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Abstract

After reviewing Dirac’s canonical quantization program and the canonical quantiza-
tion of General Relativity, we study the problem of time in the context of a quantum
minisuperspace cosmological model: a Friedmann-Lemâıtre-Robertson-Walker spacetime
coupled minimally to a scalar field. We explore different methods to include time and
evolution in our formalism. We begin by discussing the possibility to identify a dynam-
ical time variable before quantization. Such a time variable is constructed as a function
of the phase space variables and leads to a multiple choice problem for the evolution of
our quantum system. We then explore the connection between the Born-Oppenheimer
approach to the problem of time and gauge fixing. We find that by choosing a particular
gauge we can recover the Born-Oppenheimer approach ansatz both in the classical and
in the quantum theory. In the latter, the result of the BO approach is recovered by
performing a phase transformation in the Wheeler-DeWitt equation and requiring that
the resulting Schrödinger-like equation is unitary.



Abstract

Dopo una rassegna del programma di Dirac per la quantizzazione canonica della relatività
generale, studiamo il problema del tempo nel contesto di un modello cosmologico dato
da un minisuperspazio quantistico: uno spaziotempo Friedmann-Lemâıtre-Robertson-
Walker con accoppiamento minimale ad un campo scalare. Esploriamo diversi metodi per
includere il tempo e l’evoluzione temporale nel nostro formalismo. Iniziamo discutendo
la possibilità di identificare una variabile temporale dinamica prima della quantizzazione.
Una tale variabile temporale è costruita come funzione delle variabili dello spazio delle
fasi e conduce a delle ambiguità nell’evoluzione temporale. Successivamente esploriamo
la connessione tra l’approccio di Born-Oppenheimer al problema del tempo e il fissare un
gauge. Troviamo che scegliendo un gauge apposito si ritrova l’ansatz dell’approccio di
Born-Oppenheimer sia nella teoria classica che in quella quantistica. In quest’ultima, il
risultato dell’approccio di Born-Oppenheimer è ottenuto anche effettuando una trasfor-
mazione di fase nell’equazione di Wheeler-de Witt richiedendo che la risultante equazione
di tipo Schrödinger sia unitaria.
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Introduction

The understanding of the concept of time is one of the deepest gaps in our current
knowledge of the universe. The fascination and uncertainty in the meaning of this concept
can be summarized in the words of Saint Augustine, who said, as early as 389 A.D, the
following words [1]:

“What then is time? If no one asks me, I know what it is. If I wish to explain
it to him who asks, I do not know.”

This quest to understand what time is and the role that it plays in our universe
is particularly interesting in physics, where the concept of an absolute time that is
continuous, infinite and can be used to describe the dynamics of all bodies and all laws
of physics was established by Newton’s Laws of Mechanics [2].

The view of time like a parameter external to our systems was challenged by the
developments of special and General Relativity. In these theories, time and space are
treated on equal footing, meaning that time is not anymore absolute, but it is dynamic. In
the particular case of Minkowski spacetime in special relativity, the division of spacetime
into space and time is more of an useful choice we make and is not inherent to the
physical situations themselves [3].

Another important characteristic of these theories is that in both, special and General
Relativity, equations transform covariantly under changes of spacetime coordinates. This
means that for a quantity to be considered “physical” it should be independent of the
choice of coordinates [4]. In the case of special relativity, the equations are covariant
under the action the the Poincaré group, while in the case of General Relativity the
Poincaré group is substituted by the more general group diff(M), which is the group of
diffeomorphisms of the spacetime manifold M [2, 3, 4].

In this context, General Relativity can be regarded as a Gauge theory. There are
other very important and successful theories of this kind, for example, we can mention
electrodynamics and Yang-Mills theory1, which form the base of our understanding of
the Standard Model (SM) of particle physics.

1String and superstring theories are other popular examples that share with General Relativity the
fundamental feature that they are reparametrization invariant.
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The Standard Model has been very successful in the sense that results from high
energy physics experiments performed at colliders (and more specifically, at the Large
Hadron Collider, at CERN) can be explained by this theory. However, there are different
hints that tells us that the SM is incomplete [5]. One of these issues is precisely that in the
SM three forces of nature (electromagnetism, weak and the strong force) are described
at a quantum level, while gravity is only treated classically.

Since all the forces in the Standard Model are described by Gauge theories and we
have argued that General Relativity is also a theory of this kind, we could hope that an
approach analogous to the one made for Yang-Mills and electromagnetism would suffice
to include General Relativity in the Standard Model. However, when we look at the
gauge groups of General Relativity and Yang-Mills, we realize that they are analogous in
the sense that in both cases they are associated with a canonical formalism that produces
constraints on the canonical variables, but the analogy ends when we notice that Yang-
Mills transformations occur at a particular point in spacetime, while the invariance
under the diffeomorphism group implies that individual points in our manifold M have
no fundamental significance [4]. For example, the value of a scalar field in a particular
point x of our manifold has no invariant meaning.

This raises the questions of what is really an observable in General Relativity. Before,
we mentioned that for a quantity to be consider physical, it should be independent of
the choice of coordinates. This idea carries with it some questions that are of particular
interest to us. The first of them has to do with the fact that time is usually regarded as
a coordinate on our manifoldM, so, we should expect that it plays no fundamental role
in our theories. But if time has no physical significance, how does change emerge in our
formalism?

A second, but not less important question is if this view is compatible with the
notion of time in quantum mechanics. The answer is, in principle, that the two notions
are not compatible. This incompatibility has its heart in the special role that time
plays in the quantum theory: time is not represented by an operator, but it is instead a
background parameter, external to the system. In other words, the concept of time used
in conventional quantum theory is the Newtonian one. [4]

This incompatibility is known as “The Problem of Time” and turns out to be the
source of serious problems in the search for a quantum theory of gravity [6]. To un-
derstand why, we need to take a look at the canonical approach to quantum gravity
(see, for example, [7]). After performing the 3 + 1 decomposition of the Einstein-Hilbert
action, defining canonical variables and identifying the primary constraints (for a review
of Dirac’s canonical quantization program see [8]), we can write the Hamiltonian

HD =

∫
d3x(NαHα +NH). (1)

Here, N and Nα are called the lapse function and the shift vector and H, Hα are the
super Hamiltonian and the super momentum, correspondingly.
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The super Hamiltonian and the super momentum are constrained to vanish weakly:

Hα ≈ 0, H ≈ 0. (2)

Then, we can see that also our Hamiltonian will vanish weakly, because it is a linear
combination of the constraints. Since the Hamiltonian governs the quantum dynam-
ics, the fact that it vanishes means that we can’t write a time dependent Schrödinger
equation. In other words, our quantum states will appear to be “frozen”.

More specifically, upon quantization both the super Hamiltonian and the super mo-
mentum must be turned into operators:

Hα −→ Ĥα, H −→ Ĥ. (3)

These operators act on our quantum state |ψ〉. The equation for the momentum
constraint, Ĥα |ψ〉 = 0, is automatically satisfied if |ψ〉 is invariant under coordinate
transformations, which is consistent with the fact that the momentum constraint can be
interpreted as the generator of diffeomorphisms in our hypersurfaces [9].

On the other hand, the quantum dynamics is actually governed by the Hamiltonian
constraint, and the equation

Ĥ |ψ〉 = 0 (4)

is known as the Wheeler-DeWitt equation [10]. The interpretation of this equation
in physical terms remains an open question. In particular, the apparent absence of
time and, as a consequence, of evolution of the states must be accounted for somehow.
However, equation (4) remains as the basis of different approaches to quantum gravity
and quantum cosmology.

Actually, quantum cosmology plays a fundamental role in the study of quantum
gravity, since cosmological models are simple examples to which the ideas of a quantum
theory of gravity may be applied in order to extract meaningful results that could be
confronted with observational data.

In principle, the goal of quantum cosmology is to describe the universe in its very
early stages and provide initial conditions for inflation, i.e. of the stage of the history
of the very early universe when it undergoes a very rapid quasi-exponential expansion.
Quantum gravity effects are expected to have played an important role during this period,
leaving a print in the cosmological fluctuations produced during inflation that may be
observable in the cosmic microwave background [11].

However, the full formalism of quantum cosmology is very difficult to deal with in
practice, since the configuration space is infinite dimensional. Here is where the concept
of minisuperspace comes into play. Minisuperspaces are a particular class of models
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that have a finite dimensional configuration space. Much of the work done in quantum
cosmology has concentrated on models of this type.

Minisuperspaces are characterized by the imposition of symmetries in the metric in
order to get a theory with a finite number of degrees of freedom. Examples of these
type of cosmologies are Firedmann-Lemâıtre - Robertson-Walker (FLRW) models, the
Bianchi-type spacetimes and Kantowski - Sachs universe.

These models share relevant features with the full theory. In particular, the problem
of time is present in the cosmologies mentioned above. So, studying how to solve the
problem of time in this context is not only simpler, but it can give us great insight into
the full theory of quantum gravity, while at the same time allowing us to get some useful
predictions about quantum gravity effects that might have played an important role
during inflation. These predictions could in principle be confronted with observational
data of the cosmic microwave background.

Taking what we have discussed into consideration, we can ask the following question:
how can we reintroduce the notion of time and evolution in a quantum theory of gravity,
in particular in the context of quantum cosmology and minisuperspaces? The present
thesis project deals with this question.

This work is divided into six chapters. In chapter I and II, we review Dirac’s canonical
quantization program and the canonical quantization of General Relativity, which are
the basis of the study of the problem of time. In chapter III we discuss the problem of
time in more detail, including the different approaches that have emerged through the
years and the technical problems that appear while trying to solve it.

In chapter IV, we perform the canonical quantization of a flat FLRW spacetime
coupled to a scalar field. This minisuperspace model will be our subject of study in the
following two chapters.

Chapter V is dedicated to the study of the problem of time in the quantum minisu-
perspace of chapter IV. We attempt to identify time before quantization using a method
described in [12]. Finally, chapter VI is dedicated to the study of the connection between
the Born-Oppenheimer approach to the problem of time and the gauge fixing approach.

In the words of Isham[4]: “the problem of ‘time’ is one of the deepest issues that must
be addressed in the search for a coherent theory of quantum gravity.” This sentence
summarizes the importance that solving this problem has for theoretical physics and,
on a deeper level, for the foundations of physics. A better understanding of its different
aspects, which can be achieved through the study of simpler models like minisuperspaces,
can help us construct one of the missing pieces in our modern understanding of the
universe: a quantum theory of gravity, which has been elusive up to now.
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Chapter 1

Dirac’s canonical quantization
program

Theories with constraints have been very successful in describing nature [13]. As ex-
amples of these kind of theories we can mention electrodynamics and Yang-Mills the-
ory, which form the basis of our understanding of the Standard Model (SM) of particle
physics. Another very important example of a theory with constraints is General Rela-
tivity, which is the only one of the four fundamental forces of nature that it’s not included
in the Standard Model [5].

In all the cases mentioned before we start with a classical theory, which is then
quantized using canonical quantization [8]. The method to construct a quantum theory
beginning from a classical theory with constraints was established by Dirac as is known
as Dirac’s canonical quantization program [14], which we now proceed to describe.

To get a feeling for Dirac’s procedure we first review the usual Hamiltonian description
of a system. Consider a system described by a set of coordinates qi, where i = 1, ..., n.
The qi are coordinates on a manifold and this manifold is called the configuration space.

The evolution of the system can be thought as a path in the configuration space
[8]. This path can be described by the function ~q(t), where t is the time variable and
~q denotes a point in the configuration space. Such a path is called the evolution of the
system.

The dynamic of the system is described by the action. The physical path that our
system follows is the one that extremises the action [15], defined as follows:

S[q(t)] =

∫
dtL(q(t), q̇(t)).

Here L(q(t)), q̇(t) is the Lagrangian of the system. By performing variations in the
action we can derive the equations of motion, which are given by the well-known Euler-
Lagrange equations [15]:
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∂L

∂qi
(q, q̇) =

d

dt

∂L

∂q̇i
(q, q̇)

In general these are second order differential equations. We can turn them into a
system of first-order differential equations by introducing an additional variable for each
qi. We’ll call these new variables the conjugate momenta pi. For each qi, its conjugate
momenta is defined as [8]:

pi(t) =
∂L

∂q̇i
(q, q̇), ṗi(t) =

∂L

∂qi
(q, q̇).

The time evolution is now given by the space spanned by the coordinates qi and pi.
This space is called the phase space. A point in the phase space is called a state of the
system.

On the phase space, we can introduce the Hamiltonian of the system [16]:

H(q, p) = piq̇
i − L(p, q̇). (1.1)

Using the Hamiltonian we can rewrite the action as

S =

∫
dt piq̇

i −H(q, p). (1.2)

The corresponding equations of motion associated to this action are the Hamilton
equations [16]:

q̇i(t) =
∂H

∂pi
(q, p), ṗi(t) = −∂H

∂qi
(q, p).

The Hamilton equations describe the evolution of a state in the phase space and are
equivalent to the Euler-Lagrange equations [8]. The time evolution of a function F (p, q)
on the phase space is given by its Poisson bracket with the Hamiltonian, defined as:

Ḟ (p(t), q(t)) = {F,H} =
∂F

∂qi
∂H

∂pi
− ∂H

∂qi
∂F

∂pi

Then, the dynamics of our system is completely determined by the Hamiltonian and
the Poisson bracket [16]. However, to be able to write the Hamiltonian as equation (1.1)
we have to solve the condition

pi =
∂L

∂qi
. (1.3)

If this condition cannot be solved, it means two things [8]:
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• The Hamiltonian can’t be defined in this point of the phase space.

• There is no solution to the equations of motion passing through this point.

The fact that there is no solution to the equations of motion in a particular point
of the phase space tells us that we don’t really need the Hamiltonian there, since it is
not part of the physical solutions of our systems. So, our Hamiltonian is well-defined
only on the subspace of the phase space given by the image of the momentum map [13],
equation (1.3).

The image of this map can be described by a set of equations ψα(q, p) = 0, which
we’ll call primary constraints. The subspace of the phase space defined by the primary
constraints is called the primary constraint surface [14].

Since we know that all the solutions of our system lie in the primary constraint surface
and that the Hamiltonian is well defined there, we can rewrite the action (1.2) to include
the restriction that the path has to lie in the primary constraint surface. We can do this
by adding Lagrange multipliers to the action in the following way:

S̃[q, p, u] =

∫
dt q̇ipi −H0(q, p)− uαψα(q, p).

We can define the combination

H(q, p) = H0(q, p) + uαψα (1.4)

to be the Hamiltonian, so that the equations of motion now are

ψα = 0, q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
.

However, as we integrate our system we are going to find that it is not enough to
start with a state in the primary constraint surface to remain on it, because in general
states tend to evolve away from it [8]. So, we need to add the additional requirement
that the constraints be satisfied at all times.

This requirement will impose more restrictions on the initial conditions of our system
and will define another subspace of the the phase space. We call these additional re-
strictions secondary constraints and the smaller subspace that they define the constraint
surface. Once we found all the constraints and start with a state solving them, we will
stay in the constraint surface at all times [14].

Note that to derive the equations of motion we need the derivatives of the Hamil-
tonian, so we are free to add anything to it that vanishes and whose gradient vanishes
in the constraint surface. With this idea in mind we can introduce the concept of weak
equality [13].
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Two phase space functions F (q, p) and G(q, p) are defined to be weakly equal if they
coincide on the constraint surface. Weak equalities are denoted by the symbol ≈ and are
not compatible with the Poisson bracket [8]. This means that if we have three phase space
functions, F (p, q), G(p, q), K(p, q), and we know that F ≈ G, this doesn’t necessarily
implies {F,K} ≈ {G,K}.

To summarize, the equations of motion can be derived from a Hamiltonian that
takes the form (1.4). Where the ψα are the primary constraints and the uα are the
Lagrange multipliers that, in general, can be a set of phase space functions with some
free parameters. To find the initial states that are allowed we need to require that also
the time derivative of the primary constraint vanishes.

It is enough to ask that the time derivative of the primary constraints vanishes weakly
[8], since this will ensure that the state remains in the constraint surface. So, we have
to consider the following conditions:

ψ̇α = {ψα, H} ≈ {ψα, H0}+ uβ{ψα, ψβ} ≈ 0 (1.5)

Equation (1.5) represents a set of equations, some of which are the secondary con-
straints and some of which restrict the uα’s weakly. Of course, we also need to ask that
the newly found secondary constraints be conserved under time evolution, so we have
to evaluate (1.5) again for them, possibly getting more constraints. We have to keep
repeating this procedure until we either find a contradiction, in which case there are no
solutions to the equations of motion, or the new conditions are trivial [14].

In the second case, we end with a full set of constraints which define the constraint
surface and the Hamiltonian takes the form (1.4), where we are now summing over both
the primary and secondary constraints.

We mentioned before that the uα are fixed only weakly and that they may contain
some free parameters. We can now ask if after completing the procedure just described
there will still be any free parameters left. To answer this question, remember that the
uα have to satisfy the following set of equations:

{H0, ψα}+ uβ{ψα, ψβ} ≈ 0. (1.6)

Whether or not there are free parameters in the uα depends on the matrix

∆αβ = {ψα, ψβ}.

If this matrix is invertible, we can solve (1.6) [8], which will give us a weakly unique
solution for all uα. On the other hand, if this matrix is not invertible we will have some
zero eigenvectors. We can then assume that there are a subset of constraints φa that
have weakly vanishing Poisson bracket with all constraints:

{φa, ψα} ≈ 0.
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It is clear that in this case, equation (1.6) doesn’t impose any restriction on the
corresponding ua.

We will now define a first class function as a phase space function that has weakly
vanishing Poisson bracket with all the constraints. In this sense, the ψa are called the
first class constraints [13].

The remaining constraints will be denoted by χm. Since the χm don’t have van-
ishing Poisson bracket, the submatrix ∆mn = {χm, χn} is invertible, meaning that the
corresponding um are weakly fixed. We call the χm second class constraints [13].

Gauge transformations appear in this context as a term in the Hamiltonian propor-
tional to the constraint multiplied by a free parameter. This means that if F (q, p) is a
phase space function, then

δF = ua{F, φa} ≈ {F, uaφa}

gives the transformation of F generated by uaφa. In our case, the constraints that
appear in this way in the Hamiltonian are the primary first class constraints, which lead
us to the conclusion that these are the generators of gauge transformations [8]. It can
be proven that also the secondary first class constraints generate gauge transformations.

Since we are free to perform gauge transformations at any time, we can add any
linear combinations of first class constraints to our Hamiltonian. So, its final form will
be

H(q, p, t) = H0(q, p) + ua(q, p, t)φa(q, p).

The second class constraints are included into H0 since they don’t contain free pa-
rameters. The parameters in the case of the first class constraints can be any phase
space function that can also depend on time.

The complete set of equations of motion will be

φa(q, p) = 0, χm(q, p) = 0.

That correspond to the first and second class constraints and the Hamilton equations:

q̇i =
∂H

∂pi
, ṗi =

∂H

∂qi
.

In the bracket notation, this can be written as

Ḟ (q, p) = {F,H} ≈ {F,H0}+ ua{F, φa}.

This last equation tells us that the time evolution is split into a “physical evolution”
plus a gauge transformation.
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Let us now briefly define observables in the context of constrained systems. For
unconstrained systems observables are usually defined as phase space functions that can
be measured. For constrained systems, a quantity that can be measured should be a
function only on the constraint surface, since the states that are realized physically live
there. Also, if we have a gauge symmetry, only those quantities invariant under the
Gauge transformation can be defined as observables [8, 17].

We explained before that Gauge transformations are generated by the first class
constraints. An observable must be invariant under Gauge transformations, which means
it must have weakly vanishing Poisson bracket with the first class constraints:

{O, φa} ≈ 0.

This completes the classical part of Dirac procedure to describe the dynamics of
constrained systems. Let’s study now the more interesting quantum part.

1.1 Quantization of constrained systems

Before dealing with constrained systems let us review the canonical quantization proce-
dure for an unconstrained system, which usually goes as follows [18]:

• Take the configuration space variables and their conjugate momenta and promote
them to operators in some Hilbert space. A state will be represented as a vector
of this Hilbert space.

• Substitute the Poisson bracket with the commutator between operators.

• Take the state space to be the set of square integrable complex wave functions Ψ
on the configuration space and choose a representation for the operators:

q̂Ψ(q) = qΨ(q), p̂Ψ(q) = −i~∂Ψ

∂q
(q).

• Impose the Schrödinger’s equation, that in the Schrödinger’s picture reads:

i~
d

dt
|Ψ〉 = Ĥ |Ψ〉 .

• Define the scalar product between two wave functions |Ψ〉 and |φ〉 as

〈φ|Ψ〉 =

∫
dq φ∗(q)Ψ(q). (1.7)
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We can calculate expectation values of observables:

〈F̂ 〉 = 〈Ψ| F̂ |Ψ〉 .

Additionally, we have Ehrenfest’s theorem, that tells us that expectation values of
observables behave almost like the classical phase space functions.

Almost all these steps can also be defined in the case of a constrained system. But
what about the constraints? We have argued that the constraints impose conditions on
the initial states of our system and define the constraint surface, that in the phase space
represents the possible physical states of our system.

On this line of thought, at the quantum level, we can promote the classical constraints
to operators and think about them as restrictions to be imposed in the states |Ψ〉 [14].
The conditions to be imposed on a state are then

ψ̂α |Ψ〉 = 0.

In the last equation, ψ̂α are the quantum constraint operators. The states ψ̂α |Ψ〉
are called physical states and they form a linear subspace that we call the physical state
space [8].

To define observables in the quantum theory, we should remember that in the clas-
sical theory, they are defined as those phase space functions that have weakly vanishing
Poisson bracket with the constraints. We will introduce a similar concept in the quantum
theory making use of the commutator instead of the Poisson bracket. We will define a
quantum observable Ô as an operator that commutes weakly with all constraints [14]:

[Ô, φ̂a] ≈ 0.

The fact that the commutator of an observable with all constraints vanishes weakly
tells us that the observable maps physical states onto physical states, since

φ̂aÔ |Ψ〉 = Ôφ̂a |Ψ〉 − [Ô, φ̂a]ψ = 0.

In general, for a constrained system, the product given in equation (1.7) will not give
a suitable scalar product for the physical states [8]. So, if we are going to define a proper
Hilbert space we should define a new scalar product.

The definition of the product is the last step of the quantization program and there
is really no general rule to tell us how to do it [19]. The only condition that can help us
identify the product is that we require that real observables become Hermitian operators.
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Chapter 2

Canonical quantum gravity

Our goal in this chapter is to use Dirac’s Canonical quantization program to perform the
canonical quantization of General Relativity. In order to do this we need to write the
Einstein-Hilbert action in a suitable form that will allow us to define canonical variables
and their conjugates that will later be used to write the theory in Hamiltonian form.

Writing the action in “suitable form” means that to write the theory in Hamiltonian
form we need to break the covariance of the theory and pick a particular foliation (pre-
ferred “time” variable) of our spacetime. This separation of time and space coordinates
is known as 3+1 decomposition of General Relativity, which we set to describe now.

2.1 General relativity in Hamiltonian form

2.1.1 ADM variables

Historically, the first attempt to use canonical quantization for gravity was done by
Arnowitt, Deser and Misner and was first published in 1959 [20]. Their method is known
as ADM formalism and has played a fundamental role in canonical quantum gravity.

The idea of the method is to assume that our spacetime manifold (M, g) is globally
hyperbolic. In this case, we can foliate our manifold using spatial Cauchy hypersufaces
[7] that we will call Σ. We can define the normal to Σ as uµ. The relationship between
the metric of our manifold M, gµν , and the metric of the Cauchy surface Σ, which we
will call hµν , is given by the first fundamental form:

hµν = gµν + uµuν .

For each Σ there exists a global parameter t which is a scalar and is constant on the
hypersuface, so that Σ = Σ(t). Now, in order to write the metric components we should
introduce coordinates in the manifold that are adapted to our foliation. This coordi-
nates are introduced in the following way [21]: on each hypersurface Σt we introduce a
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coordinate system xa = (x1, x2, x3). If this coordinate system varies smoothly between
hypersurfaces then xµ = (t, x1, x2, x3) constitutes a coordinate system in the manifold.

The basis associated to this coordinate system in the tangent space Tp(M) is

∂µ = (∂t, ∂a).

The vector ∂t is called the time vector and is tangent to the lines of constant spatial
coordinates. On the other hand, the vector ∂a is tangent to Σt, which means that it
belongs to Tp(Σt).

The dual basis associated to ∂µ is the one-form basis dxµ, which belongs to the
cotangent space of our manifold, T ∗p (M). In particular, the one form dt = ∇t is dual to
∂t.

We can now decompose the vector ∂t in its normal an tangential components with
respect to Σt [21]:

(∂t)
µ = Nuµ +Nµ.

Here, N is called the lapse function and Nµ is called the shift vector [7, 9, 21]. We’ll
have that uµN

µ = 0, which means that Nµ is orthogonal to uµ. This tells us that Nµ

belongs to the tangent space of Σ and is three-dimensional, so we can identify it with
Na.

We can then see that the components of uµ with respect to the basis ∂µ are

uµ =

(
1

N
,−N

1

N
,−N

2

N
,−N

3

N

)
.

While its dual vector components are

uµ = (−N, 0, 0, 0).

The components of the three-metric on the hypersurface Σt are hab. We also have

Na = habN
b.

We can now compute the components of gµν . The components of the metric g with
respect to the coordinates xµ are given by [21]

g = gµνdx
µ ⊗ dxν .

And they can be computed as

gµν = g(∂µ, ∂ν).

Accordingly, we have
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g00 = g(∂t, ∂t) = ∂t · ∂t = −N2 +NaN
a.

For the (0, a) component, we have

goa = g(∂t, ∂a) = Na.

Finally, we have

gab = g(∂a, ∂b) = hab.

Collecting these results, we can then write the components of the metric tensor as
[7, 9, 21]

gµν =

(
−N2 +NaN

a Nb

Nc hab

)
,

whose inverse is

gµν =
1

N2

(
−1 N b

N c N2hab −NaN b

)
.

This is the ADM decomposition of the metric.

2.1.2 3+1 decomposition of the action

We begin with the Einstein-Hilbert action [7]

S =
1

16πG

∫
d4x
√
−gR.

In the last equation, R is the Ricci scalar and g = det(gµν). To decompose the action,
we would like to write R in terms of the Ricci tensor of our hypersurfaces Σ. To find a
relation between the two, we start by introducing the following tensor field:

Kµν = h ρ
µ ∇ρuν .

Note that Kµνn
µ = Kµνn

ν = 0, which means that Kµν is purely spatial and then can
be mapped to its spatial counterpart Kab. We can also rewrite Kµν in terms of the Lie
derivative [9]:

Kµν =
1

2
L~uhµν .

This means that the tensor Kµν tells us how the metric hµν changes while we move
from one hypersurface to another one. Kµν can be used to describe the embedding
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curvature of Σ into M at the point p. It is called the extrinsic curvature or second
fundamental form [7]. Its trace:

K = K a
a = habKab

can be interpreted as the expansion of a geodesic congruence orthogonal to Σ. We
can write the extrinsic curvature in terms of the shift and the lapse [7]:

Kab =
1

N

(
1

2
ḣab −∇(aNb)

)
. (2.1)

The relation between the four-dimensional and three-dimensional curvatures is given
by the Gauss equation:

(3)R ρ
µνλ = h µ′

µ h ν′

ν h λ′

λ hρρ′R
ρ′

µ′ν′λ′ −KµλK
ρ

ν +KνλK
ρ

µ (2.2)

and the generalized Codazzi equation:

∇µKνλ −∇νKµλ = h µ′

µ h ν′

ν h λ′

λ R ρ
µ′ν′λ′ u

ρ. (2.3)

Contraction of this last equation with the metric gµλ gives

∇µK
µ
ν −DνK = Rρλu

λhρν . (2.4)

Now, let’s take a look at the Einstein’s equations in vacuum (and without cosmological
constant):

Gµν = Rµν −
1

2
gµνR = 0.

For its spacetime component, we find:

hµρGµνu
ν = hµρRµνu

ν = 0.

We can rewrite this equation using (2.4). We obtain:

∇bK
b
a −∇aK = 0. (2.5)

On the other hand, the time-time component of Einstein’s equation is

Gµνu
µuν = Rµνu

µuν +
R

2
.

To rewrite this, take equation (2.2) and contract the indices to get

(3)R +K µ
µ K ν

ν −KµνK
µν = hµµ

′
h ν′

ν h λ′

µ hνρ′R
ρ′

µ′ν′λ′

The right-hand side of this equation is equal to
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R + 2Rµνu
µuν = 2Gµνu

µuν = 0.

Then, we obtain

(3)R−KabK
ab +K2 = 0. (2.6)

Both equations (2.5) and (2.6) are constraints. However, we can also express equation
(2.6) as

(3)R−KabK
ab +K2 = 2Rµνu

µuν +R

So that we can express the four-dimensional Ricci scalar as

R =(3) R−KabK
ab +K2 − 2Rµνu

µuν . (2.7)

This is the relationship between the four and three-dimensional Ricci scalars that we
were looking for. We can substitute this in the Einstein-Hilbert action, expressing the
last term in equation (2.7) using the definition of the Riemann tensor in terms of second
covariant derivatives.

After discarding total divergences, rearranging and noting that
√
−g = N

√
h, we’ll

get that the Einstein-Hilbert action can be written as [7, 21]

S =
1

16πG

∫
dtd3x N

√
h ((3)R +KabK

ab −K2). (2.8)

We can cast this action in a slightly different way by defining the DeWitt supermetric:

Gabcd =

√
h

2
(hachbd + hadhbc − 2habhcd),

so that the action reads

S =
1

16πG

∫
dtd3x N(GabcdKabKcd +

√
h

(3)
R). (2.9)

Equation (2.9) is called the ADM action [7]. The first term reminds of a classic
kinetic term, since the extrinsic curvature has terms that include the time derivative of
the metric hab. This action now has the form we need to apply canonical quantization
using the Lagragian

L =
N

16πG
(GabcdKabKcd +

√
h

(3)
R).
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2.1.3 Defining canonical variables and primary constraints

Once we have the ADM action the next step is to define the canonical variables and
their conjugate momenta [7]. Following the procedure described in the last chapter, the
canonical variables are hab, N and Na. Their conjugate momenta are:

πab =
∂L
∂ḣab

=
1

16πG
GabcdKcd =

√
h

16πG
(Kab −Khab), (2.10)

π0 =
∂L
∂Ṅ

= 0, (2.11)

πa =
∂L
∂Ṅa

= 0. (2.12)

One can immediately see that equations (2.11) and (2.12) are to be considered as
primary constraints. This means that the following set of primary constraints has to be
imposed:

π0 ≈ 0,

πa ≈ 0.

We also have the equal time Poisson bracket relation:

{hab(x), πcd(y)} = δc(aδ
d
b)δ(x, y).

2.1.4 Dirac Hamiltonian

We are now ready to write the Hamiltonian that corresponds to our theory. Following
the procedure discussed in the last chapter, the Hamiltonian is [7, 9]

HD =

∫
d3x(πabḣab + π0Ṅ + πaṄa − L). (2.13)

Here, Ṅ and Ṅa are the Lagrange multipliers corresponding to the primary con-
straints.

To write the Hamiltonian explicitely, recall equation (2.1) and take the trace of equa-
tion (2.10) to express ḣab in terms of the momenta:

ḣab =
32πG√

h
(πab −

1

2
πhab) +∇aNb +∇bNa.

In this case, π = πabhab. Substituting this into the Hamiltonian we get:
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HD =

∫
d3x(NaHa +NH + π0Ṅ + πaṄa).

In this equation we have that

H = 16πG Gabcdπ
abπcd −

√
h

16πG
(3)R, (2.14)

Ha = −2∇bπab. (2.15)

Since the constraints need to be obeyed at all times, we need to calculate their Poisson
bracket with the Hamiltonian and impose that it vanishes:

{π0, HD} = −H,
{πa, HD} = −Ha.

This means that we have to impose [7, 9, 22]

H ≈ 0 Ha ≈ 0. (2.16)

These are called Hamiltonian and diffeomorphism constraints, respectively. It can be
proven that they are first class constraints.

Finally, our Hamiltonian is:

HD =

∫
d3x(NaHa +NH). (2.17)

Note that the total Hamiltonian is a linear combination of the constraints and then,
it is also constrained to vanish weakly.

The diffeomorphism constraint encodes the invariance of the theory under spacetime
diffeomorphisms within the three-surfaces Σ, while the Hamiltonian constraint encodes
both invariance under time reparametrizations and generates the time evolution of the
system [7].

As we discussed in the first chapter, one of the characteristics of first class constraints
is that they generate gauge transformations. In the case of General Relativity, the
Hamiltonian constraint is first class and it generates the time evolution of our system.
Does this mean that the time evolution can be interpreted as a gauge transformation?
This is actually the case, since the equation H ≈ 0, physically means that evolutions
along different foliations are equivalent [4].

Finally, we can count the number of degrees of freedom present in our system. The
presence of the constraints means that not all degrees of freedom are physical [13]. To
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find out how many physical degrees of freedom we have in configuration space, let’s begin
by noting that the three metric hab(x) has six degrees of freedom per space point, which
means that we begin with 6×∞3 degrees of freedom [7].

The diffeomorphism constraint generates coordinate transformations on three-space
and the Hamiltonian constraint generates transformations of the time variable [7]. To-
gether, they correspond to four variables per space point (4×∞3) that must be subtracted
from our initial number of degrees of freedom.

After subtracting, we are left with 2×∞3 remaining degrees of freedom that corre-
spond to the two polarizations of the graviton [4].

2.2 Canonical quantization

After formulating General Relativity in the Hamiltonian formalism, we are ready to
perform canonical quantization. The idea is to implement Dirac’s programme to get
a quantum theory of gravity. However, General Relativity has a special feature: the
Hamiltonian is a combination of the constraints, which means that it vanishes weakly.
The fact that the dynamics of the system is completely described by the constraints will
have important consequences, one of them being the problem of time [6].

We begin by promoting the configuration variables and their conjugate momenta to
operators. As we saw before, the fundamental variables are the three-metric hab and its
conjugate momenta πab. We have:

hab −→ ĥab, πab −→ π̂ab.

The classical Poisson bracket is replaced by the commutator:

[ĥab(~x), π̂cd(~y)] = i~δc(aδdb)δ(~x, ~y).

Now we should construct a representation space for the dynamical variables, on which
they act as operators. We will define an element of the Hilbert space as functionals Ψ[hab]
of the canonical variables and we’ll implement

ĥab(~x)Ψ[hab(~x)] = hab(~x)Ψ[hab(~x)],

π̂(~x)cdΨ[hab(~x)] = −i~ δ

δhcd(~x)
Ψ[hab(~x)].

The next step is the implementation of the constraints. Choosing operators to act
on the right, the diffeomorphism constraint is:

ĤaΨ = 2i~∇a δ

δhab
Ψ = 0. (2.18)
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This condition is satisfied if Ψ is invariant under coordinate transformations in the
hypersurface Σ [7]. This is in agreement with the classical interpretation of the diffeo-
morphism constraint as the generator of diffeomorphisms on Σ.

The quantum dynamics is governed by the Hamiltonian constraint. With derivative
operators acting to the right of the DeWitt metric, it reads [7, 9]:

ĤΨ =

[
16πG~2Gabcd

δ2

δhabδhcd
+

√
h

16πG
(3)R

]
Ψ = 0. (2.19)

Only solutions to equations (2.18) and (2.19) can be considered physical states. Equa-
tion (2.19) is known as the Wheeler-DeWitt equation [7, 9, 6, 4] and is the starting
point of many approaches to quantum cosmology and quantum gravity.

In chapter 2, we mentioned that observables are characterized by having vanishing
Poisson bracket with the constraints. To translate this to the quantum theory, for an
operator corresponding to a classical observable that satisfies {O,Hµ} ≈ 0 where Hµ are
our constraints, we expect that the following relation holds [7]:

[Ô, Ĥµ]Ψ = 0.

The last step of the quantization process concerns the Hilbert space. What is the
Hilbert space that corresponds to our theory? Is it the space of solutions to equations
(2.18) and (2.19)? One would expect that this space is still too big, since there are still
some conditions that should be imposed in our wave functions, like normalizability [23].
In general, it is unclear which one should be taken as the Hilbert space of the theory
and there is no easy way around this.

This in principle concludes the canonical quantization of General Relativity. Let us,
however, make some more comments about the interpretation of equation (2.19).

We have argued that equation (2.19) governs the quantum dynamics of the system.
However, we can see that the right hand side of this equation is equal to zero. What does
this mean for the evolution of the wave equation Ψ? To make an analogy, let’s remember
the Schrödinger equation. The Schrödinger equation tells us that the Hamiltonian acting
on the wave equation gives us its time evolution. The Hamiltonian in this case also acts
as the generator of time evolution.

On the other hand, we have equation (2.19). This equation tells us that the Hamil-
tonian constraint acting on the wave function is equal to zero. Since the Hamiltonian
constraint is the generator of time evolution, the Wheeler-DeWitt equation seems to tell
us that there is no time evolution for the wave function Ψ. In other words, Ψ seems to
be “frozen” [4] and time is missing in our formalism. This apparent absence of time in
our theory has to be accounted for somehow. This is the problem of time [4, 6].

This was to be somehow expected, since one of the main ideas of General Relativity
is that the laws of physics should be independent of the coordinates we use [3]. However,
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time is usually regarded as a coordinate in our manifold, so we should expect that it
plays no fundamental role in our theory [6].

But if time is supposed to play no fundamental role in our theories, how does change
arise in our formalism? We’ll study different possibilities to answer this question in
the following chapters in the context of minisuperspaces. But before, let us discuss the
problem of time in detail.
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Chapter 3

The problem of time

As we mentioned at the end of the last chapter, the Wheeler-DeWitt equation doesn’t
contain evolution in time, making our wavefunction to appear “frozen”. This raises
several questions about the interpretation of the concept of time in quantum gravity
[4, 6]. In particular, some of the most relevant questions that require an answer are
the following: how can we reintroduce the concept of time and evolution in a quantum
theory of gravity? Is time a fundamental concept or is it phenomenological? If time is
phenomenological, how reliable is the rest of quantum mechanics in the regimes where
the concept of time is not applicable?

The key to understanding where the problem of time comes from is to think about the
different roles that time plays in quantum mechanics and General Relativity [2]. On one
hand, we have quantum mechanics. The concept of time used in conventional quantum
mechanics is that of Newtonian physics [2], in which time is a fixed structure external to
the system. This is reflected in the formalism of quantum mechanics in different ways:

• Time is not represented by an operator but is treated as a background parameter
used to mark the evolution of the system [24].

• Since time is an external parameter to the system, there is a difficulty to describe
a truly closed system in quantum mechanics [25]. We always need to define the
quantum system under study and the observer, who is the one who takes care
of making measurements and keeps track of time. The observer is usually kept
classical.

• The idea of events that happen at a particular time plays a fundamental role in
quantum mechanics [4]. For example, measurements are made at a particular time
in the Copenhagen interpretation, an observable is an object that can be measured
at a fixed time, the scalar product on the Hilbert Space is required to be conserved
under time evolution and complete set of observables are required to commute at
a fixed time value.
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On the other hand we have General Relativity, which is invariant under diffeomor-
phisms. This means that equations transform covariantly under changes of spacetime
coordinates and physical quantities should be independent of our choice of coordinates
[3, 7, 6]. However, time is usually regarded as one of the coordinates in our manifold.
So, we should expect that it plays no fundamental role in our theories. But then again,
if time is supposed to play no role in our theories how does change arise?

These difficulties that the invariance under diffeomorphisms poses are not present in
the classical theory. This is because once the field equations are solved we can use the
metric to give meaning to concepts like causality and spacelike separation of hypersur-
faces [4]. However, in the quantum theory the metric will be subjected in some sense to
quantum fluctuations, and since the concepts of causality and spacelike separation de-
pend on the metric, they seem to be state dependent. Does this mean that the concept
of time is also state dependent?

The problem of time is also related to some important conceptual problems that must
be addressed in order to get a coherent theory of quantum gravity [4]. Some examples
of these issues are: the concept of probability and whether it is conserved, the extent
to which spacetime is a meaningful concept or should be substituted in the quantum
theory, the extent to which the classical geometrical concepts of General Relativity can
be maintained in the quantum theory and the question of the interpretation of quantum
mechanics and in particular, the status of the Copenhagen interpretation.

Over the years, there have been mainly three ways to approach the problem of time,
which we now discuss.

3.1 Approaches to the problem of time

Following Kuchar [6], currently, there are mainly three ways to treat the problem of
time in quantum gravity, most of the approaches have been developed in the context of
quantum cosmology, specifically for minisuperspaces. We will briefly review them and
list some of the most relevant works addressing each of them and the issues that each
approach presents.

3.1.1 Internal Time Framework

This approach considers that time is hidden among the canonical variables and it should
be identified before quantization. The main equation in this approach is the Schrödinger
equation instead of the Wheeler-DeWitt equation.

These approaches, however, suffer from the multiple choice problem. The principal
idea behind this problem is that the Schrödinger equations defined for different time
parameters lead to different quantum theories and there is no easy criteria to choose one
over other. Examples of this approach can be found in [26], [22], [12].
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The Internal Time Framework approach can be further subdivided into the following
specific approaches:

Internal Schrödinger interpretation

Time and space coordinates are identified as functions of the gravitational canonical
variables and are separated from the dynamical degrees of freedom by a gauge trans-
formation. The constraints are then solved for the conjugate momenta to this variables
and the remaining variables are then quantized. Quantization gives rise to a Schrödinger
equation for the physical states.

Matter clocks and reference fluids

In this approach, matter variables coupled to the geometry are used to label events. It
is an extension of the the internal Schrödinger interpretation.

Unimodular gravity

In this approach the cosmological constant is considered a dynamical variable and a cos-
mological time is defined as its canonical conjugate. The constraints yield the Schrödinger
equation with respect to this time. It is a particular case of a reference fluid. Examples
of this approach can be found in [27, 28, 29]

3.1.2 Wheeler-DeWitt Framework

In this approach time is identified after quantization. Constrainst are imposed at a
quantum level to yield the Wheeler-DeWitt equation and one tries to give a dynamical
interpretation to its solutions.

This approach suffers from the so-called Hilbert Space Problem. To understand what
this problem means, it is enough to realize that, unlike the Schrödinger equation, the
Wheeler-DeWitt equation doesn’t provide us with either a conserved inner product or
a way to construct observables at a given time. In other words, being a second order
differential equation, the Wheeler-DeWitt equation presents problems when one tries to
build a Hilbert Space from the space of its solutions. Examples of this approach can be
found in [30], [19].

This approach can be further subdivided in three categories:

The Klein-Gordon interpretation

The Wheeler-DeWitt equation is considered an infinite dimensional analogue of the
Klein-Gordon equation for a relativistic particle. The probabilistic interpretation is
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based on the Klein-Gordon inner product, which is expected to be positive on some
subspace of solutions of the Wheeler-DeWitt equation.

Third quantization

The problems arising from the fact that the Klein-Gordon inner product is indefinite
are addressed by suggesting that the solutions to the Wheeler-DeWitt equation are to
be turned into operators. This is analogous to the second quantization performed in
quantum field theory. Examples on this approach can be found in [31, 32, 33].

The semiclassical interpretation

In this approach, time emerges and is a meaningful concept just in the semiclassical
limit of the quantum theory of gravity based in the Wheeler-DeWitt equation. Writing
the wavefunction using a WKB approximation, the Wheeler-DeWitt equation is approx-
imated by the Schrödinger equation and the time variable is extracted directly from the
wavefunction.

3.1.3 Quantum Gravity Without Time

These approaches are based mostly in the Wheeler-DeWitt equation and they support the
idea that time is not needed to interpret either quantum gravity or quantum mechanics
[23]. Time, however, appears in particular situations. For an example of a proposal of a
formulation of quantum mechanics that doesn’t rely on a time parameter see [34].

The approaches to quantum gravity that don’t rely in the identification of a time
parameter can be further classified into four more categories, which we will proceed to
describe briefly.

Näıve Schrödinger interpretation

In this approach it is considered that the square of solutions to the Wheeler-DeWitt
equation are to be interpreted as the probability of finding a hypersurface with the
metric g. This interpretation was proposed by Hawking in [35].

However, this interpretation has the problem that it lacks dynamics, in the sense that
is not capable to give an answer to dynamical questions that we can usually ask in the
usual quantum theory [6].

The conditional probability interpretation

It is an attempt to include dynamics into the Näıve Schrödinger interpretation. It was
developed by Page and Wootters. See [25].
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Sum-Over-Histories Interpretation

These approaches rely on the use of the path integral formalism to give an interpretation
to quantum gravity. The premise is that the path integral formalism can be used to
interpret quantum systems that don’t have an automatic notion of time and Hilbert
Space. This approach was mainly developed by Hartle, see [36].

Frozen Time Formalism and Evolving Constants of the Motion

These approaches try to answer the question of what is an observable in General Rela-
tivity. In general, in a gauge theory an observable is a quantity that is left unchanged
by gauge transformations. Since in the case of general relativity the Hamiltonian is a
generator of gauge transformation, we are led to the conclusion that the observables,
which are defined to be gauge invariant, must be constants of the motion [37].

But if the observables are constants of the motion, then it would seem that the
Universe can’t change. This was called The Frozen Time Formalism. This formalism
can’t explain the evolution of the universe.

However, Rovelli reinterpreted this formalism in a way that allows to describe evolu-
tion by introducing the concept of evolving constants of motion [38] [39]. A recent work
using this formalism can be found in [17].

3.2 The different facets of the problem of time

In all the approaches to the problem of time discussed previously a series of technical
problems are expected to appear [2]. Some of the most important ones are the following
[4, 6]:

• The ultraviolet divergence problem: Quantum gravity is non-renormalisable
in perturbation theory. This suggest that the operator analogues of some compli-
cated classical expressions that involve fields defined at the same spacetime point
are ill-defined. Since the internal time and Wheeler-DeWitt frameworks involve
expressions of this kind, we could ask whether this approaches are valid.

• The operator-ordering problem: When promoting the constraints to opera-
tors, we find complicated operator ordering difficulties. This is connected to the
ultraviolet divergence problem.

• The global time problem: The extraction of the dynamics of a system can pose
problems even at the classical level. In particular, to extract the dynamics we must
separate time from the dynamical variables. This may be globally impossible in
the sense that there may not exist a canonical transformation that allows us to do
this separation. The global problem of time is purely classical.
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• The multiple choice problem: The Schrödinger equation that we find after
choosing a particular time variable may give a different quantum theory than the
Schrödinger equation based on another choice of internal time. Which one is cor-
rect? The multiple choice problem is different from the global problem of time,
since in the first case we have many possible time variables and no criteria to choose
one in particular, while in the second case we have no options at all.

• The Hilbert space problem: The advantage of the internal time framework
is that we end up with a Schrödinger equation. As we know, the Schrödinger
equation automatically gives us an inner product that is conserved in the selected
time variable. This is not the case for the Wheeler-DeWitt equation, which is a
second-order functional differential equations that presents problems when we try
to construct a positive definite inner product in its space of solutions.

• The spatial metric reconstruction problem: The separation of variables into
physical and non-physical can be inverted and the metric can be expressed in
terms of these variables. The spatial metric reconstruction problem deals with the
question of whether something like this can be done also in the quantum theory.
This problem is related to the question if the classical geometric properties are
preserved or not in the quantum theory.

• The spacetime problem: It is necessary that the chosen time and space coor-
dinates, viewed as functions on the manifold, be scalar fields and don’t depend on
any foliation. However, the objects used in the canonical approach to quantum
gravity are functionals of the canonical variables and they might not satisfy this
condition. We should find functionals that have this property or, in case it is not
possible to do so, we should understand how to handle the situation.

• The problem of functional evolution: In some cases the evolution of a state
from an initial hypersurface to a final hypersurface can depend on the foliation
that connects them. This means that when we start with some initial state on
the initial hypersurface and evolve it to the final hypersurface along two different
routes the two final states are different.

These problems usually appear in the internal time framework and the Wheeler-
DeWitt framework. They are less relevant in the quantum gravity without time frame-
work, since time in this approach only plays a secondary role [4]. However, still in this
framework analogues of these problems keep appearing, adding extra difficulty to the
approach.

Since quantum gravity is a little understood system, it is common to try to study it in
the context of simpler models that share relevant features with the full theory, including
the problem of time. In particular, minisuperspace models have played a fundamental
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role both in quantum cosmology and in the study of quantum gravity [4]. In the present
thesis work, we are going to study the problem of time in the case of a flat FLRW
spacetime coupled to a scalar field. In order to do this, we have to apply what we
have already discussed in the last chapters to this cosmological model. Performing the
canonical quantization of this system is the subject of the next chapter.
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Chapter 4

Quantum minisuperspace

It is very hard to deal with the full formalism of canonical quantum gravity since its
configuration space is infinite dimensional. It is because of this that attempts to study
quantum gravity are usually made on simpler models that share relevant features with
the full formalism [6].

In particular, quantum cosmology plays an important role in the study of quantum
gravity because cosmological models are simple examples to which the ideas of a quantum
theory of gravity can be applied. Also, it is expected that quantum gravity effects played
a fundamental role in the inflationary phase of the universe, so that it is possible that
they have left a print in the cosmic microwave background [4].

Most advances in quantum cosmology have been done in the context of a simple
class of models call minisuperspaces [6]. These models are characterized by the impo-
sition of symmetries that freeze infinitely many degrees of freedom, as a consequence
minisuperspaces have a finite dimensional configuration space.

Examples of minisuperspaces are the well-known Friedmann-Lemâıtre-Robertson-
Walker (FLRW) cosmologies, the Bianchi space-times [40], and the Kantowski-Sachs
universes [41].

These models share relevant features with the full theory of quantum gravity and in
particular, the problem of time is present in all of them [22]. Studying the problem of
time in this simpler models can give us insight about how to solve it in the context of
the full theory.

In this chapter we will study the Hamiltonian formulation and the quantization of
the flat FLRW cosmology coupled to a scalar field. The results of this chapter will be
used later to study different possibilities to include time in this particular model.
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4.1 Flat FLRW spacetime minimally coupled to a

scalar field

We start from the Einstein-Hilbert action minimally coupled to a massless scalar field
[7]:

S =

∫
d4x
√
−g
(

R

8πG
− ∂µφ∂µφ

)
.

We want to write the theory in Hamiltonian form, so that we can perform canonical
quantization. In order to do this, we’ll apply the 3+1 decomposition discussed in Chapter
2. Using the foliation in Cauchy hypersurfaces, the FLRW metric reads:

ds2 = −(N2 −NaN
a)dt2 + 2Nadx

adt+ a2(t)(dx2 + dy2 + dz2).

Here, N is the lapse function, Na is the shift vector and a(t) is the scale factor. In
this case the shift vector can be set to zero and the metric is just

ds2 = −N2dt2 + a2(t)(dx2 + dy2 + dz2).

Using this metric, we can calculate the Ricci scalar

R =
6

N2

(
ä

a
− ȧ

a

Ṅ

N
+
ȧ2

a2

)
.

In the last equation, a dot implies derivative with respect to time. Substituting the
Ricci scalar in the action, we get:

S =

∫
dtNa3

[
6

8πGN

(
ä

ȧ
− ȧ

a

Ṅ

N
+
ȧ2

ȧ2

)
+

φ̇2

2N2

]
.

We can rewrite this action in a simpler way by adding the boundary term −6 d
dt

(
a2ȧ
N

)
.

We will also rescale the Planck mass, that we will call M and rearrange to get

S =

∫
dt

(
−M

2aȧ2

2N
+
a3φ̇2

2N

)
. (4.1)

So that the Lagrangian of this theory is [22]:

L = −M
2aȧ2

2N
+
a3φ̇2

2N
. (4.2)
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Before moving to find the Hamiltonian of this theory and quantize it, let us study the
classical Lagrangian dynamics of the system. We can perform variations in the action
(4.1) with respect to a(t), N and φ to obtain the equations of motion:

δaS = 0 −→ ä

a
+

3

2

ȧ2

a2
− ȧṄ

aN
=

3

2

φ̇2

M2
, (4.3)

δφS = 0 −→ pφ =
a3φ̇

N
= constant, (4.4)

δNS = 0 −→ M2aȧ2

N2
− a3φ̇2

N2
= 0. (4.5)

We can write equation (4.5) in terms of pφ to find

M2aȧ2

N2
=
p2
φ

a3
. (4.6)

To solve the equations of motion we need to choose N . This is equivalent to picking a
Gauge. The simplest choice is to setN = 1 that corresponds to the proper or synchronous
time. Setting N = 1 we can solve (4.6) to get

a3(t) = a3
0 ±

3|pφ|
M

t,

Here, a0 = a(0) and the ± sign gives an expanding or contracting universe.

4.2 Hamiltonian dynamics

To calculate the Hamiltonian of our system, it is convenient to parametrize the scale
factor as [22]

a(t) = eα(t).

Using this parametrization the Lagrangian reads

L = −M
2α̇2e3α

2N
+
φ̇2e3α

2N
. (4.7)

Using this Lagrangian we can calculate the conjugate momenta to the variables N ,α
and φ:

pN = 0, pα = −M
2α̇e3α

N
, pφ =

φ̇e3α

N
.
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We can then write the Hamiltonian

H = pNṄ + pαα̇ + pφφ̇− L.

This gives

HD = N

(
−p

2
αe
−3α

2M2
+
p2
φ

2
e−3α

)
= NH.

Since pN = 0 is a primary constraint, we have to make sure that it holds at all times.
This yields the Hamiltonian constraint:

{pN , HD} = H ≈ 0.

This tells us that HD is constrained to vanish weakly. We can find the equations of
motion by calculating the Poisson bracket:

φ̇ = {φ,HD} = Ne−3αpφ,

ṗφ = {pφ, HD} = 0,

α̇ = {α,HD} = −Ne
−3αpα
M2

,

ṗα = {pα, HD} = −∂HD

∂α
= 3HD ≈ 0.

We can see that pφ and pα are conserved.

4.3 Quantization

We now proceed to quantize the system. In order to do that, we must promote the
variable to operators and choose a representation. On promoting our canonical variables
to operators, and choosing the simplest operator ordering, we obtain the Hamiltonian
operator:

Ĥ = e−3α̂

(
− p̂2

α

2M2
+
p̂2
φ

2

)
.

We obtain then the Wheeler-DeWitt equation:

Ĥ |Ψ〉 = 0.

Since pφ is conserved it is convenient to work in a mixed representation [22] so that
our operators will act on the wave functions Ψ(α, pφ) in the following way
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p̂αΨ(α, pφ) = −i ∂
∂α

Ψ(α, pφ), p̂φΨ(α, pφ) = pφΨ(α, pφ).

Using this representation the Hamiltonian operator reads

Ĥ =
e−3α

2M2

(
∂2

∂α2
+M2p2

φ

)
So that the Wheeler-deWitt equation reads [22](

∂2

∂α2
+M2p2

φ

)
Ψ(α, pφ) = 0. (4.8)

As we expected, in equation (4.8) time is not present, indicating that Ψ(α, pφ) seems
to be frozen. How can we introduce time in this model? In the following chapters we will
discuss different ways to reintroduce time in this system in order to obtain an evolving
cosmology.
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Chapter 5

Time before quantization

Up to now we have seen that after performing the 3 + 1 decomposition of the Einstein-
Hilbert action, defining canonical variables and identifying the primary constraints, we
can write the Hamiltonian [7, 9]

HD =

∫
d3x(NaHa +NH).

Here, N and Na are called the lapse function and the shift vector andH, Hα are called
the Hamiltonian and diffeomorphism constraint, correspondingly. We have also seen that
the super Hamiltonian and the super momentum are constrained to vanish weakly, which
means that also the Hamiltonian will vanish weakly. This have the consequence that our
quantum states will appear to be “frozen” [7, 6, 4].

Upon quantization both the super Hamiltonian and the super momentum are turned
into operators that act on our quantum states [14]. The quantum dynamics is governed
by the Hamiltonian constraint:

Ĥ |Ψ〉 = 0.

This equation is known as the Wheeler-DeWitt equation. The absence of time reflects
one of the main features of General Relativity: time and space are treated on equal
footing, meaning that time is also dynamic and the time evolution of the gravitational
field is locally just a gauge Transformation [12]. We should expect this, because the
reparametrizations of the time variable belong to the gauge group of the theory, which in
the case of General Relativity is the group of diffeomorphism on the spacetime meanifold

Is there any way around this? To answer this question we should take a look carefully
at the formalism of quantum mechanics. In our discussion in the Chapter 3, we mentioned
that one of the hearts of the problem of time is that in quantum mechanics we never
describe systems that are truly isolated. When describing a quantum mechanical system
we have to define the quantum system and the observer, which is kept classical and takes
care of doing measures and keeping track of time. But cosmological systems are truly
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closed systems, all the information in the universe is contained in the system and there
is not outside observer that can keep track of time [4].

With this is mind, a possible way to solve the problem of time could be to choose our
dynamical variables in such a way that one degree of freedom is kept classical, so that
it can be used as a clock. Let’s first describe the general method, developed in [12] and
then explore some its consequences making use of a simple cosmological model.

5.1 Choosing dynamical variables

Suppose we are studying some dynamical system that we would like to quantize. How-
ever, this system happens to have a constrained Hamiltonian of the type Hτ (q, p) = 0,
where τ is a time parameter in terms of which our problem was formulated and (q, p)
actually mean {qa, pa} with a = 1, ..., n.

We are going to look for a canonical transformation that takes us from the variables
{qa} and {pa} to new variables {Qµ} and {Pµ} with µ = 0, ..., n − 1. We are going to
choose our new variables in such a way that

dQ0

dτ
= {Q0, Hτ} = 1. (5.1)

Here, {·, ·} denote the Poisson bracket. We can see that equation (5.1) implies that
we can write our Hamiltonian, Hτ as

Hτ = P0 +H(Q0...Qn−1, P1...Pn−1). (5.2)

In this equation, H is called the effective or physical Hamiltonian [12]. As we can
see, H doesn’t depend on P0, so when we perform canonical quantization by replacing
P0 → −i~ ∂

∂Q0 , the equations Hτ = 0 will become a time dependent schrödinger equation

for the new time Q0 and the n− 1 variables Q1, ..., Qn−1.
Then, our main task is to find a suitable function Q0(q, p) to serve as a clock. Re-

membering what we said before, this function should have Poisson bracket with the
Hamiltonian equal to one. In other words, we need a canonical transformation such that
Q0 = f(q, p). So, from equation (5.1) we can see that

{f(q, p), Hτ} = 1 =
dQ0

dτ
.

There is an important subtlety here. We are claiming that we are going to look
for a function of the phase space variables whose Poisson bracket with the Hamiltonian
are equal to 1. But where should the Poisson bracket be equal to one? In the whole
phase space? Or only in the constrained surface? In his paper [12], Peres argues that
consistency of the method requires the Poisson bracket to be equal to one in the whole
phase space. However, it is not clear if this condition is necessary and sufficient. In fact,

35



we will later see two examples, one in which the Poisson bracket is equal to one only on
the constrained surface and other one in which it is one in the whole phase space. We
will find interesting features in both cases.

Going back to our problem, we need to find a canonical transformation that allows
us to write the Hamiltonian as Hτ = P0 + H. We can do this by solving a first order
partial differential equation. The easiest way to do it is to use a generating function of
type F1, that we will call S(q,Q).

Making use of this generating function, we would have

pk =
∂S

∂qk
Pµ = − ∂S

∂Qµ
. (5.3)

Then, substituting equation (5.3) in Q0 = f(q, p) we get that to obtain S(q,Q)
explicitly we have to solve

Q0 = f

(
q,
∂S(q,Q)

∂q

)
. (5.4)

The Qµ with µ > 0 are unspecified integration constants in the solution of (5.4) [12].
Once we have solved our differential equation, we can get Pµ(q,Q) and p(q,Q) using

equation (5.3). Having Pµ(q,Q), we can invert it to get q(Q,P ), which we can substitute
into p(q,Q) to get p(Q,P ). Finally, we have to substitute all these results into Hτ in
order to write it in the form given by equation (5.2).

Now we can apply canonical quantization to (5.2) in the usual way, making P0 →
−i~ ∂

∂t
where we have replaced Q0 by a new variable t. Note that t is going to be a

function of the phase space coordinates. This means that this is a dynamical time, and
not a gauge dependent coordinate-time [12]. Finally, our wave function Ψ(q,Q0) must
be normalized according to ∫

|Ψ(q,Q0)|2dq = 1,

Without integration in dQ0. This is because Q0 will play the role of the time param-
eter.

This concludes the discussion of the method to be employed. Now, we will proceed
to apply this method in the case of a spatially flat FLRW universe coupled to a scalar
field using the results we have obtained in Chapter 4. We will do it in three different
ways, and then try to compare the results.
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5.2 Finding the time function by solving the equa-

tions of motion

We will begin by considering the metric of a spatially flat FLRW universe coupled to a
scalar field. In chapter 4 we saw that a Lagragian for this theory is (4.2):

L = −M
2aȧ2

2N
+
a3φ̇2

2N
. (5.5)

We can easily find the conjugate momenta and the equations of motion using this
Lagrangian. The results, as we already saw, are:

pN =
∂L

∂Ṅ
= 0 ṗN =

∂L

∂N
= − 1

2N2
(a3φ̇2 −M2aȧ2) = 0, (5.6)

pφ =
∂L

∂φ̇
=
a3φ̇

N
ṗφ =

∂L

∂φ
= 0, (5.7)

pa =
∂L

∂ȧ
= −M

2aȧ

N
ṗa =

∂L

∂a
=

1

2N
(3a2φ̇2 −M2ȧ2). (5.8)

Now, to make the following calculations easier we are going to introduce a new
variable τ that we’ll define as dτ = Ndt. Substituting this in our Lagrangian (5.5),
we’ll get a new Lagrangian Lτdτ = Ldt. So, our action will remain invariant. Another
convenient change of variables is to introduce v(t) = a3(t). Making this changes our new
Lagrangian will be given by:

Lτ =
v

2

(
dφ

dτ

)2

− M2

18v

(
dv

dτ

)2

. (5.9)

Using this Lagrangian we can calculate the conjugate momenta:

pφ = v
dφ

dτ
, (5.10)

pv = −M
2

9v

dv

dτ
. (5.11)

We can then write the Hamiltonian:

Hτ = pφφ̇+ pvv̇v − Lτ .

Substituting (5.10) and (5.11) in the last equation we get:

Hτ =
1

2v
p2
φ −

9v

2M2
p2
v. (5.12)
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Note that (5.9) and (5.12) vanish weakly because of the constraint (5.6). Also, we have
gotten rid of the variable N(t). However, we can’t get rid of the constraint associated to
this variable, equation (5.6).

The equations of motion, as we already know, are

ṗφ = 0.

ṗv =
1

2v2
p2
φ +

9

2M2
p2
v.

Now, we’ll devote ourselves to our main task: finding a time function Q0 = f(v, pv, pφ)

such that dQ0

dτ
= {f(v, pv, pφ), Hτ} = 1. In order to do this, we’ll solve the equations of

motion. Begin by substituting equation (5.11) into the Hamiltonian (5.12) to get:

1

2

(
dv

dτ

)2

+
9v

M2
Hτ =

9

2M2
p2
φ.

The solution of this differential equation is

v(τ) = −9

2

Hτ

M2
τ 2 ± 3pφ

M
τ. (5.13)

Here, the integration constant is set so that v(0) = 0. By definition v ≥ 0, so the ±
sign has to be equal to the sign of pφτ. We won’t use the constraint Hτ = 0 here, because
we want to get a time function that is valid in all the phase space and not only in the
constraint surface. Our goal is to get τ = f(v, pv, pφ). To get it, take (5.13) and derive
it with respect to τ to get

dv

dτ
= − 9

M2
Hττ ±

3pφ
M

. (5.14)

From equation (5.11) we have

vpv = −M
2

9

dv

dτ
. (5.15)

Multiply equation (5.14) by −M2

9
and substitute in equation 5.15 to get

vpv = Hττ ∓
Mpφ

3
. (5.16)

Substitute this last equation on (5.13) to get

−2M2

9
v = τ

(
vpv ∓

Mpφ
3

)
.

So that our final result is
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τ = f(v, pv, pφ) =
v

− 9
2M2vpv ± 3pφ

2M

. (5.17)

It’s not hard to verify that {f(v, pv, pφ), Hτ} = 1. Let’s see it quickly:

{f(v, pv, pφ), Hτ} =
∂f

∂v

∂Hτ

∂pv
=

(
− 9

2M2vpv ± 3pφ
2M

)2

(
− 9

2M2vpv ± 3pφ
2M

)2 = 1.

Now that we have found τ = f(v, pv, pφ) the next step is to find the generator of the
transformation from the coordinates (v, φ, pv, pφ) to the new coordinates that include
(Q0, P 0). Remember that we saw that

Q0 = f

(
q,
∂S

∂q
(q,Q)

)
.

Using this we can write

Q0 =
v

− 9
2M2v

(
∂S
∂v

)
± 3

2M

(
∂S
∂φ

) , (5.18)

Here, we have S = S(v, φ,Q0, Q1). Now, we should solve (5.18). One way to solve it
is to use separation of variables:

S = φQ1 + S ′(v,Q0, Q1). (5.19)

In this case we’ll have Q1 = pφ. Substituting this in (5.18) and rearranging we get

∂S ′

∂v
= −2M2

9

1

Q0
± M

3

Q1

v
. (5.20)

The solution to this differential equation seems to be:

S ′ =

(
−2M2

9

v

Q0
± M

3
Q1 ln v

)
.

Now that we have found the explicit form of S, we can use (5.3) to calculate

pv =
∂S ′

∂v
= −2M2

9

1

Q0
± M

3

pφ
v
, (5.21)

P0 = − ∂S
′

∂Q0
= −2M2

9

v

(Q0)2
. (5.22)

From equation (5.22) we can get
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v = − 9

2M2
P0(Q0)2.

We can substitute (5.21) and (5.22) into (5.12) to get

Hτ = P0 ±
2

3

Mpφ
Q0

. (5.23)

This tells us that the physical Hamiltonian is

H = ±2

3

Mpφ
Q0

.

We can note here that the degrees of freedom of the system have been reduced by two
[12]. First, we got rid of the variable N when we transformed to the variable τ . Then,
v and pv have been absorbed in the definition of Q0.

Now, we can replace Q0 with τ in the Hamiltonian and we can calculate the equations
of motion:

dv

dτ
= {v,H} = 0,

dφ

dτ
= {φ,H} = ±2M

3τ
.

From the equation of motion for φ we get

φ(τ) = φ0 ±
2M

3
ln τ.

Now we can quantize trivially. Using the Hamiltonian (5.23) and choosing the rep-
resentation P0 → −i~ ∂

∂τ
, our wave function Ψ(pφ, τ) will obey a Schrödinger equation:

i~
∂Ψ

∂τ
= ±2M

3

pφ
τ

Ψ. (5.24)

Solutions to this equation are of the form:

Ψ(pφ, τ) = Ψ(pφ) exp

{
∓2iM

3~
pφ ln τ

}
In this case, Ψ(pφ) is a function that takes care of the normalization. So, here it

would seem that we have obtained a legitimate time evolution for the wave function,
which was our initial goal.

To verify it, let’s try to calculate the average of the scalar field φ and compare the
result to the one obtained classically:

〈φ〉 = 〈Ψ|φ |Ψ〉 = i

∫
dpφΨ∗(pφ, τ)

∂Ψ

∂pφ
(pφ, τ)
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So we get

〈φ〉 = ±2M

3
ln(τ).

Deriving this with respect to time:

〈φ̇〉 = ±2M

3

1

τ
(5.25)

On the other hand, the derivation of the classical equations of motion gave us our
constraint, equation (5.6):

a3φ̇2 −M2aȧ2 = 0.

If we use the classical solution of the Friedmann equation a(t) = a0t
1/3, we get that

the classical evolution of the scalar field is

φ̇ = ±M
3t
.

So we can see that this doesn’t coincide with (5.25). What have gone wrong here?
We’ll discuss it in the next sections.

5.3 Finding the time function by applying the con-

straint

The idea this time is to try again to find a time function but now instead of requiring that
our function have Poisson bracket with the Hamiltonian equal to one in the whole phase
space, we’ll require it only in the constrained surface. We’ll follow a slightly different
procedure than in the last section, which we will discuss in detail in section 6.2. We’ll
also use Lagrangian (4.7) instead of (4.2), but the main ideas are the same.

We begin by taking again the metric of a flat FLRW universe coupled to a scalar
field. This time we will parametrize the scale factor as a(t) = eα(t). The corresponding
Lagrangian is (4.7):

L = −M
2α̇2e3α

2N
+
φ̇2e3α

2N
.

In chapter 4 we calculated the conjugate momenta and the Hamiltonian corresponding
to this Lagrangian. It reads:

HD = N

(
−p

2
αe
−3α

2M2
+
p2
φ

2
e−3α

)
= NH.
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The Hamiltonian constraint H vanishes weakly if we apply our constraint pN = 0
(Note that pN = 0 tells us that p2

α/M
2 = p2

φ). Of course, the vanishing of H means that
also HD vanishes weakly, as we would expect.

Now, as we did in the last section, we would like to find a dynamical time parameter:
a function of the phase space variables. However, this time we won’t derive our time
function by solving the equations of motion, but instead we’ll choose it by trying to do
an educated guess.

For convenience, we’ll choose our function in such a way that the time coincides with
the cosmic time [22]. If we look at our flat FLRW metric, this is equivalent to setting
the lapse function N to be equal to one. At the same time, this is equivalent to doing a
gauge fixing of the type [30]

χ(t, α, pα, φ, pφ) = t− χ̃(α, pα, φ, pφ) = 0.

If we take the time derivative of the last equation we get

1 = N{χ̃,H}.

So, if we want to have N = 1, we have to choose χ̃ in such a way that {χ̃,H} = 1.This
coincides with the method discussed in the last sections.

As we mentioned before, this time we won’t solve the equations of motion to find our
time function. Instead, we are going to try choosing a function that depends only on α
and pα. We are going to try the following function [22]:

χ̃(α, pα) = −M
2e3α

3pα
.

Note that this function is different from the one that we found in the last section.
Let’s calculate its Poisson bracket with the super Hamiltonian constraint. It is not hard
to find that

{χ̃,H} =
1

2

(
1 +

M2p2
φ

p2
α

)
.

As we can see, the Poisson bracket are not equal to one. However, if we apply our
constraint (p2

α/M
2 = p2

φ), we’ll get that the Poisson bracket are equal to one.
We can ask whether applying the constraint at this point leads us to find a consistent

time function or not. To check, let’s take a look at the classical solution of the Friedmann
equation that we found in chapter 4. It is:

a(t) = a0t
1/3.

This means that
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α(t) = ln a0 +
1

3
ln t,

And α̇ = 1/3t. Substituting the expressions for α(t) and α̇ into the expression for pα
and setting N = 1 we get

pα = −M
2a3

0

3
.

Now, substituting α(t), α̇ and our last expression for pα into χ̃(α, pα), we get

χ̃(α, pα) =
−��

��M2a3
0 t

−�3���M2a30

�3

= t.

Our function coincides with the cosmic time! This seems to gives us some reassurance
that we are taking a correct path, since we recovered the classical time in this case.

Going back to our problem, now we want to write our Hamiltonian in the form (5.2).
To do it, we are going to find our generating function S(q,Q). Following equation (5.4)
and writing χ̃(α, pα) as a new variable that we’ll call T, we find

T = χ̃

(
α,
∂S

∂α

)
.

This means that we have to solve the following differential equation

dS

dα
= −M

2e3α

3T
.

The solution of this equation is

S(α, T ) = −M
2e3α

9T
+ C.

Here, C is a constant of integration. Having found the generating function, we can
calculate the conjugate momenta to the variable T :

PT = −∂S
∂T

= −p
2
αe
−3α

M2

Now we can make the transformation for the variables (α, pα) to (T, PT ) in the Hamil-
tonian. To do it, begin by taking the original Hamiltonian

HD = pαα̇ + pφφ̇− L.

After doing the appropriate substitutions, simplifying and renaming the variable T
as t to make the notation less cumbersome, we get
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HD = −Mpφ
3t
− PT .

We can now define the physical or reduced Hamiltonian:

Hphys =
Mpφ

3t
. (5.26)

So that the total Hamiltonian reads

HD = −PT −Hphys.

Since HD is constraint to vanish, we know that

PT = −Hphys.

At this point we can now apply canonical quantization. By choosing the representaion
PT → −i~ ∂

∂t
we would get the following schrödinger equation for our wave function

Ψ(pφ, t):

i~
∂Ψ

∂t
=
Mpφ

3t
Ψ.

Compare this with equation (5.24). The similarity is clear. This seems to tell us
that we don’t necessarily need to exclude the use of the constraint when looking for a
dynamical time function in order to obtain a consistent Schrödinger equation.

5.4 Finding the time function without solving the

equations of motions or applying the constraint

In the example we studied in section 5.2, we found a time function by solving the equa-
tions of motion and we made sure that this function had Poisson bracket with the Hamil-
tonian equal to one in the whole phase space. On the other hand, in section 5.3, we found
a time function without solving the equations of motion and its Poisson bracket with
the Hamiltonian was equal to one only in the constraint surface. However, we obtained
similar results in both cases.

This time we are going to find a dynamical time function without solving the equa-
tions of motion, but making sure that its Poisson bracket with the Hamiltonian is equal
to one in the whole phase space. Then, we will point out some apparent inconsistencies
with what we have done in section 5.2.

We will maintain the notation of the last section. So that the Hamiltonian and the
conjugate momenta are equal to those calculated before.
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To begin, note that we can find a time function basically looking for a function of
the phase space variables that has Poisson bracket with the Hamiltonian equal to 1
everywhere [12]. A function like this needs to depend on α, pα and pφ.

So, in principle there are not many more restrictions on the form that our time
function should have. If we find some function of the phase space variables that has
Poisson bracket with the Hamiltonian equal to one it should serve as a good time function.
However, nothing really tells us that such a function is unique and, in fact, it’s not [6].

To see this, let’s try to choose the following function of the space time variables as
our time function

Tp =
2M2e3α

3(Mpφ − pα)
. (5.27)

Compare this with equation (5.17). Making the right substitutions we’ll realize that
they’re similar with the exception of some constants and some signs.

It’s not hard to verify that this function has Poisson bracket with the Hamiltonian
equal to one in the whole phase space:

{Tp, H} =
(Mpφ − pα)2

(Mpφ − pα)2
= 1.

Note also that if we apply the constraint to Tp and choose Mpφ = −pα, it will reduce
to the time function T introduced in the last section.

In fact, there is still another function that has Poisson bracket with the Hamiltonian
equal to one and coincides with our time function T if we apply the constraint and choose
Mpφ = pα. This function is:

Tp1 = − 2M2e3α

3(Mpφ + pα)
.

This is an example of what we mentioned before. The time function is not unique,
which is in agreement with the technical problem that we expect to appear in this kind
of approach, the multiple choice problem [6].

In order to continue, we want to perform canonical quantization using Tp as our time
function. We proceed as before. First, let us look for the conjugate momentum of the
variable Tp. Let’s find the generating function S(q,Q):

Tp = f

(
α,
∂S

∂α
,
∂S

∂φ

)
.

Which means that we have to solve the following differential equation:

M
∂S

∂φ
− ∂S

∂α
=

2M2e3α

3Tp
. (5.28)
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Here S = S(α, φ, Tp, Tp′) and Tp and Tp′ are constants of integration. So far this
looks very much like what we did in section 5.2. However, as we saw, we must have
overlooked some detail, since the average value of the field φ doesn’t coincide with its
classical value. To see what was exactly what we missed, let’s solve the last differential
equation carefully.

Let’s begin by performing a change of variables:

u = α +
φ

M
, v = α− φ

M
.

Then we will have

φ =
(u− v)M

2
, α =

u+ v

2
.

Using the chain rule we get

M
∂S

∂φ
=
∂S

∂u
− ∂S

∂v
,

∂S

∂α
=
∂S

∂u
+
∂S

∂v
.

Then, we can write the differential equation (5.28) in the new variables as

∂S

∂v
= −

M2 exp
{

3
2
(u+ v)

}
3Tp

.

This can be integrated immediately to give

S = −
2M2 exp

{
3
2
(u+ v)

}
9Tp

+ f̃(u).

Here, f̃(u) is an arbitrary function of u. Going back to our original variables, the
result looks like

S = −2M2e3α

9Tp
+ f̃

(
α +

φ

M

)
.

Now that we have the generating function, we can find the conjugate momentum of
Tp by deriving S with respect to Tp. However, we have to be careful here. Our arbitrary
function depends on α. And at the same time, Tp is related to α via equation (5.27). In
fact, using (5.27) we can write S as

S = −2M2e3α

9Tp
+ f̃

(
φ

M
+

1

3
ln

{
3Tp(Mpφ − pα)

2M2

})
. (5.29)

46



To make the notation less cumbersome, we are going to define

z(Tp) =
1

3
ln

{
3Tp(Mpφ − pα)

2M2

}
(5.30)

So that we can write equation (5.29) like

S = −2M2e3α

9Tp
+ f̃

(
φ

M
+ z(Tp)

)
. (5.31)

Now we can finally calculate the conjugate momentum PTp . To do it we take the
derivative of S with respect to Tp:

PTp = − ∂S
∂Tp

= −2M2e3α

9T 2
p

− ∂f̃

∂z

∂z

∂Tp
.

Taking the derivative of (5.30) with respect to Tp we get

PTp = −2M2e3α

9T 2
p

− 1

3Tp

∂f̃

∂z
.

Substituting equation (5.27) and rearranging a bit we get

PTp =
e−3α

M2

[
−1

2
(Mpφ − pα)2 − 1

2
(Mpφ − pα)

∂f̃

∂z

]
. (5.32)

This tells us that PTp is not uniquely defined. Its final form will depend on how exactly

our function f̃ depends on z, which we didn’t notice in the calculations we performed in
the preceding sections.

To advance further, we are going to pick a specific form for the term ∂f̃
∂z

, seeking

however to keep some of the freedom that the arbitrariness of f̃ gives us. Because it will
allow us to obtain simple expressions that we can compare with what we have already
obtained in the pasts sections, let us choose

∂f̃

∂z
= −

(
2
A

M
+M

)
pφ.

In this case, A is an arbitrary constant. Substituting this in equation (5.32) we get
that the conjugate momentum of Tp is

PTp =
e−3α

M2

(
−1

2
p2
α + Ap2

φ +

(
M

2
− A

M

)
pφpα

)
. (5.33)

Now that we have PTp , we want to get the reduced Hamiltonian, that we will call
Hphy−p. To do it, subtract (5.33) from the Hamiltonian, remembering that we have
chosen N = 1. We get
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Hphy−p =
(M2 − 2A)(Mpφ − pα)e−3αpφ

2M3
.

We can use the definition of Tp to get rid of the factor of e−3α in the reduced Hamil-
tonian:

Hphy−p =
(M2 − 2A)pφ

3MTp
.

Now we just have to make the substitution Tp = t:

Hphy−p =
(M2 − 2A)pφ

3Mt
. (5.34)

Compare this expression with the physical Hamiltonian obtained in the last section.
The two expressions have the same form. In fact, for A = 0 we recover Hphys. It is
interesting that we can get a similar Hamiltonian in both cases, since in the present case
we obtained this expression without using the constraint and requiring that the Poisson
bracket are equal to one in all the phase space and not only in the constraint surface.

But the most important feature of expression (5.34) is that it has a free parameter A.
Note that we would obtain the results that we derived in section 5.2 if we put A = −M2

2
.

Expression (5.34) seems to tell us that, for the same choice of the classical cosmic
time, there is whole family of different Hamiltonians: one for each possible value of A.
Each of this Hamiltonians would give rise to a different time evolution of our system,
meaning that we have a different physics for each choice of A, which is not physical.

However, there might be a way out of this problem. If we are able to somehow fix
A, we would have a unique Hamiltonian. To investigate if can fix the value of A, let us
begin by writing the corresponding Schrödinger equation:

i~
∂Ψ

∂t
(pφ, t) =

(M2 − 2A)

3Mt
pφΨ(pψ, t)

The solution of this equation is

Ψ(pψ, t) = Ψ(pφ) exp

{
−i(M

2 − 2A)pφ
3M

ln t

}
.

Here, Ψ(pφ) takes care of the normalization. We can calculate, for example, the
average value of the momentum

〈pφ〉 = 〈Ψ|φ |Ψ〉 =

∫
dpφpφΨ∗(pφ)Ψ(pφ).

This average value doesn’t depend on time, just like its classical analogue. We can
also calculate the average value of the scalar field φ:
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〈φ〉 = 〈Ψ|φ |Ψ〉 = i

∫
dpφΨ∗(pφ, t)

∂Ψ

∂pφ
(pφ, t).

So we get

〈φ〉 =
(M2 − 2A)

3M
ln(t).

Deriving this with respect to time:

〈φ̇〉 =
(M2 − 2A)

3Mt
. (5.35)

We can compare equation (5.35) with the classical evolution of the scalar field φ.
Remember that the constraint tells us that M2α̇2 = φ̇2. We’ll choose the positive solution
and we’ll also remember that for a(t) = a0t

1/3 we have α̇ = 1
3t
. Substituting this in the

constraint we get that

φ̇ =
M

3t
.

This is compatible with (5.35) only if

A = 0. (5.36)

This incompatibility is of course a problem, because if A is different from equation
(5.36) we have that the average value of the time derivative of the scalar field doesn’t
obey the equations derived classically from the Lagrangian. However, there is one last
hope: we derived the family of Hamiltonians without imposing the constraint and we are
comparing our result to what the constraint tells us. So, we can think that 〈φ̇〉 might
coincide with the classical evolution of the field derived without imposing the constraint.

Let’s give it a try. To simplify the notation, we’ll fix N = 1. We’ll also use the
variable a(t) instead of α(t). So the Lagrangian will be (4.2):

L = −M
2ȧ2a

2
+
φ̇2a3

2
.

The Klein-Gordon equation, as we saw on chapter 4 is just φ̇a3 = pφ = constant.
Performing variations in the action with respect to a(t) we get

M2 d

dt
(ȧa) = −M2 ȧ

2

2
+

3

2
a2φ̇2.

To solve this equation we’ll introduce a new variable x = a2/3. Our equation now will
look like
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ẍ+
9

4

p2
φ

M2x3
= 0.

Integrating one time we get

ẋ2 − 3

8

p2
φ

M2

1

x2
= C.

Here, C is an arbitrary constant. If C = 0 our constraint is satisfied. If C 6= 0 we
can integrate again and get

x2 = a3 =
3pφt

M
+ Ct2.

Using the Klein Gordon equation we get

φ̇ =
pφ

3pφt

M
+ Ct2

.

This is incompatible with (5.35) for C 6= 0. So, even if we don’t impose the constraint
the classical evolution we just derived classically doesn’t coincide with the one derived
from our quantization method.

So, if we choose a parameter A 6= 0, the evolution of the quantum scalar field won’t
coincide with its classical analogue, just like it happened in our example in section 5.2.

5.5 Discussion

Equation (5.35) has a free parameter A, which means we have a family of Hamiltonians,
each of them describing a different physics. In this case, when we try to change variables
from (α, pα) to (Tp, PTp), the conjugate momentum to the time variable is not unique,
causing the Hamiltonian to have a dependence in the parameter A.

There is no easy criteria that allow us to pick one A over other one. The closest
that we have to a criteria is to ask that the mean value of φ̇ coincides with that derive
classically. This criteria can be justified by noting that the problem of the family of
Hamiltonians seems to arise from the fact that we chose a time function that is valid in
the whole phase space [12]. Since not all the points of the phase space represent physical
solutions of our system, but only those that are on the constrained surface [8], we might
think that also not all the Hamiltonians in this family are going to give us a physical
evolution, and that we should choose the one that corresponds to the constraint surface.

In general, and as anticipated in chapter 3, we saw that the time function is not
unique. There is more than one phase space function that can serve as time and that
have Poisson bracket with the Hamiltonian equal to 1. This is the multiple choice problem
[6], one of the main problems that this kind of approach to the problem of time presents.

50



Chapter 6

Born-Oppenheimer approach and
gauge fixing

In chapter 3 we mentioned briefly the semiclassical interpretation of quantum gravity as
one of the approaches to the problem of time in the Wheeler-DeWitt framework [4]. One
of the approaches that is usually used in combination with the semiclassical interpretation
is the Born-Oppenheimer (BO) approach [42]. The BO approach introduces the idea that
time emerges only when a state of our quantum system becomes classical. This means
that not all solutions to the Wheeler-DeWitt equation allow a dynamical interpretation
[6].

On the other hand, in chapter 5 we saw that we can introduce time in our formalism
by doing a gauge fixing of the type

χ(t, α, pα, φ, pφ) = t− χ̄(α, pα, φ, pφ) = 0.

If one applies the BO approach and the gauge fixing method to the model we studied
in the last chapter (flat FLRW spacetime coupled to a scalar field), we find that the
results are similar for both approaches [22]. This can led us to consider whether there
is some kind of connection between the BO approach and the gauge fixing method. A
possible answer to this question was given in a recent paper by Chataignier [43], where it
is argued that the results of the semiclassical approach can be obtained from a particular
gauge fixing.

In the present chapter, we review the basics of the BO approach and apply it to the
model under study. We then discuss the gauge fixing approach [30] and compare the
results obtained by this method with those obtained using the BO approach. Finally,
taking as a starting point the paper by Chataignier [43], we explore the possible connec-
tion between the BO approach and the Gauge fixing method. We will explicitly write
the Planck mass in our equations, since it will play a fundamental role in our arguments
and approximations.
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6.1 The Born-Oppenheimer approach to the prob-

lem of time

The Born-Oppenheimer approach was born as a method to treat composite molecule
systems [44]. Composite systems are those that involve two very different mass or time
scales. In particular, in a molecule system we have electrons and the nuclei, which have
very different masses, making this system suitable for a BO approach.

The two different scales of the masses of the nuclei and electrons allows us to factorise
the wave function on the system in a way that lead us, at first order, to a separate
description of the behaviour of the nucleus and the electrons surrounding it. It also found
that the motion of the nuclei is influenced by the mean Hamiltonian of the electrons [44].

In the case of a quantum minisuperspace coupled with matter we also have two
very different scales, since the gravitational degrees of freedom are characterized by the
Planck mass, which is much bigger than the usual matter mass scale [45]. In this sense,
the gravitational degrees of freedom are “heavy”, while the matter degrees of freedom
are “light”.

This approach is useful to analyse the emergence of time in the context of a semiclassi-
cal approximation for quantum gravity starting from a minisuperspace model describing
gravity and quantum matter [11, 45, 46].

The BO approach tells us that not all the solutions to the Wheeler-DeWitt equation
allow a dynamical interpretation, but that time and quantum dynamics emerge only
when a state of our system becomes semiclassical [6].

If we focus on a composite system of a ”heavy” sector interacting with a ”light”
subsystem, where the heavy sector is associated with a mass scale M and degrees of
freedom Qa, with a = 1, ..., n, and the light system is associated with a scale m << M
and degrees of freedom qµ with µ = 1, ..., d, we can expand the wave function as the
superposition [43, 45]:

Ψ(Q; q) =
∑
k

ϕk(Q)χk(Q; q). (6.1)

Here, the χk form a complete system, which is orthonormal with respect to the inner
product taken only over the matter variables [45].

For simplicity, we can also rewrite equation (6.1) as [43]

Ψ(Q; q) = ϕ(Q)
∑
k

ϕk(Q)

ϕ(Q)
χk(Q; q) = ϕ(Q)χ(Q; q). (6.2)

This exact factorization has the advantage that we don’t have to consider the dy-
namics of each of the χk states. After factorizing the wavefunction in this way, the usual
procedure of the BO approach is to insert this factorization in the Wheeler-DeWitt equa-
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tion, multiply the result by χ∗ and integrate over the light variables to obtain an equation
for φ [22]. This equation will involve the partial average of the matter Hamiltonian.

The next step is to use the equation for φ to obtain an equation for χ, which will also
involve partial averages with respect to the light sector. At this point, we can use the
gravitational degrees of freedom to define a time parameter and obtain a Schrödinger
equation for the light system. This means that the gravitational degrees of freedom
provide the clock that parametrises the evolution of the light sector [22]. Let’s see how
this works in the case of a flat FLRW quantum cosmology.

6.1.1 BO approach for a flat FLRW quantum cosmology

We have already seen that in the case we have studied in the last two chapters the
Wheeler-DeWitt equation is (

∂2

∂α2
+M2 p2

φ

)
Ψ(α, pφ) = 0.

We now want to apply the BO approach to quantum gravity to this model. Following
our past discussion, we are going to consider that the solution to this equation can be
written in the following form [22, 43]

Ψ(α, pφ) = ϕ(α)χ(α, pφ). (6.3)

At this point, it is useful to remember that the main idea of the BO approach is that
time emerges when a state of our system is classical [4, 6, 45]. In this case, we are going
to keep the gravitational degrees of freedom classical and the matter degrees of freedom
will be quantized.

If we substitute equation (6.3) in the Wheeler-DeWitt equation we get:

∂2ϕ

∂α2
+ 2

∂ϕ

∂α
+ ϕ

∂2χ

∂α2
+M2p2

φϕχ = 0. (6.4)

To proceed further, we have to suppose two things. The first one is that the term
ϕ∂χ2

∂α2 is small, so we can omit it [22]. The second one is that the partial average

〈χ|∂χ
∂α
〉 = 0. (6.5)

Now, multiply equation (6.4) by χ∗ to get

∂2ϕ

∂α2
+ 2χ∗

∂ϕ

∂α

∂χ

∂α
+M2p2

φϕ = 0.

We can take now the average of this equation with respect to the matter sector in
order to get an equation for ϕ(α):
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∂2ϕ

∂α2
+M2〈p2

φ〉ϕ = 0.

This equation can be easily integrated to get

ϕ(α) = exp
(
−iM

√
〈p2
φ〉α
)
. (6.6)

Substitute equation (6.6) into equation (6.4). Neglecting ϕ∂2χ
∂α2 we get

−M2〈p2
φ〉χ− 2iM

√
〈p2
φ〉
∂χ

∂α
+M2p2

φχ = 0. (6.7)

In chapter 4, we found that pφ = e3αφ̇ and we saw that the constraint is M2α̇2 = φ2.
So, we can write α̇ in terms of pφ:

α̇ =
pφe
−3α

M
. (6.8)

We are now going to introduce a semiclassical cosmic time parameter. To do it,
substitute the classical right hand side of equation (6.8) by the partial average of the
corresponding operator [22] to get

α̇ =

√
〈p2
φ〉e−3α

M
. (6.9)

Using equation (6.9) to rewrite equation (6.7) we get

− 〈p2
φ〉χ− 2ie3αα̇

∂χ

∂α
+ p2

φχ = 0. (6.10)

Note that

α̇
∂χ

∂α
=
∂χ

∂t
.

Using this, we can rewrite equation (6.10) as

− 〈p2
φ〉χ− 2ie3α∂χ

∂t
+ p2

φχ = 0. (6.11)

Equation (6.11) can be rearranged to give

i
∂χ

∂t
=
p2
φ

2
e−3αχ−

〈p2
φ〉
2
e−3αχ.

All we have to do now is to remember that
p2φ
2
e−3α is the term in the Hamiltonian

corresponding to the matter degrees of freedom. We can call it Hm, so that we can write
the last equation as
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i
∂χ

∂t
= Hmχ− 〈Hm〉χ. (6.12)

Equation (6.12) is a Schrödinger-like equation. We can recover Schrödinger’s equation
by making the phase transformation [22]:

χ = χ̃ exp

(
i

∫
〈Hm〉dt

)
.

Substituting this expression into equation (6.12) we get the time-dependent Schrödinger
equation:

i
∂χ̃

∂t
= Hmχ̃. (6.13)

6.2 Gauge fixing approach to the problem of time

The Gauge fixing approach to the problem of time was described in detail in [30]. In
this section, we will review its main ideas, which we have partially discussed in chapter
5.

We mentioned at the beginning of this chapter that not all solutions to the Wheeler-
DeWitt equation allow a dynamical interpretation. In fact, the Wheeler-DeWitt equation
has solutions that don’t correspond to the physical set up we are attempting to describe
[4, 6, 7]. Having this in mind,we need some additional criterium in order for us to extract
the physical solutions and distinguish them from the non-physical ones.

In [30] it is proposed that a way to extract the physical solutions can consist in the
so-called reduced space quantization or gauge fixing. The main idea of this phase space
reduction is the selection of time parameter as a function of the phase space variables.
Choosing a time parameter allows us to find the physical degrees of freedom and their
Hamiltonian while at the same time introducing evolution of the quantum states. Let’s
see how this works in the general case.

In general, the action of a gravity theory has the form [30]

S =

∫
dt(piq̇

i −NµHµ(q, p))

As before, Nµ are the lapse and shift functions. Variations with respect to Nµ leads
to our well-known Hamiltonian and diffeomorphism constraints

Hµ(q, p) = 0.

A theory of this type is invariant under diffeomorphisms [7]. This means that we can
have a set of states that at first seem to be different from each other but in reality they
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are related by transformations of coordinates and they all represent the same physical
state [30]. The idea of the physical reduction is to choose one representative of this
physical state and treat the labels of this state as physical variables.

We can do this by imposing on the phase space variables the following gauge condi-
tions [30]

χµ(q, p, t) = 0. (6.14)

For systems that are invariant under diffeomorphisms the gauge condition should
explicitly depend on time in order to generate the dynamics in the phase space [30].
Using these gauge conditions we can fix the shift and the lapse functions by requiring
the conservation of equation (6.14) in time:

dχµ

dt
=
∂χµ

∂t
+ {χµ, Hν}N ν = 0. (6.15)

We can define the matrix

Jµν = {χµ, Hν}.

So that we can write the lapse and the shift functions as

Nµ = −(Jµν )−1∂χ
ν

∂t
. (6.16)

The next step is to write the phase space variables (qi, pi) in terms of the new variables
of the physical sector, that we’ll call (ξA, πA). Solving the systems of constraints and the
gauge conditions we can write

qi = qi(ξA, πA, t),

pi = pi(ξ
A, πA, t).

This change of coordinates is given by a canonical transformation that should obey
[30]

pidq
i = πAdξ

A −Hphys(ξ
A, πA, t)dt+ dF (qi, ξA, t). (6.17)

Here, Hphys(ξ
A, πA, t) is considered to be the physical Hamiltonian and F (qi, ξA, t) is

the generating function of this canonical transformation.
Once we have found the physical Hamiltonian we can perform canonical quantization

by promoting the variables ξA and πA and the physical Hamiltonian to operators:

ξA,−→ ξ̂A, πA −→ π̂A Hphys −→ Ĥphys.
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The physical variables are subjected to the usual commutation relation

[ξ̂A, π̂B] = i~δAB.
Finally, we postulate the Schödringer equation for the physical states

i~
∂

∂t
Ψphys(t, ξ) = ĤphysΨ(t, ξ). (6.18)

In the particular case of minisuperspace models,the diffeomorphism constraints are
satisfied automatically and we remain only with the Hamiltonian constraint. So that
we’ll have [4, 6, 30]

Hµ(q, p) = H(q, p), χµ(q, p, t) = χ(q, p, t).

In this case, we can write the gauge condition to express time explicitly as a function
of the phase space variables [30]

χ(q, p, t) = T (q, p)− t = 0. (6.19)

We can then fix the lapse function

N =
1

J
.

Here, J = {T,H}. In minisuperspace models, the gravitational degrees or freedom
are given by the scale factor a = eα so that our phase space variables are

qi, pi = α; pα, ξ, π.

In this equation, ξ and π are matter degrees of freedom. After fixing a gauge of the
form given by equation (6.19), we need to find a a canonical transformation F (α, T ) that
takes us from the variables (α, pα) to (T, pT ), where T = T (α, pα) and pT = pT (α, pα).
Once we have changed variables, the Hamiltonian constraint and the Wheeler-DeWitt
equation read [30]

H(T, pT ; ξ, π) = 0,

Ĥ

(
T, i

∂

∂T
; ξ̂, π̂

)
|Ψphys(T )〉 = 0.

The wavefunction |Ψphys(t)〉, obeys the Schrödinger equation. We have already seen
this formalism in action in our case of study on section 5.3, where we picked a gauge that
coincides with the classical solution of the Friedmann equation. In this case, we found
that the resulting wavefunction obeys the Schrödinger equation, giving an example of
how this formalism works.
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6.3 The relationship between the BO approach and

Gauge fixing

Taking inspiration from the paper by Chataignier [43], we now set to find a connection
between the Born-Oppenheimer approach to quantum gravity and gauge fixing. The
question if there is a connection between the Born-Oppenheimer approach and the gauge
fixing method was posed in a recent paper by Kamenshchik, Tronconi, Vardanyan and
Venturi [22], where similar results are obtained for both approaches.

In the gauge fixing method, we chose a time variable as a function of the phase space
variables. This allowed us to fix the value of the lapse N . The time variable is usually
chosen in such a way that the lapse is equal to 1, since this gives us that the cosmic time
coincides with the usual time.

On the other hand, in the Born-Oppenheimer approach, we make the assumption
that we can write the wave function as Ψ(α, pφ) = ϕ(α)χ(pφ, α) where φ depends only
on the gravitational degrees of freedom, and χ can depend on both the gravitational and
matter degrees of freedom [45]. In this case, a function of α serves as an internal clock
for the system, allowing for a definition of time.

In this case, we are going to pick a particular gauge and find the lapse function
associated to it. This lapse function instead of being a constant is going to be a function
of the phase space variables. After this, we are going to use the newly define variables
to find the Schrödinger equation, which in this case will coincide with the one found in
the case of a pure BO approach. We’ll also see that if we start from the Wheeler-DeWitt
equation we can also find the BO ansatz if we perform a phase transformation, using as
a phase the generating function of the change of variables. Let’s see how this works.

6.3.1 BO approach from gauge fixing: classical theory

We begin with the usual metric

ds2 = N2(t)dt2 − a2(t)(dx2 + dy2 + dz2).

Coupled to a scalar field φ. In this case, following Chataignier [43], we will include the
cosmological constant, in order to have a nonzero gravitational potential. The Lagrangian
for this theory is:

L = −M2aȧ
2

N
−M2 Λ

6
Na3 +

a3φ̇2

2N
.

Here, Λ is the cosmological constant and M is the re-scaled Planck mass. If we
parametrize the scale factor as a(t) = eα(t) the Lagrangian is

L = −M
2α̇2e3α

2N
− Λ

6
M2Ne3α +

e3αφ̇2

2N
.
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The conjugate momenta are

pN = 0, pα = −M
2α̇e3α

N
, pφ =

e3αφ̇

N
.

Using the conjugate momenta, we can now write the Hamiltonian

H = pαα̇ + pφφ̇− L.
The result is

H = N

(
−p

2
αe
−3α

2M2
+
p2
φ

2
e−3α +

Λ

6
M2e3α

)
. (6.20)

The Hamiltonian constraint then is [43]

H = Hg(α, pα) +Hm(α, pφ) = 0.

Here, Hg is the gravitational Hamiltonian and Hm is the matter Hamiltonian. The
cosmological constant can be treated either as an element of the gravitational Hamilto-
nian or as a part of the matter Hamiltonian. In the last case, it would be interpreted as
the scalar field potential. Following [43], we decide to treat it as a part of the gravitational
Hamiltonian. We then have

Hg = −p
2
αe
−3α

2M2
+

Λ

6
M2e3α,

Hm =
p2
φ

2
e−3α.

Simplifying, the constraint reads

− p2
α

M2
+ p2

φ +
Λ

3
M2e6α = 0. (6.21)

Now, we will impose the following gauge condition [43]

χ(α, t) = α− t = 0. (6.22)

To fix the lapse function, we require that the gauge condition be conserved at all
times [30]

dχ

dt
=
∂χ

∂t
+N{χ,H} = 0.

We can calculate the Poisson bracket of the gauge condition with the Hamiltonian to
get
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{χ,H} =
e−3αpα
M2

.

Substituting in the conservation equation, we get that the lapse function is

N =
M2e3α

pα
. (6.23)

Solving the Hamiltonian constraint, we get

pα = ±M
(
p2
φ +

Λ

3
e6αM2

)1/2

. (6.24)

We can substitute equation (6.24) in (6.23) to get

N = ± Me3α(
p2
φ + Λ

3
e6αM2

)1/2
.

We can rearrange the denominator and expand it in powers of 1
M2 to obtain

N = ±
√

3

Λ

(
1−

3p2
φe
−6α

2ΛM2
+ ...

)
.

At first order the lapse is

N = ±
√

3

Λ
+O

(
1

M2

)
. (6.25)

With the lapse fixed, we can go back to equation (6.24) and expand the negative
square root in powers of 1

M2 to get, at first order

pα = −
√

Λ

3
M2e3α −

√
3

Λ

p2
φ

2
e−3α +O

(
1

M2

)
. (6.26)

Our gauge fixing induces a canonical transformation with generating function

ϕ(α) = −1

3

√
Λ

3
M2e3α. (6.27)

So that the relationship between pα and pt is

pt = pα −
dϕ

dt
. (6.28)

We can substitute equation (6.28) in equation (6.26) to get
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pt = −
√

3

Λ

p2
φ

2
e−3α +O

(
1

M2

)
= NHm. (6.29)

We can proceed now to quantize equation (6.29). Using a mixed representation where

p̂tΨ = −i∂Ψ

∂t
, p̂φΨ = pφΨ.

We get Schrödinger’s equation:

i
∂Ψ

∂t
=

√
3

Λ

p2
φ

2
e−3αΨ.

This is the result we got for the BO approach, multiplied by the value of the lapse
function at first order.

6.3.2 Quantum theory

We can also get the result of the BO approach starting from the Wheeler-DeWitt equation
instead of the classical theory [43], as we did in the last subsection. To do it, we begin
with Hamiltonian (6.20) and promote the variables to operators. We choose to work in
a mixed representation where

α̂Ψ(α, pφ) = αΨ(α, pφ), p̂αΨ = −i∂Ψ

∂α
, p̂φΨ = pφΨ.

Here, Ψ(α, pφ) is the wavefunction of the universe. It is convenient to work in this
representation, since pφ is conserved. Using this representation, the Wheeler-DeWitt

equation, ĤΨ = 0, reads

e−3α

2M2

∂2Ψ

∂α2
+
e−3α

2
p2
φΨ +

Λ

6
M2e3αΨ = 0. (6.30)

To recover the Schrödinger equation, we perform the phase transformation [43] Ψ(α, pφ) =
eiϕ(α)Ψϕ where ϕ(α) is the generating function of the transformation [43] we used in the
classical treatment of the system, given by equation (6.27).

After performing the phase transformation and taking the appropriate derivatives,
equation (6.30) reads

− i
√

Λ

3

∂Ψϕ

∂α
= −e

−3α

2
p2
φΨϕ −

√
3Λ

2
iΨϕ +

e−3α

2M2

∂2Ψϕ

∂α2
(6.31)

To the lowest order this equation reads
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i
∂Ψϕ

∂α
=

√
3

Λ

p2
φ

2
e−3αΨϕ −

3

2
iΨϕ +O

(
1

M2
pl

)
. (6.32)

Equation (6.32) almost looks like the Schrödinger equation. However, we have an
imaginary constant on the right hand side. This is a problem because it ruins unitarity.
Is there any way we can enforce unitarity in this equation? To answer this question,
write the wavefunction as

Ψ̃ϕ = e−3/2αΨϕ. (6.33)

Substituting equation (6.33) into equation (6.32) we get

i
∂Ψ̃ϕ

∂α
=

√
3

Λ

p2
φ

2
e−3αΨ̃ϕ +O

(
1

M2

)
. (6.34)

This is the same result we got in the last section. Note that the transformation of
the wavefunction performed in equation (6.33) can be written as

Ψ̃ϕ(α, pφ) = eiϕ(α)e−3/2αΨϕ(α, pφ) = χ(α)Ψϕ(α, pφ).

This is the BO approach ansatz [22, 43, 45]. So, in this sense, by fixing a gauge, we
have recovered the main ansatz of the BO approach.

We also introduce the backreaction [45] (the average of the matter Hamiltonian) in
these equations. By taking the average of equation (6.31) with respect to the matter
sector we find

i〈 ∂
∂α
〉Ψϕ −

√
3

Λ

〈p2
φ〉
2
e−3αΨϕ −

3

2
iΨϕ +

√
3

Λ

e−3α

2M2
〈 ∂

2

∂α2
〉Ψϕ = 0. (6.35)

We can define

〈p2
φ〉
2
e−3α = 〈Ĥm〉.

We can subtract (6.35) from (6.31) to get

i

(
∂

∂α
− 〈 ∂

∂α
〉
)

Ψϕ =

√
3

Λ
(Ĥm − 〈Ĥm〉)Ψϕ +

√
3

Λ

e−3α

2M2

(
∂2

∂α2
− 〈 ∂

2

∂α2
〉
)

Ψϕ. (6.36)

At leading order, this equation is

i

(
∂

∂α
− 〈 ∂

∂α
〉
)

Ψϕ =

√
3

Λ
(Ĥm − 〈Ĥm〉)Ψϕ +O

(
1

M2
pl

)
. (6.37)

Equation (6.37) is very similar to the results obtained in [22] for the BO approach.
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6.3.3 Inner product

Finally, we can take a look at the inner product of our Hilbert space. Equation (6.30)
is a Klein-Gordon type equation, so in principle we could take the Klein-Gordon inner
product [19] with a suitable prefactor:

(Ψ1,Ψ2)KG =

∫
dφ

√
3

Λ

ie−3α

M2

(
Ψ̄1
∂Ψ2

∂t
−Ψ2

∂Ψ̄1

∂t

)
.

We can perform the decomposition

Ψ1 = eiϕΨ1,ϕ, Ψ2 = eiϕΨ2,ϕ.

We can substitute this in the inner product. After some algebra we obtain:

(Ψ1,Ψ2)KG =

∫
dφ

[
Ψ̄1,ϕΨ2,ϕ +

√
3

Λ

ie3α

2M2

(
Ψ̄1,ϕ

∂Ψ1,ϕ

∂t
−Ψ2,ϕ

∂Ψ̄1,ϕ

∂t

)]
.

We can the see that at leading order the Klein-Gordon inner product is

(Ψ1,Ψ2)KG =

∫
dφΨ̄1,ϕΨ2,ϕ +O

(
1

M2

)
. (6.38)

This is the usual Schrödinger inner product [4].

6.4 Discussion

In the last three subsections we have seen that by including the cosmological constant
in our quantum minisuperspace model and choosing the logarithm of the scale factor as
our time parameter we can get the result of the Born-Oppenheimer approach before and
after quantization [43].

To get it after quantization, we have to perform a phase transformation in the
wave function and then ask that the resulting equation is unitary in order to get the
Schrödinger equation and the Born-Oppenheimer ansatz. We also saw that the Klein-
Gordon inner product reduces to the Schrödinger one if we perform the same phase
transformation that we did for the Wheeler-DeWitt equation.

Of course, these results are valid at first order of a series expansion in powers of 1
M2 .

This makes sense, since the results of the Born-Oppenheimer approach are obtained after
a series of approximations are considered [4, 6, 11, 22, 43, 45], as we saw in section 6.1.1.
Terms of higher order can be considered as corrections to Schrödinger equation coming
from quantum gravitational effects [43].
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The inclusion of the cosmological constant in the model is fundamental in order to
obtain the results we have seen [43]. This arises the natural question if it is possible
to obtain the results of the BO approach by choosing a particular gauge in the case in
which the cosmological constant is equal to zero. This question is worth exploring and
could be a possible extension of this work.
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Conclusions

In the present thesis project we studied the problem of time in the context of a quantum
FLRW flat spacetime coupled to a scalar field. In chapter five, following the method
described in [12], we tried to include time in our formalism by choosing a time parameter
as a function of the phase space variables that has Poisson bracket with the Hamiltonian
equal to 1. We saw that we can find this time function by solving the equations of
motion, applying the constraint, or without applying the constraint.

In particular, in [12], it is argued that in order for the method described to be
consistent, the time function should be valid in the whole phase space. However, as we
saw in section 5.3, we can still get a consistent quantum theory even if we choose the
time function to have Poisson bracket equal to one with the Hamiltonian only in the
constraint surface.

Also, the requirement that the time function should be valid in the whole phase space
seems to be too restrictive, since in section 5.4, we saw that during the calculations carried
out in section 5.2 we had missed a piece of the solution of the canonical transformation
we used to go from our old variables to the dynamical ones. This piece was actually
fundamental, since the complete result is a Hamiltonian that has a free parameter, which
means that the time evolution that we get from the chosen time parameter is not unique.

We attempted to fix this free parameter by comparing the result of the scalar field
evolution obtained in the quantum theory with that of the classical theory. We found
that we obtain the same result by picking A = 0. After picking A = 0 the resulting
Hamiltonian coincides with the one we got by choosing a time parameter that is valid
only on the constraint surface.

Finally, we compare the classical solution we get for the evolution of the scalar field
without applying the constraint with the result obtained for the quantum theory, in
the hope that they would coincide since the time function was also derived without the
application of the constraint. However, we found that they don’t coincide even in this
case.

On the other hand, in chapter 6, we explored the connection between the Born-
Oppenheimer and gauge fixing approaches to the problem of time. We found that if
we add a cosmological constant term to our action we can derive the results of the BO
approach by choosing α as our time parameter (gauge fixing) [43].
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In particular, we saw that this result can be obtained both before and after quantiza-
tion. To obtain the result after quantization, we should perform a phase transformation
in the Wheeler-DeWitt equation where the phase corresponds to the generating function
of the change of variables we used in the classical theory.

This work could be further extended by investigating the role of the cosmological
constant in the approach. In the work we presented in chapter 6, the addition of the
cosmological constant is fundamental to obtain the results, as remarked in [43]. It is
worth exploring if there is a gauge fixing that would allow us to obtain the results of the
Born-Oppenheimer approach without having to include the cosmological constant.
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