Magrì, Salvatore
(2020)
Characterization of cerebral cortex folding in humans through MRI: quality control and dementia prediction.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Fisica [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (29MB)
| Contatta l'autore
|
Abstract
Magnetic resonance imaging (MRI) is a valuable tool for non-invasively investigating human brain anatomy and functions. The features extracted from MRI data can be used as biomarkers for neurodegenerative diseases, like Dementia. To deeply understand the mechanisms driving the brain changes it is crucial to extract reliable measures from the brain MRI scans and to increase the statistical power by harmonizing different datasets, such as in the ENIGMA studies.
Here we applied the ENIGMA-SULCI pipeline to estimate the reliability of the sulcal descriptors extracted across the whole brain and to investigate their correlation with CDR (Clinical Dementia Rating) in the open access dataset OASIS. The OASIS dataset includes T1-weighted acquired from 416 right-handed subjects, for 227 of whose we know CDR. The measurement reliability has been estimated through technical replicates of a subgroup of patients MRI scans. The correlation of each sulcal shape descriptor with the degree of Dementia has been tested through linear regressions between each feature and the CDR series. We have trained linear (regression) and nonlinear (Neural Networks) Machine Learning models in order to classify the subjects in two classes (Dementia and healthy subjects). We got models able to correctly classify more than the 70% of the dataset, starting from sulcal measures.
Abstract
Magnetic resonance imaging (MRI) is a valuable tool for non-invasively investigating human brain anatomy and functions. The features extracted from MRI data can be used as biomarkers for neurodegenerative diseases, like Dementia. To deeply understand the mechanisms driving the brain changes it is crucial to extract reliable measures from the brain MRI scans and to increase the statistical power by harmonizing different datasets, such as in the ENIGMA studies.
Here we applied the ENIGMA-SULCI pipeline to estimate the reliability of the sulcal descriptors extracted across the whole brain and to investigate their correlation with CDR (Clinical Dementia Rating) in the open access dataset OASIS. The OASIS dataset includes T1-weighted acquired from 416 right-handed subjects, for 227 of whose we know CDR. The measurement reliability has been estimated through technical replicates of a subgroup of patients MRI scans. The correlation of each sulcal shape descriptor with the degree of Dementia has been tested through linear regressions between each feature and the CDR series. We have trained linear (regression) and nonlinear (Neural Networks) Machine Learning models in order to classify the subjects in two classes (Dementia and healthy subjects). We got models able to correctly classify more than the 70% of the dataset, starting from sulcal measures.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Magrì, Salvatore
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum E: Fisica applicata
Ordinamento Cds
DM270
Parole chiave
Cortical Folding,Sulci Morphometry,Brain Imaging,MRI,Dementia,Neural Networks,Machine Learning,Quality Control
Data di discussione della Tesi
25 Settembre 2020
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Magrì, Salvatore
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum E: Fisica applicata
Ordinamento Cds
DM270
Parole chiave
Cortical Folding,Sulci Morphometry,Brain Imaging,MRI,Dementia,Neural Networks,Machine Learning,Quality Control
Data di discussione della Tesi
25 Settembre 2020
URI
Statistica sui download
Gestione del documento: