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by Nicola RUBINI

My Thesis focuses on the analysis of the production of φ-meson pairs in proton-
proton (pp) collisions. The measurement is performed with the ALICE detector at
the LHC, exploiting its unique PID capabilities. It is motivated by the recent ob-
servations of enhanced production of strange and multi-strange hadrons, a possi-
ble signature of QGP formation, in high-multiplicity proton-proton collisions at the
LHC.

This work starts with a presentation of the theoretical and experimental back-
ground of high-density QCD as studied in ultrarelativistic heavy-ion collisions. Spe-
cial focus is given to the topic of strangeness enhancement and to models for hadron
production. The ALICE Experiment and its performance are reviewed in the second
chapter. In the third chapter a walk-through will be given from the idea pushing for
the development of this analysis, all the steps that have been followed to establish it,
to the final state of the analysis framework. Here we will make use of the theoretical
models introduced earlier to explain ideas and assumptions that drove the realisa-
tion of the project.

The core of the work carried out for this Thesis concerns the development of a
technique, novel within the ALICE Experiment, for the measurement of correlated
production of φ mesons. The measurement being proposed is inspired by the phe-
nomenology of the Lund string fragmentation, which is a microscopic QCD-inspired
phenomenological model for hadron production.

The approach is a full review of the technique development from concept to de-
ployment on data with special focus on the issues and solutions encountered and
adopted along the way. The main idea of the technique is to generalise the invari-
ant mass technique for the reconstruction of short-lived particles to two dimension,
to extract the signal from its irreducible background. The review will firstly exam-
ine how to build two dimensional invariant-mass histograms and the challenges
and assumptions made in the present analysis framework, such as symmetrisation
filling and coupling conditions for the subject particles. Secondly the signal extrac-
tion is considered: the extension of the fit in two invariant-mass dimensions and
the modelling of the signal and background and how to constraint them from one-
dimensional templates. Thirdly the issue of efficiency corrections is taken over, with
a comparison between a natural 2-dimensional approach, against a somewhat more
sophisticated combination of 1-dimensional efficiencies.

After the developed of the framework, this first prototype is used to produce
preliminary results on real ALICE data for pp collisions at

√
s = 7 TeV.
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La mia tesi si focalizza sull’analisi della produzione di coppie di mesoni φ in colli-
sioni protone-protone. La misura é stata fatta ad ALICE, presso l’LHC, sfruttando
le sue eccellenti doti di Particle Identification. É motivata dall’osservazione di un
aumento di produzione di adroni strani e multi-strani, una possibile indicazione per
la formazione di QGP, in collisioni protone-protone ad alta molteplicitá.

Il cuore del lavoro di questa tesi riguarda lo sviluppo di una tecnica, nuova
all’interno dell’esperimento di ALICE, per la misura della produzione correlata di
mesoni φ. La misura proposta prende ispirazione dal modello a stringhe di Lund,
che é un modello fenomenologico ispirato dalla QCD microscopica per la produzione
di adroni.

Seguiremo l’approccio di una review completa dell’analisi dal concepimento al
suo utilizzo sui dati con un focus speciale sui problemi incontrati e le soluzioni
proposte nel suo sviluppo. L’idea principale della tecnica é una generalizzazione
della tecnica della massa invariante per la ricostruzione di particelle a vita media
corta in due dimensioni, per estrarre il segnale dal suo fondo irriducibile. La re-
view esaminerá prima di tutto il metodo con cui viene costruito l’istogramma bi-
dimensionale, con le problematiche e assunzioni ad esso associate, come per es-
empio il riempimento simmetrico e le condizioni di accoppiamento dei candidati.
Successivamente viene considerata l’estrazione del segnale: l’estensione del fit sull’
istogramma bi-dimensionale viene descritto nelle sue componenti di fondo e seg-
nale e come vengono estratte informazioni preziose per questo processo dagli is-
togrammi mono-dimensionali. Verrá poi valutata l’efficienza, comparando la natu-
rale efficienza 2-Dimensionale con un approccio piú raffinato dato dal prodotto di
efficienze 1-Dimensionali. In ultimo il tema dell’estrapolazione del segnale viene
considerato.

Dopo lo sviluppo dell’analisi, un primo prototipo viene impiegato per produrre
una prima misura preliminare con dati veri di ALICE per collisioni protone-protone
a
√
s = 7 TeV.
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1

Introduction

The purpose of this work is to establish and validate an analysis framework aimed
at the measurement of the pair production of φ mesons in proton-proton collisions.
This thesis is organized as follows:

The First Chapter will be devoted to a general overview of the physical phenom-
ena That are studied as part of the experimental programme of the ALICE exper-
iment. Moreover we will go into some detail on some of the phenomenological
models that currently best describe the data. Another item that will be a discussed
is the Strangeness Enhancement phenomena, and more generally the strangeness
production in hadron and heavy-ion collisions.

The Second Chapter will be devoted to a general overview of the detectors? per-
formance in the ALICE experiment. We will describe the detectors structure and
their basic functioning. After that we will explain the methodologies adopted for
track reconstruction and particle identification, together with their resolution and
efficiency.

The Third Chapter will focus on the development of the analysis technique and
its validation through a simplified analysis based on the Pythia8 Monte Carlo. After
the analysis has been laid down, a validation to compare results to the Monte Carlo
truth is performed to establish the reliability and performance of the technique.

The Fourth Chapter will be devoted to the description of the results obtained by
applying this technique on real data collected by the ALICE experiment. Moreover,
the signal extraction systematics will be measured as a first estimate, and the results
on the pi meson production will be presented.
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Chapter 1

Fundamental Physics at the ALICE
experiment

The ALICE (A Large Ion Collider Experiment) Collaboration at LHC aims at study-
ing the Physics of strongly interacting matter at high energy densities [1]. At the
energy densities reached in ultra-relativistic heavy-heavy-ion collisions a new state
of matter emerges: the Quark-Gluon Plasma (QGP) which is one of the main sub-
jects of research of the collaboration. This state of matter represents what is thought
to have been the Universe a tiny fraction of a second (≈1 µs) after the Big Bang, thus
giving useful insights on how it all came to be. The focus of the experiment are ion-
heavy-ion collisions, but proton-proton and proton-heavy-ion collisions are studied
as well, as a mean of comparison to ion-ion and in their own right. The more general
scope is the study of Quantum Chromodynamics (QCD) as a whole, investigating
confinement, deconfinement and chiral phase transitions. Quark-Gluon Plasma

FIGURE 1.1: Particle showers in the ALICE detector during the
first lead nuclei collisions the 2018 data taking period (Image: AL-

ICE/CERN)
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1.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory which describes the dynamics of
the Strong interaction [2] in the Standard Model (SM). It is based upon two funda-
mental ideas:

• The existence of a color quantum number, describing the three color charges:
Yellow, Red and Blue.

• The symmetry transformations are coordinate dependent as a local gauge the-
ory, and their derivatives are absorbed in some gauge transformations of a set
of massless vectors, the gluons.

The QCD is a non Abelian Gauge Theory based on the color group SU(3)c, that is
an intrinsic degree of freedom of color charge, this implies a local invariance for the
non commutative group transformation. This degree was introduced in the Quark
Model to achieve a fully skew-symmetric wave function accordingly to the Pauli
principle. The interaction generated are described in the theory by the Lagrangian
density:

L = ψ̄iq(iγ
µ)(Dµ)ijψ

j
q −mqψ̄iqψqi −

1

4
F aµνF

aµν (1.1)

where ψq = (ψqR, ψqG, ψqB)T is the quark field and the i index runs through the
colors, γµ are the Dirac matrices, indicating the interaction is of the vector type and
mq gives the possibility for quarks to be massive, for example through the Higgs
mechanism. F aµν is the gluon strength field with adjoint color index a and Dµ is the
covariant derivative in QCD:

(Dµ)ij = δij∂µ − igstaijAaµ (1.2)

where gs is the strong coupling (g2
s = 4παs), Aaµ is the gluon field and taij is propor-

tional to the hermitian traceless Gell-Mann matrices of SU(3) with taij = 1
2λ

a
ij .

1.1.1 Strong Coupling

The magnitude of the interaction is defined by the strong coupling gs, is proportional
to αs. To give us a scale of comparison we can evaluate αs with respect to αem, the
fine structure constant, characteristic of the electromagnetic interaction.

αem =
e2

4πε0~c
≈ 1

137

αs
αem

≈ 100 (1.3)

To first approximation, the QCD is scale invariant. That is, ideally the jet sub-
structure should reproduce itself over again in a fractal fashion. This is called the
Bjorken scaling, and it is a phenomena best captured by the limit of dimensionless
kinematic quantities, such as scattering angles and ratios of energy scales.

On top of this simple behaviour there is the phenomenon of the running constant:
the coupling is not absolutely scale invariant and it is in fact sensitive to the energies
involved in the process: one possible parametrisation of such scaling is described in
Eq. 1.4 (See Fig. 1.2).
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(A) The αs against distance at different tem-
peratures from Lattice QCD technique

(B) Illustration of the running of αS in a theoretical calculation (band)
and in physical processes at different characteristic scales, from [2].
The little kinks at Q = mc and Q = mb are caused by discontinuities in

the running across the flavor thresholds.

FIGURE 1.2: The strong coupling intensity as a function of transferred
momentum and distance, highlighting the fact that it is not constant.

αs(Q
2) = αs(M

2
Z)

1

1 + b′0αs(M
2
Z) ln Q2

M2
Z

+O(αs)
(1.4)

lim
Q2→∞

αs(Q
2) = 0 (1.5)

lim
Q2→0

αs(Q
2) =∞ (1.6)

Asymptotic freedom What is inferred by Eq. 1.5 is that in the limit of high energy
the quarks are essentially free. That is the strong coupling effectively scales with the
energies at play in a given process. This reduction at infinitely large energies means
that perturbative theory may yield more and more precise predictions at higher en-
ergies.
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Confinement What is inferred by Eq. 1.6 is that the soft processes in QCD are not
approachable by a perturbation theory, at least not completely, because of the large
values of the coupling. This means that other types of descriptions shall be used,
such as phenomenological models based on experimental observations. One way to
make the divergence more clear is to rewrite the coupling as:

αs(Q
2) =

1

bo ln Q2

Λ2

, Λ ≈ 200 MeV (1.7)

Where Λ should be the nominal energy for the divergence. It is useful to note that
this is a parametrisation that does not necessarily imply that the physical quantity
itself diverges.

1.1.2 Hard Processes

Hard processes are those where the energies involved are high, meaning the effective
strong coupling admits a perturbation approach. The starting point is the Matrix
Elements (MEs) which can be calculated at fixed orders. As an example, let’s take
one of the most occurring processes in hadron collisions, the Rutherford scattering
of two quarks via a t-channel gluon exchange:

qq′ → qq′ :
dσ
dt̂

=
π

ŝ2

4

9
α2
s

ŝ2 + û2

t̂2
(1.8)

where u, t, s, are the Mandelstam variables. This is the basic interaction proba-
bility, more corrections are needed to accurately describe a real event.

The first problem encountered during the calculation of this cross section is the
hadron substructure. Hadrons are nominally formed by 2 or 3 quarks kept together
by gluons, but the reality is that they are a cloud of multiple gluons and quarks
constantly created and annihilated. This issue can be conveniently neglected mak-
ing some consideration on the energy of the process; in this range the substructure
of the target hadron is conveniently frozen in time. This effect rises from the fact
that for the hadron to remain intact high-virtuality fluctuations are to be suppressed
by powers of αsΛ2/|k|2, with k being the virtuality of the fluctuation. This restricts
most fluctuations in timescales of Λ−1 whilst the process occurs over much smaller
timescales Q−1 � Λ−1. This means that the whole scattering happens whilst the
substructure barely moved, effectively taking a "picture" of the hadron.

The direct consequence of this is that we can factorise the cross section into the
parton distribution function (PDF), parametrising the hadron inner structure, and
the partonic cross section (PCS) that ignores the hadron structure and only focuses
on the struck quark interaction. For a hadron-hadron scattering, this factorisation
takes the form:

σh1h2 =
∑
i,j

∫ 1

0
dxi

∫ 1

0
dxj

∑
f

∫
dΦf fi/h1(xi, µ

2
F )fj/h2(xj , µ

2
F )︸ ︷︷ ︸

PDF

dσ̂ij→f
dxidxjdΦf︸ ︷︷ ︸

PCS

(1.9)

The parameter µF is the factorisation scale. This quantity is arbitrary and de-
pends on the problem examined; it is meant to represent the maximum fluctuation
energy for the PDFs and the lowest fluctuation energy for the PCSs.
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FIGURE 1.3: The Phase transition chart for QGP

PDFs: PDFs are usually unpredictable or hardly predictable by the theory and are
inferred from data.

PCSs: PCSs are usually truncated at the desired precision, using perturbative QCD
(pQCD)

1.1.3 Soft Processes

Soft processes are those where the energy scales are low, meaning the effective strong
coupling does not admit a perturbation approach. The most common example of
this kind of situations is hadronisation, which is going to be the topic of Section 1.3.

1.2 Phase transition in QCD: The Quark-Gluon Plasma

The phase transition in QCD can be seen in Figure 1.3. In fact when the temperature
and the baryonic density, exceed critical values the coupling constant can no longer
keep the confinement and a transition to a free state occurs: the QGP forms. The
transition is closely related to the flavours and masses of the quarks at hand, as the
process itself is closely related to the chiral symmetry.

We can now search the critical temperature at which the transition starts. To do
so we will examine the critical temperature for relativistic pions, as those are the
lightest hadrons. We will use the statistical thermodynamics principles to study our
state of free quarks.

Grand Canonical Ensemble: We will make use of the Grand Canonical ensemble,
as it represents an open set of particles that can exchange matter and heat with its
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surroundings. We start by recalling the fundamental relation

dE = TdS − pdV +
n∑
i=1

µidNi, (1.10)

where we can find all the classical thermodynamic variables and µi, which is the
energy the system takes or releases when adding or removing a particle of the i-th
specie and is called the chemical potential.

µi =
∂E

∂Ni
(1.11)

This potential grants the mean conservation, over major volumes or the whole sys-
tem, of the i-th specie. We will focus for now on the baryonic potential, that is the
chemical potential for particles holding a baryonic charge, because the baryonic
number B = (nq − nq̄)/3 is conserved in all SM processes.

To have a glimpse at the QGP we can study a pion gas, the simplest hadron gas,
and compare its properties to those of a gas of free quark and gluons. As Nature
always chooses the states of highest pressure, or least mean free energy, the tran-
sition should occur at coinciding pressures [3] between the pion gas and the quark
and gluon gas. We now deal with two types of free particle, quarks as fermions and
gluons as bosons. Upon considering the appropriate quantum statistic for each type,
integrating over the whole energy spectrum we can find:

N = gint

∫ ∞
0

g(E)
dE

eβ(E−µ) ± 1
. (1.12)

We can now consider the Semi-Classical approach, using the average over the sta-
tistical ensemble and the uncertainty principle to get a better approximation of the
reality. Moreover we suppose that the energy necessary for the QGP to form is high
enough to ignore the energy at rest for the relativistic particles, and get E ≈ p. Now,
from 1.12, the density for the QGP is

ni =
Ni

V
=

∫
d3pi
2π

1

eβE ± 1
, (1.13)

and the energy density for the i-th particle is

εi =
Ei
V

= gi

∫
d3pi
2π

1

eβEi ± 1
, (1.14)

where gi is the number of internal degrees of freedom of the particle and we have
gb
π2

30T
4 for fermions and gf 7

8
π2

30T
4 for bosons. The total energy density is

εQGP =
(
gb +

7

8
gf

)π2

30
T 4 → 37

π2

30
T 4 (1.15)

The substitution was made considering that a gluon (gb) has 16 degrees of freedom,
accounting for 2 spin states and 8 color states, whilst a quark (gf ) has 12, accounting
for 2 spin states, 3 color states and 2 flavours, if we only consider up and down quarks.

If we consider a pion gas, the values for the two variables are 0 and 3, being pions
scalar particles. This gives us

επ =
π2

10
T 4 (1.16)
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Furthermore we ask to find the pressure (P ) of the gas, that is P = επ/3. At this
point we need to deal with our approximations and add a term to the pressure we
did not account for. That is B ≈ 0.5 GeV/fm, that can be derived form Lattice QCD
calculations. This additional term represents the confinement pressure the pions are
subject to. Finally the pressure of the pion gas and QGP read as:

Pπ = 3
π2

90
T 4 +B, PQGP = 37

π2

90
T 4 +B. (1.17)

Given the fact that the transition occurs when the pressures equal each other, we can
compare them and find a critical temperature at which the QGP forms:

Tc =
(45

17

B

π2

) 1
4 ≈ 180 MeV (1.18)

Which is consistent with experimental data.

1.2.1 Evolution of the QGP

In high energy collisions many steps occur that lead to the final hadronisation pro-
cess.

First Collision The primary fireball forms, every participant equilibrates in mo-
mentum and the total entropy of the process is compressed in a very small portion
of space-time

Birth of the Fireball All the participants in equilibrium give in energy for internal
processes as production of new flavours (s quarks) takes over: the fireball is formed
and is in thermal equilibrium.

Hadronisation The fireball starts producing massive quarks and depletes in free
gluons, the conservation laws disrupt the chemical equilibrium and stop the contin-
uous production and annihilation of flavours: as the fireball cools down the strong
force re-establishes as an unbreakable bond among quarks, hadrons start to form
with an available space-phase probability.

Chemical freeze-out Hadrons are now fully formed and are projected out of the
collision, stopping the changes in relative yields of particles.

Kinetical freeze-out The particles are now far enough apart that there are no more
elastic scatterings allowing the exchange of heat between particles. The momenta
are now constant along with their temperature (Tkin).

Experimental Data for the QGP hypothesis The Experimental data supporting
the QGP hypothesis are various, but are all based on the secondary reconstruction
of the particles we detect. That is because of the short lifetime of the QGP in the
laboratory frame, as the conditions in which it can subsist long enough to be directly
measured are quite hard to achieve; the probes should be [4]:

1. Operational in the collision time scale, roughly 10−23s.

2. Sensitive to the local color charge deconfinement.
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3. Dependent on the gluon degrees of freedom, which is the characteristic new
dynamical degree of freedom.

One of the most suitable probes, satisfying all requirements, is the Strangeness En-
hancement, even though there are many others. Usually the probes are classified in
three categories: Soft, Hard and Electromagnetic

1.2.2 Soft Probes

Soft probes are linked to particles emerging from the collision with low transverse
momentum. Usually these particles are created in the hadronisation phase of the
fireball, thus giving a direct hint on the processes concurring in the production of
final states in a QGP environment.

Hadrochemistry

One way to establish useful information about the QGP is to study the hadronisa-
tion processes that occur in the collisions. The most straight-forward example is to
measure particle yields. In fact many researches have focused their efforts in estab-
lishing discrepancies between experimental data and model predictions for various
types of particle and resonances.

Hadronic Resonances: Hadronic Resonances are excited states of a given particle.
Their effectiveness as a probe depend on their mean lifetime: the lifetime of the QGP
is expected to last ≈ 10 fm/c, so a resonance with a comparable lifetime represents
a strong signature. This is because the resonance can decay before it exits the dense
hadron gas and its decay products will not allow one to reconstruct the resonance as
they will lose their correlation. In this context a good candidate is the Λ(1520) with a
mean lifetime of ≈ 13 fm/c or the K∗(892)0 with a mean lifetime of ≈ 4 fm/c . Along
the destructive effect, there also is a re-generation effect, partially re-establishing the
original yield. This regeneration process comes from the scattering of decay prod-
ucts with each other, that will produce new resonance correlations. Experimental
results in recent years have highlighted the suppression of the Λ(1520) yield with
respect to the sole hadronisation mechanism (Fig. 1.4a).

Strangeness Enhancement: This will be the main focus of the next section, where
a more extensive and detailed description will be given. The main concept of this
phenomenon is that in the QGP the production cross section for strange quarks is
enhanced until it reaches a saturation. Strangeness Enhancement has been well es-
tablished in heavy-heavy-ion collisions and has been recently observed in high mul-
tiplicity pp collisions (Fig. 1.4b).

Fluid Dynamics

Fluid dynamics come into play as a QGP probe. The plasma behaves as a nearly
perfect fluid, and thus will have a certain gradient of pressure, coming from the
anisotropy of the collision geometry [7]. This has a repercussion over the particle
yields in the final state when differentiated in the azimuthal angle, whereas a nn-
fluid scenario would predict no effects with respect to the initial state geometry. To
identify this anisotropic flow, the momentum distributions of the particle yields are
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(A) pT -integrated ratio of Λ(1520)/Λ production as a func-
tion of 〈dNch/dη〉1/3. Predictions from several SHMs and

from EPOS3 are also shown [5].

(B) Particle yield ratios to pions normalized to the values
measured in the inclusive INEL > 0 pp sample [6].

FIGURE 1.4



12 Chapter 1. Fundamental Physics at the ALICE experiment

(A) Elliptic flow ν2 for p-Pb collisions at
√
sNN = 5.02 TeV for various species.

(B) Transverse kinetic energy (KET ) scaling, where rest mass m0 of individual species is
subtracted from mT , See [7]

FIGURE 1.5

expanded with the Fourier series:

E
dN

d−→p
=

1

2π

d2N

pTdpTdy

[
1 + 2

∞∑
n=1

νncos[n(ϕ−Ψn)]
]

(1.19)

Where ϕ is the azimuthal angle, Ψn is the n-th harmonic symmetry plane, νn =
〈cosn(ϕ−Ψn)〉 are the anisotropic flow coefficients. The most interesting coefficient
is the second, as it has a predominance, and it is called elliptic flow.

Experimental results Experimental results in recent years have proven this collec-
tive behaviour is found in pp collisions, p-Pb collisions and heavy-heavy-ion col-
lisions. Figure 1.5 shows the typical results for the elliptic flow measured in p-Pb
collisions.

1.2.3 Hard Probes

Hard probes are linked to particles emerging from the collision with high pT [8].
There is a characteristic quantity evaluating the impact of the QGP on such particles,
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FIGURE 1.6: jet RAA at
√
sNN = 5.02 TeV for R = 0.2 (left) and R = 0.4

(right) (R ≤
√

∆φ2 + ∆η2) compared to LBT, SCETG, Hybrid model,
and JEWEL predictions. The combined 〈TAA〉 uncertainty and pp lu-
minosity uncertainty of 2.81% is illustrated as a band on the dashed
line at RAA = 1. Systematic uncertainties are only included for the

SCETG and Hybrid model predictions; see [9] for details

the nuclear modification factor:

RAA =
dNAA

X /dpT
Ncoll · dNpp

X /dpT
=

dNAA
X /dpT

TAA · dσppX /dpT
(1.20)

Where Ncoll is the number of binary nucleon-nucleon collisions, X is a given species
or structure under scrutiny, AA and pp is heavy-ion collisions and pp collisions re-
lated respectively, TAA is the nuclear overlap.

We can interpret this factor as the measurement of potential effects of any phe-
nomena happening in heavy-ion collisions on the final yields of particles. That is be-
cause if no phenomena related to the nuclear nature of the collision is taking place,
in such collisions one would expect the observables to be roughly the superimposi-
tion of N pp collisions. Usually this factor is studied for processes unrelated to the
QGP hadronisation, instead it is useful as a mean of using pre-existing hadrons as
probes traveling through the QGP medium.

Jet Quenching

The single parton, interacting strongly with the surrounding particles, emits a wide
range of secondary products that interact themselves with any medium that might
be present. The collection of these particles emerging from this interaction is called
a jet. The Physics of jets aims to reconstruct the full kinematics of the multiple pro-
duction from a single fast parton. One can then compare the results in heavy-ion
collisions with what is expected in vacuum measuring the differences with the RAA
factor. The sum of the effects of medium on a jet is called jet Quenching. Com-
mon marks of jet quenching are the yield suppression and the energy imbalanced
back-to-back di-jet pairs [9]. Experimental results in recent years have evaluated the
nuclear modification factor for jets [10]. The RAA refers to Eq. 1.20.
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Quarkonia melting

Quarkonium is a bound state of heavy quarks (J/ψ,Υ). Their production is limited
to initial hard scatterings of hadrons and cannot go on in the QGP, as the energy
is too low: as we have seen the temperature of the plasma is of ≈ 180 MeV while
the bottom quark mass is ≈ 4180 MeV [11]. The way they are used as probes is
to understand the magnitude of colour deconfinement: due to the Debye screening
mechanism the distance of deconfinement increases above the hadron dimension,
dissolving it. Given the dependence of the suppression on the hadron dimensions
we can expect the suppression to be differently impacting every species.

On top of the suppression mechanism, a recombination effect has also been ob-
served in high energy collisions: once the hadron dissolves in the plasma, cc and bb
roam freely in thermal equilibrium thus giving availability to their statistical recom-
bination in Quarkonium bound states. If the energy in the collision is increased, the
initial hard scattering will produce more qq and the final recombination will be more
likely, even between quarks not coupled at production. Experimental results in re-
cent years showed the predicted behaviour is confirmed: an increase in the collision
energy results in an enhancement in the yield of Quarkonia state, and a different
configuration of the Quarkonium affects the yield (Tab. 1.1).

Υ(1S) Υ(2S)√
sNN 2.76TeV 5.02TeV 5.02TeV

RAA 0.30±st0.05±sy0.04 0.37±st0.02±sy0.03 0.10±st0.04±sy0.02

TABLE 1.1: MeasuredRAA for the Υ(1S) at
√
sNN = 2.76 TeV[12] and

for the Υ(1S), Υ(2S) at
√
sNN = 5.02 TeV[13] in the forward rapidity

region 2.5 < y < 4 in transverse momentum pT < 15 GeV/c

1.2.4 Electromagnetic Probes

There are mainly two ways the QGP formation leaves his trace in the electromagnetic
channel: photon and dilepton production [14].

Photons

There are essentially two sources of photons in relativistic heavy-ion collisions:

1. Decay Photons: The photons coming from hadronic decays, usually H→ γ+X,
for example π0 → γγ

2. Direct Photons: Produced in the primary interaction or in the evolution of the
fireball

(a) Hard Photons: These typically have high pT and are produced in:

i. The initial hard N+N collisions
ii. jet Fragmentation

(b) Thermal Photons:

i. QGP generated:
A. qq annihilation: q + q → g + γ
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B. Compton Scattering: q + g → q + γ

ii. Hadronic:
A. Secondary mesonic interactions: m+m′ → m+ γ

B. Hadronic Bremmstrahlung: m+m′ → m+m+ γ

The Physics of photons as a probe in heavy-ion collisions comes form their large
mean free path: they do not interact after production with the hot dense medium.
In this scenario, if we imagine all phases to emit a certain kind of photons, the mea-
sured yield represents the integral of all emission sources along the evolution of the
fireball. In particular low pT photons carry information about the hot dense fireball.

Dileptons

Dileptons are essentially pairs of e−e+ or µ−µ+ that are produced in all stages of the
collision from photons and have the advantage of having the invariant mass, as a
reconstructed variable which constitutes an additional degree of freedom that can
be exploited to investigate their origin. Their main sources are:

1. Hadronic Sources, depending on the invariant mass (GeV/c2):

≤ 1 Mainly decay of mesons, baryons and hadronic bremsstrahlung

1 - 3 Leptons from correlated D +D pairs and multi-meson interactions

≥ 3 Decay of vector mesons and initial Drell-Yan annihilation q+ q → l+ + l−

2. Thermal QGP Dileptons:

(a) Thermal annihilation q + q → l+ + l−

(b) Compton Scattering q + g → q + l+ + l−

The main information form the dilepton channel come from two invariant mass
(Minv) regions (GeV/c2):

Minv ∈[0.2 - 0.6 ] Increase in yield due to the formation of hadronic resonances and deforma-
tion of vector mesons in the hot and dense medium of the QGP.

Minv ≥ 1.2 Increase in yield due to the QGP radiation.

Recently there has been the measurement of the elliptic flow for the inclusive photon
yield [15]. The measured photons are direct photons coming from all stages of the
fireball, thus following the matter producing them. This behaviour will eventually
mirror the collective flow of hadrons in the fireball (Fig. 1.7).

1.3 Hadron production and Strangeness Enhancement

The Physics of hadron production focuses on processes at the hadronisation scale
Qhad ≈ 1 GeV, that are comfortably in the non perturbative regime of QCD. This
gives rise to general Physics models that are quite numerous, as many specialise to
give a good approximation for specific issues, energy ranges or conditions, for which
they almost perfectly fit the data; nonetheless, going out of their designed purpose
will likely decrease or nullify their predictive power. These phenomenological mod-
els inevitably need to re-adapt to data analyses whenever discrepancies are found.

The hadronisation phase comes second to the initial hard scattering, posing the
problem of "mapping" a set of partons to on-shell colour-singlet hadronic states. The
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FIGURE 1.7: Elliptic flow of inclusive photons and decay photons,
compared to hydrodynamic and transport PHSD model predictions
in the 0-20% (left) and 20-40% (right) centrality classes. The vertical
bars on each data point indicate the statistical uncertainties and the

boxes indicate the sizes of the total uncertainties; see [15].

main steps in the Monte Carlo implementations of these models, and consequently
what they are asked to accurately reproduce, are:

1. Mapping the system to high-mass hadronic states (strings or clusters)

2. Mapping strings to a discrete set of primary hadrons

3. Processing decays of the primary hadrons to secondary hadrons

Even though we are far from an exact calculation from the theory we are not com-
pletely blind in creating these models. Some basic constraints come from conserva-
tion laws we know are always valid, no matter the situation, for example Poincaré
invariance, unitarity, causality etc. Moreover the lattice QCD technique can give
quantitative results in certain aspects of the problem.

The phenomenon at hand is Strangeness Enhancement: very recently it has been
observed in high-multiplicity pp collisions [6] without that being predicted by the
most popular models. We will briefly go on about what is today’s standard and
possible new features.

1.3.1 Theoretical overview

The Strangeness Enhancement was first proposed in 1982 by J. Rafelski and B. Muller
[16]. The basic idea behind this phenomenon is that the hot and dense medium
would favor strange quark production, as the mass is not too large, gradually intro-
ducing more and more strangeness into the picture through the processes shown in
Figure 1.8. After an equilibrium is reached, annihilation puts a stop to the strangeness
proliferation, thus saturating to a limit density. Their first calculations suggested the
predominant process is the production by gluons (Figure 1.8, Eq. 1.21); this gave
way to a simplification of the rate equation. The rate per unit time and volume (A)
for the elementary processes shown in Figure 1.8 is then:

A =
dN

dtd3x
≈ Ag =

7

3π3
α2MT 3e−2M/T

(
1 +

51

14

T

M
+ ...

)
(1.21)
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FIGURE 1.8: Lowest-order QCD diagrams for ss production:
a-c) gg → ss d) qq → ss

FIGURE 1.9: Time evolution of the relative strange-quark to baryon-
number abundance in the plasma for various temperatures (M=150

MeV, αs = 0.6)

Given T is the temperature of the QGP, M is the mass of the quark and their
ratio is roughly greater than 1. Further on taking into accounts the saturation by
annihilation process, proportional to the square of the density itself, it is possible to
evaluate the density function (Eq. 1.22).

dns
dt
≈ A

[
1−

( ns(t)

ns(∞)

)2]
τ =

ns(∞)

A

ns(t) = ns(∞)tanh(t/τ) (1.22)

It can be useful to understand the mechanisms of particle production in labo-
ratory collisions before going further on the Strangeness Enhancement; their first
calculations yielded shapes like those in Figure 1.9.

In the following sections the phenomenological approaches to the soft Physics
will be reviewed, as the perturbative strategy fails to give significant accordance to
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FIGURE 1.10: Schematic representation of the Hadron Gas Model

data in this context and the focus will be given to the mechanisms responsible to the
Strangeness Enhancement.

Thermal Model

The Canonical Statistical (Thermal) model (CSM) is a phenomenological model that
takes as an assumption that in heavy-ion collisions there is the creation of an equi-
librated hadron gas, sign of QGP formation. Surprisingly the model describes well
enough the behaviour of lighter (pp) collisions, even though it is highly non-trivial
why such a small system would behave thermally. The idea is that the hadron gas
divides in colourless droplets, clusters, fireballs at the hadronisation level (Figure
1.10) that carry various quantum numbers and Abelian charges. It is worth noting
that the properties of such fireballs are defined as the complex result of the unfolding
of the collision dynamic, whereas the hadron formation, as decay of such objects, is
a purely statistical phenomenon. This concept is well summarized by the sentence:

Every multi-hadronic state localized within the cluster and compatible
with conservation laws is equally likely.

The defining characteristic of the Thermal Model is the finite size of the clusters, that
implies the constant ratio between volume and mass of clusters when hadronisation
takes place [17]. The partition function of the Grand Canonical ensemble is written
as:

ZGC(T, V, µQ) = Tr[e−β(H−
∑
i µQiQi)], (1.23)

where β = 1/T is the inverse temperature, H is the Hamiltonian of the system,Qi are
the conserved charges, µQi the chemical potentials. From this, one can infer the av-
erage number 〈Ni〉 of particles i in volume V and temperature T , having strangeness
Si, baryonic number Bi, electric charge Qi:

〈Ni〉(T, µ) = 〈Ni〉th(T, µ)︸ ︷︷ ︸
Thermal production

+
∑
j

Γj→i〈Nj〉th,R(T, µ)︸ ︷︷ ︸
Decay production

(1.24)
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Where the two parts highlighted are respectively the thermal production and the
result of hadrons and resonances decays with a Γ branching ratio to the i species.
The thermal production component can be expressed as:

〈Ni〉th(T, µ) =
V Tgi
2π2

∞∑
k=1

(±1)k+1

k2
λkim

2
iK2(

kmi

T
) (1.25)

Where gi is the spin-isospin degeneracy factor, K2 is the modified Bessel function,
λi(T, µ) = exp[(1/T ) · (BiµB + SiµS +QiµQ)] [18].

Coming back on the finite size of the cluster, as can be seen in Eq. 1.25, one must
address the problem of evaluating it. The process connects the measured mean mul-
tiplicities to the differential production dNj/dy that is in turn connected to the dif-
ferential volume dV/dy. This connects to the volume of the cluster V by a generic
equation V = kdV/dy, for k>1. This choice is suggested by the hypothesis of a causal
connection of fireballs which populate the longitudinal rapidity space. After some
considerations for which we refer to [19], estimates for k in mid-rapidity range yield
values of at about 3-6.

Summarizing, this is the so called "Vanilla CSM", based on the following sce-
nario:

1. The full chemical equilibrium is established at the chemical freeze-out stage.

2. Constant chemical freeze-out temperature of T=155 MeV exists across all mul-
tiplicity bins, as suggested by the statistical model fits to the hadron yield data
in most central Pb-Pb collisions.

3. The multiplicity dependence of various hadron yield ratios is driven by the
canonical suppression only, i.e. by the changing value of Vc.

4. The correlation volume in rapidity is varied between V = dV/dy and V =
6dV/dy.

The results for this model are shown in Figure 1.11. Even though the description is
approximately good for a number of ratios, others, most notably the φ/π ratio, are
significantly out of trend.

To solve these discrepancies another approach in the CSM is possible. A first
consideration might come from different chemical freeze-out temperatures across
different multiplicities and different systems. Different Tkin values are found in pp
collisions (≈ 170 MeV) and in heavy-ion collisions (≈ 100 MeV); the higher tem-
peratures might hint at a shorter hadronisation phase. In the picture of an earlier
strangeness chemical freeze-out a strangeness saturation factor γs is introduced:

〈Ni〉th(T, µ) =
V Tgi
2π2

∞∑
k=1

(±1)k+1

k2
λkim

2
iK2(

kmi

T
)× γ|sk|s , (1.26)

where sk is the number of s-(anti)quark. This new conception is called the γsCSM,
and provides a better description across all particle ratios (Fig. 1.12). This correc-
tion factor is leaning toward 1 in central ion collision, approaching the results of the
Vanilla CSM.

Another approach, where γs is fixed to 1, was made varying the temperature of
chemical freeze-out, yielding the results shown in Figure 1.13 [20].
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FIGURE 1.11: The ratios of various final hadron-to-pion yields are
plotted versus the charged pion multiplicity as evaluated in the
vanilla CSM with exact conservation of baryon number, electric
charge, and strangeness. The green circles, blue squares, and red di-
amonds depict the corresponding ratios as measured by the ALICE
Collaboration at the LHC in p-p (7 TeV), p-Pb (5.02 TeV), and Pb-Pb
(2.76 TeV) collisions, respectively. Both the calculated results and the
data are scaled by the grand-canonical limiting values as evaluated in

the CSM at T = 155 MeV for µB = 0. [19]

Core-Corona Model

The Core-Corona model stipulates that the experimental results observed in heavy-
ion collisions are due to the superimposition of the two components: the Core and
the Corona [23]. That is, it distinguishes between nucleons fully participating in the
collision and subsequent plasma formation, and peripheral nucleons scattering only
once.

The assumption is that core nucleons will reach the equilibrium completely, whilst
corona nucleons will essentially evolve as a pp collision. The superposition of the
two components will depend on a geometrical function describing the dynamics of
the event as in

M i(Npart) = Npart

[
f(Ncore) ·M i

core + (1− f(Ncore)) ·M i
corona

]
(1.27)

being i the nuclear species. A graphical view of EPOS, a core-corona model, is shown
in Figure 1.14. In Figure 1.15 [22] a simulation is performed to describe the recent
results at the LHC on Strangeness Enhancement.

Lund String Model

The Lund String Fragmentation Model is based on a simple concept: the strong
force creates a string between two quarks, that can eventually break generating new
quarks on the loose ends.

The basic idea is that the linear strong potential between quarks will eventually
store enough energy to produce a qq pair if initial quarks are provided with sufficient
energy. Their interaction can be modeled by a string between them, and their motion
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FIGURE 1.12: The dependence of yield ratios (a)
p/π, (b)K/π, (c)φ/π, (d)Λ/π, (e)Ξ/π, and (f) Ω/π on the charged
particle multiplicity 〈dNch/dη〉|η|<0.5, evaluated in the γsCSM with
Vc = 3dV/dy for the thermal parameters extracted for each multiplic-
ity bin through the 2 minimization. The green circles, blue squares,
and red diamonds depict the corresponding ratios measured by the
ALICE Collaboration in p-p (7 TeV), p-Pb (5.02 TeV), and Pb-Pb (2.76
TeV) collisions, respectively; the bands depict the corresponding

experimental uncertainties. [19]
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FIGURE 1.13: (colour online) Ratios of several particle species to
pions as measured by the ALICE collaboration as a function of
the midrapidity pion yields for pp, p-Pb and Pb-Pb colliding sys-
tems compared to the THERMUS strangeness canonical suppression
model prediction (black line), in which only the system size is varied.
All values except for the K0∗ are normalised to the high multiplicity
limit (see text for details). Note that 2 · K0

S are used for kaons in pp
collisions, while K± are used for p-Pb and Pb-Pb collisions. The up-
per axis shows the radius R of the correlation volume V = R3 which
corresponds to the predicted particle ratios. The width of the model
prediction line corresponds to a variation of the chemical freeze-out

temperature between 146 MeV and 166 MeV. [20]
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(A) (B)

FIGURE 1.14: Schematical representation [21] of (A) hadronisation
in the Lund and Statistical Model (B) their combination in the Core-

Corona Model

FIGURE 1.15: Integrated yields of K0S , Λ, Ξ, and Ω as a function of
〈dNch/dη〉 in V0M multiplicity event classes at

√
s = 7 and 13 TeV.

Statistical and systematic uncertainties are shown by error bars and
empty boxes, respectively. Shadowed boxes represent uncertainties
uncorrelated across multiplicity. The results are compared to predic-
tions from several Monte Carlo models, among them EPOS LHC, a

Core-corona Model. [22]
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FIGURE 1.16: Hadron formation in a qq system. The blue, red and
green dots represent the "early", "middle" and "late" definitions of

hadron production points, respectively

as a back-and-forth along their connecting axis. In this simple terms, the further
they drift apart, the more energy will be stored in the string and if the energy is high
enough a new pair of qq will be produced, generating two particles [24]. This kind
of approach can be described by a parametrisation of the strong potential as:

VQCD(r) ≈ −4

3

αs
r

+ kr (1.28)

Where k ≈ 1 GeV/fm and r is the distance between a quark and an anti-quark, and
kr is the dominant term.

As an example, if the oscillating quarks are ud, a ss string breaking will result
in the production of two kaons, if the string breaks twice and a double ss breaking
occurs, two kaons and a φ meson are produced. In the case where the string breaks
with a triple ss breaking, two kaons and two φ-mesons are produced. This mecha-
nism is the key ingredient for the purpose of this thesis, as the inclusive production
yield of φ mesons and the correlated production of φ-meson pairs are expected to be
both linked to the more fundamental ss string breaking probability.

The key to this phenomenological approach is the assumption of jet universality,
i.e. the idea that the fundamental hadronisation process and strength are unchanged
from e+e− to pp collisions. After being tuned on the "clean" events at LEP, the LUND
string fragmentation model is able to describe a large variety of hadronic collisions
systems and energies. This is a direct consequence of the assumption that the string
tension, responsible for the breaking probabilities, is constant. This means that all
strings break in the same way, and e+e− annihilation provides a benchmark of a sin-
gle string fragmentation to tune our parameters.

The fragmentation, illustrated in Figure 1.16, is a process where all breakings are
causally disconnected; this gives the possibility to arbitrarily calculate the probabil-
ity of fragmenting left to right or right to left as:

f(z) = N
(1− z)a

z
e−bm

2/z (1.29)

where a, b are free parameters that need tuning to reflect the data. In the physical
problem quarks need to escape the strong field and they do so by quantum tunnel-
ing. We supposed quarks were created in the same space-time point, if they were to
have mass or transverse momentum they must be created virtual and then tunnel to
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become real particles. This effect can be encode in a suppression factor:

lim
m2�k/π

Prob(m2, p2
T )→ exp

(
−
πm2
⊥

k

)
= exp

(
− πm2

k

)
exp

(
−
πp2
⊥
k

)
, (1.30)

That can be evaluated as uu : dd : ss : cc ≈ 1 : 1 : 0.3 : 10−11, which indicates that
the soft hadronisation problem cannot be responsible for the production of heavy
quarks, that are all formed in the initial hard scattering.

From equation 1.29 we can infer a piece of information about the multiplicity:

dN
dy
≈
√

1 + a

bm2
(1.31)

colour ropes colour ropes are formations arising from the interaction of colour
charges in a limited area in transverse space acting coherently, assuming the total
system is a colour singlet. Lattice calculation show that in such a situation if the
endpoints charges correspond to a specific SU(3) multiplet, the tension of the rope is
different than the string one [25].

To evaluate the differences introduced by this additional consideration we can
see its effects on the parameters a and b, and on new parameters we will introduce
to quantify modifications. All modified parameters will be indicated with a tilde
(ã, b̃,k̃,ρ̃, ξ̃) and h will represent the proportionality factor for the string tension en-
hancement.

k 7→ k̃ = hk
ns
nu

= ρ 7→ ρ̃ = ρ1/h ndi
nq

= ξ 7→ ξ̃ = α̃β
( ξ

αβ

)1/h
(1.32)

ns, nu, ndi, nq are respectively the number of s quarks, u quarks, di-quarks and quarks
produced by the string; k is the string tension and h its enhancement w.r.t. nominal
value, α, β are di-quark production parameters. Specifically α encloses all the pa-
rameters for all the different types of di-quark, whereas β is the popcorn fluctuation
probability.

The most interesting in the Strangeness Enhancement picture is of course the ρ
parameter. To get visually a sense of how a change in the string tension could affect
these parameters we can turn to Figure 1.17.

Moreover, recalling the multiplicity in Equation 1.31 we can see how these changes
affect it, lowering the raw yield by ≈ 5% in high multiplicity pp, and up to 15− 20%
in heavy-ion collisions. It should be noted that pp collisions are responsible for en-
hancement up to h = 1.5, the higher values are in the heavy collisions domain; h = 1
is the simple string tuned on the LEP data.

When evaluating the string tension enhancement it comes handy to understand
that the tension in an isolated static rope is proportional to the quadratic Casimir
operator C2; furthermore in SU(3) the multiplets can be specified by two quan-
tum numbers p, q. A specific state then corresponds to p coherent triplets (e.g.
all red) and q coherent anti-triplets (e.g. all anti-green) with multiplicity 2N =
(p + 1)(q + 1)(p + q + 2). With this knowledge we can turn to how C2 changes
with the multiplet state:

C2({p, q})
C2({1, 0})

=
1

4
(p2 + pq + q2 + 3p+ 3q) (1.33)
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FIGURE 1.17: Effective parameters of the string model as a func-
tion of effective string tension. The parameters ρ and ξ control the
strangeness content and baryonic content respectively, a and b are re-
lated to multiplicity. A modified string tension has a sizeable effect
on ρ and ξ in particular. The range of h shown is much larger than
relevant for pp collisions, which typically have h < 1.5. Larger values
of h are, however, relevant for heavy-heavy-ion collisions. The values

of the parameters for h = 1 comes from a tune to LEP data.

From this, we can infer how a change {p, q} 7→ {p − 1, q} can affect the effective
string tension (k̃):

k̃ =
2p+ q + 2

4
k (1.34)

Although this does not capture the full picture it can give a sense of how the
tension might change. For a practical example we can turn to the simple case of two
parallel strings in a {2,0}-state; their string tension during the first break-up would
be k̃ = 3/2 k whilst the second break-up would be happening at the usual string
tension.

Without going into further detail a last picture of how the ropes can change the
model predictions can be seen in Figure 1.18 (to compare with 1.4b)

1.3.2 Experimental overview

The history of Strangeness Enhancement starts, as mentioned before, from a paper
back in 1982 [16] and in these some 40 years of life this signature has been proved
to be a useful way to probe the QGP formation in heavy-ion collisions. Since its
theoretical formulation, many experiments were devised to search for it, namely at
CERN: an overview of these experiments can be seen in Figure 1.19 [4].

The first evidence of Strangeness Enhancement was found in the CERN-NA35
after being expanded in its experimental program for the search of strangeness. This
opportunity came as the purposed experiment, CERN-NA36, was relying on new
technologies which were proven to have some instrumental difficulties. The first of
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FIGURE 1.18: Enhancement of particle ratios of function of
√
s. Inte-

grated ratios of p± and K± to π±, ΛΛ to K0
s and Ξ− to ΛΛ with the

rope model (dipole approach) applied, normalised to the same ratio
with ordinary string hadronisation. All particles with pT> 200 MeV

are included.

FIGURE 1.19: The multitude of CERN experiments measuring hadron
production on line prior to the year 2000 QGP announcement
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FIGURE 1.20: First experimental results from the NA35 Collaboration
[26]

the discoveries made by NA35 were reported at Quark Matter 1988, final and ex-
tended results were published in 1991 [26] (Figure 1.20). Even though their research
pointed to Strangeness Enhancement, they operated Oxygen and Sulfur ions at 60
and 200 GeV/A, which was thought to be insufficient to produce QGP in the colli-
sion. Because of this the collaboration never explicitly claimed the findings as related
to QGP formation. The consensus was that this primate would go to the RHIC ex-
periments, which would have a ten fold energy scale.

Another dedicated experiment at CERN was the WA85: it made use of the re-
purposed Ω-spectrometer and used proton and Sulfur beams against a Tungsten
target. They observed Strangeness Enhancement and, in spite of what was made in
NA35, immediately hinted it might be proof of QGP formation. In 1991 the collab-
oration went as far as claiming the QGP discovery, although the general consensus
was not reached.

The two groups continued to work on the Strangeness Enhancement, NA35/
NA49/ NA61 and WA85/ 94/ 97/ NA57. For example, the NA35 collaboration pre-
sented in 1995 results for the ratio Λ/p ≈ 1.4, in accordance with the first predictions
for QGP, while the WA85/94 focused on multi-strange baryon and anti-baryon ra-
tios, such as Ξ/Λ. The Pb-Pb program following these experiments continued to
strengthen the results in favor of the Strangeness Enhancement and other experi-
ments made contemporarily were finding supportive data for the QGP formation
hypothesis. This led to the CERN announcing the QGP discovery in 2000, although,
once again, the general consensus was not settled on the claim, and many flaws were
pointed out.

The NA61 Collaboration then focused on understanding the threshold for the
Strangeness Enhancement phenomenon, after the claims of CERN. In this context a
thorough study of the K+/π+ ratio the Marek’s horn was discovered (Fig. 1.21b).
The interpretation for this feature was that a new mechanism of creation for strange
pairs was activated. In particular it is believed that gluon production is starting
above ≈ √sNN = 7 GeV. This new activation can come from the QGP generation,
indicating that it can be made above such energies.

Combining the results from SPS and RHIC another item could be settled: canon-
ical strangeness suppression. The ratio between Ξ(ssq)/φ(ss), two double strange
particles, is an energy independent: this indicates that the data correlates the multi-
strange production yields to the strangeness content of the hadron but not to the
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(A) (B)

FIGURE 1.21: (colour online) Left: K+/π+-ratio; AGS (lowest
√
sNN )

and NA49-SPS energy range results are connected by the (blue) line
indicating at the edges the theoretical fit result within chemical non-
equilibrium model, the dotted line shows best chemical equilibrium

result.
Right: Cost in fireball thermal energy of a strangeness pair, E/s as
a function of CM collision energy

√
sNN . 4π results (black) are es-

timates for RHIC, line guides the eye; RHIC domain (blue) shows
(dE/dy)/(ds/dy)

strangeness quantum number. This is in contrast with the canonical suppression
picture, a volume dependent model. Moreover, the universal value of the ratio is
indicating that irrespective of how the fireball is formed there is no significant alter-
ation in the final state of the yields of these double strange particles.

Recent results have confirmed that the Strangeness Enhancement is not restricted
to heavy-ion collisions, but at sufficiently high energies it shows up in high multi-
plicity pp collisions [6] (Fig. 1.22a). The effect smoothly pours into the proton-ion
and ion-heavy-ion collisions data (Fig. 1.22b) when considering the multiplicity of
the event dNch/dη. The saturation at high multiplicity is a sign of complete thermal
and chemical equilibrium of the formed QGP.

Some final thoughts on the matter are that the data clearly shows the onset of
deconfinement at energies above≈ √sNN = 7 GeV, and that the hadronisation of the
QGP is solely dependent on the entropy content. The strangeness signature would
then depend on the lifetime and/or volume of the fireball rather than on the collision
system or energy. Across the experiments we have reviewed, up to LHC, strangeness
in the QGP saturates and hadronises in nearly identical fashion, as shown by the
ratios of particles, with absolute yields depending on the final geometric size.
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(A)

(B)

FIGURE 1.22: (A) Overview of results for strangeness signature of
QGP from ALICE published Spring 2017 [6]. (B) The results of July
2017 SQM meeting, QCD Monte Carlo simulations are not able to re-
produce the observed results (curves marked PYTHIA8, DIPSY, EPOS

LHC)
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Chapter 2

A Large Ion Collider Experiment

ALICE (A Large Ion Collider Experiment) is one of the four major experiments lo-
cated on the Large Hadron Collider (LHC) ring at CERN (Figure 2.1). The ALICE
Collaboration aims at studying the Physics of strongly interacting matter at high en-
ergy densities. At the energy densities reached in ultra relativistic collisions of heavy
ions a new state of matter emerges: the Quark-Gluon Plasma (QGP) which is one of
the main topics of research of the Collaboration [1].
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FIGURE 2.2: The ALICE detector structure.

In the following sections we will briefly overview the ALICE sub-detectors, with
special emphasis on those that play a key role in the analysis presented in this the-
sis, such as the Time Of Flight Detector and the Time Projection Chamber. After
that an overview of the ALICE tracking and Particle Identification techniques and
performance will be carried out to explain the methodological choices made in the
analysis.

2.1 ALICE Detectors

The ALICE experiment is a heavy-ion, general purpose detector and consequently
consists in a large variety of sub-detectors devoted to specific tasks aimed at charac-
terizing the events produced at the interaction point. Generally all sub-detectors are
devoted to determine, to various degrees, the particle identity and its trajectory, but
some are more focused on characterizing the event as a whole or to discern events
based on the Physics involved.

The central barrel part of the experiment develops in a cylindrical structure around
the beam pipe, centered at the nominal interaction point (Fig. 2.2). Overall, the ex-
periment weighs around 10 kt, occupying a volume of 16× 16× 26 m3. The cylindri-
cal structure develops around the beam pipe, layering a set of sub-detectors covering
the full azimuthal angle as a core multipurpose detection system, accompanied by
more specific detectors, with limited acceptance; these are usually aimed at dedi-
cated Physics. The experiment also extends with detectors located in the forward
region, perpendicularly to the beam pipe. In this region lay the majority of detectors
devoted to event characterization (event luminosity, pile-up, effective energy, etc.)
and the Muon Spectrometer, devoted specifically to muon detection.

The central barrel is made, starting from the beam pipe, by the Inner Tracking
System (ITS), devoted to measure the effective vertex position and particle tracking,
the Time Projection Chamber (TPC), devoted to particle tracking and identification,
the Transition Radiation Detector (TRD) and the Time Of Flight (TOF), both devoted
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to particle identification. These sub-detectors cover the full azimuthal angle. All
the central barrel detectors mentioned above are embedded in the L3 solenoidal
magnet which has field of 0.5 T, to bend charged particles and provide information
on their momentum and charge. A mixture of multiple detectors share the subse-
quent outer region: the Electro-Magnetic Calorimeter (EMCal), Photon Spectrome-
ter (PHOS) and the High-Momentum Particle Identification Detector (HMPID). The
Forward regions host the Forward Muon Spectrometer (FMS) together with: T0, V0,
Forward Multiplicity Detector (FMD), Photon Multiplicity Detector (PMD), Zero De-
gree Calorimeters (ZDCs). The Muon Spectrometer is equipped with its own dipole
magnet, generating a field integral of B = 3 T m.
This very complex setup manages to achieve excellent performance in the challeng-
ing environment of heavy ions collisions, both in precision measurements and par-
ticle identification. The next sections will be focused on each detector to describe
their main features and uses. Even though the focus will be on the Run 1 and Run
2 equipment, used to record the data used in the analysis presented in this thesis,
a brief overview of the main upgrades that ALICE is undergoing for the upcoming
Run 3 will be given.

2.1.1 Inner Tracking System (ITS)

The Inner Tracking System is a key element of the experiment, providing the first
pieces of information from the event and determining the effective interaction vertex
with a resolution below 100 µm. Together with the primary vertex, the ITS provides
an excellent capability for the reconstruction for secondary vertices, as those from
short-lived hadrons, such as hyperons, D and B hadrons. Even though the main
tracking sub-detector is the TPC, the ITS proves useful to assess with enhanced pre-
cision the tracks found in the TPC and expanding the detection momentum range at
the lower limit: in fact many material effects compromise the reconstruction of low
momentum tracks, that are usually well recovered by the ITS. Moreover the combi-
nation of multiple detectors helps to reconstruct tracks that would be lost in dead
regions of other detectors. For its privileged position, multiple tasks and tracking
capabilities the ITS is a key detector for almost any analysis performed on ALICE
data.

This system covers the pseudo-rapidity region spanning−0.9 < η < 0.9 and con-
sists of six cylinders layered inside of one another. The first two layers, the Pixels,
have been chosen to discern the tracks in the high multiplicity density that arises in
the regions close to the beam pipe. The outer layers, where the tracks density de-
creases, use technology that gives information on the energy loss on top of position,
thus allowing to perform a particle identification, especially for particles with low
momentum. Given that low momentum tracks are dominated by multiple scatter-
ing effects, the material budget must be kept to a minimum, and it has been reduced
to roughly ≈ 1%X0 for each layer, giving a total of ≈ 8%X0 for the whole system.
Moreover, the outer cylinder is located as close as possible to the TPC, to create a
continuum in the tracking.

Silicon Detectors (SPD-SDD-SSD) Silicon Pixel Detectors (SPD) are the detectors
used in the two innermost layers of the ITS. They extend from 3.9 cm to 7.6 cm radi-
ally and cover 28.2 cm longitudinally. The main purpose of this detector is the deter-
mination of the primary vertex and of the impact parameter of secondary tracks from
the decay of short-lived particles. Its operations have to work with a particle den-
sity as high as 50 per cm2, that indicates the detector has to withstand a high dose,
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FIGURE 2.3: The ITS position inside the ALICE experiment, high-
lighted in red.

estimated for a 10y run in 2.7 kGy. This detector has the greatest pseudo-rapidity
coverage (−1.98 < η < 1.98) of the ITS sub-detectors to provide, together with the
FMD, a multiplicity measurement over a large pseudo-rapidity range. Silicon Drift
Detectors (SDD) are the detectors used in the two intermediate layers. They ex-
tend from 15.0 cm to 23.9 cm radially and cover up to 59.4 cm longitudinally. Silicon
micro-Strip Detectors (SSD) are the detectors used in the two outermost layers. They
extend from 38.0 cm to 43 cm radially, and cover up to 97.8 cm longitudinally. The
last four layers give the possibility to read the analog output to determine the energy
loss of the particle, giving leverage for particle identification within this system.

ITS Upgrade for Run 3 and 4 The upgraded Inner Tracking System (ITS2) will
use the new silicon pixel detectors known as CMOS Monolithic Active Pixel Sen-
sors (MAPS)[28]: the innovation comes from the integration of sensible volume with
read-out electronics, that will be possible in a thin silicon sheet of roughly 50-100 µm.
Such a thin detector allows to further reduce the material budget down to 0.3% in
the inner layers and the flexibility of the structure reduces greatly the need of over-
lapping detectors to cover the full azimuthal angle. Another important achievement
is the proximity to the beam pipe, down to 2.3 cm for the innermost cylinder, that
will allow for more precise measurements of primary and secondary vertices.

2.1.2 Time Projection Chamber (TPC)

The Time Projection Chamber is the main tracking device of ALICE. Together with
the ITS, it provides a way to achieve a good two-track separation, momentum mea-
sure and vertex determination. The acceptance for the TPC is −0.9 < η < 0.9 when
combined with the outer detectors (ITS, TRD, TOF) and −1.5 < η < 1.5 when used
stand-alone, and has a good pT resolution in a wide range, from 0.1 GeV/c to 100
GeV/c.

The most stringent requirement for the TPC was to sustain the very high multi-
plicity in Pb-Pb central collisions, up to dNch/dη = 8000. Such a high multiplicity
come at the cost of space charge distortions in the TPC drift volume and consequent
loss of resolution on the tracks, that nevertheless can be partially recovered offline;
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FIGURE 2.4: The ITS upgrade position inside the ALICE experiment,
highlighted in red.

FIGURE 2.5: The TPC position inside the ALICE experiment, high-
lighted in red.

this is the main limit in Pb-Pb collisions. In pp collisions the experiment main con-
straint comes from the electrons drift time of ≈90 µs (v = 2.7 cm

µs ) in the TPC, so that
the pile-up of tracks reaches up to 60 pp events. Track distinction may be achieved
by looking at the vertex the track points to.

TPC Upgrade for Run 3 and 4 The upgraded TPC will make use of Gas Elec-
tron Multiplier (GEM) Detectors for the read-out planes. GEM detectors are Micro-
Pattern Gas Detectors (MPGD), and thus have an intrinsically low ion back-flow
and their use will make the gating grid superfluous for the ion leakage control in
the drift volume, thus allowing for a faster data acquisition and running with higher
instantaneous luminosity.

2.1.3 Transition Radiation Detector (TRD)

The transition radiation detector’s main purpose is to identify electrons with mo-
menta higher than 1 GeV/c, which is the upper limit for identification by energy
loss with the TPC. The identification of electrons depends on their discrimination
against pions [29].
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The principle of operation of the TRD is the Transition Radiation (TR), an electro-
magnetic radiation released as the result of the crossing of a charged particle through
a separation plane between two materials having different dielectric constants. For
the radiation to be detected the particle relativistic factor should be about γ ≈1000,
making it hard for any particle except for e± to reach this threshold. The radiation
is indeed always emitted when crossing the separation surface, but this threshold
refers to an emission in an efficiently detectable spectrum. The detector is equipped
with a radiator made of alternated foils of polypropylene fiber mats of 3.2 cm and
Rohacell foam sheets of 0.8 cm. The drift chamber to detect the TR is filled with a
mixture of Xe/CO2 (85%/15%).

2.1.4 Time of Flight Detector (TOF)

The Time Of Flight system main purpose is Particle identification. It is made of 1593
glass Multi-gap Resistive Plate Chamber (MRPC) detectors, each with a sensitive
area of 7.4×120 cm. The TOF covers the pseudo-rapidity interval−0.9 < η < 0.9 and
the full azimuthal angle, for a total active area of 141 m2. Each MRPC is segmented
into 96 read-out pads of area 2.5×3.5 cm2, for a total of over 150,000 channels [30].

The main purpose of this detector is the identification of low and intermediate
momentum particles: it provides an excellent identification efficiency for π and K up
to around 2.5 GeV/c and up to 4 GeV/c for the protons. In addition to its PID ca-
pabilities, the TOF system provides a dedicated trigger for cosmic rays and for J/Ψ
production in ultra-peripheral heavy-ion collisions. The intrinsic particle detection
efficiency is ≈ 99%, that must be coupled with geometrical acceptance and tracking
capabilities of the ALICE experiment, which lowers the reconstruction efficiency to
≈ 80% for p-Pb collisions. Because of this very favorable performance the analysis
will make use of this detector for the identification of kaons. In Pb-Pb collisions, in
the centrality range 0-70% the overall TOF resolution is 80 ps for pions with a mo-
mentum around 1 GeV/c. At the start of the Run 2 the data collected was used to
make a refined channel by channel calibration, rather than the previous 8-channel
group calibration, being able to reach an overall resolution of ≈60 ps The timing
information is key, as every enhancement of the Time Of Flight resolution for a par-
ticle allows to extend the momentum range where the separation power between
species is possible (usually at the level of 3 or 5 σ). The measurement if the start time
can be performed with the T0 detector and/or with the TOF detector itself; in the
latter case using a combination of all arrival times of the tracks, minimizing the χ2

testing different combinations of the mass hypothesis. This process is performed if
at least three particles reach the TOF; if more than 30 reach it the resolution on the
event timing can be as low as 30 ps. This method proves useful when the T0 start sig-
nal is missing, if neither are available the time from the LHC internal clock is used.

2.1.5 High-Momentum Particle Identification Detector (HMPID)

The High-Momentum Particle Identification Detector’s main purpose is particle iden-
tification exploiting the emission of Cherenkov radiation.

The principle of operation is based on a proximity focusing Ring Imaging Cherenkov
(RICH), using C6F14 as a radiator. The proximity focusing means that the cone of
light is projected onto a "screen" (i.e. detector plane) from a thin radiator, after a
small gap, called the proximity gap. This configuration differs from the focusing
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FIGURE 2.6: The TOF position inside the ALICE experiment, high-
lighted in red.

RICH configuration where the radiation is reflected by spherical mirrors before be-
ing collected by the photo-detector. The radiation photons are detected using a CsI
thin layer deposited onto the pad cathode of a Multi Wire Proportional Chamber
(MWPC) [31]. The detector provides a 3σ separation power, for π/K up to pT = 3
Gev/c and for K/p,p up to pT = 5 Gev/c. The PID process requires informations
on the track extrapolated in the central barrel. When coupled with the other central
barrel detectors, the HMPID data has provided inclusive charged hadron spectra for
π,K in the range 1.5 Gev/c < pT < 4 Gev/c, for p,p in the range 1.5 Gev/c < pT < 6
Gev/c, for deuteron in the range 3 Gev/c< pT < 8 Gev/c for the most central Pb-Pb
collisions.

2.1.6 Photon Spectrometer (PHOS)

The Photon Spectrometer is designed to measure spectra, collective flow, correla-
tions of direct photons and of neutral mesons in ultra-relativistic nuclear collisions
at LHC energies; having excellent performance for the low energy photons coming
from the initial phase of QGP formation and the high momentum photons, decay
products of high pT π0 [32]. It is a homogeneous high granularity calorimeter, mean-
ing that all the material is both active and passive: whilst it stops the particle to ac-
quire all of its energy, the material also detects and measures this energy loss via the
produced scintillation light. To further enhance the scintillation efficiency and yield,
the detector is cooled at a constant temperature of −25 ◦C. At this temperature the
light yield is increased by a factor of 3 with respect to room temperature together
with a reduction of the electronic noise in the photon detector, thus improving the
resolution. It consists of 17920 detection channels made from PbWO4 (PWO) as little
as 2.2×2.2×18 cm3. It is one of the sub-detectors not covering the full azimuthal
angle, spanning 250◦ < φ < 320◦ and −0.12 < η < 0.12. The detector consisted
of 3 and 1/2 modules1, with the plan to expand its acceptance to a cover 5 and 1/2

modules for Run 3 operations.

1A module is a 1/5 of a sector, that is 1/18 of the cylindrical space-frame supporting the experiment
detectors, meaning it is equal to ≈ 20◦ coverage in azimuthal angle, and ≈ 0.35 in pseudo rapidity
coverage
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2.1.7 Electro-Magnetic Calorimeter (EMCal)

The Electro-Magnetic Calorimeter is dedicated to the measurements of electrons
from heavy flavor decays and the electromagnetic component of jets, spectra and
correlations of isolated direct photons and spectra of neutral mesons [32]. It is a
sampling calorimeter, meaning it layers active material on top of passive material:
whilst it stops the particle to deplete all of its energy in the passive material ( foils of
Pb ≈1.44 mm), the active material ( foils of scintillator ≈1.76 mm) detects and mea-
sures the energy loss with scintillation light. It consists of 12,288 towers pointing
to the interaction vertex, resulting in each tower covering roughly 2◦in η and 5◦in
φ. It is one of the sub-detectors not covering the full azimuthal angle, spanning
80◦ < φ < 180◦ and −0.12 < η < 0.12.

2.1.8 Forward Muon Spectrometer

The main purpose of the Forward Muon Spectrometer is the study of vector meson
production through their decays in µ+µ− and of muons from decays of heavy-flavor
hadrons and W± [33].

The principle of operation is the tracking of muons in a forward region (Fig. 2.7).
The detector starts with a block of absorber made of concrete and carbon, to mini-
mize multiple scattering and energy loss of the incoming muons while all the same
filtering all particles except muons, to clean the signal. The detector, positioned in
the forward region, is also subject to possible background from the beam pipe, which
is coated in tungsten, lead and stainless steel to shield it, either for particles emitted
in the collision or showers produced in the shield. After the shield there are 5 sta-
tions of high-granularity tracking systems, each station having 2 detection planes of
cathode pad chambers providing a resolution greater than 100 mm. The 5 stations
are set-up to be 2 before, 2 after, and 1 inside a dipole magnet, positioned about
7 m from the interaction vertex, generating an integrated field of B = 3 T m. After
the tracking system, another filter block is placed followed by 4 planes of RPCs (Re-
sistive plate chambers), divided in two stations, forming the Trigger system for the
decay of heavy quark resonances. In fact the second filter is to stop low momentum
muons coming from lighter particle decays.

This detector covers a pseudo-rapidity region of −4.0 < η < 2.5 and provides a
good acceptance for J/Ψ detection down to pT = 0, with a low occupancy even in
central Pb-Pb collisions of just 2%. After unfolding the charge clusters in the tracking
system using the Maximum Likelihood Expectation Maximization (MLEM), a track-
ing algorithm based on the Kalman filter reconstruct the trajectories of the muons,
that are then extrapolated to the reconstructed vertex to account for multiple scat-
tering and energy loss in the shields. To further improve the purity of the sample
spatial cuts are applied to reject fake tracks, notably a pseudo-rapidity cut outside
the acceptance range −4.0 < η < 2.5 and geometrical acceptance range at the ab-
sorber entrance (17.6 cm < Rabs < 89 cm).

2.1.9 Other Forward Detectors

The other forward detectors are devoted to determine general information on the
event, such as centrality for heavy-ions collisions, timing of the interaction to be used
by the TOF, etc. They are also employed to perform measurements of the luminosity.
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FIGURE 2.7: The Forward Muon Spectrometer position inside the AL-
ICE experiment, highlighted in red.

V0 The detector consists in quartz scintillator counters, divided in two groups:
V0A and V0C. The two detectors are set as close to the beam pipe as possible, one in
proximity of the nominal interaction point at a distance of 90 cm (V0C) and the other
outside the central barrel, at a distance of 340 cm (V0A) in the opposite direction.
They both have the same dimensions but given they are located asymmetrically from
the interaction point they cover different pseudo-rapidity ranges: V0A covers 2.8 <
η < 5.1, whilst V0C covers −3.7 < η < −1.7.

Their main purpose is to evaluate the multiplicity of the event and to generate
a trigger on pp and heavy-ions collisions, in the latter case giving also information
on the centrality of the event. During normal operations the detectors are run in
AND mode and provide multiple triggers: Minimum Bias Trigger (MB), Multiplicity
Trigger (MT), semi-Central Trigger (CT1) and Central Trigger (CT2). Moreover a
Minimum Bias p-Gas Trigger (PG) can be used to reject interactions of the beam
with the residual gas in the vacuum pipe.

T0 The detector consists in Cherenkov counters coupled with photo-multipliers,
divided in two groups: T0A and T0C. The two detectors are set close to the beam
pipe, one in proximity of the nominal interaction point at a distance of 72.2 cm (T0C)
and the other outside the central barrel, at a distance of 375 cm (T0A) in the opposite
direction. Their dimension is a little less than 40 cm2. T0A covers 4.61 < η < 4.92,
whilst T0C covers −3.28 < η < −2.97 in pseudo-rapidity.

Their main purpose is to give timing information on the event, setting the t0,
the real time of collision, for the TOF detector with a precision of ≈20 ps for heavy-
ion collisions and ≈40 ps for pp collisions. The T0 detectors can also measure the
position of the vertex along the beam axis with a 1.5 cm precision. Their efficiency
is 40% for minimum bias pp collisions, combining a 50% and 59% single efficiency,
that scales up to roughly 100% for central heavy-ion collisions thanks to the higher
multiplicities.

FMD The Forward Multiplicity Detector is a silicon strip detector with 51,200 strips
arranged in 5 rings, covering the range 3.4 < η < 5.1. It is placed around the beam
pipe at small angles to extend the acceptance of ALICE into the forward regions for
charged particle multiplicity measurements. Combined with the SPD, they provide
continuous coverage for this kind of measurements.
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FIGURE 2.8: Event reconstruction flow. [1]

PMD The Photon Multiplicity Detector is a particle shower detector which mea-
sures the multiplicity and spatial distribution of photons produced in the collisions.
It uses as a first layer a veto detector to reject charged particles. Photons pass
through a converter, initiating an electromagnetic shower in a second detector layer
where they produce large signals on several cells of its sensitive volume. Hadrons
on the other hand normally affect only one cell and produce a signal representing
minimum-ionizing particles.

ZDC The ZDCs are calorimeters which detect the energy of the spectator nucleons,
i.e. the nucleons that do not interact in the heavy-ion collision, in order to determine
the overlap region of the two colliding nuclei. It is composed of four calorimeters,
two to detect spectator protons (ZP) and two to detect neutrons (ZN). They are lo-
cated 115 meters away from the interaction point on both sides, along the beam line.
The ZN is placed at zero degree with respect to the LHC beam axis, between the two
beam pipes. The ZP is positioned externally to the outgoing beam pipe. The specta-
tor protons are separated from the ion beams by the optics of the LHC. The ZDCs are
"spaghetti calorimeters", made by a stack of heavy metal plates grooved to allocate
a matrix of quartz fibers. Their principle of operation is based on the detection of
Cherenkov light produced by the charged particles of the shower in the fibers.

2.2 Central Barrel Tracking

Tracking is the process by which tracks and vertices (primary and secondary) are
reconstructed to be used as particle trajectories with physically relevant attributes
such as charge, momentum, etc. Firstly, data from detectors are separately clustered,
associating positions, signal amplitudes, signal times, etc., with their errors.

2.2.1 Preliminary Interaction Vertex

Preliminary Vertex finding uses the first two layers (SPD) of ITS. The two clusters in
the layers are combined to form "tracklets", that are used as seeds that point toward
a vertex candidate, the candidate with most convergent tracklets is taken as prelim-
inary vertex.

When dealing with pp collisions with pile-up, subsequent searches are made,
excluding tracklets pointing to established vertices up to when all tracklets are as-
sociated. When multiplicity is too low to have a sufficient resolution, and thus no
vertex is found, a 1-dimensional search for a peak in z-distribution of the points of
closest approach (PCA) to the nominal beam axis is made.
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FIGURE 2.9: TPC track finding efficiency for primary particles in pp
and Pb-Pb collisions (simulation). The efficiency does not depend on

the detector occupancy. [1]

2.2.2 Track reconstruction

The mechanism follows a inward-outward-inward scheme.
The first step starts at the outer boundary of the TPC, where tracks are expected

to be more resolved as the track density is lower. In the TPC there are 159 tangential
pad rows, giving a track in principle the ability to leave as many clusters. The track
seeds are first generated with two TPC clusters and the vertex. The mechanism then
propagates inward, adding to the track the closest cluster (i.e. in trajectory) or none
if the available ones are too far away (there is a cut on the distance from the track
a cluster can have), without requiring a cluster to be uniquely used in a track. This
makes it possible that the same track be reconstructed more than once: this problem
is solved by an algorithm that checks overlap of tracks (25% to 50% same clusters
used) and sort them by quality, discarding all but the the first. Only those tracks that
have at least 20 clusters (out of maximum 159 possible) and that miss no more than
50% of the clusters expected for a given track position are accepted Passing these
cuts implies the tracks are propagated further to the ITS. At this stage a first PID is
performed based on the specific energy loss and a mass hypothesis is assigned to the
track.

Continuing in the ITS, the propagations of the TPC tracks are used as seeds, up-
dated at each layer with all clusters within a proximity range, saving each new fit
as a new seed. If the track misses an expected hit on a layer, it is penalized on the
χ2, (the reduced χ2) used to determine the track goodness. Once all the seeds have
been found, a procedure similar to that performed on the TPC is carried-out, firstly
constraining on the preliminary vertex, secondly loosing this requirement. All the
candidate tracks are sorted by quality, discarding all but the first, except when two
different tracks share a cluster. In this case the resolution of this conflict is performed
by searching for good alternatives among other candidates: if the conflict cannot be
resolved, the tracks are flagged as possibly mismatched. The final tracks are added
to the TPC tracks in the reconstructed event. The efficiency of prolongation in the
ITS for a track depends on the number of hits it has on the ITS itself: if only one
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FIGURE 2.10: ITS-TPC matching efficiency vs. pT for data and Monte
Carlo for pp (left) and Pb-Pb (right) collisions [1].

hit is recorded a high (≈80%) efficiency is achieved, whereas if two hits are present,
the efficiency is approaching unity at≈95%. This efficiency slightly worsen in Pb-Pb
collisions, as can be seen in Figure 2.10

One aspect to consider is the fall of reconstruction efficiency in the TPC for low
transverse momentum (Fig. 2.9). The cut-off value is around 200 MeV/c for pions
and 400 MeV/c for protons, and is caused by energy loss and multiple scattering in
the detector material together with the bending of the magnetic field. This means a
stand-alone ITS search for tracks is performed with those clusters not used to prolon-
gate TPC tracks and account for these missing particles. The seeds are made using
the vertex and the clusters of the first three layers, propagated in a similar fashion as
for the TPC prolongation track searching. This procedure is able to find tracks down
to 80 MeV/c transverse momentum.

Once the ITS propagation is finished, all tracks are propagated up to their PCA
to the preliminary vertex. From there the tracks are re-fitted using a Kalman filter
in the outward direction using the clusters that were assigned to it. During this
outward path all track properties are updated at each step, such as track integrated
length and expected time of flight for each particle species for use in the TOF detec-
tor for PID. The tracks are then propagated out of the TPC to the TOF, TRD, EMCal,
PHOS, HMPID and an attempt to match their signals is made. This additional in-
formation are not used to update track information but is stored for PID purposes.
Subsequently, a new fit is made starting from the outer radius of the TPC, determin-
ing the track’s position, direction, inverse curvature, and its associated covariance
matrix. This ends the procedure to find and fit the tracks coming from the primary
vertex. To suppress the presence of secondary tracks a cut on the distance of closest
approach (DCA) of the track to the interaction vertex is made. The DCA is the dis-
tance between the interaction point and the PCA. This cut can greatly improve the
already good primary tracks identification efficiency: not asking for a tight DCA,
≈93% efficiency is achieved, after the asking for it, a ≈98% efficiency is achieved, as
is seen in Figure 2.11.

The resolution of the measured momentum of a given particle is extracted form
the covariance matrix of the track. As mentioned before, tracks can be reconstructed
using the TPC stand-alone or combining it with the ITS. In ALICE this resolution is
expressed as the resolution on the inverse transverse momentum, as:

σpT

pT
= pTσ1/pT (2.1)
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FIGURE 2.11: Fraction of reconstructed tracks coming from the pri-
mary interaction vertex. Two sets of cuts on the track distance of
closest approach (d0) to the primary vertex are shown: "loose" with
|d0,z| < 3 cm, d0,xy < 3 cm and "strict" with |d0,z| < 2 cm, d0,xy < (0.0182

+ 0.0350 GeV/c pT ) cm.[1]

The performance of the ALICE apparatus in terms of inverse transverse momentum
in various configurations is shown in Figure 2.12. A clear improvement is obtained
by constraining the tracks to the vertex, and by extending the TPC tracks to the ITS.
On top of this, a deterioration of performance of ≈ 10 − 15% should be expected in
central heavy-ion collisions due to cluster overlap and fake clusters in tracks. Even
thought the best configuration comprehend the ITS measurements, its acceptance
has been reduced to ≈ 25% for the years 2010/11 due to the inactivity of certain
areas of the two innermost layers. A good approximation for its performance is
provided by the TPC standalone constraining to the vertex up to 10 GeV/c, with a
significant worsening at higher momenta.

2.2.3 Final primary and secondary vertices finding

The final primary vertex is found using fully reconstructed tracks in TPC and ITS,
making a first selection to eliminate outliers and weighting the track contributions
to further prevent smearing from any remaining outliers. If the event has low mul-
tiplicity the nominal vertex position is added to the fit.

After the primary vertex is pinned to its final position and all possible tracks are
found, the search for secondary vertices starts. Secondary vertices are the spatial
points were short-lived particles decay producing either a deflection of the ongoing
track (decay in one charged and neutral particles), a split of the ongoing track into
multiple tracks (decay of a charged particle in charged and neutral particles) or the
apparition of multiple tracks (decay of a neutral particle into charged ones). Firstly
a pool of possible decay products is determined requiring a DCA to the vertex to be
over a threshold (0.5 mm in pp and 1 mm in Pb-Pb collisions), then secondary ver-
tices candidates (V∅) are chosen coupling unlike-sign pairs of tracks, determining
their mutual PCA. This starting set of candidates is then subjected to multiple cuts:
(a) The distance between the tracks and the V∅ candidate must be below 1.5 cm; (b)



44 Chapter 2. A Large Ion Collider Experiment

FIGURE 2.12: The pT resolution for standalone TPC and ITS-TPC
matched tracks with and without constraint to the vertex. The ver-
tex constrain significantly improves the resolution of TPC standalone
tracks. For ITS-TPC tracks, it has no effect (green and blue squares

overlap).[1]

PCA is requested to be closer to the interaction vertex than the innermost hit of either
of the two tracks; (c) Taking as θ the angle between the straight line connecting the
V∅ to the Vertex and the total momentum of the two candidate tracks −→p pair, cos(θ)
must be above 0.9. This last requirement is relaxed if the candidate has a momentum
below 1.5 GeV/c. A schematic illustration of the secondary vertices search is shown
in Figure 2.13.

2.3 Charged Particle Identification (PID) in ALICE

The ALICE experiment, despite being designed for heavy-ion collisions Physics in
particular, is a general purpose experiment: this means that along with specific goals
of studying established phenomena there is the will to explore previously unacces-
sible areas of high-energy Physics, both in pp, p-Pb, Pb-Pb collisions environments.
This wide range of goals requires an excellent capability of reconstructing the full
event and most of all, assign an identity to each track: that is the task of the particle
identification. To this end a wide range of detectors are devoted to various degrees
to the PID effort. A brief graphical summary is shown in Figure 2.14.

As it will be clearer further on, the main constraint on the particle identification
for almost all methods is the detector resolution: an ideally perfect detector would
provide a separation power over a practically infinite momentum span. The separa-
tion power is intended as the statistical power with which one can confirm or reject
an identity hypothesis for a certain track. This is the main reason why all detectors
aim at maximum precision in their measurements and that is ultimately a very rele-
vant parameter for the detector goodness.

Most of our current technology is based on the understanding of electromag-
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FIGURE 2.13: Secondary vertex reconstruction principle, with K0
S and

Ξ− decays shown as an example. For clarity, the decay points were
placed between the first two ITS layers (radii are not to scale). The
solid lines represent the reconstructed charged particle tracks, extrap-
olated to the secondary vertex candidates. Extrapolations to the pri-
mary vertex and auxiliary vectors are shown with dashed lines. [1]

FIGURE 2.14: Particle Identification momentum ranges for various
detectors
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netic interactions and phenomena, thus giving a somewhat privileged status to the
identification of charged particles. Because of this, a number of possible ways to
detect charged particles have been developed and refined over the years and the
ALICE experiment is an instance where almost every possible identification method
is employed.

The three main methods are the energy loss through ionisation (ITS, TPC), Time
Of Flight (TOF) and Cherenkov Radiation (HMPID). Each of these specialise in a
certain range of momentum and/or particle species depending on the characteris-
tics of the interaction that is used to perform the measurement and/or the detector
location.

Energy Loss This method of particle identification is based on the measurement of
energy lost by a charged particle by ionisation in a medium (dE/dx).

The basic principle is that a charged particle traversing a medium will ionize the
material atoms, freeing an electron that can later be collected. The amount of elec-
trons collected is directly proportional to the amount of energy lost in the medium by
the particle through the first ionisation energy, that will determine the measurement
resolution. Once the electrons are freed, a voltage can be applied to collect them,
resulting in a change in the overall potential that can be measured through the elec-
tronics. The energy loss is dependent on the particle βγ and charge: the assumption
is that the βγ does not vary throughout the particle path so each measurement can
be used to derive the mean specific energy loss of the track.

Once the energy loss has been measured, the Bethe-Bloch formula is used to
identify the particle:

− dE

dx
= 4πNer

2
emec

2 z
2

β2

(
ln

2mec
2β2γ2

I
− β2 − δ(γ)

2

)
(2.2)

where re,me are the electron classical radius and mass, c is the light speed, Ne is the
mean electron density in the medium, β,γ are the relativistic factors of the particle, z
is the particle charge, I is the mean excitation energy of the medium, δ(γ) is a high
energy densities correction.

For the sake of simplicity and convenience, ALICE uses a different empirical
parametrisation:

f(βγ) =
P1

βP4

(
P2 − βP4 − ln(P3 −

1

(βγ)P5
)
)

(2.3)

where P1−5 are fit parameters and β, γ the relativistic factors. The energy loss found
by this formula expresses the energy lost in a unit length. Once the βγ of the track
has been measured, combining it with the expectations from Bethe-Bloch formula
with the measured dE/dx will allow one determine the most probable particle iden-
tity. The curves shown in Figure 2.15 are those of a typical energy loss for single
charge particles in the ITS and TPC. The main limitation of this approach is that
the separation power quickly reduces at high momentum, because of the shape of
the Bethe-Bloch formula. As can be inferred by Equation 2.2 the ionisation depends
both on the particle and on the medium. The effect of the relativistic rise of dE/dx is
more pronounced for gaseous detectors such as the TPC, and negligible for silicon
detectors such as the ITS. This difference is evident in their dE/dx spectra in Figure
2.15. The ITS has little room for separation over a few GeV/c, whilst the TPC can
still achieve a moderate separation in the range of the tens of GeV/c.
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(A) Distribution of the energy-loss signal in
the ITS as a function of momentum. Both the
energy loss and momentum were measured

by the ITS alone. [1]

(B) Specific energy loss in the TPC vs. parti-
cle momentum in Pb-Pb collisions at

√
sNN =

2.76 TeV. The lines show the parametrisation
of the expected mean energy loss. [1]

FIGURE 2.15: Particle Identification by energy loss in TPC and ITS

ITS In the ITS only the outer four layers are able to provide information about
energy loss. The cluster charge (derived by the ionisation of the crossing passing) is
normalized to the track length found from the final track fit parameters, to retrieve
a value of dE/dx for each layer. These measurements are then combined: if all four
layers are available a mean of the lowest two values is performed, if three layers are
available a weighted mean of the lowest (weight 1) and second lowest (weight 1/2)
is performed. A plot of the results of this procedure is shown in Figure 2.15a.

TPC In the TPC a large variety of physical properties are measured: momen-
tum, charge, energy loss. This multiplicity of information gives the TPC the capabil-
ity of making a stand-alone PID. In the low momentum range, up to 1 GeV/c, the
PID can be performed on a track-by-track basis, whereas above that multi-Gaussian
fits can still statistically separate particles with long tracks (over 130 samples) and
with the truncated mean method (the one used in the ITS) the dE/dx peak has a
Gaussian shape. The dE/dx precision is roughly ≈ 5% (pp collisions) and ≈ 6.5%
(central Pb-Pb collisions). A plot of the results of this process are plotted in Figure
2.15b.

Time Of Flight This method of particle identification is based on the particle kine-
matics.

The basic principle is that if the particle velocity is measured together with its
momentum, its mass can be recovered univocally identifying it through:

p = mβγ → m =
p

βγ
(2.4)

where p is the momentum, β is the particle velocity β = v/c and γ is the relativistic
factor. Here again the detector itself cannot identify the particle, but adds useful
information onto the previous detectors measurements that can lead to PID. Specif-
ically, the detector measures the time the particle takes to arrive at the TOF detector
from the interaction point and uses the information about the momentum and track
length from the reconstructed tracks.
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FIGURE 2.16: Distribution of β as measured by the TOF detector as a
function of momentum for particles reaching the TOF in Pb-Pb inter-

actions. [1]

TOF Detector A plot of the results of TOF measurements against the momen-
tum measurement in the TPC are shown in Figure 2.15b, where the separation power
can be appreciated. The majority of the background comes from mismatching of
tracks to TOF hits in the high multiplicity environment of Pb-Pb collisions, showing
that it is not related to the detector timing performance but rather it is related to track
density. In fact for tracks above 1 GeV/c in Pb-Pb collisions the TOF pad occupancy
is ≈ 6.7% whereas the mismatch fraction is ≈ 6.5%.

Cherenkov Light This method of particle identification is based on a threshold
phenomenon of light emission in a medium.
The Cherenkov phenomenon happens when charged particles speeding through a
medium at velocities above the light speed in the medium itself: the result is a typical
light emission. The emission happens with a typical refractive distribution centered
around a certain angle θ defining the resulting cone of light, related to the speed of
the particle (β) and the refractive index of the medium (n) by:

cos(θ) =
1

nβ
(2.5)

The goal of the detector is then to measure the angle θ, to be combined with the re-
fractive index to find the particle speed and eventually with the particle momentum
to determine the mass, as is the case with the TOF. In the Ring Imaging Cherenkov
this is made by having the particle cross a layer of medium, to minimize velocity
changes resulting in angle smearing, and then collecting the resulting photons on a
"screen" (i.e. a detector plane) placed at some distance from the radiator. The col-
lected photons are then grouped to reconstruct a ring on the screen and a fit is per-
formed to measure the circle radius. The radius is then combined with the distance
from the radiator to the screen to determine the angle θ.

HMPID The detector is a collection of 7 identical proximity-focusing RICH
modules, with a refractive index for the radiator of n ≈ 1.289 at 175 nm. The PID
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FIGURE 2.17: Particle Identification in the HMPID

is performed track-by-track. The detector contribution to the PID effort is strongly
suppressed by the geometrical acceptance: the matching ratio to the TPC tracks is
roughly 5%. A plot of the measurement of the Cherenkov angle contribution by the
HMPID against the TPC momentum are reported in Figure 2.17.

Combined methods As mentioned throughout the methods, particle identification
requires a number of measurements on the particle to be achieved, often performed
by other detectors. This kind of "collaboration" can be extended to the results of the
PID, comparing what the detectors predict for a certain track, to achieve a stronger
statistical separation between species or a good separation over a wider momen-
tum interval. Given for most analyses the relevant parameter is the pT , rather than
the more natural p for PID performance, the results and discussions in this sections
have been converted to transverse momentum averaging the contributions at mid-
rapidity (−0.5 < η < 0.5).

Figure 2.18b provides a useful visualization of the concept of combining multiple
detectors to efficiently identify particles over a large momentum range. The low pT
region is covered by the TPC and ITS, providing excellent separation power below
0.5 GeV/c. The intermediate pT region is covered by the TOF, providing excellent
separation power up to 3 GeV/c; in this region there is also the contribution of the
HMPID, that nonetheless is limited by its small geometrical acceptance. In the high
momentum range a combination of all detectors, depending on the particle species,
can be used.

Figure 2.18a provides a visualization of the concept of combining multiple detec-
tor to enhance the separation power for a given particle species. The map combines
TOF and TPC PID expected response for the pion hypothesis. On the X axis the
expected energy loss for pions in the TPC is subtracted to the measurement for the
energy loss of the incoming particle. On the Y axis the expected time of arrival for
pions at the TOF is subtracted to the measurement for the time of arrival of the in-
coming particle. The combination of the two gives a clear peak at 0 representing the
best pions candidates. This kind of combination can (and was) used to enhance the
separation power up to 5 GeV/c in Pb-Pb. A statistical approach can also be imple-
mented, using Bayesian methods based on the known yields to further enhance the
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PID capabilities.
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(A) Combined pion identification with TOF and with dE/dx in the
TPC. [1]

(B) Separation power of hadron identification in the ITS, TPC, TOF,
and HMPID as a function of pT at mid-rapidity. The left (right)
panel shows the separation of pions and kaons (kaons and pro-
tons), expressed as the distance between the peaks divided by the
resolution for the pion and the kaons, respectively, averaged over
−0.5 < η < 0.5. For the TPC, an additional curve is shown in a
narrower η region. The lower panels show the range over which the
different ALICE detector systems have a separation power of more

than 2σ. [1]

FIGURE 2.18: Particle Identification strategies combining multiple
detectors. (A) Combination is used to enhance PID (B) Combination

is used to extend pT range over which the PID is satisfying.
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Chapter 3

The Analysis Technique

The focus of the analysis is the measurement of the yield of φ-mesons pairs. The
analysis starts by measuring the inclusive φ-meson yield, as was already performed
by ALICE in 2012 [34] and uses the information given in the publication as a starting
point and check for the performance of the analysis technique discussed in this chap-
ter for the measurement of the yield of φ-meson pairs. After this step, the technique
for the measurement of the inclusive yield undergoes a process of generalization to
implement the technique for the measurement of φ-mesons pairs.

The generalization of the standard invariant-mass analysis technique for the sig-
nal extraction of inclusive resonance production consists in an extension of the con-
cept in a multi-dimensional invariant-mass analysis. In this work we will use the
2-Dimensional generalization aimed at the measurement of the yield of φ-meson
pairs using this novel methodology and tools that have developed specifically for
this purpose in this work.

In this chapter we will discuss the core methods of the technique and how it has
been validated with a Pythia 8 Monte Carlo sample of generated events. Before the
discussion an introduction to the physical motivation of the analysis is outlined.

3.1 Motivation

The motivation of this analysis lays in the concept of Strangeness Enhancement.
Strangeness Enhancement (SE) is a phenomenon, as has been discussed in the

first chapter of this thesis, consisting in an enhancement of the yield of particles that
have a strange-quark content. The enhancement of the yield is proportional to the
strangeness content, the higher the strangeness content of the particle the greater the
enhancement. The first observations of this phenomenon were made in the heavy-
ion collisions domain, making the corresponding pp collisions a natural benchmark
to use as comparison. Nevertheless recent results at the LHC [6] have shown that
SE is also present in high multiplicity pp collisions: a quite unexpected outcome.
This discovery adds to a series of searches and studies highlighting the possible for-
mation of a deconfined QCD phase in small systems, identifying typical heavy-ion
collisions behaviors.

All of these considerations point toward our lack of a complete understanding
of the underlying mechanisms in particle production in hadronic collisions, and are
thus a goldmine of new information. In fact, albeit unexpected, these kind of new
findings are always a good way to update our understanding and further improve
our knowledge. To this goal, the presence of these new phenomena in the context
of small systems is truly good news. The heavy-ion environment is generally very
challenging and does not benefits from many eases the pp collisions environment
does such as lower backgrounds, cleaner channels, simpler collision dynamics, etc.
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This difference is quite evident when comparing the number of Monte Carlo models
describing the two: heavy-ion physics is essentially relying on multiple models and
steps to fully describe the evolution of the collision, whilst proton physics benefits
from the use of simpler approaches implemented in multiple models for the descrip-
tion of the underlying physics: for example the Lund String Model. The extension
of these phenomena in small systems makes it possible to try to explain their nature
with different mechanism previously unaccessible.

To this end the present analysis poses itself as a start for a search for a more thor-
ough characterization of strangeness production in pp collisions. The basic idea is
that the measurement of the production of hadrons in pairs (as is the case for the
φ-meson in this work) will enable to compare it to the inclusive yield of the hadron
to extract novel information. Depending on the model taken as reference, in our
case the Lund String Model, their mutual relation will differ. As we explained in the
first chapter, there exists a probability pss of the string breaking into a ss quark pair,
when this happens twice there is the possibility to produce a φ-meson with the s
quark from the first and s from the second string breaking pair; if the string spanned
between, as an example, uu quarks, the other strange quarks will contribute to form-
ing kaons. If one more ss breaking occurs, a pair of φ-meson is formed from the
fragmentation of the same string, hence bearing some degree of correlation due to
the common formation. In this scenario we can expect the probability of producing
a single meson P(φ) should relate to the probability of forming a pair P(φφ) as P(φ)3

= P(φφ)2; on the other hand for a purely statistical picture one would simply expect
P(φ)2 = P(φφ). This is the meaning behind our search for a way to measure the yield
of pairs, as it can be used as a discriminant against different physical models. One
convenient way to test the models in this context is to take the ratio P(φφ)/P(φ)2 to
determine wether it will be higher or lower. We will not be able to directly measure
this quantity, but can manage to build something similar that can nonetheless help
us understand the underlying mechanism. The ratio of the inclusive yields should
be a good indicator.

3.2 Definition

This section will be devoted to introduce the main aspects and terminology of the
analysis. We can start by the former, going through the process of recovering the
simple integrated yield, which will also be instructive to understand how the tech-
nique to measure the yield of φ-meson pairs has been developed. The results in this
section were achieved using a set of ≈ 400 × 106 events generated in the Pythia 8
Monte Carlo event generator. We used the default parameter settings, only activat-
ing the SoftQCD:nonDiffractive and ParticleDecays:limitTau0 options. These options
allow to switch on only QCD non-diffractive processes and allow the decay of par-
ticles whose proper lifetime do not exceed cτ = 10 mm

Before diving into the analysis procedures, an introduction on general concepts
can be worth taken. Ultimately our goal is to measure the number of φ meson pro-
duced in pp collisions with the ALICE detector, and we must take this fact into
account. The first thing to know about the φ meson is that it cannot be directly de-
tected: its proper lifetime is too short (cτ ≈10 pm) for the particle to reach the ITS and
its decay vertex cannot be experimentally distinguished from the primary-collision
vertex. This means that we need to choose a decay channel and use reconstruction
techniques to infer the yield. This choice can easily come from examining the possi-
ble decay channels of the meson:
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48.9% φ→K+K−

34.2% φ→K0
LK0

S

15.3% φ→ ρπ + π+π−π0

. . .

≈ 0.03% φ→ `+`−

The first candidate to be discarded is the φ→ ρπ+π+π−π0 decay: the branching ra-
tio is relatively low and the final state is extremely difficult to reconstruct, suffering
from high background of pions coming from the underlying event.

The second candidate to be discarded is the φ →K0
LK0

S decay: even though the
branching ratio is fairly high, the neutral nature of the daughter particles compli-
cates the analysis. Moreover the K0

L has a long proper lifetime, and mostly decays
outside of the detector making it impossible to reconstruct.

The third candidate to be discarded is the φ → µ+µ− decay: it is a relatively
clean, charged decay, but it suffers from a very low branching ratio and for the fact
that in ALICE the number of actual candidates accepted by the detector would be
minimal (ALICE only has dedicated muon detectors in the forward region), strongly
limiting the analysis efficiency. The φ → e+e− decay would be more reliable, as the
central barrel region can efficiently reconstruct electrons, nevertheless the branching
ratio still poses a concern.

The optimal choice is the K+K− decay: it has the highest branching ratio avail-
able, the daughter particles are just two, charged, and it happens to be particles for
which ALICE performs best, even in the low pT region. Recalling Section 2.3 ALICE
has an excellent PID performance for charged hadrons.

Now that we established a decay channel we need to examine our sensitivity to
reconstruct the decay products. Again we must consider constraints of the detector
that will be used to perform the measurement. To mimic detector dead regions and
efficiencies a kinematic cut on the kaon tracks is performed. The kaon tracks are as-
sumed to have perfect identification, but must have at least 0.15 GeV/c of transverse
momentum and must be produced within −0.8 < η < 0.8 in pseudo-rapidity. These
constraints are found to prevent φ candidates with pT lower than 0.4 GeV/c from
being efficiently reconstructed. This discussion will be extended and this choice jus-
tified once the technique is employed on real data. Moreover a cut in the rapidity of
the φ-meson candidates reconstructed from K+ K− pairs is performed to define the
region in which we are measuring, only accepting φ-meson in mid-rapidity interval,
−0.5 <y< 0.5.

Before starting with the inclusive yield analysis of φ-meson production we lay
some notation that will be used throughout the next chapters, summarized in Table
3.1.

3.2.1 φ-meson inclusive yield analysis

The inclusive yield analysis is performed as a start, and it can be regarded as a way
to get a first sense of the analysis methods and sources of concern. Throughout the
text this part of the analysis technique will be referred to as the "1-Dimensional"
analysis and the result will be regarded as the "1-Dimensional" yield.

The first step is the measurement of the inclusive yield as is, i.e only counting
the φ mesons we are able to reconstruct. Here we encounter the first bump on the
road: we mentioned the φ meson has a strong decay in the kaon pair, resulting in
the impossibility of reconstruction for its decay vertex experimentally. The approach
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Data notation MC notation Definition

Raw Rec Raw yield, equivalent to the recordable real candidates

Res Tru Corrected yield, equivalent to all real candidates

TABLE 3.1: Summary of the notation convention that will be used
throughout the analysis.

to follow is then to pair all kaons that have opposite charge in an event as φ-meson
candidates. This will produce a set of candidates that cannot be identified as true
φ-meson decays singularly, but can be discriminated globally. This is performed via
the use of an invariant mass histogram where the invariant mass (M) is:

M2 = (E1 + E2)2 − ‖p1 + p2‖
2 = m2

1 +m2
2 + 2 (E1E2 − p1 · p2) (3.1)

where E1,E2 are the particles energies and p1,p2 are the momenta of the particles.
The invariant mass represents the mass of the hypothetical particle the kaons have
decayed from. From this it is straightforward to understand that uncorrelated kaons
will form a candidate with a combinatorial invariant-mass distribution invariant
mass, creating an irreducible background we will need to get rid of, whereas the
true φ-meson decay products will always populate the same region, following a rel-
ativistic Breit-Wigner distribution (natural units):

f(M) =
k(

M2 −M2
0

)2
+M2

0 Γ2
; k =

2
√

2M0Γγ

π
√
M2

0 + γ
; γ =

√
M2

0

(
M2

0 + Γ2
)
; (3.2)

whereM is the invariant mass of the decay products,M0 is the mass of the resonance
and Γ is its width.

Signal extraction

Signal extraction is the practical procedure to measure the yield, applying the con-
cept of invariant mass technique described above. The kaon pair candidates are
filled in a histogram creating the typical peak around the resonance mass, clearly
visible in Figure 3.1.

The goal is then to extract the signal component from the total distribution of
the background and the signal. As mentioned before, the signal is the number of
kaons pairs correctly combined in a true φ-meson candidate, and the background
is the remaining group of accidental combinations of kaons. To do so, we set up a
fit function that incorporates the two components and use it to evaluate the relative
magnitude of the signal with respect to the background.

We already defined the shape of our signal (Eq. 3.2). Even though the most rig-
orous approach would require the use of the relativistic Breit-Wigner, for such a nar-
row resonance the difference is experimentally undetectable. Moreover the Pythia
generator uses the non-relativistic version, giving more credit to the choice. Unfor-
tunately the background does not posses such and elegant and known shape. For
this reason it is often useful to use functions that can adapt to various shapes with-
out a priori knowledge: polynomials are then a natural choice, as any useful function
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can always be expressed as a polynomial series. In this work we used Chebyshev
polynomial of fourth degree to fit the background, that is a linear combination of the
first four Chebyshev polynomials, defined as:

T0(x) = 1; T1(x) = x; Tn+1(x) = 2xTn(x)− Tn−1(x); (3.3)

The fit function is then:

f1D(M,−→a ,
−→
b ) = csigfsig(M,−→a ) + cbkgf bkg(M,

−→
b ) (3.4)

Where −→a ,
−→
b are the parameters of the functions, csig, cbkg are the normalization co-

efficients, representing the integral of signal in the sample, and fsig, f bkg are the
Breit-Wigner and Chebyshev polynomial respectively, with integrals normalized to
unity.

Now that we have a general idea of the procedure we can start going into detail:
the first thing to do is define the boundaries in which we search for our signal. We
know the φ-meson has a mass of ≈ 1.019 GeV/c2 and that will roughly be our his-
togram center. We now need to establish the lower and upper limit. The resonance
width is ≈ 4 MeV, so a first approximation could be a range of mass 0.98 GeV/c2

< mK+K− < 1.05 GeV/c2 to include 8 widths, i.e. mK+K− ∈ [mφ − 8Γφ,mφ + 8Γφ].
Nevertheless given we are reconstructing the φ-meson in the K+K− decay channel,
that have a mass of their own of about≈ 0.495 GeV/c2, it is kinematically impossible
to reconstruct masses below 0.495×2 GeV/c2, that is about 0.99 GeV/c2, so we move
our lower bound to this value.

This method will extract the inclusive yield for reconstructible φ-mesons, i.e.
having transverse momentum over 0.4 GeV/c. This is the signal we are directly
able to measure. To be able to extrapolate this yield to lower values of pT we need
to differentiate this value into bins of pT to study the pT spectrum shape and ex-
trapolate down to pT = 0 GeV/c. The results in some of the pT bins are shown in
Figure 3.1, and the changing background can be clearly seen, justifying the choice of
an adaptable fit function.

The fit is performed using the RooFit statistical framework [35]. The default fit
set up is taken to be:

1. The φ-meson mass and width are let free to vary within 10% of the PDG value
[11].

2. The Chebyshev polynomials coefficients are let free to vary in [-1,+1].

3. The invariant mass fit region is taken to be [0.95,1.05] GeV/c2.

Signal corrections

The yield extracted from the invariant mass histograms does not represent the actual
production yield.

This discrepancy comes from the fact that we applied several cuts to our sample
and thus we are missing a part of the total mesons produced in the collisions. We
then need to estimate the inefficiencies and correct the yield accordingly. The first
obvious correction is the Branching Ratio (BR): given we are measuring the yield
of φ mesons decaying into charged-kaons pairs we need a correction to retrieve the
original φ-meson yield. So a general rule would be:

NRES =
NRAW

εT
(3.5)
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(A) 1-Dimensional K+K− Invariant Mass histograms with fit re-
sults highlighted, for φ-meson pT in [0.4-0.5] GeV/c.
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(B) 1-Dimensional K+K− Invariant Mass histograms with fit re-
sults highlighted, for φ-meson pT in [1.0-1.1] GeV/c.
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(C) 1-Dimensional K+K− Invariant Mass histograms with fit re-
sults highlighted, for φ-meson pT in [2.0-2.2] GeV/c.

FIGURE 3.1: Examples of 1-Dimensional K+K− Invariant mass his-
tograms with fit results highlighted: red line is the signal, dashed
light blue line is the background and dashed blue line is the full

model.
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where we used the notation introduced earlier, N is the yield (in this case the differ-
ential yield in transverse momentum) and εT the overall efficiency accounting for all
corrections.

In this Monte Carlo environment the only other correction required is that related
to the acceptance of the tracks with respect to the cuts used in the selection. To this
end we can use the Monte Carlo truth to count all the generated φ meson decaying
in charged-kaons pairs (NGEN) and all the generated φ meson decaying in charged-
kaons pairs that have both decay tracks within the reconstruction constraints (NREC).
This is performed for all pT bins and the bin-by-bin efficiency is then:

εrec(pT) =
NREC(pT)

NGEN(pT)
(3.6)

the efficiency is measured considering only the φ meson generated at mid-rapidity,
consistently with the analysis.

Accounting for these two factors one would get the Result yield (RES):

NRES(pT) =
NRAW(pT)

εrec(pT)× BR
(3.7)

Once NRES is found, the differential yield can be found by dividing by the num-
ber of events (Nevents) and by the pT bin width:

d2Nφ

dydpT
=

NRES(pT)

Nevents ×∆y ×∆pT
(3.8)

where ∆y is 1, as the measurement is performed in mid-rapidity (-0.5 < y < 0.5).
For the sake of simplicity when comparing the measured yields to the Monte Carlo
truths the Raw yield is going to be corrected to be graphically similar to the inclusive
differential yield. We can then define one more yield:

d2Nφ

dydpT
=

d2NRES
φ

dydpT
=

NRES(pT)

Nevents ×∆y ×∆pT
(3.9)

d2NRAW
φ

dydpT
=

NRAW(pT)

Nevents ×∆y ×∆pT
(3.10)

Signal extrapolation

We mentioned earlier the need to extrapolate down to pT = 0 GeV/c introducing a
binned histogram from pT = 0.4 GeV/c to pT = 10 GeV/c: formally we would also
need an extrapolation beyond 10 GeV/c, but the contribution in this region is negli-
gible (0.04% from Pythia 8 estimates). This need arises from our search for the total
inclusive yield, which demand that we extrapolate in the region where our detectors
do not provide us with measurement. The extrapolation process is fairly simple in
principle: based on the measured yield and on some a priori knowledge, as the fact
that the yield at pT = 0 GeV/c must be zero, one makes an assumption on the shape
of the pT distribution. A fit is performed to the measured differential pT distribution
with a function that parametrises the distribution and the resulting fit function pa-
rameters are used to evaluate the yield in the unmeasured regions.
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The function chosen to describe the shape of the spectrum is a Levy-Tsallis parametri-
sation that is usually used in high-energy physics to this purpose:

d2N

dydpT
=

(n− 1)(n− 2)

nT (nT +M0(n− 2))
× dN

dy
× pT ×

(
1 +

mT −M0

nT

)−n
(3.11)

Where n, T are free parameters, pT is the transverse momentum, mT =
√
m2 + p2

T.
The quantity we are interested in, the pT integrated yield, is represented by dN/dy
and does not need any further corrections since the rapidity bin is exactly 1. Once
the extraction has been performed, i.e. the fit, the unmeasured yield is obtained by
integrating the fit function in the region of interest. The total inclusive integrated
production yield is obtained by adding the the yields in the measured pT region to
the extrapolated ones:

dNφ

dy
=

∫ 0.4

0
fL-T(pT, n, T,m)dpT +

Nbins∑
i=1

H(pT,i)∆pT,i (3.12)

where fL-T is the Levy-Tsallis function with the parameters set to the fit results on
the measured region, Nbins is the number of bins in the differential yield histogram,
H(pT,i) is the content of histogram i-th bin centered at the pT, ∆pT,i is the i-th bin
width; the i index runs through all the histogram bins.

3.2.2 φ-meson pair analysis

The measurement of the production of φ-meson pairs generalise the inclusive case
explained before with an extension to 2-Dimensional invariant mass analysis. This
part of the analysis will be referred to as the "2-Dimensional" analysis and the yield
of φ-meson pairs will be referred to as the "2-Dimensional yield" throughout the text.

Many aspects of this process will require a brief discussion to justify the choices
we made, so the best approach is to follow the same step-by-step approach we used
to describe the inclusive yield measurement.

The first instance of difference from the previous method is the building of the in-
variant mass histogram that is going to be fitted. Given that we want to measure the
yield of φ-meson pairs, we need to extend the idea to a 2-Dimensional space and the
simplest way is to think of a 2-Dimensional histogram that has the two candidates
invariant mass projected onto each axis. This means that the x-axis will show the
first candidate invariant mass and the y-axis will show the second candidate invari-
ant mass. This way we need to search for a way to extract the signal, that accounts
for combinations where both candidates are real φ-mesons.

Before proceeding to the signal extraction we need to think a bit more about the
way we are filling this histogram. Whereas the 1-Dimensional fill basically only
required that the kaons were from the same event and have opposite charge, the 2-
Dimensional case needs a bit more careful considerations to avoid unphysical com-
binations. To avoid reducible background we associate to each kaon a unique num-
ber, to identify it. When combining them into pairs we keep track of such number,
labelling the pair as {K+

A ,K
−
B } to use when combining pairs, checking that there

are no common kaons. For instance, combinations like {K+
A ,K

−
B } and {K+

C ,K
−
B } is

forbidden. This automatically avoids all non-physical pair candidates. When we go
through the list of physically acceptable pairs of φ candidates two approaches can
be used:
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FIGURE 3.2: Schematic representation of 2-Dimensional Invariant
Mass histograms build: red candidates represent bkg or bkg×bkg,
yellow candidates represent bkg×sig (sig×bkg), and green candidates
represent sig or sig×sig. In the kaons indices a green index represents

a kaon from a φ decay and a red index otherwise.

1. We take the first candidate, compare it with the others except itself, fill the
corresponding histograms. Then we take the second candidate, compare it
with the others except itself and the first, fill the corresponding histograms.

2. We take the first candidate, compare it with the others except itself, fill the
corresponding histograms. Then we take the second candidate, compare it
with all the others except itself, fill the corresponding histograms.

In the second case we are imposing a symmetrical procedure, as the order by which
we arrange the candidates has no effect on the final histogram shape, whereas the
first generates a dependence on how the list is built. On the other hand, in the
second case, we must take into account the fact that the same pair is used twice:
we then fill weighting each entry as 1/2. We will be using the second approach as
it has advantages from the imposed symmetry. A schematic representation of this
procedure can be seen in Figure 3.2.

Next we can tackle the fit. This time the components are less straightforward:

• Our main goal is to measure the Signal component, that is a pair of real φ-
mesons. This means that, in terms of 1-Dimensional components, our signal is
the combination of two signal components, sig(M1)×sig(M2). Mi is the invari-
ant mass of the i-th φ-meson candidate.

• Our background will be anything else. Speaking in terms of the 1-Dimensional
components, the other three possible combinations are:

1. sig(M1)×bkg(M2)

2. bkg(M1)×sig(M2)

3. bkg(M1)×bkg(M2)

when coupling a real φ meson with background, or when pairing background
candidates.
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The presence of multiple components within the sample requires a more sophis-
ticated fit procedure to correctly identify them. To this goal a product of the 1-
Dimensional fit function (Eq. 3.4) is performed, and all the components are correctly
described:

f2D(M1,
−→a 1,
−→
b 1|M2,

−→a 2,
−→
b 2) = f1D(M1,

−→a 1,
−→
b 1)× f1D(M2,

−→a 2,
−→
b 2) = (3.13)

= csig1 fsig(M1,
−→a j1)× csig2 fsig(M2,

−→a j2)︸ ︷︷ ︸
sig×sig

+

+ csig1 fsig(M1,
−→a j1)× cbkg2 f bkg(M2,

−→
b j2)︸ ︷︷ ︸

sig×bkg

+

+ cbkg1 f bkg(M1,
−→
b j1)× csig2 fsig(M2,

−→a j2)︸ ︷︷ ︸
bkg×sig

+

+ cbkg1 f bkg(M1,
−→
b j1)× cbkg2 f bkg(M2,

−→
b j2)︸ ︷︷ ︸

bkg×bkg

+

The measured range is still the same, but the 2-Dimensional differentiation in pT
will be less granular to have a reasonable number of counts in each 2-Dimensional
bin in transverse momentum. An example of these histograms can be seen in Figure
3.3.

Signal extraction

The signal extraction procedure is similar to the one performed on the 1-Dimensional
histogram.

Some consideration in performing it is nonetheless required. Indeed the straight-
forward generalization would require that a 2-Dimensional fit to be performed using
the simple combination of fit functions described in Equation 3.13. This would be a
very challenging procedure due to the low statistics of the histograms that are fitted
compared to the number of free parameters of such a configuration; background pa-
rameters are 5×2, signal parameters are 2×2 and integral coefficients for each com-
ponent are 4, giving a grand total of 18 free parameters. In an attempt to ease the
burden on the fit algorithm, the fit procedure is divided in two steps.

We proceed to build 1-Dimensional histograms using the 2-Dimensional pT bin
scheme. These 1-Dimensional histograms represent the yield of φ-meson candidates
within a certain pT range. The assumption is that the background and signal shapes,
i.e. their function parameters, would still be the same in a 2-Dimensional conditional
yield, the only difference being that there would be a scale factor due to the match-
ing to a given pT candidate on the other axis. This can be clearer by looking at the
expression:

H(pTφ1,pTφ2,M1,M2) = H1(pTφ1,M1)×H2(pTφ2,M2) (3.14)

where Hi is an invariant mass histogram, pTφi is the momentum of the φ-meson
candidate. This means that we can fit H1 and H2 histograms independently, us-
ing the 1-Dimensional paradigm explained earlier, and the resulting parameters can
be used to fix the shape of the signal and the background. This procedure greatly
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FIGURE 3.3: 2-Dimensional K+K− Invariant Mass histogram for pTφ1
in [1.3-1.6] GeV/c and pTφ1 in [1.1-1.3] GeV/c.
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simplifies the fit algorithm, reducing the free parameters to the 4 normalization co-
efficients. The resulting yield for the pT bin will be the integral coefficient for the
sig× sig component only. A series of examples of the fit results are shown in Figure
3.4

0.99 1 1.01 1.02 1.03 1.04 1.05
)2 (GeV/c

-K+K
y

m

0

10

20

30

40

50

60

E
ve

nt
s 

/ (
 0

.0
00

66
66

66
 )

Data
 Sig)×Fit (Sig 
 Sig)×Fit (Bkg 
 Bkg)×Fit (Sig 
 Bkg)×Fit (Bkg 

Fit (Model)

 < 1.010
-K+K

x0.990 < m

Slice of 2D Invariant Mass of Kaons in pT 0.9-1.1 GeV, 2.3-3.0 GeV for MC

0.99 1 1.01 1.02 1.03 1.04 1.05
)2 (GeV/c

-K+K
y

m

0

20

40

60

80

100

120

140

160

E
ve

nt
s 

/ (
 0

.0
00

66
66

66
 )

Data
 Sig)×Fit (Sig 
 Sig)×Fit (Bkg 
 Bkg)×Fit (Sig 
 Bkg)×Fit (Bkg 

Fit (Model)

 < 1.030
-K+K

x1.010 < m

Slice of 2D Invariant Mass of Kaons in pT 0.9-1.1 GeV, 2.3-3.0 GeV for MC

0.99 1 1.01 1.02 1.03 1.04 1.05
)2 (GeV/c

-K+K
y

m

0

20

40

60

80

100

E
ve

nt
s 

/ (
 0

.0
00

66
66

66
 )

Data
 Sig)×Fit (Sig 
 Sig)×Fit (Bkg 
 Bkg)×Fit (Sig 
 Bkg)×Fit (Bkg 

Fit (Model)

 < 1.050
-K+K

x1.030 < m

Slice of 2D Invariant Mass of Kaons in pT 0.9-1.1 GeV, 2.3-3.0 GeV for MC

0.99 1 1.01 1.02 1.03 1.04 1.05
)2 (GeV/c

-K+K
xm

0

5

10

15

20

25

30

E
ve

nt
s 

/ (
 0

.0
00

66
66

66
 )

Data
 Sig)×Fit (Sig 
 Sig)×Fit (Bkg 
 Bkg)×Fit (Sig 
 Bkg)×Fit (Bkg 

Fit (Model)

 < 1.01
-K+K

y
0.99 < m

Slice of 2D Invariant Mass of Kaons in pT 0.9-1.1 GeV, 2.3-3.0 GeV for MC

0.99 1 1.01 1.02 1.03 1.04 1.05
)2 (GeV/c

-K+K
xm

0

20

40

60

80

100

120

E
ve

nt
s 

/ (
 0

.0
00

66
66

66
 )

Data
 Sig)×Fit (Sig 
 Sig)×Fit (Bkg 
 Bkg)×Fit (Sig 
 Bkg)×Fit (Bkg 

Fit (Model)

 < 1.03
-K+K

y
1.01 < m

Slice of 2D Invariant Mass of Kaons in pT 0.9-1.1 GeV, 2.3-3.0 GeV for MC

0.99 1 1.01 1.02 1.03 1.04 1.05
)2 (GeV/c

-K+K
xm

0

10

20

30

40

50

60

E
ve

nt
s 

/ (
 0

.0
00

66
66

66
 )

Data
 Sig)×Fit (Sig 
 Sig)×Fit (Bkg 
 Bkg)×Fit (Sig 
 Bkg)×Fit (Bkg 

Fit (Model)

 < 1.05
-K+K

y
1.03 < m

Slice of 2D Invariant Mass of Kaons in pT 0.9-1.1 GeV, 2.3-3.0 GeV for MC

FIGURE 3.4: 2-Dimensional Invariant mass histogram fitted, with Fit
components highlighted: red line is the signal, dashed light blue
line is the background and dashed blue line is the full model. The
data and fit are shown after an invariant mass cut to represent in 1-

Dimension the 2-Dimensional histogram

Signal corrections

All discussions made in the previous sections are valid for the 2-Dimensional case,
with some due reflections, and the generalization is quite straightforward. The re-
construction efficiency can be taken as was defined in Equation 3.6, generalizing the
concept, introducing the conditional efficiency:

εrec(pTφ1,pTφ2) =
NREC(pTφ1,pTφ2)

NGEN(pTφ1,pTφ2)
(3.15)
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where NREC(pTφ1,pTφ2) is the number of all the generated φ meson decaying in
charged-kaons pairs that have both decay tracks within the reconstruction constraints
that are produced in an event where a φ meson with momentum pTφ1,2 was also produced.
Similarly, NGEN(pTφ1,pTφ2) is the number of all the generated φ meson decaying
in charged-kaons pairs that are produced in an event where a φ meson with momentum
pTφ1,2 was also produced. This ratio gives a 2-Dimensional efficiency evaluated in a
bin-by-bin fashion. This implies that the Monte Carlo dataset is unevenly split in a
conspicuous number of bins and this might give rise to some considerable fluctua-
tions in the less populated ones.

In an attempt to reduce the statistical uncertainty on the efficiency evaluation, a
methodology is proposed. Given the conditional nature of the 2-Dimensional effi-
ciency, the result can be achieved by a multiplication of 1-Dimensional efficiencies:
the efficiency over the full pTφ1 spectrum is ε(pTφ1). The more stringent requirement
is for this φ1 meson to be produced together with another φ2 meson of transverse
momentum pTφ2 that will have an efficiency of ε(pTφ2). Thus it is straightforward
to consider the 2-Dimensional efficiency as simply:

ε(pTφ1,pTφ2) = ε(pTφ1)× ε(pTφ2) (3.16)

This approach can be validated comparing the evaluated 2-Dimensional effi-
ciency with the 1-Dimensional product (Fig. 3.5). The use of this method greatly
enhances the precision of the acceptance and greatly reduces its associated error,
and will be the evaluation method used in this analysis.

The generalization of the double differential pair Result yield is then straight-
forward:

NRES(pTφ1,pTφ2) =
NRAW(pTφ1,pTφ2)

εrec(pTφ1,pTφ2)× BR2 (3.17)

As is the generalization of the double differential φ-meson pair yield:

d3Nφφ

dydpTφ1dpTφ2
=

NRES(pTφ1,pTφ2)

Nevents ×∆y ×∆pT
(3.18)

As we introduced earlier, a notation for a more easy visualization of the valida-
tion results is introduced:

d3Nφφ

dydpTφ1dpTφ2
=

d3NRES
φφ

dydpTφ1dpTφ2
=

NRES(pTφ1,pTφ2)

Nevents ×∆y ×∆pTφ1 ×∆pTφ2
(3.19)

d3NRAW
φφ

dydpTφ1dpTφ2
=

NRAW(pTφ1,pTφ2)

Nevents ×∆y ×∆pTφ1 ×∆pTφ2
(3.20)

Signal extrapolation

The extrapolation process is analogous to the one used in the inclusive φ-meson
analysis, but as was the case of the signal extraction the best way forward is to break
down the fit procedure into two steps.

The result of the signal extraction is a 2-Dimensional yield (Fig. 3.6). As was
the case for the 2-Dimensional invariant mass fit, the number of free parameters is
quite high, and does not relate favorably with the available points. A possible way
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FIGURE 3.5: Comparison between the 2D acceptance and the com-
posite 1D×1D acceptance (see text for reference).
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forward is the introduction of the simple differential φ-meson pair yield, defined as:

d2Nφφ

dydpTφ2
=

∫ 0.4

0
fL-T(pTφ1, n, T,m)dpTφ1

∣∣∣
pTφ2

+

Nbins∑
i=1

H(pT,iφ1,pT,jφ2)∆pT,iφ1

∣∣∣
pT,jφ2

(3.21)
where it is meant that the simple differential spectrum in pTφ2 is, for each pT bin,
built from the measurement and extrapolation of the double conditional φ-meson
pair yield fixing pTφ2. After this new differential yield is obtained, the fit procedure
can be reiterated as if this was the inclusive yield:

dNφφ

dy
=

∫ 0.4

0
fL-T(pTφ2, n, T,m)dpTφ2 +

Nbins∑
j=1

H(pT,jφ2)∆pT,jφ2 (3.22)

This methodology simplifies the fit procedure to obtain the extrapolated yield and
is the one used in this analysis.

3.3 Validation

The validation process consists in feeding a Monte Carlo sample to the analysis pro-
gram and comparing the results to the Monte Carlo truth. This is a way to establish
the methods are working as they should and is a first quantifier of the goodness
and precision of the analysis, together with the feasibility of the measurement. The
relevant quantity for the analysis to be able to reproduce are the final yields for the
inclusive production of φ mesons and the production of φ-meson pairs, nevertheless
some more steps in the overall validation are a useful exercise to confirm the good
performance of the overall technique.

Signal Extraction and Signal Correction To evaluate the goodness of the signal
extraction alone, we can compare the integrated yield over the 0.4 GeV/c threshold
in transverse momentum to the Monte Carlo truth (3.2).

A more thorough bin by bin comparison of both the yield (Res) and signal ex-
traction can be found in Figures from 3.6a to 3.15. There, the yields of the whole 2-
Dimensional spectra are compared, at the raw yield level and at the corrected yield
level (Res). To better visualize this, the conditional yields are reported with their
ratio to the Monte Carlo truth.

Raw Rec Ratio
(Data) (MC Truth) (Data/MC)

1D yield 1.2440(17)×10−2 1.2395(6)×10−2 1.0036(18)
2D yield 8.157(10)×10−4 8.17(5)×10−4 1.002(7)

Res Tru Ratio
(Data) (MC Truth) (Data/MC)

1D yield 3.1115(9)×10−2 3.122(4)×10−2 1.003(2)
2D yield 1.787(5)×10−4 1.786(10)×10−4 1.000(8)

TABLE 3.2: Yields for pT ≥ 0.4 from the analysis and from the MC
truth and their ratio.
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FIGURE 3.11: Comparison of Results (Res) with Pythia 8 Monte Carlo
Truth, with their ratio. From top left to bottom right the results are the
conditional yields for pT [0.4-0.68], [0.68-0.82], [0.82-0.95]. [0.95-1.1]
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FIGURE 3.12: Comparison of Results (Res) with Pythia 8 Monte Carlo
Truth, with their ratio. From top left to bottom right the results are the

conditional yields for pT [1.1-1.3], [1.3-1.6], [1.6-2.3]. [2.3-3.0]
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FIGURE 3.13: Comparison of Results (Res) with Pythia 8 Monte Carlo
Truth, with their ratio. From top left to bottom right the results are the

conditional yields for pT [3.0-5.0], [5.0-10.]
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FIGURE 3.14: Comparison of Results (Res) with Pythia 8 Monte Carlo
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FIGURE 3.15: Comparison of Results with Pythia 8 Monte Carlo
Truth, with their ratio. The results are the integrated 2D yields.
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Signal Extrapolation To evaluate the goodness of the signal correction, extraction
and extrapolation, i.e. of the full technique, we can compare the integrated yield
over the full transverse momentum spectrum to the Monte Carlo truth (Tab. 3.3).

Res Tru Ratio
(Fit) (MC Truth) (Fit/MC)

1D yield 3.945(10)×10−2 3.96(8)×10−2 1.003(2)
2D yield 18.6(4)×10−4 18.613(15)×10−4 1.00(2)

TABLE 3.3: Yields from the analysis and from the MC truth and their
ratio.

3.4 Final considerations on measured quantities

We have now reviewed the technique by which we can measure the yield of φ-meson
pairs. Given we can now perform a novel measurement we can try to investigate the
statistical properties of the production probability for a φ meson that can be inferred
with this new information. We can elaborate the inclusive φ meson yield and the φ
meson pair yield results to find the mean and variance of the production distribu-
tion. Intuitively, the inclusive production yield (dNφ/dy) is the average numbers of
φ mesons produced per event (< Yφ >).

< Yφ >=
1

Nevents
×
(
N1φ + 2N2φ + 3N3φ + ...

)
(3.23)

where Nevents is the number of events and Nnφ is the number of events where n φ-
mesons are produced. In a similar fashion, holding into account the permutations
that come into play when talking about pairs1

dNφφ

dy
=< Yφφ >=

1

Nevents
×
(
N2φ + 3N3φ + 6N4φ + ...

)
(3.24)

Now we can recognize that the fractions Nnφ/Nevents are indeed the probability to
produce exactly n mesons, and we can call them piφ. We can use this notation to
write a more general approach:

< Yiφ >=
∞∑
k=0

(
k

i

)
× pkφ =

∞∑
k=0

k!

i!(k − i)!
× pkφ (3.25)

The mean and variance of the distribution Mean and variance are two useful in-
formations when talking about statistical distributions, so finding them is surely
something desired. The power of this novel analysis is that, contrary to the standard
inclusive analysis that can only provide access to the first moment of the distribu-
tion (the mean, µφ) of the number of φ mesons produced per event the simultaneous
measurement of both the inclusive yield (< Yφ >) and of the yield of φ-meson pairs
(< Yφφ >) provides direct information on the second moment of the distribution (the

1It’s easy to imagine this if we have a production of 3 particles: we can measure the pair 1-2, 2-3
and 1-3, thus a weight of 3 is given to the term N3φ
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variance, σ2
φ). To this end we can re-arrange the two measured yields as:

< Yφφ > =

∞∑
k=0

k(k − 1)

2
× pkφ =

∞∑
k=0

(k2

2
− k

2

)
× pkφ =

1

2
< Y 2

φ > −
1

2
< Yφ >

< Y 2
φ > = 2 < Yφφ > + < Yφ >

< Y 2
φ > − < Yφ >

2 = 2 < Yφφ > + < Yφ > − < Yφ >
2

We then successfully found a way to extract the mean and variance of the distri-
bution from the measured yields, as:

µφ =< Yφ > (3.26)

σ2
φ = 2 < Yφφ > + < Yφ > − < Yφ >

2 (3.27)

The poissonian distribution hypothesis The poissonian distribution is a natural
candidate to describe the statistics of the φ-meson production. It is the simple case
for which the production is purely statistical without any further correlation. To get
a better sense of the statical distribution of the φ mesons the poissonian distribution
with the mean measured in this analysis, compared to the Pythia Monte Carlo gen-
erators is reported in Figure 3.16.

We are then interested in quantifying the deviation of the production probability
variance with respect to the poissonian hypothesis. To this end we can introduce a
new parameter (γφ) defined as:

γφ =
σ2
φ

µφ
− 1 (3.28)

→ σ2
φ

µφ
= 1 =

2<Yφφ>
<Yφ>

+
<Yφ>
<Yφ>

− <Yφ>
2

<Yφ>

→ σ2
φ

µφ
− 1 =

2<Yφφ>
<Yφ>

− < Yφ > (3.29)

If this parameter can be measured with enough precision, it can certainly give a
quantifiable measurement of the correlation or anti-correlation of the φ-meson pro-
duction statistics. Another parameter that can help us define the statistics of the φ
meson production is the ratio of yields, defined as:

<Yφφ>

<Yφ>2 → σ2
φ = µφ →

σ2
φ

<Yφ>2 =
µφ

<Yφ>2 (3.30)

→ 2<Yφφ>+<Yφ>−<Yφ>2

<Yφ>2 =
<Yφ>

<Yφ>2 →
2<Yφφ>

<Yφ>2 + 1
<Yφ>

− 1 = 1
<Yφ>

→ 2<Yφφ>

<Yφ>2 = 1→ <Yφφ>

<Yφ>2 = 1
2 (3.31)

where the expectation value for a purely poissonian distribution is 1/2.
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Chapter 4

Analysis on ALICE Data

This chapter describes the application of the analysis technique developed in this
thesis. A limited dataset was used as a first sample to get preliminary results for
the measurement of the production of the yield of φ-meson pairs in inelastic pp
collisions at the LHC.
The approach for the analysis of the data collected by ALICE will follow the steps
described in the previous chapter. The first results of the measurement on ALICE
data collected in pp collisions at 7 TeV are presented, together with a first estimate
of the associated systematic uncertainties.

4.1 Adapting the analysis to the real data

The application of the technique on a real dataset means there are a few considera-
tions that need to be taken into account.

The core methodologies will essentially stay the same as the ones used on the
Monte Carlo generated events, such as the signal extraction procedures. Neverthe-
less a number of steps must be taken to ensure that the real dataset is on target for
the analysis. A first example of this concept is particle identification: the real dataset
does not provide a perfect unique identification of the tracks, and thus one must de-
cide how stringent the selection should be, finding a good balance between purity
and an acceptable statistics. Even the event selection becomes an important matter,
where the trigger must select real events and discard non beam-beam interactions
or other types of non-relevant events, with some inefficiency that must be accounted
for. In the next chapter we will describe the selections used in [34], that will also be
used in our analysis:

1. Data selection:
As we discussed in Chapter 2, the detector evolves in time, meaning that per-
formance, acceptance and resolution may not be, and they are in no way so,
perfectly constant in time. In this thesis the choice of the 2010 data taking pe-
riod was done to follow the publication the analysis is based on.

2. Event selection:
The event selection is performed for a number of reasons, such as the recon-
structed vertex quality.

3. Track and PID selection:
The track selection, correlated to the PID, is the part of the selection sensitive
to the quality of the reconstructed properties and to the statistics available for
the analysis. As mentioned before, here a balance is made between the two.
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On top of these selections, we must consider that the detectors have another intrinsic
efficiency represented by the geometrical acceptance. These selections greatly affect
the results both in terms of corrections and in terms of systematic uncertainty.

4.1.1 Data Selection

The data taking process involves reading the data produced by the detectors that
compose the experiment. Given the complexity of the ALICE experiment in terms of
sub-detectors components, it is natural to expect variations in the performance over
time. As an example dedicated measurements are made to determine temperature
and pressure, both of which can affect the detector response. The online calibration,
i.e. the one performed simultaneously with the data taking marks the first pass of
the data calibration. Following passes are used to further calibrate offline the detec-
tors. For this reason the datasets are clustered in Runs, that is periods of data taking
originating from the same beams, circulating in the accelerator for several hours un-
til they are too degraded and subsequently dumped.

These runs are characterised by numerous parameters that define their over-
all quality and the operational status of the detectors. For example a run may be
recorded without the HMPID detector working because of a maintenance stop. Con-
versely a whole batch of runs may have lower resolution on the track reconstruction
because the TPC had an electronics malfunction, recording data requiring an addi-
tional calibration to correct for possible distortions.

For these reasons a quality check tool is available at the ALICE collaboration. All
runs are listed with their active detectors and overall qualities, together with com-
ments indicating the status of the reconstruction and any problems that may have
occurred or the corrections that were applied.

The analysis was performed on the Runs listed in Table 4.1, with the require-
ments specified in Table 4.2.

4.1.2 Event Selection

The analysis used a dataset recorded with a Minimum Bias Trigger, that requires a
single hit in the SPD detector or in one of the two VZERO counters, i.e. at least one
charged particle anywhere in 8 units of pseudorapidity, associated to the require-
ment of two proton bunches actually colliding at the same time.

Once the event is selected, a requirement on the position of the primary vertex
is applied. As we have seen in Chapter 2, the information of vertex position greatly
increase the momentum resolution (Fig. 2.12) and the primary track identification
(Fig. 2.11). It is therefore important to select events for which the primary vertex is
correctly reconstructed. The first requirement is that the SPD correctly reconstructed
a vertex. Secondly the more general approach which uses fully-reconstructed tracks
(Sect. 2.2) is taken into consideration. If no vertex is found with reconstructed tracks,
the SPD reconstructed vertex is taken. Conversely, if the track-vertex is available, its
location is compared to the one of the SPD vertex: if their z coordinate is more than
0.5 cm apart from each other, the event is discarded. If the distance is within the
limit, the vertex reconstructed by the track method is considered.

Once the vertex candidate is available, a cut on its z coordinate is performed, to
only accept events that are within -10 cm < z < 10 cm. This selection helps to keep
the particles produced in the event in a fiducial acceptance region, as we are discard-
ing the interactions that were furthest from the nominal interaction point along the
beam pipe.
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Data Taking period Run List

LHC10b

117222, 117220, 117116, 117112, 117099, 117092,
117063, 117060, 117059, 117053, 117052, 117050,
117048, 116645, 116643, 116574, 116571, 116562,
116403, 116402, 116288, 116102, 116081, 116079,
115414, 115401, 115399, 115393, 115345, 115335,
115328, 115322, 115318, 115310, 115193, 115186,
114931, 114930, 114924, 114918, 114798, 114786

LHC10c

121040, 121039, 120829, 120825, 120824, 120823,
120822, 120821, 120758, 120750, 120741, 120671,
120617, 120616, 120505, 120503, 120244, 120079,
120076, 120073, 120072, 120069, 120067, 119862,
119859, 119856, 119853, 119849, 119846, 119845,
119844, 119842, 119841, 118561, 118560, 118558,

118556, 118518, 118506

LHC10d

126158 , 126097, 126090, 126088, 126082, 126081,
126078, 126073, 126008, 126007, 126004, 125855,
125851, 125850, 125849, 125848, 125847, 125844,
125843, 125842, 125633, 125632, 125630, 125628,
125296, 125134, 125101, 125100, 125097, 125085,

125083, 125023, 122375, 122374

LHC10e

130850, 130848, 130847, 130844, 130842, 130840,
130834, 130799, 130798, 130795, 130793, 130704,
130696, 130628, 130623, 130621, 130620, 130609,
130608, 130524, 130520, 130519, 130517, 130481,
130480, 130479, 130375, 130178, 130172, 130168,
130158, 130157, 130149, 129983, 129966, 129962,
129961, 129960, 129744, 129742, 129738, 129736,
129735, 129734, 129729, 129726, 129725, 129723,
129666, 129659, 129653, 129652, 129651, 129650,
129647, 129641, 129639, 129599, 129587, 129586,
129540, 129536, 129528, 129527, 129525, 129524,
129523, 129521, 129520, 129514, 129513, 129512,
129042, 128913, 128855, 128853, 128850, 128843,
128836, 128835, 128834, 128833, 128824, 128823,
128820, 128819, 128778, 128777, 128678, 128677,
128621, 128615, 128611, 128609, 128605, 128582,
128506, 128505, 128504, 128503, 128498, 128495,

128494, 128486

TABLE 4.1: List of the Runs used in the Analysis
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Event selection

pass Global Quality Required Working
detectors

4 1 (Best) TOF, TPC, V0, T0

Vertex selection -10 cm < z < 10 cm

Track selection

Detectors Topology Kinematics

TPC+ITS Tight DCA pT ≤0.15 GeV/c
Filter 5 -0.8 < η < 0.8

PID selection

Status Detector PID cuts

Available TPC ∆SK
particle ≤ 3σTPC

Not Available TOF \

Available TPC ∆SK
particle ≤ 5σTPC

Available TOF ∆SK
particle ≤ 3σTOF

TABLE 4.2: List of the requirements for the Analysis.
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4.1.3 Track Selection

The track selection is used to ensure the quality of the reconstructed tracks and there-
fore enhance the precision of the analysis. The selection is performed to only keep
the best quality tracks; firstly the Filterbit for the track is considered. The Filterbit is
a preset filter that flags the track quality and properties. The one used in this analysis
is the Filterbit 5, that indicates:

1. The track has passed standard TPC + ITS quality cuts, as mentioned in Section
2.2.2.

2. The track has passed the tight DCA cut for primary particles.

Moreover, the track is requested to have the same kinematic cuts we introduced in
the Monte Carlo analysis (Ch. 3), namely pT ≥ 0.15 GeV/c and -0.8 < η < 0.8.

These cuts are necessary to exclude low transverse momentum tracks, that are
likely compromised by material interactions or can be trapped in the magnetic field,
even if they are measured they potentially have low efficiencies and precision (Fig.
2.10). Moreover the cut in pseudo-rapidity is applied in order to accept tracks that
are well inside the TPC+ITS fiducial region for reconstruction (-0.9 < η < 0.9).

The tight DCA cut requires the distance between the vertex and the track PCA
along z to be |d0,z| < 2 cm, whereas their mutual distance on the x − y plane is re-
quested to be d0,xy < (0.0182 + 0.0350 GeV/c pT cm. This cut is used to enhance (Fig.
2.11) the primary particle fraction of the reconstructed tracks, as we are looking for a
meson with a short decay time, meaning it will not be distinguishable from primary
particles that are promptly emitted from the primary interaction.

4.1.4 Particle Identification

Particle identification is a complex subject, the procedures and performance of the
ALICE experiment were the subject of Section 2.3. For the presented analysis Particle
Identification was performed using the TPC and TOF signals. First a check on the
status of the PID for the track is done for both detectors, then the signal is compared
to the expected signal for the kaon mass hypothesis and a related σdetector is given.
This quantity represents the standard deviation of the particle signal (Sparticle) with
respect to the expected signal for a track in the kaon mass hypothesis (SK). The
selection is then made using their difference (|Sparticle−SK| = ∆SK

particle ≤ nσdetector).
For the kaon identification we require that the TPC is working correctly and the

signal is at least within ∆SK
particle ≤ 5σTPC (Fig. 4.1d). After this requirement is met,

a check on the TOF is made to see if the time-of-flight measurement is available and
is at least within ∆SK

particle ≤ 3σTOF (Fig. 4.1c). TOF signal may be lacking due to the
distance of the detector from the vertex combined with the presence of a magnetic
field: low pT particles will be deflected and trapped in the typical helicoidal motion
in the magnetic field. If the TOF signal is not available, the requirement for the TPC
PID is made more stringent by requiring ∆SK

particle ≤ 3σTPC (Fig. 4.1d).

4.1.5 Signal Extraction

The signal extraction process used is the one described in Section 3.2.1 and 3.2.2.
Even though the underlying process is analogous, some thought should be given
approaching real data. Notably the signal function is a Voigtian rather than the pre-
viously used Breit-Wigner. This effect arises from the momentum uncertainties. The
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(A) Particle velocity measured by the
TOF detector as a function of momentum
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(B) Particle energy loss dE/dx (arbitrary
units) measured by the TPC detector as a

function of momentum
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(C) Figure 4.1a (above) with a superim-
position of the particles selected by this

analysis PID cut on TOF signal.
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(D) Figure 4.1b (above) with a superim-
position of the particles selected by this
analysis two PID cuts on TPC signal,

combined.

FIGURE 4.1: Particle identification performance of the TOF and TPC
detectors and kaon selections used in this analysis
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Voigtian is indeed a convolution of a Gaussian and a Breit-Wigner., hence it repre-
sents a resonance signal affected by instrumental resolution effects. Some examples
of the results of these fits can be found in Figure 4.2 for the 1-Dimensional spectra
and in Figure 4.3 for the 2-Dimensional spectra.

4.1.6 Corrections to the Raw yield

The corrections to the raw yield used are the ones described in Section 3.2.1 and
3.2.2. In addition to those already discusse in the Monte Carlo analysis, we must add
some others. The main guideline we follow is the one laid down in [34]. To measure
the efficiencies and acceptances a Monte Carlo simulation with Pythia6 anchored to
the selected runs was used. The anchored Monte Carlo is a simulation performed
via an accurate Geant3 description of the detector and its precise conditions in the
given run, to achieve a reliable measurement for the efficiency. The dataset used
was the LHC14j4 b, c, d, e, f with the same runs listed in Table 4.1. The Result
yield is calculated as was performed in Chapter 3, with the addition of the detector
acceptance (ε′ = ε×A). This is the first step toward a proper correction of the yield
on real data. The combination of track efficiency and detector acceptance for the 1-
Dimensional analysis and as a comparison for the 2-Dimensional analysis (see 3.2.2),
can be seen in Figures 4.4 and 4.5. Secondly we must introduce other corrections
[34] to account for:

εtrg The correction for the trigger efficiency in terms of lost events.
This correction is evaluated to be 85.2%+6.2

3.0 .

εres The correction for the trigger efficiency in terms of lost resonances.
This loss is evaluated to be ≈ 1%, so the correction should be 99%.

εvrt The correction for the vertex acceptance, given we cut out vertices reconstructed
outside a fiducial interval of 10 cm. This loss is evaluated to be negligible.

These corrections redefine the differential yields as:

d2Nφ

dydpT
(pT) =

NRES(pT)× εtrg

Nevents ×∆y ×∆pT × εres
(4.1)

and the double differential yields as:

d3Nφφ

dydpTφ1dpTφ2
(pTφ1,pTφ2) =

NRES(pTφ1,pTφ2)× εtrg

Nevents ×∆y ×∆pTφ1 ×∆pTφ2 × εres
(4.2)

4.1.7 Signal extrapolation

Signal extrapolation is performed with the methodology described in the previous
chapter. Some examples of fit results are shown in Figures 4.6-4.7 to highlight the
good description of the Levy function in the measured region.

The main difference in this regard, when operating on the real data, is the extend
extrapolation for the bins pTφ1,2 [5.0-10] and pTφ1,2 [0.40-0.68] GeV/c. In fact these
do not have enough statistics to get a reliable signal extraction, and to account for
the missing yield an extension of the extrapolation is performed.
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FIGURE 4.2: Examples of 1-Dimensional K+K− Invariant mass his-
tograms with fit results highlighted: red line is the signal, dashed

blue line is the background and blue line is the full model.
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FIGURE 4.3: Projections of one 2-Dimensional Invariant mass his-
togram fitted, with Fit components highlighted. The lines show the

corresponding projections of the 2D fits.

4.1.8 Systematic errors

Systematic errors are used to account for all the uncertainties that are not strictly
statistical. In the present text we will rely on [34] for several contributions to this un-
certainty. We can assume that the values for the systematic uncertainties estimated
there can be inherited and used also for the presented analysis. This choice was
made on the basis of the fact that this analysis follows closely the choices presented
in the above publication. Moreover the data taking period is the same. In particular
we will take from the publication their values for the systematic uncertainties:

1. Efficiency and Track selection: 8%.

2. Particle Identification: 1.5%.

These values are generalised in the 2-Dimensional analysis making the reasonable
assumption that the matching of two φ mesons will simply multiply the uncertainty
by a factor of 2.

It should be noted that the evaluation on the extrapolated yield is not performed
in this work , nor it will be inherited by the publication.

As far as the signal extraction is concerned, we attempt a first estimate in the
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FIGURE 4.4: Inclusive φ-meson reconstruction efficiency as a function
of pT.

following. The signal extraction systematics have not been inherited and have been
evaluated in this thesis. Moreover the signal extraction from the 2-Dimensional his-
tograms is a completely novel technique for which an evaluation of the systematics
is valuable at this stage.
Recalling that the default fit set up is taken to be:

1. The φ meson mass and width are let free to vary within 10% of the PDG re-
ported value [11].

2. The Chebyshev polynomials coefficients are let free to vary in [-1,+1].

3. The invariant mass fit region is taken to be [0.99,1.05] GeV/c2.

In addition to those, the Voigtian introduces:

4. The resolution parameter is let free to vary in [0.00,1.00] GeV/c.

To understand how these arbitrary assumption affect the results, we can repeat the
analysis using the following assumptions:

1. Mass and width of the resonance are (in turn) fixed to the PDG value.

2. The background can be represented by a fifth or third degree Chebyshev poly-
nomial.

3. A number of different ranges to fit the data can be used.

Once the signal extraction is repeated for each variation, the result is saved in terms
of relative deviation from the standard fit, in percentage, for each bin for which we
measure the yield directly. A summary of the standard fit procedure together with
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FIGURE 4.5: 2-Dimensional efficiency and acceptance compared to
the 1-Dimensional product.
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FIGURE 4.7: Measurements of double conditional yields for the 2-
Dimensional analysis where pTφ2 [1.1-1.3] (left) and [2.3-3.0] (right).

Default Fit Systematics measurement

φ mass Free Fixed
φ width Free Fixed

Resolution par. Free Free

Background function 4◦ Chebyshev 3◦ Chebyshev
5◦ Chebyshev

Fit Range [0.99-1.05] All combinations for:
Min. val. 0.990,0.995,1.000

Max. val. 1.040,1.050,1.060,1.070

TABLE 4.3: Summary of the standard fit procedure parameters and
their variations in fit procedure to determine the systematic uncer-

tainty related to signal extraction.
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FIGURE 4.8: Comparison of Systematic and Statistical error for the
Signal Extraction in the inclusive production analysis.

the systematic variations is listed in Table 4.3.
After a bin-by-bin estimation is achieved, we consider the mean and RMS of the

variations. This is done in an attempt to make the safest assumption and to avoid
underestimating the signal extraction systematic uncertainty. A summary of the sys-
tematic uncertainties assigned to the raw signal extraction in the 1-Dimensional case
are shown in Figure 4.8. A summary of the systematic uncertainties assigned to the
raw signal extraction as a function of pT in the 2-Dimensional case are shown in Fig-
ures 4.9-4.10-4.11.

In both cases there is the possibility that the limited statistical precision may have
caused an overestimate of the systematic uncertainty. In particular for the pT bins
where the statistical uncertainty is large there is a hint of an increase of the system-
atic uncertainty, which might be a sign of the fact that statistical fluctuations have
a role into the procedure for the estimation of the systematic uncertainties. For this
reason a mean has been performed to smooth over those bins, and the result has
been rounded up to account for greater variations. This is a very rudimental ap-
proach that will need refinement in the near future, together with a new assessment
of the other systematics, but can nonetheless give a sense of the actual entity of the
systematic uncertainties.

We have decided to assign the systematic uncertainty of the raw signal extrac-
tion a constant value as a function of pT, being 3% for the inclusive analysis and
conservatively 10% for the 2D analysis. It has to be noticed that the assigned 3%
for the inclusive analysis is in line with the systematic uncertainty estimated for the
published results [34] that accounted for a 2-10% systematic error on the signal ex-
traction. A summary of the assigned systematic uncertainties is reported in Table
4.4.
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Signal Extraction in the 2-Dimensional analysis for pT [0.4-0.68], [0.68-
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FIGURE 4.11: Comparison of Systematic and Statistical error for the
Signal Extraction in the 2-Dimensional analysis for pT [3.0-5.0], [5.0-

10.]

1-Dimensional 2-Dimensional

Branching Ratio [11] 0.5% 1%

Tracking [34] 8.0% 16.0%

PID [34] 1.5% 3.0%

Trigger efficiency [34] +6.2%
−3%

+6.2%
−3%

Signal Extraction 3.0% 10.0%

TABLE 4.4: Summary of the Systematic uncertainties used in the anal-
ysis

4.1.9 Mean pT measurement

As a secondary measurement, the mean transverse momentum of the φ-meson pro-
duction spectra, can be performed to further characterize the measurement. The
mean transverse momentum characterizes the shape of the spectrum and can be a
useful tool to quickly describe it. We report the mean pT (〈 pT 〉φ) of the differential
yield, together with the mean pT (〈 pT 〉φφ) of the simple differential yield and report
all the double differential yields mean pT in Figure 4.12.

The results are shown in Table 4.5. The mean transverse momentum of the 1-
Dimensional analysis can be compared to the one reported in [34]. In this Thesis
only the statistical errors are reported, as a systematic assessment was not performed
yet. There is a visible discrepancy between the [34] reported value and the measured
one. This discrepancy can be explained by the spectrum being harder than the one
previously measured, with up to 20% difference at high pT. The reason for this dis-
crepancy is under investigation.
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Measured pT 〈 pT 〉φ 〈 pT 〉φφ

This Thesis [0.4 -10] GeV/c 1.161±0.005 1.30±0.05

Previous Paper [34] [0.4 -6] GeV/c 1.07±0.005±0.03 \

TABLE 4.5: Final result for the 1-Dimensional and 2-Dimensional
mean transverse momentum.
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FIGURE 4.12: Mean transverse momentum of the conditional yields
in the 2-Dimensional analysis.
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4.2 Results

The final results of the analysis are the inclusive yields for the φ meson (dNφ/dy)
and the φ meson pairs (dNφφ/dy), together with the parameters characterizing the
production statistics we discussed in Chapter 3: the production probability mean
(µφ) and variance (σ2

φ), the yields ratio ((dNφφ/dy)/(dNφ/dy)2) and the γφ parame-
ter. A summary of these measurements is given in Table 4.6.

We can start our results review from the inclusive yield of φ mesons. The mea-
sured φ-meson yield pT spectrum is compared to the Pythia Monte Carlo predictions
from the two versions used in the analysis (Fig. 4.13). Furthermore the measured in-
clusive φ-meson yield is also compared to the Pythia Monte Carlo predictions (Fig.
4.19a). The inclusive yield can also be compared to the measurement performed in
[34], so its results are listed along in Table 4.6 and the measured φ-meson yield pT
spectra are compared in Figure 4.14. The spectrum is harder than the one previously
measured, with up to 20% difference at high pT. The reason for this discrepancy is
under investigation.

The inclusive conditional φ-meson pair yield pT spectra are compared in a similar
fashion with the Monte Carlo generators in Figures 4.15, 4.16 and 4.17. Furthermore
the second conditional spectrum, built from the integration of the previous condi-
tional yields, can be compared to Monte Carlo predictions (Fig. 4.18). The measured
inclusive φ-meson yield and Pythia predictions are listed in Table 4.6. Again the
spectra seem to differ from the Pythia predictions, nonetheless the two versions sys-
tematically over and underestimate the inclusive yields (Figs. 4.19a-4.19b).

As far as the parameter we introduce in Chapter 3 are concerned, a more careful
discussion should be carried out. The mean of the production distribution (µφ) is the
inclusive φ-meson yield, and thus has already been discussed. The variance of the
distribution (σ2

φ) is less straightforward: recalling equation 4.1.9, its derivation relies
on a combination of the 1-D and 2-D yields. The yields measurements have a too
large error to constrain this quantity as an absolute value with sufficient precision to
drive conclusions about the physics of the process.

Conversely the yields ratio and the γφ parameter benefit from a very useful can-
cellation; given they rely on ratios, many systematic errors can be assumed to par-
tially cancel out. It is the case of ((dNφφ/dy)/(dNφ/dy)2), where the systematics for
Tracking, PID, Branching Ratio are greatly reduced, and can be then combined with
the full Trigger efficiency and Signal Extraction. Even though, to the sole purpose
of systematic cancelation, the more natural ratio would be (dNφφ/dy)/(2dNφ/dy).
The proposed ratio has the advantage of being directly comparable to a poissonian
distribution, that will always yield 1/2. Given the measurement are dominated by
systematics, these cancellations greatly help the measurement precision. In fact this
measurement has a satisfying precision, although it is a preliminary result that can
be refined in the future with improved precision. This leaves a number of open
possibilities for future measurements. Its comparison with Pythia generators (Fig:
4.20a) suggests the over and underestimation is still present.

Similarly, the γφ parameter benefits from the ratio error compensations. For this
measurement we only considered the 1-Dimensional analysis systematics, combined
with the 2-Dimensional Signal Extraction systematic. Here again, these cancellations
help in improving the error that give the result a good significance. Its compari-
son with Pythia generators (Fig: 4.20b) shows a surprisingly good agreement be-
tween the two Pythia versions and the data, despite the discrepancies observed in
the case of the other observables. Improvements on the resolution of this measure-
ment would be greatly beneficial to a more thorough characterization of the statistics
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Measured pT dNφ/dy (×103) dNφφ/dy (×103)

This Thesis [0.4 - 10] GeV/c 33±0.2+3.6
−3.1 1.44±0.05+0.29

−0.28

Previous Publication [34] [0.4 - 6] GeV/c 32±0.4+4.0
−3.5 \

Pythia 6 - 27 1.06

Pythia 8 - 39 1.86

(dNφφ/dy)/(dNφ/dy)2 σ2
φ σ2

φ/µφ − 1 (%)

This Thesis 1.30±0.04+0.
−0. 0.035±0.05+0.25

−0.22 5.33±0.36±2.7

Pythia 6 1.42 0.029 5.05

Pythia 8 1.20 0.042 5.48

TABLE 4.6: (Top) Measured inclusive φ meson yield and inclusive φ
meson pair yield compared to the previous publication results.

(Bottom) Measured ratio of inclusive φmeson pairs yield to the inclu-
sive φ meson yield squared, measured production distribution vari-
ance (see Eq. 4.1.9), measured deviation from the Poissonian distri-

bution.

properties.
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FIGURE 4.15: Comparison of Results with PYTHIA 6 and 8 Monte
Carlo generators, with their ratio. From top left to bottom right the
results are the conditional yields for pT [0.4-0.68], [0.68-0.82], [0.82-

0.95]. [0.95-1.1]
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FIGURE 4.16: Comparison of Results with PYTHIA 6 and 8 Monte
Carlo generators, with their ratio. From top left to bottom right the
results are the conditional yields for pT [1.1-1.3], [1.3-1.6], [1.6-2.3].
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FIGURE 4.17: Comparison of Results with PYTHIA 6 and 8 Monte
Carlo generators, with their ratio. From top left to bottom right the

results are the conditional yields for pT [3.0-5.0], [5.0-10.]
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Conclusions

In the present thesis we explored the possibility of performing a novel measurement
with the ALICE experiment at the LHC, namely the measurement of the yield of
pairs of φ mesons in proton-proton collisions.

The analysis technique extends the concepts of the classical invariant-mass anal-
ysis into a multidimensional invariant-mass space (2D in this case). The framework
for the data analysis has been developed using a simplified analysis environment
based on Pythia8 Monte Carlo events, providing evidence in favor of the feasibility
of the technique and its validation for use on real data. In the Monte Carlo we tested
and validated many assumptions that helped designing the analysis and improve
its accuracy.

After the technique was established, it has been employed on a set of ALICE data,
on which the inclusive φ meson yield was already measured, to have a reference to
check. The inclusive (1-Dimensional) measurement could be reproduced within the
uncertainties of the previous measurement, with a smaller statistical error.

The 2-Dimensional yield is a novel measurement, never performed before. The
presented result represent a very good first estimate of the production of φ-meson
pairs. This thesis has proven the feasibility of the technique and the possibility to
perform such a multi-differential measurement with the ALICE experiment at the
LHC. A larger statistical sample is expected to improve the analysis both in terms of
statistical precision and in terms of the systematic uncertainties.

These first results open a new way to evaluate a number of parameters defining
the production mechanisms of the φ meson, and consequently the strangeness pro-
duction. We discussed about the statistical properties of the φ meson production in
pp collisions at

√
s = 7 TeV, giving a first estimate for the mean and variance of the

distribution. Moreover, the ratio of yield of φ meson pairs with respect to the inclu-
sive φ meson yield is expected to show the degree of correlation in the production
of φ meson pairs in hadronic collisions. The measurement reported in this thesis
for this ratio is in qualitative agreement with the expectations from the Lund String
Model, as it shows an enhancement of the production with respect to the simple
poissonian expectation of the ratio being 1/2.

This correlation in production is reflected in the deviation of the distribution de-
viance from a poissonian hypothesis (γφ). This deviation shows a surprisingly good
agreement between the data and Pythia Monte Carlo. This might indicate that the
Lund String Fragmentation Model correctly describes the degree of correlations in
the production of φ-meson pairs, regardless of the details of the different tunes em-
ployed in Pythia 6 and 8.

It will be crucial to test other Monte Carlo event generator models against this
measurement, especially those that employ different phenomenological mechanisms
of hadronisation.
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