternions for expressing rotations in space, instead, it is very convinient.
Given the unit rotation vector ~u and the rotation angle θ, the corresponding rotation
quaternion q becomes (2.6):

~u = (ux, uy, uz) = uxi + uyj + uzk, (2.5)

q = e
θ
2
(uxi+uyj+uzk) = cos

θ

2
+ (uxi + uyj + uzk) sin

θ

2
, (2.6)

q−1 = cos
θ

2
− (uxi + uyj + uzk) sin

θ

2
, (2.7)

where in (2.6) we can clearly see a generalization of the Euler’s formula for the
exponential notation of complex numbers, which hold for quaternions. It can be shown
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that the application of the rotation represented by q on an arbitrary 3D vector ~v should
be easily expressed as:

~v ′ = q~vq−1, (2.8)

using the Hamilton product defined on quaternions (2.4). This rule raises a very con-
vinient and scalable way to compute consecutive rotations in space. Given two indepen-
dent and consecutive rotations represented by the two quaternions q and p applyed on
the vector ~v the resulting rotated vector ~v ′ is simply yielded as:

~v ′ = p(q~vq−1)p−1 = (pq)~v(qp)−1, (2.9)

which essentially is the application of the rotation r = qp on the vector ~v. This repre-
sentation is completely coherent with the algebra of 3D rotations, which does not benefit
from commutativity in turn.

Given this property, quaternions are indeed widely used in all sorts of applications
of digital 3D space design, as for simulations and videogame design. The position of an
object in the space in simulations is generally given by the application of several inde-
pendent rotations, typically in the order of a tenth of rotations, which with quaternions
is given easily by the product of simple objects. Every other alternative method would
imply the use of matrix representation of rotations or other rotation systems as Euler’s
angles and would eventually make the computation prohibitive.

The use of quaternions in this work will be justified in section 3.1, while speaking of
parametric L-systems in 3D space, used to build the backbone of the ramified structure
of blood vessels in the reconstruction of a sample of pancreatic tissue.

I was able to find many Python libraries for computation with quaternions, but the
one I appreciated the most for its interface and ease of use was pyquaternion. With
this library, it’s immediate the definition of a quaternion by its correspondent rotation
vector, and the multiplication between quaternions is straightforward.

2.2 Parametric L-Systems

Lindenmayer systems, or simply L-systems, were conceived as a mathematical theory of
plant development [26] in 1968 by Aristid Lindenmayer. Successively, a lot of geometri-
cal interpretations of L-systems were proposed to make them a versatile instrument for
modeling the morphology typical of plants and other organic structures. As a biologist,
Lindenmayer studied different species of yeast and fungi and worked the growth patterns
of various types of bacteria (e.g. as the cyanobacteria Anabaena catenula). The main
purpose for which L-systems were devised was to allow a formal description of the devel-
opment of simple multicellular living organisms. Subsequently, the potentiality of these
systems was expanded to describe higher-order plants and complex branching structures.
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Figure 2.1: Growth pattern for the space-filling fract-like system, used to
mimic the blood vassel bifurcations in sec 3.1.

An L-system is in general defined by an axiom sequence and some development rules,
which are recursively applied to the sequence and lead its development. The original
proposed L-system was fairly simple and shows really well the idea underneath:

axiom : A

rules : (A→ AB), (B → A)

where A and B could be any two different patterns in the morphology of an algae, or
could be different bifurcations in a ramificated structure. The iterative application of the
rules to the axiom sequence, let’s say for 7 times, will produce the following sequence:

n = 0 : A

n = 1 : AB

n = 2 : ABA

n = 3 : ABAAB

n = 4 : ABAABABA

n = 5 : ABAABABAABAAB

n = 6 : ABAABABAABAABABAABABA

n = 7 : ABAABABAABAABABAABABAABAABABAABAAB .

This kind of tool, as will be shown also in 3.1, is particularly suited for the creation of
structures with fractal behavior, and it has been used in this work to create the backbone
of the entangled bifurcation in blood vessels in the modelization of pancreatic tissue. In
particular, there was the need for a fractal-like space-filling ramification as the one shown
in Figures 2.1.

The system in Figure 2.1 represent the successive ramification of a structure which
grows adding segments gradually shorter, by a lenght ratio parameter R and inclined
of δ = ±85◦ respect the previous branch. The axiom and the rules that produce this
structure are the following:
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axiom : A (2.10)

rule1 : A→ F (1)[+A][−A]

rule2 : F (s)→ F (s ·R)

where A represent the start of a new branch and F (s) represent a branch of lenght s.
The presence of a rule which acts dfferently depending on the target object, is a further
sophistication respect to the standard L-system. For this reason these systems are called
parametric L-systems.

The use of standard L-systems turned out to be widespread, and there were a lot
of different Python libraries at my disposal for coding. However, parametric L-systems
were not just as popular, and I was not able to find a reliable library on which to build
my work. I decided then to code a parametric branching system able to recreate the
structure with rules (2.10) at any desired level of iteration. Having created the tool I
needed on my own I was able to add all the optional features I would have needed during
the development, like an adjustable degree of angular noise in the branch generation.

2.3 Voronoi Tassellation

Voronoi diagrams, or Voronoi decompositions, are space-partitioning systems, which
divides an n-dimensional Euclidian space into sub-regions depending on the proximity
to a given set of objects. More precisely, given an n-dimensional space and m starting
point p1, . . . , pm inside it, the whole space will be subdivided in m adjacent regions. Every
point of the space is assigned to the region correspondent to the nearest starting point.
In Figure 2.2 is shown a practical example of a Voronoi decomposition of a plane into
20 regions corresponding to the 20 starting points. Informal use of Voronoi diagrams
can be traced back to Descartes in 1644, and many other mathematicians after him.
But, Voronoi diagrams are named after Georgy Feodosievych Voronoy who defined and
studied the general n-dimensional case in 1908 [47].

More precisely, let X be a metric space and d the distance defined on it. Let K be
the set of indices and let (Pk)k∈K be the tuple of sites in the space X. The kth Voronoi
cell Rk, associated with the site Pk is the set of all the points in X whose distance to Pk

is smaller than the distance to any other site Pj, with j 6= k, or in other words:

Rk = {x ∈ X | d(x, Pk) ≤ d(x, Pj) ∀j ∈ K, j 6= k}, (2.11)

depending on the notion of distance defined on the space X the final redistribution in
subregions will look very differently.

In addition to the choice of the distance function, another fundamental factor is the
distribution of sites in the space to be divided. If the points are chosen equally and ho-
mogenously distributed the final distribution will appear as a simple regular lattice, while
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Figure 2.2: Example of a Voronoi decomposition of a plane into 20 regions
corresponding to 20 starting points.

a completely random distribution of points in the space will provide a decomposition in
cells with very different shapes and volumes, as shown in Figure 2.3. Interesting results
concerning points from a semi-random distribution will be shown in section 3.1, which
leads to decomposition with a good richness in shapes but with the desired homogeneity
in volumes.

The Voronoi decomposition has been of great interest in this project for the division
of a 3D space in subregions, to recreate the spatial distribution of cells in a sample of
human tissue, as will be shown in section 3.1. The formal definition of Voronoi regions
(2.11) ensures the convexity of each decomposition’s tassel, which in three-dimensional
space would be adjacent convex polyhedrons. Every tassel of the decomposition will be
represented by a bounded three-dimensional convex hull1, with except for those most
external cells which are unbounded and requires special attention.

The most widespread tool for the computation of Voronoi decompositions in Python

is contained in the spatial submodule of the famous library SciPy [46], which is a staple
tool for an incredible variety of scientific algorithms. The Voronoi object from Scipy

library offers a very efficient algorithm for space-partitioning, and it has been one of the
pillars for the modelization of tissues. Unluckily, this module does not easily allow to
perform Voronoi decomposition with different definitions of distance functions d other
than the Euclidian distance, which would have allowed interesting studies.

1See section 2.5 for further details.
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Figure 2.3: On the right an example of 2D Voronoi decomposition resulting
from homogeneously distributed points in the plane. On the left the resulting
decomposition obtained from randomly distributed points in the plane, from
[3].

2.4 Saltelli Algorithm - Randon Number Generation

As mentioned in section 2.3, in this project there was the need for quasi-random number
generation for the production of Voronoi tessellations. Quasi-random sequences (or low-
discrepancy sequences) are patterns of numbers that emulate the behavior of uniform
random distributions but have a more homogeneous and quick coverage of the sam-
pling domain (see Figure 2.4), which provides an important advantage in applications
like quasi-Monte Carlo integration techniques. In computer science there is not any
possibility of recreating true random sequences, hence any stochasticity is completely
deterministic in its essence even if produced by very chaotic processes2. Indeed, every al-
gorithm for random number generation is completely repeatable given its starting status.
Quasi-random sequences are completely deterministic too but implement more regular,
well-behaved algorithms.

A first good example to understand the concept of quasi-random generation could be
an additive reccurrence, as the following:

sn+1 = (sn + α) mod 1, (2.12)

which for every seed element s0 and real parameter α produced completely different
sequences.

In the bottom line of Figure 2.4 is clearly visible the good and homogeneous coverage
of the sampling domain, although it is strongly visible a regular pattern between points,
which does not convey an organic sensation at all. However, increasing the complexity of

2A chaotic process is a deterministic process which has an extremely sensible dependence on its
starting conditions. This property mimics very effectively the behavior of true random processes, which
are intrinsically forbidden in computer science.
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Figure 2.4: Coverage of the unit square with an additive quasirandom num-
bers sequence as in 2.12 (up) and for uniformly sampled random numbers
(bottom). From left to right: 10, 100, 1000, 10000 points.

our very simple starting model 2.12 it is possible to overcome this artificial appearance
of sampled points and to produce very good samples.

A notorious algorithm for quasi-random number generation is the Sobol sequence,
introduced by the russian mathematician Ilya M. Sobol in 1967 [44]. In its work, Sobol
wanted to construct a sequence xn of points in the s-dimensional unitary hybercube
Is = [0, 1]s such as for any integrable function f :

lim
n→∞

1

n

n∑
i=1

f(xi) =

∫
Is

f. (2.13)

Sobol wanted to minimize the holes in the sampled domain (which it could be shown
to be a property that helps the convergence of the sequence) and minimize as well
the holes in every lower-dimension projection of the sampled points. The particularly
good distributions that fulfill those requirements are known as (t,m, s)-nets and (t, s)-
sequences in base b.

To better understand them we need first to define the concept of s-interval in base b,
which is a subset of Is such as:

Eb
s =

s∏
j=1

[
aj
b dj

,
aj + 1

b dj

)
, (2.14)

where aj and dj are non-negative integers, and aj < bdj for all j in {1, ...,s}.
Let be t and m two integers such as 0 ≤ t ≤ m. A (t,m, s)-net in base b is defined

as a sequence xn of bm points of Is such that:

Card P ∩ {x1, . . . , xn} = bt (2.15)
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for all the elementary interval P in base b of hypervolume λ(P) = bt−m.
Given a non-negative integer t, a (t, s)-sequence in base b is an infinite sequence of

points xn such that for all integers k ≥ 0, m ≥ t the sequence {xkbm , . . . , x(k+1)bm−1} is
a (t,m, s)-net in base b.

Sobol in his article described in particular (t,m, s)-net and (t, s)-sequence in base 2.
A more thorough description of all the formal properties of those particular sequences
could be found in [43].

In order to perform the actual sampling during the modelization, it has been used the
saltelli module from the SALib library, which performs sampling in an s-dimensional
space following the Saltelli algorithm, which is a specific improved version of the Sobol
algorithms oriented toward the parameter sensitivity analysis [37], [38].

2.5 Planar Section of a Polyhedron

As will be shown in section 3.1 a fundamental step for the functioning of the modelization
is the planar sectioning of a three-dimensional polyhedron. It turned out that there is
no general rule to perform a planar section of a convex polyhedron with an arbitrary
number of faces, respect to an arbitrary sectioning plane. Hence, I devised an algorithm
to handle this task. In the case of a full intersection, the result of the sectioning process
of a polyhedron is a polygonal surface, otherwise, it could be an empty set of points
or a segment in case of particular tangency, but those two cases are not of interest to
the model. This tool has been created and implemented from scratch by me during the
design phase , for this reason it certainly leave room for improvements and optimization.
Nevertheless, this tool passed all the tests I required and yielded the expected results.

Given a convex polyhedron with n vertices and a sectioning plane p, let V be the set
of all the vertices and fp(~x) the equation defining the plane. The algorithm is defined
by the following steps:

1. Divide V in two subsets: A made of those vertices which lie above and B, made of
those which lie below the sectioning plane. Like in 2.16:

A = {~v ∈ V | fp(~v) ≥ 0} (2.16)

B = {~v ∈ V | fp(~v) ≤ 0}

If any of the two subsets tourns out to be empty the plane p does not intersect the
polyhedron, and the section is empty. A and B are represented in different colors
in Figure 2.5.

2. Detect, and draw, any possible line that crosses two points respectively from A and
B. If nA and nB are the numbers of points above and below the plane then there
will be nA × nB possible lines. In Figure 2.5 all the lines between the two classes
of points are drawn in dark gray.
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Figure 2.5: In this picture is shown an example of the application of the
algorithm for the planar section on a polyhedron. The vertices are divided
into two groups, with different colors yellow and green. All the possible lines
between any couple of vertices picked from the two classes are drawn in dark
gray. In Turquoise the resulting planar section, obtained as the convex hull
containing all the intersections between the lines and the plane.

3. Detect P , the set of all the points from the intersection between the nA× nB lines
from the previous step and the sectioning plane p. All these points will lie on the
same plane, within the boundaries of the polygonal section.

4. The final polygon is then yielded by computing the convex hull of the points in
P . The convexity of the starting polyhedron in fact ensures the convexity of any
section of the solid.

The result of the algorithm is, as just stated, a convex hull, which in geometry
is defined as the smallest convex envelope or convex closure of a set of points. In 2
dimensions is the smallest convex polygon containing a certain set of points in a plane
(In Figure 2.6 is shown the so-called “rubber band effect”), and in 3 dimensions it is the
smallest convex polyhedron containing a set of points in the space.

In Python, the most convenient way to work with convex hulls was to use the sub-
module spatial.ConvexHull from the SciPy library [46]. This module allows also a
convenient way for plotting images with MatPlotLib, which is the point of reference for
plotting and image formation in Python.
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Figure 2.6: Representation of the convex hull of a bounded planar set of
points. This particular enclosure goes under the name of ”rubber band effect”.

2.6 Perlin Noise

Perlin noise is a widely used form of noise in computer graphics, which reproduce very
well natural and smooth fluctuations around a constant value. It has been developed by
Ken Perlin in 1983, and it is now the staple tool for giving texture to object in virtual
modelization, often considered the salt of computer graphics texturization. The Perlin
noise is a gradient-based algorithm defined on grid discretization of a n-dimensional
space. The algorithm involves three subsequent steps:

1. The first step is to discretize the n-dimensional space in a regular lattice: the
dimension of the grid will impact heavily on the scale of the noise. As in Figure
2.7a at every node of the grid is assigned a randomly oriented n-dimensional unitary
gradient vector. This is the preliminary setup which will allow the computation of
the actual noise function in every point of the space.

2. Given the candidate point ~x between the grid nodes onto which evaluate the noise
there are 2n nearest grid nodes. For each one of these 2n nodes, it is evaluated the
distance vector from ~x as the offset between the two points. Then it is computed
the dot product between every pair made of nearby gradient vectors and the offset
vector. This operation should be thought of as made on every point in the lattice,
as in Figure 2.7b, where at every point of the grid is represented just one of the
22 = 4 series of dot products.

3. The final step is the interpolation between the 2n series of dot products. To per-
form the interpolation usually is used a function with vanishing first degree (and
preferably also second degree) derivative in correspondence of the 2n grid nodes 3.
This means that the noise function will pass through zero at every node and have

3Usually are used functions with a sigmoidal behavior, like any smoothstep function, which is a
family of very common items in computer graphics.
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(a) (b) (c)

Figure 2.7: The three main steps of the algorithm to produce Perlin noise.
In 2.7a the plane discretization and the assignment of a gradient vector to
every node of the grid. In 2.7b the computation of the dot product with all the
points inside the discretization and in 2.7c the interpolation of the values to
create the final function.

a gradient equal to the pre-computed grid node gradient. These properties give
Perlin noise its characteristic spatial scale and smoothness.

In general, the final result of the algorithm is a smooth function with a random-
like behavior that mimics really well an organic appearance, like in Figure 2.8, with
fluctuation around the value 0, with amplitude ∈ [0; 1]. The surface in Figure 2.8 has been
produced plotting in 3D the results of the function pnoise2 from the library noise, which
offers a tool for the production of different type of noise. In order to put this module in
practical usage, some adjustments were required. The particular function pnoise2 yields
the value of the Perlin noise surface in correspondence to a single (x, y) point in the plane
in a deterministic way. There was not the possibility to generate different whole Perlin
surfaces every run. To overcome this limitation I made a vectorized4 version of pnoise2
able to evaluate the function over an arbitrary wide grid of points expressed as the set
of all the pairs of coordinates (x, y) of the grid’s nodes. In this way a single call to the
function is able to produce the entire surface covering the grid, in the form of a single
NumPy 3D-array. Furthermore, to recover the possibility of generating always different
surfaces as in a random generation, I inserted an offset coordinate (xO, yO), which moves
in the plane the origin of the surface generation. This pair of offset coordinates then acts
also as a seed in the generation, allowing to completely recreate previously generated
material in a controlled way.

4In Python the staple tool for scientific, number-cruncher computation is the NumPy library, which
allows a fast, complete and efficient way to perform computation between number structure. The
operation of transforming a function which acts on a single value (or pair of values) to a function able
to perform on a suitable data structure is called vectorization, and its the recommended way to proceed
when handling numerical functions in Python.
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Figure 2.8: Example of Perlin noise 2D funciton produced while working on
this project. This surface offers a smooth variation around the value 0 with
amplituded ∈ [0; 1].

2.7 Style-Transfer Neural Network

Style-Transfer Neural Networks are common models, able to create new hybrid images
transfering the visual style from an image preserving the visual content of another image.
The two images necessary for the algorithm are called style image S and content image
C, and the resulting styled picture X, as in Figure 2.9.

There are many different tested and comparable architectures to compute this kind
of algorithm. In my work I decided to use in particular the procedure described in [18],
using the PyTorch ecosystem to implement the necessary code.

The backbone of the architecture is the VGG-19 network, which is a convolutional
neural network 19 layers deep, as in Figure 2.10. This huge model has been pre-trained
on over a million images from the ImageNet database [16], for the classification into
over than 1000 classes of objects. As a result, the network has learned rich feature
representations for a wide range of images. The best (and conceptually the only) way to
load a pre-trained model is to load the ordered set of weights that define the network and
to initialize an empty module with those values. This is the perfect start for creating a
style transfer network, which requires a further and briefer training phase, to completely
customize the network.

The key ingredient for finalizing the model is to insert some little but fundamental
modifications and to extend the training on the pair of input images. This final training
should be aware of the concepts of the visual style and visual content of the image, and
the operation should try to preserve them both. This is usually done minimizing two
new loss function, computed between the staring image and the produced image:
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Figure 2.9: Different examples of application of a style-transfer NN on
the same content image, with different style images, from [18]. The origi-
nal picture depicts the Neckarfront in Tbingen, Germany (TOP-LEFT). The
painting used as style image shown in the bottom left corner of each panel are
in clockwise order: • The Shipwreck of the Minotaur by J.M.W. Turner, 1805
• Femme nue assise by Pablo Picasso, 1910 • Composition VII by Wassily
Kandinsky, 1913 • Der Schrei by Edvard Munch, 1893 • The Starry Night by
Vincent van Gogh, 1889.

Figure 2.10: The structure of the VGG 19 network. It is for its most
a convolutional NN with 224 × 224 input size and with some downsampling
layers which reduce the first two dimensions of the tensors along with the
information flux of the network. At the very end of the architecture, there are
three subsequent fully connected layers, responsible for the actual classification
based on the features extracted from the previous layers.
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Content Loss
The content loss is a function that represents a weighted version of the content
distance for an individual layer. The most commonly used function to evaluate the
preservation of content between two images is the simple Mean Squared Error as
in equation (1.5). It can be computed between any couple of same-sized object,
hence also between the results of the same feature maps on the images X and C
at the same layer L:

LCont = ‖FXL − FCL‖2 . (2.17)

In order to evaluate this content loss, it is necessary to insert a custom transparent5

layer directly after the convolution layer(s) that are being used to compute the
content distance.

Style Loss
The concept of style loss function is the true novelty introduced by [18]. This loss
function is implemented similarly to the content loss module, as it will act as a
transparent layer in the network. The computation of the style loss requires in
advance the evaluation of the Gram matrix GXL at a certain layer L. A Gram
matrix is a result of multiplying a given matrix by its transposed matrix. In this
case, the matrix to multiplicate is a reshaped version of the feature maps FXL:
F̂XL, a K × N matrix, where K is the number of feature maps at layer L and N
is the length of any vectorized feature map F k

XL. Furthermore, the Gram matrix
must be normalized by dividing each element by the total number of elements in the
matrix. The style distance is now computed using the mean square error between
GXL and GSL:

LStyle = ‖GXL −GSL‖2 . (2.18)

After the appropriate insertion of the loss-function evaluator layers, one last piece for
finalizing the model is the right choice of the gradient descent optimizer. As in [18] and
according to the Deep Learning community the optimizer which suite best this role is the
Limited Memory-BFGS [8],[40]. L-BFGS is an iterative algorithm in the family of quasi-
Newton methods that approximates the Broyden-Fletcher-Goldfarb-Shanno algorithm
(BFGS) using a limited amount of computer memory, and it is a popular choice when
estimating parameters of a non-linear differentiable scalar function.

The final phase of the training process thus makes run the optimizer for hundreds of
epochs on X, C, and S, and reduce the two loss functions values acting on the network’s
parameters. After the fine-tuning of the weights, the hybrid image is produced, as in
Figure 2.9.

5A transparent layer is a layer that performs some operations, like evaluating a function on its input,
but returns as output an unchanged copy of its input.
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2.8 Working Environment

In this section, I will briefly describe the machine I used to develop my project and the
working environment I built. All the work has been done on my personal computer,
mounting a GNU/linux operating system, in particular the 18.04 LTS Ubuntu version.
The computer mounts an Intel i7 core, 8 Gb of RAM beside a 2Gb NVidia 940MX GPU.
All the Python libraries have been installed and harmonized in a virtual environment
mounting Python 3.7.6. All the code produced during the development, the images,
and the data produced have been collected in a devoted repository on GitHub [14], which
is freely available.

As a conclusion for this chapter I will recollect all the references to the different
Python libraries I used during the development of this work:

NumPy: NumPy is the pillar of every scientific computation-oriented library. Is the most
spread library for heavy multidimensional numerical computation, and it offers a
broad variety of tools like random number generators, and pre-implemented linear
algebra utilities [31].

SciPy: The SciPy library is one of the core packages that make up the SciPy stack.
It provides many user-friendly and efficient numerical routines, such as routines
for numerical integration, interpolation, optimization, linear algebra, and statis-
tics [46]. Two modules in particular form this libraries have covered an essen-
tial role in this project: the SciPy.spatial.Voronoi module for the compu-
tation of the 3D Voronoi decomposition, as mentioned in section 2.3, and the
SciPy.spatial.ConvexHull module for the computation of 3D and 2D convex
hulls (section 2.5).

PyTorch: PyTorch is a rich ecosystem of tools and libraries geared toward Machine
Learning and Deep Learning. The application of the style-transfer NN described
in section 2.7 has required the use of this framework [32].

SALib: The SALib is a library which collects many tools for the Sensitivity Analysis of
parameters. In particular, the SALib.saltelli submodel was used for the quasi-
random numerical sampling in a three-dimensional box, and it has been described
in section 2.4.

noise: noise contains many tools for the production of specific types of noise. The
module pnoise2 was tweaked for the production of two-dimensional Perlin noise
surfaces, and it has been introduced in section 2.6.

pyquaternion: The pyquaternion library provides a framework for handling quater-
nions. It has been widely used in section 2.1 for the design of three-dimensional
ramifications for handling multiple spatial rotations.
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Chapter 3

Tissue Models Development

The main goal of the present work, as stated before, is to recreate a three-dimensional
virtual model of histological tissue as faithfully as possible and then, to perform planar
sectioning on it to emulate virtually the traditional histological specimen preparation
procedure. The creation of a model of such complex structures is definitely a high-
level problem, and it has required a careful designing, made of subsequent stages of
improvements. In section 3.1, I will describe all the necessary steps to create the model
of a small region of pancreatic tissue, while in section 3.2 I will expose the steps I
followed to build a model of dermal tissue. In section 3.3, instead, I will show the
resulting synthetic images from the sectioning process performed on both the models
and all the enrichments and processing necessary to give them the most realistic look I
was able to recreate.

3.1 Pancreatic Tissue Model

In this first attempt of modelization from scratch the main focus was on reproducing
only the main structural features on the virtual specimens. Given the pancreatic tissue’s
organization, described back in section 1.1.2, the first features I decided to emphasize on
were: 1) The iterative (with a fractal-like behavior) ramification of blood vessels for the
irrigation of glandular acinus, 2) The space-filling distribution of acinus in the tissue, in
fact, we expect a homogeneous density in the organ and to not see holes at all inside it.
In this section I will describe step by step all the process I followed to create the model
of a portion of pancreatic tissue, and all the interesting pitfalls I overcame.

3.1.1 2D Ramification

The first step was taken in two dimensions, and it was the choice of the right structure
to emulate the ramification of blood vessels in pancreatic tissue. The choice fell on a

53



Figure 3.1: The development of the simple ramification in Figure 2.1, with
some features to give it a more realistic look, like progressive thickness, angular
noise in bifurcation, and spheres at free ends of the ramification. The image
is made using the tools exposed in section 2.2.

particular parametric L-system, as the one shown in Figure 2.1, in section 2.2. This
structure is made of an iterative bifurcation of gradually shorter segments, with an angle
of ±85◦ respect the main direction. For a start I added some features to give a more
realistic look to the structure, which are all well represented in Figure 3.1:

• A progressive thickness of the bifurcation’s segments, starting from a thick main
branch that dwindles every junction. The idea is that the main blood vessel be-
comes gradually smaller becoming capillaries for single-cell irrigation.

• A progressive randomness in the angular deflection at every fork. Perfectly repeated
angles are almost nonexistent in nature, so I decided to introduce an increasing
indetermination in the angle of bifurcation from the main branch to the free ends
of the structures’ branches.

• Spheres at the ends of each branch, which acts as glandular acini. The maximum
radius is comparable to the length of the final segments.

• A mechanism to avoid self-superimposition between branches and spheres. After
the insertion of noise, the cumulative effect on the final segments might lead to
different branches to intersect. This is clearly a paradoxical situation, as real
tissues while growing naturally occupy the space in a gradual way.
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Figure 3.2: The three-dimensional expansion of the two-dimensional rami-
fication in Figure 3.1.

To produce the specific image in Figure 3.1 I used a particular setting of the tool
described in section 2.2, which has a greatly wider range of customization and could be
used to create many other different structures at the need.

3.1.2 Expansion to 3D

The successive step I followed was to expand this structure in three dimensions and fill
the space in each of the three directions. The idea to evolve the structure in Figure 3.1 is
simply to twist of 90◦ the ramification at every junction point, in such a way to exit the
previous belonging plane. However, putting into practice this development has not been
easy. The organization of the structure in a 3D space requires an appropriate system
of reference for handling subsequent rotations in three dimensions. The best option for
handling relative 3D rotations, often used in computer graphics and every kind of 3D
modelization, are quaternions, as shown in section 2.1.

In this new structure, segments are replaced with cylinders, and circles are replaced
with spheres. At every bifurcation to every cylinder are applied the following transfor-
mations:

• a contraction in its extensions, regulated by an adjustable parameter R.

• the usual deviation of ±85◦ respect to the direction of the parent branch.

• a 90◦ specific rotation along the axis of its parent branch.

The result of this procedure is a 3D ramification like the one in Figure 3.2, in which
we can recognize a good coverage of the space defined by the structure’s boundaries and
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immediate relation with the 2D structure in Figure 3.1. It should be noted that, in the
further refinements of the model from now on, there won’t be present the progressive
angular indetermination on the direction of branches. Although it is a feature already
implemented and working, it requires efficient control to avoid reciprocal overlapping
between elements to produce a realistic structure. This second element has not been
already developed and it would certainly enrich the representative power of the model.

As for the 2D ramification the production of this structure has required the imple-
mentation of a tool for the 3D generation with a greatly wider power, able to produce
almost any type of three-dimensional iterative structure after the right adjustment, and
with a high degree of customization. It is necessary to mention the fundamental tool
which allowed me to accomplish this step of the development, which is the Python library
VPython: a library for 3D graphics visualization. This library allows a convenient and
powerful interface to draw many types of objects and to move them around in space,
which has been priceless to orient my self in three dimensions while developing the model
and to produce all the 3D images visible in this work.

3.1.3 Subdivision in Cells

Once the 3D backbone of the pancreatic tissue blood vessels ramification system has
taken shape, the next step was to embed all this structure in a spatial partitioning
process, to create the subdivision into single cells. To perform this important task I
used a 3D Voronoi decomposition, as shown in section 2.3. Depending on the choice
of the starting points, the Voronoi tessellation could be an excellent item to recreate
individual cells because it could guarantee some important properties: all the regions
are convex, adjacent, with similar size and volume, with different shapes, and without
holes. These have been chosen as the most significant properties to be reflected in the
first modelization of cells.

As shown in section 2.3, the Voronoi decomposition strongly depends on the choice of
the starting point. Points spread uniformly on a 3D regular lattice will produce a series
of parallelepipeds repeated in the space. An example of uniform tessellation is shown in
Figure 3.3a. On the other hand, a decomposition based on a quasi-random generated
point can present all the good properties we mentioned before, including the diversity in
shapes. In Figure 3.3b is shown an example of a Voronoi decomposition based on points
sampled in a 3D with the Saltelli algorithm, in reference to section 2.4. Regardless of
the points sampling technique, the boundaries of the sampling 3D box have been chosen
to loosely contain the ramification.

There are tough some delicate considerations to be highlighted about the decomposi-
tion procedure. The first regards the most external pieces of the decomposition. Whilst
the internal pieces are neatly bounded and defined, the most external layer instead is
made of unbounded regions, which extend themselves to infinity. Those regions have
clearly to be rejected, as it would be absurd for a cell to have an infinite volume. Typi-
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(a) Regular lattice.

(b) Sampling with Saltelli algorithm.

Figure 3.3: Comparison between two Voronoi decompositions. The first
(left) is created from a regular lattice of starting points, and every piece is
exactly equal to all the others, creating a regular subdivision of the space.
The second (right) is created instead from a sampling made following the
Saltelli quasi-random algorithm. The pieces are all different in shape, but they
all have similar sizes and volumes. In this pictures in particular have been
shown only the pieces of the tessellation which lie in correspondence to the
boundaries of the spheres underneath. While watching this picture one should
immagine the decomposition extended similarly in all the space around the
ramification, within certain boundaries, which loosely contains the structure.
This limitation was necessary to enhance the interpretability of the image.
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Figure 3.4: Example of circular cropping in a 2D Voronoi decomposition:
all the regions which intersect the circumference have to be resized.

cally those unbounded regions are resized in order to adhere to some limiting boundaries,
with an operation known as cropping. In Figure 3.4 is shown an example of circular crop-
ping in a 2D Voronoi decomposition: all the regions which intersect the circumference
have to be resized.

The cropping operation in 3D is extremely complex, tough. Thus, a more simple and
efficient, yet less elegant, technique has been used. Instead of resizing the regions which
lie on the boundaries of the sampling region, those regions have directly been rejected.
This process is really fast and it does not lead to any danger of representativity loss if
the boundaries are loose enough and if the density of sampling is not too low.

The other important consideration regards the density of sampling points. Increasing
the number of points to be extracted from the same volume automatically the number
of cells in the box will rise, and in contrast, their relative dimension will decrease. This
is a key element of the model: a too rarified decomposition would not bee able to reflect
the complexity of the structure underneath, but a too crowd decomposition on the other
side would lead to an unrealistic dimension of the cells in the tissue. Furthermore, this
parameter has a huge influence on the computing time necessary to generate the model
and to process it for the sectioning as will be shown in section 3.3. In almost all the
applications so far, the density parameter has been tuned by eye, with a trial and error
procedure. Although, a more rigorous way to adjust this parameter would be to consider
the average dimension of the cells and make some microanatomical considerations to
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Figure 3.5: Portion of the complete Voronoi decomposition, showing the
three different classes of cell in three different colors: the internal cells in red,
those on the boundaries in turquoise and the external cells in gray.

define the correct relative dimensions. The measure of the volume1 of the decomposition’s
regions is an accessible parameter, thus an easy way to estimate the average linear
dimension of the cells can be to approximate all the cells to cuboid seeing their volumes
as V ≈ L3. Averaging all the L measures an estimate L̂ can be done. This average
length may be compared to the length of the blood vessel ramification, allowing a good
reference tool.

3.1.4 Cells Identity Assignment

The great power of creating all the models virtually is to know exactly the identity of
every point in the structure. Although, This identity has to be reflected at the cellular
level, assigning to every region a label. Imagining the Voronoi decomposition represented
in Figure 3.3b extended to the entire box containing the ramification, good discrimination
would distinguish three classes of cells: those which lie completely inside a sphere, those
which lie completely outside a sphere, and those which lie on the boundaries of a sphere.
In Figure 3.5 is shown a portion of the complete decomposition where the three classes of
cells are reported with different colors: the internal cells in red, those on the boundaries
in turquoise, and the external cells in gray.

In this particular case to find the relative position between every sphere in the struc-
ture and each cell it has been used a test on the proximity between the spheres’ centers
and the vertices of every polyhedral cell. If all the vertices of a region lie within a dis-
tance lower than the radius from the center of the same sphere then that region can be
said to be an internal one. If none of the vertices lie within the radius distance from

1The volume is expressed in the same arbitrary length unit of measures used during the ramification
structure. This allows a coherent reference tool.
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any center then that region is said to be external. In any other case, the region is said
to be on the boundaries of some sphere, and this third label is assigned to it. As could
be imagined the number of cells inside the volume can grow very quickly, and in the
more rich ramifications also the number of spheres could be high. If we think that any
polyhedron has a number of vertices of the order of 20/30 then it is clear that the number
of distance evaluations could grow very quickly, requiring some relevant computational
power in the more extended simulations. In order to optimize this computation, I decided
to use a python implementation of a K-dimensional Tree, which is a space-partitioning
data structure especially suited for fast and optimized computation of distances [6]. A
K-d Tree is an algorithm that iteratively binary splits the space: every node of the three
could be thought as a splitting (k − 1)-hyperplane dividing the space into two semi-
hyperspace. The result is an optimized algorithm for repeated distance evaluations. As
for many other tools, in my code I used a pre-implemented module KDTree from the
Scipy library.

This procedure of labeling the regions is completely customizable, and it should be
adapted to the specific application. However, the principle will always be to perform
some sort of spatial consideration respect to the primary structure and assign all the
interesting labels accordingly to the cells in the volume.

After labeling the cells in the decomposition the model is considered complete. Every
enrichment to the structure should be reflected in some type of label for the cells, which
are chosen as the fundamental unit in the model. As we will see in section 3.3 during
the sectioning process in the produced image will be printed mainly the identity of the
cells, hence any detail on a finer scale in the model would not be conveyed properly on
the final image.

3.2 Dermal Tissue Model

The modeling of the dermal tissue has followed analogous schedule respect to the previous
model, hence many procedures and considerations have been repeated. The main target
for this model was to recreate the stratification of different specific tissues in the section
of a dermal sample. As clearly visible in Figure 1.4 in a dermal histological specimen one
can distinguish the lighter and wider region of proper dermal tissue, underneath a more
shallow and darker region of epidermal tissue. It is very interesting the boundary between
those two regions, which can be seen as an irregular and smooth surface, populated of
dermal lobes.

On the other side of the epidermal layer lies a layer of keratin, with a smooth and
regular boundary surface. Keratin is a family of fibrous structural proteins known as
scleroproteins, a key structural material for hair, nails, and the outer layer of skin. The
upper white region in Figure 1.4 instead is the support for the samples to perform optical
analysis, and has no histological meaning.
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Figure 3.6: Pictures of two different Perlin noise surfaces used to separate
dermal from epidermal tissue (blue) and epidermal from keratine layer (or-
ange). The two surface are made by the same Perlin noise function, but the
latter is stretched and compressed in order to have a more regular behavior.

1) Stratificated Structure
In order to represent faithfully the stratification of different tissue layers, I decided
to use one flat plane to separate epidermal tissue and the keratine layer and two
boundary surfaces modulated by a Perlin noise function on different scales for the
other two separations, as shown in Figure 3.6. As stated in section 2.6, after
some customization the generation of different Perlin noise surfaces is easy and
straightforward. By the way, to achieve the regularity and the smoothness of the
orange surface in Figure 3.6 it was needed a horizontal stretching.

Following the scale of the image, the standard blue surface is created in a 7 × 7
square, while the orange surface has primarily been generated in a 1 × 1 square,
and then has been stretched to cover the same 7× 7 square, multiplying the values
in its grid points respectively for the stretching factors Rx = Ry = 1

7
. In this

primary structure, there are many important parameters defining the surfaces, like
the distance between the two surfaces’ average values and the amplitudes of the
peaks and the valleys of the surfaces. In its standard version the Perlin noise covers
the [−1; 1] range, but with a simple multiplication for an amplitude factor AS the
values can be adjusted. Those particular values have been adjusted after some
tries to recreate the proportions typical of a real specimen. To sum up, each one
of the two surfaces is stored as a discretized three-dimensional array, or better as
an array of 3-tuples in the form (x, y, f(x,y)), one tuple for every (x, y) node of the
grid, while the discretization grid was the same for both the surfaces.
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2) Subdivison in Cells
The subdivision in cells of the volume containing the structure has followed the
exact same steps described in section 3.1, hence in this paragraph I will shortly
resume the process. The first step is the definition of a suitable volume containing
the structure. Then is the time for the generation of the decomposition’s starting
points according to a quasi-random number generation technique, as described in
section 2.4. Afterward, the points are used as a base for the decomposition, and
all the cells with undefined boundaries are rejected.

3) Cells Identity Assignment
The identity assignment procedure instead has been customized for this particular
application. In this model there are no boundary cells like the ones lying on the
spherical surfaces in the pancratic model, thus there is no need for a test on the
position of each vertex of every cell. In this model, the starting point for every
Voronoi region has been used as a reference, and its relative position respect to the
boundary surfaces was the discriminating factor for assessing the identity. In order
to perform a coherent test on the relative position between the regions’ center and
the boundaries surfaces the positions of all the centers had to be discretized on
the same grid onto which were defined the surfaces. The comparison with the flat
horizontal plane defining the boundary between epidermal tissue and the keratine
layer instead was simply a test on the z coordinate of the point: z = f(x,y) ≤ ẑplane.
The result of this procedure is that to every region is assigned a label corresponding
to the belonging tissue layer: D for dermal, E for epidermal, K for keratine, and
V , which stands for void for the white empty space above the sample.

In this model, as in section 3.1, after the assignment of the identity to all the cells in
the volume the modelization process is considered complete. Any sort of improvement
and enrichment should be inserted during the structure designing phase and should be
linked to an identity label.
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3.3 Synthetic Images Production

After the model is complete we have a three-dimensional representation of the tissue
under study. The aim of the work is though to produce synthetic images from that
structure, more precisely we want pairs of images composed of the synthetic-histological
images and its related segmentation mask. The transition from 3D structure to a 2D
image is the last step in the process, and it is inspired by the actual traditional technique
for the preparation of the histological specimen, as described back in section 1.1.1. As
the biopsy sample is treated and then sectioned with the microtome, the virtual model
is sectioned in a random direction, producing an image representing the slice. This
first image contains all the information of the section but its appearance is completely
arbitrary and its look has nothing to share with a realistic sample. The original slice
then acts perfectly as a segmentation mask, but some careful and drastic makeover is
needed to produce the final realistic looking image. In this section I will describe the
general procedure to produce virtual slices from the two 3D virtual models described
before in section 3 and the technique used to edit the images and give them the desired
appearance.

3.3.1 Sectioning Process

For any model created following the general procedure described in 3, even more so for
the two particular models of pancreatic and dermal tissue, the sectioning process will
be almost the same, and it will rely mainly on the algorithm for the general section
of a convex polyhedron described back in section 2.5. As stated before the models are
essentially composed by labeled polyhedrons spatially organized in a 3D volume. The
ordered section of each polyhedron will yield all the polygons that shall be assembled
in the final section. In Figure 3.7a is shown the three-dimensional representation of the
section of a simple ramification, as the one in Figure 3.5. All the polygons that compose
the section are drawn with the color correspondent to their label, following the same
idea of Figure 3.5. In Figure 3.7b is printed the final result of the sectioning algorithm
applied to the model, which will be the segmentation mask in the single pair of synthetic
images. The colors in the produced slice match the colors used for the different identities
in the 3D model.

The simplest, yet over-abundant, way to proceed is to create the model in its entirety
and subsequently choosing the sectioning plane. Afterward, it is necessary to select
only the regions that intersect the plane and section them all. Actually, the test on the
intersection passes through the check on the relative position of the polyhedron’s vertices
respect to the sectioning plane: if all the vertices lie on the same semi-space then the
intersection would be null and the polyhedron is not of interest for that particular section.
This procedure is exactly the first step of the algorithm in 2.5, thus the filtering on the
regions is actually made during construction for optimization. The alternative method
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(a) 2D polygonal sections represented in a
3D environment.

(b) The fianl section image, produced di-
rectly on a planar picture, skipping com-
pletely the 3D representation.

Figure 3.7: In this Figure is shown the idea of the correspondence between
the section of a simple structure in the space and the correspondent section.
The correspondence is not perfect for representation requirments, in fact the
two images even if very similar are produced with two completely different
methods. At the left an image of 2D polygonal section embeded in a 3D space,
made using 3D visualization tools. At the right a simple image produced
printing the polygons in a planar picture. Printing 2D polygons in a 3D space
is much more complicated than one would think using the same tool used to
produce the other images like Figure 3.5 and 3.3.

could be to choose in the first place the direction of the sectioning plane, and in second
place to generate the model’s decomposition only in the volume adjacent to that plane.
This method enables to spare a great amount of computation, without any negative
impact on the final result. The only delicate step is the choice of a wide enough region
of space around the plane, which doesn’t compromise the representation.

As a guarantee for richness and diversification among the images, there is the need
for some degree of controlled randomness in the sectioning process, for example in the
determination of the sectioning plane direction. All the sectioning process is then based
on a single starting seed, which determines the direction of the sectioning plane in a
deterministic way, and all the rest of the model is generated as a consequence. In this
way, all the possible angulations are equally probable and will be sampled in view of
multiple applications of this process. In Figure 3.8 are shown two different sections,
along two random planes on two simple ramified structures with four spheres.
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Figure 3.8: Two different section, along two randon planes on two simple
ramificated structure with four spheres.

3.3.2 Aesthetical Post-processing

After the application of the sectioning algorithm of the previous section, the image
which will act as a segmentation mask is ready. The last and most complex task that
remains is to transform the image and to give it a realistic look. I tried many different
transformations, more or less complicated, and there was not a final decision on which is
the best blend of them. In this section, I will describe them as an arsenal of possibilities
and show their impact on the images.

Color Palette
The first correction to do to the images will inevitably be a change in the colors
of the image. Gray, Turquoise, and Red are the perfect choice for label-colors but
act poorly as physiological colors. In Figure 3.9 is shown an example of an image
produced re-mapping the colors to a new palette, inspired to the coloring of the
real specimen in Figure 1.3 and 1.2, given by the traditional hematoxylin and eosin
staining process.

Figure 3.9: Example of images produced re-mapping the colors with a color
palette inspired to a real H&E stained histological sample.

Nuclei Projection
Another fundamental processing needed was the projection of cells’ nuclei on the
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Figure 3.10: Nuclei projection on the image: (left) in yellow in the seg-
mentation mask and (right) in purple in the image under processing.

Figure 3.11: Four different sections produced with the same density on
cells but with four different method for the sampling of starting decomposi-
tion’s ponits (from left to right): • points sampled on a regular lattice, •
sampling following a simple recursion sequence as the one in equation (2.12),
• following the saltelli algorithm, • following a fully-random distribution.

image. Usually, nuclei are clearly visible in histological samples and guide the
analysis allowing to detect individual cells in the specimen. As a reference for the
nucleus position the starting point of every polyhedral region has been used and
projected on the sectioning plane as a little dark circle. The diameter of those
circles as been chosen to be a submultiple (10%) of the linear estimated dimension
L̂ of the cells in the decomposition2.

Nuclei projection, among the other things, is an excellent tool to perceive the
different effects obtained with different choices of quasi-random distributions or
fully-random distributions (with reference to section 2.4). The different impact on
the overall image is huge, and it really changes the overall sense of the image. In
Figure 3.11 are reported four different sections, produced with the same density on
cells but with four different methods for the sampling of starting decomposition’s
points.

2Following the same logic of step 3 of section 3.1.
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Figure 3.12: Example of images produced re-mapping the colors with a color
palette inspired to a real H&E stained histological sample.

Boundaries Projection
On the same wave of the previous tool, another operation that can help the ap-
pearance of an image is the projection of the boundaries of each (or just a part)
of the polygonal sections. The drawing can be clearly tuned and customized de-
pending on the specific necessities. In Figure 3.12 is shown an example of a section
on the dermal tissue model in 3.2, in which the boundaries of all the cells have
been lightly marked, and the boundaries of the cells in the keratine layer have been
heavily marked instead.

Blurring Effects
In all the images produced so far the boundaries between polygonal sections are
perfectly sharp and without any smudge. To give a more realistic feeling to those
pictures I tried different forms of blurring. As a first try, I applied a Gaussian blur-
ring filter, which is an extremely common blurring operation in computer vision,
which consists of a simple discrete convolution with a 2D Gaussian kernel. The
effect is a regular and diffuse blur all over the image, as in Figure 3.13a.

The second blurring effect I implemented was based instead on the averaging of
parallel and adjacent slices on the same model. This method is inspired by the
real sectioning technique (section 1.1.1), in which every slice is not an infinitesimal
layer of matter, but a finite sample, which suffers from mechanical dragging during
the process. The idea is that the average between three or more slices equally
spaced above and below the main slice should recreate a realistic blurring effect.
An example of an image produced with this process is shown in Figure 3.13b.

Perlin RGB Noise
A further attempt to give visual texture to the image was done using again the
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(a) (b) (c)

Figure 3.13: The two blurring effects used in this work: (left) A standard
Gaussian-filter blur and (center) a specific blur introduced averaging adjacent
parallel slices on the same image, (right) an example of RGB color noise built
joining three different Perlin noise surfaces, one for each color channel.

Perlin noise, described in section 2.6. The idea is to create some fluctuation among
the color channels of the image around the sharp values of the image produced by
the sectioning algorithm. From a practical point of view, I created three different
and independent Perlin noise surfaces, one for every color channel (Red, Green,
and Blue), and added them to create an RGB noise on the image. An example of
the resulting image is shown in Figure 3.13c.

Style Transfer
This last tool I will describe is the most sophisticated so far. It consists of the ap-
plication of a style-transfer neural network (STNN) on the image obtained through
the sectioning process, for the implantation of the visual texture from a real sam-
ple of the corresponding tissue. Style-transfer NNs, and their functioning, have
been described in detail in section 2.7, and here I will cover just the particular
applications on the two type of section produced.

The first manipulation I report is the one on a section from the pancreatic tissue
model. The image of which to conserve the visual content is a section with some
simple pre-processing picked from the ones described before (Figure 3.14a): a more
accurate color palette, the projection of nuclei, and the average on five adjacent
slices. The image from which to pick the style, thus the visual texture, is a portion
of an actual histological sample of the pancreas, and it is shown in Figure 3.14b.
The application of the STNN yields a hybrid image, shown in Figure 3.14c. The
second application was made on a section on dermal tissue. The three content,
style and styled images are shown respectively in Figure 3.15a, 3.15b, and 3.15c.

In Figures 3.14, and 3.15 are reported the best results among all the different tests
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(a) (b) (c)

Figure 3.14: Application of the style-transfer NN on a section of the pan-
creatic tissue model: 3.14a the content image, 3.14b the style image, 3.14c
the hybrid resulting image.

made on the sections. I made different tries on the same image with different pro-
cessing before the manipulation with the STNN, to see the impact of the different
adjustment on the resulting styled image. It turned out that the presence of nuclei
is essential to give a homogeneous texture to the image and avoid unrealistic arti-
facts. On the other hand, the choice of the color palette has a way lighter effet than
what one would think: the model yields almost the same result with a grey-levels
image or with any other palette.

It interesting to notice the timing cost of this style transfer operation. While
all the other manipulation described in this chapter requires a very short time
(seconds) to be applied, and are in practice instantaneous, the transfer of style is a
way more robust operation, which implies the finalization of the training of a pre-
trained neural network. On a computer with the technical specification described
in section 2.8 this operation instead took minutes, which is a time two full orders
of magnitude greater.

It should be noted that the presented results are obtained from the application of a
pre-trained STNN model. The development of a specialized model for histological
texture transfer could improve extremely the ability to produce realistic images,
way further the present results.

One single complete application of the process consists then in the generation of
a tissue model, in the sectioning along a random section plane, and in the processing
of the image, in order to produce the pair of ground-truth image and the synthetic
histological image. The target is to apply over and over this process to collect the
necessary amount of images and constitute an entire dataset. An important feature
to have for the process is thus a complete automatization, in order to scale up the
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(a) (b) (c)

Figure 3.15: Application of the style-transfer NN on a section of the dermal
tissue model: 3.15a the content image, 3.15b the style image, 3.15c the hybrid
resulting image.

generation of images, possibly even in parallel computation. For this purpose, I created a
pipeline workflow interface for the image generation, with an automatized harmonization
of every piece of the process. The generation now requires just to fill a configuration
file in which writes all the specific characteristics of the images: the type of structure,
its features, the desired processing on the images, and eventually the random seeds for
a supervised generation. In Figure 3.16 is reported a small scale example of a dataset
produced with multiple automatized applications of the generation tool on a ramified
structure inspired to a pancreatic tissue model. It is clear the correspondence between
segmentation mask and synthetic histological images, and the diversification given by
the supervised randomness on the generation.

The actual tool used for the set up of a working pipeline was the Snakemake [25]
workflow management system, which is a python-based tool to create reproducible and
scalable data analyses.
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Figure 3.16: Small scale example of dataset produced with multiple autom-
atized applications of the generation tool on a ramificated structure inspired
to a pancreatic tissue model. 71



Conclusions

In this project, I focus on the problem of synthetic histological image generation for the
purpose of training Neural Networks for the segmentation of real histological images. The
manual analysis of histological specimens is a complex, time-consuming, and expensive
task and nevertheless, it is a pillar of countless diagnostic techniques. Any form of
support for this procedure hence is welcome and endorsed by the health-care system. In
particular, in this work, I focus on the problem of histological specimens segmentation.
The most advanced algorithms for image segmentation are based on Deep Learning and
requires the training of extensive and complex neural networks. One of the toughest
hurdles to overcome for the training of those NN is the abundance and the quality of
pre-labeled examples of segmentation on real histological samples. The collection of all
the hand-labeled histological samples necessary for the whole training, with pixel-level
precision, is virtually impossible. This work thus proposes a methodology to generate,
in a completely automatic way, synthetic pre-labeled histological-like images, that can
be used as training material for a NN.

The method I propose consists of the recreation of the traditional histological spec-
imens’ preparation, and it is based on the sectioning of a 3D virtual model of a region
of histological tissue. The virtual 3D model of a region of a particular type of human
tissue is built after physical and physiological considerations. The model is then subject
to a virtual tomography operation, which yields the synthetic sampling of the virtual
tissue in which the histological identity of every pixel is perfectly known. This first
image will act as a segmentation mask for a second, realistic image. The first image is
post-processed with several aesthetical processing and refinements, and the final product
is the synthetic histological-like image. The pair made of the two images is suitable for
the supervised learning of a NN oriented toward the segmentation of histological images.
The production of each pair of images is completely automatic and it does not require
the intervention of any human operator, it is thus a scalable process that can produce a
great abundance of images.

The quality of the images is directly connected to the richness and the quality of the
model. The perfect modelization of a region of tissue, like human pancreatic tissue, is by
far out of reach, hence the richness and the fidelity of the produced images are inevitably
lower than the real sample. Nevertheless, the quality of the produced images is sufficient
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to perform the preliminary phase of the training of a NN following a training strategy
known as curriculum learning. This learning process consists of giving the NN a copious
quantity of lower complexity level example in the first instance, reserving the few and
sophisticated real hand-labeled histological samples for the finalization of the training.

The first chapter of this thesis is devoted to the contextualization of the present work.
It describes how the histological samples are obtained after a tissue biopsy and how the
digitalization process works.

The second chapter collects all the details of every technical tool I used during the
design of this project. A brief theoretical introduction is proposed for every item besides
the thorough description of its practical use. In this chapter, a section is devoted to
the description of a general methodology for computing the two-dimensional section of
an arbitrary three-dimensional convex polyhedron. The algorithm here described has
been devised and implemented all by my self, and then inserted in the workflow of the
project. This is one of the key pieces for the automatization of the virtual tomography
process, and it allows us to connect the three-dimensional model to the two-dimensional
representation of a sampled section.

The third chapter is the center of this work, and it contains the description of all
the design choices, and the steps I followed for the development of the two human tissue
models I propose: the first of pancreatic tissue and the second of dermal tissue. The first
and second sections are dedicated to the description of the two proposed 3D virtual tissue
models, which are built following different steps. The third section instead contains a
thorough description of the method to perform the sectioning onto a virtual model and
how to process the resulting images. The development has required the harmonization
of many different technical aspects and mathematical tools and it results in a general
methodology for the generation of synthetic histological images.

The process starts with the building of the target tissue’s structure in a virtual envi-
ronment. This structure is then embedded in a three-dimensional space decomposition
that subdivides the volume into individual cells. Those cells are labeled in correspon-
dence to their role in the model, and their identity is then perfectly encaptured by the
virtual tomography procedure. The sectioning process is responsible for the production of
synthetic images, which are then conveyed toward an aesthetical post-processing pipeline
specialized for the particular target tissue. The product of any application of this process
is a pair made of a segmentation mask and the corresponding synthetic histological-like
image. This completely automatized procedure allows building arbitrary large datasets
for the training of NNs, without the intervention of any human operator.

There are many possibilities and directions for improving this thesis project. One first
aspect to strengthen could be the richness of the models: adding more elements in the
structure, and refining their representation of the tissue at the cellular level. This would
lead to a better quality of the synthetic images, that would assist the training of NNs
in more and different applications. Another aspect that lends itself to improvements
is the development of a dedicated style transfer NN targeting the histological texture
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transfer, which could lead progresses in the quality of image generation. There is also
the intention to perform an actual attempt of NN training on the images produced with
this process. This would complete conceptually the idea underneath the project and
would be an excellent opportunity to detect weaknesses and to draw up possible lines
of development. The repeated application of the generation method would allow the
building of entire datasets suitable for different duties, like the training of DL-based
models or to guarantee a common metric for the comparison of the performances of
different aready establisehd segmentaion algorithms.
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