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Abstract
The increasing amount of data produced by modern infrastructures requires instru-

ments of analysis more and more precise, quick, and efficient. For these reasons in the last
decades, Machine Learning (ML) and Deep Learning (DL) techniques saw exponential
growth in publications and research from the scientific community. In this work are pro-
posed two new frameworks for Deep Learning: Byron written in C++, for fast analysis
in a parallelized CPU environment, and NumPyNet written in Python, which provides a
clear and understandable interface on deep learning tailored around readability. Byron
will be tested on the field of Single Image Super-Resolution for NMR imaging of brains
(Nuclear Magnetic Resonance) using pre-trained models for x2 and x4 upscaling which
exhibit greater performance than most common non-learning-based algorithms. The
work will show that the reconstruction ability of DL models surpasses the interpolation
of a bicubic algorithm even with images totally different from the dataset in which they
were trained, indicating that the generalization abilities of those deep learning models
can be sufficient to perform well even on biomedical data, which contains particular
shapes and textures. Ulterior studies will focus on how the same algorithms perform
with different conditions for the input, showing a large variance between results.
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Chapter 1

Introduction

This thesis work aim is to evaluate the upsampling perfomances of pre-trained Deep
Learning Single Image Super-Resolution models on Biomedical images of human brains.
The first chapter focuses on the fundamentals of the techniques named in this work with
special emphasis on Deep Learning, Super Resolution and image analysis, essential for
understanding the implementations of the two frameworks and the main methodologies
applied during the study.
The second chapter includes the mathematical and numerical explanations of the most
important algorithms implemented in Byron and NumPyNet and a brief description of
the two frameworks. Moreover I will report the timing measurements againts a popular
deep learning framworks called Tensorflow for the most importants layers in image anal-
ysis.
In the third chapter, I firstly describe the models in details by focusing on the reasoning
the respective authors put during the construction of the architectures. Then the atten-
tion is moved to the description of the dataset used for training (DIV2K) and for testing
(NMR) and how the images has been fed to the networks.
The final results are collected in the last chapter divided into subsection which answer
different questions: how well DL models can reconstruct an High Resolution image start-
ing from a Low Resolution one? How well they can generalize their “knowledge” on new
data? How the orientation of the input influences the result? In which parts of the im-
ages the models struggle the most? The methods has been evaluated through common
metrics in image analysis: Peak Signal to Noise Ratio (PSNR) and Structural SIMilarity
index (SSIM). Secondarily, to remove eventual backgrounds effect from the analysis, we
introduced FSL BET (Brain Extraction Tool) which is a software frequently used in
NMR studies to mask images and remove uninteresting data.
In the end, I discuss the conclusions and propose possibile future developments for the
work.
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1.1 Neural Network and Deep Learning

A neural network is an interconnected structure of simple procedurals units, called nodes.
Their functionality is inspired by the animals’ brain and from the works on learning and
neural plasticity of Donald Hebb [13]. From his book:

Let us assume that the persistence or repetition of a reverberatory activity
(or ”trace”) tends to induce lasting cellular changes that add to its

stability.[. . . ] When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth process or

metabolic change takes place in one or both cells such that A’s efficiency, as
one of the cells firing B, is increased

which is an attempt to describe the change of strenght in neural relations as a conse-
quence of stimulations. From the so-called Hebbian Theory rose the first computational
models such as the Perceptron, Neural Networks and the modern Deep Learning. The de-
velopment of learning-based algorithms did not catch up with the expected results until
recently, mainly due to the exponential increase in available computational resources.

From a mathematical point of view, a neural network is a composition of non-linear
multi-parametric functions. During the training phase the model tunes its parameters,
starting from random ones, by minimizing the error function (called also loss or cost).
Infact, machine learning problems are just optimization problems where the solution is
not given in an analytical form, therefore trough iteratives techniques (generally some
kind of gradient descent) we progressively approximate the correct result.

In general, there are 3 different approaches to learning:

� supervised It exists a labeled dataset in which the relationship between features
(input) and expected output is known. During training, the model is presented
with many examples and it corrects its answers based on the expected response.
Some problems tied to supervised algorithms are classification, regression, object
detection, segmentation and super-resolution.

� unsupervised In this case, a labeled dataset does not exist, only the inputs data
are available. The training procedure must be tailored around the problem under
study. Some examples of unsupervised algorithms are clustering, autoencoders,
anomaly detection.

� reinforced the model interacts with a dynamic environment and tries to reach
a goal (e.g. winning in a competitive game). For each iteration of the training
process we assign a reward or a punishment, relatively to the progress in reaching
the objective.

This work will focus on models trained using labeled samples, therefore in a supervised
environment.
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Perceptron

The Perceptron (also called artificial neuron) is the fundamental unit of every neural
network and it is a simple model for a biological neuron, based on the works of Rosenblatt
[24]. The perceptron receives N input values x1, x2, ...xN and the output is just a linear
combination of the inputs plus a bias:

y = σ(
N∑
k=1

wkxk + w0) (1.1)

where σ is called activation function and w0, w1, ...wN are the trainable weights.
Originally, the activation function was the Heaviside step function whose value is zero

for negative arguments and one for non-negative arguments:

H(x) :=

{
0 if x < 0

1 if x ≥ 0
(1.2)

In this case the perceptron is a linear discriminator and as such, it is able to learn
an hyperplane which linearly separates two set of data. The weights are tuned during
the training phase following the given update rule, usually:

wn+1 = wn + η(t− y)x (1.3)

where η is the learning rate (η ∈ [0, 1]) and t is the true output. If the input instance is
correctly classified, the error (t−y) would be zero and weights do not change. Otherwise,
the hyperplane is moved towards the misclassified example. Repeating this process will
lead to a convergence only if the two classes are linearly separable.

Fully Connected Structure

The direct generalization of a simple perceptron is the Fully Connected Artificial Neural
Network (or Multy Layer Perceptron). It is composed by many Perceptron-like units
called nodes, any one of them performs the same computation as formula 1.3 and feed
their output forward to the next layer of nodes. A typical representation of this type of
network is shown in figure 1.1.

While the number of nodes in the input and output layers is fixed by the data under
analysis, the best configuration of hidden layers is still an open problem.

The mathematical generalization from the perceptron is simple, indeed given the i-th
layer its output vector yi reads:

yi = σ(Wiyi−1 + bi) (1.4)

where Wi is the weights matrix of layer i and bi is the i-th bias vector, equivalent to
w0 in the perceptron case. The output of the i-th layer becomes the input of the next
one until the output layer yields the network’s answer.
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Figure 1.1: A common representation of a neural network: a single node works as the
perceptron described before. The network is composed by the input layer, the hidden
layers and the output layer. The depth of the network is determined by the number of
hidden layers.

As before, σ is the activation function which can be different for every node, but it
usually differs only from layer to layer. How to chose the best activation function is yet
to be understood, and most works rely on experimental results.

In a supervised environment, the model output is compared to the desired output
(truth) by means of a cost function. An example of cost function is the sum of squared
error:

C(W ) =
1

N

N∑
j=1

(yj − tj)2 (1.5)

where N is the dimensionality of the output space. C is considered as a function of
the model’s weights only since input data and truth labels t are fixed.

Those architectures are universal approximators, that means given an arbitrarly com-
plex function, there is a fully connected neural network that can approximate it.

This type of network is called feed forward because the information flows directly
from the input to the output layer: however, it exists a class of models called Recurrent
where this is not the case anymore and feedback loops are possible, but they are outside
the scope of this work.

Gradient Descent

To minimize the loss function an update rule for the weights is needed. Given a cost
funtion C(w), the most simple one is the gradient descent:

w ← w − η∇wC (1.6)
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The core idea is to modify the parameters by a small step in the direction that minimizes
the error function The lenght of the step is given by the learning rate η, which is a
hyperparameter chosen by the user, while the direction of the step is given by −∇wC,
which point towards the steepest descent of the function landscape.

Figure 1.2: Visual example of gradient descent for a model with 2 weights. The idea is
to modify the weights to follow the direction of the steepest descent for the landscape of
the error function

The speed at which the algorithm converges to a solution and the precision of said
solution are greatly influenced by the update rule. More complex and efficient update
rules do exist, but they follow the same idea as the gradient descent.

Error Back Propagation

The most common algorithm used to compute the updates to weights in the learning
phase is the Error Back Propagation. Consider a Neural Network with L total layers,
each with a weight matrix Wl with l = 1, 2, . . . L. Given a differentiable cost function C,
which depends from W1,W2, . . .WL, let’s define:

zl = Wlyl−1 + bl

al = σ(zl)

(1.7)

(1.8)
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respectively the de-activated and activated output vectors of layer l with N neurons (or
N outputs.) and define:

δl = (
∂C

∂z1l
, . . . ,

∂C

∂zNl
) (1.9)

the vector of errors of layer l. Then we can write the 4 equations of back propagation
for the fully-connected neural network [19]:

δL = ∇aC � σ′(zL) The network error vector

δl = (W T
l+1δl+1)� σ′(zl) The error vector for layer l

∂C

∂bjl
= δjl The j-th bias update

∂C

∂wjkl
= akl−1δ

j
l The update for the weight indexed j, k

(1.10)

(1.11)

(1.12)

(1.13)

where � is the Hadamard’s product. Those equations can be generalized for others kind
of layers, as I will show in the next chapters.

The full training algorithm is:

1 Define the model with random parameters

2 Compute the output for one of the inputs

3 Compute the loss function C(W ) and the gradients ∂C

∂wjk
l

and ∂C

∂bjl
for each l.

4 Updates the parameters following the update rule,

5 Iterate from step 2 until the loss is sufficiently small

1.2 Super Resolution

The term Super-Resolution (SR) refers to a class of techniques that enhance the spa-
tial resolution of an image, thus converting a given low resolution (LR) image to a
corresponding high resolution (HR) one, with better visual quality and refined details.
Image super-resolution is also called by other names like image scaling, interpolation,
upsampling and zooming [4]. Super resolution can also refers to its “hardware” (and
best-known) implementation, the super resolution microscopy, which aim is to overcome
the diffraction limit: indeed, the development of super-resolved fluorescense microscopy
won a Nobel price in chemistry in 2014, though its technicalities reside outside the scope
of this work, which focused on its numerical counterpart.

As described before, the training of a supervised model happens by means of exam-
ples: in the case of classification the network is presented with many couples features-label
that compose the train set. The objective is to find the correct labels for a set of samples
never saw before called test set.

For digital images, the features are the pixels which compose a 2 dimensional or 3
dimensional (for RGB picture) grid-like structure, the label is usually represented as 1
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dimensional vector as large as the binary representation of the number of classes the
model is supposed to discern: a neural network produces a map between a very large
features space and a smaller one.

This behaviour is slightly different for Super-Resolution: indeed, when training a SR
model we are talking about image-to-image processing and as such, both the features
space and the labels are images. The dataset is built from a single series of high resolution
(HR) images which are downsampled to obtain the low resolution (LR) counterpart: the
couples LR-HR are fed to the network respectively as input and label just like in a
classification problem; this time though, the network will map a smaller feature space
into a larger one.

The models I’m going to use in this work are trained on images downsampled using
the bicubic interpolation.

1.2.1 Bicubic Interpolation

The Bicubic interpolation is a common algorithm used in image analysis either to down-
sample or upsample an image. This operation is also called re-scaling and its purpose is
to interpolate the pixel values after a resize of the image, respectively after shrinking or
expanding it, e.g as a consequence of zooming. The name comes from the highest order
of complexity of the operation used in the algorithm, which is a cubic function. Given
a pixel, the interpolation function evaluates the 4 pixel around it by applying a filter
defined as:

k(x) =
1
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(12− 9B − 6C)|x|3 + (−18 + 12B + 6C)|x|2 + (6− 2B) if |x| < 1

(−B − 6C)|x|3 + (6B + 30C)|x|2 + (−12B − 48C)|x|+ (8B + 24C) if 1 ≤ |x| < 2
0 otherwise

(1.14)

where x identifies each pixel below the filter. Common values used for the filter
parameters are B = 0 and C = 0.75 (used by OpenCV library) or B = 0 and C = 0.5
used by Matlab and Photoshop. The scale factor of the down/up sampling can assume
different values according to the user needs; for this work, I used an upsampling factor of
×2 and ×4 and the algorithm is from the Python version of the library OpenCV [6]. The
main aims of SR algorithms are to provide a better alternative to standard upsampling
and obtain a better quality image both from a qualitative (visual perception) and a
quantitative poin of view.

1.2.2 Image Quality

While the human eye is a good qualitative evaluator, it is possible to define different
quantitative measures between two images to quantify their similiraties.
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PSNR

One of the most common in Image Analysis is the Peak Signal To Noise Ratio or PSNR.
It is usually employed to quantify the recostruction capabilities of an algorithm given a
lossy compression, w.r.t the original image. The mathematical espression reads:

PSNR = 20 · log10(
max(I)

MSE
) (1.15)

where max(I) is the maximum available value for the image I, namely 1 for floating
point representation and 255 for an integer one. MSE is the Mean Squared Error, which
is a common metrics in data analysis used to quantify the mean error of a model. It is
defined as:

MSE =
1

HW

H∑
i=1

W∑
j=1

(I(i, j)−K(i, j))2 (1.16)

where H and W are the spatial dimensions of the original image I and the recostruc-
tion K. The metric can be generalized to colored image by simply adding the depth
(RGB channel) dimension.

Even though an higher PSNR generally means an higher recostruction quality, this
metric may performs poorly compared to other quality metrics when it comes to estimate
the quality as perceived by human eyes. An increment of 0.25 in PSNR corresponds to
a visible improvement.

SSIM

Another common metric is the Structural SIMilarity index or SSIM. It has been developed
to evaluate the structural similraties between two images, while incorporating important
perceptual phenomena, including luminance and contrast terms. For that, it should be
more representative of the qualitative evaluation as seen by humans. The SSIM index is
defined as:

SSIM(I,K) =
1

N

N∑
i=1

SSIMi(xi, yi) (1.17)

Where N is the number of windows in the images, usually of size 11 × 11 or 8 × 8.
For every box, the index is:

SSIM(xi, yi) =
(2µxµy + c1)(2σxy + c2)

(µx2 + µy2 + c1)(σx2 + σy2 + c2)
, (1.18)

where x and y are two equally-sized regions in two different images, µ is the average
value in the region, σ2 is the variance, σxy is the covariance between the regions and c1
and c2 are two constants to stabilize the division.
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Both SSIM and PSNR can be useful in Deep Learning applications as target functions
or as post-training quality measures. To compute PSNR and SSIM I used the function
of the Python library scikit image [28], for their precision, efficency and ease to use.

SR pre-trained models will be evaluated in their reconstruction capabilities against
the bicubic interpolation using as benchmark an available dataset of NMR images of
brain. I’d like to point out that the deep learning architecture tested in this work are
trained on general purpose datasets which are very different from biomedical pictures
available: the first problem is that MRI images are single channeled (gray-scaled) as
opposed to the RGB images which those models are trained on, however this can be
easily solved by artificially add depth by concatenating the same image 3 times; by
doing so, the models elaborate tree different outputs that can be compared against each
others. The second issue is that the models never had a chance to learn the particular
shapes contained in animals’ brain: although that could be seen as a major drawback,
their generalization capability should be sufficient to perform well even outside their
optimal ”environment”. The datasets will be discussed in later chapters.

1.3 Nuclear Magnetic Resonance

The term NMR identifies an experimental technique called Nuclear Magnetic Resonance.
It has been indipendently developed by two reserch groups led Felix Bloch and Edward
Purcell, both awarded with the Nobel prize in Physics in 1952. Initially, NMR was tied
to studies in fundamental physics and particularly to solid state physics: its theoreti-
cal and technological evolution in the years allowed numerous applications also in the
biological and medical fields. Differently from other invasive techniques from nuclear
medicine or radiology, which employ ionising radiations dangerous for the organism, in
NMR the only source of energy administration is represented by two types of electromag-
netic fields: static and radio-frequency. By applying those fields to nuclei which posses
magnetic properties it is possible to analyze the macroscopic structure of the sample.
The most used nuclei are 1H, 2H, 31P, 23Na, 14N, 13C, 19F , which is really advantegeous
in the biological field, given that the subjects are most likely rich in H2O, therefore in
1H. This allows to detect signals of large intensity from the samples and measure a high
ratio signal/noise even with few acquisitions.

As stated before, NMR is applied to nuclei which posses magnetic properties, there-
fore they have an angular momentum I (spin) associated with a magnetic momentum
µ = γ( h

2π
)I where γ is the gyromagnetic ratio, which depends from the nucleus.

Considering an ensemble of 1H with I = 1
2
, if a static magnetic field B0 = H0ẑ is

applied, the magnetic momenta of the nucleus will orientate themselves along the parallel
or anti-parallel direction of the fields, assuming two discrete values of energy. According
to Boltzmann statistic, the majority of nuclei will orientate in such a way to minimize
the energy (parallel to B0).

The energy difference between the two level is given by:
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∆E = γ

(
h

2π
B0

)
=

(
h

2π
ω0

)
(1.19)

where ω0 is the Larmor Frequency. The energy that must be given to perturb the
system from its equilibrium condition follow the resonance condition 1.19. The pertur-
bation is represented by a radio-frequency electromagnetic field B1 perpendicular to B0,
oscillating at the Larmor frequency of the system ω0. After removal of the perturbation,
it is possible to measure the relaxation times T1 and T2 of the longitudinal and trasversal
components of the nuclei magnetization.

For the nuclei, the temporal evolution of µ under the influence of the static fields B0

is given by:

dµ

dt
= γµ×B0 (1.20)

and by separating the three components it yields:

dµx
dt

= γµxB0

dµy
dt

= γµyB0

dµz
dt

= 0

(1.21)

(1.22)

(1.23)

which highlights how the magnetic moment performs a precession around the z axis
with frequency ω0 = γB0

The radio-frequency magnetic field B1, with B1 << B0 and frequency ω is perpen-
dicular to B0 lying in the xy plane and can be obtained by an oscillating fields generated
by a coil traversed by a radio-frequency current.

In the most general case of nuclear magnetization, if the system is influenced by field
B0 and B1 it is in a non-equilibrium condition described by the Block Equations for each
components:

dMz

dt
= −Mz(t)−Mz(0)

T1
longitudinal relaxation

dMxy

dt
= −Mxy(t)−Mxy(0)

T2
trasversal relaxation

(1.24)

(1.25)

Their integration brings:

Mz(t) = Mz(0)exp

(
−t
T1

)
+Mz(0)

(
1− exp

(
−t
T1

))
Mxy(t) = Mxy(0)exp

(
−t
T2

) (1.26)

(1.27)
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Bloch’s equations are fundamental for the choice of the sequence of excitation and
subsequent acquisition and elaboration of the signal. Once the perturbation action ends,
its possible to follow the de-excitation of the macroscopic magnetization M , which tends
to realign to the field B0. The signal produced by the variation of M is measured
by an induction electromagnetic coil around the sample in an ortogonal direction w.r.t
the static field. The NMR signal, called FID (Free Induction Decay), is approximately
monochromatic and oscillates at Larmor frequency, decaying exponenetially as a functio
of T2. For Image formation (MRI), excitation sequences are opportunely chosen in such
a way to emphasize the dipendence of FID from three parameters: protonic density ρ,
T1 and T2.
MRI can be differentiated in two types: T1-weighted sequences and T2-weighted se-
quences, which show different information. The former are considered the most “anatom-
ical” and result in images that most closely appoximate the appearences of tissues: fluid
have low signal intensity (black), muscle and gray-matter has a intermediate signal in-
tensity (grey) and fat and white-matter have a high signal intensity (white).
The latter instead, have a high signal intensity for fluid an fat, an intermediate intensity
for muscle and grey-matter, and low intensity for white-matter, which appears dark-ish.
In figure 1.3 is shown a comparison between the two:

Figure 1.3: Comparison between a T1-weighted slice (left) and a T2-weighted slice (right)
for the same patient
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Chapter 2

Algorithms

A wide range of documentations and implementations have been written on the topic of
Deep Learning and it is more and more difficult to move around the different sources.
In recent years, leaders in DL applications became the multiple open-source Python
libraries available on-line as Tensorflow [2], Pytorch [22] and Caffe [16]. Their portability
and efficiency are closely related on the simplicity of the Python language and on the
simplicity in writing complex models in a minimum number of code lines. Only a small
part of the research community uses deeper implementation in C++ or other low-level
programming languages and between them should be mentioned the darknet project of
Redmon J. et al. which has created a sort of standard in object detection applications
using a pure Ansi-C library. The library was developed only for Unix OS but in its many
branches (literally forks) a complete porting for each operative system was provided.
The code is particularly optimized for GPUs using CUDA support, i.e only for NVidia
GPUs. It is particularly famous for object detection applications since its development is
tightly associated to an innovative approach at multi-scale object detections called YOLO
(You Only Look Once), that recently reached its fourth release [5]. The libraries built
during the develompment of this thesis are all inspired by the efficiency and modularity
of darknet and make an effort to not only replicate but expand on their work, both in
performances, functionalities and solved issues.

In this section I will describe the mathematical background of these models and
to most theoretical explanation discuss the numerical problems associated, tied to the
development of two new libraries: NumPyNet [8] and Byron [9].

2.1 Frameworks

NumPyNet is born as an educational framework for the study of Neural Network models.
It is written trying to balance code readability and computational performances and it is
enriched with a large documentation to better understand the functionality of each script.
The library is written in pure Python and the only external library used is Numpy [21]
(a base package for the scientific research). As I will show in the next sections, Numpy
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allows a relatively efficient implementation of complex algorithms by keeping the code
as similar as possible to the mathematic computations involved.

Despite being supplied by wide documentations, it is often difficult for novel users to
move around the many hyper-links and papers cited in all common libraries. NumPyNet
tries to overcome this problem with a minimal mathematical documentation associated
to each script and a wide range of comments inside the code.

An other ”problem” to take into account is associated to performances. On one
hand, libraries like Tensorflow are certainly efficient from a computational point-of-view
and the numerous wraps (like Keras) guarantee an extremely simple user interface. On
the other hand, the deeper functionalities of the code and the implementation strategies
used are unavoidably hidden behind tons of code lines. In this way the user can perform
complex computational tasks using the library as black-box package. NumPyNet wants
avoid this problem using simple Python codes, with extreme readability also for new
users, to better understand the symmetry between mathematical formulas and code.
The simplicity of this library allows us to give a first numerical analysis of the model
functions and, moreover, to show the results of each function on an image to better
understand the effects of their applications on real data. Each NumPyNet function was
tested against the equivalent Tensorflow implementation, using an automatic testing
routine through PyTest [20]. The full code is open-source on the Github page of the
project. Its installation is guaranteed by a continuous integration framework of the code
through Travis CI for Unix environments and Appveyor CI for Windows OS. The library
supports Python versions ≥ 2.7.

As term of comparison we discuss the more sophisticated implementation given by the
Byron library. Byron (Build YouR Own Neural network) library is written in pure C++
with the support of the modern standard C++17. We deeply use the C++17 functionality
to reach the better performances and flexibility of our code. What makes Byron an
efficient alternative to the competition is the complete multi-threading environment in
which it works. Despite the most common Neural Network libraries are optimized for
GPU environments, there are only few implementations which exploit the full set of
functionalities of a multiple CPUs architecture. This gap discourages multiple research
groups on the usage of such computational intensive models in their applications. Byron
works in a fully parallel section in which each single computational function is performed
using the entire set of available cores. To further reduce the time of thread spawning,
and so optimize as much as possible the code performances, the library works using a
single parallel section which is opened at the beginning of the computation and closed
at the end.

The Byron library is released under MIT license and publicly available on the Github
page of the project. The project includes a list of common examples like object detection,
super resolution, segmentation. The library is also completely wrapped using Cython
to enlarge the range of users also to the Python ones. The complete guide about its
installation is provided; the installation can be done using CMake, Make or Docker and
the Python version is available with a simple setup.py. The testing of each function is
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performed using Pytest framework against the NumPyNet implementation (faster and
lighter to import than Tensorflow) [7].

2.2 Layers

As described above, a neural network can be considered as a composition of function:
for this reason every Deep Learning framework (e.g. Keras/Tensorflow, Pytorch, Dark-
net) implement each function as an independent object called Layer. In Byron and
NumPyNet, each layer contains at least 3 methods:

� forward the forward method compute the output of the layer, given as input the
previous output.

� backward the backward method is essential for the training phase of the model:
indeed, it computes all the updates for the layer weights and backpropagates the
error to the previous layers in the chain.

� update the update method applies the given update rules to the layer’s weights.

By stacking different kind of layers one after another, it is possible to build complex
models with tens of millions of parameters. For the purposes of this work, I’m going
to describe layers used in super resolution, however, Byron is developed also for differ-
ent applications (object detection, classification, segmentation, style transfer, natural
language processing etc...) and as such, many more layers are available.

Convolutional Layer

A Convolutional Neural Network (CNN) is a specialized kind of neural network for
processing data that has known grid-like topology [11], like images, that can be considered
as a grid of pixels. The name indicates that at least one of the functions employed by the
network is a convolution. In a continuos domain the convolution between two functions
f and g is defined as:

(f ∗ g)(t) =

∫ +∞

−∞
f(τ)g(t− τ)dτ (2.1)

The first function f is usually referred to as the input and the second function g as kernel.
For Image Processing applications we can define a 2-dimensional discrete version of the
convolution in a finite domain using an image I as input and a 2 dimensional kernel k:

C[i, j] =
N∑

u=−N

M∑
v=−M

k[u, v] · I[i− u, j − v] (2.2)

where C[i, j] is the pixel value of the output image and N , M are the kernel dimensions.
Practically speaking, a convolution is performed by sliding a kernel of dimension N ×M
over the image, each kernel position corresponds to a single output pixel, the value of
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which is calculated by multiplying together the kernel value and the underlaying pixel
value for each cell of the kernel and summing all the results, as shown in figure 2.1:

Figure 2.1: Visual representation of a convolution of an Image I with a kernel of size 3

The convolution operation is also called filtering. By chosing the right kernel (filter)
it is possible to highlight different features. For this reason the convolution operation is
commonly used in image analysis: some of the most common applications are denoising,
edge detection and edge enhancement.

The convolutional layer (CL) object is the most used layer in DL image analysis,
therefore its implementation must be as efficient as possible. Its purpose is to perform
multiple (sometimes thousands) convolution over the input to extract different high-level
features, which are compositions of many low-level attributes of the image (e.g edges,
simple shapes). In the brain/neuron analogy, every entry in the output volume can also
be interpreted as an output of a neuron that looks at only a small region, the neuron’s
receptive field in the input and shares parameters with all the neuron spatially close. As
more CLs are stacked, the receptive field of a single neuron grows and with that, the
complexity of the features it is able to extract. The local nature of the receptive field
allows the models to recognize features regardless of the position in the images. In other
words, it is independent from translations [11].

The difference from a traditional convolutional approach is that instead of using pre-
determined filters, the network is supposed to learn its own. A CL si defined by the
following parameters:

- kernel size: it is the size of the sliding filters. The depth of the filters is decided by
the depth of the input images (which is the number of channels.). The remanining
2 dimensions (width and height) can be indipendent from one another, but most
implementations require squared kernels.
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- strides: defines the movement of the filters. With a low stride (e.g. unitary) the
windows tends to overlap. With high stride values we have less overlap (or none)
and the dimension of the output decrease.

- number of filters: is the number of different filters to apply to the input. It also
indicates the depth of the output.

- padding: is the dimension of an artificial enlargement of the input to allow the
application of filters on borders. Usually, it can be interpreted as the number of
rows/columns of pixel to add to the input, however some libraries (e.g Keras) con-
sider it only as binary: in case is true, only the minimum number of rows/columns
are appended to keep the same spatial dimension.

Given the parameters, it is straightforward to compute the number of weights and bias
needed for the initialization of the CL: indeed, suppose an image of dimensions (H,W,C)
slided by n different 3-D filters of size (kx, ky) with strides (sx, sy) and padding p, then:

#weights = n× kx × ky × C
#bias = n

(2.3)

(2.4)

Note that the number of weights does not depend on the input spatial size but only on
its depth. It is important because a fully convolutional network can receives images of
any size as long as they have the correct depth. Moreover, using larger inputs do not
requires more weights, as is the case for fully connected structure.

The output dimensions are (out H, out W, n) where:

out H = bH − kx + p

sx
c+ 1

out W = bW − ky + p

sy
c+ 1

(2.5)

(2.6)

Even if the operation can be implemented as described above in equation 2.2, this
is never the case: it is certainly easier but also order of magnitude slower than more
common algorithms. A huge speed up in performances is given by realising that a
discrete convolution can be viewed as a single matrix multiplication. The first matrix
has as rows each filters of the CL, while the second matrix has as columns every windows
of the image traversed by the kernels, as shown in figure 2.2.

This re-arrengement is commonly called im2col. The main downside is that a lot
more memory is needed to store the newly arranged matrix. The larger the number of
kernels, the higher is the time gain of this implementation over a naive one.

Another important optimization comes from linear algebra considerations and is
called Coppersmith-Winograd algorithm, which was designed to optimize the matrix
product. Suppose we have an input image of just 4 elements and a 1-D filter mask
with size 3:
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Figure 2.2: Scheme of the im2col algorithm using a 2 × 2 × 3 filter with stride 1 on a
4× 4× 3 image. The matrix multiplication is between a n× 12 and a 12× 9 matrixes.

img =
[
d0 d1 d2 d3

]
weights =

[
g0 g1 g2

]
(2.7)

we can now use the im2col algorithm previously described and reshape our input image
and weights into

img =

[
d0 d1 d2
d1 d2 d3

]
, weights =

 g0
g1
g2

 (2.8)

given this data, we can simply compute the output as the matrix product of this two
matrices:

output =

[
d0 d1 d2
d1 d2 d3

] g0
g1
g2

 =

[
d0 · g0 + d1 · g1 + d2 · g2
d1 · g0 + d2 · g1 + d3 · g2

]
(2.9)
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The Winograd algorithm rewrites this computation as follow:

output =

[
d0 d1 d2
d1 d2 d3

] g0
g1
g2

 =

[
m1 +m2 +m3
m2−m3−m4

]
(2.10)

where

m1 = (d0− d2)g0 m2 = (d1 + d2)
g0 + g1 + g2

2

m4 = (d1− d3)g2 m3 = (d2− d1)
g0− g1 + g2

2

(2.11)

The two fractions in m2 and m3 involve only weight’s values, so they can be computed
once per filter. Moreover, the normal matrix multiplication is composed of 6 multiplica-
tions and 4 addition, while the winograd algorithm reduce the number of multiplication
to 4, that is very significant, considering that a single multiplication takes 7 clock-cycles
and an addition only 3. In Byron we provide the winograd algorithm for square kernels
of size 3 and stride 1, since it is one of the most common combinations in Deep Learning
and the generalization is not straightforward.

In the backward operation is important to remember that each weight in the filter
contributes to each pixel in the output map. Thus, any change in a weight in the filter
will affect all the output pixels. Note that the backward function can still be seen as a
convolution between the input and the matrix of errors δl for the updates and as a full
convolution between δl and the flipped kernel for the error δl−1. In the case the windows
of kernels overlap, updates are the sum of all the contributing elements of δl.

Pooling

Pooling operations are down-sampling operations, so that the spatial dimensions of the
input are reduced. Similarly to what happens in a CL, in pooling layers a 3-D kernel of
size kx×ky×C slides across an image of size H×W×C, however the operation performed
by this kind of layers is fixed and does not change during the course of training. The two
main pooling functions are max-pooling and average-pooling: as suggested by the names,
the former returns the maximum value of every window of the images super-posed by
the kernel, as shown in figure 2.3.

The latter instead, returns the average value of the window and can be seen as a
convolution where every weight in the kernel is 1

kx·ky . The results expected from an

Average pooling operations are shown in figure 2.4.
Other popular pooling functions include the L2 norm of a rectangular neighborhood

or a weighted average based on the distance from the central pixel.
A typical block of a convolutional network consists of three stages: In the first stage a

CL performs several convolutions in parallel, in the second stage each convolution result is
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Figure 2.3: Scheme of maxpool operations with a kernel of size 2 × 2 and stride 2 over
an image of size 4× 4. Picture from CS231n

Figure 2.4: Average pooling applied to a test image: (left) the original image, (center)
average pooling with a 3 × 3 kernel, (right) average pooling with a 30 × 30 kernel. The
images have been obtained using NumPyNet

run through a non-linear activation function (sometimes called detector) and in the third
stage a pooling function is used to further modify the output. The modification brought
by pooling is helpful in different ways: first of all, it is a straightforward computational
performance improvement, since less features also means less operations. Moreover, in all
cases, pooling helps to make representation approximately invariant to small translation
of the input and invariance to local translation can be a useful property if the objective is
to decide wether a feature is present rather than where it is located [11]. The reductions
of features can also prevent over-fitting problems during training, improving the general
performances of the model.

A pooling layer is defined by the same parameters as a CL, minus the number of
filters; moreover, also the output dimensions for Pooling layers are the same as for CLs,
however, they have no weights to be trained.

Due to the similarities with the CL it is possible to implement a pooling layers
through the im2col algorithm, as an example, the NumPyNet implementation shown in
the snippet below make use of the function asStride to create a view of the input array:
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Listing 2.1: NumPyNet version of Maxpool function
1 import numpy as np

2

3 class Maxpool_layer(object):

4

5 def __init__(self , size=(3, 3), stride =(2, 2)):

6

7 self.size = size

8 self.stride = stride

9 self.batch , self.w, self.h, self.c = (0, 0, 0, 0)

10 self.output , self.delta = (None , None)

11

12 def _asStride(self , input , size , stride):

13

14 batch_stride , s0 , s1 = input.strides [:3]

15 batch , w, h = input.shape [:3]

16 kx , ky = size

17 st1 , st2 = stride

18

19 view_shape = (batch , 1 + (w - kx)//st1 , 1 + (h - ky)//st2) + input.

shape [3:] + (kx, ky)

20

21 strides = (batch_stride , st1 * s0 , st2 * s1) + input.strides [3:] +

(s0, s1)

22

23 subs = np.lib.stride_tricks.as_strided(input , view_shape , strides=

strides)

24

25 return subs

26

27 def forward(self , input):

28

29 kx , ky = self.size

30 st1 , st2 = self.stride

31 _, w, h, _ = self.input_shape

32

33 view = self._asStride(input)

34

35 self.output = np.nanmax(view , axis =(4 ,5))

36

37 new_shape = view.shape [:4] + (kx*ky, )

38

39 self.indexes = np.nanargmax(view.reshape(new_shape), axis =4)

40

41 self.indexes = np.unravel_index(self.indexes.ravel(), shape=(kx , ky

))

42

43 self.delta = np.zeros(shape=self.out_shape , dtype=float)

44

45 return self
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A view is a special numpy object which retains the same information of the original
array arranged in a different way, but without occupying more memory. In this case,
the re-arrengement is very similar to an im2col, with the only difference that we are
not bound to any number of dimensions. The resulting tensor has indeed 6 dimensions.
Since no copy is produces in this operation we can obtain a faster execution.

In pooling layer the backward function is similar to what we saw for convolutional
layers, this time we don’t have to compute the weights updates though, only the error to
back-progate along the network. For maxpool layers, only the maximum input pixel for
every window is involved in the backward pass. Indeed, if we consider the simple case in
which the forward function is:

m = max(a, b) (2.12)

and, as described in the dedicated chapter, we know that ∂C
∂m

is the error passed back
from the next layer: the objective is to compute ∂C

∂a
and ∂C

∂b
. If a > b we have:

m = a ⇒ ∂C

∂m
=
∂C

∂a
(2.13)

m does not depends on b so ∂C
∂b

= 0.
So the error is passed only to those pixels which value is maximum in the considered

window, the other are zeros. In figure 2.5 an example of forward and backward pass for
a maxpool kernel of size 30 and stride 20.

Figure 2.5: Max pooling applied to a test image: (left) the original image, (center) max
pooling with a 30×30 kernel and stride 20, (right) max pooling errors image. Only few of
the pixels are responsible for the error backpropagation. The images have been obtained
using NumPyNet

The backward pass for the average pool layer is the same as for the CL, considering
that in this case the “weights” are fixed.
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Shortcut Connections

An important advancement in network architecture has been brought by the introduction
of Shortcut (or Residual) Connections [12]. It is well know that deep models suffer
from degradation problems after reaching a maximum depth. Adding more layers, thus
increasing the depth of the model, saturates the accuracy which eventually starts to
rapidly decrease. The main cause of this dergradation is not overfitting, but numerical
instability tied to gradient backpropagation: indeed, as the gradient is back-propagated
through the network, repeated multiplications can make those gradients very small or,
alternatevely, very big, This problem is well known in Deep Learning and takes the
name of vanishing/exploding gradients and it makes almost impossible to train very
large models, since early layers may not learn anything even after hundreds of epochs. A
residual connection is a special shortcut which connects 2 different part of the network
with a simple linear combination. Instead of learning a function F (x) we try to learn
H(x) = F (x) + x, as shown in figure 2.6:

Figure 2.6: Scheme of the shortcut layer as designed by the authors [12]. The output of
the second layer become a linear combination of the input x and its own output.

During the back propagation the gradient of higher layers can easily pass to the lower
layers, without being mediated, which may cause vanishing or exploding gradient.
Both in NumPyNet and Byron, we chose to generalize the formula as:

H(x1, x2) = αx1 + βx2 (2.14)

Where x1 is the output of the previous layer and x2 is the output of the layer selected
by index paramter. Indeed, even the shortcut connection can be implemented as a
stand-alone layer, defined by the following parameters:

� index is the index of the second input of this layer x2 (the first one x1 is the output
of the previous layer).

� alpha the first coefficient of the linear combination, multiplied by x1.
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� beta the second coefficient of the linear combination, multiplied by x2.

. The backward function is simply:

∂C

∂x1
=
∂C

∂H

∂H

∂x1
= δ · α (2.15)

for the first layer and:

∂C

∂x2
=
∂C

∂H

∂H

∂x2
= δ · β (2.16)

for the second layer. Again, δ is the error backpropagated from the next layer. Residuals
connections were first introduced for image classification problems, but they rapidly
become part of numerous models for every kind of application tied to Image Analysis.

Pixel Shuffle

Using pooling and convolutional layers with non unitarian strides is a simple way to
downsample the input dimension. For some applications though, we may be interested
in upsampling the input, for example:

� in image to image processing (input and output are images of the same size) it is
common to perform a compression to an internal encoding (e.g Deblurring, U-Net
Segmentation).

� project feature maps to a higher dimensional space, i.d. to obtain a image of higher
resolution (e.g Super-Resolution)

for those purposes the transposed convolution (also called deconvolution) was introduced.
The transposed convolution can be treated as a normal convolution with a sub-unitarian
stride, by upsampling the input with empty rows and columns and then apply a single
strided convolution, as shown in figure 2.7.

Although it works, the transposed convolution is not efficient in terms of computa-
tional and memory cost, therefore not suited for modern convolutional neural networks.
An alternative is the recently introduced sub-pixel convolution [25] (also called Pixel Shuf-
fle). The main advantages over the deconvolution operation is the absence of weights to
train: indeed the operation performed by the Pixel Shuffle (PS) Layer is deterministic
and it is very efficient if compared to the deconvolution, since it is only a re-arrengement
of the pixels.

Given a scale factor r, the PS organizes an input H × W × C · r2 into an output
tensor r ·H × r ·W × C, which generally is the dimension of the high resolution space.
So, strictly speaking, the PS does not perform any upsample, since the number of pixels
stays the same. In figure 2.8 is shown an example with C = 1:

As suggested by the authors, the best practice to improve performances is to upscale
from low resolution to high resolution only at the very end of the model. In this way the
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Figure 2.7: example of deconvolution: (left) a normal convolution with size 3 and stride
1, (right) after applying a ”zeros upsampling” the convolution of size 3 and stride 1
become a deconvolution

Figure 2.8: Example of pixel shuffling proposed by the authors [25]. In this example, r2

features maps are re-arranged into a single-channeled high resolution output.

CL can efficienlty produce an high number of low resolution feature maps that the PS
can organize into the final output.

In both NumPyNet and Byron, the pixel shuffle layer is defined only by the scale

parameter, which lead the entire transformation. In the first case, it is possible to
implement forward and backward using the functions split, reshape, concatenate

and transpose of the numpy library [21]. This implementation has been tested against
tensorflow’s depth to space and space to depth. Despite being available in most
deep learning library, a low level C++ implementation for the PS algorithm is hard to
find. In Byron we propose a dynamic algorithm able to work for both channel last and
channel first input. The algorithm is essentially a re-indexing of the input array in six
nested for-loops. The first solution taken into account during the development was the
contraction of the loops into a single one using divisions to obtain the correct indexes:
however the amount of required divisions weights on the computational performances,
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given that divisions are the most expensive operation in terms of CPU clock-cycles.
The backward function of this layer does not involve any gradient computation: in-

stead, it is the inverse of the re-arrengement performed in the forward function.

Batch Normalization

When training a neural network, the standard approach is to separate the dataset in
groups, called batches or mini-batches. In this way the network can be trained with mul-
tiple input at a time and the updates for the weights are usually computed by averaging
in the batch. The number of examples in each batch is called batch size: this can varies
from 1 to the size of the dataset. Using batch sizes different from one is beneficial in
several ways. First, the gradient of the loss over a mini-batch is a better estimate of the
gradient over the train set, whose quality improves as the batch size increases, but using
the entire train set can be very costly in terms of memory usage and often impossible
to achieve. Second, it can be much more efficient in modern architecture due to the
parallelism instead of performing M sequential computations for single examples. [15]

Batch normalization is the operation that normalizes the features of the input along
the batch axis, which allows to overcome a phenomenon in Deep Network training called
internal covariate shift: whenever the parameters of the model change, the input distri-
butions of every layer change accordingly. This behaviour produces a slow down in the
training convergence because each layer has to adapt itself to a new distribution of data
for each epoch. Moreover, the parameters must be carefully initialized. By making the
normalization a part of the model architecture, the layer acts also as a regularizer, which
in turn allows better generalization perfomances.

Let’s M be the number of examples in the group and ε a small variable added for
numerical stability, the batch normalization function is defined as:

µ =
1

M

M∑
i=1

xi

σ2 =
1

M

M∑
i=1

(xi − µ)2

x̂i =
(xi − µ)2√
σ2 + ε

yi = γx̄i + β

(2.17)

(2.18)

(2.19)

(2.20)

where γ and β are the trainable weights of this layer. In the case of a tensor of images
of size M ×H ×W × C all the quantities are multidimensional tensors as well and all
the operations are performed element-wise.

The backward function can be computed following the chain rule for derivatives. As
usual, define δl = ∂C

∂y
as the error coming from the next layer, the goal is to compute the

updates for γ and β and the error for the previous layer. The updates are straightforward:
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∂C

∂γ
=
∂C

∂yi
· ∂yi
∂γ

=
M∑
i=1

δli · x̂i

∂C

∂β
=
∂C

∂yi
· ∂yi
∂β

=
M∑
i=1

δli

(2.21)

(2.22)

while the error requires more steps:

∂C

∂x
:= δl−1 = δl · ∂y

∂x
(2.23)

where:

∂y

∂x
=
∂y

∂x̂
(
∂x̂

∂µ

∂µ

∂x
+

∂x̂

∂σ2

∂σ2

∂x
+

∂x̂

∂σ2

∂σ2

∂µ

∂µ

∂x
) (2.24)

By considering all the derivatives, we find:

∂C

∂xi
:= δl−1i =

Mδli · γi −
∑M

j=1 δ
l
j · γi − x̂i ·

∑M
j=1 δ

l
j · x̂j

M
√
σ2 + ε

(2.25)

Knowing the correct operations, an example of implementation is shown in the snippet
2.2:

Listing 2.2: NumPyNet version of batchnorm function
1

2 def forward(self , inpt):

3

4 self._check_dims(shape=self.input_shape , arr=inpt , func=’Forward ’)

5

6 self.x = inpt.copy()

7 self.mean = self.x.mean(axis =0)

8 self.var = 1. / np.sqrt((self.x.var(axis =0)) + self.epsil)

9

10 self.x_norm = (self.x - self.mean) * self.var

11 self.output = self.x_norm.copy()

12

13 self.output = self.output * self.scales + self.bias

14

15 self.delta = np.zeros(shape=self.out_shape , dtype=float)

16

17 return self

18

19 def backward(self , delta=None):

20

21 invN = 1. / np.prod(self.mean.shape)

22

23 # Those are the explicit computation of every derivative involved in

BackPropagation
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24

25 self.bias_update = self.delta.sum(axis =0)

26 self.scales_update = (self.delta * self.x_norm).sum(axis =0)

27

28 self.delta *= self.scales

29

30 self.mean_delta = (self.delta * (-self.var)).mean(axis =0)

31

32 self.var_delta = ((self.delta * (self.x - self.mean)).sum(axis =0) *

33 (-.5 * self.var * self.var * self.var))

34

35 self.delta = (self.delta * self.var +

36 self.var_delta * 2 * (self.x - self.mean) * invN +

37 self.mean_delta * invN)

38

39 if delta is not None:

40 delta [:] += self.delta

41

42 return self

As we can see, in numpy it’s possible to easily implement all element-wise operations
with standard algebra.

In Byron we decided to implement this operation both as a standalone function and
merged into convolutional and fully connected layers, with the latter being the most used
in modern models since it achieves the best computational performances.

Activations

An important role in neural network is played by the choice of activation function. They
are linear or non-linear functions which process the output of a neuron and bound it to
a certain range. The introductions of non-linearities allows a Neural Network to model
a wider range of functions and learn more complex relations in data patterns.

Many activation functions were proposed during the years and each one has its char-
acteristics, but not an appropriate field of application. How to chose the best activation
function in a given situation is still an open question: each one has its pros and cons
in some situations, so each Neural Network library implements a wide range of them
and it leaves the user perform their own tests. In table 2.1 is reported a full record of
the activation functions and their derivatives implemented in Byron and NumPyNet. An
important feature of any activation function, in fact, is that it should be differentiable
since the main procedure of model optimization implies the back-propagation of the er-
ror gradients. As can be seen in tab. 2.1 it is easier to compute the activation function
derivative as a function of it: this is an important type of optimization in computation
term, since it reduces the number of operations and it allows to apply the backward
gradient directly on the output, without storing the un-activated one.

In figure 2.9 is shown the effect of some functions along with they’re respective back-
wards.
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Name Equation Derivative
Linear f(x) = x f ′(x) = 1
Logistic f(x) = 1

1+exp(−x) f ′(x) = (1− f(x)) ∗ f(x)

Loggy f(x) = 2
1+exp(−x) − 1 f ′(x) = 2 ∗ (1− f(x)+1

2
) ∗ f(x)+1

2

Relu f(x) = max(0, x) f ′(x) =

{
1 if f(x) > 0
0 if f(x) ≤ 0

Elu f(x) = max(exp(x)− 1, x) f ′(x) =

{
1 if f(x) ≥ 0

f(x) + 1 if f(x) < 0

Relie f(x) = max(x ∗ 1e− 2, x) f ′(x) =

{
1 if f(x) > 0

1e− 2 if f(x) ≤ 0

Ramp f(x) =

{
x2 + 0.1 ∗ x2 if x > 0

0 if x ≤ 0
f ′(x) =

{
f(x) + 1 if f(x) > 0

f(x) if f(x) ≤ 0
Tanh f(x) = tanh(x) f ′(x) = 1− f(x)2

Plse f(x) =


(x+ 4) ∗ 1e− 2 if x < −4

(x− 4) ∗ 1e− 2 + 1 if x > 4
x ∗ 0.125 + 5 if −4 ≤ x ≤ 4

f ′(x) =

{
1e− 2 if f(x) < 0 or f(x) > 1
0.125 if 0 ≤ f(x) ≤ 1

Leaky f(x) =

{
x ∗ C if x ≤ 0

x if x > 0
f ′(x) =

{
1 if f(x) > 0
C if f(x) ≤ 0

HardTan f(x) =


−1 if x < −1
+1 if x > 1
x if −1 ≤ x ≤ 1

f ′(x) =

{
0 if f(x) < −1 or f(x) > 1
1 if −1 ≤ f(x) ≤ 1

LhTan f(x) =


x ∗ 1e− 3 if x < 0

(x− 1) ∗ 1e− 3 + 1 if x > 1
x if 0 ≤ x ≤ 1

f ′(x) =

{
1e− 3 if f(x) < 0 or f(x) > 1

1 if 0 ≤ f(x) ≤ 1

Selu f(x) =

{
1.0507 ∗ 1.6732 ∗ (ex − 1) if x < 0

x ∗ 1.0507 if x ≥ 0
f ′(x) =

{
f(x) ∗ 1e− 3 if f(x)0

(f(x)− 1) ∗ 1e− 3 + 1 if f(x) > 1

SoftPlus f(x) = log(1 + ex) f ′(x) = exp(f(x)
)

1 + ef(x)

SoftSign f(x) = x
|x|+1

f ′(x) = 1
(|f(x)|+1)2

Elliot f(x) =
1
2
∗S∗x

1+|x+S| + 1
2

f ′(x) =
1
2
∗S

(1+|f(x)+S|)2

SymmElliot f(x) = S∗x
1+|x∗S| f ′(x) = S

(1+|f(x)∗S|)2

Table 2.1: List of common activation functions with their corresponding mathematical
equation and derivative. The derivative is expressed as function of f(x) to optimize their
numerical evaluation.
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Figure 2.9: Activation functions applied on test image. From top to bottom: Elu, Relu
and Logistic.

The most used activation functions is undoubtedly the ReLU activation (Rectified
Linear Unit.) [10]. Its main advantages are:

� Sparsity: a sparse representation of data is exponentially more efficient in compar-
ison of a dense one.

� Vanish Gradient Reduction, since the derivatives does not vanishes during Deeper
backpropagation.

� Easy and fast computation of both forward and backward.

Cost Function

A Deep Learning model is trained by minimizing a Cost Function, or, in other words,
during training we want to adjust the parameters of the network in order to modify its
output, which in turns, will be closer to the desired result. Therefore, it is important to
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define what we consider the error function of the model. There are many kinds of loss
functions, and none of them is able to work with every kind of data; moreover, there are
no particular reasons to prefer a loss function over another one, given that they are both
adapt to handle the output of the problem under analysis. One important property is
the differentiability of those error functions, since they will be the starting point of chain
rule for derivatives used in Error Backpropagation. Broadly speaking, loss functions can
be separated into two categories: classification losses and regression losses. In the first
case we want to predict a finite number of categorical values (classes), while in the second
case the prediction is performed over a series of continuos values. The most common
cost functions for Super Resolution are Mean Squared Error (MSE) and Mean Absolute
Error (MAE), also called L2 loss and L1 loss. The former is defined as:

MSE =
1

N

N∑
i=1

(yi − ti)2 (2.26)

where y is the output vector of the model, t is the desired results and N is the
dimension of the output. It is one of the most used loss function for different task, not
only because is really simple, but also because it reaches good performances. Notice that
minimizing the MSE naturally maximize the PSNR score define in previous chapter.

In MAE we replace the squared error with the absolute difference:

MAE =
1

N

N∑
i=1

|yi − ti| (2.27)

Both models used in this work have been trained using the L1 loss function.

2.3 Timing

I tested Byron performances on single layers through its python wrap Pyron against
the popular deep learning framework Tensorflow on CPU. I measured the forward and
backward times on 30 repetitions, scanning over the parameters of the different layers
as fuctions of the number of threads, for the most important layers in image processing
applications: Convolutional, Max-Pool and Pixel-shuffle layer. The number of threads
indicates the level of parallelization involved during computations. The inputs are ran-
domly generated tensors of dimensions 16×512×512×3 which should resemble a batch
of images. The content of said images does not really matter, since we are only inter-
ested in measuring the processing times. For the first case, the results for forward and
backward functions are summarized in figure 2.10:
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Figure 2.10: Comparisons between time to perform forward (left) and backward (right)
for Convolutional Layer in Byron and Tensorflow on a 4D tensor of size 16×512×512×3
for size 3, stride 1 and 100 filters.

As expected, the performances improve with higher numbers of threads, however this
behaviour last for less than 10, after which the times remain constant for both imple-
mentations. In particular, for Byron, the algorithm’s time seems to be really unstable
with higher number of opened threads. Nonetheless, the CPU times of Tensorflow are
consistently better that Byron. Those considerations highlight that there may be prob-
lems in threads management during the operations in Byron, which do not influence the
outputs, but greatly deteriorate timing performances. If we move to a bigger stride value,
like 2, the results change as shown in 2.11. In particular, the trends become slighlty more
stable a not far from what we are expecting. The conditions size = 3 and stride = 1
are also the condition for the Winograd Algorithm: this can reduce the range of code to
check to find the sources of times instability. Another considerations come from the fact
that passing from stride = 1 to stride = 2 in both axis, reduce the number of operations
of a factor 4, which means, at least, that the single thread performances should reduce
the time cost of 4 time. In Byron forward though, the time reduces to roughly 40%,
while in Tensorflow the speed up seems consistent with that consideration.
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Figure 2.11: Comparisons between time to perform forward (left) and backward (right)
for Convolutional Layer in Byron and Tensorflow on a 4D tensor of size 16×512×512×3
for size 3, stride 2 and 100 filters.

The second case taken into account is MaxPool Layer and the results are summarized
in figure 2.12:

Figure 2.12: Comparisons between times to perform forward (left) and backward (right)
for Maxpool Layer in Byron and Tensorflow on a 4D tensor of size 16× 512× 3 for size
3 and stride 1.

In this case, the results seems to show comparable times for Byron and Tensorflow

for the forward function and a faster implementation for the backward function. Again,
the time gained by adding more threads does not improve much after a certain number:
this can also be due to the dimensions of the input not being large enough to justify
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opening such an high numbers of parallel operations. All-in all, this implementation
seems to be performing as expected. Moreover, using an higher kernel size seems to
favour Byron over Tensorflow, as shown in figure 2.13

Figure 2.13: Comparisons between times to perform forward (left) and backward (right)
for Maxpool Layer in Byron and Tensorflow on a 4D tensor of size 16× 512× 3 for size
30 and stride 1.

This may indicates that the higher the numbers of operations, the higher is the
advantage gained with Byron. In our implementation of Maxpool Layer, during the
forward function we store the indexes needed for the backward operation: in this way
we lose a bit of time during the forward pass, however the backward become just a
single for loop on the array of indexes. Most likely, Tensorflow opted for a different
implementation, given the results.

The third layer taken into consideration is the Pixel Shuffle, in particular I considered
a scale factor of 6 with an input tensor of dimension 16× 512× 512× 108. The singular
number of input channels has been chosen to be compatible with the re-scaling performed
by the pixel-shuffle operation. The Tensorflow implementation of Pixel shuffle seems
to behave very differently from previous cases: indeed it does not scale at all with the
number of threads, and times remain very similar from 1 to 64 parallel sections. Again,
the single thread performances favour Tensorflow over Byron: although in the forward
function Byron speed ups quickly with the higher number of threads. I would like to
point out that even if the two operations of forward and backward are very similar, being
only re-arrengement of the same number of pixels, the latter seems to be faster in both
implementations. The other scale factor and input shapes tested does not show any
different behaviour from the ones described in this case.
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Figure 2.14: Comparisons between times to perform forward (left) and backward (right)
for Shuffler Layer in Byron and Tensorflow on a 4D tensor of size 16 × 512 × 108 for
scale 6
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Chapter 3

Datasets and Methodology

3.1 Models

As already described in previous chapters, the high level of modularity provided by Byron

and NumPyNet allows to use different kind of models for many different purposes.
The two models chosen for super-resolution are EDSR, used to performs a x2 upsample,
and WDSR, used to perform a x4 upsample. They are the winners of the NTIRE challenge
(New Trends in Image Restoration and Enhancement) respectively for the year 2017 and
2018 and the model structure and weights are publicly available at their official github
repositories; EDSR and WDSR.

EDSR

EDSR (Enhanced Deep Super-Resolution) [18] is the first model considered and ported
in Byron. It is a Deep Neural Network specialized in Single Image Super Resolution
(SISR) which won the NTIRE challege in 2017. Its structure is based on previous fa-
mous models in image analysis application, namely SRResNet and, consequently, ResNet.
For this reason, the base unit of EDSR is the residual block, which makes extensive use of
residual connections, described in the previous chapter. The major improvements from
older models come from removal of batch-normalization between convolutional layers
inside residual blocks: indeed the authors proved experimentally that normalization of
the features reduces performances substantially, by getting rid of range flexibility [18].
Moreover, every Batch-Norm layer contains the same amount of weights as the convolu-
tional layer preceeding it, therefore removing them saves approximately 40% of memory
usage during training and this allows the construction of larger models. On the other
hand, they also showed that deepening the model above a certain level would make the
training procedure numerically unstable: the authors solved this issue by adopting a
residual scaling with factor 0.1 in shortcut connections.

The structure of the model is summarize in figure 3.1. The model used in this work
is called EDSR x2 by the authors and is composed by 32 residual block, each in turn is
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composed by:

� A convolutional layer with 256 filters

� An activation layer with a ReLU function

� A convolutional Layer with 256 filters

� A linear combination pixel-by-pixel with the input of the residual block with weight
respectively 0.1 and 1 (shortcut connection’s α and β)

Figure 3.1: architecture of the single scale SR Network (EDSR)

The last part of the network is composed by a shortcut connection which performs a
linear combination of the initial input with the output of the 32 residual block and by
the up-sampling block:

� A convolutional layer with 1024 filters

� A pixel-shuffle with a scale factor r = 2

� A convolutional layer with 3 filter (the final output.)

In total, EDSR has more than 40 millions of parameters, summarized in table 3.1

Layer Channels in/out Filters Dim. Parameters
Conv. Input 3 / 256 3x3 6912

Res. Block 256 / 256 3x3 1179648

Conv. Pre Short. 256 / 256 3x3 589824

Conv. Pre-Shuffle 256 / 1024 3x3 2359296

Conv. Output 256 / 3 3x3 6912

Table 3.1: Table of parameters for the different sections of EDSR.
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The ”heaviest” part of the model is clearly the Residual Blocks section, which alone
contains more that 37 millions of parameters.

For training they used 48 × 48 RGB patches from LR images (from DIV2K) with
the corresponding HR patches, augmenting the training data with random horizontal
flips and 90° rotations. The optimizer is the ADAM [17] and the loss function is the L1:
even if the L2 naturally maximize the PSNR (which is the only metrics evaluated in the
challenge), they found that L1 loss provided a better convergence.

WDSR

The second model considered in this study and implemented in Byron is called Wide
Deep Super Resolution (WDSR) [29] and it is the winner of the NTIRE challenge 2018.

The model used in ths work is called WDSR x4 A and it is composed by 32 residual
blocks, similarly to EDSR, the difference is that they are much lighter in this case, indeed
a residual block is composed by:

� Convolutional layer with 192 filters

� Activation layer with ReLU function

� Convolutional Layer with 32 filters

� Shortcut connection with α = β = 1

In their work, the authors designed the network to study the importance of wide
features before ReLU activations. Indeed they slim the features of residual identity
mapping pathway while expanding the features before activation. From this simple idea
they claim WDSR-A is extremely effective for improving accuracy of single image super-
resolution when the scale factor is between 2 and 4, but the performance drops quickly
after this threshold.

Another important step is the introduction of weight normalization over batch nor-
malization (BN) which does not introduce the troubles of BN while speeding up the
convergence of Deep Neural Networks, by allowing the usage of higher learning rates
[29].

Further improvements can be found in the structure of the network as shown in
figure 3.2: they simplify the network architecture by removing redundant Convolution
pre-shuffling. Thus, they modify the structure by introducing a single convolutional layer
with size 5× 5 that works directly on the input, extracting the low frequency features of
the sample. Those modifications result in less parameters, without affecting the accuracy.
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Figure 3.2: comparisons between EDSR architecture on the left and WDSR architecture on
the right

A summary of the model’s sections along with the numbers of weights they contains
can be found in table 3.1:

Layer Channels in/out Filters Dim. Parameters
Conv. Input 3 / 32 3x3 864

Res. Block Conv. (1) 32 / 192 3x3 55296

Res. Block Conv. (2) 192 / 32 3x3 55296

Conv. Pre Shuffle (1) 32 / 48 3x3 13824

Conv. Pre-Shuffle (2) 3 / 48 5x5 38400

Table 3.2: Table of parameters for the different sections of WDSR.

In total, WDSR A is composed by more that 3 millions parameters, still 10 time less
than EDSR while reaching similar results if compared on the same categories. The lesser
amount of weights not only decreases memory usage during both test and training, but
also greatly increse computational performance: indeed a single forward of WDSR is more
than 10 times faster than EDSR. The training dataset is composed by 96 × 96 patches
from every images of the training section of the DIV2K dataset. Again, the data are
augmented with random horizontal flips and rotations and the optmizer is ADAM [17]
minimizing the L1 loss functions.
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3.2 Train Dataset: DIV2K

The training set is a general purpose dataset called DIV2K [3] and it has been employed
to train and validate EDSR and WDSR for the NTIRE competition (New Trends in Image
Restoration and Enhancement).

The dataset is composed by 1000 2K RGB images with a large diversity of contents,
divided into:

� Training set: 800 HR images and 800 LR images obtained from the HR ones
using different downscaling factor (2x, 3x, 4x) and different degrading factors.

� Validation set: 100 HR images and 100 LR images used as a test set to evaluate
the models by the competitors.

� Test set: 100 LR images for which an HR version is made available only at the
end of the competition. This is used by the competitors to test the models and for
their final evaluation.

A qualitative proof of the results obtainable from the two models are shown in pictures
3.3, 3.4 and 3.5.

Figure 3.3: Super Resolution visual example extracted from the DIV2K validation set.
The quality score in terms of PSNR and SSIM are compared between a standard bi-cubic
up-sampling and the EDSR and WDSR models.
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Figure 3.4: Super Resolution visual example extracted from the DIV2K validation set.
The quality score in terms of PSNR and SSIM are compared between a standard bi-cubic
up-sampling and the EDSR and WDSR models.

Figure 3.5: Super Resolution visual example extracted from the DIV2K validation set.
The quality score in terms of PSNR and SSIM are compared between a standard bi-cubic
up-sampling and the EDSR and WDSR models.

As can be seen in those pictures, the models have learned how to interpolate the
complex line shapes and different kind of textures better than the bicubic algorithm.
Given the great heterogeneity of contents inside the dataset, after the training phase the
models are able to reconstruct a huge amount of distict shapes and textures. For this
reasons we decided to test the performances of WDSR and EDSR on a set of NMR data.

42



3.3 NMR Dataset

To test the model on NMR images, we used a series of 5 patients weighted T1 and T2
sampled with a spatial frequency of 1mm×1mm×1mm for each direction (x, y, z), with
a resolution of 256× 256 for a total of 176 slices. For reference, in figure 3.6 are shown
three different slices for the same patient at HR:

Figure 3.6: HR 256 × 256 original image at three different stages of depth: (left) slice
30 where still a lot of information about the brain is hidden, (center) slice 100 which is
a central slice where most of the information is stored, (right) slice 150 which starts the
less informative area of the brain.

The HR images (which will also be called originals) are convoluted with a gaussian
kernel of size 3, stride 1 and standard deviation 1 with the function cv2.GaussianBlur

of the library OpenCV. Then, they have been downsampled with the bicubic algorithm by
two different scale factors, namely ×2 and ×4, with the function resize, also available
from OpenCV, obtaining two distinct sets of LR images for every subject and for every
weight, respectively of sizes 128 × 128 × 176 and 64 × 64 × 176. The gaussian blurring
has been done to better resemble a LR data-acquisition, as if the images were obtained
at low resolution directly and not coming from a downsampling. In figure 3.7 is shown
an example of the images obtained by this procedure for a downscale factor of 2:
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Figure 3.7: 128× 128 LR version of the same slices shown for the HR case.

In figure 3.8 is shown an example of the images obtained by this procedure for a
downscale factor of 4:

Figure 3.8: 64× 64 LR version of the same slices shown for the HR case.

The LR images are used as input for EDSR, WDSR and the bicubic algorithm which
re-upsample them respectively by factors ×2, ×4 and both, trying to recostruct an image
as close as possible to the original one. As a further analysis, I decided to investigate
how different input conditions influence the results for the three methods. In particular
how an angle of rotation for the LR images can impact the final re-upsample: indeed this
changes the orientation of lines, shapes, and textures, which can affect the reconstruction.
Nonetheless it can give an important insight on the level of invariance of the two models
and on the explainability of the results.

I divided the full angle into 20 sections, separated by a step of 18°. In figure 3.9 is
shown an example of the kind of inputs fed to the models:

44



Figure 3.9: Three of the 20 rotation angles used as input for Super Resolution models
and Bicubic. (left) reference angle of 0 degree, (centre) angle step of 18 degree, (right)
large rotation of 108° respect to the reference.

The recostruction are compared with the original images using PSNR and SSIM
values for every patient, weight, channel, scale factor and angle of rotation. As stated
before, the NMR slices are 1-channeled gray-scale image while the SR models work on
RGB image: this is solved by adding an artificial depth concatenating the same slice 3
times. The dataset of original HR images is publicly available from NAMIC [1].
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Chapter 4

Results

In the following chapter I am going to report quantitative and qualitative results for
the different analysis carried out during the work. I describe the quantitative results
obtained by the different methods evaluated by means of PSNR, SSIM score and by a
qualitative visual analisys. At the end of the chapter I will summarize the results and
provides possible continuations for future analysis.

4.1 Upsample Comparisons

The EDSR model is used to upsample the images by a ×2 factor so that the single slice is
super-resolved from a 128×128 to a 256×256 spatial resolution. The WDSR model instead,
is used to upsample the images by a ×4 factor so that the single slice is super-resolved
from a 64× 64 to a 256× 256 spatial resolution.

I decided to separate the analysis for the three output channels of the super-resolution
since it can highlight particular behaviours. Moreover, the two kinds of MRI, T1-
weighted and T2-weighted, will also be evaluated separately, because it can give a useful
insight on what the models are able to “see”. In figure 4.1 are shown the average trends
for PSNR and SSIM score for the three channels (Red, Green, Blue lines) and for the
bicubic algorithm (Yellow lines), of cases weighted T1. They are averaged for all patients
and angle of rotations. It is clear that there is a difference between the three outputs
for the super resolution: namely there is a vertical shift in the trends passing from Red
to Green and from Green to Blue, the latter being the best performer. Moreover, the
“best” channel for EDSR outperforms consinstently the bicubic algorithm, and the second
best outperforms the bicubic algorithm in the most informative section of the images.
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Figure 4.1: Average trends of PSNR (left) and SSIM (right) for the three channels (Red,
Blue, Green lines) of the Super Resolution EDSR model compared with the bicubic al-
gorithm scores (Yellow) as functions of the slices. The average is performed for every
patients and for every rotation, cosidering only T1 weighted NMR. The dotted lines
highlights the slices where the bicubic and super-resolution green channel performances
intersect.

In figure 4.2 is shown an example on the kind of reconstruction the two methods are
able to achieve on a significant slice:

Figure 4.2: (left) original image, (center) reconstruction performed with EDSR blue chan-
nel, (right) reconstruction using the bicubic method. The input in this case is not rotated.

In the EDSR reconstruction there seems to be generally less noise, both around edges
and more so in the gray area of the brain.
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On the other hand, the results for T2-weighted NMRs are a bit different, indeed figure
4.3 highlights how the performances of EDSR are relatively worse compared with the
previous case.

Figure 4.3: Average trends of PSNR (left) and SSIM (right) for the three channels (Red,
Blue, Green lines) of the super-resolution EDSR model compared with the bicubic al-
gorithm scores (Yellow) as functions of the slices. The average is performed for every
patients and for every rotation, considering only T2-weighted NMRs. In this case the
bicubic seems to perform better, a part from the central section of the slice.

in figure 4.4 is shown an example of the kind of reconstruction the methods can
achieve on a significant slice:

Figure 4.4: (left) original image, (center) reconstruction performed with EDSR, (right)
reconstruction using the bicubic method for a T2-weighted image. The input in this case
is not rotated.

In this particular case, the EDSR performed better that the bicubic algorithm, in-
deed the absolute difference image (in figure 4.15) indicates much less high frequency
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component and a “smoother” visualization.
For the WDSR model, the three outputs are more consistents between each others

and through the subjects they performs, on average, steadily better than the bicubic
algorithm for T1-weighted NMR, as shown in figure 4.5:

Figure 4.5: Average trends of PSNR (left) and SSIM (right) for the three channels (Red,
Blue, Green lines) of the Super Resolution WDSR model compared with the bicubic al-
gorithm scores (Yellow) as functions of the slices. The average is performed for every
patients and for every rotation, for T1-weighted NMRs.

A recostruction performed starting from a donwscaled input 64×64 is shown in figure
4.6 for the two methods on a T1-weighted slice
The result is clearly worse than the EDSR cases since the ×4 down-scaling is quite heavy.
Indeed, the recostruction shows a lot of artifacts, particularly on the scalp of the subjects
and they are more evident for the slices upscaled with the WDSR. In both cases the
upsampling methods introduce a bias on the background of the image which can spoil
the quantitative result. This effect can be explained if we consider that both models
are not trained to upsample this kind of images, so the introduction of artifacts (such
as background bias) may be a consequence of them trying to enhance the few signals
gathered from the low-resolution inputs.
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Figure 4.6: (left) original image, (center) reconstruction performed with WDSR, (right)
reconstruction using the bicubic method for a T1-weighted image. The input in this case
is not rotated.

The results for T2-weighted images do not change if we compare the Bicubic upsample
with the WDSR, although it is possible to see that the scores are nearer to each others.
The graphs are shown in figure 4.7.

Figure 4.7: Average trends of PSNR (left) and SSIM (right) for the three channels (Red,
Blue, Green lines) of the Super Resolution WDSR model compared with the bicubic al-
gorithm scores (Yellow) as functions of the slices. The average is performed for every
patients and for every rotation, for T2-weighted NMRs.

A recostruction performed starting from a donwscaled input 64×64 for a T2-weighted
slice is shown in figure 4.8 for the two methods:
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Figure 4.8: (left) original image, (center) reconstruction performed with WDSR, (right)
reconstruction using the bicubic method for a T2-weighted image. The input in this case
is not rotated.

The WDSR seems to obtain a smoother and less noisy than the bicubic up-sampling,
both around edges and on Also, for T2-weighted images the number of artifacts in the
scalp is reduced from figure 4.6, which shows a T1-weighted reconstruction. Moreover,
the background is much more dark than the T1 reconstruction.

4.2 Scores by Angle

The next analysis focused on how the angle of rotation influences the final results. In
figure 4.9 it is possible to see again how the scores greatly varies between SR channels,
with the green one beeing the best performer. The average trends (mediated between all
patients and slides) exhibit the presence of privileged angles for every method tested.

Figure 4.9: average trends of PSNR (left) and SSIM (right) for EDSR x2 and bicubic
algorithm as functions of the input angle of rotations.
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The WDSR shows a similar behaviour as the SSIM score in the previous case where
angles different from nπ

2
with n = 0, 1, 2, 3 performs better, as shown in figure 4.10.

Figure 4.10: average trends of PSNR (left) and SSIM (right) for WDSR x4 and bicubic
algorithm as functions of the input angle of rotations.

The results are congruos with what has been shown in the previous section in which
the three channels (Red, Green and Blue lines) are consistent between themselves. In
both cases there are angles for which the bicubic algorithm performs better than SR.

If we take a look at the images upscaled by x2 methods in figure 4.11, the difference
between input angles is not really noticeable:

Figure 4.11: comparison between EDSR x2 and bicubic, if compared with the images above,
the level of recostruction is really similar to slices without rotations in figure 4.2

On the other hand, the WDSR x4 upscaling shows far less artifact on angles different
from nπ

2
as can be seen in figure 4.12:

52



Figure 4.12: comparison between WDSR x4 and bicubic, if compared with the images above,
the level of recostruction is better than slices without rotations in figure 4.6. Indeed the
number of artifacts seems to be far lower than before for WDSR.

This can be due to different reasons: firstly, by rotating the images we technically
performs an interpolation, particularly for angles differents from multiple of 90°; this can
enhance or deteriorate lines and textures of the images and by results, strengthen or
weaken the reconstruction of the methods. Secondly, the DIV2K dataset in which the
models are trained and tested is intrinsically oriented: this means that if the images are
not rotated during training, the models could have learnt a privileged angle of orientation
for shapes and texture. Interestingly, as stated in [29] for WDSR and in [18] for EDSR, both
models should have been trained by augmenting the dataset with randoms flips and
rotations of the input images. Another possibility is the convolutional layers, which
compose the majority of deep learning models, are not invariant for rotations, but only
for transitions, that may introduces variations in the results.
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4.3 Error localization

The following section will focus on where the error is localized in the images and how
it is distributed. For doing that I computed the pixel-wise absolute difference between
the original slice and the correspondent super-resolved one. As can be seen in figure
4.13 the major differences lie in the scalp of the subjects, which tends to be the most
uninteresting part.

Figure 4.13: Absolute differences for EDSR reconstruction (left) and bicubic (right), for
a T1-weighted image. In both cases, the major differences seems to lies in the scalps of
the subjecs. Though, it can be seen that the background is not zero, which means it has
an impact on the scores.

It is also clear by the differences, that the bias introduced by the two methods influ-
ences the results since there is a non-zero background which makes up a large part of
the images. Indeed, by looking at the error distribution in figure 4.14, it appears that
the background component is the most relevant part. However, by being prevalent on
both methods, it does not influence the relative results. The second, and lower, peak of
the two distributions represents the brain component of the images: by looking at them
we can see that the distribution relative to the SR model is narrower and slightly shifted
towards lower intensities, therefore justifying the better scores achieved by the model.
Both histograms are mostly composed by values lower than 0: this means that the two
models over-estimate most of the pixel values.
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Figure 4.14: Histograms of the distribution of differences pixel-by-pixel for the reconstruc-
tion performed by EDSR (Blue) and by the bicubic algorithm (Orange), for a T1-weighted
NMR. The histogram has been cut between 0.05 and 0.1 on the y axis to better represent
the lower parts.

In the case of a T2-weighted sample, I show in figure 4.15 that the behaviour seems
to be inversed: indeed this time the high frequency components of the differences are
focused on the inner parts of the image and in particular around edges.
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Figure 4.15: Absolute differences of Super resolved image obtained with EDSR (left) and
bicubic (right) for T2-weighted NMR. This time the major differences seem to be mostly
located on the inner parts of the sample, in particular around edges.

Also, the distribution of those differences is more concentrated around the peak of
density, which, again, represents the background components, that is not zero. This
concentration (and simmetry, in case of the bicubic upsample) is due to fact that there
are much less white and gray pixels and a majority of dark-ish ones.

Figure 4.16: Histograms of the distribution of differences pixel-by-pixel for a reconstruc-
tion performed by EDSR (Blue) and by the bicubic algorithm (Orange), for a T2-weighted
NMR. The histogram has been cut between 0.08 and 0.1 on the y axis to better represent
the lower parts.
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The same comparisons can be made also for WDSR and in general for an up-sampling
scale factor of ×4. In figure 4.17 I show the absolute differences of a T1 sample upscaled
from 64× 64 to HR.

Figure 4.17: Absolute differences of Super resolved images obtained with WDSR (left) and
bicubic (right) for a T1-weighted NMR. Also in this case the major differences seems to
be focused on the scalp of the subjects.

First of all, also in this case the major differences are located around the scalp, this
visualization also highlights better the artifacts created during the upsampling for both
reconstractions. Another problem, is the strong background components of the WDSR.
upsampling, which is much more evident than in the bicubic case. In the histograms in
figure 4.18 is shown the distributions of the differences of the two reconstructions:
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Figure 4.18: Histograms of the distribution of differences pixel-by-pixel for a reconstruc-
tion performed by EDSR (Blue) and by the bicubic algorithm (Orange), for a T2-weighted
NMR. The histogram has been cut between 0.08 and 0.1 on the y axis to better represent
the lower parts.

The same considerations that have been expressed for the previous cases, can be
made also in this one: by looking at the distributions, both models over-estimate the
majority of pixels in the images.

In figure 4.19 is shown the absolute difference between the original images and the
two ×4 reconstructions performed respectively by WDSR and the bicubic.

Figure 4.19: Absolute differences of Super resolved images obtained with WDSR (left) and
bicubic (right) for a T2-weighted NMR.
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In figure 4.20 is shown the relative histograms of distributions of differences for the
slice shown above.

Figure 4.20: Histograms of the distribution of differences pixel-by-pixel for a reconstruc-
tion performed by EDSR (Blue) and by the bicubic algorithm (Orange), for a T2-weighted
NMR. The histogram has been cut between 0.08 and 0.1 on the y axis to better represent
the lower parts.

In this case the distribution seems to be more spreaded and almost symmetric
around the peak, again sligtly shifted towards negatives values, which indicates an over-
estimation of pixel gray scale values for the two reconstructions.

The next analysis will focus on the study of how reconstructions performs with a
standard post-processing tool for NMR and on the analysis of the same data by removing
the background.

4.4 Brain Extraction

To avoid background related problems, I extended the analysis to images where the
background and the scalp were removed with FSL BET (Brain Extraction Tool)[26].
FSL is a standard post-processing tool for NMR, it works by creating a binary mask for
every slice and then applies it to the images: in this way is possible to extract only the
relevant information from data. A binary mask is a tensor of zeros and ones with the
same dimension as the original NMR, the “ones” correspond with the pixel we want to
preserve. An example is shown in figure 4.21:

59



Figure 4.21: Example of application of a mask on one of the slices of the original 3D
map. (left) Original image, (center) Mask obtained from FSL BET and (right) Mask
applyed to the original image.

I reported two different approaches for a single patient: firstly, three different bi-
nary masks for original images, Super Resolved reconstructions and bicubic ones were
extracted. In this way it is possible to quantify how well a standard post processing
tool like BET performs on images obtained by upsampling. Secondly, I masked all three
reconstruction with the same binary mask, obtained from the original high resolution
NMR, in this way it is possible to compare directly the reconstruction capabilities of the
methods, without including uninteresting data. The first analysis how well BET works
on the reconstructed images, therefore I will consider distinct masks applied separately
to the results. As shown in figure 4.22, Brain Extraction Tool not only removes the
background, but also the entire scalp, which was shown to contains the main differences
from the original image.

Figure 4.22: Examples of Brain Extraction for original image (left), EDSR image (center)
and Bicubic results (right). The binary masks are different for the three images.

In figures 4.23 and 4.24 the differences pixel by pixel between super resolution’s results
and the original image are reported side-by-side with the corresponding Bicubic results.
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Figure 4.23: Absolute differences for Super Resolution (EDSR, left) and bicubic (right).
The images are obtained by computing a pixel-wise absolute difference with the original
slice. We can see the main dissimilarities on the border of the two images, meaning that
the BET didn’t catch all the relevant informations on the reconstructed images.

Figure 4.24: Absolute differences for Super Resolution WDSR, left) and bicubic (right). In
this case, the principal dissimilarities are not focused only on the outer parts of the brain
and that is understandable, given the high level of downsampling.

In the first case (figure 4.23) we can see the main dissimilarities are on the border
of the two brains, meaning that BET did not catch all the relevant informations on
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the reconstructed sample or, otherwise, the up-sampling highlighted . In any case, there
some differences between masks, which can be quantified with an Intersection over Union
(IoU), as described below.

In the second case (figure 4.24), the principal dissimilarities are not focused only
on the outer parts of the brain, accordingly to what have been shown before, and that
is understandable, given the high level of downsampling. Again there some discrepan-
cies between images aroun the border, meaning that during re-upsample some of the
informations are lost or over-amplified with respect to the original image.

The histogram of the distribution of differences in figure 4.25 shows how the back-
ground component is now shifted towards 0, implying that is not considered in the score
computations. The distributions also shows a spread and a shift towards higher differ-
ences of the brain component: this is probably due to the higher contrast in the images
obtained by brain extraction.

Figure 4.25: Histogram of differences for an image obtained with x2 up-sampling and
after Brain Extraction. The background componenent is completely shifted towards zero,
while the Brain componentent spreaded and shifted toward higher intensity for contrast
manipulation. The distributions for the two methods are nearly identical. The histogram
has been cut on the y axis between 0.07 and 0.2 to better represent the Brain Component

As a last evaluation I considered the Intersection over Union (IoU) score, which
quantifies the overlap between different masks. The IoU is defined as:

IoU =
A ∩B
A ∪B

(4.1)
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where A, in this case, is the binary mask obtained by the original slice, while B is
the mask obtained by one of the upsampling methods. The trends of IoU for the two
models compared with the bicubic algorithm can be found in figure 4.26

Figure 4.26: Trends of IoU scores for the different upsamplig methods. (left) comparison
between the mask obtained from EDSR and bicubic recostructions and (right) same graph
for WDSR and bicubic. Notice that some slices are cut from comparisons since they are
black images and both intersection and union are 0.

The comparisons between IoU in the EDSR do not shows much of a difference with
the bicubic algorithm. On the other hand, WDSR seems to be slightly penalized: that is
most likely due to the artifacts present in the scalp of the subjects shown in figure 4.6
interfering with the brain extraction, which may makes the super-resolution model with
this level of down-sampling less adapt to work with BET-like softwares
The second analysis proposed in this section regards how the upsampling methods per-
forms considering the same mask applied for all the reconstruction: so that I can com-
pute the scores considering only the same portion of the images, without worriying about
background effects. Since the original High Resolution NMR is supposed to represents
an objective “truth” for our study, the best available mask is of course the one acquired
from its brain extraction. For EDSR, the results in figure 4.27 shows the average trends
of PSNR and SSIM pre and post brain extraction for the selected patient, mediated over
the rotations angle.
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Figure 4.27: Average trends of PSNR (left) and SSIM (right) for the three channels
(Red, Blue, Green lines) of the Super Resolution EDSR model compared with the bicubic
algorithm scores (Yellow) as functions of the slices. Above are the results pre brain
extraction while below the ones post brain extraction. The average is performed for one
patient and for every rotation, for T1-weighted NMRs.

By comparing the pre and post BET performances, it is clear that the differences
between channels become much lower, which may means that the discrepancies measured
in the pre BET trends comes from artifacts and backgrounds related to “false-features”
extrapolation which are different between channels and mitigated (or entirely removed)
when masking the slices. However, at same time, the score discrepancies between bicubic
and SR also become much lower than pre-BET, meaning that, on average, the background
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components does favour the Super-Resolution, but still EDSR beats the upsampling of
the bicubic by a fair amount after brain extraction.
The same comparisons for WDSR in figure 4.28 shows very similar results:

Figure 4.28: Average trends of PSNR (left) and SSIM (right) for the three channels
(Red, Blue, Green lines) of the Super Resolution WDSR model compared with the bicubic
algorithm scores (Yellow) as functions of the slices. Above are the results pre brain
extraction while below the ones post brain extraction. The average is performed for one
patient and for every rotation, for T1-weighted NMRs.

Indeed, even in this case, the SR performs better than the bicubic algorithm for all
three channels, which are very consistent with each others. This may indicates that
the differences between channels derived by what each of them extrapolate from the
background, in terms of bias and artifacts.
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Chapter 5

Conclusions

In this work I developed two novel frameworks for Deep Learning called Byron in C++
and NumPyNet in Python, the former focused on CPU optimizatioon while the latter
focused on readability. I tested the computational performances of Byron for the most
important layers in image analysis against the python library Tensorflow.
Moreover, the work extended to implementing and testing two models for super-resolution,
EDSR and WDSR, on NMR images, which represent a new benchmark for those deep net-
works, originally trained and tested only on DIV2K. On average, the models show better
reconstruction capabilities on the most interesting parts of the brain compared with the
bicubic algorithm, although they introduce artifacts and biases: this may be a conse-
quence of them trying to enhance the few signals gathered from low-resolution input
and “seeing” false-features inside the background of the slices. Testing EDSR, an RGB
model, on a gray-scale dataset also highlighted great variability between the three output
channels, while WDSR seems to be more stable in this respect. On the other hand though,
while EDSR results do not exhibit visible differences across angle of rotations, WDSR’s ones
has been shown to improve for rotations different from multiples of 90°, possibly show-
ing that its action is not invariant with rotations. The localization of errors through a
pixel-wise absolute difference between reconstructions and high-resolution NMRs indi-
cates that for both algorithms the major discrepancies are localized around the scalps of
the subjects, which tends to be the most uninteresting section of the brains. Although,
they also highlight that the background components of the images are Thus, the brain
extraction has been helpful in removing both background effects and the high level of
discrepancy in the scalp. This, in turn, lowered the differencies of performances between
super-resolution RGB channels and bicubic algorithm for both models EDSR and WDSR,
while also showing that the SR still shows promising results in terms of reconstruction
of biomedical iamge, which is an indication of how well this models can generalize the
“knowledge” acquired during training on a completely different dataset such as DIV2K,
which does not contain any data about NMRs or other kind of biomedical image.
Some future developments for the work may include:

� An exhaustive algorithm for training in Byron to investigate the concept of transfer
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learning: namely, storing knowledge gained while solving a problem and re-applying
it to a different, but related, task. In this case, we can use the same dataset of NMR
to continue the training of EDSR and WDSR starting from the parameters obtained
by the respective authors. Of course, the networks can also be re-trained from
scratch on NMR images only and compare the results.

� The implementation of both Byron and NumPyNet for GPUs to exploit at best every
hardware.

� Extension of the analysis after Brain Extraction for all the patients and angle in
order to remove artifacts and background biases which represented a major issue
during evaluation.

� The timing sections in the second chapter shows that there still work to be done
in the optimization of some of the layers presented for Byron.
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