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Sommario

La cellula vivente è un sistema complesso governato da molti processi che non

sono ancora stati compresi: il processo di differenziazione cellulare è uno di questi.

La differenziazione cellulare è il processo in cui le cellule di un tipo specifico si ripro-

ducono e danno origine a diversi tipi di cellule. La differenziazione cellulare è re-

golata dai cosiddetti Gene Regulatory Networks (GRN). Un GRN è una raccolta di

regolatori molecolari che interagiscono tra loro e con altre sostanze nella cellula per

governare i livelli di espressione genica di mRNA e proteine. Kauffman propose per

la prima volta nel 1969 di modellare GRN attraverso le cosiddette Random Boolean

Networks (RBN). I RBN sono reti in cui ogni nodo può avere solo due possibili valori:

0 o 1, dove ogni nodo rappresenta un gene in GRN che può essere ”on” oppure ”off”.

Queste reti possono modellizzare i GRN perché l’attività di un nodo rappresenta il

livello di espressione di un gene nell’intera regolazione.

In questo lavoro di tesi ci avvaliamo di un modello matematico per sviluppare e

riprodurre una possibile rete di regolazione genica per il processo di differenziazione

cellulare.
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Abstract

Real living cell is a complex system governed by many process which are not yet

understood: the process of cell differentiation is one of these. Cell differentiation is

the process in which cells of a specific type reproduces themselves and give arise to

different type of cells. Cell differentiation is governed by the so called Gene Regu-

latory Networks (GRNs). A GRN is a collection of molecular regulators that interact

with each other and with other substances in the cell to govern the gene expression

levels of mRNA and proteins. Kauffman proposed for the first time in 1969 to model

GRN through the so called Random Boolean Networks (RBN). RBNs are networks in

which each node can have only two possible values: 0 or 1, where each node represent

a gene in GRN which can be ”on” or ”off”. These networks can model GRNs because

the activity of one node represents the expression level of one gene among the whole

regulation.

In this thesis work we make use of a mathematical model to develop and repro-

duce a possible Gene Regulatory Network for the process of cell differentiation.
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Introduction

The cell is a paradigmatic example of complex system governed by many pro-

cesses which are not yet understood: the process of cell differentiation is one of these.

Cell differentiation is the dynamical process in which stem cells reproduce and give

arise to different type of cells. Waddington in 1957 [1] proposed to model cell differen-

tiation with an epigenetic landscape in which lay different type of cells. He portrayed

the epigenetic landscape as an inclined surface with a cascade of branching ridges

and valleys , which in the context of cell lineage selection, represent the series of ”ei-

ther/or” fate choices made by a developing cell. This epigenetic landscape can be

seen as a potential in a physical system in which different type of cells are attracted

by the different wells of this potential. Now, it is well known that cell differentiation

is governed by the so called Gene Regulatory Networks (GRNs). A GRN is a collec-

tion of molecular regulators that interact with each others and with other substances

in the cell to define the gene expression levels of mRNA and proteins.

Recent studies on omics data propose ways to measure epigenetic landscape for

different cells[2][3][4], using stochastic processes. In these works it is proposed a prob-

abilistic ”pseudo-potential” to quantify the epigenetic landscape for a genetic network

regulating cell fate, where the elevation of the surface is inversely related to the likeli-

hood of occurrence of a particular state in phase space. In this formulation a stochastic

potential energy landscape is characterized for a genetic network, based on a Hartree

mean-field approximation of the underlying master equation.

We propose a new approach that highlights the possibility of the existence of a

fitness landscape potential as an emergent property from the dynamics of interacting

genetic networks. Our idea is to measure epigenetic landscape starting from mod-
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INTRODUCTION 10

eling GRNs through Random Boolean Networks (RBNs), which were introduced for

the first time by Stuart Kauffman in 1969 [6]. RBNs are networks in which each node

can have only two possible values: 0 or 1, where each node represents a gene in GRN

which can be ”on” or ”off”[7]. The evolution of the state of the network is given by

some boolean functions, depending on the connectivity of the nodes. So each node

will have one boolean function which defines the next state during the descrete evo-

lution.

The model proposed, based on these random networks, focuses in the representa-

tion of GRNs for cell differentiation, and aims to find a structure of fitness landscape.

The main concept of the model is that one type of cell is governed by a specific type of

GRN. In this sense, since cell differentiation concerns multiple types of cells, we want

to construct a random network made by multiple and interacting clusters, which sim-

ulate the activity and the gene expression in GRN and so the proces of differentiation.

The idea is based on the fact that the production of a specific type of cell may hinibit

the raise of one other and viceversa. This this can be a seen as a bistable dynamical

system. To bistable dynamical systems can be associated a potential which presents

two different stationary states, and in the analysis of this model we can find that

constructing a network with two interacting clusters, they present a bistable nature.

Thus, using Kramer Transition Rate Theory, from this bistability we can make an es-

timate for a double well potential, recovering the theory of epigenetic landascape of

Wadington.

In Chapters 1 and 2 we make a biological introduction of Cell Differentiation

and of Gene Regulatory Network. In Chapter 3 we present the concept of Ran-

dom Boolean Networks, a model proposed for the first time by Kauffman to model

Gene Regulatory Networks. In Chapter 4 we propose a new model based on Ran-

dom Boolean Networks but with some differences, where networks can have also

hinibitory links between clusters. In Chapter 5 we make a briefly introduction on

Kramer Transition Rate Theory. In Chapter 6 we make a numerical analysis of the

thoretical model proposed in 4 and show the results.
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tory Networks

Random Boolean
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Figure 1: Road map of the thesis work. First, we start introducing the process of cell differ-

entiation and Gene Regulatory Networks. Then, we introduce the main theoretical concepts

among Random Boolean Networks. Finally we present our theoretical model. At the end,

we make analysis of the model with numerical simulations, and using Kramer Theory we try

recover the Waddington epigenetic landscape.



Chapter 1

Cell Differentiation

In this Chapter we explain cell differention and the role of genetic networks among

this process.

1.1 Definition

Cell differentiation is the process whereby stem cells become progressively more

specialized. The differentiation process occurs both during the development of a mul-

ticellular organism and during tissue repair and cell turnover in the adulthood. Gene

expression, and therefore its regulatory mechanisms, plays a critical role in cell dif-

ferentiation. Stem cells are undifferentiated biological cells which can both reproduce

themselves, self-renewal ability, and differentiate into specialized cells, potency. The

principles underlying cellular differentiation remain among the most enigmatic in bi-

ology. We are required to explain the spontaneous generation of a multiplicity of cell

types from the single zygote, to deduce a natural tendency of a system to become

increasingly heterogeneous, then to stop differentiating.

Among the important characteristics of cell differentiation are:

• initiation of change;

• stabilization of change after cessation of stimulus;

12



1.1 Definition 13

Figure 1.1: Schematic representation of cellular differentiation.

• the efficacy of many substances, exogenous and endogenous, as inductive stim-

uli;

• progressive limitation in the number of developmental pathways open to any

small region of the embryo;

• restricted periods during which a cell is competent to respond to an inductive

stimulus; the discreteness of cell types, that is, the mutually exclusive constella-

tions of properties by which cells differ;

• a requirement for a minimal and preferably heterogeneous cell mass to initiate

differentiation in many instances, and to maintain it in some;

• the occurrence of metaplasia between undifferentiated cell types, or from an un-

differentiated type to a specialized type, but the lack of metaplasia (the isolation)

between specialized cell types;

• cessation of differentiation.
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Cells are thought to differ due to differential expression of, rather than structural

loss of, the genes. Differential activity of the genes raises at least two questions which

are not always carefully distinguished: the capacity of the genome to behave in more

than one mode; and mechanisms which insure the appropriate assignment of these

modes to the proper cells.

Within multicellular organisms, tissues are organized in communities of cells that

work together to carry out a specific function. The exact role of a tissue in an organ-

ism depends on what types of cells it contains. For example, the endothelial tissue

that lines the human gastrointestinal tract consists of several cell types. Some of these

cells absorb nutrients from the digestive contents, whereas others secrete a lubricat-

ing mucus that helps the contents travel smoothly. However, the multiple cell types

within a tissue don’t just have different functions. They also have different transcrip-

tional programs and may well divide at different rates. Proper regulation of these

rates is essential to tissue maintenance and repair. Stem cells typically have the ca-

pacity to mature into many different cell types. Transcription factors (TF), which are

proteins that regulate which genes are transcribed in a cell, appear to be essential to

determining the pathway particular stem cells take as they differentiate. For example,

both intestinal absorptive cells and goblet cells arise from the same stem cell popula-

tion, but divergent transcriptional programs cause them to mature into dramatically

different cells. Whenever stem cells are called upon to generate a particular type of

cell, they undergo an asymmetric cell division. With asymmetric division, each of

the two resulting daughter cells has its own unique life course. In this case, one of

the daughter cells has a finite capacity for cell division and begins to differentiate,

whereas the other daughter cell remains a stem cell with unlimited proliferative abil-

ity. Waddington in 1957 [1] proposed to model cell differentiation with an epigenetic

landscape in which lay different type of cells. He portrayed the epigenetic landscape

as an inclined surface with a cascade of branching ridges and valleys , which in the

context of cell lineage selection, represent the series of ”either/or” fate choices made

by a developing cell (see figure 1.2).
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Figure 1.2: The ”epigenetic landscape” proposed by Wadington shows a ball rolling down

valleys on an inclined surface, as a visual metaphor for branching pathways of cell fate (image

from [1]).

The process of cell differentiation can be seen by a physical point of view: a mul-

tistable dynamical system governed by a multi well potential in which different cell

fates correspond to different stationary states of the system.

1.2 The role of Gene expression in cellular differentia-

tion

Gene expression is a complex process regulated at several stages in the synthesis

of proteins. In addition to the DNA transcription regulation, the expression of a gene

may be controlled during RNA processing and transport (in eukaryotes), RNA trans-

lation, and the post-translational modification of proteins. This gives rise to genetic

regulatory systems structured by networks of regulatory interactions between DNA,

RNA, proteins and other molecules: a complex network termed as a gene regulatory

network (GRN) (see Chapter 2). Some kind of proteins are the transcription factors that
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bind to specific DNA sequences in order to regulate the expression of a given gene.

The power of transcription factors resides in their ability to activate and/or repress

transcription of genes. The activation of a gene is also referred to positive regulation,

while the negative regulation identifies the inhibition of the gene[11]. The regulation

of gene expression is essential for the cell, because it allows to control the internal

and external functions of the cell. Furthermore, in multicellular organisms, gene reg-

ulation drives the processes of cellular differentiation and morphogenesis, leading to

the creation of different cell types that possess different gene expression profiles, and

these last therefore produce different proteins that have different ultrastructures that

suit them to their functions. Therefore, with few exceptions, all cells in an organism

contain the same genetic material, and hence the same genome. The difference be-

tween the cells are emergent and due to regulatory mechanisms which can turn on or

off genes. Two cells are different, if they have different subsets of active genes. In the

next Chapter we will see in details Gene Regulatory Networks and the principles for

modeling them.



Chapter 2

Gene Regulatory Networks

2.1 Definition

Gene regulation controls the expression of genes and, consequently, all cellular

functions. Gene expression is a process that involves transcription of the gene into

mRNA, followed by translation to a protein, which may be subject to post-translational

modification [13]. The transcription process is controlled by transcription factors (TFs)

that can work as activators or inhibitors. TFs are themselves encoded by genes and

subject to regulation, which altogether forms complex regulatory networks. Cells ef-

ficiently carry out molecular synthesis, energy transduction, and signal processing

across a range of environmental conditions by networks of genes, which we define

broadly as networks of interacting genes, proteins, and metabolites [14]. Formally

speaking, a gene regulatory network or genetic regulatory network (GRN) is a collection of

DNA segments in a cell which interact with each other (indirectly through their RNA

and protein expression products) and with other substances in the cell, thereby gov-

erning the rates at which genes in the network are transcribed into mRNA. In general,

each mRNA molecule goes on to make a specific protein (or set of proteins). In some

cases this protein will be structural, and will accumulate at the cell-wall or within the

cell to give it particular structural properties.

These networks control biological process of all organisms. The complex control

systems underlying development have probably been evolving for more than a billion

17
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Figure 2.1: Schematic representation of a Gene Regulatory Network.
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years. They regulate the expression of thousand of genes in any given biological pro-

cess. They are essentially hardwired genomic regulatory codes, the role of which is to

specify the sets of genes that must be expressed in specific spatial and temporal pat-

terns. In physical terms, these control system consist of many thousands of modular

DNA sequences. Each module receives and integrates multiple inputs, in the form of

regulatory proteins (activators and repressors) that recognize specific sequences within

them. The end result is the precise transcriptional control of the associated genes.

Functional linkages between these particular genes, and their associated regulatory

modules, define the core networks underlying development. They explain exactly

how genomic sequence encodes the regulation of expression of the sets of genes that

generate patterns and execute the construction of multiple states of differentiation.

The regulatory genome is a logic processing system: every regulatory module con-

tained in the genome receives multiple inputs and processes in ways that can be math-

ematically represented as combinations of logic functions.

Definitive regulatory functions emerge only from the architecture of intergenic

linkages, and these functions are not visible at the level of any individual genes. So

gene regulatory networks can be determined only by experimental molecular biology

in which the functional meaning of given regulatory sequences is directly determined.

GRNs have a complex structure: they are inhomogeneous compositions of differ-

ent kinds of subnetworks, each performing a specific kind of function. Some subnet-

works are used in many processes.

In principle, mathematical modeling of GRN dynamics can provide a theoreti-

cal foundation for understanding cell heterogeneity and gene expression dynamics,

by quantitatively linking molecular-level regulatory mechanisms with observed cell

states. However, due to the molecular complexity of gene regulatory mechanisms, it

remains challenging to integrate such models with single-cell data.

2.2 Modelling GRNs

Mathematical models can account for (and at least partially reproduce) observed

cellular heterogeneity in two primary ways. First, gene network models are multi-
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stable dynamical systems, meaning a given network has the potential to reach multi-

ple stable states of gene expression. These states arise from the dynamic interplay of

activation, inhibition, feedback, and nonlinearity [6] [23]. Second, some mathemati-

cal models inherently treat cellular noise. This noise, or stochasticity, is modeled in

various ways depending on assumptions about the source [15] [16]. Discrete, stochas-

tic models of gene regulation, which track discrete molecular entities, regulatory-

protein binding kinetics, and binding states of promoters controlling gene activity,

have formed the basis of biophysical theories of gene expression noise due to so-called

intrinsic molecular noise [16] [17]. Such stochastic gene regulation mechanisms have

also been incorporated into larger regulatory network models using the formalism

of stochastic biochemical reaction networks, and have been utilized to explore how

molecular fluctuations can cause heterogeneity within phenotype-states and promote

stochastic transitions between phenotypes [18] [19].

The quantitative landscape of cellular states is another concept that is increasingly

utilized to describe cellular heterogeneity. Broadly, the cellular potential landscape

(first conceptualized by Waddington [4][1]) is a function in high-dimensional space

(over many molecular observables, typically expression levels of different genes), that

quantifies the stability of a given cell state. In analogy to potential energy (gravita-

tional, chemical, electric, etc.), cell states of higher potential are less stable than those

of lower potential. The landscape concept inherently accounts for cellular hetero-

geneity, since it holds that a continuum of states is theoretically accessible to the cell,

with low-potential states (in “valleys”) more likely to be observed than high-potential

states. The landscape is a rigorously defined function derived from the dynamics of

the underlying gene network model, according to some choice of mathematical for-

malism [20][4].

Stochastic modeling of gene network dynamics has been employed in various

forms for analysis of single cell measurements. However, few existing analysis meth-

ods utilize discrete-molecule, stochastic models, which fully account for intrinsic gene

expression noise and its impact on cell-state, to aid in the interpretation of noisy dis-

tributions recovered from single cell RNA sequencing data [2][3]. There exists an op-

portunity to link such biophysical, stochastic models, which reproduce intrinsic noise
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and cell heterogeneity in silico, to single cell datasets that characterize cell heterogene-

ity in vivo. In particular, the landscape of heterogeneous cell states computed from

discrete stochastic models can be directly compared to single-cell measurements.

2.3 Principle of the models

GRNs may be interpreted as an idealized dynamical system of model genes with

directional links (transcription factors), updating their state in parallel, according

to the combinatorial logic of their inputs, Kauffman’s Random Boolean Networks

[6][24]. Gene activity at the molecular scale consists of discrete events occurring con-

currently. Variable protein concentrations can be accounted for by genes being on for

some fraction of a given time span. The RBN idealization is arguably a valid starting

point for gaining insights into gene network dynamics. In a cell type’s gene expres-

sion pattern over a span of time (i.e. its space- time pattern), a particular gene may,

broadly speaking, be either on, off, or changing. If a large proportion of the genes are

changing, chaotic dynamics, the cell will be unstable. On the other hand, dynamics

that settles to a pattern where a large proportion of the genes are permanently on or

o (frozen) may be too in exible for adaptive behavior. Cells constantly need to adapt

their gene expression pattern in response to a variety of hormone and growth/di er-

entiation factors from nearby cells. The definition of a cell type may be more correctly

expressed as a set of closely related gene expression patterns, allowing an essential

measure of exibility in behavior.

In the next Chapter we will concentrate on the Random Boolean Networks pro-

posed by Kauffmann in 1969.



Chapter 3

Random Boolean Networks

In this chapter we explain the basic concepts of Random Boolean Network pro-

posed for the first time by Kauffman. In our new model (see Chapter 4 we will take

the first basic concepts of Ranom Boolean Networks and we will deviate from Kauff-

man model.

3.1 Random Boolean Networks

Random Boolean networks (RBNs) were introduced in 1969 by S. Kauffman as a

simple model of genetic systems [6]. Each gene was represented by a node that has

two possible states, “on” (corresponding to a gene that is being transcribed) and “off”

(corresponding to a gene that is not being transcribed). There are altogether N nodes,

and each node receives input from K randomly chosen nodes, which represent the

genes that control the considered gene. Furthermore, each node is assigned an update

boolean function that prescribes the state of the node in the next time step, given the

state of its input nodes. This update function is chosen from the set of all possible

update functions according to some probability distribution. Starting from some ini-

tial configuration, the states of all nodes of the network are updated in parallel. Since

configuration space is finite and since dynamics is deterministic, the system must

eventually return to a configuration that it has had before, and from then on it repeats

the same sequence of configurations periodically.

22
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3.2 The model

Let’s consider a network of N nodes. The state of each node at a time t is given by

σi(t) ∈ {0, 1} with i = 1, . . . , N. The N nodes of the network can therefore together

assume 2N different states. The number of incoming links to each node i is denoted by

ki and is drawn randomly independently from the distribution P(ki). The dynamical

state of each σi(t) is updated synchronously by a Boolean function Λi [35]:

Λi : {0, 1}ki → {0, 1}

An update function specifies the state of a node in the next time step, given the state

of its K inputs at the present time step. Since each of the K inputs of a node can be

on or off, there are M = 2K possible input states. The update function has to specify

the new state of a node for each of these input states. Consequently, there are 2M

different update functions. For example let’s consider a network with K = 1, so all

the functions Λi receives the input from one single node. In general each element

receives inputs from exactly K nodes, so we have a dynamical system defined from:

σi(t + 1) = Λi(σi1(t), σi2(t), ..., σiK(t)). (3.1)

So, the randomness of these network appears at two levels: in the connectivity

of the network (which node is linked to which) and the dynamics (which function is

attributed to which node).

3.3 Dynamics

All nodes are updated at the same time according to the state of their inputs and

to their update function. Starting from some initial state, the network performs a tra-

jectory in state space and eventually arrives on an attractor, where the same sequence

of states is periodically repeated. Since the update rule is deterministic, the same state

must always be followed by the same next state. If we represent the network states

by points in the 2N-dimensional state space, each of these points has exactly one “out-

put”, which is the successor state. We thus obtain a graph in state space. The size
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or length of an attractor is the number of different states on the attractor. The basin

of attraction of an attractor is the set of all states that eventually end up on this at-

tractor, including the attractor states themselves. The size of the basin of attraction

is the number of states belonging to it. The graph of states in state space consists of

unconnected components, each of them being a basin of attraction and containing an

attractor, which is a loop in state space. The transient states are those that do not lie

on an attractor. They are on trees leading to the attractors.

Let us illustrate these concepts by studying the small K = 1 network shown in

Figure 3.1, which consists of 4 nodes:

23

1

4

Figure 3.1: A small network with N = 4 and K = 1.

If we assign to the nodes 1,2,3,4 the functions invert, invert, copy, copy, an initial

state 1111 evolves in the following way:

1111→ 0011→ 0100→ 1111

This is an attractor of period 3. If we interpret the bit se- quence characterizing the

state of the network as a number in binary notation, the sequence of states can also be

written as

15→ 3→ 4→ 15

The entire state space is shown in Figure 3.2:
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Figure 3.2: The state space of the network shown in Figure 3.1, if the functions copy, copy,

invert, invert are assigned to the four nodes. The numbers in the squares represent states, and

arrows indicate the successor of each state. States on attractors are shaded.

There are 4 attractors, two of which are fixed points (i.e., attractors of length 1). The

sizes of the basins of attraction of the 4 attractors are Ω1 = 6, Ω2 = 6, Ω3 = 2, Ω4 = 2.

If the function of node 1 is a constant function, fixing the value of the node at 1, the

state of this node fixes the rest of the network, and there is only one attractor, which

is a fixed point.

3.4 Dynamical phase transitions

In RBNs, as well as in many dynamical systems, three phases can be distinguished:

ordered, chaotic, and critical [29]. These phases can be identified with different methods,

since they have several unique features. these dynamical phases is related to “sensi-

tivity to initial conditions”, “damage spreading”, and “robustness to perturbations”

which are different ways of measuring the stability of a network. We can “mutate”,

“damage” or “perturb” a node of a RBN by flipping its state. We can also change a



3.4 Dynamical phase transitions 26

connection between two nodes, or in the lookup table of a node. Since nodes affect

other nodes, we can measure how much a random change affects the rest of the net-

work. In other words, we can measure how the damage spreads. This can be done

by comparing the evolution of a “normal” network and a “perturbed” network. In

the ordered regime, usually the damage does not spread: a “perturbed” network “re-

turns” to the same path of the “normal” network. This is because changes cannot

propagate from one green island to another. In the chaotic phase, these small changes

tend to propagate through the network, making it highly sensitive to perturbations

[22]. An other feature is the convergence versus divergence of the trajectories in state

space of the network dynamics. In the ordered phase, similar states tend to converge

to the same state. In the chaotic regime, similar states tend to diverge. At the edge

of chaos, nearby states tend to lie on trajectories that neither converge nor diverge in

state space. Living systems, or computing systems, need certain stability to survive,

or to keep information; but also flexibility to explore their space of possibilities. This

has lead people to argue that life and computation occur more naturally at the edge

of chaos or at the ordered regime close to the edge of chaos [25][22].

Very early in the studies of RBNs, people realized in simulations that the networks

with K ≤ 2 were in the ordered regime, and networks with K ≥ 3, were in the chaotic

regime. In Figure 3.3 we can appreciate characteristic dynamics of RBNs in differ-

ent phases. We can identify phase transitions in RBNs in different ways. The main

idea is to measure the effect of perturbations, the sensitivity to initial conditions, or

damage spreading. This is analogous to Lyapunov exponents in continuous dynam-

ics. The phase transitions can be statistically or analytically obtained. Derrida and

Pomeau were the first to determine analytically that the critical phase (edge of chaos)

was found when K = 2 [26][35][28]. following the model of Kauffman, RBN which

most represent biological GRNs are those wich has K = 2 [25], because in the frozen

phase (where K = 1) networks are too simple to represent real regulatory networks;

while in the caothic phase (where K = 3) the time scales of the networks cycles grow

exponentially, which is not biologically pheasible[34]. In Chapter 6 we will see the

differences in K = 1 networks and K = 2 networks.
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Figure 3.3: Phase diagram for the N − K model. The shaded area corresponds to the chaotic

phase, whereas the white region corresponds to the chaotic phase. The curve separating both

regions is the critical phase (image from[8]).

3.5 Attractor jumps

In Kauffman model, attractors in the state space are considered as gene regulatory

networks of different cells, where different attractors represent cells of different type,

and where for example cancer cells lay in one specific attractor [9][10]. Now, if we

suppose that different cell types lay in different attractors, we suppose that the jump

from an attractor to one other is given by a perturbation in the binary sequence of the

genes. So for example we take the previous network, and consider that we are in the

state 12 of the first attractor:

12→ 11→ 0→ 12

And suddenly we change the state of the third node from 0 to 1:

1100→ 1110
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We change the system to have the state 14 and so we jump into the second attractor:

14→ 3→ 4→ 15→ 3
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Figure 3.4: Jump from one attractor to one other in the state space.

So the branching pathways of differentiation between attractors in a RBN in the

ensembles create a directed graph showing which attractors can be perturbed to reach

which attractors.

In fact, if we consider all the possible stochastic perturbations in the binary se-

quence of the genes, we can get the all the possible transitions between the attractors,

and what we obtain is an other network, where the nodes are the attractors and the fre-

quencies of transitions can be used to build a random walk on this network[10][9][32].

3.6 Deviation from Kauffman model

Kauffman model on boolean networks focuses on the concept of attractors in the

state space, where each attractor may represent a different type of cells, and the tran-



3.6 Deviation from Kauffman model 29

sition from an attractor to one other is totally stochastic and reversible process since

they are disconnected components. Our model deviates from the concept of attrac-

tors, and focuses on the fact that Gene Regulatory Networks may be composed by

multiple connected subnetworks (which we will call clusters), in which each cluster

may represent a type of cell. The idea is to construct random networks with clusters

which inhibit each other causing transitions of activity from one to oneother. Now,

since these networks are randomly constructed, we decided to use an ensemble ap-

proach, considering the average behavior of these networks. Further, considering an

ensemble of these networks, we can make use of Kramer Transition Rate Theory in

order to recover the Waddington epigenetic landscape for two different type of cells.



Chapter 4

The proposed new model

In this Chapter we present our new theoretical model of Gene Regulatory Net-

works based on Random Boolean Networks, in order to estimate a theoretical fitness

potential for cell differentiation. Kauffman model on boolean networks focuses on

the concept of attractors in the state space (see Chapter 3), where each attractor may

represent a different type of cells, but in the state space attractor networks are discon-

nected components. Our model deviates from the concept of attractors, and focuses

on the fact that Gene Regulatory Networks may be composed by multiple connected

subnetworks (which we will call clusters), in which each cluster may represent a type

of cell. The idea is to construct random networks with clusters which inhibit each

other causing transitions of activity from one to oneother.

4.1 Assumptions for the theoretical model

The dynamical model is a schematic representation of the activity of gene regula-

tory networks introduced in Chapter 2. We have to discuss the assumptions to define

the model from a biological point of view: the main criticism to a model is that its as-

sumptions cannot be justified by the biological mechanisms. Our goal is to model the

genetic activity related to a differentiation process of a cell: i.e. this activity is a stable

long term activity whose stability is probably controlled by biochemical mechanisms

(i.e. methylation processes). Then we assume that this evolution is possible due to the

30
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competition of different genetic activities through dynamical mechanisms that can be

triggered by the external environmental signals. In particular we assume:

• the long term genetic activity is determined by the presence of small genetic

networks that have a stable active dynamical state;

• there exists a control mechanism: the subnetworks have control nodes that pre-

vent the arise of the active state in the subnetwork if there are set to the inactive

state;

• once the active state has been established in a subnetwork it remains stable in

time without any stimulus, except if an inhibitory stimulus change the state of

control nodes;

• the stability and the controllability properties of a subnetwork depends from the

existence of loops in the subnetwork: a loop may be related to the activation of

metabolic cycles in the cell that define the cell behavior;

• each node of a subnetwork may represent the state of a gene that is connected

and regulates the activation of other genes;

• the cell differentiation mechanism is defined by the competition of different sub-

networks that interact in a inhibitory way;

The complexity of the model is not a fundamental issue since we want to point out

universal behaviors: first of all the existence of bistability or bifurcation phenomena

for simple model and the definition of control parameters.

4.2 The model

Here we studied the model dynamics in different situations using mathematical

methods. The main idea is understand the dynamics of the models to point out the

universal properties that are robust and could explain the experimental data. The

biological meaning of control parameters is a fundamental task to apply the model to

predict the results of new experiments.
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We consider a physical system that can be described by a weighted interaction net-

work among nodes that can assume different dynamical states (in the case of a gene

network the states σ ∈ {0, 1} and we have models similar to spin models). The inter-

action structure is defined by signed adjacency matrix Aij ∈ {−1, 0, 1}where the sign

refers to a cooperative or antagonist interaction between the connected nodes. In the

simplest case, we introduce a stochastic dynamics using the probability pi(σ, t) that

the node i is in the state σ (we assume σ > 0) at time t: in a deterministic approach

pi(σ, t) = δ(σ− σ(t)) to denote that the node assume the state σ = 1 with probability

one. The evolution of a deterministic model can be described by the equation

σi(t + 1) = Φi(σ(t)) = Θ

(
∑

j
Aijσj(t)

)
(4.1)

where Θ(x) ∈ [0, 1] is a threshold sigmoidal function (we assume Aii = 0 to avoid

self loops).

Remark: the dynamics is a information diffusion on the network. If we consider the

linear system

ζi(t + 1) = ∑
j

Aijζ j(t)

where ζi are non negative integers we have an equivalent dynamics since σi = Θ(ζi)

and it is possible to study the linear system to derive some properties of the initial

system. For example the relaxation time to the solution σi = 1 ∀ i is for a given initial

condition σ0
j = δjk is t = n such that the matrix An has positive entries along the

whole k-th column. This means that for each node i there is a walk of length n from

the initial node k to i.

We also assume a cause-effect relation so that Aij is a directed graph. The determinis-

tic model is a Hopfield network (each node has at least an input and an output link;

the environment nodes has only output links) and one could study the equilibrium

states and their stability. An equilibrium condition as follows is characterized as fol-

lows: for each i let

Qi(t) = ∑
j

Aijσj(t)

then Qi > 0 if σi > 0 and vice versa. Then Aij ≥ 0(i.e. Aij is a connectivity matrix

for a directed network) implies that the non trivial equilibrium is σi = 1: if σk = 0 for
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some k ∈ K then we have

∑
j/∈K

Akjσj = 0

so Akj = 0 for all j /∈ K and the network is disconnected. Then we have the trivial

solution σi = 0. For each equilibrium solution σ∗ we have a stability basin

Sσ∗ =

{
σ | lim

t→∞
σ(t) = σ∗

}
If Sσ∗ defined neighborhood of σ∗ the solution is stable or if Sσ∗ = {σ∗} the solu-

tion completely unstable. The stability of the origin depends on the existence of a

Ljapounov function: let introduce the network activity

Σ(t) = ∑
i

σi(t) = ∑
i

Θ(Qi(t− 1)) ≥ Σ(t− 1)

since if each node has at least one input link, Aij = 1 implies σj(t− 1) ⇒ σi(t) = 1

and the activity cannot decrease. The solution σi = 0 is completely unstable. If there

would exists an equilibrium solution with σk = 0 for some k then we define SA the set

of nodes s.t.

i ∈ SA ⇒ σi = 0

(obviously σk ∈ SA). Let SĀ the complement of SA, the network dynamics implies

0 = ∑
j

Aijσj = ∑
j/∈SA

Aijσj = 0 if i ∈ SA

so that Aij = 0 if i ∈ SA and j ∈ SĀ: i.e. there is not a cause-effect connection between

SĀ and SA and the state σi = 1 for i ∈ SĀ is an equilibrium state. Therefore we have

as many equilibrium states as many partitions SA and SĀ there exist such that SA

triggers the activity of SĀ but not vice versa. For any initial condition σi(0) = δik the

possible evolution are a periodic orbit or an equilibrium state: one can detect all the

equilibrium conditions by σ∗ by the condition

σ∗i = 1 if σi(t) = 1 for some t ≥ 0

The equilibrium states are a semigroup: let σa and σb two equilibrium states the

σa ∪ σb = σc
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Figure 4.1: Example of random boolean network.

is still an equilibrium. An example: if there exist a one directional loop γ in the net-

work and there is no output link from γ to the remaining nodes of the network then

σi = 1 for any i ∈ γ is an equilibrium. If the loop is simple (each node has a one input

link and one output link) the equilibrium is neutral since any change σi = 1→ σi = 0

creates a periodic orbit (the total activity is constant). But if we we add a link to the

loop then we get a stable solution since a single node can trigger the activity of two

nodes and the equilibrium is an attractive stationary state (see Figure 4.1). If a node is

accidentally set to zero this anomaly propagates in the loop, until it reaches the node 4

where it is annihilated by the activity of the node (2). The average lifetime of a single

perturbation is the average path length to propagate to the node (4) from the initial

node (therefore it depends from the loop length or in case of presence of many loops,

the average path length is computed considering independent loops).

The boolean network models the propagation of information. By studying the sta-

bility problem of the solution σi = 1 it is convenient to introduce the dual dynamics:

σc
i (t + 1) = Θ

(
∏
j∼i

Aijσ
c
j (t)

)
= ∏

j∼i
Aijσ

c
j (t)

where σc
i = 1− σi is the dual state of the node and the product is restricted to the

nodes connected to i (Aij 6= 0): i.e. the node (4) takes the state σc = 1 only if both
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the nodes (1) and (2) in that state at previous time. This dynamics is valid for any

configuration of the network and the state σc = 1 moves on the network until it

reaches an absorbing state for which

∏
j∼i

σc
j (t) = 0 ∀ i

For a given stable equilibrium σγ state associated to a loop γ any environmental per-

turbation that set to zero a activity of a node will destroy the equilibrium after a time

equal to the number of the loop nodes minus one. For example in the figure there are

two loops ((1) → (2) → (3) → (4)) and ((2) → (4) → (3)) if we set to zero the

node (4) after three iterations all the nodes will be in the zero state. The two loops are

not independent since one loops contains the other). On the contrary if we set to zero

the node (1) one loop remains active. This remark allows to introduce the concept of

control node: a node is a control node if its state is able to force the state of the whole

network. The effect of a thermal bath could be introduced by assuming that the state

of a node is defined as random variable that takes value σi(t) = 1 with probability

pi(t) where

pi(t + 1) = ΘT

(
∑

j
Aijσj(t)

)
(4.2)

and ΘT(x) is a logistic function

ΘT(x) =
1
2
(1 + tgh(x/T − ε))

where ε measures to tendency of the network to be in the idle state when no stimulus

is present. The logistic function is a generic sigmoidal function we do not expect that

the specific form of ΘT(x) is critical for the results.

Remark: since the values of x are quantized to integer in any case, if ε > T−1

the idle state is statistically attractive so ε could define a critical temperature for the

network activation. We recover the deterministic dynamics for T → 0. As a stochas-

tic process we have a Markov process (since the realization of the variable σi(t + 1)

depends only on the present state σj(t) of the network [33]. The dynamics (4.2) is a

Markov field: the realization of the variable σi depends only from the present state

of the network (and not from past states) and only from the states of the connected
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nodes Aij 6= 0. The last condition (Markov field) means that the realizations of σi(t)

and σj(t − 1) are independent if the nodes are not connected. The transition proba-

bilities depend from the state of the network and one derives the average dynamics

< σi > (t + 1) = pi(t + 1) =

〈
ΘT

(
∑

j
Aijσj(t)

)〉
' ΘT

(
∑

j
Aij pj(t)

)
(4.3)

Then we have two possibilities: if the total average network activity tends to increase

Σ̄(t + 1) = ∑
i

pi(t + 1) = ∑
i

ΘT

(
∑

j
Aij pj(t)

)
> Σ̄(t) (4.4)

the equilibrium solution σi = 1 is attractive, on the contrary we have a an average

tendency to decrease the network activity. The situation is illustrated in the fig.
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Figure 4.2: Possible behavior for the condition (4.4); the units are arbitrary and scale with the

network dimension.

Remark: the mean field approximation apply when the ΘT(x) can be approximated

by a linear function locally: i.e. the fluctuations are small enough to approximate the
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function by a linear function in the whole fluctuation range. This is certainly not true

when we have fat tail fluctuations.

Except for a small initial region, the condition (4.4) can be satisfied up to a critical

value of the network activity Σ (if the temperature is not too big), so that the aver-

age activity tends to increase. But if the activity is below the critical value then the

network activity tend to decrease and the stability of the solution σi = 1 is lost. A

connected network tends to be more stable since the quantities ∑j Aijσj increase. This

picture is clearly an approximation since we neglect the fluctuation effects: if the fluc-

tuations are big (this depends also on the connectivity matrix) we may have a fast

transition between the two possible regime and a correction of the critical value. The

critical vale is a consequence of the sigmoidal behavior of the ΘT(x) function and

its depends on the temperature and on the ε values. In presence of fluctuations and

of two dynamical regimes (active and non active) we expect that the network activity

may switch from one regime to another with a characteristic time scale (Kramer transi-

tion rate Theory, see Chapter 5). The transition may be triggered by large fluctuations

that are both consequence of rare events (in such a case the probability should be ex-

ponentially small with respect the activity) but also depend on the network structure

(the presence of hub nodes that can change the activity of many nodes amplifies the

effect of small fluctuations (i.e. the change of the hub node state) and may introduce

fat tail statistic in the fluctuation distribution).

4.3 Double cluster networks

Let us consider the existence of competitive networks (see Figure 4.3) that are

linked by inhibitory links: if the first network is in an exited state the second network

should be completely switched off for a stable equilibrium.

If we start with all the node states set to one we create a frustrated situation, otherwise

the network choose one of the two possible stable states. In such a case the presence

of an environmental noise could induce the transition to one state to another. An

external forcing breaks the symmetry.
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Figure 4.3: Example of a network composed by two competitive subnetworks.

We expect a transition phase as a function of the temperature: increasing the tempera-

ture the node states tends to be independent, but under a threshold the system should

choose a stationary state.

The system can be generalized to consider the interactions of different cooperative

networks (possibly with different internal structure) that are connected by inhibitory

links (in the case of connection with excitatory links we join the subnetwork in a single

one). We can introduce a metadynamics where νk(t) is the state of the k subnetwork

and we have a relation

νk(t + ∆t)− νk(t) = φ(νk(t))− γ
(

Hkjνj(t)
)

(4.5)

where Hhk ≥ 0 is an inhibitory connectivity matrix. φ(νk(t)) describes the tendency

of the cluster to increase its activity and γ the average decreasing of the activity due

to the presence of other clusters. This is an effective equation: νk should describe

the cluster activity (i.e. it could be the time-average activity of the nodes assuming

that the sub-network could be considered in a stationary state). Indeed the evolution

time scale ∆t could be assumed ∆t� 1 so that the sub-network states are relaxed to a

stationary states. The structure of attraction basins of the stable states could be related

to a potential in the state space if

νk(t + 1)− νk(t) = −
∂

∂νk

[
γ

2 ∑
ij

νiHijνj + ∑
j

V(νj)

]
where

φ(ν) = −∂V
∂ν
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Since φ(ν) ≥ 0 V(ν) is increasing. Then we introduce the energy

E =
γ

2 ∑
ij

νiHijνj + ∑
j

V(νj)

and the equilibrium are the critical points of the energy. Moreover

E(t + 1)− E(t) ' (νk(t + 1)− νk(t))
∂

∂νk

[
γ

2 ∑
ij

νi(t)Hijνj(t) + ∑
j

V(νj(t))

]

= −1
2

∂

∂νk

[
γ

2 ∑
ij

νi(t)Hijνj(t) + ∑
j

V(νj(t))

]2

Therefore the energy is a Ljapounov function and the system equilibria are defined by

the critical points of the Energy function corresponding to local minima and maxima.

Remark: the existence of the Energy implies that Hij is symmetric negative defined

∂2E
∂νj∂νi

=
∂2E

∂νi∂νj

The stochastic effect has to be introduce but it is possible a thermodynamics approach

and a thermodynamics equilibrium exists according to the Maxwell-Boltzmann dis-

tribution and the detailed balance condition. This means that the whole network does

not satisfy this condition, but the metadynamic network realizes a reversible Markov

process.

In the next Chapter we introduce Kramer Transition Rate Theory for stochastic

processes.
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Kramer Transition Rate Theory

Kramer theory gives us the ingredients to estimate the form of the potential for

our model of Gene Regulatory Networks. The concept is an ensemble of particles in

a thermal bath which can lay in two different stationary states. The idea is to find

the shape of the potential of the system measuring the transition rates of the particles

from one stationary state to the other. Let’s make a briefly introduction on this theory.

5.1 Transition rates

Let’s consider an ensemble of particles in a thermal bath:

We can describe the system with the Smoluchowski equation:

dx = −V′(x)dt +
√

2Tdwt (5.1)

where V(x) is a double well potential (see figure 5.1) with xa and xc local minima

separated by a saddle point xb: To compute the transition probability from the left well

to the right well we consider the stationary solution of the Fokker-Planck equation:

∂ρ

∂t
=

∂

∂x
V′(x)ρ + T

∂2

∂x2 ρ (5.2)

with the boundary condition that we have a source in the point x− < xa and an

absorbing boundary at the point x+ > xc. We assume that the temperature T is much

40
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Figure 5.1: Example of double-well potential.

les of the potential barrier Vb−Va and we look for a solution that reduces to the form:

ρ ∼ e−
V(x)

T

in the vicinity of the point xa that vanishes at the absorbing barrier and gives a con-

stant current J between the two wells. Let

ρ(x) = C(x)e−
V(x)

T (5.3)

and the particle density current −J = V′(x)ρ + ∂ρ
∂x T reads

V′(x)C(x)e−
V
T + C′(x)Te−

V
T −V′(x)C(x)e−

V
T = −J

so that:

C′(x) = − J
T

e
V
T

and we integrate with the condition C(x+) = 0:

C(x) =
J
T

∫ x+

x
e

V(y)
T dy



5.1 Transition rates 42

The distribution reads:

ρ(x) =
J
T

e−
V(x)

T

∫ x+

x
e

V(y)
T dy.

Whenx ' xa the integral ∫ x+

x
e

V(y)
T dy

is stationary since V′(xa) = 0 and ρ(x) has the behavior of e−
V(x)

T . Then we have to

compute the number of particles na in the left well

na =
J
T

∫ xb

−∞
e−

V(x)
T

∫ x+

x
e

V(y)
T dydx

We approximate the integrals using the saddle point method:

e
V(y)

T ' e
Vb
T −

ω2
b

2T (y−xb)
2

e
V(x)

T ' e
Va
T −

ω2
a

2T (x−xa)2

so we compute:

na

J
=

1
T

e
Vb−Va

T

∫ xb

−∞
dxe−

ω2
a

2T (x−xa)2
∫ x+

x
e−

ω2
b

2T (y−xb)
2
dy

Then we can extend both the integrals between −∞ and +∞:∫ +∞

−∞
dxe−

ω2
a

2 (x−xa)2
=

√
2πT
ωa

na

J
=

2π

ωaωb
e

Vb−Va
T

And we find the transition probability rate:

ka→c =
J

na
' ωaωb

2π
e

Vb−Va
T

The fact that kc does not depend on x is due to the fast relaxation scale time inside

the potential well with respect to the escape time scale from the potential well and to

the quasi-stationary distribution that concentrates the particles near the local minimal

point where the effect of the potential can be approximated by a parabolic potential.

In this systems the transition probability kc can be used to estimate the potential.

For our model, Kramer theory will be useful to measure a possible potential for

Gene Regulatory Networks. We will consider an ensemble of networks made by two

different clusters which inhibit each other, in the sense that the activity of one cluster

causes a decrease of the activity of the second one.
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5.2 Our model related to Kramer Theory

Since the random nature of these networks, we use an ensemble approach for the

analysis of the model. We consider an ensemble of networks made by two different

inhibitory clusters. Given two clusters per network, in which the clusters have dif-

ferent size and different average number links per node, we expect that the average

activity will have two possible stationary states, and so the system will undergo a

bistable situation. As explained in Chapter 5, a bistable system can be represented

by a stochastic process in which the stationary probability distribution satisfies the

Fokker-Plank equation. In our case, in which we have networks made by two clus-

ters, we can consider as stochastic variable the total activity of the networks:

I(t) = ν2(t)− ν1(t) (5.4)

with νk(t) ∈ [0, 1] and I(t) ∈ [−1, 1] . So the Fokker-Planck equation associated to the

system will be:
∂ρ

∂t
=

∂

∂I
V′(I)ρ + T

∂2

∂I2 ρ (5.5)

where we assume that the temperature T is much less of the potential barrier:

T � Vb −Va

We expect that the network activity, and so the potential, should depend on the

size of the clusters (the number of nodes of the clusters N) and on the average number

of links in the clusters K:

V = V(N, K).

To estimate the form of the potential, we can measure the transition rates of the sys-

tem, in which during the evolution the network activity can move from a cluster to the

other. In this way, we can see the distribution of the activities of the networks during

the discrete evolution. If we choose the two clusters with different size and different

number of incoming links K, we expect to see that starting from the initial condition

in which only the second cluster is active the system relaxes on the cluster with bigger

size and links. Transition rates of activity from one cluster to the other can be regis-

tered during the simulationz and after the relaxation we expect to have a distribution

of the logarithm of the rates which have the shape of a double well potential.



Chapter 6

Model Analysis and Numerical

Simulations

In this Chapter we explain the starting implementation and analysis of the model

following biological considerations. We will start with some numerical analysis of the

model for a single cluster, and then we will analyse the evolution of an ensemble of

networks made by two clusters, which hinibit each others. The theoretical model has

been analyzed making computer simulations using Python, using the well known li-

braries for Data Science: Numpy, Pandas,Scipy and NetworkX, the most famous libraries

for network analysis. The repository is available on GitHub.

6.1 Single Cluster - Implementation

For this work, we decided to create a class Random Network to have a random

boolean graph as an object, with its nodes and links, represented by a numpy array

and a numpy matrix, respectively.

Every random network is a directed graph and is built to avoid self-loops, this

means to create a random, boolean, and non-symmetric adjacency matrix with null

trace.

For example, let’s consider the network in Figure 6.1: the adjacency matrix A of

44
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1

2

3

4

5

Figure 6.1: Example of a simple random network constructed by our Python code.

this network will be constructed as follows:

A =



0 0 0 0 0

1 0 0 0 0

0 1 0 0 1

0 0 1 0 0

0 0 0 1 0


Now, we have to decide how many links per node and how many nodes have to be

used for this type of network. As shown in Chapter 4, the discrete time evolution of

the network is given by the equation:

σi(t + 1) = Θ

(
∑

j
Aijσj(t)

)
where A is the connectivity matrix of the network.

So this means that each node which has at least one incoming link with a node

which is active, in the next step this node will be active. At each time step we can

measure the average activity of the network, which is the average number of nodes

with the value σi = 1.
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6.1.1 Number of links

To choose the number of links, we considered the average activity of the network,

after many iterations of the discrete evolution. In Figure 6.2 we can see that the av-

erage discrete evolution of 100 different realizations of RBNs, with increasing size. In
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Figure 6.2: Plot of the average activity of the nodes with network of increasing size. In the

case of K = 1 (i.e. the average number of incoming link for each network is one), the average

activity decreases exponentially with the size of the network; in the case of K = 2 instead, the

average activity of the nodes remains stable with the network size.

the case of K = 1, i.e. the average number of incoming links for each network is one,

the average activity decreases exponentially with the size of the network; this is due

to the fact that with only one link per node, the network will be composed by a big

loop, and so during the evolution there will be in average only one active node and

all the other nodes remains inactive. In the case of K = 2 instead, the average activity

of the nodes remains stable with networks of increasing size. This is due to the fact

that (differently from the case of K = 1 networks) each node of the network can be

potentially active during the discrete evolution of the system.

Moreover, we can analyze the average number of outgoing links depending on

the network size: In Figure 6.3, we can see that the average number of outgoing links
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tends to the parameter K.
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Figure 6.3: Plot of the number of the outgoing links depending on the network size. We made

an average of 100 networks with N = 10 and K = 2. We can see that the average tends to the

parameter K.

6.1.2 Control nodes

In simple random networks one can always find the number of loops. Loops de-

termine the complexity of the networks, and are important for the construction of the

model. In fact from loops one can find the control nodes of the network, which are

the nodes that their state are able to force the state of the whole network, and are the

nodes with maximum connectivity. Control nodes determine the whole activity and

stability of the network. In figure 6.4 we can see that control nodes, independetely

from the network size, control the 80% of the whole loops in the network.

The fact that each network is constructed in order ot have each node with a fixed

average number of incoming links equal to 2, means that each network constructed is

connected, so it is possible find always a node which is inside the maximum number

of loops in the network. We remark that control nodes are different from the nodes

with maximum betweenness centrality: in fact betweenness centrality measures the
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Figure 6.4: Plot of the loops which belong to the control node, depending on the network size.

Average values from 100 generated networks. Number of incoming links K = 2.

number of the shortest paths that pass through the nodes; control nodes instead, are

the nodes which are contained in the maximum number of loops in the network,

not only the independents loops, and this means that they are not the nodes with

maximum betweennees centrality.

Control nodes are a key point for networks with multiple clusters, beacuse since

they have the capability to control the whole activity of the cluster, multple cluster

networks will be connected through their control nodes. Moreover, these links will be

negative, in order to have inhibition between two different clusters.

6.2 Noise

The second thing to evaluate is the effect of the noise on the evolution of the net-

work and the difference between noise and parametric noise, where parametric noise

refers to the noise which infers in the links and not on the nodes. To add noise to

the system, during the discrete evolution of the network, at each time step there is a
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probability p for the node or for the link to be turned off. In Figure 6.5 we can see

the behavior of the average activity of the network depending on the amount of noise

added. The plot is similar to a sigmoidal functions in both of the cases. In the case of

noise added to the links the average activity results to be bigger than the case of noise

added to the nodes. This is reasonable in the sense that since the number of links is

less than the number of nodes so the effect of the noise among the links is less. In the

next section we will consider only the noise of the system, keeping fixed the links.
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Figure 6.5: Plot of the effect of the noise on the average activity on the network. In blue the

noise works on the nodes on the network, while in red the noise works on the links. Number of

nodes for each network: 10; Number of realizations for each value of noise: 100;

In 6.6 we can see the evolution of single-cluster networks subjected to noise. The

noise on the network is much more effective on the activity if we set to zero the links

belonging to the control nodes. So we can say that the average activity depends on

the activity of the control node. Also, we see that the network is very sensitive to the

value of noise.
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Figure 6.6: Plot of the effect of the noise on the average activity on the network with and

without control nodes. In the first plot(top) the noise is set to 0.1. In the last plot (bottom) the

noise is set to 0.3. We can see that in both cases, the average activity of the network decreases

exponentially if we set to zero all the links of the control nodes: The average activity depends

on the activity of the control node. Fitting function: f (x) = ae−bx.
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6.3 Double Cluster Network

Now we are ready to analyse the dynamics of a network composed by two differ-

ent clusters. As explained in Chapter 4, two clusters will be connected by negative

links with value −1, so we will have two clusters which hinibit the activity of the op-

posite cluster. The construction of this double-cluster network is made simply by the

construction of two different random networks which have each control node which

connected negatively to the control node of the other cluster. In Figure 6.7 we can see

an example of this type of networks.

Figure 6.7: Example of double-cluster random network. Control nodes of the two clusters are

connected negatively (red).

From double-cluster networks, what we want to find is a dynamics similar to

Kramer’s theory explained in Chapter 5. We expect to see that the activity of one

cluster hinibits the activity of the other and viceversa: Adding noise to the system

there will be a bistable dynamics. The number of nodes, and the number of links of

the cluster are the parameters which determine the robustness of the network. If the

number of nodes of one cluster is much higher than the number of nodes of the sec-
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ond cluster, it will be difficult for the second cluster to hinibit the first one. In this

sense, we will have that the first cluster will remain stable even if it’s disturbed by

noise and by the other cluster. In this system we add an other type of noise, what we

called envinromental noise. envinromental noise represent the probability for a node

to be turned ”on” at a certain t. In this way, during the evolution of the system a

cluster which is completely off can be actived by the envinromental noise. The nodes

subjected by envinromental noise are the second control nodes of the clusters, i.e., the

second node of the cluster which belongs to the maximum number of loops.

6.4 Discrete evolution

The discrete time evolution of the system for a double-cluster network is the same

of the single-cluster network evolution, with the difference that the two clusters hinibit

each other through the negative links of the control nodes. So the system dynamics

follows equation (4.1), but we recall equation (4.5) in which we consider the average

activity of the network νk(t) given by the equation for the metadynamics:

νk(t + ∆t)− νk(t) = φ(νk(t))− γ
(

Hkjνj(t)
)

In figure 6.8 we can see an example of the metadynamics of the system of a double-

cluster network. We can see the transition of the activity from one cluster to the other

during the time evolution.
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Figure 6.8: Example of evolution of the activity of a single double-cluster network. We can

see the transition of the activity due to noise and envinromental noise.

6.5 Transition Rates

To estimate the form of the potential, we can measure the transition rates of the

system using an ensemble approach, in which during the evolution of the system av-

ery network activity can move from a cluster to the other. We made a MonteCarlo

simulation of 1000 double-cluster networks. Each network undergoes a discrete evo-

lution subject to noise and envinromental noise. To measure the activity transition,

we can define the total activity of the network:

I(t) = ν2(t)− ν1(t) (6.1)

with νk(t) ∈ [0, 1] and I(t) ∈ [−1, 1] . In this way, we can see the distribution of the

activities of the networks during the discrete evolution. If we choose the two clusters

with different size and different number of incoming links K, we can see that the

system relaxes on the cluster with bigger size and links. In figure 6.9 we can see an

example of the average activity of the system in the stationary state: We choose two
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cluster of different size and linking: the first cluster is made N = 20 nodes and K = 2

incoming links per node. While the second cluster is made by N = 10 and K = 1.

Starting from an initial condition in which only the second cluster is active:

ρ0(I) = δ(I − 1)

the system relaxes to the state in which only the first cluster is active and the second

is totally inactive.
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Figure 6.9: Evolution of the histogram of activity of the network. The first cluster is con-

structed with N = 20 and K = 2, while the second cluster is constructed with N = 10 and

K = 1. With initial conditions in which only the second cluster is active, during the evolution

the system relaxes to the state in which only the first cluster is active and the second cluster is

inactive.
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In figure 6.10, we can see the transition times of the system from one cluster to the

other. According to Kramer theory, the transition rate kc can estimate the form of the

potential V. In this case, We can see the shape of the histogram which can estimate

the form of the potential. We can clearly see that the histogram presents two different

valleys which should correspond to the wells of the potential. The fit was made with

a polynomial fitting of order 4, using the Python library Numpy.
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Figure 6.10: Histogram of transition rates of activity from a cluster to one other. We can see

the shape of the histogram which can estimate the form of the potential. We can clearly see

that the histogram presents two different valleys which should correspond to the wells of the

potential. Fitting function: f (x) = ax4 + bx3 + cx2 + dx + e.

The presence of a potential in this model can be useful to understand the properties

of this models. It suggests that the proces of differentiation really can be governed by

a dynamical pathway governed by different networks of different size and linkage.

It may suggest that the production of progenitor cells, with respect to differentiated
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cells are regulated by smaller networks, and going ahead to differentiation, regulatory

networks becomes bigger and more linked.

The results found suggest that modeling Gene Regulatory Networks with Ran-

dom Boolean Networks may be the right way towards a deeper understanding in the

process of cell differentiation.



Conclusions

In this work we proposed a theoretical model for cell differentiation. Since this

biological process is governed by Gene Regulatory Networks, these networks can be

modelled by Random Boolean Networks, in which each gene can be represented by

node which can be ”on” or ”off”. The process of differentiation is a multistable dy-

namical system, and involves different type of cells, but all of these start from one

unique type of cell: the stem cells. The complexity of this process lays in the fact that

cells ”can” decide if transforming in one type of cell with respect one other, and for

this reason seems pheasible that if a network for a type of cell is active, it may inhibit

the network for a different type of cell. The proposed model can give an estimate of a

fitness potential for two different type of cells, according to the theory of Waddington.

This process concerns also the birth of cancer cells: cancers cell can be governed by a

specific type of regulatory network, which often is inactive, but due to some external

stimuli it can be activated and gives an irreversible process of production of cancer

cells. This can be seen as a local minima of the Waddington potential, which is im-

possible to escape. The role of noise in this model is crucial, but it is well known that

biological process are indeed very dependent to external noise.

Today, the need arises for tools capable of unraveling the functionality of genes

based on the analysis of microarray measurements. Modeling genetic interactions by

means of genetic network models provides a methodology to infer functional rela-

tioships between genes, for a deeper understanding on biological processes. Future

studies on this model may focus on some aspects:

• control nodes, which are a key point for the dynamics of this model; knowing

and governing control nodes may be a real improvement in understanding ge-

57
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netic networks.

• average number of links K: the average degree of the network is crucial for the

stability of itself.

• study the reversibility of the process: may be studied if these network can pro-

duce a reversible process or a completely irreversible process, where in the pro-

cess of cell differentiation it is difficult to say.
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