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In a higher world it is otherwise,
but here below to live is to change,
and to be perfect is to have
changed often.

John Henry Newman
Conscience, Consensus and the
Development of Doctrine



Abstract

The Standard Model (SM) is the best theory which describes Nature at the funda-
mental level. Even if it provides very accurate predictions, the SM features some open
problems. A promising extension of the SM is the Minimal Supersymmetric Standard
Model (MSSM) provided by supersymmetry. The MSSM can provide solutions for some
of the open problems of the SM but it can suffer from the flavour supersymmetric problem
associated with the presence of large Flavour Changing Neutral Currents (FCNCs). The
flavour supersymmetric problem is related to the mechanism which mediates supersym-
metry breaking from the hidden to the visible MSSM sector. A popular supersymmetry
breaking mediation mechanism is gravity mediation but generic gravity mediated mod-
els lead to large FCNCs. The conditions to avoid FCNCs in gravity mediated models
are called mirror mediation. These conditions can naturally be satisfied in 4D string
compactifications. 4D string models introduce new scalar particles, the moduli, which
interact gravitationally with matter and represent natural candidates to mediate super-
symmetry breaking to the MSSM. Promising 4D string scenarios are sequestered models
where the MSSM lives on branes at singularities and the visible sector is sequestered
from the sources of supersymmetry breaking in the bulk of the extra dimensions. So
one can realise low-energy supersymmetry and all moduli can be heavy enough to avoid
any cosmological moduli problem. In this thesis we shall focus on 4D sequestered string
scenarios and determine which models can reproduce mirror mediation without the pro-
duction of large FCNCs. We will find two different classes of sequestered models where
only one can be compatible with present flavour constraints on FCNCs. This compari-
son with observations will provide information on important details of the microscopic
theory like the functional dependence on the extra-dimensional volume of the physical
Yukawa couplings and the Kéahler potential for matter fields.
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Introduction

The Standard Model (SM) of particle physics is the most advanced theoretical descrip-
tion of Nature providing the most sophisticated and precise predictions of all physics.
There are however still many questions about fundamental particle physics which are
not answered in the SM (gravity, dark matter, the cosmological constant problem, neu-
trino masses) and there are also many theoretical issues (hierarchy problem, the huge
number of free parameters and unification of the fundamental interactions) that provide
a good reason to theoretical physicists to try to find a theory beyond the SM. Space-
time supersymmetry can provide answers for some of the SM problems (like neutralino
dark matter, a stable Higgs mass, gauge coupling unification and radiative electro-weak
symmetry breaking) but it could provide also new problems in the phenomenology by
the introduction of the new particles. One of these possible problems is the flavour
supersymmetric problem which consists in the presence of Flavour Changing Neutral
Currents (FCNCs) in the Minimal Supersymmetric Standard Model (MSSM) by the
introduction of new particles which carry flavour. Other problems are the presence of
colour and charge breaking (CCB) vacua and the unbounded from below (UFB) scalar
potential, caused again by the introduction of new scalar particles which can provide
new competitive vacuum solutions. The mentioned problems have been heavily studied
by supersymmetry theorists encoding the boundaries that a supersymmetric extension
of the SM should respect (as studied in Ref. [25,27,29]) to solve these problems. The
most important issue of supersymmetry is that it is not realized in Nature, otherwise
we would have already seen the superpartners of the SM particles with the same mass.
Therefore supersymmetric models have to include a supersymmetry breaking mecha-
nism, and these mechanisms influence the phenomenology of the theory including also
the mentioned problems. Even if the supersymmetry has not been already observed (su-
persymmetric theories could be observed by detecting superpartners at the LHC if their
mass is of order the TeV scale) it is still a matter of studies because it can be seen as a
consequence of a more fundamental theory: string theory.

String theory is the most ambitious theory for fundamental physics and quantum gravity
that describes particles as states of an oscillating string. However, for consistency, the
theory should live in 10 dimensions forcing the extra dimensions to be very small (com-
pactified). String theory compactifications lead to a landscape of 4D solutions. Some of
these vacua can allow for low energy supersymmetric models that can be very promising
for phenomenological applications. In particular, we will focus on a corner of the string
landscape where the 4D low-energy effective field theory features an MSSM visible sec-
tor with gravity mediated supersymmetry breaking. A potential problem of these string
compactifications is the so-called "no scale" structure which leads to the presence of new
massless fields which act as a fifth force. The Large Volume Scenario (LVS) is a class of
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string compactifications that provide a successful stabilisation of the mentioned flat di-
rections with interesting phenomenological applications to supersymmetry breaking and
its mediation to the visible MSSM sector living on D-branes. This is the reason why
string LVS models are today object of studies not only for particle physics phenomenol-
ogy (Ref.[20]). In the LVS framework, sequestered models allow to keep the mass scale
of the visible sector superpartners far below the mass of the hidden sector fields, solving
automatically the so-called cosmological moduli problem (CMP).

The aim of this thesis is to analyse the amount of flavour changing neutral currents
produced in sequestered supersymmetry breaking models within the framework of type
IIB LVS string compactifications where supersymmetry is broken by the F-terms of the
Kéhler moduli whose interaction with MSSM fields mediates this breaking to the vis-
ible sector generating non-zero masses for all supersymmetric particles. This thesis is
organized into three chapters:

e Chapter 1 is a brief introduction of the basic concepts of supersymmetric field
theories and the fundamental principles of superstring theory and type IIB com-
pactifications, paying particular attention to phenomenological models as the Large
Volume scenario in order to understand the analysed model.

e Chapter 2 is a brief explanation of supersymmetry breaking and a review of the
status of the art of flavour changing neutral currents in the Standard Model and in
the Minimal Supersymmetric Standard Model, with the different solutions offered
by different mediation mechanisms of supersymmetry breaking. We shall con-
centrate on the condition for gravity mediated supersymmetry breaking to avoid
dangerously large FCNCs. In this chapter we also describe the stricter constraints
imposed by the UFB potential and CCB vacua.

e Chapter 3 presents the main results of this thesis, providing a detailed analysis
which reproduces the computation for the soft parameters of the two scenarios
generated by the sequestered supersymmetry breaking model of [39]. We then
analyse if these scenarios respect or not the flavour constraints and the UFB and
CCB bounds. We also compare this result with the literature finding a light dis-
crepancy. After determining the acceptability of the model we try to understand
its phenomenological applicability.

In the conclusion section, we try to understand if the flavour bounds on the different
scenarios provided by the model could give us some clues about the fundamental theory,
in particular trying to understand the validity of the hypothesis made in Ref.[16] about
the moduli dependence of the physical Yukawa couplings and the Kahler metric for
MSSM matter fields.



Chapter 1

Supersymmetry and Superstring
Theory

1.1 Supersymmetry

Supersymmetry was historically developed in the string theory framework in order to
extend the bosonic string to describe also the fermionic particles producing the so-called
Superstring theory. This was made starting from the work of Ramond in 1971 [1]. Only
in the second half of the 1970s supersymmetry was applied to field theory resulting in the
first supersymmetric field theory proposed by Freedman, Van Nieuwenhuizen, Ferrara in
1976 [2].

1.1.1 One reason for supersymmetry

Supersymmetry can be used to solve some of the open problems of the Standard Model
of particle physics like the stabilisation of the Higgs mass |3]. Considering the regularized
correction to the mass of the Higgs boson:

by 2
A A2y + ... (1.1)

Am2 = —
M 2

if one looks at the coupling of the Higgs field with a heavier scalar particle the correction
is:

As
1672
If now one considers a heavier fermionic particle which does not directly couple with the
Higgs field the correction due to the gauge interactions is:

Am%{ = [AIQJV — 2m5 IH(AUv/ms) + } . (12)

2

2
167r2) [aAfy + 24mE In(Apy /mp) + ...] . (1.3)

g
So even if one rejects the physical interpretation of the cut off Ayy the mass of the
Higgs is affected by corrections proportional to the masses of possible heavier particles.
One possible solution is to tune the counterterm to remove the possible contributions
induced by heavier masses, but it may seem unnatural. Supersymmetry provides a

3
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natural solution. Let us consider a soft supersymmetry breaking model. In this case, the
contribution is:

9 A
soft 1671'2

with mg. s the mass of the lightest superparticle. In this way the quadratic dependence
on the regulator Ayy is removed and, to keep the mass of the Higgs at the experimental
value, the mass of the superparticle should be around the TeV scale. This provides an
experimental constrain to the supersymmetric models and a solution to the instability
of the Higgs mass.

Am3, =m In(Apv /Msopt) + .| , (1.4)

1.1.2 Super-Poincaré Group

Supersymmetry can be presented starting from the extension of the concept of Lie alge-
bra. The Lie superalgebra of the operators O, is defined as:

0.0y — (=1)"" 00, = iC, Oy (1.5)
with:

0 if O, is bosonic operator
Ta = { (16)

1 if O, is fermionic operator.

Spacetime supersymmetry can be then introduced as an extension of the Poincaré group
with the introduction of new fermionic generators.
The generators of the Poincaré group are: P,, L,,. The algebra of the Poincaré group
is given by:
[P/u P,,] =0
(L, Py)] = —thg,,P, +ihg,,P, (1.7)
(L, Lpo| = —ihgupLve + ihguoLyp — ihgue Ly + ihgu, L.
The new generators @, belong to the fundamental representation of the group SL(2,C)

(they are left-handed Weyl spinors ) and respect the following anti-commutation  relation
with the elements of the conjugate representation (right-handed Weyl spinors) @ A

{Qa, Qs} = 2(0") 5P (1.8)

The commutation rules with the others generators of the Poincaré group are:

(Qa, L") = () Qs

Qu. P = [@" P*| =0 (1.9)

{QCU Qﬁ} = 0.
The action of (), on a state is to transform it from bosonic to fermionic and vice versa:
Qu|B) = |F). (1.10)

The anti-commutation relation (1.8) shows that by double applying the generators to a
state it gives back the same initial state but translated and this is the reason why it is
a spacetime symmetry.
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1.1.3 Supermultiplet

In order to describe the representations of the super-Poincaré algebra with AV = 1 su-
persymmetry one has to define the Casimir operators such that they are invariant under
supersymmetry transformation. The usual Casimir operators of the Poincaré group are:

Cy = P*P,
1 (1.11)
Co=W'Wo W= e P'L”.

The first mass Casimir can be still used but the second one based on the Pauli-Lubanski
vector W, is no more invariant under the super-Poincaré group, as one can see from the
equation (1.9). To solve this problem it has been defined a new Casimir operator:

Bu : Wu ZQQ<5N>d6QB
Cyy := B,P, — B,P, (1.12)
Cy = C,,C"

We will consider only the massless representation because it is the one which forms the
multiplets of the Standard Model. Let us fix the eigenvalue of P, p, = (£,0,0, E), in
this choice of the reference system both C; and ég are equal to zero. Let us consider
now the anti-commutation relation (1.8):

{Qa: Qp} = 2(0") 3Py = 2E(0° + 0°) 5 = 4E ((1] 8) . (1.13)
af

which means that @) = 0.
The algebra (1.13) of ), is the one of a fermionic harmonic oscillator, this can be seen
by normalizing the generators:

(1 + Qi
— . at= 1.14
WE WE (114
obtaining the usual anti-commutation relation:
{a,a'} =1. (1.15)

The particles states in the supermultiplet are labelled by [p#, A). One can derive the
commutation relation between J5 (the third generator of the rotations) and the annihi-
lation operator a using the spinorial nature of a obtaining [a, J5] = ia [4]. From the
relation is possible to see the action of the annihilation operator:

Ja(alp',\)) = (A - %) " A) (1.16)

and similarly for af. So the action of the operator a destroys one half unity of helicity
while the action of the operator and a' creates one half unity of helicity. The supermul-
tiplet can be built starting from the Clifford vacuum |2), defined such that a[Q2) = 0



6 CHAPTER 1. SUPERSYMMETRY AND SUPERSTRING THEORY

and by the commutation relation a'a’ |Q2) = 0. The only states in the supermultiplet
will be:

€2) =[P, A) a' Q) = [p", A +1/2). (1.17)
Adding also the CPT conjugate the full supermultiplet will be:
P!, £A) P, £(A+1/2)). (1.18)

The resulting supermultiplet will contain for each half integer helicity particle also one
integer helicity particle.

1.1.4 Superfields

The supersymmetric quantum field theories are based on the concept of superfield which
is an extension of the usual field definition, with a well defined law of transformation
under the action of the super-Poincaré group. The superfields are defined not on the
usual spacetime but on the superspace that can be defined starting from a general element
of the super-Poincaré group:

g = exp [z (w*“’L,w +at P, 4+ 0%Qo + éd@dﬂ : (1.19)

Using the parameters of the supersymmetry transformation one can define the superspace
as the coset:

Msuperspace = {w“y7 a'ua 0017 go’z} / {wﬂl’} (120)

where 0 and 0, are Grassmann variables. The superfields can then be expressed as Tay-
lor expansion on the Grassmann variables, the most general one is the scalar superfield:

S(a*, 04, 04) =p(z) + 0 (x) + OX + 00M (x) + 00N (z) + (05+0)V,,(2)
+ (00)0X () + (09)0p(x) + (60)(00) D(x)
it is not a irreducible representation of the super-Poincaré group but it is the most

general possible superfield, the variations of the components under the supersymmetry
transformation are:

(1.21)

do(x) = ep(z) + ex(x), d(x) = 2eM + o€ (10,0 — V,,)
Ix(z) = 2eN — eo” (10,0 — V,u) SM = e\ — %Qﬂ/}a“a
ON =e€p+ %60“8;027 0D = %8“(60“/_\ — pot€),

8V, = eo A+ po,E+ %(awauéye — €5,0,0"X),
S\ = 2eD + %(5”0“6)@% + ict€d, M,

dp =2eD — %(a”&“e)@MVV + i0"€d,N.
(1.22)
It is important to notice that the D field variation is a total derivative so, D is not a
dynamical field but it is an auxiliary field that can be removed from the equation of
motion and it forms the famous so-called D-term.
The superfields which are irreducible representations of the super-Poincaré group are:
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e Chiral, defined such that Da® = 0 (D4 := —04 — i0° (o) 5 0)):

(2", 0,,04) =p(x) + V20(2) + 00F (x) + i00"00,p(x)

; P P
- E(QQ)@M/J(IL")U 0 — (00)(00)9,0"o(x),

it is possible also to define an anti-chiral superfield such that D,® = 0, it is
important also to notice that any holomorphic function of a chiral superfield is a
chiral superfield.

(1.23)

e Vector or real, defined such that V(xz,0,0) = V(z,0,0)
V(a", 0, 0s) =C(z) + ifx(z) — i0x = %QQ(M(x) +iN(z)) - %@(M(x) —iN(z))
+ 05"V, (z) + 1000 (—iX(m) + %6“8@((@) +

— 009 (i/\(a:) - %&M&,@) + %(99)( ) (D(m) - %QL@“C’(x))

(1.24)
Notice that if A is a chiral superfield it is possible to define the gauge transforma-
tion: .
V=V -2 (A-AT) (1.25)
with the non abelian generalization:
20V — (iaAT L2qV —igh (1.26)

1.1.5 Action

The dynamics of the superfields is described by, as for the usual fields, an action, whose
variation under the supersymmetry transformation is negligible. In details it is based on
the D and F terms of respectively a real superfield named Kéhler potential (which is a
real arbitrary function of ® and ®') and a chiral superfield named superpotential (which
is an arbitrary holomorphic function of ®). The action is defined as:

Sz/d%/d“&( (@, 1) + £V) + /d4 /d2 b (@)W Wa + hc). (1.27)

o K(®,®") is the Kihler potential with the general form K = ®7e??"® where Vs are
the gauge fields and ®s are the matter fields.

o W (®) is the superpotential that can be Taylor expanded as function of ®

W (D) = Wy + A\ + %@2 + %7@3. (1.28)

! The transformation under supersymmetry of F is a total derivative §F = i\/ﬁﬁ“aﬂw, this makes F
an auxiliary field that can be removed, we talk about F-term of a chiral superfield.
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e W, is the field strength for the gauge fields and it is defined:

1
Wy = —Z(DD)DQV, (1.29)
with the non abelian generalization:
11—
L@Qx:::-—g;—I)I)(e‘qui?aquv). (1.30)
q

e f(®) is the gauge kinetic function which encodes the gauge coupling.

e ¢V is the Fayet-Iliopoulos term only for abelian gauge theories.

The most important term of the action is the scalar potential which has two contributions,
one coming from the F-term of the superpotential and the other coming from the D-term
of the FI term and the K&hler potential (for gauge theories). The F-term scalar potential
is defined as:

Vi(p) = —FF" (1.31)
the F-term is defined by its equations of motion:
ow*
F=— . (1.32)
0P |4,
The resulting scalar potential is:
oW |
Vr(p) = >0 (1.33)
0P |g,

with ¢ the scalar field component of ®, the scalar potential obtained is positive defined.
The D-term potential, which is also positive defined, is defined as:

v@w>=§@+amw%2 (1.34)

where ¢ is the charge of ¢ under the gauge interaction.
The D-term is defined as:
D = &+ 2q|¢|. (1.35)

As for the SM, the scalar potential plays a very important role in the supersymmetric
theories because it can describe the spontaneous breaking of the supersymmetry.

The N = 1 supersymmetric theory is equivalent to a usual quantum field theory with
the same coupling and mass for the fields which are components of the same superfield.
For example the Wess-Zumino model is:

K = oot
W m g2 N 9 o3 (1.36)
2 3

computing the Lagrangian one gets:

EZ@m&wﬁ+MWﬂM—%m¢+mff—<%+gﬁdw—(%+ﬂ¢>%ﬁ (1.37)
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Non-Renormalization Theorem

The most important theorem in supersymmetric field theory is the non-renormalization
theorem which starting from the symmetries of the system demonstrates the possible
ways of renormalization of the supersymmetric action [5]. The summarized results are:

e the superpotential W (®) is not renormalized perturbatively (but it can be affected
by non-perturbative corrections);

e the gauge kinetic function f(®) is renormalized only at one loop;
e the Kihler potential K (®,®") is renormalized perturbatively at any order;

e the FI term £ is not renormalized.

1.1.6 Supergravity

Supergravity can be defined in the same way of gravity, which is automatically obtained
making local the Poincaré symmetry trough the metric g, (x). In the same way one
can obtain supergravity making local the supersymmetry and obtaining the "gravitino"
w/‘j(x), for consistency also the Poincaré symmetry should become local producing auto-
matically gravity. The supergravity N' = 1 supermultiplet includes: (e”,¢*, M, b,) where
el are the tetrads (vectors spanning the tangent space g, = gabeZelb,), M is a complex
scalar auxiliary field and b, is a real vector auxiliary field. The action describing the
pure supergravity theory is:

1 1 - _
Savons =~ 3 [ @'0v=5 | R+ 2 (5,0,D, — by, D)+

+ Auxiliary fields terms] .

(1.38)

Once one introduces fields coupled with gravity in the description it has to properly
covariatise the action of the theory which couple with gravity. The Kéahler potential and
the superpotential have to respect the Kéhler symmetry:

K(®, oY) — K'(®, 0" = K(®, ) + h(®) + (D1

W(®) = W' (®) = e "W () (1.39)
with h(®) and holomorphyc function of ®.
The resulting theory has the following F-term scalar potential:
Ve = e (KﬁDiWD;W - 3|Wy2> . (1.40)
with D; = O;W + W0, K the Kéhler covariant derivative. The F-term will be:
F' = 5K D:W. (1.41)

The important fact is that in supergravity the F-term scalar potential is not positive
defined, as in global supersymmetry, but it has the negative term 3|W|? which can lower
the cosmological constant.
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1.1.7 Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model is the minimal supersymmetric extension
of the Standard Model (with A" = 1). In the MSSM for each existing particle it is asso-
ciated a new particle called the superpartner which has opposite fermion-boson nature.
The fields which are involved in the MSSM are exposed in Table 1.1 and 1.2.

Superfields | Spin 0 Spin 1/2 | SU(3)¢ | SU(2), | U(1)y
Q| (i) | (w.dp) |3 2 | 1/6
ug ﬂj_“ Uf ; 3 1 -2/3
de ds,., dr.i 3 1 1/3
Li (E/L,fy\/L)i (€L,VL>Z- 1 2 —1/2
e &, ¢, 1 1 1
Ve 5, v, 1 1 0
H, (HF HY) | (H H] 1 2 1/2
Hy | (HyHy) | (H)H7) | 1 2 | /2
Table 1.1: Chiral superfields in the MSSM.
Superfields | Spin 1/2 | Spin 1 | SU(3)¢ | SU(2). | U(1)y
G G G 8 1 0
W WE WO wE, wo |1 3 0
B B° B° 1 1 0

Table 1.2: Vector superfields in the MSSM.

The new Higgs fields are fundamental to keep the trace relation TrU(1)y = 0 that re-
moves the gravitational anomalies.
The action of the MSSM is made by:

e the Kihler potential K = ®7e2?® where V = ¢3T°G, + GG Wi + glgB is the
collection of the gauge fields and ®s are the matter fields;

e the gauge kinetic functions f, = 7, where Re(7,)
couplings of the theory;

‘;—7; which determine the gauge

e The FI term is set to zero otherwise it would break charge and color £ = 0;
e The superpotential is:

W = Y,5, @07 + uH"H* + Wy, (1.42)

Wy is a Barion and Lepton number cancellation term that would induce a proton
decay. In order to preserve the stability of the proton in the theory, it can be
removed by introducing a new discrete symmetry: the R-parity. The R-parity
is a discrete Z, symmetry that has eigenvalue 1 for usual particles and —1 for
superpartners. Y,3, are the Yukawa couplings and p is the mass term for the
Higgs named p-term.
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Unification

In the MSSM another advantage is the unification of the gauge couplings, whose running
is modified by the new supersymmetric particles. The superparticles introduce new
loop corrections in the RG flow of the couplings resulting in the intersection of them at
Mgyr ~ 10%GeV as shown in Figure 1.1.

(0% Qg

[ Meur ®

Figure 1.1: (Left) The gauge couplings qualitative behaviour in the SM. (Right) The
gauge couplings qualitative behaviour in the MSSM.

The couplings unify at the value agyr ~ 1/25.

The big advantage of the unification is to provide a natural solution to the behaviour
of the couplings in the SM, where they approach each others but do not intersect in a
common value.
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1.2 Superstring Theory

String theory was historically developed to describe hadrons but was yet abandoned
for the Quantum Chromodynamics (QCD) which describes the fundamental interactions
between quarks that form the hadrons. In 1974 Joel Scherk and John H. Schwarz decided
to propose string theory as a fundamental theory for particle physics considering the
particles as strings with length [, = [,,. The first theory developed was able to describe
only bosonic states and in fact, it is called bosonic string theory.

The bosonic string is described by the Polyakov action:

1
/d2a\/—gga'38aX“8gX”77W, (1.43)

4o

with X*# the worldsheet fields with ¢ = 0,..., D — 1, ¢ are the worldsheet coordinates
(7 time-like coordinate and o the space-like coordinate along the string), ¢*° is the
worldsheet metric, 17, is the Minkowski background metric and o’ is associated to the
string tension and in particular it is related to the string length.

More than the absence of fermionic states the bosonic string theory has a very important
issue: the ground state excitation of the string has negative mass. The mass squared is

[6]:

S:

1D-2
M =—-——"—" (1.44)
o 6
where D is the dimension of the spacetime which is not fixed. This result states that the
bosonic string theory does not have a stable vacuum. The second issue came out by the

first excited state mass [6]:

4 D -2

M= —(1-—"—"—= 1.45

o ( 24 ) ( )
the first exited state lies in a representation of SO(D — 2) and in order to preserve the
Lorentz SO(1, D — 1) symmetry it has to be a massless representation so D = 26.
The introduction of fermions removes the tachyonic problem and change the number of
spacetime dimensions.
To describe also fermions in the theory a fermionic field has to be introduced on the
worldsheet obtaining the superstring Brink-di Vecchia-How action [7]:

1 -
S =1 / dPo/=g {go‘/ja&X“ﬁﬁX”mV + %Waw”nWJr
e , (1.46)
1, o v r_
+ §(xwﬁ7 ) ((%X - XY ) mw}

where ¥" is a D-plet of Majorana fermions and y 4 is an auxiliary Majorana field neces-
sary for local supersymmetry. Through the gauge symmetries the auxiliary fields can be
fixed out obtaining the Ramond-Neveu-Schwarz action [7]:

! / A’ (™0, X 05X, — i)'y 0atby,) - (1.47)

4o/
The RNS action presents a local N = 1 2D supersymmetry so it is invariant under the
transformation |8]:

g —

X" = E*

OYH = —iy“ed, X* (1.48)
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with ¢ infinitesimal spinor.

1.2.1 Normal Mode Expansion

The spectrum of the string is obtained performing a canonical quantization starting from
the normal mode expansion of the string fields. The normal mode expansion can be done
using the lightcone coordinates on the worldsheet:

oy =T*to. (1.49)

In this coordinates the components of the Majorana field y* are:
1/]“
YH(r,o) = < u) : (1.50)
by
with a real Majorana 2D representation of the Clifford algebra:

A0 = ((j _ol) , o4t= (? é) | (1.51)

In this new coordinates the action will become:

5’—1

4ol

[ o (040X, + 10tio vy, — 10010, ) (1.52)
This action describes two independent excitations both for X* and * fields, in fact:

XMo,7) = Xp(o-) + Xp(o4)

] (159

By the fact that we are interested only in closed strings (open strings are described in
Type I string theory) the boundary conditions can be periodic or anti-periodic. For the
bosonic X* excitations the boundary conditions are periodic:

Xb|oey = XP|oer. (1.54)
The resulting mode expansion in o4 coordinates system is [6]:

L 1# 1’# o 1~,ufina+
XL<O'+):§$ —|—§Oép oy +1 EZEO(TLG 5

n#0

© 1 m 1 o1 ey 1 W,—ino—
XR(O'_):§ZE +§ozp o_+1 EZﬁane :

n#0

(1.55)

A few comments on the scalar mode expansion from [6]:

e the two excitations do not satisfy the boundary conditions individually but their
sum does,
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e 2# and p* are the position and the momentum of the string centre of mass,

e the reality condition of X* imposes the constrains on the coefficients of the Fourier
modes:
al = (o))", at=(a",)". (1.56)

—-n

For the spinorial field the boundary conditions can be both periodic or anti-periodic:

2/}+|CT:0 = :tz/}+|t7=ﬂ'7 ¢7|U=0 = i¢*|0:7r- (157)

The boundary conditions are named: Ramond (R) for + sign and Neveu-Schwarz (NS)
for — sign. In this way for closed strings the spectrum will present R-R, NS-NS, NS-R,
R-NS sectors of different states.

The mode expansions are |7]:

wﬁ — E dﬁemeU_ or 2 b1/f672zra'_

nez reZ+1/2
1.58
Mo (iue—Zinoq_ or Bue—Qihn_ ( )
+ n r
neZ reZ+1/2

where the sum over the integers is associated to the R sector and the sum over the
integers plus one half is associated to the NS sector.
The choice of a metric locally conformally flat imposes the constraints [6]:

Toap=0 (1.59)

in the lightcone gauge the constraints are:

i
Tiy = 04 X101 Xy + 591044 =0

Z. (1.60)
Too = 0-X"0X, + 3004 =0

T, =T_, =0 because the energy-momentum tensor is traceless.
From the gauge fixing of the auxiliary fields the constraints on the charge conserved
under supersymmetry transformation are:

Jir =1¢,0,X =0

J._=1_0_X =0. (1.61)

A fundamental operator in the string quantum theory is the sum of oscillator modes
which for open strings are [6,7]:

1 & 1 o 1
L%S = 5 Z Ay —nQp + 5 Z (T + ém) b—Tbm+T‘ = 0
e oo r=—o00 (1.62)

1 & 1 & 1
L =3 > o + 5 > (n + §m> b nbmyn = 0.

n=—o00 n=-—o00
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These operators are important because in the quantum theory they will form the physical
condition for states:

L., |phys) =0, m > 0. (1.63)
For the 0 component there is a order ambiguity that can be solved introducing:
(Lo — a) [phys) =0 (1.64)

with a a quantity that is fixed in the quantum theory.

1.2.2 String Spectrum

The string spectrum is fundamental to understand the possible states described by the
Type IIB string theory. In order to quantize the string states is important, first, to move

to the lightcone gauge:
1
X+ \/;< X0+ XP-1)
(1.65)

v = @w@ 4P,

with the gauge fixing conditions:

Xt o,r)=a"+p'r

1.66
In this gauge the physical constraints will be |7,8]:
8+X_ — —+ <8+X18+Xi ‘l‘ %1/17'84_?/)7,)
b (1.67)

2 .
V= YO,

The satisfaction of the Lorentz algebra in the lightcone gauge is not forgone, in fact,
for NS boundary conditions, the satisfaction means that [J*~, J7~] has to vanish. The
expression for [J*~, J77] is [§]:

[T 7] =") 7 i [m (1 - ?) N % (QGNS N ¥)} (1.68)

m=1
(a',0d —al, al)=0.

The result is that to preserve the Lorentz symmetry, differently of the bosonic string,
D = 10 and ays = 1/2. The same computation can be done for the R states giving
aRp = 0.

After the canonical quantization procedure (the coefficients of the Fourier modes are pro-
moted to operators) in the lightcone gauge some of the resulting states are incompatible
with the symmetries of the worldsheet. In order to keep only the states compatible with
the symmetries of the worldsheet it has been defined the GSO (Gliozzi-Scherk-Olive)
projectors [7]:

Gng = (—1)==12%%b  for NS states

v, (1.69)
Gr=T1(—1)Z=1%d for R states,



16 CHAPTER 1. SUPERSYMMETRY AND SUPERSTRING THEORY

with b and d are the NS and R creation operators and I'y; is the 10 dimensional version
of the v5 matrix. The GSO projectors remove the states with eigenvalue -1 for NS while
for the R sector the states to be removed is a matter of convention.

The states of the NS sector are bosonic while the states of the R sector are fermionic [9],
so the combinations in the closed string spectrum are fermionic for NS-R and R-NS and
bosonic for R-R and NS-NS.

For this thesis we are interested in the Type IIB string theory which describes the right-
moving and the left-moving R sector ground states with the same chirality (producing
a chiral theory). The resulting spectrum is a A" = 2 and D = 10 supergravity multiplet
with the following states:

e in the NS-NS sector: graviton, two-form, dilaton;
e in the NS-R sector: gravitino, dilatino;

e in the R-NS sector: gravitino, dilatino;

e in the R-R sector: scalar, two-form, four-form.

The resulting spectrum will enter in the effective field theory.

1.2.3 Effective Field Theory

The effective field theory of Type IIB string theory can be obtaining by considering the
description of the spectrum of the string ground state. The same can be obtained by
considering the interactions of the string with the background fields of the ground state
and requiring the preservation of the conformal symmetry also at the quantum level,
imposing the § functions to be equal to zero.

The 10D N = 2 supergravity action of Type IIB string theory is [10]:

Sirp = Sns + Sr + Ses,

1 1
Ko 2
h 3 1 . (1.70)
Sp=—7= [ V=G (‘Fllz + [+ “FS‘Z) ’
K1o 2
1
5052—4—2 04/\H3/\F37
Kip
with: -
F3 = F3 — CO A H3
(1.71)

~ 1 1
F5:F5_§CQ/\H3+§BQ/\F3.

F,11 = dC, is the field strength associated to the p-form for R-R fields and H, =
dB, is the field strength associated to the p-form for NS-NS fields. The Chern-Simons
term seems to brake the gauge invariance by the direct use of Cy but thanks to the
Bianchi identities of the field strengths it is gauge invariant. It is useful to see only the
bosonic part of the action because it is the one which is important in the compactification
procedure but there are also the fermionic partners.
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1.2.4 D-brane

A p-brane can be seen as generalization of the coupling between a point-like particle and
a potential:

/Audl"u — /kal...ﬂlp+1dxM1 N ... /\dlL']wij1 (172)

with Bay,..a,,, an antisymmetric tensor of rank p + 1.
D-branes were initially introduced as boundary conditions for the open string, in fact,
Dirichlet boundary conditions for an open bosonic string are:

X" =constant, i=p+1,...,9. (1.73)

As open string’s boundary conditions the D-brane is an infinitely extended rigid sheet in
p spacial dimensions. Later it was discovered that D-branes are dynamical objects with
a central role in string phenomenology.

The spectrum of the Dp-brane can be obtained considering an open string bounded on
the Dp-brane with the corresponding states in the spectrum that propagate in (p + 1)-
dimensional volume [11]. The spectrum is a representation of the reduced SO(p — 1)
Lorentz group consisting in:

e vector gauge boson A,
e 9 — p real scalar fields ¢,

e spinor \,,

resulting in a U(1) supermultiplet with 16 supersymmetries in p + 1 dimensions.

The effective action of a Dp-brane can be derived by the amplitude of the exchanging of
closed strings between two Dp-branes. The resulting action is given by a combination of
the DBI (Dirac-Born-Infeld) action for non-linear electrodynamics and a Chern-Simmons
term [11,12]:

Sp = Sppr + Scs

N (p+1)/2
Sppr = —L/ d""ze”®\/—det(P[G + B] — 2ma/F)
v,

@m)P - Jv,. (1.74)
(a/)(p+1)/2 2t/ F—B » A
p+1 q

where F),, is the field strength of the gauge field, ® is the dilaton in the NS-NS sector,
By is the two-form from the NS-NS sector, G, is the background metric, Cys are the
R-R ¢-forms and A(R) is the A-roof polynomial defined as:

A 1
AR) =1— ———trR* + ... 1.75

(®) 2a(sma) T (1.75)
with R the spacetime curvature. P[FE] is the "pull-back" of the spacetime tensor E into
the brane worldvolume defined as:

P[E];U/ - Euy + Euiaugbi + auﬁbiEiu + 6,u¢zal/¢]EZ]7 (176>

with ¢ the scalars in the Dp-brane spectrum.
In Type IIB string theory the RR-sector is made by even-degree forms which will couple
to odd p Dp-branes allowing only odd p Dp-branes.
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1.3 Type IIB Compactification

The explained theory is in 10 dimensions but the physical world is in 4 dimensions. This
means that the other six dimensions have to be compactified in a compact manifold
so the ten-dimensional spacetime can be decomposed as the product of the usual four-
dimensional Minkowski spacetime and the compactified microscopic extra dimensions:

Mg = My x X. (1.77)

To keep a four-dimensional N/ = 1 spacetime supersymmetry Xg has to be a complex
Kahler and Ricci-flat manifold, it has to be a Calabi-Yau manifold.

The 4D theory is obtained by a Kaluza-Klein reduction of the 10D theory by expanding
all the fields into modes of the X¢ that respect the Laplacian equation which are in one
to one correspondence with the harmonic forms on X [10]. The harmonic forms on Xg
are counted by the dimension of the non trivial cohomologies of the Calabi-Yau [13].
The properties of the Calabi-Yau strongly affect its Hodge decomposition leaving only
the cohomology groups expressed in Table 1.3.

Cohomology group | Dimension | Basis
HTD LT WA
H(2,2) h(l,l) @A
H® 2h2D +2 | (ag, %)
H@D L&D YK
HG3) 1 vol

Table 1.3: Cohomology groups on Xg and their basis.

The ansatz for the background metric in the Kaluza-Klein reduction from the 10D theory
to the effective 4D theory is:

ds® = n,,datdz” + gﬁ(y)dyidyj. (1.78)

The fluctuations around the background metric describe the four-dimensional graviton

9, and the deformations of the Calabi-Yau are decomposed in h(LY real Kéhler structure
deformations v and h(>Y) complex structure deformations z*.
The Kéhler structure deformations are the deformations of the Kéhler form J = iG 5dy’ A

dy’ which can be expanded as:
J=v,,  A=1,.,h0Y (1.79)
and the complex structure deformations, which are in one to one correspondence with
the (1,2)-harmonic forms, are defined by:
i —
09 = 52 (XK) % 5, 1.80
J HQ3H2 ( ) J°%3 7 ( )

with [|Q3]]> = %Q&]kﬂgjk The forms in the string spectrum expanded on the basis of
the cohomology groups are:
By = By(z) + b (z)wa, Oy = Cy(z) + A (x)wa,
Cy = D3 (x) Awa + VO (2) Aag — Ug(x) A B + palz)o?,

A=1,.. hHY

G=0,.. h2, (1.81)
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The resulting spectrum is a collection of A/ = 2 supermultiplets:

gravity multiplet (G, V?),

R vector multiplets (VE, 25,

K1) hypermultiplets (UA, bA, CA’ pA)7

double-tensor multiplet (ég, Cy, D, Co).

Orientifold Projection

The resulting theory, from manifold compactification, has N = 2 supersymmetry and
in order to truncate the supermultiplets and obtain a N’ = 1 supersymmetryc theory it
is required to perform a orientifold projection. The orientifold projection is performed
considering the Type IIB on X4 and then modding out by the orientifold action QR,
where ) is (practically) the worldsheet parity and R is a Z, discrete symmetry of Xg.
The points fixed under R form the Op-planes which span the Minkowski spacetime and
wrap cycles on Xg.

Before seeing the effective action let us see the supermultiplet from the orientifold pro-
jection. We will consider the O3/07 planes landscape which arise from projection of the
form (—1)"2QR [10]. The behaviour of the bosonic states under the action of { and
(—1) are expressed in Table 1.4.

Field | Q [ (=1)
P even | even

G,, |even | even
Bs odd even
Co | odd odd
Cy | even odd
Cy odd odd

Table 1.4: Type IIB spectrum under the two operations.

The action of R in the O3/07 planes landscape is:

R J=J

1.82
R*Qg _ —Qg ( )

where J is the Xg Kéahler form, €23 is the holomorphic 3-form and R* is the pull-back of
the map R. To preserve the invariance of the states they have to transform as:
R'® =, R'Gu =G, R*By = —Bs,

1.83
R*Cy = Cy, R*Cy = —Cy, R Cy = Cy. (183)
Since R is an holomorphic involution the cohomology group splits into two eigenspace:

H®9 = P9 ¢ g, (1.84)



CHAPTER 1. SUPERSYMMETRY AND SUPERSTRING THEORY
Cohomology group Dimension Basis
Hf’l) g h(j’” p0 We, Wq,
qa%? | g®? R py o &
HY 7Y 12pBY 122080 12 ] (ay, 8Y) | (ay, BY)
gV H®D hEP W X Xk
g g 1 0 vol

Table 1.5: Cohomology groups and their basis after the orientifold projection.

By the fact that J is invariant under the action of R* the only remaining Kéahler defor-
mations are the ones from Hf’l) S0:

a=1, ...,h(j’”.

J = v%W,, (1.85)
By the opposite argument the only remaining complex structure deformations are the

ones from H(_2’1) :
7

ke i 1,2
The new decompositions of the forms of the string spectrum will be:
By = b4 (2)w,, Cy=c"(x)w,, a=1,.., pb
Cy=D5(z) Nwo + V() Ny = Uy() A7 + polx)@®,v =0, ..., h(ﬁ), a=1,., WY,
(1.87)

The new fields are arranged in the AN/ = 1 4D super-multiplets:
e gravity multiplet g,,,

h2Y vector multiplets (V)

o 1'*Y chiral multiplet 2%,
(171) 1 1 a a
e h2 " chiral multiplet (%, c¢%),

chiral multiplet (®,1),

o hgrl’l)chiral/linear multiplet (v*, p,).
The chiral supermultiplets can be arranged to form the supergravity moduli chiral su-
perfields:
T, = —i/jc ANWe, Jo=0Cs+ %e“bJ/\ J 4+ (Cy — 1SBy) N B,

U, = z‘/Qg Aa, (1.88)

S = €_¢’ + ZC()
G* = " —iSh".
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Kihler Potential

The resulting 4D Kihler potential for the moduli of the AN/ = 1 supergravity theory is
[11]:

/{4K][B:—10g (—Z/Qg/\ﬂg) —IOg<S+§) —210g (G_gq)/J/\J/\J) =

= —log (—i / Q3 A Qs> —log (S +5) —2log (V) e

where V is the volume of Xg in the Einstein frame.
The resulting Kahler potential is the leading order in o/, in fact the 10D effective theory
can be affected by higher perturbation terms in o/ which lead to the R* term [14]:

Spi = (/) / dzt3 S R (1.90)

After the Kaluza-Klein reduction the o/ modify the Kéahler potential for the Kéhler
moduli introducing the new term [11]:

K, = —2log [e—i‘b (/J/\J/\thg” =—2In (V+%S>3/2) (1.91)

with £ = — féi)sx(X(;) where y(Xs) is the Euler number of Xg4. This correction is impor-
tant in particular models to stabilize the Kahler moduli.

Gauge Kinetic Function

The gauge kinetic function depends on the Dp-brane configuration and on the volume of
the cycle II,_3 of the Calabi-Yau wrapped by the Dp-brane. The flux of F),, associated
to the Dp-brane respect a Dirac quantization condition [11]:

m/ F=2mm, mmneZ (1.92)
3

m' is the number of wrappings of the Dp-brane along the II, 3 cycle and n’ is the
quantized the magnetic flux.
In fact if one expand the DBI action respect to the gauge field strength tensor F},, one

gets:
1 1 (3-p)/2
= e*‘l’(o‘>—vol(np,3). (1.93)

Ibyp (2m)p—2

The result from the Kaluza-Klein dimensional reduction for magnetized D7-brane is:

07 (@) s Re ((e—i¢e ol +i2mal (B+2ma' F)) |
A P e g e e e
’ (1.94)
+ l/ Z 02k627ra'(3+27ra’F)]
I

a k
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with II, the holomorphic 4-cycle and ¢, the so-called BPS phase. Considering the wrap-
ping number m® and the magnetic flux n? of the D7-brane the result of the gauge kinetic

function is: ‘ '
o fPT = ninkS —mimliT,, i#j# kA (1.95)

For the D3-brane the computation is much easier because, as one can see from (1.92),
the volume dependence vanishes and it remains only the dilaton dependence:

2nfP? = 8. (1.96)

The above description has to be extended if one wants to consider models with D-branes
at the singularities but this kind of new contributions can be neglected for the purpose
of this thesis.

Superpotential from Fluxes

In the previous section the compactification has been considered without allowing non-
trivial geometrical fluxes for the p-forms in the string spectrum. If one allows the presence
of non trivial fluxes they are quantized following:

1 1
——— [ Fl3 = mgy, ——— [ Hg) = ngy, , €, 1.97
(QW)QO//E (3) =Mz (QW)QQI/E (3) = Nz, Nz, My (1.97)
with X are 3-cycles on the Calabi-Yau Xg.

The resulting superpotential from the compactification in O3/07 configuration is the
GVW superpotential:

W(U, S) = /Qg VAN G(g) (1.98)

with the complex three form.
Gy = Fz) — SH). (1.99)

The superpotential generated depends only on the dilaton S and the complex structure
moduli U, and is independent on the Kahler moduli.

Matter Metric

The matter metric is defined as the metric of the matter fields space, the Kéhler potential
generated for the matter fields is:

Kmatter - K(XBCOC@B (1100)

where Cs are the chiral matter fields. The value of f(ag depends on the configuration
used in the model to generate chiral fields from open strings. In the O3/07 orientifold
models the possible configurations are: stack D7-branes with transversal fluctuations,
stack of D7-branes with parallel fluctuations, intersection of D7-branes, stack of D3-
branes and D3-brane coinciding with D7-brane.

The exact value of f(ag is difficult to compute, in fact, it has been calculated only for
toroidal orientifold compactification [11] but for a model of branes at resolved singulari-
ties or for large volume models the form could be deduced by the geometrical properties
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of the Calabi-Yau and from the properties of the superpotential [15].
Starting by the superpotential of the chiral superfields C* which is independent on the
possible configurations:

Wonatter = Yas,(U, S)C*CPCY (1.101)

also, a mass term for the Higgs field is allowed from the symmetries. Y (U, S),s, are
the unnormalized Yukawa couplings. Due to the holomorphy of the superpotential the
Yukawa couplings can depend only on the complete moduli but the imaginary part of
the Kéhler moduli enjoys a shift symmetry:

Im(T) - Im(T) +a (1.102)

to preserve this symmetry the Yukawa couplings can not depend on the Kéahler moduli
but in this way, they will not depend on the volume of the Calabi-Yau. The non-
renormalization theorem prevents also the possibility of a dependence induced by per-
turbative corrections which are not allowed to the superpotential.

The physical normalized Yukawa couplings will be:

. Y,
Vogy = eF2——200 (1.103)
(Ko KpH)2

By the fact that the matter fields are localized on one of the smaller cycles, the locality
implies that the physical Yukawa couplings are independent on the whole bulk geometry
and so they are independent on the whole volume V. This means that the matter metric
can be obtained from the normalization condition imposing that €K/2/([~(akgk,y>% is
independent on the volume. The result is:

h,5(U,S)
_ ap\o
where haB(Uv S) encodes the dependence on the dilaton and the complex structure mod-
uli.

1.3.1 Moduli Stabilisation

The theory described in (1.73) as the no-scale structure in fact the related scalar potential
does not depend on the Kéhler moduli, they are flat directions of the potential leaving
them massless. A well-defined model needs a mechanism to stabilize the Kdhler moduli
otherwise, without a mass, they will act as a new gravitational force with an unlimited
range of action that would spoil the prediction for gravitational interactions.

This can be achieved by using perturbative corrections to the Kéahler potential as seen
in (1.75) that would brake the no-scale structure:

K" Ky Ky =3 (1.105)

with the correction

, (1.106)

<|M>

T 3
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or by non-perturbative corrections to the superpotential as the one arising from ED3-
brane instantons [17] which take the form:

W), = AU, S)e ™. (1.107)

The dilaton and the complex structure moduli are stabilized by the flux induced super-
potential that will provide the supersymmetric stabilisation conditions [18]:

DsW =0, Dy-W = 0. (1.108)

KKLT Model

A first example of moduli stabilization trough non-perturbative effects is the KKLT
model [19] whose Kéhler moduli sector is described by:

K =-3In[—i(T - T)]

1.109
W = Woflux + Ae—T ( )
with the definition 7 = i7" the F-term scalar potential is defined as:
aAe " (1 —ar —ar
VF = 27_2 <§T@Ae + W() + Ae ) . (1110)

As can be seen in the Figure 1.2 the F-term scalar potential provides an AdS minimum
which stabilizes the Kéhler moduli 7'

20 A

151

F 10
>

Figure 1.2: The KKLT potential (multiplied for 10'°) with the AdS minimum (W, =
10, A=1,a=0.1).

The minimum of the model as can be seen by Figure 1.2 is a AdS one since (V') < 0 but it
can be uplifted through the different procedures in order to obtain a more cosmologically
accurate model.
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1.3.2 Large Volume Scenario

The large volume scenario is a class of string compactification that extends the KKLT
model introducing a new minimum with exponentially large volume and provides the
stabilisation for the Kahler moduli combining perturbative corrections to the Kihler
potential with non-perturbative corrections to the superpotential.

One of the advantages of the large volume scenario can be seen by the relation M3 ~ Mg—gv.
In order to keep the string mass Mg hierarchically small, the large volume is fundamental.

The Kéhler potential takes the following form:

K= —2In (V+ %5)3/2) —log(S + S) — log (—z/Q /\ﬁ) (1.111)

with the volume: ] 1
VY = E/J/\ JNJT = ékijktitjtk- (1.112)

Where £k;j, are the triple intersection number of X and t' are 2-cycles volumes. The
Kaéhler moduli can be expanded as: T; = 7; + ib;, the imaginary part is an axion but the
real part is the 4-cycle volume which is related to the 2-cycle volume by the relation:

0 1 ,
= az = ékijkt]tk. (1.113)

The superpotential of the model is made by the usual flux term plus non-perturbative
corrections induced by ED3 instantons for each Kahler moduli:

W=Wo+ ) Ae " (1.114)

T;

the sum is over the cycles generating non-perturbative corrections with a; = 27 for brane
instantons (this could be also generated by gaugino condensation producing a; = 27 /N),
A; depends on the complex structure moduli and the position of the D3-brane.

The perturbative correction, as already said, brakes the no-scale structure and com-
bined with the non-perturbative terms in the superpotential will provide a F-term scalar
potential that stabilise the Kahler moduli [20]:

V =eX [ng (ajAjakae_(“jTj+a’“T’“) - (ajAje_“jTjW%kKo + akae_“’“T’“Wf)Tj K0)> +
(éZ +7EV + V2)
(V=€) (2v+ é)z
(1.115)

with € = £€Re(S)?2. The large volume limit V — oo is taken respecting the condition
that Ny Kéhler moduli remain small producing the following Kéhler potential and
superpotential:

+ 3EW|?

K=K, —In(S+5)—2n <v+ g) :
(1.116)

Nsmall
W=Wo+ Y Al

j=1
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This condition provides an AdS non-supersymmetric minimum.
In order to respect the large volume scenario the Calabi-Yau has to satisfy the conditions
exposed by [20]:

1 The Euler number of the Calabi-Yau has to be negative by the fact that é must be
positive to make the potential goes to zero from the below.

2 The Calabi-Yau must have at least one blow-up mode associated to a 4-cycle mod-
ulus that resolves a point-like singularity in order to have the non-perturbative
contribution to the superpotential.

3 The 4-cycles are fixed as small by the combination of non-perturbative corrections
and the o correction.

4 All the other 4-cycles can not be small, possible non-perturbative corrections are
sent to zero making the moduli big.

5 Non blow-up K&hler moduli (except the overall volume mode) remain flat direc-
tions.

6 To stabilise these moduli are crucial the string loop corrections giving g, terms
which are dominant over non-perturbative corrections.

1.3.3 Single-Hole Swiss Cheese

An example of large volume scenario is the Single-Hole Swiss Cheese CP?LLL&!)] Calabi-
Yau which has two 4-cycles 75 and 7, providing the volume:

V=732 (1.117)

with 7, associated to a big cycle and 7, associated to a small cycle, in fact in the large
volume limit 7, — oo and 7, remains small.

Neglecting the dilaton and the complex structure moduli (which can be stabilised by the
fluxes) the theory is described by the following Kahler potential and superpotential:

K=-=2In|V+ ¢
2 (1.118)
W =W, + A,e %

with f = 25/93/2. The Kéhler potential contains also the o’ corrections and the su-
perpotential is made by the flux superpotential and by the ED3-brane instanton which
generate the non-perturbative correction which depends only the small cycle moduli.
For simplicity it is useful to use as variables V and 7,. With these variables the F-term
scalar potential is:

S —asrs 2,2,~2a.7s 1/2
_3EWg Wodsasem ™, | 8 Alagem o, (1.119)
1V V2 3 14

Vi
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which provides a minimum for V ~ Wye®™ and 7, ~ £2/3, the minimum coincides with
exponentially large volume in a consistent way with the large volume limit.
The resulting minimum provides an AdS vacuum energy:

CTA/2
9, (1.120)

V) = e

The two Kéhler moduli acquire mass leaving no flat directions in the potential. The
two masses can be related to the gravitino mass ms/, (it will be explained in Chapter 2)

producing the spectrum made by:

My, ~ M3/2
(1.121)

My, ~ ,/mg/Q/Mp.

21, Wo 1/3 3 75/3 X
_ Y /MP/ ’ FT —

The associated F-terms are:

3W,
— 2~ mgj Mp. (1.122)

T, _ N
P = mg o

2a,V

The explicit computations are exposed in Appendix A.

le-21

V(ts,v)

16502 0.4 o ¢
2 0.8 1.0 3.
v 1012, 3.6

Figure 1.3: LVS potential in the single hole Swiss cheese model (with Wy =20, A; =1,
s=2m, & =0.01).

As one can see from the Figure 1.3 the potential exhibits an AdS for exponentially large

volume.
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Chapter 2

Supersymmetry Breaking and FCNC

2.1 Supersymmetry Breaking

Supersymmetry is not realized in nature so a very important feature is the breaking of
supersymmetry. As for other symmetries, supersymimetry is broken if the vacuum is not
invariant under supersymmetry transformation:

Qa |vac) # 0. (2.1)

If now one considers the anti-commutation relation of the supersymmetry generators and
one contracts it with & the result is:

(7)7*{Qa, Qs } = 4P" (2.2)
considering now the v = 0 component the final result is:
(@)7 {Qu, Qs } = 4P° = 4E. (2.3)

Since Q.Q! + Q1.Q, is positive than (vac| Q,Q + QI Q. |vac) and (vac| E |vac) are
positive, in this way one can see that in broken supersymmetry the energy is positive.
As the usual symmetry breaking provides a massless scalar field called the Goldstone
boson, the supersymmetry breaking provides a massless field which is spinorial and it is
called goldstino.

The effect of the supersymmetry breaking is to split the mass spectrum of bosons and
fermions in the superfields. From a phenomenological point of view there are two possible
ways of brake supersymmetry:

e soft-supersymmetry breaking: the masses of particles and super-partners are split-
ted but the couplings are kept equal, preserving part of the miraculous cancellation;

e hard-supersymmetry breaking: both masses and couplings are splitted removing
the miraculous cancellation.

2.1.1 Global Supersymmetry Breaking

Supersymmetry is broken by he presence of a positive vacuum energy and as seen in
Chapter 1 there are two possible scalar potentials in the supersymmetric Lagrangian,
the D-term potential and the F-term potential. In this way there are two different
mechanisms to brake global supersymmetry which can also be mixed in the same model.

29
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V V

Figure 2.1: The possibles scalar potential for SUSY and GS breaking. (Upper left) SUSY
breaking, GS preserving vacuum; (Upper right) SUSY breaking, GS breaking vacuum;
(Down left) SUSY preserving, GS preserving vacuum; (Down right) SUSY preserving,
GS breaking vacuum.

F-term Breaking

The F-term breaking can be studied starting from the supersymmetry transformation of
the components of a chiral superfields ®:

5 = V2et)
0 = V2eF +iv/20"€,p (2.4)
OF = iv/2e6"0,3).

Due to the Lorentz invariance the only field that can acquire a vacuum expectation
value is the scalar auxiliary field £ which makes ¢ the Goldstone fermion. The resulting
masses acquired by the particles provide a mass gap of the form:

Am? o< (F). (2.5)
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D-term Breaking

The D-term breaking can be studied starting from the supersymmetry transformation of
the components of a vector superfields V:

1
O\ = 2eD + 56”0"6@#14,,
§A, = eo )+ No,E (2.6)
0D = % (60“(9,}\ — (%)xd“%) )

Also in this case due to the Lorentz invariance the only field that can acquire a vacuum
expectation value is the scalar auxiliary field D which makes A the Goldstone fermion.
The mass gap relation in this kind of models is:

Am? o (D) (2.7)

Despite there are different ways to brake global supersymmetry at tree level there is a
universal relation for the mass spectrum which is:

STr(M?) = (—1)(2j + 1)m} = 0. (2.8)
J

The supertrace mass relation (2.8) shows the issue of the tree-level supersymmetry break-
ing: one partner is heavier and the other is lighter. This problem is phenomenological
unacceptable because there should exist superparticles with lower mass. By the defini-
tion of the F-term F; = —0;,W and by the non-renormalization theorem one gets that
in order to avoid the supertrace mass relation (2.8) supersymmetry has to be broken by
non-perturbative effects.

2.1.2 Supersymmetry Breaking in Supergravity

Supersymmetry can also be broken in local supersymmetry (supergravity). In this case,
the Goldstone fermion is "eaten up" by the gravitino which develops a non-zero mass
given by:

m§/2 =KW, (2.9)
In this case the supertrace relation is modified giving |21]:
STr(M?) = (—1)(2j + 1)m? = 2(N — 1)m3 (2.10)

J
where N is the number of chiral superfields.
Due to the definition of the F-term in supergravity, there are two possible ways to provide
a non-vanishing vacuum expectation value out of the tree level, using perturbative and
non-perturbative corrections:

F' = fPKIDW = S K ew  + WK; |. (2.11)
N~ ~——

Non-Perturbative  Perturbative
A particular feature of supergravity is the non-positive definite scalar potential which
allows negative or zero cosmological constant, providing a way to obtain a very low
cosmological constant to match cosmological observations.
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2.1.3 Supersymmetry Breaking in the MSSM

Spontaneous supersymmetry breaking is not phenomenological acceptable because as
shown by the equation (2.8) this would imply lighter partners which have not been
observed, the way to solve this problem is to break supersymmetry in a hidden sector
which is a singlet under the SM gauge group [1]. Supersymmetry breaking is than
mediated to the visible sector by a different mechanism. The different kinds of mediation
are:

e Gravity mediated: supersymmetry breaking is mediated by gravitational interac-
tions, so the scale of supersymmetry breaking can be roughly estimated by the
mass gap:

_ Mg,

A
m M

(2.12)

Using the value of the Planck mass (Mp ~ 10'®GeV) and imposing the mass
gap at the TeV scale Am & 1TeV, the scale of the supersymmetry breaking is
Msp ~ 10" GeV while the gravitino mass scale is mg/s ~ 1TeV.

e Gauge mediated: supersymmetry breaking is mediated by a new gauge interaction
under which matter fields are charged, in this case, the mass gap is proportional to
the mass scale of supersymmetry breaking Am =~ Mgsp ~ 1TeV the gravitino mass
is very low ms/; =~ ImeV.

e Anomaly mediated: supersymmetry breaking is mediated by loops corrections.
This kind of contribution is always present but generally it is negligible with respect
to the others.

The three mediations are not necessarily unique but can be mixed giving different con-
tributions.

Despite the presence of different mechanisms to mediate supersymmetry breaking, to
perform a soft-breaking, the supersymmetry breaking part of the Lagrangian is model
independent. The soft-breaking Lagrangian is defined:

—Lsopt = %(M1/2)a>\“>\“+h.c.+ (mo)305 05 + Aijrpipjon+hoc.+ BuH, Hy+ h.c. (2.13)
The parameters are:
o (M3), are the gaugino masses;
e (myg);; are the scalar particle masses;

o A,j; are the trilinear terms;

e By is the mass term for the Higgs fields.
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2.2 Flavour Changing Neutral Currents

Flavour is the way in which the three different families of quarks and leptons are labelled
in the Standard Model:

3 up-type quarks u, c, t;

3 down-type quarks d, s, b;
yPed (2.14)

3 type of charged leptons e, u, 7;

3 type of neutrinos v, v, v,.

Flavour is an ambiguous quantity because the Standard Model without the Yukawa
couplings would manifest a U(3) flavour symmetry |22| and also in the complete Standard
Model it is conserved for neutral process but is changed in charged boson exchange
phenomenon. In the Standard Model this evidence arises from the breaking of the
SU(2);, x U(1)y symmetry, moving from the gauge eigenstates to the mass eigenstates
the interacting Lagrangian for the Electroweak sector of quarks is [23]:

I =gl + ST+ STl — S
I =5ty = 5
T =2, Ve, (2.15)
Lo = %glcosﬁwﬂﬁ + ggsz’nQWJi’;} A, + {—%glsméwﬂﬁ + gocosOw JE | Z,+
+ gW,JE + hec.

The charged current J¢ in equation (2.15) respect to the currents Jy and Jj§', which
couple to neutral vector bosons, presents a flavour changing behaviour parametrized by
the matrix V' which is the Cabibbo-Kobayashi-Maskawa matrix. The CKM matrix is in
general not diagonal and produce the diagrams in Figure 2.2.

Vud Vus Vub
V=|Va Ves Vo |. (2.16)
Vie Vis Vi
JL
Vi %74
ir

Figure 2.2: Flavour changing vertex with i = u, ¢, t and j =d, s, b.
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The FCNCs are so forbidden at the tree level by the definition of the interacting La-
grangian (2.15) but they could appear at the loop level. The CKM matrix is unitary
and it is important in order to avoid the FCNCs at the loop level. This is explained by
the so-called GIM mechanism.

For the leptons the FCNCs are completely forbidden by the absence of a flavour changing
matrix by the fact that the neutrinos remain massless.

2.2.1 GIM-Mechanism

The GIM mechanism was introduced by Glashow, Iliopoulos and Maiani in the 1970
[24] to explain the experimental suppression of the decay of the K at that days the
discovered quarks were only 3: wu, d, s. The dominant channel of the decay is given by
the diagram in Figure 2.3.

Uur 4

dL —
Figure 2.3: Dominant loop contribution to the decay of K into p*pu~.

The amplitude of this diagram is:
49 x ¢?V* Vg (2.17)

KO—putpu—
The GIM mechanism explanation of the suppression is obtained introducing a new quark
¢ analogous of the u but heavier, with CKM matrix unitary. By the introduction of the
new charm quark ¢ with unitary CKM matrix the new amplitude is:
Fdiag Ne'S g2 (Vjsvud + V;;Vcd) = 0. (2.18)

KO—putp

Thanks to the introduction of the new quark the flavour changing neutral currents are
suppressed also at loop level and the experimental measurements for K° decay are veri-
fied. This mechanism can be extended for 3 families of quarks as in the Standard Model.

2.2.2 FCNCs in the MSSM

In the MSSM the introduction of new particles which carry flavour has to be treated
carefully because can introduce new possible FCNCs contributions, in this landscape is
important to consider the possible deviation of the FCNCs results from the Standard
Model ones.
The first possible source of flavour changing process is the, already mentioned in Chapter
1, barion and lepton number brake superpotential Wg; which allows FCNCs at the tree
level:

WBL = )\1LL€C + )\QLQdC + AQLQdC + Agucdcdc + M/LHU (219)
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As already mentioned in Chapter 1 this term in the MSSM superpotential can be removed
introducing a new discrete symmetry the R-parity which acts on a state as:

o) = o) = R|a)  with R = (—1)3B-0+25 (2.20)

S is the spin, B is the baryon number and L is the lepton number. This symmetry
implies that for each vertex of a diagram involving supersymmetric particles the number
of superparticles must be even.

The R-parity forbids FCNCs at the tree level but they are not forbidden at the loop
level. A complete analysis of the FCNCs in MSSM has been exposed in [25]. For the

purpose of the thesis we will consider only the decay of the K° ~ K" for the quarks sector
whose dominant term, in the Standard Model, is given by the diagram in Figure 2.4.

SL dL

S
di uct L

Figure 2.4: SM leading contribution to K° — K decay.

The amplitude dominant term is (V;:sV}d)QE—ﬁQ [25] which depends on the mass of the top
w
because it is the heavier quark.

The squarks in the MSSM will produce a new contribution for the K° — K’ whose
dominant diagram is traced in Figure 2.5.

S — T - K- ——— dL
Sr, dL

e e e 1
dp, SL

Figure 2.5: Supersymmetric contribution to K9 — Ie decay.

The amplitude depends on Am?(i/mg [26], where m; is the flavour universal mass term of
the squarks and Amg; is the non universal mass term between strange and down squarks.
The SM model contribution well explains the experimental results so in order to preserve
the SM description the flavour non universality of the masses should respect [26]:

2. 1
fd < mOVtthdM

2

~ 1073 ( o ) . (2.21)

500G eV

So to avoid the FCNCs the scalar particles masses have to be flavour universal:

(mo)ij = moéij. (222)
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The new supersymmetric particles allow the onset of FCNCs also in the leptonic sector
while they are forbidden in the standard model. Let us consider as explicative example
the decay of a u™ into a e™ and a v, this is given by the SM diagram in Figure 2.6 which
is forbidden by the suppression of FCNCs in the leptonic sector. In the MSSM there is a
new contribution given by the loop diagram (Figure 2.7) which involves the sleptons, also
in this case the amplitudes is proportional to [27]: Amzé/ml@. So both quark and lepton
sectors are affected by FCNCs in the MSSM and they need the flavour universality to
respect the experimental results of the SM.

0%
M+ﬂ—‘ir;e+

Figure 2.6: Standard Model contribution to MEG.

Figure 2.7: Supersymmetric contribution to MEG [28|.

The non-flavour universal mass terms are not only generated by the supersymmetry
breaking mechanism but can be generated by the Higgs mechanism trough the trilinear
A;j term as can be seen in the soft-breaking Lagrangian [29]:

—Lsopt =(my)Qr,Qr; + (M, )ifurur, + (May)ijdr,dr,+
+ [ALQ L, H up, + ALQr HR, + h.c] + ...
The acquiring of vacuum expectation value to the Higgs fields will give a non universal
mass contribution to the squarks:

(Ami ™)y = Af(H), (Am D)y = Af(Hg), (2.24)

the new off-diagonal mass terms will contribute to the FCNCs with the same bound of
the one generated by the supersymmetry breaking. The same problem arises considering
the coupling of sleptons with the Higgs field which has the same form.

In order to avoid also the contributions from the Higgs mechanism is necessary to impose
that the trilinear terms are proportional to the Yukawa couplings:

(2.23)

The universality problem is strongly related to the mediation mechanism of the super-
symmetry breaking in fact, it is differently solved by the previously described mediations.



2.2. FLAVOUR CHANGING NEUTRAL CURRENTS 37

2.2.3 Colour Charge Breaking vacua

The trilinear terms have an additional constrain from colour and charge breaking vacua.
The introduction of scalar fields, which carries colour and charge, introduces the possibil-
ity of new vacuum that brake the colour and charge symmetry which can be competitive
respect to the real colour and charge preserving vacuum.

Let us consider the off-diagonal trilinear scalar coupling defining |er| = |ur| = |HY| = a
[29]:

2 _ 2 2 _
V=m?, len)” + m? . rl” +m2. |H|™ + [ A& H|" + |\ Hpr|” — 2 ‘Ag erHipg =

— (m2, +m2, +mi) @+ (A2 4 A2) ' - 2| A "

(2.26)
One can easily see that the potential has a deep CCB minimum at a ~ ‘Agg //\Z The
minimum disappears for:
A(l) 2 < 8 /\2 )\2 2 2 2
12 <~ § ( " —+ e) (meL + muR + de) . (227)
2 2
For diagonal trilinears the condition is similar [A{}| < 32 (m?, +m? +m2,), ’ASQ) <
3A2 (m2, +m?_ +mj,). Generalizing for the others particles:
2
Agj) <Az (mi“ + miRj + m%{u) ,  k =Max(i, j)
2
AP <X, (md,, +md, +mba) .k =Max(i,j) (2.28)
s o
A’f]) S )\zk (mgLi + msz + m?-[d> Y k :MaX(ZL])‘

These conditions avoid the formation of a deep CCB minimum which would make the
vacuum unstable causing a decay in the deepest vacuum braking the colour and charge
symmetry. The CCB conditions are more restrictive respect to the FCNCs ones as
derived in [24].

2.2.4 Unbounded From Below potential

Another constrain on the trilinear terms can arise from the possibility of unbounded
from below directions in the scalar potential, this can be seen considering the scalar
fields |ep|> = |ugr|* = |[HE|? + |v-|* = a® in this case the scalar potential is only [29]:

V=a® [m2, +m2, +m2 — 2| Q| B+ N[+

) (2.29)
+ (miga —m3, ) [Hg|™
If one minimizes the potential with respect to the Higgs field gets:
4]
4 — , (2.30)

o A2a? + (m% —m2)
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leading to the potential:

2 a?
V=a*|mZ +m’, +m, — ‘Agg (2.31)
o Mo N2+ (e — )
In order to get a positive potential one has to impose the condition:
| a’ 2
< (m. +my, +m,, 2.32
‘ 12 Aia2+(m?{d—mi) —( L 1R ) ( )
. (m2 d—m,% )
In the limit @ > —#55—" the bound becomes:
s
2
l
AQ| <X (2, 2, ). (2.33)
This condition can be extended to the others trilinear terms leading to:
2
(u) 2 2 2 2 2 o .
Aij <AL <muu +my,, +me, + mERq> , k =Max(i,7), p #q
d)|? .
A'EJ) S )\‘2119 (m?iLz + m?le + mIQ/m) ) k :MaX<Z,j) (234)
A0F <2 (2 2 b —Mosc(i. i -
ij | = e \Mers + Mep; + My, |, - aX(Z>])7 m 7£ L]

The conditions are important to get a positive potential in the minimum. These condi-
tions are at the leading order comparable to the ones for the CCB vacua.

2.2.5 Naturalness

Before seeing the ways to obtain the flavour universality in the different mediations of
the supersymmetry breaking, it is important to analyse another way to suppress the
FCNCs: to set the mass of the scalar particles at very high energy scale (respect to the
TeV scale). By the fact that the FCNCs amplitudes depend on 1/mZ, the high value of
the mass would make negligible the supersymmetric contributions.

This would give problems with naturalness. Naturalness is a criterion on the parameters
of a theory that has been well expressed by Susskind as a criterion "which requires the
observable properties of a theory to be stable against minute variations of the funda-
mental parameters" [30]. In fact one can consider the dependence of M, respect to the
parameters at the unification scale which is [27]:

2 _ . 2 2 2 2 2
M7 =cup” + caymiy o + cu,mip, o + Gmig + cpmi,+

(2.35)
+ CN[1/2M12/20 + can A M 20 + CAA?O,

where the masses are the masses of the particles of the MSSM at the gran unification
scale (GUT) and the coefficients ¢ are constants, of the order of the unity, results of the
RG equations. One defines the fine tuning amount f; as:

M
fi=

(2.36)

Cﬂ:z
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with ¢ the possible parameters in the equation (2.35). So if one sets the mass of the stop
mj, to a very high value respect to the TeV scale, for example considering the hill case
of 100% of non-universality, one gets that the mass of the squarks should be at the order
mo = 5 10° GeV. One can compute the amount of fine-tuning needed to get the value
of M, ~ 91 GeV getting f,,, < 3 107® with a very huge amount of fine-tuning out of the
10% naturalness criterion [31].

This kind of solution would spoil naturalness and even if naturalness is a discussed
criterion from an epistemological point of view [32]. Tt is also one of the reasons to
introduce supersymmetry at low energy to stabilise the Higgs mass as seen in Chapter
1.

2.2.6 Gauge-mediated solution

The gauge-mediated supersymmetry is based on the breaking of supersymmetry in a
hidden sector and then it is mediated to the visible sector thanks to new superfields
which are charged under the MSSM gauge group.

There are many ways to brake the supersymmetry in the hidden sector but the easiest
possible gauge-mediated model [33] is made by introducing a new goldstino chiral su-
perfield X which acquires a vacuum expectation value in the scalar M and F auxiliary
components:

(X) = (M) + 00(F). (2.37)

The messenger sector is made by Ny flavours of chiral superfields ®; and &, which are
charged under the gauge group of the MSSM. The superpotential which couples X and
D is:

By the acquisition of vacuum expectation value of X, thanks to the direct coupling, ®
and ® get masses. The spinorial components form a Dirac field with mass AM while the
scalar components get mass matrix:

AMI(AM)  (AF)f
m<1><1>:< (AF) ()\M)()\M)T>‘ (2.39)

Going in the mass eigenstates (¢ + ET)/\@ and (® — ®1)//2 the mass eigenvalues are
(AM)% £+ (\F).

The ordinary particles do not directly acquire masses, by the fact that they do not couple
with X, but, by the gauge interactions with ®s, they acquire masses by loop corrections.
Thanks the non renormalization of the superpotential all the relevant contributions to
the soft-terms are in the gauge and matter wave-function normalizations S and Z;. The
soft Lagrangian will be:

1
—Lopt = éMl/g)\a/\a + h.c. + m?gpjgpi + Aipi0,,W () + h.c. (2.40)
with the parameters [33]:

v _LlomS(X.t) F
V2= 79 om X M

X=M

(2.41)
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9%1n Z;(X, X1, 1) FEt
2 7 ) 9
T T M XOn X MM (2.42)
X=M
aln Z(X, X1, 1) F
Ai(t) = o - (2.43)
X=M

with t = In M?/Q? and Q is the definition scale of the soft-terms. The gaugino masses
are generated by the loop in Figure 2.8 while the scalar masses are generated by the loop
in Figure 2.9.

PN
’ @ N
/ \
I S WO —

Figure 2.8: Generation of gaugino masses at loop level.

Figure 2.9: Generation of scalar masses at 2-loop level.

As shown by the definitions the scalar masses are flavour universal thanks to the sym-
metries of gauge interaction. Also the trilinear terms respect the flavour universality
because, from the Lagrangian (2.40), they depend on the Yukawa couplings (by the
derivative of the superpotential). In this mediation the FCNCs are naturally avoided.

A possible source of non-universality is given by Planckian effects. If supersymmetry is
broken by chiral field (X = 6%F) one can not avoid in the Lagrangian the operator [26]:

AL ~ / cl%%XTX\DI\IJi (2.44)
P

which gives a flavour non-universal mass term:

F2
Am} ~ —% (2.45)

P
the experimental bound for Fy to avoid FCNCs is:

2 3
Fo <100 () Gev. 2.46
0~ (500Ge\/ ¢ (2.46)

The FCNCs are strongly suppressed in the gauge mediated models by the fact that the
pure gauge contribution generates flavour universal terms and the spoil term arise from
gravitational contribution (which is suppressed by the Planck mass).
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2.2.7 Anomaly-mediated solution

The anomaly-mediated supersymmetry breaking is based on the breaking of the super-
Weyl invariance in the supergravity by the loop corrections of a super Yang-Mills theory.
Let us consider a super Yang-Mills theory coupled to supergravity. Its Lagrangian is:

L =v-g{ / d'Oh(Q", eV Q)T + / PO(D*W (Q) + T(Q)WaW®) + h.c.+

] (2.47)
~ Sh( (R + )
with @ the chiral superfield in the visible sector, § the scalar component, h = —3e~%/3

and ® is the auxiliary scalar field ® := 1+6?Fy from the off-shell supergravity multiplet.
The Lagrangian (2.47) is equivalent to the usual supergravity Lagrangian mentioned in
Chapter 1, one can see this by performing the Weyl transformation which removes ®:

Guw = €2 g, (2.48)
The Lagrangian is given by:
1 b "
L=v=g{5R+ Ky(@'9)D.q" D"7 = V(q'9)+
— 7(§)(Fu F" +iF,, F") 4 h.c + fermionic terms}

(2.49)

with K;; = 0305 K and V(¢'q) the supergravity scalar potential.

® can acquire supersymmetry breaking expectation value but Lorentz preserving. The
fact that the matter field of the visible sector does not couple with & correspond to
a super-Weyl invariance. If the super-Weyl symmetry was exact than the acquiring of
VEV of & would not affect the visible sector because it would have been removed by
a Weyl transformation. In the presence of a super Yang-Mills sector the super-Weyl
transformation is anomalous producing the shift of the 7 gauge kinetic function [35]:

T — T — 2bg In(®) (2.50)

with by the one loop coefficient. Solving the integral in the Lagrangian one gets a gaugino
mass which is:

M9 = —bog*F. (2.51)

The scalar mass can be understood considering the Lagrangian and integrating out the
hidden sector:

1
Leyr= / d'0QTe™V QO + / d*0 {@3 (mo@* + YoQ%) + g—QWaWa +he  (2.52)
0

The & field can be removed rescaling the @) field:
QRP — Q. (2.53)

() is a chiral superfield and & is a background chiral superfield so the rescaling is allowed
by the supersymmetry. The resulting Lagrangian is:

1
Lepy = /d“@QTe‘VQ + /d29 {(m% FXQY) + S WalV?| 4 hc. (2.54)
0
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In the classical field theory ® can be removed by the rescaling (it appears only in the
quadratic term but also the p-term is allowed by supersymmetry) removing also the su-
persymmetry breaking term but the quantum functional integral measure is not invariant
under the rescaling providing a mass term from the loop corrections. The ¢ dependence
provide a scalar mass term at the second loop correction of the form:

1 0 oy
2 2
= ——|F: — — , 2.55
md) = —1Fal (56, + 526, (259
and it is flavour universal.

Due to the same properties of the renormalization and to the holomorphy of the super-
potential, the trilinear terms are proportional to the Yukawa couplings:

1
Aigj = 5(%‘ + 5 + ) YirFa (2.56)
£ and ~ are the beta and gamma functions of the renormalization group.
Also in this case the flavour universality problem is naturally solved by the mediation
mechanism thanks to the universal nature of the loops corrections. The problem of the
anomaly mediated supersymmetry breaking is the mass spectrum at the TeV scale [35]:

mgleptons =—-13x 10_5’F¢‘2 (257)
M2 guarks = 55 X 1074 Fy[%.

In this mediation scenario, the flavour supersymmetric problem is automatically solved
but the resulting spectrum has negative mass for sleptons so one need other mechanisms
contributions to avoid tachyonic solutions.

2.2.8 Gravity-mediated solution

In gravity mediated supersymmetry breaking the hidden sector is made by some chiral
superfields ®;, ®;s couple with the visible sector by the matter metric. The ®; fields
acquire a non-vanishing F-term VEVs that break supersymmetry. Generally it happens
thanks to non-perturbative effects in the superpotential. A general model is described
by:

K = K(®,,®,) + K 5(®;,3,)C°C" + ...,

W = W(®,) + 11,5(®:)C°C” + Vs, C°CPC7 + .., (2.58)

f=r (q)z)
An example for the hidden sector is the no-scale supergravity model where the hidden
sector is made by two chiral fields 7" and S and the dynamic is described by:

K(S,T)=-In(S+S) —3Wn(T+7T)

) . (2.59)
W(S) = Wy + A5,
And the matter metric is: K,3 = 727. S is stabilised supersymmetrically such that
FS =0 but T no, giving FT = — W

V(S+8)(T+T)
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After the supersymmetry breaking expanding the F-term scalar potential for the C“
fields one gets the soft breaking terms [36]:

s = (s + Vo) Ko — B F" (00 K 5 — (Omor) K70, K 53)) )
Aoiy = 12" meYam - (<amKaﬁ>Kﬁ%m taont@en)]

There could also be D-term contributions if the ®;s are charged under some gauge field
charge, expanding the D-term potential the resulting contributions are [37]:

1
2
' | ", (2.61)
Aagy = [—§g2D2DaD5 (K + W) +¢D;D,DsD, D}

)

with D, the D-term associated to the &, field.

From equations (2.59) and (2.60) one can see that the flavour universality is not au-
tomatically respected, this problem has lead to the necessity of a flavour analysis in
order to build phenomenological relevant models. To get the flavour universality the
supersymmetry breaking and the flavour physics should be decoupled.

2.3  Mirror Mediation

In the study [38] Joseph Conlon had derived the conditions that a supersymmetry break-
ing gravity mediated model has to respect in order to respect the flavour universality.

1 The hidden sector fields have to be factorized into two classes of fields ¥; and ;.

2 The Kahler potential should be a direct sum of terms depending only on the real
part of ¥; and y;

KW +,x,X) = K1(¥+ V) + K> (x,X)- (2.62)

The reality condition is necessary to avoid relative phases between different A-
terms.

3 The Yukawa couplings should depend only on the y fields and the gauge kinetic
functions should depend linearly only on the W fields.

Yopy (¥, x) = Yas(X)
£, %) Z)‘ v, (2.63)

The linearity allows to have universal gaugino mass phases aligned with those of
the A-terms.

4 The matter metric should factorise in terms of the real part of ¥; and y;

K59, ¥, x,X) = h(¥ + 0)k,5(x, X)- (2.64)
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5 The supersymmetry breaking should be induced by the W fields while the y fields
are stabilised supersymmetrically:

DyW #0,D,W = 0. (2.65)

These conditions are important because in this way there are generated two decoupled
sectors: ® which is responsible for the supersymmetry breaking and y which is related
to the flavour physics. One can sees that these conditions generate flavour universal
soft-terms looking at the unnormalized scalar masses and the unnormalized trilinears:

i - ~
My =(m3), + Vo) K5 — F 7 FY (a@(?wiKaB - (%jKav)Kw(a\mK(sB)) =

3. dg hdg,h (2.66)
= (((m§/2 + %)h — F\I]JF‘I’z (a@‘ja\ljth — \IIJT>) kaB(X7Y)

o —
Aagy = BK/QYaB”/(X) (F\Paq/K(\I’,ﬁ) - SM)

1V, )
These conditions are ad hoc conditions in order to obtain flavour universal masses. There

is not a deeper meaning and this is not theoretical satisfying but there is a more funda-
mental theory: String Theory that naturally respects the Mirror Mediation conditions.

(2.67)

2.3.1 Mirror Mediation in String Theory

If now one extends the analysis of Mirror Mediation to the Type IIB string compactifi-
cation, as made in [38], one can see that the conditions are respected naturally solving
the flavour supersymmetric problem in gravity mediated supersymmetry breaking from
String Theory.

Moduli

Let us start from the moduli sector. In Type IIB compactification there are 3 types of
moduli: S the dilaton, U the complex structure moduli (that can be many) and T the
Kéhler moduli (that can be many) as seen in Chapter 1. The moduli are independent in
the Kéhler potential for O3/O7 set-up in the large volume regime:

K = —log (Z/Qg /\ﬁg) —log (S +5) —2log (V). (2.68)

The moduli form two different and independent classes as can be seen by the Kéahler
potential (2.68):
U, «+— T;

Xi < UZ'7 S.

One possible mixing term is the o/ correction from the 10D action which will modify the
Kahler moduli potential mixing the dilaton and the Kéhler moduli dependence:

Knr = —2log [V + ERe(S)*?] . (2.69)
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This kind of mixing term induced by the perturbative correction spoil the Mirror Medi-
ation condition but it could be reconstructed, at least, at the leading order.
The mixed Kéhler metric will be:

3 37577-{1/23] 9 (Tst)l/z 9 5(25)1/27_1/2
8 2 FERE —1 2
K~ 9 (17s)1/? 337 112y 96(28)1/27'1/2 N
] 8 yQ/ s 8 R e i yr
98(29) Zry " 9&(2s) !0 1 3 3/226(25)%/2—V
42 RNV (25)2 1+ 58(2s) / P (2.70)
1 1 1
O<V‘i/3) O(vsl/?») O( 51/3)
~|0(wr) O(%) w

v

O(wm) Ow) 0O
In the Kéhler metric it is possible to see that the mixing terms of order O (ﬁ) and
@) (%) can be neglected respect to the diagonal terms in the large volume limit. So
it is possible to see that LVS models, which stabilise the Kéhler moduli through o’
corrections, are compatible with the Mirror Mediation conditions.

Yukawa Couplings

In type IIB compactification the imaginary part of the K&hler moduli enjoys a shift
symmetry:
Im(7T) = Im(T) +a (2.71)

so only the real part of the Kéahler moduli can enter into the action so due to the
holomorphy of the superpotential, the superpotential could not depend on the Kéahler
moduli. Then the Yukawa couplings should depends only on the dilaton and the complex
structure moduli as already demonstrated in the Chapter 1:

Yapy = Yap,(S,U). (2.72)

The Mirror Mediation condition is then respected by the Yukawa couplings.

Gauge Kinetic Function

As we have seen in Chapter 1 the gauge kinetic function comes from the dimensional
reduction of the DBI-CS action of the Dp-brane. It depends on what kind of brane we
are looking at, in the analysis of this thesis is useful to see what happens for D3-brane
(the one entering in the model we will look at in the Chapter 3) and D7-brane (the one
mainly used for phenomenological models). For D7-brane the result is:

om P = ninkS — mImhT;, (2.73)

as we can see if the S dependence is negligible the only dependence of the gauge kinetic
function is the Kahler moduli respecting the Mirror Mediation condition. Now we look
at the D3-brane whose gauge kinetic function is:

27TfD3 = S, (274)

as we can see this result brakes the Mirror Mediation condition and in fact, it will be a
problem in the D3-brane model that we have analysed.
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Factorisation of the Matter Metric

As already mentioned in Chapter 1 the matter metric is very hard to compute for general
models but it has been estimated for Dp-branes at singularities in the large volume
regime. At the leading order, it can be factorized as:

i, = MalU.5) (2.75)

o= T e
where h, (U, S) encodes the dependence on the other moduli and it is flavour dependent.
In this way we can see that the Mirror Mediation condition on the matter metric is
respected for general models, it can be studied also for a more particular models where
ha (U, S) is computable for example in toroidal models.

Supersymmetry Breaking

The last condition of the Mirror Mediation is focussed on supersymmetry breaking.
Supersymmetry breaking in Type IIB string flux compactification arises from the GKP
model:

K(T,S,U) = =3log(T +T) — log(S + S) — log (/ Qg/\Q3>
M

W:/ Qg/\G(3)
M

The superpotential is induced by the fluxes and the superpotential does not depends on
the Kéahler moduli at the tree level. From the flux constraints in the 10D theory the
moduli are fixed as:

(2.76)

Dy W = / Gy A Xa =0,
M

1 _
DsW=——— [ G AQs=0 2.77
i S+SA4“> =0 (277)
3
DW= -2 .
g T+ 7

As one can see, the model respects the Mirror Mediation condition obtaining that super-
symmetry is broken by the Kéhler moduli and the flavour-related moduli are stabilised
supersymmetrically. The presence of non-perturbative corrections in the superpotential
to stabilise the Kédhler moduli will not break the result but o/ correction could.
Following Conlon’s work it is possible to see that Type IIB String Theory compacti-
fication will automatically respect the Mirror Mediation conditions producing flavour
universal soft-terms.



Chapter 3

Sequestered String Models and FCNC
Constraints

3.1 Sequestered Supersymmetry Breaking

As mentioned in the Section 1.3.3 the masses of the moduli are generally proportional
to the mass of the gravitino and the lower bound for the mass of the moduli from
the cosmological moduli problem is of order 50 TeV. With these premises, one would
like to have the soft masses below the gravitino and moduli masses, the models which
provide this different hierarchy are called sequestered models. In the LVS the sequestering
happens when the SM fields are localized in the extra dimensions, like in models where
the matter fields are obtained with D3-branes at a singularity [39]. The sequestered
hierarchy is then produced by the weak coupling of the dominant F-terms and the matter
fields because of their bulk separation. This is the case of the model [39] analysed in
this thesis where in addition to the sequestering also the uplifting to the dS vacuum is
achieved.

3.2 The Model

The model analysed is the one proposed in [39] which is the result of a Type IIB compacti-
fication with O3/O7-planes, the moduli are stabilized following the large volume scenario
producing a visible sector sequestered from supersymmetry breaking, the visible sector
is realised with proper D-brane configurations on blow-up moduli. The uplifting to a
dS vacuum is realised through E(—1) instantons at a singularity whose blow-up mode
develops non-vanishing F-term thanks to the dilaton-dependent non-perturbative effect.
The Kéahler moduli are:

e a big four-cycle T, which controls the dimension of the Calabi-Yau,
e a small blow-up mode T supporting non-perturbative effects,

e the visible sector cycle Ty,

47
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e the orientifold projection of Tsy; G,
e the blow-up mode Tys which supports E(—1) instantons non-perturbative effects.

The Kéhler moduli are then decomposed into the real and the imaginary parts:
Ty = 1 + iy, Ts = 7o + i, Tsy = Tsmr + Wsu, G =0b+ic, Tys = 745 +ithas, (3.1)

where 7, 75, Ty and 749 are divisor volumes, the ¢)’s are axions obtained by the reduction
of Cy on the four-cycles, b and ¢ are reduction of respectively By and Cs on the two-cycles
dual to the shrinking ones.

The N = 1 supergravity theory is described by the superpotential:

W = Wa(U, S) + Ay(U, S)e %%  Ayg(U, S)e~s(StrasTas) Ly 0 (3.2)

The first part of the superpotential Wy, is the standard superpotential induced by the
fluxes that we have mentioned in the Chapter 1. The second term is the one induced
by ED3-instantons on the small blow-up cycle (or by gaugino condensation) A,(U,S)
depends on the complex structure moduli U and the dilaton S whose real part set the
string coupling (s) = g;!, as depends on the D-brane configuration. The third term is
the one associated to the uplifting moduli and it is generated by non-perturbative effects.
The last term is the visible sector matter superpotential:

1
Winatter = (@) H, Hy + 5 sy (P)COCPCT + .. (3.3)
where ®s are the moduli and C®s are the MSSM superfields. The dots refer to higher
dimensional operators which are neglected.
The Kéahler potential is:

a 2 b2 2
K =-2In (V + g) —In(2s) + ASMTSTM + A”V + Kes(U) + Konatter + Ads%g. (3.4)

The first term is the usual large volume scenario Kéhler potential for the Kahler moduli
with the o correction. The second term is the K&hler potential for the dilaton. The As
are O(1) coefficients. K.s(U, S) is the tree level complex structure Kdhler potential. The
last term is the Kéhler potential for the uplifting Kéhler moduli. The matter Kéahler
potential is:

Kpatter = Ko(®@,0)C"C* + [Z2(®, ®)H,Hy + h.c. (3.5)

The matter metric is assumed to be flavour diagonal with the only exception of the Higgs
bilinear term which is parametrized by the function Z.

- _ falU.S) £, Tis
K, = V273 1—6394‘6(157

+CSMT§M+Cbbp> . (36)
p is positive in order to have the matter metric well defined in the singular limit b, 75);y —
0. The f,(U,S) is the factor which depends on the dilaton and the complex structure
moduli and will be described later in the work.
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The gauge kinetic function is obtained by D3-branes at singularities, so it is defined to
be:

fa = 045 + ko Tsm (37)
where 0, are universal constants for 7Z, singularities but can be non universal for more

general types of singularities, we can already see that the dilaton dependence already
break the Mirror Mediation condition.

D3/E(-1) Atds -0
NP effectsjisingularity|

E3/D7. T,

NP % small
effects. cycle

T
big
. cycle

orientifold involution
:

4 bT.~0rbT~0 A
ist
sector sector

Figure 3.1: Pictorial representation of the Calabi Yau with the blow-up modes (from [39]
page 13).

3.2.1 D-term Stabilization

The Kéhler moduli that parametrise the location of the visible sector D-brane are sta-
bilised using D-terms. The two moduli T, and G are charged under two anomalous
U(1) symmetries with charges ¢; and go, the resulting D-term potential is:

2 2
1 oK 1 oK
Vp = 2Re(fy) (2@: q1aﬁ0 - 51) + Re(fy) (20; QQQ@C - §2> (3.8)

where f; and f, are the gauge kinetic functions of the two U(1)s. The Fayet-Iliopoulos
terms are given by:

5__2 OK — qiAsm Tsu
Y 4roTsy  4Am Y
g = BOK _ ahb
YU 4n0G T 4n V-

(3.9)
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The D-term potential vanishes in the vacuum in order to have a supersymmetric mini-
mum at § = & = 0, this implies that (7gy,) = (b) = 0.

The Tys mode can be fixed in the singular regime by minimising the hidden sector D-
term potential (focusing for simplicity on canonically normalised hidden fields ¢; with
charges gp,; under an anomalous U(1)).

2
1
Ve = 2Re(fy) (Z: il nil* — €h> (3.10)

with Fl-term:
_qas OK _ qas AasTas

gh N E@Tds N 47 1%
The hidden matter fields ¢, ; are assumed to be fixed from the related F-term in order
to have (3", qniail¢ni|*) = 0. The term will be added to the resulting F-term potential
to get the total scalar potential.

(3.11)

3.2.2 F-term Stabilization

The dilaton and the complex structure moduli are stabilised supersymmetrically at the
flux level providing the conditions:

DsWiiyzle=o =0, DuWizle=o =0, (Wie) = W. (3.12)

The minimum provided by this stabilization for the dilaton and the complex structure
moduli is shifted by the o effect and by the T,s dependent term in the superpotential,
the shift of the dilaton is parametrised by the function wg(U,S) and for the complex
structure by wy, (U, S) providing the covariant derivatives:

Bws(U,S)EWo  3ws(U, S)EWo

Dsw ~ D5Wflm;|§:0 — 4sY = 4s) (313)
for the complex structure:
3wy, (U, S)EW, 3wy, (U, S)EW,
DU¢W >~ DUinlum‘gzo — Ul( )5 0 = — UZ( >§ 0. (314)

45V 45V

The explicit forms of the functions w are visible in the Appendix B.

Considering now the stabilization of the K&hler moduli, as already mentioned in Chapter
1, the o correction would spoil the no-scale structure of the model providing the following
scalar potential (with the stabilization on the vacuum of the axion imaginary part of T}
such that e=@!™(Ts) = —1):

2s | 4V3 V2 3 vV

i 35W§ 4WOASaSe*asTSTS n §A§a§e*2“5757';/2

Vi = (3.15)

The potential is the usual LVS scalar potential with a exponentially large volume at the
minimum but the minimum is modified by the presence of the F-term potential of the
T,s moduli which gives a F-term potential (fixing e~*2@ds®ds = —1):

(K;dsadSAdS)2 e—QlldS(S‘i‘HdSTdS)
S/\dg )%

VES = (3.16)
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The total potential will be:

Tot —i 35W02 _ WoAgsase %7, N §A§a§e—2a,975751/2 .
T 25 | 43 V2 3 v (3.17)
(Rasaas Ags)? e 20474579 1 ( qas AasTas')
5>\dS V 28 47T V .

The minimum of the potential will be provided in the limit ¢, = 1/(4as7,) < 1 resulting

1mn: 32_3A (1_55)2 B
oM 55(1 —4e,)[(4 — 4e) (1 + daey) — (1 — 4ey)]

3 3 4 32 16 ,\ .., s
=21+ (2—Za)4 S _Za+—a?)1
5 113 3¢ e+17 Ba—i— 3¢ 6e; + o(€3)

3SWo(ra)/? (ry 1 — 45 3Wo(Ts) /2
= e S\is =
4agA, 1 — e 4agzA,

(3.18)
e 4 o(c)

With o = qss/\dSTdS(l + )\dsTdS)/((471’)24W0A567a575).
The value of 7,55 is obtained tuning the scalar potential in order to have a small dS
cosmological constant (in the limit o < 1):

9 .
KdsaqsAds —2a45(stKdsTds) 9&esAas
_— = - 3.19
( Wo ) ‘ g 2 (8.19)
In this way we will fix:
97rad5/<;dSW02§es
(Tas) 2 V) (3.20)

The resulting de Sitter vacuum has the cosmological constant:

N 2
Torn L [ 9aaskasWiEes 4
v >—£< Squs (V)7 )“O“/’” (3:21)

The cosmological constant from the model can also be tuned to be smaller but it has to
be compared with the cosmological constant observed value A ~ 10722 in Planck units.

3.2.3 F-terms

The mass of the gravitino generated by the supersymmetry breaking minimum is:

1 3 1
1 + 9 ()\dSTdS - g) +o (ﬁ)

The mass is poorly affected by the 745 and é contributions producing a leading order
dependence from the volume of O(1/V), this is important because all the other quantities

Wo
V25V

m3/2 = eK/2|W| =

(3.22)
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will be traced back to the gravitino mass which will set the scale of the model.
The F-terms related to the LVS Kéahler moduli are:

2, W, 1
T bVVo =\~ 1/3 34 r5/3
Fh — 25)72) +o (V2> @ (m3/2Mp )

3W, 1 1
Ts _ 0 . ~ .
= 2Va,(25)1/2 to (w) to (agg) O (may2M,)

The F-terms of the two moduli are at the leading order the same of a usual LVS model
with F7v the dominant term in the supersymmetry breaking.

The F-terms associated to the dilaton S and the complex structure moduli U; should be
zero at the leading order by the supersymmetric flux stabilization but they are affected
by the shift of the minimum induced by the o’ correction.

;%8 3 —2ws(U,5)] +o <%) ~ O (m3,)
wg, (Uv S)

252wy (U, S)

with w4 (U, S) = 3 — 2wg(U, S). The BY terms are O(1) in the volume expansion. The

two F-terms are hierarchically smaller respect to the ones of the Kéhler moduli.
The F-term associated to the new Kéahler moduli T}g is:

3W,E1/2¢L/2 1
Flus — f}f S (_2) ~0 (mf’/{f) . (3.25)

The last F-terms associated to the moduli are the ones of G and T, which are fixed to
0:

(3.23)

FS = GK/QWO
(3.24)

FUs = K2 U0 D T o KU FS = B (U, 8)FS ~ O(m,)

F¢ =0, FTsu=0 (3.26)

which is very important to provide the sequestering because the dominant F-terms are
the ones associated to the moduli weakly coupled with the visible sector.

3.3 Soft-Terms

The soft-supersymmetry breaking Lagrangian of the model is:

1 S T
Lot = 5 (MAN 4 hc.) +mi 007 + (6’4“[”}/“5”0&0507 + BuH,Hy + h.c.)

(3.27)
where all the fields and the parameters are the normalized ones.
Before seeing the form of the Soft-Terms is important to look at the factorization of the
matter metric which distinguishes two possible phenomenological scenarios.

Factorisation of the matter metric

The general factorization of the matter metric follows what said in the Chapter 1 con-
sidering the new terms that arise from the o’ correction and the T,g contribution:

-

o (25)1/3V2/3

1-— CS% + CdS'KdS'> . (328)
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There can be defined two scenarios considering if the equation K = e%/3 holds only at
the leading order or also for higher order corrections:

e Local: if the matter metric factorization holds only at leading order in V~!;

e Ultra-local: if the matter metric is factorized in the mentioned way also at higher
orders.

In the Ultra-local scenario:

Ko = ho(U,S)e"? + 0 <#> (3.29)

and ¢; = ¢4 = 1/3. In fact:

(25)1/3)2/3 3V 3V 36V 18 V2 18 V2 V3
(3.30)

The scenarios are very important because they distinguish two phenomenological differ-
ent spectra for the MSSM which can lead to the presence of FCNCs and this will be
object of study of the Section 3.4.

3.3.1 Gaugino Masses

The gaugino masses in gravity mediated supersymmetry breaking are:

1F"O,f,

Mo = 5 Re(f)

(3.31)

By the fact that on the vacuum f, = §,5 and the ¢, are universal terms (but could be
also non universal for different models) the gaugino masses of the model are universal:

1FSasf 3 W, m3 ),
R TR e Tl (332

p

The resulting masses are hierarchically smaller than the gravitino mass ms /.

3.3.2 Scalar Masses

The scalar masses are generated by both F-term and D-term contributions by the D-term
stabilization of the 7,5 moduli.

F-term Contribution

The F-term contribution to the scalar masses for diagonal matter metric is:

m2|p =m, + (V) - F" 800, log(Ka) (3.33)
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Local Scenario

The scalar masses in the local scenario are:
m2 =m, + (V) = F F"950, log(K,) =

1 1= & + casK
§K+log< &y * cas ds) —i—log(ha)] =

=m3, — F F"0r0,
L=+ s

o 1— Csé + cas Kas
= —F " F"050, [log( ‘; . +log(ha) | = (3.34)
— 3y + ngS

1 3 1
(e e o)

1 5 1
= (Cs - g) mm3/2M1/2 +o (W) ~ O(Myj5ms)2).

In the local scenario the masses of the scalar particles are mainly generated by the F'7b
contribution. The masses obtained are flavour universal and are hierarchically between
the gravitino mass mg/, and the universal gaugino mass M /,. For ¢, < 1/3 the resulting
masses are negative, the tachyonic solution would provide a non stable vacuum for the
MSSM fields.

Ultra-local Scenario
The ultra-local scenario provides a different result:
m2 = m§/2 + (V) — FWF"%QL log(f(a) =
—m 1
=3y — I "0, [gK - 1og<ha)] =
= —F"F"050, log(hy) = (3.35)
— _(FS)? (ag + Y050y + ﬁ%’ﬁ@g) log(ha) =
— — "M}y (02 + 870,00, + 8" B710,,0,, ) og(ha) ~ O(M)

The masses in the ultra-local scenario are generated by the F*° contribution. The mass
spectrum in this scenario is different from the one in the local one and has the masses
of the scalar particles at the same order of the mass of the gauginos. The log(h,) factor
can provide non flavour universal masses, inducing FCNCs.

D-term Contribution
The D-term contribution to the scalar masses is given by:

ma|p = K. Zg?DiaiaDi — Vbo. (3.36)
The only term is the one associated to the D-term of T,;¢ associated to the anomalous

U(1) symmetry which is:

Dr,, = id—;@nsf(- (3.37)
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And ¢g? = 1/Re(f,) =. The contribution will be:
4as

ma|p = 4—K; 9745 D145 01450006 K — Vo =
= B85 1D O Ko — Vo = % Dysqus—2 — Vi = (2eas — 1)V, (3:35)
Trs Tas OTus B = VD0 = 72 Dasas D0 s D0-
Adding also Vgo/3 = —Vp /3 the final result is
mey = 2 <CdS — §> VDO ~ O(V ) (339)

In the local scenario the contribution is O(V~1) so it is negligible respect to the contri-
bution from the F-term. In the ultra-local scenario ¢, = 1/3 so the O(V~*) contribution
is removed giving that the dominant contribution is the F-term one.

3.3.3 Trilinear terms

The trilinear A-terms are defined for a diagonal matter metric as (in the leading order
contribution F™0,, log Y,5, = 0):

Aagy = F™ [Kméam — O log (f(afcﬁfq)} . (3.40)

Local scenario

In the local scenario the result for the trilinear A-terms is:

Aapy = F™ [Kmdaﬁv — O log <I~(a[~(/3f(7)] =

]. - sé + K
= F™0,, | K —log (X hahgh,) — 3log | — =V T “SdS } |
1-— % + %de

1 3 1 1
= Fmﬁm — log (hahﬁhv) -3 (g — CS> % -3 (CdS — g) de +o0 <W>

6 1
= [—s@s,u log (hahghy) — A (— — CS>] My ~ O(My)2)
s

(3.41)
with 05, = 05 + BY0,. The trilinear terms are mainly generated by the F*° term con-
tribution, they are universal if the term s0;, log (hohsh,) is negligible respect to the
other terms producing trilinear terms of the order O(M; /) which are proportional to
the Yukawa couplings.

Ultra local Scenario

In the ultra-local scenario the trilinear terms are:
Aagy = F™ [Km(sam — O log (f( K fqﬂ -

= F"0,, [K —log (" hahgh,)] =
(3.42)
= F™0p, [—log (hohghy)] + 0

\_/

1
7
= —50s10g (hahghy) Myjs ~ O(Mj)s).
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The trilinear terms are, also in this scenario, generated by the F'® term but in this case
they are not universal because of the cancellation which leaves only the s0;, log (hohsgh)
term but this does not change the hierarchy leaving them at the O(A;/2) order.

3.3.4 Bu-term

F-term contribution

The last soft-term is the Bpu-term. Parametrizing Z = ~vKj; with K, the flavour
universal part of the matter metric and assuming p = 0 the term is:

Byl = (K, Ku,) V2 {2m2), + (V))Z — myoF OmZ+
+ Mg F™ [amz — Z0log(Ky, Ky, ]+

1

—FF" (0007 — 20mZ)0ulog(Z)] | =
=1 {27"%/2 - 2m3/2Fiai109(KH)+

Narie

(3.43)

_FF [&&jlog(f{M) - @lOg(KM)&leQ(KH)}} =

— ~ 1
)
S, [y v

In the Local and Ultra-local scenario the behaviour of the By term is proportional to
the flavour universal term of the scalar masses, reproducing the same hierarchy.

D-term contribution

The D-term contribution is given by:

Bulp = (K, Kn,) "/ (Z 9:Din,On,Di — VD,OZ> =

LK) <id—7f9§sDTdsaTdsKM - VD,OKM) = (3.44)

NG
. Y

2
m ’D.
N

Also for the D-term contribution the behaviour of By is the same as the D-term con-
tribution of the scalar masses, this means that again is negligible respect to the F-term
contribution.
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3.3.5 Mass Spectra

The two mass spectra for the different scenarios are summarised in Figure 3.2.

M ms/o M ms/o
myo
Me, M1/2 M1/2

Figure 3.2: The two possible mass spectra of the model. (Left) Ultra-local scenario.
(Right) Local scenario.

The Ultra-local scenario spectrum is similar to the one obtained from D7-branes while
the Local scenario gives a split supersymmetry breaking spectrum. Considering the
compactification volume expressed in [39] V ~ 107 the spectrum will be mg/, ~ 10 TeV,
M2 ~ 1 TeV and in the local scenario mg ~ 10* TeV.

The split of the supersymmetry in the local scenario influences the renormalization of
the mass of the Higgs in the RG group. In fact we have looked at the study [40] where it
was computed the RG flow of the Higgs mass in the MSSM with different supersymmetry
breaking scenarios. In the split supersymmetry breaking scenario, fixing M/, ~ 1 TeV,
the mass of the Higgs is reproduced for the chosen flavour universal mass of the scalar
particles for tan 5 = 1. The § angle is defined as:

H cosf8  sinf eH*
(A) - (— sin 3 cosﬁ) - ( Hud> (3.45)

where € is the antisymmetric tensor with e;o = 1. H is the SM-like Higgs doublet and A
is an heavier Higgs doublet. tan g is then defined by the tuning condition:

Mg, + 1

tan?f = —24——
MR AT

(3.46)

mo
By this result, we can see that the hierarchy of the model provides a strict bound on the
MSSM RG parameters.

The lightest supersymmetric particle in this split MSSM and the best candidate to be
experimentally observed is the gluino which has been widely studied from a phenomeno-
logical point of view as, for example, done in [41] where the gluino signature are studied
in term of its lifetime in fact from [40] the gluino lifetime is:

2TeV\® /1 my \4
= 4m. 4
“Tg ( M1/2 ) <1O7 GeV) 0.4 m (3 7)
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By our prediction of the spectrum in the local scenario the gluino lifetime result is
¢T3 ~ 13 m, in this Long-lived gluino scenario the best possibility to observe it is when
the gluino hadronizes and turn into an R-hadron [41]. The R-hadrons are massive charged
particles colour singlet hadronic states.

3.4 Sequestering and Mirror Mediation

Before looking at the FCNCs analysis of the mass spectra and the trilinear terms is
possible to see if the five Mirror Mediation conditions are respected by the model.

1 The Hidden sector is made by the modulus Ty, Ty, Tys, S, U, Tsy, G providing
the distinction of two classes:

L4 q)z == Tb7 TS7 TdS; TS]W? G7
® X; = SJ U.
So the model matches the first condition.

2 The Kéhler potential is a sum at the zero order in 1/V but the first order corrections
spoil the sum form introducing mixing terms between ®; and y;:

2

K = —21n(V) + Aas— + Asu o U In(25) + Koo (U) - % +o <i> .

§ v VY V V2
N~ Xi sector
®; sector ! mixing terms
(3.48)

The condition is respected only at the leading order but as exposed in the Chapter
2 the mixing terms in the Kéahler metric are suppressed respect to the diagonal
ones in the LVS.

3 The Yukawa couplings depends only on the y; because of the shift symmetry of
the Khéler moduli and the holomorphy of the superpotential. The gauge kinetic
function depends both on ®; and y;, in fact in the model:

fa = 6aS + IiaTS]V[. (349)

The dominant term in the gauge kinetic function is the dilaton dependence which
is from the y; class but it should come from the ®; class, so the Mirror Mediation
condition on the gauge kinetic function is not respected by the model.

4 The factorization of the matter metric is broken by the term of order 1/V%/3:

1 Tds fa(U, S)Csé
= fu(U,S) —= VIE ( — csmToy + b + cas == Vv ) — oy (3.50)
X factor o, ?arctor mixing term

The mixing term is suppressed respect to the factorized one so at the leading order
the Mirror Mediation condition is respected but at the higher order is broken.



3.4. SEQUESTERING AND MIRROR MEDIATION 59

5 The non-supersymmetric stabilization of ®; is respected while the supersymmetric
one of y; is not respected, in fact:

PR ()
) 1
F _2Va5(22)1/2/ +o (W)
Tys _ _ 3Woél/2e)/? 1 P;
Pl = iy o) (1770
FTsm = () (3.51)
FG =0 )
FS = eKI2W,38 3 — 2wg(U, S)] }
o ep (U)o FXi £ 0 but o(1/V*)
FY = K% 2525’5(U,5)F

The F¥ and FY terms are suppressed respect to the ®; class’ F-terms so the Mirror
Mediation condition is again respected only at the leading order.

The Mirror Mediation analysis shows that the Mirror Mediation conditions are always
matched at the leading order (except for what concern the gauge kinetic function) but
they are broken once one considers also the subleading contributions so a cancellation
at the leading order could make emerge the non Mirror Mediation terms which would
produce FCNCs.

As shown in this Section the Mirror Mediation conditions are not exactly respected
and this could lead to non flavour-universal masses (as what happens to the Ultra-
local scenario), it is then fundamental to understand if the experimental bound (2.20) is
respected or not by the two scalar masses. Once verified the experimental compatibility
of the scalar masses we considered the UFB and CCB conditions (2.27).

3.4.1 Ultra-local Scenario

In the Ultra-local scenario the scalar masses are flavour non universal with the form:

m2 = M},Ag . og ha (U, S) (3.52)

with A, = —s? <8§ + BY0,,0, + B ﬁ@'@ui@ﬁj). All the phenomenological implications

came out from the exact functional form of h,(U,S). We could try to consider an
hypothetical parametrization that could preserve the flavour universality:

he = g(U, S)ga(U, S). (3.53)

In this parametrization the scalar masses could be divided into a universal term and a
non-universal term:

m? = M12/2As,u log (U, S)
Aml = M7 ;A 108 go (U, S).
Now looking at the experimental bound (2.20) the bound on the non universality of
he (U, S) will be (considering m ~ 10* TeV):
A, logg(U,S) 2 10°A, , log go (U, S). (3.55)
The resulting suppression is huge and it is the result of a non supported hypothesis on

the matter metric. The resulting mass in the Ultra-local scenario should make us agree
on the fact that it is not compatible with the FCNCs constraints of the SM.

(3.54)
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3.4.2 Local Scenario

For the local scenario the flavour universal mass term is dominant but there is also a
flavour non universal term which is suppressed in the volume expansion but has to be

analysed:
1 5
2
—(cs—= | —— M

o <C 3) (U, 8) P (3.56)

Amd = M7 ;A . log ho(U, S).
The resulting lower bound for the volume is:

3Ew2(U, S)A,, log ho(U, S
p > 10-23 85 (U 5B 108 ha(U, ) (3.57)

1T 2 (e-1)
All the terms in the RHS are of the unity order providing that the bound is simply
V 2 1072, The resulting bound is compatible with the volume proposed in [39] V ~ 107.

3.4.3 Literature Results

Comparing this result to the one obtained by de Alwis in [42] we obtained a low difference
but a significant discrepancy in how the result is obtained. The result obtained in [42]
is a lower bound for the volume of V > 10~% always considering the mass of the scalar
as 101 TeV.

The discrepancy is generated by the matter metric considered by [42] which has been
computed in [43].

~ 3

B = ad (iwngbl/z — iwiET;m) (3.58)
V+E/2

with w’ the harmonic (1,1)-forms on the Calabi Yau orientifold evaluated at the position

of the D3-breane. The computation is made considering the D3-brane in a fixed point

and not in a singularity and it is improperly extended to the singularity case. In fact
the non-universal mass term in [42] is:

3 /7s
Amffzmg/zZ ?bK(’f. (3.59)

The \/7s/7, term came out from the form of the matter metric in fact we have compared
the de Alwis result for the matter metric with the result expressed in Chapter 1 and we

have got that (assuming for simplicity 3u = iw’;B = iwg = 1):
1 7/ 1
K/2 - °s i
P _1+2v1/3+0(v2/3)' (3.60)

Instead of having only 1 up to the é corrections the RHS has also a O ( TS/Tb) term

which is the origin of the discrepancy between our result and the one in [42].
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3.4.4 CCB and UFB Constraints

Once we verified that the FCNC constraints are always respected by the local scenario
we had to consider the CCB and UFB constraints that we mentioned in Section 2.2.3
and 2.2.4 which can be essentially summarised as:

A2

25y < Mg (3.61)

Considering now the the value of the trilinear terms and the scalar masses we have seen
that the local scenario respects the condition in fact: Aiﬁy ~ ]\412/2 < m% ~ mge M .
The local scenario is acceptable also under this constraints.
The Ultra-local scenario which is already problematic from the mass-universality does
not respect the CCB and UFB constraints because the terms are very similar in fact
this would require a very peculiar fine tuning because the trilinear terms and the scalar

masses are both proportional to the gaugino mass. The condition (3.61) becomes:
[0y log (hahshs)]? < — (aj + BY0,0,, + 5Ui5@auiau].) log(ha).  (3.62)

The solution of the inequality can be found only knowing the exact form of h, (U, S) also
by the fact the the § terms are O(1) so the most realistic hypothesis that we can make is
that the condition is not respected, producing another phenomenological problem against
the Ultra-local scenario.



62 CHAPTER 3. SEQUESTERED STRING MODELS AND FCNC CONSTRAINTS



Conclusions

String compactifications can provide many useful supersymmetric models with differ-
ent phenomenological implications. Sequestered models provide a good solution to the
hierarchy problem and to the cosmological moduli problem. However models with low-
energy masses for the scalars can be affected by flavour changing neutral currents which
one want to avoid in order to preserve the Standard Model predictions.

The model that we have analysed provides two different phenomenological scenarios for
the MSSM: the ultra-local and the local one. It is important to notice that the two sce-
narios are distinguished only by different higher-order corrections to the Kéhler metric
for MSSM matter fields.

e The Ultra-Local scenario features a standard supersymmetry breaking spectrum
where all soft-terms are of the same order of magnitude M/, ~ mq ~ Agpy ~
Bp ~ 1 TeV < mg/; with a low energy supersymmetry soft breaking as in models
with matter originated by D7-branes, but introduces flavour non-universal scalar
masses due to the functional dependence of the matter metric. In fact, the scalar
masses are generated by the o/ correction. Combining the definition of the F-term

potential FmF"Kmn =V + 3m§/2 with the form of the matter metric which is
.f(a = eX/3],,, the scalar masses become:

m2 = gvo — %F’”F”aman 10g R (3.63)
So by the fact that h, depends only on S and U, the only contribution is the one
generated by the shift of the minimum for S and U induced by o’ effects. This
means that the normalized scalar mass depends on the flavour structure of the
matter metric. This implies that in general there is no way to assume a flavour
universality. Once we have moved to the analysis of the trilinear terms we have
seen that also in this case the Ultra-local scenario does not respect clearly the con-
straints. In fact, the exact flavour structure of the matter metric became important
also for the trilinears and by our analysis, we can conclude that this scenario does
not respect also the UFB and CCB constraints.
We can conclude that this scenario is phenomenological unacceptable and this could
make us argue that the matter metric should be affected by the o’ correction in
a different way with respect to the Kéahler potential and the definition from [16]
should be exact only in the first order of the volume expansion, at least for D3-
brane models.

e The Local scenario provides a different phenomenological result named in literature
as split supersymmetry breaking. In fact, there is a splitting between the soft

63
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terms leading to My, ~ Aagy ~ 1 TeV and mg ~ Bu ~ 10* TeV, both smaller
than the gravitino mass mg/;; ~ 10" TeV. Tt is important to notice that this
scenario is acceptable if and only if the coefficient of the Kéhler matter metric
¢s > 1/3 in order to provide positively defined scalar masses otherwise this would
introduce an unstable vacuum for the MSSM which can break the symmetry in the
MSSM. The split of the supersymmetry breaking does not spoil the naturalness of
the model since for tan 8 = 1 the mass spectrum gives the right renormalization
group running of the Higgs mass as demonstrated by [40]. Contrary to the Ultra-
local, this scenario respects the FCNC constraints on the scalar masses, as we
have demonstrated in Section 3.4.2, and respects the UFB and CCB constraints as
demonstrated in Section 3.4.4. Asin typical split supersymmetry breaking scenario,
the lightest supersymmetric particles are the gluinos which can be the object of
experimental studies. In particular, this model predicts a long-lived gluino with
lifetime c7; ~ 13 m.

Both of the two phenomenological scenarios are characterized by the presence of the
uplifting mechanism via the new Kéahler moduli that can provide a fine-tuning for the
cosmological constant value.

In the end the result of the phenomenological unacceptability of the ultra-local model
could make us infer that the matter metric should be affected by different o’ corrections
with respect to the Ké&hler potential. In particular, ¢; should be larger than 1/3 to
provide positively defined mass terms. This means that the physical Yukawa couplings
will depend on the volume via higher-order corrections, even if one would expect the
opposite due to the fact that the Yukawa couplings are generated by the local interactions
of the open string degrees of freedom. An interesting follow-up research line could be
the study of the effect of the o corrections to the matter metric and the understanding
of the implications of the volume dependence of the physical Yukawa couplings.



Appendix A
Single-Hole Swiss Cheese Model

The Kéahler potential is:

~ =\ 3/2 =\ 3/2
T, + T, T, + T,
K=—2log (V4 &)y () _ (L (A.1)
2 2 2
the superpotential is:
W = WO + AseiaSTS (AQ)

the supergravity F-term scalar potential is:
Ve = e (KﬁDiWD;W —3|W).(A.3)

The derivative of the Kdhler potential are:

1/2 1/2
KTb = —§Tb—A T, = §TS—A (A4)
2(V+¢/2) 2(V+¢/2)
with 7; = Re(T}), the inverse metric is:
Kﬁ—§ V4 £/2] TS/ZTJ/Q-I—T,}/Q[V—I—f/Z] 37Ty (A5)
312V — £/2] 3TsTh 3T§/2T;/2—T;/2[V—|—f/2] .

The scalar potential will be:
VF :eK [(KTbiKTbKTT + KTSTSKTSKTT + KTSTI;KTS KTT, 4 KTbiKTbKTT _ 3)‘W|2+

+ (KT Ko + KT Ko Wy, W+
+ (K™ Koy, + K Ko, )W W+

+ KWWy, .
(A.6)
The first bracket can be ease evaluated by the breaking of no scale structure:
3 3¢
KT Ky Ky = =3+ Z% (A.7)
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and the second equal to: R
—41, [V +£/2]

- ~ —27,. (A.8)
2V —¢/2]
so in the large volume limit V > 1 we will get:
JEWE 27— g2 __
Ve = FREY Iy W, W+ WzW] + gTWﬁWT] (A.9)
the dominant terms from the superpotential are:
(W[* ~ W5
[WTSW + WﬁW] ~ —QWOCLSAseiaSTS (AlO)
WTSWTS ~ Aga§€_2a575
stabilizing on the vacuum the imaginary part of T} such that e~ %™ = —1 we get:
3 éWOZ WoAsae=m7, 8 A2q2e 2T r}/?
Ve =- —4 ——=2 A1l
RVARYE V2 "3 13 (A1)
looking for the minimum we get:
ovy 9EW2 8W0Asase_a5“78 8 A2q2e=2esms 7}/ 0
oV 4V V3 3 V2 B
9. 4
ngOQ — 4AWoAsase” "1,V + §A§a§e—2aﬂsﬁ/2v2 =0
3 Wors/? 3¢
=——— | 1£4/1 - —=
v 2 Agage9sTs 873/
aV, WoasAs 8 A%a? [1
67-: —4 032 [e_aSTS . CLsTse_asTS] i g ;}as |:§ 8—1/26—2(187—3 . 2@37_31/26—2%7'S =0
€s = 1/(dasts) < 1
3 1-4
2144/1- 3§ —
874 /2 I —e
3Wors? 1 — de,
— _ AsTs ~ W AsTs
V) 4 azA, 1—e, 0¢
12(1—e,)?
3/2 _ —¢g\m mS)
A A
(A.12)
Looking now at the gravitino mass:
W2 —2asT.
m§/2 = eS| ~ (VSQ ~ T (A.13)

The energy on the minimum will be:

(Vpy = —— _ + 0(€%) ~ —mg/QMp. (A.14)
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In order to compute the mass of the modulus first we have to canonical normalize the
fields:

) Ts

S~ — ~ e 2 A.15
Ty <Tb> <Tb> <V> Ts <Tb>3/4 <Ts>1/4 ( )
the scalar potential become:
3 AwZ WAS < —asTE C 8 A2q2 —2as7E ~c1/2
vp— 3o Wodae™ry | 8 Asage T (A.16)
4 (1) 92789/ (1)37¢3 3 (m)32re3/
Asymptotically:
0%V, w2 1
2 2 F 0 3
mz] J me < 87‘;2 > <V>3 m3/2 Mp ( )
Doing the same things for the mass of 7, at the leading order we get
0*Vi W,
e~ (G s (A1)
Let us consider now the F-terms:
F' = fPKIDW
=21, W,
T, bVvo 1/3 3 s5/3
Flr=—— My, My (A.19)
27, W, 21, Wy 1 — 4eg 67 Woes
FTS ~ _ 0 0 ~ 0 -~ mg/gMp

% YV 1—¢€ %
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Appendix B

Sequestered de Sitter String Model

The Kéahler potential is:

- TSAHz-Tszv1>2
K = —2log (V +&(S + 5)*?) —log(S + S) + KoC*C" + Ks(U) + Asu ¥ +
e ()
by + STy
(B.1)
with: 3/2 3/2
T+ T, T+ T,
pu— _— B-2
=) (%) =2
and:
(U, S S+ §)3/? Tomr + Tsu\” G+G\
K, = £205) (Hs%ﬂw (Tt Ton)" o (G46)
(B.3)
the superpotential is:
W =Wo(U,S) + A, (U, S)e T + Ayg(U, S)eas(S+kasTus) (B.4)
The gauge kinetic function is defined:
fa = (S(ZS + IiaTSM, (B5)

with d, are universal constants for Z, singularities but can be non universal for general
singularities. By the fact that (C) = (Tsy) = (G) = 0 the only relevant terms for the
Kéhler derivatives are:

B ==5y 71
1/2
KTS . §Ts/ n §AdSTd§TS
2y 4 V (B.6)
[ NdsTds '
Tas — Vv
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with 7; = Re(T;).
The inverse matrix will be:

KTbTb — é 7—171/2‘))2 |:1 27—35)%53}] -
3(V-9¢) v?

et (75/23»; [1 N 273%53»} . [(1 . u) <1 36 9f_> .

FIT _ AT {1 N 2735)\(1537} ! [1 B 2%]

(V-9 V2
52 3 A\gsT,
v-§ (B.7)
TS 3587’11
V=94
S _ 3E 5Ty
v-§ _
KTdes — TdSTb _ |1 = %é + gﬁ
V(Y —§) | 4Y 8)]
KTsTdS — TdsTs _ — §§ + 95_2
V(Y -¢§) | 4Y 8Y
KTdS§ — _M
2(V = ¢)
FTasTas — 2V lw-d+ AasTasV* L3¢ n 9¢&*
Aas(V = §) 2)? 4y 82
All the other terms can be neglected.
F-term stabilisation
The F-term potential is given by:
Vi — (KﬁDiWD;W - 3|W|2) . (B.8)
Due to the spoil of the no scale structure induced by the £ corrections we will get:
- 3¢
KU — °s
KiKYK; =3+ Ry, (B.9)
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The coefficient of the |IV]? term is at the leading order:

3 ¢

B.10
42s5V3 ( )
the coefficient of W W:
—27,
. B.11
25)? ( )
The scalar potential will be:
EWP  2r o —  — . 87/’
Vp=" — S W W+ Wy ]+ 2 (B.12)
P sy~ aap Ve AWl 5o 5
the dominant terms from the superpotential are:
‘W|2 ~ WQ
(W, W + WgW] ~ —2Woa,Age %" (B.13)
W WT ~ W2A% 2 720,37'5
stabilizing on the vacuum the imaginary part of T} such that e~ %™ = —1 we get:
1 3€W02 WoAsase %1, 8 A2q2e—2asme /2
Ve =— —4 — = B.14
P o | 48 V2 T3 v (B.14)

) € get A :(lllg (& dSPdS —
(Kjdsadsl 1dS) e dS(S Kds dS)

VS = s 7 (B.15)
The total potential will be:
ror _ 1 [3EW8  Wodase 7, | 8 Aade )
- 43 V2 3 %
B.16
(KasaasAgs)? e~2ads(strasTas) 2 st /\dsTds > )
+ S)\dS V +_ Zth|¢hz|

Minimisation of the potential

Stabilising the D-term in the de Sitter potential we fix (gni|oni|?) = 0 so the total

potential will be:

Tt — 1|30 B 4W0Asas€_“”sn n 8A§a§e‘2“”8751/2
25 | 403 V2 3 v
(lidsadsAdS)Q e—2aas (s+rasTis) s 1 Qas AiSTas 2
SAds Y 2s \dr VY

_|_

(B.17)
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oy Tet 2a,A;e7 7Y 1 —a,Ts
=0— e T 1
87'5 SWoTs 2 20,575
oV Tet (qasAdas)*Tas
—0— A, o)2e20as(stRasTas) —
D745 (KasadsAas)™e (4m)2V
avTot _ 0 N V:t _ 3W07-81/2 1 + q,%g)\dSTdS(l + )\dSTdS)
A% 20, A e~ 0sTs (4m)24Whas Ase s g (B.18)
14 11— 3/2 qﬁsfims(1+/\dsms) B
87'3 <1 + (47r)24W0asAse*a5"STs>
3Wora!? c
= OTGT(+ ) 1+ |1- 3
2a,AeTs AsTs 873/2 (1 n %>
Defining €, = 1/4as7, < 1 we get:
2
(= 3¢ 1 :
27 (1 —4es)[(4 — 4es) (1 + daes) — (1 — 4ey)]
3 3 4 3 2 16
_¢ I+ (> —za)de,+ (= — Za+ —a® | 16€2 + o(e?)
2 4 3 4 3 3 (B.19)
o 3WO<7—8>1/2 as<Ts> ]_ - 465 3WO<TS>1/2 as<7’s>
V)= dagsA, c 1—e,  4dasA, c +oles)
1
(s)= -
gs
Shift of the Dilaton and Complex Structure Minimum
The o correction introduce a shift in the dilaton minimum that is:
DsW ~ DsWiuale_g + Wap Ks + Wips + WoK§ =
3 Woé S€g
= 2P0 1 205108 AL
45V[ e+2850g (U, S)+
A2 5 1 (B.20)
+ 28 2 \/_SaslogAds(U,S)— ~V2s | =
kasEM? \ aas V2ags
3 Woéws(U, S)
4 sV

The complex structure moduli are stabilised supersymmetrically for é but introducing
the o/ correction the minimum is shifted producing:

DUiW ~ DUinluz + Wn.p.KC.S.Ui + W’Vl-p-Ui =

3 WOées )‘cllé'2
= — = 8 . Kcs 1 As U,S - 179 ~. Kc.s 1 A U7S -
2 V Ul .S. + Og ( ) + deadsei/2€1/2 [ + Og ds( )]
_§W05in(U7 S)
4 sV

(B.21)
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