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Abstract

Since the end of the long winter of virtual reality (VR) at the beginning of
the 2010 decade, many improvements have been made in terms of hardware
technologies and software platforms performances and costs. Many expect
such trend will continue, pushing the penetration rate of virtual reality head-
sets to skyrocket at some point in the future, just as mobile platforms did
before. In the meantime, virtual reality is slowly transitioning from a special-
ized laboratory-only technology, to a consumer electronics appliance, opening
interesting opportunities and challenges. In this transition, two interesting
research questions amount to how 2D-based content and applications may
benefit (or be hurt) by the adoption of 3D-based immersive environments and
to how to proficiently support such integration. Acknowledging the relevance
of the former, we here consider the latter question, focusing our attention on
the diversified family of PC-based simulation tools and platforms. VR-based
visualization is, in fact, widely understood and appreciated in the simula-
tion arena, but mainly confined to high performance computing laboratories.
Our contribution here aims at characterizing the simulation tools which could
benefit from immersive interfaces, along with a general framework and a pre-
liminary implementation which may be put to good use to support their
transition from uniquely 2D to blended 2D/3D environments.
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Chapter 1

Introduction

The slow, but steady increase, in terms of popularity and use of consumer-
oriented virtual reality-based platforms has been propelled, at the time of
writing, by the pandemic wave of 2020. Although the long-term thrust to
VR provided by lock-down countermeasures may be uncertain to establish,
it is possible to observe that a number of different academic, industrial and
political domains are for the first time considering the use of such technology
[1].

However, despite the contingency caused by COVID-19, many are ques-
tioning or even envisioning a future where 2D and 3D interfaces will both be
part of digital entertainment and computing systems to provide better per-
formances and experiences [2, 3, 4, 5, 6, 7, 8]. Clearly, the price drop of hard-
ware components (e.g., Oculus Quest and Rift with prices below 500€ and
Oculus GO below 200€) amounts to only one of the factors that may make
all of this happen. As prices drop, progressively encouraging a mass-market
diffusion of VR headsets, the integration of 2D/3D interface paradigms into
software platforms proceeds more slowly, as it is not possible to observe a
steep increase in the number of applications adding immersive experiences to
their traditional 2D ones. Such resistance may be determined also by the fact
that, to the best of our knowledge, no general and simple approach has so far
been developed to implement an easy transition from 2D to 2D/3D settings.
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2 1. Introduction

Different solutions exist, as we will briefly describe in Chapter 2, but these
are either custom or costly and not freely available to everyone. The risk,
for the near future, is that hardware will really become cost-effective while a
scarcity of software solutions will instead be available. In this work we resume
such problem, which has been considered to some extent in the past years in
literature. Previous works, however, have mainly concentrated on providing
immersive interface support either through the provision of software platform
specific add-ons or with the exhibition of dedicated APIs inside existing visu-
alization frameworks [9, 10, 11, 12, 13]. No framework instead exists, to the
best of our knowledge, capable of supporting: (a) a wide set of applications
to (b) simply select the 2D interface elements which should be exported to
a 3D immersive environment, while, (c) not requiring the creation of custom
software, specific for the intended task.

We here aim at moving a step forward along the path set by (a), (b)
and (c), considering an application domain that has for long experimented
and appreciated the opportunities laid by 3D interfaces and virtual reality:
scientific computation and simulation platforms [14, 15, 16]. An important
body of evidence has demonstrated, in fact, the measurable benefits that
can be attained when exploring scientific data using immersive interfaces
[17, 18, 19, 20, 21, 22, 23, 24]. Even if difficult to quantify such phenomenon,
any time scientists express situations where they discovered some relationship
in their data while immersed in virtual reality systems, we can make the case
that the interface provided a utility that helped them advance their work
[13].

This work contributes to the research path presented so far with the pro-
vision of an analysis of the graphical libraries utilized by a few of the most
widely used desktop computer simulation platforms, along with a prelimi-
nary implementation demonstrating the feasibility of the proposed technical
approach.

This work has been presented at the IEEE ACM DS-RT 2020 conference
[25].



Chapter 2

State of the art

The use of virtual reality approaches for the visualization of simulation
results has been investigated for long now [26]. Scientific visualization, re-
sorting to computer graphics, has been so far used to represent: (a) data
sets, which may be the output of numerical simulations, (b) recorded data,
or, (c) constructed shapes. Virtual reality has been widely explored to aid
in the display of 3D structures providing spatial and depth cues, as it allows
a rapid and intuitive exploration of the volume containing the data.

The authors of [27], for example, have analyzed the usefulness of VR in
specific task performance with volume datasets, finding that such systems,
with a high field of regard and head tracking, improve performance in spa-
tial judgment tasks. More recently VR systems have been assessed in the
visualization of complex weather-related information [28]: to this aim, the
effectiveness and usability of the Xbox One controller in combination with
a VR display proved to be the most effective. Reski and Alissandrakis con-
ducted a user interaction study to investigate the experienced workload and
perceived flow of interaction in the exploration of open data [29]: they also
identified trends indicating a user preference for virtual representations.

Implementation-wise, virtual reality visualizations have, so far, been run
according to one of the three following approaches:

• Native virtual reality - Such applications are designed and developed
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for the VR environment, therefore their user interface is designed in a
three-dimensional way in the first place. Native approaches typically
provide the most advantages is in terms of the degree of immersion and
efficiency they are able to support;

• Plugins for virtual reality - The application is updated by the pro-
ducers with the addition of a plugin that allows the user to interact
with the software in VR (e.g. SketchUp or for AutoCAD) [9, 30]. The
main disadvantage compared to the native VR approach is that the
software is designed for 2D interactions in the first place, therefore, it
may pay the price of a design that has not accounted for immersive
environments since the beginning. However, since the vendors have ac-
cess to the source code of their application, they can also extend their
code-base to increase the immersion of the virtual reality interface (such
changes may be expensive, though, if the application has already been
released and has reached a considerable size);

• Porting in virtual reality - This is the situation where the applica-
tion solely provides a 2D interface and its producers do not provide any
type of plugin or update to support VR interactions. A solution has
been found in the past, intercepting the calls made by the rendering
library (e.g. DirectX, OpenGL) and redirecting them to an application
that handles them, executing them in a virtual reality environment
[31, 11, 12, 13]. Obviously this approach may not be as efficient as the
previously described ones, but provide the means to flexibly port any
type of application, without requiring an access to its source code [11].
In terms of immersion, the main disadvantage is that it may be lower
when compared to the previous approaches. It may not be possible to
achieve the same level of interaction, as the actions that may be im-
plemented in a general way are limited to those involving the graphics
components (i.e., the calls made by the rendering library), while direct
interactions with the original application would require custom, per-
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application solutions, which are ill suited in the context of a general
framework.

Some companies, such as Techviz or Moreviz, offer porting frameworks
based on OpenGL intercept mechanisms: both specialize in the port-
ing of CAD applications [32, 33]. However, both solutions come at a
cost, with required price expenditures exceeding those affordable to the
consumer market or even, in many cases, to a research lab.

Another experience worth citing is the one of Envelop, a company that
recently attempted to introduce a VR-based interface for the visual-
ization and interaction with Microsoft Windows-based applications, its
software provided a 3D view of the 2D Windows Desktop. The en-
trepreneurial initiative ended in 2017 before having any chance of get-
ting mainstream [34].

Compared to the previous experiences described in this Chapter, we
place our contribution at the intersection of scientific computing, con-
sumer oriented solutions and virtual reality. With this work we aim
at reviving the stream of work started in [11], providing the building
blocks necessary to support an immersive view of 3D content produced
in different scientific/simulation frameworks. Unlike [32, 33], however,
our approach is an open source one. In the following, we describe the
path that has been started, according to a vision which aims at pro-
viding an easy-to-use and integrable 3D immersive environments for
legacy simulation frameworks.
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Chapter 3

Implementation

This chapter begins with the description of the use case scenario proposed
by us. Then is described the legacy ML2VR project which is the starting
point of our solution and finally is described the architecture implemented
to achieve the proposed scenario.

3.1 Use Case Scenario

The scenario of reference may be simple represented by Figure 3.1. In
essence, we envision a situation where a 3D object produced by a scientific
computing or simulation software may be explored and manipulated within
an immersive environment.

In terms of visualization, the aim is to provide the standard 3D manip-
ulation functionalities, typically available in immersive environments, such
as rotation, scale, translation along the three different axes and zoom [35].
In addition to these, we aim at providing means of toggling on/off or high-
lighting specific 3D objects or classes of objects. Clearly, maintaining such
approach, the possible interactions are those that may be implemented with
the rendered graphics.

In a vehicular simulation scenario, for example, it may be possible to
highlight (e.g., change the color) specific or groups of automobiles to track
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8 3. Implementation

their behavior. In the same scenario, it may also be possible to toggle off all
the vehicles that are moving, in order to focus on those that are not.

As anticipated, we aim at implementing the depicted scenario for as many
as simulation platforms as possible, while not requiring the users of such
platforms to write any lines of code. In the following we explain in detail
how this may be done.

Figure 3.1: Reference scenario.

3.2 Legacy ML2VR

As described in the chapter 2, our aim is to revive the stream of work
started in [11] publication. The goal of their project, called ML2VR, was to
provide VR interaction capabilities to Matlab.

Since Matlab employs OpenGL as graphic library, the authors created
an OpenGL library clone as a middle-ware layer between the real OpenGL
library and the application. The role of this library was to redirect the calls
made by Matlab to another application that handled the rendering in virtual
reality.

Unfortunately the developed application no longer works due to the the
lack of availability of most dependencies and to the change of the OpenGL
library usage by Matlab. Matlab now uses glDrawArrays calls instead of
single vertex and color calls and the original application does not intercept
them.

For this reason, we started from the code they developed and our first
goal was to make their project usable with the latest version of Matlab.
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We decided to build our proposal upon this approach, rewriting every part
of the software architecture to handle the latest Matlab version (v. R2019b).

3.3 Architecture

We’ve started by defining an OpenGL library which is injected into the
Matlab process. This library intercepts and redirects some of the calls made
by the main Matlab process to our immersive application. Then our applica-
tion executes these OpenGL calls to render them into a virtual environment.

Figure 3.2: Complete architecture.

Figure 3.2 represents the structure of the software architecture. We can
individuate two key components:

• OGL2VR: the application that handles the information received from
the injected library, rendering it into a virtual reality environment.
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• Injected OpenGL: this is the library that is injected into Matlab.
This library redirects the relevant OpenGL calls to the OGL2VR appli-
cation. To inject the library into the process is used a third application
called Injector. This application requires the PID (process ID) of the
process and handles the injection of the library in that process.

3.3.1 Sequence Diagrams

This section describes the architectural diagram sequences.

Figure 3.3: OpenGL calls flow.

The figure 3.3 shows the flow of the OpenGL calls through the architecture
and can be described as follow:

1. The software to virtualize calls an OpenGL library

2. If the OpenGL call requested by the software is to be redirected it is
sent to OGL2VR (our application) and then called on the real library,
otherwise it is directly called on the real library.
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3. OGL2VR saves each call and render them in VR. Once the call for the
end of the frame is received, clear the list and start again.

This process is repeated until the user closes the OGL2VR application. If
the software to be virtualized is closed, calls are no longer received but the
last frame is still rendered as it is still present in the application.

We now proceed to describe the sequence diagram of the two key compo-
nents.

OpenGL injected library

We start with the sequence diagram of the OpenGL injected library.

Figure 3.4: Sequence diagram of the Injected library.

The figure 3.4 shows the sequence of actions made by the injected library
when the call is received from the main application. The sequence can be
described as follow:

1. The main of the library receives the call from the main application

2. If the received OpenGL call is not hooked, it is redirected directly to
the real library, otherwise the injected function relating to the received
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call is called.

3. The function starts by creating the Packet using the information of the
call. After that call the send function of the SocketHandler class which
sends the Packet to the OGL2VR application. Finally calls the real
function from the library.

4. The function starts by creating the Packet using the call parameters.
Next, it calls the send function of the SocketHandler class which sends
the packet to the OGL2VR application. Finally call the function from
the real library.

OGL2VR

For the OGL2VR application, we have two main flows, one for receiving
and parsing calls and one for rendering elements in VR.

Figure 3.5: Sequence diagram of calls parsing.

The figure 3.5 shows the sequence of actions made by OGL2VR applica-
tion when the packet is received from the injected library. The sequence can
be described as follow:
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1. The SocketHandler, the class that manage the communication, receives
the packet from the library and calls the ParsePacket function passing
it as a parameter.

2. The call handler receives the packet, parse it and add the call to the
tree that contains all the calls to render.

The call handler is much more complex and will be described in detail later,
but for now it is sufficient to understand how the packet receive works.

Figure 3.6: Sequence diagram of VR rendering.

The figure 3.6 shows the sequence of actions made by OGL2VR applica-
tion for rendering all the elements and the calls in VR. The sequence can be
described as follow:

1. The main of the OGL2VR application has a display function which
handles the rendering of the scene. The function is looped and called
several times at second.

2. Each cycle starts by calling the ManageUserInputs function to manage
user inputs and apply changes to the rendered element.

3. After handling the inputs, VRHandler’s RenderFrame function is called.
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4. The RenderFrame function starts by preparing the textures for the
render.

5. Then the engine rendering function is called which draws every object
of the scene in the textures.

6. After that, each call received from the injected library is executed. In
this way the elements to be virtualized are drawn in the textures.

7. Finally the textures are rendered in the head mount display (HMD).

Just like for the call handler, the Engine, VRHandler and PlayerInput blocks
are more complex and will be described later. For now they are sufficient to
understand the rendering process.



Chapter 4

OpenGL/Injector

This chapter describes the OpenGL library created for the injection and
the injector used to inject it.

4.1 OpenGL injected library

At the beginning of the development, the aim of the project was the same
as that of the old OGL2VR application. Improve Matlab with the addition
of VR interaction features.

The library class architecture used at the time was based on three main
classes that managed three different categories of calls: vertex/color calls,
drawVertex calls and default calls. Each of the three classes had a unified
function SendValue inside which was used to send values to the OGL2VR
application. An example, the calls glColor3f, glVertex2d and so on, were
classified in the vertex/color category and used the same SendValue function
as they belonged to the same “category”. This method worked well because
the injected calls were easily classifiable and the actions performed by the
SendValue function were the same for each category.

Everything worked well until we decided to switch to supporting any
application that used OpenGL as a graphics library. The problem was that
the amount of calls to be handled increased exponentially and the “generic”

15



16 4. OpenGL/Injector

SendValue functions were no longer so “generic”. Many calls, in fact, fell
into the default calls category and the SendValue function used for that
category became a big if-then statement (it this call send this, if this call
send this and so on).

For this reason we decided to refactor the architecture of the OpenGL
library.

Figure 4.1: Old call management (above) — New call management (below).

The figure 4.1 shows the old method used and the new one. The upper
image shows the old method in which all the injected calls belonging to the
same category were managed by a single class which was in charge of sending
the value. The image below shows the new method in which all injected calls
autonomously manage the sending of information.
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With this change we can get rid of the functions filled with the if-then
statement and manage the sending within the injected function itself. More-
over, it is also better for the scaling of the library because if in the future
we want to manage new calls we just have to add the injected function and
manage the sending of the information inside it.

To improve modularity we have also added a new class to manage the
construction of the packet to be sent through the socket. This class, called
Packet, makes it easier for the user to create, manage and send packets via
sockets.

The Packet class will be described in detail later, now we will talk about
the final architecture of the OpenGL injected library.

Figure 4.2: OpenGL injected library class diagram.

The figure 4.2 shows the class diagram of the injected library. Three main
components can be identified from the image:

• dllMain/InjectedFunctions component, which is what manages the
hooking of the functions and the execution of them.

• Packet component, which is the class that manages the creation of the
packet to be sent through the socket.

• SocketHandler component, which is the class that manages socket
communication with the OGL2VR application.
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The interaction between them allows the application to send the intercepted
calls to the application for virtualization.

In the next sections the three components will be described more in de-
tails.

4.1.1 dllMain/InjectedFunctions

In this section the dllMain/InjectedFunctions component will be described.
This component is made of two subcomponents: the dllMain component
and the InjectedFunctions component. These two components are deeply
linked, the first contains the hooking of the OpenGL functions, the second
contains the functions that are hooked.

Hooking

For the hooking of the functions is used EasyHook library which simplifies
the entire injection/hooking process for the user. The library as a function
called LhInstallHook which requires:

• The entry point of the function to override

• The pointer to the new function

• A pointer to a callback function which is not used by us

• A pointer to the trace of the hook

The pointer to the function to override is obtainable using the GetP-

rocAddress function. GetProcAddress requires the library containing the
function and the name of that function, the output is the pointer to that
library function.

The pointer to the new function is simply the pointer to the function that
should overwrite the library function.

To make the library scalable and avoid a wall of LhInstallHook functions
we decided to add an array of FunctionInfo elements, called injectedFunc-
tionList, to manage information about the hooked functions.FunctionInfo
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is a structure that contains the name of the function to be overwritten and
a pointer to the function that should overwrite it.

The array is initialized as follow with the functions currently managed by
our application.

FunctionInfo injectedFunctionList [..] = {

{ " glBegin ", _glBegin },

{ "glEnd", _glEnd },

{ " glClear ", _glClear },

.

.

.

{ " glNormal3d ", _glNormal3d },

{ " glNormal3f ", _glNormal3f },

{ " glDrawArrays ", _glDrawArrays }

};

The first element is the name of the function, the second element is the
pointer to the new function. The example is a part of the complete list,
currently the application manages 26 opengl functions.

Thanks to this implementation, the injection process simply cycles each
element of the array and calls the LhInstallHook function on each of them.

Injected Functions

Each function injected is different from the others but they all follow the
same pattern which is:

• Create the packet

• Send the packet using the SocketHandler

• Call the real function

All the packet sent by the injected functions follow a defined structure:
the first element of the packet contains the name of the call (e.g. gl scale d,
gl begin, gl vertex 3d) the rest contain the call parameters.
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4.1.2 Packet

The Packet class is the one that manages the information to be sent to
the OGL2VR application.

The Packet class has two working methods: creating the package from
scratch or parsing an existing packet.

Packet from scratch

In the case of creating the packet from scratch, the constructor Packet(int

byteSize) is used, which allows the user to define the maximum size of the
packet.

This constructor initializes the pointers, sets the current size to 0 and
allocates an byte array with size byteSize + 4. The size is increased by
4 because the packet follows the structure: size of packet + data. This
structure simplifies the reading of the packet.

Through the write functions, the user can add data to the array. These
functions write the data passed by the user to the array and update the head
pointer and the total size.

Once the user has finished writing data to the array, he can retrieve the
pointer to the packet using getVoidPointer, getBytePointer and getChar-

Pointer functions. Each function, before returning the pointer, writes the
final size of the packet at the top of the array (the first 4 bytes described
above).

Packet parse

In the case of parsing an existing packet, the constructor Packet(uint8 -

t* pointer, int size) is used.
This constructor assigns the pointer passed as a parameter to the head

and sets the maximum packet size using the size passed as a parameter.
Through the read functions the user can retrieve all the information contained
in the packet.
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When reading the package, the hash of the package itself is also calcu-
lated. This is used by OGL2VR but will be described in detail later.

The writing and reading functions are very simple. They are based on
reading/writing the number of bytes of the variable type (e.g. 4 bytes for the
integers, 2 bytes for the shorts), except for reading or writing of bytes. In
these cases, the size of the bytes to be read/written is retrieved/added first
and then the bytes are read/written.

4.1.3 SocketHandler

SocketHandler is the class that manages socket communication with the
OGL2VR application. It is based on the singleton design pattern.

The class is very simple. It has three functions which are:

• Connect, used to start the connection with the OGL2VR application

• Disconnet, used to close the connection

• SendPacket, which takes the packet as a parameter and calls the send

function by passing the socket, the pointer to the packet and the size
of the packet as parameters.

4.2 Injector

The injector is very simple. Asks the user the PID of the process and
execute the injection of the library on that process. Just like the OpenGL
library described above, it uses the EasyHook library to handle the injection.

The code is simple as well, it is composed only of the main function and
follow these steps:

1. Start by asking the user for the PID and retrieving it from the console.

2. Then get the DLL to inject (our OpenGL library) that lays on its folder.
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3. Finally, call the function for the injection and print the result to the
console.

The function used for the injection is RhInjectedLibrary, this function
requires many parameters such as processId, the path of the library to be
injected and others that we do not use.



Chapter 5

OGL2VR

In this chapter, the OGL2VR application is discussed in detail.
We start by showing the overall class architecture of the application.

Figure 5.1: OGL2VR class diagram.

The figure 5.1 shows the class architecture of the 5 components seen above
in the sequence diagrams [figure 3.5 and 3.6]. The figure does not show the
interaction between each class but only the links with application’s main.

23
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The interactions will be described later during the detailed description of
each component.

The task of the 5 components are:

• SocketHandler - management of communication with the injected
library

• Call handler - management of the calls received from the injected
library

• VRHandler - management of the rendering in the VR environment
and handling of the controllers input (update of the state of the con-
troller inputs)

• PlayerInput - management of the inputs received by the controllers

• Engine - management of the rendering of the objects. Those created
by the user.

Each of the components will now be described in detail.

5.1 SocketHandler

The SocketHandler component consists of two classes: the SocketHandler
class and the Packet class. While the latter is the same as the one described
above for the OpenGL library [4.1.2], the former is much more complex.

The figure 5.2 shows the class diagram of the SocketHandler component.
The Packet class is not described because is already described in the figure
4.2.

The SocketHandler class follows the singleton design pattern, contains 4
functions and a constructor: the constructor, StartServer and StopServer

functions are trivial, so we can skip their description.
SetCallsHandler is used to set the OGLRenderHandler variable which is

the handler for the calls received from the library but will be described in
detail later.
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Figure 5.2: SocketHandler component class diagram.

The ServerThread function is the core of the SocketHandler class. This
function handles socket communication with the library by reading pack-
ets received from the library and passing them to the packet parser (the
OGLRenderHandler described before). This function is executed on a thread
to decouple the reception of the packets from the main application.

The figure 5.3 shows the flow chart of the function.

1. Steps [1], [2] and [3] are those for initializing communication. The
connection is accepted and the two main buffers are initialized. The
byte buffer is the one that contains the raw bytes currently read, the
dataRead is the one that contains the final packet sent through the
socket and is filled during the loop.

2. After the initialization, a while loop begins and continues until an error
occurs [4].

3. In step [5] the buffer is read and saved in the raw byte buffer.

4. Step [6] checks for errors in the reading. If less than 4 bytes are read and
there are no previously read bytes, we are in the presence of an error so
the communication is closed. Exactly 4 bytes are checked because the
packet structure is size of packet + data (as described in section
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Figure 5.3: ServerThread function flow chart.

[4.1.2]) and size of packet is represented as an integer, therefore 4
bytes.

5. Step [7] checks if the packet size is unknown (less than 0) and the
dataRead buffer is currently empty.

If true, it means that the last reading ended with the parsing of the
packet, therefore the raw bytes read are from a new packet with the
first 4 bytes containing the size. In this case is saved the final size of
the packet [11] and the dataRead buffer is initialized of the length of
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final packet size [12].

If false is checked if the final packet size is known.

6. Step [8] checks if the final packet size is known. If true, it means that
the last read finished reading a new packet but the bytes read were not
enough to get the size, so the raw bytes read contain the remaining
bytes to complete the size. The remaining bytes are read and the final
size of the packet is saved [9], then, just like before, the dataRead buffer
is initialized of the length of final packet size[10].

If false, it means that we are currently reading a known packet.

7. After getting the packet information, there is a loop [13] that handles
reading the raw bytes. This cycle continues until there are no more
bytes to read.

8. In step [14] the current byte is read and in step [15] the number of
remaining bytes is reduced.

9. Step [16] checks whether the length of the dataRead buffer (the bytes
read) is the same as the size of the final packet. If true it means that
the packet is completely received.

10. Step [17] parse the received packet by calling the ParsePacket function
of the OGLRenderHandler class. Step [18] resets the size of the final
packet and the dataRead buffer.

11. Step [19] checks whether the remaining bytes to be read are equal to or
greater than 4. If true, the size of the new packet is saved [21] and the
dataRead buffer is initialized as done above [22]. If false, the remaining
bytes are saved in a buffer [20] and will be used during the next cycle
to obtain the size of the new packet (step [9]).
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5.2 Call handler

The call handler component consists of a group of classes that manage
the parsing, storage, and rendering of calls received from the injected library.

Just like the injected OpenGL library [4.1], this component has been
refactored due to the change in the project aim. Before the refactor took
place, the structure used for call handling was similar to that used in the
injected library.

Figure 5.4: OGL2VR old call handler classes.

Figure 5.4 shows the three main classes that handled the calls. Each class
handled a different category of calls: RenderValue for the vertex/color
calls, RenderDraw for the drawVertex calls and the RenderDefault for
the default calls. Each of the three classes was used to store information
about received calls.

Within the SocketHandler class there were three different functions,
one for each category of calls, used for message parsing. The operations
performed by the three functions were: retrieve the information of the call
within the message, analyze it in a variable with type one of the three classes
described above, return the variable. All these variables were then added
into a list of call.
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The call rendering process was simply scrolling through the list and ren-
dering each item.

This method worked fine for message parsing (up to aim change) but had
problems for the rendering. Using a single call list resulted in the rendering
of graphic artifacts during frame switching.

Figure 5.5: Graphic artifact, original figure on the left, rendered on the right.

Figure 5.5 shows an artifact created by using the list. In the picture on
the right some parts of the original image are missing and there is a grid at
the bottom that should not be rendered. This behavior was due to rendering
when receiving the list. During the reception, the call list was not received
completely and therefore not all the calls were present in it. Rendering an
incomplete list resulted in a partial rendering of the original figure and some
artifacts.

To solve this problem we have decided not to render the current unstable
frame but to stay one frame behind the original application. The implemen-
tation is based on two lists, one containing the complete call list of the last
frame and another containing the call list of the current frame of the original
application. Once the frame is received, the lists are swapped.
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Another improvement was the transition from using lists to using trees
for saving calls.

Figure 5.6: Transition from the call list to the call tree.

The figure 5.6 shows the transition from the call list to the call tree. On
the left we have the old method used where each element in the list was an
OpenGL call. This method was good enough for rendering calls but did not
allow the user to easily interact with it: the user only saw a long list of calls
and in case he wanted to disable rendering of an element he had to disable a
large number of elements of the list.

On the right we have the new approach where calls are logically grouped
into tree nodes. The list of calls shown in the figure is the same but we
can immediately see that the tree is much more intuitive than the list. The
internal nodes contain the grouping type, the leaves contain the call. In the
example we have two internal nodes whose types are TRANSLATE and RENDER,
the first indicates a call group that changes the position/rotation or scale of
the object, the second indicates the call group which renders the object in
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the scene.
There are three types of nodes: TRANSFORM, RENDER and CALL. The first

two have already been described above, the CALL nodes are the one containing
the final call and are the leaf of the tree. Thanks to this approach, if the
user wants to disable the rendering of an element, he can simply disable the
relative RENDER node.

Figure 5.7: Call Handler Component Class Diagram.

The figure 5.7 shows the final class diagram of the call handler component.
The scheme consists of 4 classes:

• OGLRenderHandler: core of the component, it manages the packets
received from the library by analyzing them and adding them to the
tree. It also manages the exchange and rendering of trees

• OGLBlock: this is the class used for tree nodes. It has the information
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about the node type and, in the case discussed above, contains the
OpenGL call to be made

• OGLCall: is the class that represent the OpenGL call

• OGLDynElModifier: this class is used to store changes to be made
on dynamic elements. It will be described in more detail later.

The main tasks of the call handler component are two: the management
of dynamic elements and the parse and rendering of received calls.

5.2.1 Dynamic elements

Dynamic elements are types of rendered elements that respect certain
properties. The adjective dynamic was decided by us and identifies their
tendency to vary.

Dynamic elements are those elements that vary from frame to frame.
Basically it is those elements that are not static in the original application.
For example, the 3D Cartesian chart on Matlab is a static element while the
plot of the function is the dynamic element. We can find a better example on
the SUMO simulator, during the simulation, the track is the static element
while the car moving there, is the dynamic element.

The peculiar thing is that the OpenGL calls of static elements remain the
same while those of dynamic elements vary from frame to frame.

Identifying these elements can be useful in various contexts, for example
we can decide to enhance or disable the rendering of these elements or we can
lighten the communication with the injected library by removing the sending
of the static elements.

In our application the user can disable or improve the dynamic elements.
Through a menu it is possible to select which modification to apply. The se-
lected modification is saved inside the dynElModifier variable and is propa-
gated within the tree. During the rendering phase, the node itself, if dynamic,
applies these changes.
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Figure 5.8: Dynamic elements, without modifier (left), with modifier (right).

The image 5.8 shows an example of dynamic element editing. On the left
we have the rendered element without any modification (the car is still blue),
on the right we applied the enhance modifier to the element (the enhancement
modifier changes color to yellow).

5.2.2 Packet parse / Render calls

We will now describe the most important part of the call handler compo-
nent, the parsing of the received packet and the building of the call tree.

The figure 5.9 shows the flow chart of the parsing packet process. The
chart can be divided into two sections, the left one where the received packet
is parsed, the right where the parsed call is added to the tree.

The flow chart steps can be described as follow:

1. First of all the packet is received and the call type is retrieved (e.g. of
call type could be gl begin, gl vertex 3d).

After that, the packet is parsed and saved in a variable of type OGLCall,
the hash of the packet is also stored inside the variable itself.

The parse process varies from call to call, but the pattern is always the
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Figure 5.9: Packet parse flow chart.

same. The parameters are retrieved and saved inside the variable. The
hash stored is used later to identify the presence of dynamic elements.

2. Once the call variable has been created and initialized, is checked if the
call is a glClear and if the cleared buffer is GL COLOR. If so, it means
that the original application is moving to the next frame (GL BUFFER is
the buffer that contains the rendered pixels). If true, the swap process
starts.

The swap process begins by finding the dynamic elements. The iden-
tification process is very simple, first of all is checked if the two trees
contain the same number of elements. If so, proceed otherwise the
check stops as elements have been added or removed and this change
would ruin the next check.

Then a one-to-one check is done by passing each node of the trees and
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checking the hash of each node. If the node is internal, the function
continues recursively on the children, if the node is a leaf, and therefore
a call, the hashes are checked. If the hashes are different, the new tree
node, siblings, and all their children are marked as dynamic.

Once done with the identification of dynamic elements, the trees swap
and the working node is restored. The working node is the current
node where new calls are added.

3. After the swap part, add the call to the tree begins. First of all is
checked if the call parsed require a new internal node to be created
(e.g. glPushMatrix starts a new TRANSFORM node, glBegin starts a
new RENDER node). If this is the case, a new child is added to the
working node, the type of the new child is set according to the call (ex.
In the example above we have TRANSFORM or RENDER as type) and then
the working node is moved to the new child.

4. Then the call is added to the tree. A new child is added to the working
node, its type is set as CALL and is given the parsed call as a value.

5. Finally, mirroring the previous check, it is checked whether the parsed
call closes an internal node. (e.g. glPopMatrix closes a TRANSFORM

node, glEnd closes a RENDER node). If this is the case, the working
node is moved to the parent.

5.3 VRHandler

This section describes the VRHandler component which is the one that
handles VR rendering and controller updating. The rendering process will
not be described in technical detail because it would be difficult and not
worth it.

The component uses an external library (OpenVR) for rendering in VR.
Even when using the library, the steps involved in rendering are still very
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difficult. For this reason we have created this wrapper in order to simplify
rendering in VR.

Figure 5.10: VRHandler class diagram.

The figure 5.10 shows the class diagram of the VRHandler component.
As we can see from the picture there are four classes: VROGLRenderer,
VRHandler, ControllerHandler and ControllerRenderer.

VROGLRenderer

This class contains the functions used to initialize the OpenGL library
used by OGL2VR application to render in virtual reality. To improve mod-
ularity, the display function is not defined within the class but is linked by
the user using the SetDisplayFunction function. This function takes the
pointer to the function as input and passes it to the function glutDisplay-
Func.



5.3 VRHandler 37

The display function is the one that manages the rendering of the frames
and is called every time the frame needs to be updated.

VRHandler

This class is the core of the component. It manages all the information on
the VR headset and controllers, manages their position and has the function
to render elements in virtual reality. Using bfRenderFrame and Handle-
Controllers functions the user can update the rendered frame on the HMD
and update controller information such as position, pressed buttons, and so
on.

ControllerHandler

This class handles the controllers information. Inside it is saved the in-
formation on the position/rotation of the controller and the list of possible
actions. The latter is a list that contains information about each action con-
nected to the controller. Through the AddAction function the user can add
new actions to the controller.

How the controllers and actions works will be described in more detail
later.

ControllerRenderer

This class manages the rendering of a controller on the scene. It is very
simple and has only two functions, one to create the VAO used for rendering
and one to render the controller.

5.3.1 VR rendering

In this section it will be described how the scene is rendered in virtual
reality.

First of all we begin to describe how the VRHandler class interacts with
the OGL2VR main. The figure 5.11 shows this interaction. As we explained
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Figure 5.11: Render sequence diagram.

before, the display function (the one called each frame) is inside the main
and is the one that manages the rendering of the application. The display
function, each frame, calls the VRHandler’s render function to render the
scene on virtual reality.

Once called, VRHandler’s render function calls OGL2VR’s drawFunc

function used to render the scene. This function is not inside the VRHan-
dler class for modularity reasons. The VR library should only handle the
steps required for VR rendering, while the scene rendering itself should be
user-defined.

In fact, inside the VRHandler class there is the SetDrawFunction func-
tion which requires the pointer of a function as input and is used to set
the scene rendering function that is subsequently called during rendering in
virtual reality

Before explaining the steps followed by the RenderFrame function to ren-
der in virtual reality it is better to explain how rendering in virtual reality
works.

Figure 5.12 shows the VR rendering procedure. The main difference be-
tween standard rendering and VR rendering is that you need to render two
images instead of just one. The two images are generated starting from the
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Figure 5.12: VR rendering.

same initial scene but from two different points that correspond to the posi-
tion of the eyes. Once generated, some graphic changes are applied and sent
to the VR headset displays.

We can now describe how the RenderFrame function works.
The figure 5.13 shows the steps taken by the RenderFrame function to

render the scene in virtual reality.

1. First of all, start creating the two textures. For this it calls the Eye-

TextureCreation function which manages the generation of textures.

2. The steps taken by EyeTextureCreation are: prepare the rendering
on the texture and perform the rendering by calling the RenderScene

function (the function requires as a parameter which eye is being ren-
dered). The creation and rendering of the texture is done twice, once
for each eye. This leads to the creation of the two final textures.

3. The RenderScene function applies a translation to the camera based
on the eye passed as a parameter and renders the scene by calling the
OGL2VR render function pointed to by drawFunc.

4. Once the two textures are generated, they are rendered on the PC
screen. This is done because the scene is not only visible through the
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Figure 5.13: RenderFrame sequence diagram.

VR headset but also through the screen. Obviously the scene rendered
on the PC has the classic VR scene format (screen split in two).

5. After the rendering on the screen the textures are finally passed to the
VR headset.

5.3.2 Controller management

In this section is described how the controllers are handled in our appli-
cation.

The OpenVR library we use uses a very basic approach to handle con-
troller actions. All actions and controller bindings for each action are encoded
in two json files.

{

"name": "/ actions /main/in/ leftTrigger ",

"type": " boolean "

}
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In this example the /actions/main/in/leftTrigger action is defined
as a boolean type.

{

" inputs ": {

"click": {

" output ": "/ actions /main/in/ leftTrigger "

}

},

"mode": " button ",

"path": "/user/hand/left/input/ trigger "

}

In this other example the action /actions/main/in/leftTrigger is
bound to the input identified as /user/hand/left/input/trigger of the
controller.

Using the OpenVR library, to get action information you need to follow
these steps: call a library function to update action status and retrieve, using
the identification string (e.g. /actions/main/in/leftTrigger) the status
of the action.

This method is simple but requires the user to perform many functions
to retrieve a single input. Furthermore, all inputs can only be retrieved at a
specific point in the iteration making information retrieval very complex.

For these reasons we decided to create the ControllerHandler class to
manage controllers, which stores the actions of its controller and their state.
The updating of the actions is automatic and the user can easily retrieve the
status of the different inputs without the need to implement anything.

The controller actions are saved in the actions variable of type
Map<string, Action>. The action identification string is used as the key,
and an Action type variable is used as the value. Through the AddAction

function, the user can add other actions to the controller by passing an action
type variable as a parameter. An action can be initialized by passing the
identification string and an integer indicating whether the action is digital
(0) or analog (1).
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The Action structure is the one that contains the current information of
the action. The structure contains the name of the action, the current phase
of the button (KEY NOT PRESS, KEY DOWN, KEY PRESS, KEY UP) and the value
of the button in the case of analog actions (e.g. trackpad position).

Another advantage of this method is that if you are evaluating an action,
you can immediately access information about its controller. Because the list
of actions is contained within the controller class. In the original method, the
actions were disconnected from the controllers. So, if information about the
controller of the action being evaluated was needed, it had to be retrieved
and processed independently.

5.4 Engine

In graphic engines such as Unreal or Unity there is the definition of ob-

ject . An object is a graphic element that has its own shape that is rendered
and has the possibility of interacting with the other elements in the scene or
with the user himself. These objects, when working directly with graphics
libraries, do not exist, as they are elements defined by the graphics engine
itself

Since we needed to generate elements that could be interacted by the user,
we decided to create a basic engine. Currently our engine only manages two-
dimensional elements, as they are the only ones needed in our application.

The figure 5.14 shows the class diagram of the engine. We can divide
the diagram into two main areas: the object manager and objects.

Objects

The objects area is composed of the Object class and its subclasses.
The Object class contains information about the object such as the position,
rotation or size of the bounding box (used for user interaction) and the
Render, Destroy and CheckRay functions respectively used for Rendering,
Destruction and control of interaction.
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Figure 5.14: Engine class diagram.

The object subclasses override some of these functions and extend the
main class with other feature:

• The TextObject class is the one from which each node of the tree
derives and is used for its construction. The object rendered is a quad
with text inside of it. The TriggerEvent function is called when the
CheckRay function identifies an intersection from the ray projected by
the user and the object (interaction between the user and the object).

• The MenuObject class allows the user to create menus. It is used
to create menus on controllers to allow the user to navigate between
possible actions. It has some functions used to add new items to the
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menu or to navigate them.

An object (both of the parent class and of the subclasses), when defined,
is automatically added to the list of objects of the SceneObjectRender class
and remains there until it is destroyed by the Destroy function.

Object manager

All objects in the scene are managed by the SceneObjectRender class.
This class follows the singleton pattern so its instance is accessible from
anywhere in the application.

The class has the AddObject and RemoveObject functions used to manage
the list of objects defined within it. Through these functions the defined
objects can be added or removed from the list of objects in the scene.

The objects list contains all the objects currently present on the scene.
All the objects inside are visible on the scene and are interactable.

The RenderScene function is used to render the objects within the list.
The function is very simple, it just loops through each object in the list and
calls its render function. The Raycast function is used to check if the user is
interacting with any object. Its operation is similar to that of RenderScene,
it goes through each object in the list and calls its CheckRay function.

5.5 PlayerInput

This section describes how the PlayerInput component works. The
PlayerInput component consists of a single class called PlayerInput that
manages navigation through menus and the activation of application func-
tionality.

The PlayerInput class has access to controllers and through this it man-
ages user interaction with menus and features. User inputs are taken by
checking the action list of each controller, based on them the class show/dis-
able menu and enable/disable functionality
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There are two main menus, one for each controller: the transform menu
and the tree/dyn menu.

Transform menu

Figure 5.15: Transform menu.

The figure 5.15 shows the transform menu (left on the picture), this menu
is used to apply transformations to the rendered object. These transforma-
tions can be translating, moving, or scaling. Using the controller trackpad
the user can navigate between functions, when one is selected the user can
apply it using the controller trigger:

• Rotation: pressing the left trigger the object takes the rotation of the
current controller. By holding the trigger and turning the controller
you can apply a rotation to the object.

• Translation: Pressing the left trigger and moving the controller moves
the object based on where the controller is moved from its starting po-
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sition. If we hold down the trigger and move the controller to the left of
the initial position the object will move to the left, if we move upwards
the object will move upwards. The speed of movement depends on the
distance from the controller to the starting position. By pressing the
right trigger, the position of the object is reset to the origin.

• Scaling: We have two options for scaling: uniform scaling or single
axis scaling. Uniform scaling allows the user to increase the size of
the object by pressing the right trigger or reduce the size by pressing
the left trigger. For scaling on a single axis, the user must first enter,
using the trackpad, the menu displayed on the right in the image, then
select on which axis to scale. Scaling is then performed as before, right
trigger to increase, left trigger to reduce.

Tree menu / Dynamic elements menu

Figure 5.16: Tree/Dynamic elements menu.

The figure 5.16 shows the main menu (in the center of the image) through
which it is possible to switch to the submenu for managing the tree (on the
right in the image) or to the submenu for managing the modifier of the
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dynamic elements (left in the image). Navigating through menu options and
menus is done using the trackpad.

Through the dynamic element modifier management menu (on the left in
the image), it is possible to choose which modifier to apply to the dynamic
elements. To select one you just need to scroll over it. Once selected, the
modifier is activated immediately.

Through the tree management menu (on the right in the image) the user
can interact directly with the opengl call tree and apply changes to the calls
themselves. By entering the tree management submenu, the call tree is made
visible and a pointer on the controller is activated (the pointer is visible in
the right image). The user, through the menu, can decide what happens by
interacting with the tree. The interaction with the tree is very simple, simply
have to point a node with the pointer and press the trigger of the controller
used. The action that is activated on that node depends on the one selected
in the menu. Actions can be:

• Enhance: usable only on render nodes, it applies a yellow color to the
rendered element to make it easier to identify which object in the scene
corresponds to that node or to make it stand out.

• Disable: disables the selected node and all children. Useful when the
injected library sends calls that ruins the final rendering (e.g. calls to
render toolbars). Through this feature the user can disable these calls.

• Nav tree: this option allow the user to nagivate the tree. By default
is not shown all the tree because it would be to big for a good user
interaction. For this reason is rendered only one node father and his
children. Using the trackpad the user can scroll the children list and by
selecting one of the nodes with this option activa can navigate though
the tree. If a child is selected it goes down the tree while if the father
is selected it goes up the tree.

this option allows the user to navigate the tree. By default the whole
tree is not shown because it would be too big for good user interaction.
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For this reason, only one parent node and its children are rendered.
Using the trackpad the user can scroll through the list of children and
by selecting one of the nodes (with this option active) he can navigate
the tree. If a child is selected it goes down the tree while if it is selected
the father goes up the tree.



Chapter 6

Future developments

Since this was a very extensive work in which we started to create an
infrastructure from scratch, there are various points that can be extended to
improve the quality of the application even more. During the development,
these points were not extended as they are not strictly necessary to achieve
the set goal, for this reason it was decided to reach the final goal first.

The possible additions/changes to be made to the application are:

• AI for dynamic element recognition: Enhance identification of dy-
namic elements by using an AI to compare call trees and mark which
calls are dynamic. By achieving high reliability it is also possible to
modify how the injected library sends calls. It would be possible to con-
trol the dynamic elements directly within the injected library and send
only the dynamic calls. Obviously on the OGL2VR side an algorithm
is needed to add or update these calls in the call tree.

• Server improvement: Currently the server can only handle one con-
nection, after which it is closed. The two possible improvements are:
avoiding server shutdown after client disconnection and allowing more
connections. The first is a trivial implementation, the second is much
more complex. Call management needs to be extended using not just
two trees but 2n trees where n is the number of clients. Each client
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will have its own pair of trees (ready for rendering / loading) and the
server, upon receiving the call, will have to add the received call to the
tree of the client that sent it.

• Refactor player input: It’s not a real addition, the problem with
player input class is that it is currently very cumbersome and it would
be useful to refactor to make the class more modular.

• Injection from OGL2VR: Currently the source application must be
run and injected before the OGL2VR run. It might be useful to allow
interaction with the source application from virtual reality, allowing
the user to run a pre-injected application and interact with it in virtual
reality.



Chapter 7

Conclusions

This work wants to reconnect to a stream of works that have been pub-
lished in the past and which have had the merit of indicating a pathway
for the provision of 3D immersive experiences, also for all those applications
which are not designed VR-ready. Virtual reality, however, has been moving
through different stages of maturity and interest, also in recent years. At
times, in fact, it has given the impression of being almost good to go for
the consumer market, but so far it has always backtracked to the role of a
technology with a great potential, but not yet mainstream. This may be one
of the reason why the approaches, such as the ones that have inspired this
work, have at some point gone cold.

Regardless of the (un)certain future of VR, our contribution wants to
respond to the needs of a niche of users that have always demonstrated their
interest towards immersive technologies: scientific computing and simulation
research professionals. The proposed approach may hence, at once, serve
an interested group of users, while fostering the development of a set of
technologies which may in the near future bloom also in the general consumer
market.

This work represents a first step in the direction of the final goal. Future
works will require the completion of the implementation and a thorough
experimentation, which may also include performance evaluation and human-
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computer interaction approaches, with the 3D immersive scientific computing
and simulation environments supported within the proposed framework.
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