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Abstract

This thesis is focused on state-of-art numerical optimization methods for
nonlinear (discrete-time) optimal control. These challenging problems arise
when dealing with complex tasks for autonomous systems (e.g. vehicles or
robots) which require the generation of a trajectory that satisfies the system
dynamics and, possibly, input and state constraints due to, e.g, actuator
limits or safety region of operation.

A general formulation is proposed that allows the implementation of
different descent optimization algorithms on optimal control problems ex-
ploiting the beneficial effects of state feedback in terms of efficiency and
stability. The main idea is the following: at each iteration a new (infeasi-
ble) state-input curve is conveniently updated by any descent method, e.g,
gradient descent or Newton methods, then a nonlinear feedback controller
maps the curve to a trajectory satisfying the dynamics.

Thanks to its inherent flexibility, this strategy provides the opportunity
to speed-up the resolution of optimization problems by conveniently choos-
ing the descent method. This thesis proposes, for example, to exploit the
Heavy-ball method to speed up the convergence.

It is important to underline that this methodology enjoys recursive fea-
sibility during the algorithm evolution, i.e. at each iteration a system tra-
jectory is available. This feature is extremely important in real-time control
schemes since it allows one to stop the algorithm at any iteration and yet
have a (suboptimal) system trajectory.

Furthermore, tasks which require the introduction of state and input
constraints can be managed introducing an approximate barrier function
which embeds the constraints within the cost function.

The second main contribution of this thesis is an original Python toolbox
developed in order to implement and compare different optimization meth-
ods. Moreover, thanks to a modular approach, with just few adjustments it
is possible to change system, cost function and constraints.
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Introduction

Motivations

In many and various fields of engineering, from autonomous vehicles to power
grids, higher and higher performances are sought together with equally
stricter bounds in terms of cost, power consumption and any other consum-
able resources. These user-defined requirements are translated in control
theory as optimality criteria: performance indexes associated to the system
under control. This is the field of optimal control which aims at finding a
control law for a dynamical system over a period of time such that those
objective functions are optimized.

Since it was formalized thanks to the work of Lev Potryagin and Richard
Bellman in the 1950s, a lot has been written about dealing with linear
and nonlinear systems, however, as the goals’ boldness increases, traditional
strategies may not be enough. In particular, negative effects of unknown
or uncertain dynamics become more and more important as higher perfor-
mances are requested. This framework becomes even harsher when uncer-
tainties about the environment are introduced. For example, let us consider
a small quadrotor which is required to perform a minimum-time trajectory.
The optimization is usually performed on a simplified model of both vehicle
and environment which may neglect some hidden effects such as drag and
propeller thrust.

This thesis can be considered as a first step of a wider and more ambi-
tious project focused on the study and design of optimal control strategies
for systems subjected to uncertainties. In this work, indeed, state-of-art nu-
merical optimization methods for nonlinear (discrete-time) optimal control
are investigated in order to provide a strong and solid methodological basis
for the work to come. The focus on sequential optimization methods, indeed,
is a necessary step motivated by the attractive perspective to evaluate how
well-known sequential optimization methods could be extended in order to
deal with an uncertain system.

Moreover, these sequential algorithms represent a solid basis when evalu-
ating a possible extension towards the control of complex systems governed
by a graph dynamics, namely, systems whose behavior is modeled as the
interaction between a set of several agents which interact and/or communi-
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INTRODUCTION 5

cate through a graph structure. Sequential algorithm of this kind, in fact,
have been already successfully extended to a distributed framework.

Literature

The goal of an optimal control problem is to define a control law capable of
minimizing a given cost function and producing a trajectory which satisfies
the system dynamics. It worth noticing that an optimal control problem
differentiates from a generic optimization problem due to presence of a set of
constraints which represent the dynamics of the system and these constraint
relations are fixed by the physics of the problem.

Analytical methods for the optimal trajectory cannot be found except for
simple cost functions and system dynamics, thus in the majority of practical
cases numerical optimization methods must be used.

Two major approaches can be distinguished to formulate and numerically
solve a discrete time optimal control problem, the simultaneous and the
sequential approach.

The first strategy, the simultaneous approach, exploits the fact that an
optimal control problem is large and structured and can thus in principle be
solved by any numerical solver. In this approach, all original variables, i.e.
controls and states remain optimization variables of the problem. Its name
stems from the fact that the solver has to simultaneously solve both, the
“simulation” (dynamics) and the “optimization” problem. Usually feasibil-
ity of the constraints, namely satisfaction of the model equations, is obtained
only asymptotically, therefore simultaneous methods are sometimes referred
to as an infeasible path approaches. The direct multiple shooting [1] and
direct collocation [2] methods are simultaneous approaches.

The second methods exploit the dynamics constraints in order to elim-
inate nearly all states by a forward simulation, and in this way we could
reduce the variable space of the problem by keeping only the control as
decision variables. The resulting problem is called reduced problem. The
simulation is used to recover the state trajectory, therefore the dynamics is
always satisfied. The reduced problem can be tackled by several optimiza-
tion methods. This strategy is called the sequential approach, because the
simulation problem and optimization problem are solved sequentially, one
after the other.

A first-order sequential method is proposed in [3]: this is an open-loop
sequential method where the original constrained (by the dynamics) problem
is remapped as an unconstrained one exploiting a Lagrangian approach. This
algorithm constitutes the foundation of the closed-loop sequential method
hereby proposed.

In [4], a second-order Newton based sequential method is proposed. This
method, the Projection Operator Newton method for Trajectory Optimiza-



INTRODUCTION 6

tion (PRONTO), exploits a feedback system to exponentially stabilize the
trajectory as the time horizon goes to infinity. This also guarantees a numer-
ical stability in the optimization procedure. Moreover, this method guaran-
tees recursive feasibility during the algorithm evolution, i.e., at each iteration
a system trajectory is available.

A major contribution to this work comes from [5] where a closed-loop
methodology, inspired by both [3] and [4], is proposed directly in a dis-
tributed setup. With respect to [3], the descent direction, in particular,
consists of variations of both states and inputs and the trajectory update
is performed in closed-loop. Moreover, differently from [4], the descent di-
rection is a generic state-input curve that is not required to statisfy any
linearized dynamics.

Another tool widely exploited to solve optimal control problems is dy-
namic programming [6]. Dynamic programming (DP) is a very different
approach to solve optimal control problems than the ones presented pre-
viously. The methodology was developed in the fifties and sixties of the
20th century, most prominently by Richard Bellman [7] who also coined the
term dynamic programming. Interestingly, dynamic programming is easi-
est to apply to systems with discrete state and control spaces. When DP
is applied to discrete time systems with continuous state spaces, some ap-
proximations have to be made, usually by discretization. Generally, this
discretization leads to exponential growth of computational cost with re-
spect to the dimension of the state space, what Bellman called “the curse
of dimensionality”. It is the only but major drawback of DP and limits its
practical applicability. On the positive side, DP can easily deal with all kinds
of hybrid systems or non-differentiable dynamics, and it even allows us to
treat stochastic optimal control with recourse, or minimax games, without
much additional effort.

Dealing with optimal control problems, it is important to consider and
evaluate the presence of constraints both over the states trajectory and the
inputs. In particular, in [8], an approximate barrier function which incor-
porates the constraints into an unconstrained trajectory functional. This
results in a relaxed optimization problem in which constraints are embed-
ded within the cost function. Since this barrier function approach is an
interior function method, the approximated solution always satisfies given
constraints.

Contributions

In this work a novel methodology for nonlinear optimal control problems
with input and state constraints is developed. This methodology relies and
extends the idea presented in [4] of using feedback as a mean to solve optimal
control problems in a robust and flexible way. The general concept is the
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following: at each iteration, conveniently update via any descent method a
new (infeasible) state-input curve and map the curve to a trajectory sat-
isfying the dynamics thanks to a nonlinear feedback controller, acting as
projection operator.

This results in a very flexible and versatile strategy, which allows us to
adopt and evaluate different optimization methods in order to speed up the
algorithm convergence, thus the resolution of the optimization problem.

In particular, in this thesis the Heavy-ball method, proposed in [9], is
incorporated within a closed-loop strategy, evolution of the one proposed in
[3]. Here the unpractical open loop integration of the dynamics is substituted
by a more efficient and stable closed-loop structure exploiting the beneficial
effects of state feedback.

It is important to underline that, thanks to the projection operator, this
methodology enjoys recursive feasibility during the algorithm evolution, i.e.
at each iteration a system trajectory is available. This feature is extremely
important in real-time control schemes since it allows one to stop the algo-
rithm at any iteration and yet have a (suboptimal) system trajectory.

Furthermore, tasks which require the introduction of state and input
constraints can be managed introducing an approximate barrier function as
described in [8]. This results in a relaxed optimization problem in which con-
straints are embedded within the cost function. Since this barrier function
approach is an interior function method, the approximated solution always
satisfies given constraints.

Another important contribution of this thesis consists in a Python im-
plementation of the proposed algorithm. In particular, it allows to compare
methods effectiveness and it provides an useful test-bench for the proposed
algorithm addressed to the resolution of any discrete time optimal control
problem, not only a particular case study. In fact, a ready-to-use platform
is presented: the user needs just to define the system dynamics, the cost
function and the given constraints.

As a future development of this work, the presented sequential methodol-
ogy is a key step towards the study of a strategy capable of handling optimal
control problems when uncertainties are considered. In fact, this method-
ology could be extended to a stochastic framework where uncertainties are
modeled as disturbances characterized by proper probability distributions.
For example, an approach to be investigated is the stochastic gradient de-
scent algorithm. This approach allows the designer to consider, at each
iteration of the optimizer, a descent direction associated just to a single dis-
turbance’s realization. In fact, as shown also in [10], under certain properties
of the gradient function, it can be adopted as an unbiased estimator of the
whole stochastic process. Since this algorithm defines, with few information,
a descent direction, it fits well the proposed methodology.
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Organization

This thesis is organized as follows. In Chapter 1, it is described the problem
set-up and the fundamental methodologies are discussed. In particular, it is
described PRONTO, from [4], the open loop sequential method in [3] and
its closed loop evolution.

In Chapter 2, the proposed first-order closed-loop algorithm enhanced
by an Heavy-ball trajectory update is introduced. First an unconstrained
set-up is considered, secondly state and input constraints are introduced
and managed through the introduction of a barrier function, as proposed in
continuous time in [8].

In Chapter 3, the Python implementation of the algorithm is described.
Moreover, an illustrative example of the algorithm proposed in the previous
chapter is included.

Finally, basics about optimization are added in the Appendix.



Chapter 1

Nonlinear Optimal Control
Problem

Optimal control regards the optimization of dynamical systems. Dynamical
systems are identified with processes that are evolving in time and that can
be characterized by states x which allow us to predict the future behavior
of the system. Often, the evolution of the system’s dynamics can be steered
by a suitable choice of inputs here denoted as controls u. Typically, these
controls shall be chosen optimally in order to optimize an objective function
and to satisfy some constraints.

1.1 Problem Formulation

In this work, the main focus is around discrete time systems, namely systems
where the time in which the system evolves only takes values on a predefined
time grid, usually assumed to be integers. In particular, in order to denote
the system state x at a certain discrete-time instant t, t ∈ N, the notation
xt is adopted. The same index notation is applied to the other time-varying
variables. The whole time horizon is denoted as T = {t ∈ N | t ∈ [0, T ]}.

In the general, time-variant, case these systems are characterized by the
dynamics:

xt+1 = ft(xt, ut) t = 0, . . . , T (1.1)

where ft : Rnx×nu → Rnx , ft ∈ C2 represent the system dynamics, which
maps, at each time instant t, a pair of state xt and input ut, into the system’s
state at the next time instant xt+1 on a time horizon of length T , with control
input vectors u0, . . . , uT−1 ∈ Rnu and T + 1 state vectors x0, . . . , xT ∈ Rnx .

A typical property of a dynamic system is that knowledge of an initial
state x0 and a control input trajectory u(t) for all t ∈ [0, T − 1] allows one
to determine the evolution of the state trajectory x(t) for all t ∈ [1, T ],
where T is the final time. In particular, knowing the initial state x0 and

9



CHAPTER 1. NONLINEAR OPTIMAL CONTROL PROBLEM 10

the sequence of control input u0, . . . , uT−1, it is possible to recursively eval-
uate the dynamics function ft(xt, ut) and retrieve the whole states sequence
x1, . . . , xT .

The aim of optimal control is to define an input sequence capable to
optimize a given objective, or cost, function.

In particular, in this work, discrete-time optimal control problems of this
form are considered:

min
x1,...,xN
u0,...,uT−1

T−1∑

t=0

`t(xt, ut) +m(xT ) (1.2a)

subj. to xt+1 = ft(xt, ut) t ∈ T[0,T−1] (1.2b)

g(xt, ut) ≤ 0 (1.2c)

x0 = xinit

where T ∈ N discrete time horizon, xt ∈ Rnx state of the system at time t,
ut ∈ Rnu control input at time t, `(xt, ut) : Rnx × Rnu → R instantaneous
cost function, m(xT ) : Rnx → R terminal cost function, gt(xt, ut) : Rnx ×
Rnu → Rng instantaneous inequality constraints function with ng number
of constraints.

Functions, f, l,m are supposed to be sufficiently regular. Both ft and
`t may be time-invariant. In this work, in fact, ft(xt, ut) ≡ f(xt, ut), ft :
Rnx×nu → Rnx , and `t(xt, ut) ≡ `(xt, ut), `(xt, ut) : Rnx × Rnu → R for all
t ∈ T[0,T ]

Accordingly to the kind of functions and systems considered, different
strategies can be applied in order to define the optimal control sequence.

To ease the notation, let introduce a stacked version of the optimization
variables, i.e., let x ∈ RnxT and u ∈ RnuT be defined as:

x :=
[
x>1 , . . . , x

>
T

]>

u :=
[
u>0 , . . . , u

>
T−1

]>

In this context it is possible to introduce the concept of trajectory:

Definition 1 (Trajectory). A pair (x,u) with x ∈ RnxT and u ∈ RnuT is
called trajectory if the components satisfy the dynamics, namely, xt+1 = f(xt, ut)
for all t ∈ T.

Otherwise, a generic pair (α,µ) with α ∈ RnxT and µ ∈ RnuT is called
curve.

In particular, two major strategies can be distinguished to formulate and
numerically solve a discrete time optimal control problem, the simultaneous
and the sequential approach. While the simultaneous exploits as optimiza-
tion variables both x and u quite often resulting in model equations (1.1)
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satisfied only once the iterations are converged, the sequential approach ex-
ploits the knowledge of the system dynamics to reduce the variable space.

The sequential approach exploits model equations (1.1) in order to keep,
as optimization variables, only u. States x1, . . . , xT are eliminated recur-
sively by:

φ0(u) = x0

φt+1(u) = f(φt(u), ut) (1.4a)

where φt : RnuT → Rnx for all t ∈ T[0,T ].
In this way the problem (1.2) is equivalent to the reduced problem:

min
u0,...,uT−1

T−1∑

t=0

`(φt(u), ut) +m(xT ) (1.5a)

subj. to u ∈ RnuT (1.5b)

gt(φt(u), ut) ≤ 0 (1.5c)

Until Section 2.2, however, inequalities contraints are neglected, leading
to problem:

min
u0,...,uT−1

T−1∑

t=0

`(φt(u), ut) +m(xT )

subj. to u ∈ RnuT

(1.6)

which is an unconstrained problem with unique optimization variable u.
It is important to underline that, in this work, analyzed methods are

designed in order to produce, at each iteration, a trajectory capable of sat-
isfying the dynamic of the system, namely, a feasible trajectory is always
available (even if sub-optimal). Thus, the algorithm can be stopped at any
iteration with an important guarantee: a trajectory to track is available.

1.2 The Projection Operator Newton Method for
Trajectory Optimization

The projection operator approach for trajectory optimization, introduced in
[4], is an iterative algorithm which, in its easiest formulation, allows one to
perform local Newton (or quasi-Newton) optimization of the cost functional
over the set of trajectories of a nonlinear system with fixed initial conditions.

By now, a simplified optimal control problem is considered, i.e. inequal-
ities constraints are neglected. These are going to be addressed later in
Section 2.2, thanks to the introduction of a suitable approximate barrier
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function. Thus, problem (1.2) can then be expressed as:

min
x1,...,xN
u0,...,uT−1

T−1∑

t=0

`(xt, ut) +m(xT )

subj. to xt+1 = f(xt, ut) t ∈ T[0,T−1]

x0 = xinit

(1.7)

To ease the notation, let us introduce:

ξ = (α,µ) (1.8a)

η = (x,u) (1.8b)

Remembering that xt, αt ∈ Rnx ∀t ∈ T[0,T ] and ut, µt ∈ Rnu ∀t ∈ T[0,T ] and
accordingly to the previously introduced notation:

α :=
[
α>1 , . . . , α

>
T

]>

µ :=
[
µ>0 , . . . , µ

>
T−1

]>

It is possible to observe that equation (1.8a) represents a generic state-
input curve ξ ∈ RnxT × RnuT , not necessarily feasible, and equation (1.8b)
represents a system trajectory η ∈ RnxT × RnuT satisfying Definition 1.

In particular, given a generic state-input curve ξ = (α,µ), it is possible
to associate a trajectory η = (x,u) obtained by setting x0 = xinit and by
forward simulation of the following closed-loop dynamics (the projection
operator):

ut = µt +Kt(αt − xt)
xt+1 = f(xt, ut)

(1.10)

the gain matrix Kt ∈ Rnu×nx is exploited to give the operator stability prop-
erties, namely it has to exponentially stabilize the trajectory xt ∈ T[0,T ], ut ∈
T[0,T−1] as T → +∞. A suitable gain can be constructed via different strate-
gies, e.g., it can be the solution of a finite horizon linear regulator problem
associated to the system linearized about a trajectory (x,u).

In fact, defining the trajectory manifold, namely the space defined by
all the system trajectories, as T , to work on that trajectory manifold it is
necessary, as shown in [11], to project state-control curves onto T by using a
local linear time-varying trajectory tracking controller, the so-called projec-
tion operator (1.10), which relies on the use of a redundant representation
of a system trajectory.

This procedure is then denoted as:

η = P(ξ) (1.11)
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Figure 1.1: Projection operator approach: the linearization of the control system
about the trajectory ξi defines the tangent space to the trajectory T manifold at
ξi; (b) the constrained minimization over the tangent space of the second-order
approximation of the extended cost functional yields the search direction ζi ; (c)
the optimal step size γi is computed through a line search along ζi ; (d) the search
direction and step size are combined to obtain a new update trajectory ξi+1 .
(a)Trajectory manifold. (b) Search direction. (c) Line search. (d) Update.

where P : RnxT ×RnuT → RnxT ×RnuT represents the projection operator.
Note that, if ξ is a trajectory of the system, then it is a fixed point of P,
namely ξ = P(ξ). Formally, ξ ∈ T if and only if ξ = P(ξ).

With a suitable projection operator in hand, ξ = (α,µ) can be used as
a redundant representation of the trajectory η = P(ξ).

Thus, the idea behind [4] is to exploit the projection operator in an iter-
ative algorithm such that, at each iteration, the new update trajectory ξk+1

is computed projecting the curve ξk + βkζk onto the trajectory manifold
T , where ζk is the descent direction obtained by the resolution of a Linear
Quadratic Regulator (LQR) problem about the current trajectory ξk and
βk ∈ R a conveniently chosen step-size. This method is defined as PRojec-
tion Operator Newton method for Trajectory Optimization (PRONTO).

This approach could be synthetically expressed as:

ξk+1 = P(ξk + βkζk) k = 1, 2, . . . (1.12)

An illustration of the approach is shown in figure 1.1
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Including the projection operator, problem (1.7) is then rewritten as:

min
x,u,α,µ

T−1∑

t=0

`(xt, ut) +m(xT )

subj. to xt+1 = f(xt, ut) t ∈ T[0,T−1]

ut = µt +Kt(αt − xt)
x0 = α0 = xinit

(1.13)

Introducing the functional:

F (α,µ) =
T−1∑

t=0

`(αt, µt) +m(αT )

the original optimal control problem (1.13) is equivalent to the constrained
optimization problem:

min
(α,µ)∈T

F (α,µ) (1.14)

Thus, with the concept of projection operator in mind, it can be recast
as an unconstrained optimal control problem given by:

min
α,µ

F (P(α,µ)) (1.15)

These two problems, as shown in continuous time in [4], are essentially
equivalent in the sense that a solution to the constrained problem (1.14) is a
solution to the unconstrained problem (1.15), while a solution to the second
problem is, projected by P, a solution to the first problem.

Using these facts, a trajectory optimization methodology is effectively
developed in an unconstrained manner by working with the cost functional
J(α,µ) = F (P(α,µ)).

In fact, exploiting the functional J(α,µ), the constrained optimal control
problem can be equivalently written as:

min
α,µ

J(α,µ)

subj. to α ∈ RnxT ,µ ∈ RnuT
(1.16)

Then, a (projected) Newton method can be applied for unconstrained
optimization to solve problem (1.16). Specifically, given an initial guess
(x0,u0), for all k ≥ 0 the method reads:

(xk+1,uk+1) = P((xk,uk) + (zk,vk))

where the update direction (zk,vk), zk ∈ RnxT ,vk ∈ RnuT is obtained from a
quadratic (first or second-order) approximation of J(α,µ) about the current
iterate (xk,uk). Notice that since Newton method works only locally, one
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can also use a globalization technique by introducing a step-size βk ∈ (0, 1]
in the update and obtain the following modified (projected) Newton method:

(xk+1,uk+1) = P((xk,uk) + βk(zk,vk))

As for the update direction, it can be obtained by solving the following
quadratic program about a second order approximation of J(α,µ):

(zk,vk) = arg min
∆x,∆u

∇J(αk,µk)>
[
∆x
∆u

]
+

1

2

[
∆x
∆u

]>
Hk

[
∆x
∆u

]
(1.17)

where Hk can be chosen in several ways, giving rise to different Newton
methods, e.g. a first order method if Hk = I, a second-order Newton method
if Hk = ∇2J(αk,µk). In this work a first order approximation is adopted.

Being J(α,µ) a composition, its derivatives involve, by the chain rule,
the derivatives of the projection operator as well. It can be proved [11] that
the projection operator derivative is a projection operator as well. Specif-
ically, it is a projection operator on the tangent space T(xk,uk)T , where
T(xk,uk) denotes the space tangent to the trajectory manifold T in corre-

spondence of a linearization about the current trajectory (xk,uk) . Hence,
one can restrict the search domain of (∆x,∆u) in problem (1.17) over the
tangent space, i.e., the set of trajectories satisfying the linearization of the
system dynamics about (xk,uk) (with initial conditions equal to zero).

Therefore, problem (1.17), boils down to:

(zk,vk) = arg min
∆x,∆u




1
∆x
∆u



> [

0 ∇J(αk,µk)>

∇J(αk,µk) Hk

]


1
∆x
∆u




subj. to ∆xt+1 = Akt∆xt +Bk
t ∆ut, t ∈ T[0,T−1]

∆x0 = 0

(1.18)

Notice that (1.18) is a time-varying linear quadratic regulator problem since
the objective function is a quadratic function incorporating derivatives of
both the cost and the dynamics, while the constraint is linear since it de-
scribes the linearized dynamics. This method is summarized in algorithm 1
remembering that:

akt = ∇xt`(xkt , ukt )
bkt = ∇ut`(xkt , ukt )
Akt = ∇xtf(xkt , u

k
t )
>

Bk
t = ∇utf(xkt , u

k
t )
>
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Algorithm 1 PRONTO

Require: trajectory (x0,u0) with x0
0 = xinit

for k = 0, 1, 2, . . . do
compute Kk

t for all t ∈ T[0,T−1]

compute

(zk,vk) = arg min
∆x,∆u

T−1∑

t=0

[
akt
bkt

]> [
∆xt
∆ut

]
+

1

2

[
∆x
∆u

]>
Hk

[
∆x
∆u

]

subj. to ∆xt+1 = Akt∆xt +Bk
t ∆ut, t ∈ T[0,T−1]

∆x0 = 0

compute step-size βk

set initial condition xk+1
0 = xinit

for t = 0, . . . , T − 1 do
compute new curve

αk+1
t = xkt + βzkt

µk+1
t = ukt + βvkt

compute new trajectory

uk+1
t = µkt +Kk

t (αk+1
t − xk+1

t )

xk+1
t+1 = f(xk+1

t , uk+1
t )

end for
end for

1.3 Gradient-based Optimization Methods

Even if PRONTO proved its effectiveness, it results in a method were the
descent direction is constrained to lie on the tangent space to the trajectory
manifold. Now, the interest is to study an iterative method were the de-
scent direction is not constrained to satisy any linearized dynamics. Thus,
some sequential, gradient based approaches are considered. Recalling the
unconstrained version of problem (1.2):

min
x,u

T−1∑

t=0

`(xt, ut) +m(xT ) (1.19a)

subj. to xt+1 = f(xt, ut) t ∈ T[0,T−1] (1.19b)

x0 = xinit

for a given xinit ∈ Rnx .



CHAPTER 1. NONLINEAR OPTIMAL CONTROL PROBLEM 17

It is possible to write a compact version of the cost function (1.19a),
introducing F : RnxT × RnuT → R defined as:

F (x,u) =

T−1∑

t=0

`(xt, ut) +m(xT ) (1.20)

Problem (1.19) then reads as:

min
x,u

F (x,u)

subj. to xt+1 = f(xt, ut) t ∈ T[0,T−1]

x0 = xinit

(1.21)

1.3.1 Open-loop Sequential Method

A first sequential gradient-based approach is originally proposed in Section
1.9 of [3].

Applying a sequential approach previously discussed to problem (1.21),
let us introduce an implicit formulation of the (open-loop) dynamics:

xt+1 = f(xt, ut) t ∈ T[0,T−1]

x0 = xinit

(1.22)

Let:
h : RnxT × RnuT → RnxT (1.23)

be defined as:

h(x,u) =




f(x0, u0)− x1
...

f(xT−1, uT−1)− xT


 (1.24)

Then, the optimal control problem (1.21) can be compactly rewritten as:

min
x,u

F (x,u)

subj. to h(x,u) = 0
(1.25)

with x ∈ Rnx and u ∈ RnuT . Notice that we ignore the initial condition
x0 = xinit since we embed it in the first constraint of h(x,u) = 0, i.e.
imposing f(xinit, u0)− x1 = 0.

It is then possible to make the following assumption:

Assumption 1. There exists a smooth map φ : RnxT ×RnuT → RnxT such
that:

h(φ(u),u) = 0

for all u ∈ RnuT .



CHAPTER 1. NONLINEAR OPTIMAL CONTROL PROBLEM 18

In light of Assumption 1, given a generic input vector u ∈ RnuT we have
that:

φt+1(u) = f(u, ut) t ∈ T[0,T−1] (1.26)

with φt being the t-th component of φ. Hence, a state trajectory x of the
system xt+1 = f(xt, ut) can be obtained from u by setting:

xt = φt(u) t ∈ T[1,T ] (1.27)

Then, Problem (1.19) can be rewritten in the reduced form:

min
u0,...,uT−1

T−1∑

t=0

F (φ(u),u)

subj. to u ∈ RnuT

(1.28)

which is an unconstrained optimization problem. Therefore, we can resort
to descent methods to solve this problem.

In this case, numerical solutions to problem (1.28) are computed via a
gradient (steepest) descent method in Algorithm 2 where, at each iteration k
a trajectory (xk+1,uk+1) is available. The descent direction vk is computed
via (1.29) where akt ∈ Rnx , bkt ∈ Rnu , Akt ∈ Rnx×nx , Bk

t ∈ Rnx×nm are
defined as:

akt = ∇xt`(xkt , ukt )
bkt = ∇ut`(xkt , ukt )
Akt = ∇xtf(xkt , u

k
t )
>

Bk
t = ∇utf(xkt , u

k
t )
>

The trajectory update is then performed in (1.30) via the open loop dynam-
ics (1.1).

Algorithm 2 enjoys dynamic feasibility at each iteration, (i.e., a trajec-
tory satisfying the dynamics is available at each iteration). Nevertheless, the
algorithm suffers of numerical instability, because of the open loop update.
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Algorithm 2 Open-Loop Sequential Method

Require: trajectory (x0,u0) with x0
0 = xinit

for k = 0, 1, 2, . . . do
set λkT = ∇m(xkT )
for t = T − 1, . . . , 0 do

compute
λkt = Ak>t λkt+1 + akt

vkt = −Bk>
t λkt+1 − bkt

(1.29)

end for
compute step-size βk

set initial condition xk+1
0 = xinit

for t = 0, . . . , T − 1 do
compute new trajectory

uk+1
t = ukt + βkvkt

xk+1
t+1 = f(xkt , u

k
t )

(1.30)

end for
end for

1.3.2 Closed-loop Sequential Method

In this section it is presented a closed-loop algorithm to solve the nonlinear
optimal control problem (1.19). A first example of this strategy is originally
proposed in a distributed framework in [5].

The basic idea is to exploit the advantages, in terms of stability, of
the closed-loop dynamics introduced via the projection operator (1.10) in
PRONTO. This goal is achieved introducing a redundant constraint in the
dynamics in order to enforce it to enjoy a closed loop structure.

Namely, problem (1.19) is reformulated as:

min
x,u,α,µ

T−1∑

t=0

`(xt, ut) +m(xT ) (1.31a)

subj. to xt+1 = f(xt, ut) t ∈ T[0,T−1] (1.31b)

ut = µt +Kt(αt − xt) (1.31c)

x0 = α0 = xinit

where the redundant constraint is represented by (1.31c), which introduces
a state feedback through matrix Kt, to be suitably chosen, together with a
feed-forward action represented by µt. Notice that xt, αt ∈ Rnx ∀t ∈ T[0,T ]

and ut, µt ∈ Rnu ∀t ∈ T[0,T−1].
It is important to underline that the pair (α,µ) represents a generic

state-input curve that may not statisfy the dynamics.
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Gains Kt ∈ Rnu×nx are supposed to be suitably assigned, for example solving
the Linear Quadratic Regulator (LQR) problem with respect to a lineariza-
tion of the nonlinear system about a reference trajectory.

In order to adopt a sequential approach, it is necessary to express im-
plicitly the nonlinear dynamics in (1.31b) and (1.31c).
Let

h : RnxT × RnuT × RnxT × RnuT → RnxT+nuT

be defined as:

h(x,u,α,µ) =




f(x0, u0)− x1
...

f(xT−1, uT−1)− xT
µ0 +K0(α0 − x0)− u0

...
µT−1 +K0(αT−1 − xT−1)− uT−1




(1.32)

Then, the optimal control problem can be compactly rewritten as:

min
x,u,α,µ

F (x,u)

subj. to h(x,u,α,µ) = 0
(1.33)

where x,α ∈ RnxT and u,µ ∈ RnuT and F as:

F (x,u) =
T−1∑

t=0

`(xt, ut) +m(xT ) (1.34)

Recalling the role of φ(u) in the previously introduced open-loop Se-
quential method (cf. Assumption 1), a similar reasoning is exploited in
this section. Let us introduce a map that transform a generic state-input
curve (α,µ) into a trajectory (x,u) of (1.31b). Specifically, it is made the
following assumption:

Assumption 2. There exists a smooth map φ : RnxT × RnuT → RnxT and
γ : RnxT × RnuT → RnuT such that:

h(φ(α,µ), γ(α,µ),α,µ) = 0

for all (α,µ) ∈ RnxT × RnuT .

In light of Assumption 2, given a generic state-input curve (α,µ) we
have that:

φt+1 = f(φt(α,µ), γt(α,µ)) t ∈ T[0,T−1] (1.35)
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with φt, γt being the t-th component of φ and γ respectively. Hence, a
trajectory (x,u) of the system xt+1 = f(xt, ut) can be obtained from (α,µ)
by setting:

xt = φt(α,µ) t ∈ T[1,T ] (1.36a)

ut = γt(α,µ) t ∈ T[0,T−1] (1.36b)

In light of these assumptions, the projection operator procedure can be then
denoted as:

(x,u) = P(α,µ) =

[
φ(α,µ)
γ(α,µ)

]
(1.37)

Finally, problem (1.31) can be rewritten in the reduced form:

min
u0,...,uT−1

T−1∑

t=0

`(φt(α,µ), γt(α,µ)) +m(φT (α,µ))

subj. to α ∈ RnxT ,µ ∈ RnuT

(1.38)

which is an unconstrained optimization problem. Therefore, we can resort
to descent methods to solve this problem.

In general, the current solution iteratively evolves as:

[
αk+1

µk+1

]
=

[
xk

uk

]
+ βk

[
zk

vk

]
(1.39)

where, zk ∈ RnxT , vk ∈ RnuT are descent directions.
Accordingly to this iterative approach, at each step, a properly defined

algorithm provides a descent direction (zk,vk) moving from the cost func-
tional J(αk,µk). Then a step size βk is computed, accordingly to some cri-
teria, e.g. backtracking line search. Combining the search direction (zk,vk)
with step size βk a new update trajectory (xk+1,uk+1) is computed by pro-
jecting the curve (αk+1,µk+1) onto the trajectory manifold T and the al-
gorithm restarts (unless a termination condition is met).

This methodology is schematically illustrated in Algorithm 3. Thanks
to its inherent flexibility, this strategy provides the opportunity to speed-
up the resolution of optimization problems by conveniently choosing the
descent method. It is important to underline that, thanks to the projection
operator, this methodology enjoys recursive feasibility during the algorithm
evolution, i.e. at each iteration a system trajectory is available. This feature
is extremely important in real-time control schemes since it allows one to
stop the algorithm at any iteration and yet have a (suboptimal) system
trajectory.
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Algorithm 3 Closed-Loop Projected Methodology

Require: trajectory (x0,u0) with x0
0 = xinit

for k = 0, 1, 2, . . . do
Compute Kt, t = 0, . . . , T − 1
Compute a descent direction (zk,vk) based on (xk,uk)
Compute a new curve (αk+1,µk+1) based on (αk,µk) and (zk,vk).
Update the new trajectory

(xk+1,uk+1) = P(αk+1,µk+1)

end for

There exist also a projected version of the curve update, where the new
curve (αk+1,µk+1) is based directly on (xk,uk) and (zk,vk).

To solve problem (1.38), for example, it is possible to resort to a gradient
method which reads as, for all k ≥ 0:

αk+1 = αk − βk∇αJ(αk,µk)

µk+1 = µk − βk∇µJ(αk,µk)
(1.40)

Theorem 1. There exists a step-size βk such that any limit point (α∗,µ∗)
of the sequence {αk,µk}k≥0 generated by (1.40) is a stationary point of
F (φ(α,µ), γ(α,µ))

In this case, the gradient of the cost function J involves the gradient of
both mapping function φ and γ which may be difficult to compute. This dif-
ficulty may be overcome exploiting the characterization of φ and γ given by
Assumption 2 and introducing an equivalent problem computed via the La-
grangian functional. This approach is going to be detailed later in Chapter 2.

Eventually, this method is summarized in Algorithm 4, where, at each
iteration k a trajectory (xk+1,uk+1) is available. The descent direction vk is
computed via (1.41) where akt ∈ Rnx , bkt ∈ Rnu , Akt ∈ Rnx×nx , Bk

t ∈ Rnx×nm

are defined as:
akt = ∇xt`(xkt , ukt )
bkt = ∇ut`(xkt , ukt )
Akt = ∇xtf(xkt , u

k
t )
>

Bk
t = ∇utf(xkt , u

k
t )
>

The trajectory update is then performed in (1.42) via the closed loop dynam-
ics (1.10), where Kk

t ∈ Rnu×nx solution of the Linear Quadratic Regulator
problem of a linearization of the system about (xk,uk).

Differently from [4], the descent direction of this algorithm is a generic
state-input curve that is not required to satisfy any linearized dynamics.
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As a comparison with Algorithm 2, note that, by setting Kk
t ≡ 0 ∀t, equa-

tions (1.41) and (1.42) become equations (1.29) and (1.30) respectively.
Finally, note that dynamic feasibility is guaranteed at each iteration.

Algorithm 4 Closed-Loop Sequential Method

Require: trajectory (x0,u0) with x0
0 = xinit

for k = 0, 1, 2, . . . do
compute Kk

t for all t ∈ T[0,T−1]

set λkT = ∇m(xkT )
for t = T − 1, . . . , 0 do

compute

vkt = −Bk>
t λkt+1 − bkt

zkt = Kk>
t vkt

λkt = (Akt −Bk
tK

k
t )>λkt+1 + akt −Kk>

t bkt

(1.41)

end for
compute step-size βk

set initial condition xk+1
0 = xinit

for t = 0, . . . , T − 1 do
compute new curve

αk+1
t = αkt + βzkt

µk+1
t = µkt + βvkt

compute new trajectory

uk+1
t = µkt +Kk

t (αk+1
t − xk+1

t )

xk+1
t+1 = f(xk+1

t , uk+1
t )

(1.42)

end for
end for



Chapter 2

Heavy-Ball Closed-Loop
Sequential Method

A contribution of this thesis relies in developing the methodology firstly
proposed for the distributed setup in [5] towards the resolution of central-
ized optimal control problems. This work proposes the Heavy-Ball method,
in order to speed up algorithm convergence. Nevertheless, thanks to the
flexibility provided by the proposed methodology, different descent methods
could be easily considered and implemented in the sequential optimization
algorithm with very few effort from the designer.

Furthermore, the presence of inequality constraints over the system dy-
namics is eventually considered. In this case, the previously developed
method is extended with a barrier function, which allows to reformulate
constrained optimization problems as unconstrained ones suitable for this
methodology.

2.1 Heavy-Ball Sequential Optimization

The Heavy-Ball Method is a two-step procedure firstly introduced by Polyak
in [9]. It is usually considered as an improvement with respect to the gradient
descent when dealing with optimization problems [12].
The intuition is simple: the iterates of gradient descent tend to bounce
between the walls of narrow “valleys” on the objective surface. The left
panel of figure 2.1 shows the iterates of gradient descent bouncing from wall
to wall. Considering the optimization problem:

min
x

f(x)

where x ∈ Rnx , f : Rnx → R, and f continuous and twice differentiable,
namely f ∈ C2.

24
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Figure 2.1: The iterates of gradient descent (left panel) and the heavy ball method
(right panel) starting at (−1,−1)

For this problem the gradient descent update reads, for all iterations
k ≥ 0, as:

xk+1 = xk − βk∇f(xk)

where βk ∈ R is the step-size. To avoid bouncing, the heavy ball method
adds a momentum term with step-size γk ∈ R to the gradient step for all
k > 0:

xk+1 = xk − βk∇f(xk) + γk(xk − xk−1)

The term xk−xk−1 nudges xk+1 to the direction of the previous step (hence
momentum), the right panel of figure 2.1 shows the effects of adding mo-
mentum.

This methods owes its name due to the fact that each iteration is equiv-
alent to a discretization of a second order ODE which models the motion of
a body in a potential field given by f with friction.

The Closed-Loop Projected Methodology proposed in Algorithm 3 in
Section 1.3.2 allows a straightforward implementation of this approach. In
fact, as already shown in Section 1.3.2, thanks to the introduction of a redun-
dant constraint which forces the control input to apply both a feedforward
and a feedback action, the following optimal control problem:

min
x,u,α,µ

T−1∑

t=0

`(xt, ut) +m(xT )

subj. to xt+1 = f(xt, ut) t ∈ T[0,T−1]

ut = µt +Kt(αt − xt)
x0 = α0 = xinit

(2.1)

can be recast as:
min

x,u,α,µ
F (x,u)

subj. to h(x,u,α,µ) = 0
(2.2)
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where x,α ∈ RnxT and u,µ ∈ RnuT and F as:

F (x,u) =

T−1∑

t=0

`(xt, ut) +m(xT ) (2.3)

and h : RnxT × RnuT × RnxT × RnuT → RnxT+nuT defined as:

h(x,u,α,µ) =




f(x0, u0)− x1
...

f(xT−1, uT−1)− xT
µ0 +K0(α0 − x0)− u0

...
µT−1 +K0(αT−1 − xT−1)− uT−1




(2.4)

Then, in light of Assumption 2, problem (2.1) can be written in the
reduced form as:

min
u0,...,uT−1

T−1∑

t=0

`(φt(α,µ), γt(α,µ)) +m(φT (α,µ))

subj. to α ∈ RnxT ,µ ∈ RnuT

(2.5)

this unconstrained optimization problem can be solved via a descent method
such as Heavy-Ball. In this case, each curve update iteration for k ≥ 0 reads
as: [

αk+1

µk+1

]
=

[
αk

µk

]
+ βk

[
zk

vk

]
+ γk

[
αk −αk−1

µk − µk−1

]

Where βk and γk are conveniently chosen step-sizes and descent direction
(zk,vk) with zk ∈ RnxT , vk ∈ RnuT . This new curve is then conveniently
projected onto the trajectory manifold.

In this thesis, however, it is implemented a projected version of the curve
update 2.1, which has proven to be faster and more stable with respect to
the “unprojected” version within the scope of the considered tests. This
implementation reads as:

[
αk+1

µk+1

]
=

[
xk

uk

]
+ βk

[
zk

vk

]
+ γk

[
xk − xk−1

uk − uk−1

]

In this way we have:

uk+1
t = µkt +Kk

t

[
xkt − xk+1

t + βkzkt + γk(xkt − xk−1
t )

]

xk+1
t+1 = f(xk+1

t , uk+1
t )

(2.6)

The application of this method is illustrated in Algorithm 5.



CHAPTER 2. HEAVY-BALL SEQUENTIAL METHOD 27

Algorithm 5 Application of the Projected Heavy-Ball Method

Require: trajectory (x0,u0) with x0
0 = xinit

for k = 0, 1, 2, . . . do
Compute Kt, t = 0, . . . , T − 1
Compute a descent direction (zk,vk) based on (xk,vk)
Compute βk, γk

Compute a new curve

[
αk+1

µk+1

]
=

[
xk

uk

]
+ βk

[
zk

vk

]
+ γk

[
xk − xk−1

uk − uk−1

]

Update the new trajectory

(xk+1,uk+1) = P(αk+1,µk+1)

end for

In this work this method is applied together with the closed-loop sequen-
tial optimization method discussed previously. In particular, recalling the
function composition:

J(α,µ) = F (P(α,µ))

= F (φ(α,µ), γ(α,µ))

=

T−1∑

t=0

`(φt(α,µ), γt(α,µ)) +m(φT (α,µ))

where φ and γ are smooth maps satisfying Assumption 2 and φt, γt being
the t-th component of φ and γ respectively.

This function composition allows us to recast problem (2.5) as:

min
α,µ

J(α,µ)

subj. to α ∈ RnxT ,µ ∈ RnuT
(2.7)

The Heavy-Ball method applied to (2.7) reads, for all k ≥ 0, following the
steepest descent direction:

αk+1 = xk − βk∇αJ(αk,µk) + γk(xk − xk−1)

µk+1 = uk − βk∇µJ(αk,µk) + γk(uk − uk−1)
(2.8)

Theorem 2. There exists a step-size βk, γk such that any limit point (α∗,µ∗)
of the sequence {αk,µk}k≥0 generated by (2.8) is a stationary point of
F (φ(α,µ), γ(α,µ))
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In this case, the gradient of the cost function J involves the gradient of
both mapping function φ and γ which may be difficult to compute. This
difficulty may be overcome exploiting the characterization of φ and γ given
by Assumption 2 and introducing an equivalent problem computed via the
Lagrangian functional.

Let us introduce the Lagrangian multiplier vector:

λ :=
[
λ>1 , . . . , λ

>
T , λ̃

>
1 , . . . , λ̃

>
T

]>
∈ RnxT+nuT (2.9)

with each λt ∈ Rnx and λ̃t ∈ Rnu , associated to the dynamic constraint
h(x,u,α,µ) = 0 of problem 2.2. The Lagrangian of that problem then
reads:

L(x,u,α,µ,λ) := F (x,u) + h(x,u,α,µ)>λ (2.10)

A nice property of the Lagrangian is that it holds :

L(φ(α,µ), γ(α,µ),α,µ,λ) = F (φ(α,µ), γ(α,µ))

= J(α,µ)
(2.11)

for all α ∈ RnxT , µ ∈ RnuT and for all λ ∈ RnxT+nuT , i.e., the value of
L(φ(α,µ), γ(α,µ),α,µ,λ) does not depend on λ, due to the fact that, by
Assumption 2:

h(φ(α,µ), γ(α,µ),α,µ) = 0

for all (α,µ) ∈ RnxT × RnuT .
Thus, problem (2.7) is equivalent to

min
α,µ

L(φ(α,µ), γ(α,µ),α,µ,λ)

subj. to α ∈ RnxT ,µ ∈ RnuT
(2.12)

for any value of λ. Then, λ can be considered as a degree of freedom rather
than an optimization variable.

Let λ ∈ RnxT+nuT be given, then introduce Lλ : Rnx ×Rnu → R defined
as:

Lλ := L(φ(α,µ), γ(α,µ),α,µ,λ) (2.13)

The gradient of Lλ(α,µ) is:

∇Lλ =

[
∇αLλ(α,µ)
∇µLλ(α,µ)

]
(2.14)
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in which:

∇αLλ(α,µ) = ∇αφ∇xL+∇αγ∇uL+∇αL
= ∇αφ(α,µ)

(
∇xF (φ(α,µ), γ(α,µ))

+∇xh(φ(α,µ), γ(α,µ),α,µ)>λ
)

+∇αγ(α,µ)
(
∇uF (φ(α,µ), γ(α,µ))

+∇uh(φ(α,µ), γ(α,µ),α,µ)>λ
)

+∇αh(φ(α,µ), γ(α,µ),α,µ)>λ

(2.15)

and:

∇µLλ(α,µ) = ∇µφ∇xL+∇µγ∇uL+∇µL
= ∇µφ(α,µ)

(
∇xF (φ(α,µ), γ(α,µ))

+∇xh(φ(α,µ), γ(α,µ),α,µ)>λ
)

+∇µγ(α,µ)
(
∇uF (φ(α,µ), γ(α,µ))

+∇uh(φ(α,µ), γ(α,µ),α,µ)>λ
)

+∇µh(φ(α,µ), γ(α,µ),α,µ)>λ

(2.16)

Notice that ∇Lλ in (2.14) has a very peculiar structure. In fact, its ex-
pression can be simplified by choosing a proper value for λ. Specifically, let
λ(α,µ) ∈ RnxT+nuT annihilate the terms pre-multiplied by ∇φ and ∇γ, i.e.
let λ(α,µ) be such that:

∇xF (φ(α,µ), γ(α,µ))+

+∇xh(φ(α,µ), γ(α,µ),α,µ)>λ(α,µ) = 0

∇uF (φ(α,µ), γ(α,µ))+

+∇uh(φ(α,µ), γ(α,µ),α,µ)>λ(α,µ) = 0

(2.17)

Then, whenever λ = λ(α,µ) we obtain:

∇αLλ(α,µ) = ∇αh(φ(α,µ), γ(α,µ),α,µ)>λ

∇µLλ(α,µ) = ∇µh(φ(α,µ), γ(α,µ),α,µ)>λ
(2.18)

With (2.17) and (2.18), it is possible to pose a gradient method to min-
imize problem (2.12).

Formally, the Heavy-Ball projected descent algorithm, equation (2.1),
applied to (2.12) reads, for all k ≥ 0:

αk+1 = xk − βk∇αL(αk,µk;λk) + γk(xk − xk−1)

µk+1 = uk − βk∇µL(αk,µk;λk) + γk(uk − uk−1)
(2.19)
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Choosing λk such that:

∇xF (φ(αk,µk), γ(αk,µk))+

+∇xh(φ(αk,µk), γ(αk,µk),αk,µk)>λk = 0

∇uF (φ(αk,µk), γ(αk,µk))+

+∇uh(φ(αk,µk), γ(αk,µk),αk,µk)>λk = 0

(2.20)

it is possible to prove that (2.19) becomes:

αk+1 = xk − βk∇αh(φ(αk,µk), γ(αk,µk),αk,µk)>λk+

+γk(xk − xk−1)

µk+1 = uk − βk∇µh(φ(αk,µk), γ(αk,µk),αk,µk)>λk+

+γk(uk − uk−1)

(2.21)

For given (αk,µk), let:

akt = ∇xt`(φt(αk,µk), γt(αk,µk))
bkt = ∇ut`(φt(αk,µk), γt(αk,µk))
Akt = ∇xtf(φt(α

k,µk), γt(α
k,µk))>

Bk
t = ∇utf(φt(α

k,µk), γt(α
k,µk))>

(2.22)

Then, a vector λk ∈ RnxT+nuT satisfying (2.20) can be obtained by impos-
ing:

akt +Ak>t λkt+1 − λkt −Kk>
t λ̃kt = 0 t ∈ T[1,T−1]

∇m(φT (αk,µk)− λkT = 0

bkt +Bk>
t λkt+1 − λ̃kt = 0 t ∈ T[0,T ]

which can be rearranged as:

λkt =
(
Akt −Bk

tK
k
t

)>
λkt+1 + akt −Kk>

t bkt (2.23a)

λkT = ∇m(φT (αk,µk)) (2.23b)

λ̃kt = bkt +Bk>
t λkt+1 (2.23c)

for all t ∈ T[1,T−1]. This is a linear dynamical system that is meant to be
backward simulated in t.

Once λk is computed, the gradient of the Lagrangian function, namely
the descent direction, can be computed. In particular, ∇αL can be obtained
using:

zkt := −∇αtL(αk,µk) = −Kk>
t λ̃kt

= −Kk>
t

(
bkt +Bk>

t λkt+1

) (2.24)
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for all t ∈ T[1,T ], z
k
t ∈ Rnx . While, the gradient ∇µL can be obtained using:

vkt := −∇µtL(αk,µk) = −λ̃kt
= −bkt −Bk>

t λkt+1

(2.25)

for all t ∈ T[0,T−1].
Thus, the Heavy-Ball method applied to a closed-loop sequential opti-

mization strategy is recapped by Algorithm 6.
This approach, with respect to the strategy proposed in [4], offers as

main advantage the possibility of keeping the descent direction free and not
constrained to the space tangent to the current trajectory. In fact, differently
from [3] and [4], the descent direction of this algorithm is a generic state-
input curve that is not required to satisfy any linearized dynamics. More-
over, note that dynamic feasibility is guaranteed at each iteration. Thus,
the algorithm can be stopped at any iteration with a twofold guarantee: it
is available a system trajectory (xk,uk) and a controller Kk

t t ∈ T[0,T−1] to
track it.
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Algorithm 6 Closed-Loop Sequential Method enhanced by Heavy-Ball

Require: trajectory (x0,u0) with x0
0 = xinit

for k = 0, 1, 2, . . . do
compute Kk

t for all t ∈ T[0,T−1]

set λkT = ∇m(xkT )
for t = T − 1, . . . , 0 do

compute

vkt = −Bk>
t λkt+1 − bkt

zkt = Kk>
t vkt

λkt = (Akt −Bk
tK

k
t )>λkt+1 + akt −Kk>

t bkt

end for
compute step-size βk, γk

set initial condition xk+1
0 = xinit

for t = 0, . . . , T − 1 do
compute new curve

αk+1
t = xkt + βkzkt + γk(xkt − xk−1

t )

µk+1
t = ukt + βkvkt + γk(ukt − uk−1

t )

compute new trajectory

uk+1
t = µkt +Kk

t (αk+1
t − xk+1

t )

xk+1
t+1 = f(xk+1

t , uk+1
t )

end for
end for

2.2 Heavy-Ball for Constrained Systems

In the vast majority of optimal control some sort of constraints needs to
be considered, e.g. maximum power provided by the actuators, path con-
straints, etc. In this case, the optimal control problem is defined as:

min
x1,...,xN
u0,...,uT−1

T−1∑

t=0

`(xt, ut) +m(xT )

subj. to xt+1 = f(xt, ut) t ∈ T[0,T−1]

gt(xt, ut) ≤ 0

x0 = xinit

(2.26)
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To be consistent with the proposed methodology, we are interested in devel-
oping unconstrained optimal control strategies that can be used to approxi-
mate solutions to the constrained optimal control problem. In particular, a
barrier function approach is considered. This strategy, in fact, proved to be
quite effective for solving convex optimization problems [13].

In that approach, a solution to a convex problem:

min
x

f(x)

s.t. gj(x) ≤ 0 j = 1, . . . , ng

is found by solving a sequence of convex problems:

min
x∈X

f(x)− ε
ng∑

j=1

log(−gj(x))

Where X = {x ∈ Rn : gj(x) < 0}. Using a decreasing sequence, it is
possible to follow the path of solutions ε→ x∗ε to a solution x∗ = limε→0 x

∗
ε.

Introducing ng constraints in problem (2.26), it becomes:

min
x1,...,xN
u0,...,uT−1

T−1∑

t=0

`(xt, ut) +m(xT )

subj. to xt+1 = f(xt, ut) t ∈ T[0,T−1]

gj(t, xt, ut) ≤ 0 j = 1, . . . , ng

x0 = xinit

Following the strategy proposed by [8], an analog of the barrier function
method for use on discrete time constrained trajectory optimization prob-
lems is of the form:

min
x1,...,xN
u0,...,uT−1

T−1∑

t=0


`(xt, ut)− ε

ng∑

j=1

log(−gj(t, xt, ut))


+m(xT )

subj. to xt+1 = f(xt, ut) t ∈ T[0,T−1]

x0 = xinit

(2.27)

with (x,u) such that gj(x,u) < 0, for all j = 1, . . . , ng.
This approach, however, presents a key difficulty: infeasibility is not

tolerated at all. That is, it is not possible to evaluate the objective in (2.27)
unless (x,u) is a feasible trajectory. In fact, for an unfeasible trajectory,
namely gj > 0 the approximate barrier function is undefined. To solve this
issue, as proposed in [8], an approximate logarithmic barrier function is
introduced βδ(·), 0 ≤ δ ≤ 1:

βδ(z) =





− log(z) z > δ

k−1
k

[(
z−kδ

(k−1)δ

)k
− 1

]
− log(δ) z ≤ δ

(2.28)
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The C2 function (2.28) retains many of the important properties of the log
barrier function: z → − log(z) while expanding the domain of finite values
from (0,∞) to (−∞,∞). Both functions are (strictly) convex and strictly
decreasing on their domains.

Returning to the original problem, using the constraints in (2.26) to
define the approximate barrier functional:

bδ =

T∑

t=0

ng∑

j=1

βδ(−gj(t, xt, ut))

then, problem (2.26) can be rewritten as:

min
x1,...,xN
u0,...,uT−1

T−1∑

t=0


`(xt, ut)− ε

ng∑

j=1

βδ(−gj(t, xt, ut))


+m(xT )

subj. to xt+1 = f(xt, ut) t ∈ T[0,T−1]

x0 = xinit

(2.29)

in which the only constraint is represented by the system dynamics.
For a given curve (α,µ), then, it is possible to introduce the uncon-

strained optimal control problem

min
(α,µ)∈T

F (α,µ) + εbδ(α,µ) (2.30)

This problem is an approximation of (2.26) as much as (2.27) is, the only
difference is that this functional can be evaluated on any curve, while (2.27)
may only be evaluated on feasible curves. As in the finite dimensional case, a
trajectory that is locally optimal solution of (2.27) is also solution of (2.30)
provided δ > 0 sufficiently small.

This functional permits to exploit the projection operator. In particular,
the constrained optimal control problem exploiting the projection operator
can be written as:

min
α,µ

Jε,δ(α,µ)

subj. to α ∈ RnxT ,µ ∈ RnuT
(2.31)

where:
Jε,δ(α,µ) = F (P(α,µ)) + εbδ(P(α,µ))

The adopted strategy is to start with a reasonably large ε and δ, e.g.
ε = δ = 1. Then, for the current ε and δ, problem (2.31) is solved using
the proposed methodology. Then, the trajectory is updated to the current
optimal. Next, ε and δ are decreased. Then, go back to the optimization
step and continue.
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This approach proved its validity together with the heavy-ball sequential
method previously proposed. In fact, the approximate barrier functional
introduces a nonlinear term within the cost function which can be handled
by the suggested methodology.

Moreover, it is important to underline that this strategy works also ex-
ploiting other sequential optimization methods.



Chapter 3

Algorithm Implementation

In order to test the proposed method and compare its effectiveness with
respect to other algorithms an implementation coded in Python has been
developed. The whole code is structured in a way such that flexibility with
respect to cost function, methodology and system is granted, also in forecast
of a possible definition of a proper Python toolbox.

3.1 Python Code

The code produced together with this work is aimed to provide an useful
test-bench for the proposed algorithm addressed to the resolution of any
discrete time optimal control problem, not only a particular case study.
Thus, flexibility and modularity represent the core concepts around which
the whole code has been developed.

Furthermore, the whole code has been developed following the strat-
egy depicted by Algorithm 3, namely the core functionalities which must
be provided are: calculating a suitable descent direction and producing a
(unfeasible) curve which is going to be projected as a feasible trajectory.

Alongside with some auxiliary functions, five main functional segments
are defined:

• Sequential Optimization: the main function of this toolbox, allows
the user to define parameters such as reference trajectory, number of
iterations... It provides the optimal trajectory.

• Descent Method: produces the descent direction according to different
approaches e.g. open-loop sequential, closed-loop sequential and first
order PRONTO

• Update Trajectory: evaluates the new curve and perform the projec-
tion to a feasible trajectory

36
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• System: allows the user to define the system under control. Receiving
the control input and current state, it returns the next state (allowing
dynamics integration) and the system Jacobian (needed for first order
optimization).

• Cost: implements the cost function. Returns the current cost and cost
Jacobian with respect to the current control input and state. Thanks
to the previously discussed barrier function, it is possible to include in
this function also the desired constraints.

Among these fundamental elements, some auxiliary functions are defined
such as a Linear Quadratic Regulator problem solver, an useful tool in dif-
ferent applications e.g. gain matrices calculations and first order PRONTO.

A basic representation of the workflow behind the code is represented
in figure 3.1. The whole sequential optimization phase is fully costumizable
by the user, in terms of descent methods and approaches to compute the
descent direction.

Sequential Optimization

start

set initial conditions

instantiate algorithm

compute descent direction

compute step-size

update trajectory

end – return result

iterations finished

Figure 3.1: Code workflow

In figure 3.2, the basic code modules adopted to compute the descent
direction at each iteration are represented. Notice tha both the system
dynamics and the cost functions are defined by the user.
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Methods.py
Open Loop Sequential
Closed Loop Sequential
First Order PRONTO

xk,uk → zk,vk

System.py
ft(xt, ut)

xt, ut →
{
xt+1

∇xft(·),∇uft(·)

Cost.py
lt(xt, ut),m(xT )

xt, ut →
{
lt(·),m(·)
∇xlt(·),∇ult(·),∇xm(·)

∇xlt(·),∇ult(·),∇xm(·)

∇xlt(·),∇ult(·)

Figure 3.2: Descent direction computation – in red the user defined elements

In figure 3.3, the basic code modules adopted to update the current
trajectory at each iteration are represented. Notice tha both the system
dynamics and the cost functions are defined by the user.

Descents.py
Gradient
Heavy-Ball

(xk,uk), (zk,vk)→ (xk+1, zk+1)

System.py
ft(xt, ut)

xt, ut →
{
xt+1

∇xft(·),∇uft(·)

xt+1

Figure 3.3: Current trajectory update – in red the user defined elements

3.2 Inverse Pendulum Problem

The presented methodology and implementation is designed to be applied
to any kind of nonlinear discrete-time optimal control problem in many and
various field of engineering, e.g. trajectory optimization [14] and dynamics
exploration [15].

In this work, for the sake of clarity, a simple and comprehensive example
is considered: an inverted pendulum system, a classical case study in control
systems theory. Even though simple, this framework still allows to consider
nonlinear dynamics, trajectory tracking and multiple constraints both on
states and inputs.

3.2.1 Problem

A simple inverted pendulum is hereby considered: Where k represents the
friction coefficient, u is the input torque, g gravity, m mass of the pendulum,
considered applied at its end, and l pendulum’s length.

The system dynamics is represented as:

ml2θ̈ = mgl sin(θ)− klθ̇ + u
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u

l
θ

−kθ̇

mg

m

Figure 3.4: The inverse pendulum setup

In order to provide a state-space representation, the angular position θ reads
as x1 ∈ R while angular velocity θ̇ as x2 ∈ R. Thus, system dynamics can
be rewritten in the state space as:

{
ẋ1 = x2

ẋ2 = g
l sin(x1)− k

mlx2 + 1
ml2

u

Defining the state vector x ∈ R2:

x =

[
x1

x2

]

The nonlinear system can be written in the form:

[
ẋ1

ẋ2

]
=

[
x2

g
l sin(x1)− k

mlx2

]
+

[
0
1
ml2

]
u (3.1)

Which can be written in a more compact way as:

ẋ = f(x) + bu

Where b =
[
0 1
ml2

]>
. It worth noticing that, in this case, the input enters

linearly.
By now, provided model is inherently a continuous time system. Thus,

in order to be suitable for the developed discrete-time methodology, a dis-
cretization process needs to be performed.
In this case, discretization via Euler’s method is considered. This is a basic
explicit method for numerical integration of ordinary differential equations.
In particular, given an Ordinary Differential Equation (ODE):

ẏ(t) = f(t, y(t)) y(t0) = y0

it is chosen a value d ∈ R discretization time step and set tn = t0 +nd. Now,
one step of the Euler method from tn to tn+1 = tn + d is:

yn+1 = yn + df(tn, yn) (3.2)
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the value of yn is an approximation of the solution to the ODE at time tn,
namely: yn ≈ y(tn).

Applying the approach of (3.2) to the continuous time system (3.1) re-
sults in the following discrete time system:

[
x1,t+1

x2,t+1

]
=

[
x1,t

x2,t

]
+ d

[
x2,t

g
l sin(x1,t)− k

mlx2,t

]
+ d

[
0
1
ml2

]
ut (3.3)

which can be written in a more compact way as:

xt+1 = xt + df(xt) + but

The sampling time chosen in this study is d = 10−3.
The system’s parameters are reported in Table 3.1.

l m k

[m] [kg]

1 1 0.5

Table 3.1: System’s parameters

It is important to underline that in these applications the initial condi-
tions are chosen as:

xinit =

[
0
0

]

In the proposed methods, the system’s dynamics Jacobian is required,
which is defined as:

∇xf(xt, ut)> =

[
1 d

d
[g
l cos(xt1)

]
1− d

[
k
ml

]
]

∇uf(xt, ut)> =

[
0

d
[

1
ml2

]
]

Cost function

The cost function chosen for this illustrative example is a classical quadratic
function, this kind of functions are often adopted as they allow to express, as
quadratic form, the deviations of the variables of interest from their desired
values. The algorithm thus finds those controller settings that minimize
undesired deviations, however, it may not be possible to achieve the desired
values of all target variables This property is particularly useful when dealing
with trajectory tracking.
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Moving from the generic definition:

F (x,u) =
T−1∑

t=0

`t(xt, ut) +m(xT )

the quadratic cost function considered reads:

F (x,u) =
T−1∑

t=0

(
x>t Qtxt + u>t Rtut

)
+ x>TQfxT (3.4)

where, considering nx = 2, nu = 1, Qt ∈ Rnx×nx , Qf ∈ Rnx×nx and R ∈
Rnu×nu . In particular:

`t(xt, ut) = x>t Qxt + u>t Rut

mt(xt) = x>TQfxT

In this work, constant matrices are chosen, namely Qt ≡ Q and Rt ≡ R
for all t ∈ T[0,T−1]. Defined as:

Q =

[
10 0
0 1

]

Qf =

[
102 0
0 104

]

R =
[
0.5
]

the higher cost associated to the second state - the angular velocity - at
the final time t = T is motivated by the desire to move the pendulum to a
steady final position.

In the proposed methods, the gradient of the cost function is required,
which is defined as:

∇x`(xt, ut) = 2Qxt

∇u`(xt, ut) = 2Rxt

∇xm(xT ) = 2QfxT

Trajectory Tracking

In many applications, it is useful for each state and input to track an user-
defined reference trajectory. Under these circumstances, a quadratic cost
function is particularly useful. In fact, these sequential algorithm can be
easily extended towards this goal just modifying the cost function weighting
the distance from the reference trajectory xref defined for all t ∈ T[0,T−1]:

J(x,u) =
T−1∑

t=0

`(xt, ut, x
ref
t , u

ref
t ) +m(xT , x

ref
T )
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In particular, considering a quadratic cost:

F (x,u) =

T−1∑

t=0

(
(xt − xref

t )>Q(xt − xref
t ) + (ut − uref

t )>R(ut − uref
t )
)

+ (xT − xref
T )>Qf (xT − xref

T )

Once this cost function is defined, algorithm is ready to go without further
changes.
It is important to underline that, due to the implementation of this reference
trajectory within the cost function does not guarantee perfect, zero-error
tracking throughout the whole trajectory. However, this allows the designer
to not care about dynamic feasibility of the reference signal, the optimization
algorithm, in fact, minimizes the deviation from the reference value at any
instant while keeping, also thanks to the projection operator, the trajectory
feasible.

In this practical example, the trajectory to be tracked is associated just
to the first state x1, the angular position of the pendulum. In particular,
it is requested to move the pendulum to the origin, namely x1 = θ = 0
and then, after few moments, to x1 = θ = 0.5 rad ≈ 28 deg. This reference
trajectory is represented in figure 3.5.

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

Time - [s]

θ
-
[r
a
d
]

Figure 3.5: Angular position reference trajectory

On the other hand, reference trajectory such as xref
2 ≡ 0 and uref ≡ 0

are chosen for both the second state - the angular velocity - and the input,
in order to force them to be as small as possible. In particular, the request
above xref

2 , could represent the need for the optimizer to define the optimal
way to connect two different zero-velocity trajectories.
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Considering the presence of a trajectory to be tracked, the gradient of
the cost function becomes:

∇x`(xt, ut, xref
t , u

ref
t ) = 2Qxt − 2Qxref

t

∇u`(xt, ut, xref
t , u

ref
t ) = 2Rxt − 2Ruref

t

∇xm(xT , x
ref
T ) = 2QfxT − 2Qfx

ref
T

Constraints

Constraints, accordingly to the proposed methodology, are handled by an
approximate barrier function as proposed in continuous time in [8]. This
term, which intervenes as a cost function, makes the optimization problem
nonlinear also in the cost.

In this work, two main constraints are introduced, one on the input u
(mimicking the maximum torque available from the actuator) and another
over the angular speed θ̇ = x2 (which may be an external requirement).
Formally, they are expressed as:

|ut − umax| ≤ 0

|x2,t − x2,max| ≤ 0
∀t ∈ T[0,T−1]

which then maps into 4 inequalities contraints, namely ng = 4:

g1(xt, ut) = ut − umax

g2(xt, ut) = umax − ut
g3(xt, ut) = x2,t − x2,max

g4(xt, ut) = x2,max − x2,t

∀t ∈ T[0,T−1]

These contraints are then approximated as a nonlinear term in the cost
function which reads, for each t ∈ T[0,T−1], as:

−ε
ng∑

j=1

log(−gj(t, xt, ut)) (3.5)

In this example, the only constraint implemented is related to the angular
velocity x2, it is requested, in fact, to keep bounded the angular speed,
namely:

−0.2 ≤ x2 ≤ 0.2

Algorithms

In this illustrative implementation two optimization algorithms are com-
pared. As a reference, it is chosen first-order PRONTO, the first order
version of Algorithm 1. In fact, a first order approximation of the cost func-
tion is considered during the resolution of the SQP problem associated to
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the research for the descent direction. Namely Hk = I ∀k ≥ 0, where I is
the identity matrix.

On the other hand, the proposed Heavy-Ball sequential method is tested,
as illustrated in Algorithm 6. In this case a fixed step-size γk = 0.1 is
adopted ∀k ≥ 0.

3.2.2 Results

The proposed algorithm is hereby implemented in the previously discussed
practical example. In particular, its performances are compared with the
first order implementation of PRONTO.

As previously discussed, one of the major advantages of the proposed
technique is related to the fact that the descent direction is free and not
constrained to the space tangent to the current trajectory.

From these simulations, the Heavy-Ball enhanced sequential optimiza-
tion proved faster than PRONTO.

Unconstrained Optimization

A first test is performed dealing with the following optimization problem:

min
x1,...,xN
u0,...,uT−1

T−1∑

t=0

[
(xt − x∗t )>Q(xt − x∗t ) + (ut − u∗t )>R(ut − u∗t )

]

+ (xT − x∗T )>Qf (xT − x∗T )

subj. to xt+1 = f(xt, ut) t ∈ T[0,T−1]

x0 = xinit

(3.6)

It is possible to notice that no external constraints, with the exception of
dynamics, are considered.

In figure 3.6 the behavior of the first-order version of PRONTO is com-
pared to the proposed Heavy-Ball sequential algorithm. It is possible to ob-
serve that Heavy-Ball sequential converges faster to the optimal cost. This
is more evident in figure 3.7, where the cost error between the first and last
iteration is represented. In this graphs, to ease the notation, it is defined as:

F k = F (xk,uk)

namely, the cost at each iteration and as:

F ∗ = F (x∗,u∗)

the cost at the last iteration, where (x∗,u∗) as the corresponding trajectory.
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Figure 3.6: Algorithm comparison – First-order PRONTO and Heavy-Ball Se-
quential
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Figure 3.7: Cost evolution – First-order PRONTO and Heavy-Ball Sequential,
difference between the cost at each iteration F k and at the last one F ∗

Finally, the optimal trajectory is depicted in figure 3.8. It is important
to underline that the same optimal trajectory is achieved both via first-order
PRONTO and Heavy-Ball Sequential.
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Figure 3.8: Optimal trajectory – in blue the optimal trajectory, in dashed green
the reference signals

From figure 3.8a it may seem that the optimizer failed with respect to
the task of tracking the position reference signal. However, it is necessary to
keep in mind that, due to the chosen cost function, the optimization process
was also trying to minimize the distance between the input and its reference
signal (figure 3.8c).

Constrained Optimization

The efficiency of the proposed methodology is proved also considering a
constrained scenario, where, together with the dynamics constraints, some
external restrictions are applied to the system. This is useful in many appli-
cations where limitations over input, trajectory and speed are considered.

The problem hereby optimized introduces a constraint over the maxi-
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mum speed achievable during the pendulum motion.

min
x1,...,xN
u0,...,uT−1

T−1∑

t=0

[
(xt − x∗t )>Q(xt − x∗t ) + (ut − u∗t )>R(ut − u∗t )

]

+ (xT − x∗T )>Qf (xT − x∗T )

subj. to xt+1 = f(xt, ut) t ∈ T[0,T−1]

x0 = xinit

x2,t ≤ x2,max ∀t ∈ T[0,T−1]

x2,t ≥ x2,min ∀t ∈ T[0,T−1]

(3.7)

In figure 3.9 the behavior of the two algorithms, still first-order PRONTO
and Heavy-Ball sequential is represented. Since the barrier function shrinks
every 10 iterations, its effects are evident from the graphs in the form of
those stairs.

Considering the optimization of constrained system, the convergence
speed of the two algorithms does not present huge differences, as it is possi-
ble to observe in figure 3.10. However, the Heavy-Ball sequential method, as
shown in figure 3.11, within very few iterations produces a trajectory which
follows the position reference signal.

In this graphs, to ease the notation, it is defined as:

F k = F (xk,uk)

namely, the cost at each iteration and as:

F ∗ = F (x∗,u∗)

the cost at the last iteration, where (x∗,u∗) the corresponding trajectory.
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Figure 3.9: Algorithm comparison – First-order PRONTO and Heavy-Ball Se-
quential

0 100 200 300 400

10−4

10−2

100

102

104

Iterations – k

E
rr
o
r
–
( F

k
−
F

∗)

First-order PRONTO
Closed-loop Heavy-Ball

Figure 3.10: Cost evolution – First-order PRONTO and Heavy-Ball Sequential,
difference between the cost at each iteration F k and at the last one F ∗



CHAPTER 3. ALGORITHM IMPLEMENTATION 49

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

Time – [s]

θ
–

[r
a
d
]

Iter 1
Iter 5
Iter 10
Reference
Optimal

(a) Position – Heavy-Ball

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

Time – [s]

θ
–
[ra

d]

Iter 1
Iter 5
Iter 10
Reference
Optimal

(b) Position – First Order PRONTO

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

max

min

Time – [s]

θ̇
–
[ra

d/
s]

Iter 1
Iter 5
Iter 10
Reference
Optimal

(c) Velocity – Heavy-Ball

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

max

min

Time – [s]

θ̇
–
[ra

d/
s]

Iter 1
Iter 5
Iter 10
Reference
Optimal

(d) Velocity – First Order PRONTO

Figure 3.11: State trajectory evolution – in dashed grey the corresponding tra-
jectory at each iteration

From figure 3.11c and 3.11d the effects of the barrier function applied to
the constrained problem can be observed. In particular, it is possible to see
how, iteration after iteration, the velocity trajectory is pushed towards the
boundaries.

Finally, the optimal trajectory is depicted in figure 3.12. It is important
to underline that the same optimal trajectory is achieved both via first-order
PRONTO and Heavy-Ball Sequential.



CHAPTER 3. ALGORITHM IMPLEMENTATION 50

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

Time – [s]

θ
–
[r
ad

]

Optimal
Reference

(a) Position

0 2 4 6 8 10

−0.2

−0.1

0

0.1

0.2
max

min

Time – [s]

θ̇–
[ra

d/
s]

Reference
Optimal

(b) Velocity

0 2 4 6 8 10

−4

−3

−2

−1

0

Time −[s]

u
−
[N

m
]

Optimal
Reference

(c) Input

Figure 3.12: Optimal trajectory – in blue the optimal trajectory, in dashed green
the reference signals.

The effectiveness of the barrier function can be observed in particular
from figure 3.12b. In order to obtain an optimal trajectory compatible with
the constraints, in fact, the velocity gets saturated to its maximum (feasible)
value.

A comparison between the constrained and unconstrained state input
trajectory is represented in figure 3.13.
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Conclusions

In this thesis a novel methodology for nonlinear optimal control problems
with input and state constraints is proposed. In particular, the proposed
approach generalizes a so-called closed-loop sequential method. The dynam-
ics is enhanced by the introduction of a closed-loop structure exploiting the
beneficial effects of state feedback. This results in a more stable and efficient
algorithm with respect to its open-loop counterparts.

This methodology is further improved by the exploitation of the Heavy-ball
method in order to speed-up algorithm’s convergence.

State and input constraints are effectively managed thanks to the intro-
duction of an approximate barrier function alongside with the traditional
problem cost function. This results in a relaxed optimization problem in
which constraints are embedded within the cost function.

It is important to underline that proposed method is designed in order
to produce, at each iteration, a trajectory capable of satisfying the dy-
namic of the system, namely, a feasible trajectory is always available even
if sub-optimal.

Numerical computations finally show the effectiveness of the proposed
strategy both in an unconstrained and constrained framework.
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Appendix A

Basics on Optimization

A.1 Descent Methods for Unconstrained Optimiza-
tion

Considering a generic unconstrained optimization problem:

min
x

`(x)

subj. to x ∈ Rnx
(A.1)

Most interesting algorithms for this unconstrained optimization problem
rely on an important idea, called iterative descent that works as follows:
starting from an initial guess x0 and successively generate vectors x1, x2, . . .
such that the cost is decreased at each iteration, that is:

`(xk+1) < `(xk) k = 0, 1, . . .

In doing so, current solution estimate is successively improved, hoping to
decrease the cost all the way to its minimum.

The candidate solution at iteration k ∈ N is, in general, updated accord-
ingly to:

xk+1 = xk + βkζk (A.2)

where βk ∈ R step-size, ζk ∈ Rnx descent direction.
The gradient method applied to A.2 reads:

xk+1 = xk − βk∇`(xk) (A.3)

The Newton method applied to A.2 reads:

xk+1 = xk − βk
(
∇2`(xk)

)−1
∇`(xk) (A.4)

In this case the notation xk refers to a vector x at the algorithm’s k-th
iteration.
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A.2 Sequential Quadratic Programming

Considering a generic constrained optimization problem:

min
x∈Rnx

`(x)

subj. to h(x) = 0

g(x) ≤ 0

(A.5)

where ` : Rnx → R, h : Rnx → Rp and g : Rnx → Rr are twice continuosly
differentiable functions. We denote the feasible set for problem (A.5) by X.

The Sequential Quadratic Programming (SQP) is an iterative procedure
which models the optimization problem (A.5) for a given iterate xk, by a
Quadratic Programming (QP) problem, solves that such approximation, and
then uses the solution to construct a new iterate xk+1.

The QP approximations should reflect the local properties of (A.5) with
respect to the current iterate xk. Therefore, a natural idea is to replace the
objective functional by its local quadratic approximation while constraint
functions h and g by their local affine approximations. This leads to the
following basic SQP algorithm which obtains a step ∆x by solving:

∆xk = arg min
∆x

∇`(xk)>∆x+
1

2
∆x>Hk∆x

subj. to h(xk) +∇h(xk)>∆x = 0

g(xk) +∇g(xk)>∆x ≤ 0

(A.6)

Then, set
xk+1 = xk + ∆xk (A.7)

A.3 Linear Quadratic Regulator

Considering the following optimal control problem:

min
x1,...,xN
u0,...,uT−1

T−1∑

t=0

[
xt
ut

]> [
Qt S>t
St Rt

] [
xt
ut

]
+ x>TQTxT

subj. to xt+1 = Atxt +Btut t ∈ T[0,T−1]

x0 = xinit

(A.8)

with Qt = Q>t ≥ 0, QT = Q>T ≥ 0 and Rt = R>t > 0.
Using, for example, dynamic programming, it can be proved that this

problem admits a closed-form solution that relies on the following steps.
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Set PT = QT . Then, recursively compute backward in time for t =
T?1, . . . , 0

Pt = Qt +A>t Pt+1At

− (S>t +A>t Pt+1Bt)(Rt +B>t Pt+1Bt)
−1(St +B>t Pt+1At)

which is commonly known as difference Riccati equation.
Once matrices Pt have been obtained the optimal input can be computed as
a feedback of the state given by:

Kt = −(Rt +B>t Pt+1Bt)
−1(St +B>t Pt+1At)

u∗t = Ktx
∗
t

x∗t+1 = (At +BtKt)x
∗
t

for all t ∈ T[0,T−1] and with x∗0 = xinit.
A more general LQR formulation may include affine dynamics, i.e. xt+1 =

Atxt +Btut + ct. Moreover, one can consider a desired reference state-input
signal (xd,ud) to be optimally tracked. This task can be formalized using
the following “tracking objective”

[
xt − xdt
ut − udt

]> [
Qt S>t
St Rt

] [
xt − xdt
ut − udt

]
(A.9)

which can be equivalently posed, ignoring some constant terms, as a linear-
quadratic minimization:

T−1∑

t=0

[
2

[
qt
rt

]> [
xt
ut

]
+

[
xt
ut

]> [
Qt S>t
St Rt

] [
xt
ut

]]
(A.10)

with qt = −Qtxdt − S>t udt and rt = −Stxdt − Rtudt . One can also consider
terminal costs and finally rearrage terms as:

min
x1,...,xN
u0,...,uT−1

T−1∑

t=0




1
xt
ut



> 


0 q>t r>t
qt Qt S>t
rt St Rt






1
xt
ut


+

[
1
xt

]> [
0 q>T
qT QT

] [
1
xt

]

subj. to

[
1

xt+1

]
=

[
1 0
ct At

] [
1
xt

]
+

[
0
Bt

]
ut t ∈ T[0,T−1]

x0 = xinit

(A.11)

By defining an augmented state:

x̃t =

[
1
xt

]

and the corresponding matrices, one obtains the same structure in (A.8) and
can apply the same formulas.
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A.4 Armijo Rule – Backtracking Line Search

In order to improve the efficiency of an iterative minimization algorithm, it
is possible to adopt an iterative algorithm back-tracking line search strategy,
namely, a variable step-size βkt defined accordingly to the Armijo-Goldstein
conditions is introduced [16]. This is aline search method to determine the
maximum amount to move along a given search direction.

Given a starting position x and a search direction z , the task of a line
search is to determine a step size β > 0 that adequately reduces the objective
function f : Rn → R (assumed smooth), i.e., to find a value of β that reduces
f(x + βz) relative to f(x).

Starting with a maximum candidate step size value β0 > 0, using search
control parameters τ ∈ (0, 1) and c ∈ (0, 1), the backtracking line search
algorithm can be expressed as follows:

1. Set t = −cm and iteration counter j = 0 where m = ∇f(x)>z.

2. Until the condition is satisfied that f(x)−f(x+βjz) ≥ βjt, repeatedly
increment j and set βj = τβj−1.

3. Return βj as the solution.
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