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Abstract

The purpose of this work is to provide computational methods to fingerprint protein

dynamics probed by hydrogen deuterium exchange mass spectroscopy. Hydrogen deu-

terium exchange consists in the spontaneous exchange of amide hydrogens of amino acids

with deuterium contained in solution. The exchange rate (or protection factor) provides

a parameter probing protein dynamics at single residue resolution.

In Chapter 1, hydrogen deuterium exchange is introduced as a high throughput exper-

iment in the biophysical context of protein dynamics and the main statistical issues

regarding data analysis are reported. Chapter 2 describes the theoretical background of

hydrogen deuterium exchange with a focus on the approximations of the model.

The experimental workflow of hydrogen deuterium exchange mass spectrometry is de-

scribed in Chapter 3 and the state of the art of data analysis in the field is discussed.

The core of the work is represented by the ExPfact algorithm implemented in Chapter 4.

Statistical issues are deepened via its application to synthetic data. Chapter 5 focuses on

the application of ExPfact to real world data. A first application validates the algorithm

via a comparison of extracted protection factors with rates calculated by NMR exper-

iments. A second application shows how structural changes between different states of

the same protein can be detected at amino acidic resolution.

Fine-grained information extracted with ExPfact can be coupled with a back exchange

correction to reproduce experimental spectra. This correction is discussed in Chapter

6 together with the development of a structural model connecting the structure of a

protein to its protection factors.

Achievements and further developments are highlighted in Chapter 7.
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Chapter 1

Introduction

Summary of the chapter. Hydrogen deuterium exchange is introduced in the bio-

physical context of protein dynamics and the main statistical issues linked to data anal-

ysis are listed.

1.1 Proteins

1.1.1 Nomenclature

Proteins are an essential component of life (Finkelstein and Ptitsyn (2002); Ingalls

(2013)). They are polymers formed by amino acids linked into a peptide chain. The

portion of the free amino acid that remains after polymerization is called residue. There

exist 20 different amino acids that can be referred with several types of nomenclature:

here they are addressed with their one letter code (Fig. 1.1). Each amino acid has a

different functional group attached that is called side chain. The sequence of residues

forming the protein is referred as its primary structure.

The physical process through which the sequence of amino acids folds into a 3D structure

is known as protein folding. Some motifs can be found in the structure of proteins:

α−helices, β−sheets, loops. These are referred as secondary structure of the protein.

The packing of secondary structures into a globule is called tertiary structure while the

integration of several chains forms the quaternary structure of a protein.
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Figure 1.1: Amino acid nomenclature: three letter code, one letter code and full name
of every amino acid.

The function of a protein derives from its structure. Being maintained by hydrogen

bonds, the 3D configuration of a protein is flexible, a crucial aspect of the functioning of

some proteins since it allows the protein to adopt multiple conformations.

1.1.2 Protein dynamics

According to the Anfinsen’s dogma (Anfinsen (1973)), the native structure of a protein

is completely determined by its primary structure. This means that the native state is

the unique, stable and kinetically accessible minimum of the free energy landscape in

which the protein lives.

The research question of protein folding can be summarised in finding the pathway

through which the protein reaches such a minimum, one of the most challenging and

fascinating topics in biophysics. To give a taste of it, we introduce the Levinthal’s

paradox (Robert et al. (1992)). The number of possible conformations that a protein

can adopt is astronomically large: the age of the universe would not be sufficient for a 100-

residue protein to explore all of them and choose the most appropriate one. Nevertheless,

small proteins fold spontaneously in a time scale ranging from microsecond to millisecond.

Moreover, the energy landscape can be altered by a number of external factors (e.g. a
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change of temperature, pH, the introduction of an external force, the bonding to other

molecules). The alteration of the energy landscape may lead to the identification of a

new minimum, allowing the conformational change of the protein. An important example

is given by allosteric regulation: a protein’s function is activated or inhibited through

the binding to a specific molecule (Fig. 1.2). The choice of a reaction coordinate, i.e.

a unique quantity to describe the state in which a protein lies, is not trivial (Krivov

(2013)). Drawing a free energy landscape is thus a complicated issue.

Figure 1.2: Sketch of the alteration of the free energy landscape in allosteric regulation.
Different conformational minima are associated to the inactive (apo) and the active state.
Figure from Chung-Jung and Ruth (2014).

In the light of this, how can we probe structural and dynamical properties of proteins?

Exploiting the phenomenon of hydrogen deuterium exchange, we aim to fingerprint pro-

tein dynamics at single residue resolution.

1.2 Hydrogen deuterium exchange

Hydrogen exchange is a unique chemical reaction occurring for certain hydrogens in

proteins which are in continuous exchange with hydrogens in solution. This equilibrium

reaction takes place even when hydrogens in solution are replaced with heavier isotopes.

If a protein is diluted in a solution containing D2O, its amide hydrogens spontaneously

exchange with deuterium contained in solution, consequently increasing the weight of
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the protein. This phenomenon is called hydrogen deuterium exchange (HDX) and the

pioneering papers exploiting it date back to the middle of the last century (Liotta and

Mer (1937); Kwart et al. (1954); Linderstrøm-Lang (1955)). Since then, HDX has been

widely used to study protein folding (Clarke and Fersht (1996); Vendruscolo et al. (2003);

Krishna et al. (2004)).

1.2.1 HDX-MS

HDX-MS relies on the difference in mass between the protonated and the deuterated

poly-peptide chains: as exchange occurs, the increase in mass of the protein can be

monitored through mass spectrometry. To obtain more specific information, the reaction

is quenched: the protein is fragmented in small peptides (10-30 residues) by proteolysis

under conditions that drastically slow down the exchange, namely low pH (≈ 2− 3) and

low temperature (≈ 0 − 3oC) (Kan et al. (2011); Lam et al. (2002)). This allows the

measurement of deuterium uptake of peptides of variable length.

Only the exchange of amide hydrogens shall be considered. As a matter of fact, HDX

takes advantage of three different types of hydrogens in proteins: those in amide func-

tional groups, in carbon-hydrogen bonds and in side-chain groups. However, carbon-bond

hydrogens have exchange rates so slow that cannot be detected and side-chain hydro-

gens exchange so fast that they back-exchange rapidly when the reaction is quenched in

H2O-based solution, and the exchange is not registered (Englander et al. (1996)). As

a consequence, the exchange rate provides a measure of protein’s accessibility to the

solvent at single residue resolution. The only exception occurs for prolines where the

exchange cannot occur because they lack of the amide hydrogen when in a peptide bond.

HDX was firstly probed through NMR spectroscopy (Dempsey (2001)), but mass spec-

trometry (MS) has been established as a remarkable alternative (Zhang and Smith

(1993); Englander et al. (2003); Masson et al. (2019)). With HDX-NMR, exchange rates

can be measured for each residue of the protein. On the other hand, HDX-MS leads in

terms of automation of the workflow, costs, dimensions of the protein under analysis and

concentrations needed to perform the experiment (only picomoles of protein).

HDX-MS counts various and relevant applications both in academy and industry: to

study conformations of individual proteins or large complexes (Harrison and Engen
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(2016)), to locate protein sites involved in binding (Chalmers et al. (2011)), to probe

allosteric effects (Englander et al. (2003)), intrinsic disorder (Balasubramaniam and

Komives (2013)) or to map and characterize biotherapeutics (Deng et al. (2016)). The

versatility of the technique together with its high automation and data production rate

makes HDX-MS a remarkable exponent of the family of high throughput experiments.

1.2.2 High throughput experiments

One of the most important milestones of high throughput experimentation can be put

in 2011 (Liu et al. (2019)) when the USA started the funding of the the Materials

Genome Initiative (MGI) (Holdren (2011)), a huge project whose aim was to speed

up the discovery of advanced materials and to shorten the time taken to bring them

to the market. High throughput experimentation is the set of new experiments, new

computational tools and new data needed to promote the efficient development of new

materials under the idea of the MGI project.

After about a decade from launching the project, every field in material sciences has

been influenced (Green et al. (2017)), from electronics and artificial intelligence to envi-

ronment and architecture. The pharmaceutical industry, for instance, is currently facing

such a great revolution that today every company has a dedicated HTE (high through-

put experimentation) group (Mennen et al. (2019)). The high automation involved in

high-throughput experimentation promotes the connection of material sciences to appar-

ently unrelated fields like robotics or statistics (Carson (2020)), giving a new genuinely

interdisciplinary essence to the world of science.

Concerning the academic research in biology and chemistry, the MGI project brought

a wave of enthusiasm with the leading idea of obtaining rapid results from complex

mixtures (Kempa et al. (2019)). One of the most prominent techniques exploiting this

idea is mass spectroscopy (MS): native MS, ion-mobility spectrometry, chemical cross-

linking, LS-MS/MS, HDX-MS and FPOP (Johnson et al. (2019)) are just examples of

novel MS based techniques.
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1.2.3 Other techniques: LiP

Before focusing on HDX-MS for the rest of the manuscript, it is important to stress that

any high throughput experiment is able to fingerprint dynamical or structural properties

of proteins. Therefore, the best way to capture as much information as possible from a

biological system is the coupling of several complementary techniques.

For instance, limited proteolysis (LiP) is a MS-based technique (de Souza and Picotti

(2020)) that enables the unbiased and proteome-wide profiling of protein conformational

changes. Such changes can be the result of different factors (heat shock, protein-protein

interactions, compound binding, ...) and they affect the kinetics of the proteolytic cleav-

age. A protein is diluted in solution together with the unspecific proteinase K that

cleaves it. Smaller peptides are identified in solution at different times and the cleavage

kinetics is monitored via mass spectrometry. The data available are the sequence of a cut

peptide together with a value proportional to the number of times the specific fragment

is found in solution at a certain time.

The underlying phenomenon is different from hydrogen deuterium exchange, but several

similarities arise between HDX-MS and LiP:

1. Both techniques provide insights of protein structure looking at its dynamics, over-

coming the static pictures provided by NMR or X-ray approaches.

2. Both experiments are (generally) performed in triplicates and only average quan-

tities are analysed (see 1.3.2).

3. Both techniques provide information from different overlapping peptides: in the

case of HDX-MS each piece of information contains the time evolution of the deu-

terium uptake of a specific fragment, in LiP the time evolution of the probability

to find a certain fragment.

Because of the nature of high throughput experiments, they provide partial information

that can be integrated with data coming from different sources (e.g. HDX-MS and

LiP). Furthermore, the similarities between datasets of different experiments leads to

challenges in data analysis that can perhaps be solved with similar tools. Development
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in HDX-MS analysis could be thus helpful not only for the experiment itself, but for a

wide range of other applications.

1.3 Statistical issues

Experimental data associated to HDX-MS are coarse-grained data: they encode the

information of large subcomponents of the system, i.e. the uptake of proteolytic frag-

ments measured at different times. The statistical problem here addressed is to extract

fine-grained information (regarding single residues) out of coarse data.

1.3.1 Underdetermination

As described in Chapter 2, the statistical model that we can be associate to experimental

data yi at times ti (with i = 1, ...,m) can be written as

yi =
n∑
j=1

aij
(
1− e−kjti/Pj

)
+ εi (1.1)

where aij and kj are known constants and the goal is to infere the set of parameters {Pj}.
The experimental errors εi are assumed to be independent and identically distributed

variables with mean 0.

If the error is not present (εi = 0,∀i), a unique solution can be calculated if the number of

experimental data is greater than the number of parameters to be estimated: m ≥ n. If

instead m < n, a unique solution does not exist: there exists an affine space of solutions

of dimensions l = n−m.

The presence of experimental error worsen the situation because the problem is no longer

linear. If m > n, the problem is overdetermined and there is no set of {Pj} that exactly

fits the measurements. On the other hand, if m < n, the problem is underdetermined

and there exists a plurality of sets exactly reproducing experimental data.

HDX-MS experimental data are characterised by underdetermination.
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1.3.2 Replicates

HDX-MS measures the uptake of peptides at several time points, computed as an av-

erage value over technical and biological replicates. Technical replicates test the same

sample multiple times: the experiment is repeated under the same conditions. Biological

replicates probe different samples that are expected to have a similar behaviour within

the same experiment. In HDX-MS, the experiment generally consists of three technical

replicates (triplicates). The number of biological replicates depends on the sample: mass

spectra of peptides can be detected with different charge states.

Despite being widely used, this pre-processing is not statistically robust and gives rise to

an open debate. What is the amount of information that we loose by considering only

these averages? Are three technical replicates sufficient to provide a proper statistics?



Chapter 2

Theoretical background

Summary of the chapter. The modeling of hydrogen deuterium exchange is intro-

duced, focusing on the approximations of the model, namely the EX1 and EX2 regimes,

and on the calculation of intrinsic exchange rates.

2.1 Modeling HDX

When a protein is diluted in solvent containing D2O, its amide hydrogens spontaneously

exchange with deuterium contained in solution. Backbone groups of proteins may be

highly protected against this exchange because they are situated within stable elements

of secondary structure (like β-sheets) or because they are buried in the protein. The

exchange of such groups occurs if small-scale local fluctuations (or local folding) enable

the exposure to the solvent. This is why hydrogen deuterium exchange can be modeled

as a two step process (Fersht (2017); Hvidt and Nielsen (1966)).

If the amide hydrogen of an amino acid is not exposed to the solvent, it is in a closed state

C and the exchange cannot occur. On the other hand, if the amide hydrogen is exposed,

the amino acid is in an opened state O and deuteration may occur. If the exchange

occurs, the amino acid is in a deuterated state D. Supposing that back exchange cannot
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occur, i.e. the residue cannot leave the deuterated state, the model reads

C
ko−⇀↽−
kc

O
ki−→ D (2.1)

where the transition between these states occurs with opening rate ko, closing rate kc and

intrinsic exchange rate ki. The intrinsic rate ki depends on the sequence of the protein

analysed, on the pH and temperature of the solution (see 2.1.3).

The model in equation 2.1 is nothing but a Michaelis Menten model and corresponds to

the system of equations

Ċ = −koC + kcO

Ȯ = koC − (kc + ki)O

Ḋ = kiO

(2.2)

that can be written in matrix form as

Ẋ = KX (2.3)

where X = (C,O,D) and

K =

 −ko kc 0

ko −(kc + ki) 0

0 ki 0

 (2.4)

The solution of the equation is

X =
3∑
i=1

αie
λitui (2.5)

where λi are the eigenvalues

λ1 = 0

λ2 = −1
2

(
(kc + ki + ko) +

√
(kc + ki + ko)2 − 4kiko

)
λ3 = −1

2

(
(kc + ki + ko)−

√
(kc + ki + ko)2 − 4kiko

) (2.6)
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and eigenvectors (u1,u2,u3) are

u1 = (0, 0, 1)

u2 = (−−kc+ki−ko−
√

(kc+ki+ko)2−4kiko

2ki
,−kc+ki+ko+

√
(kc+ki+ko)2−4kiko

2ki
, 1)

u3 = (−−kc+ki−ko+
√

(kc+ki+ko)2−4kiko

2ki
,−kc+ki+ko−

√
(kc+ki+ko)2−4kiko

2ki
, 1)

(2.7)

and the constants αi are set by the conditions O+C +D = 1, D(0) = 0 and D(∞) = 1.

It is important to stress that no assumption is made over the initial values of the open

and closed states (O and C).

The exact solution for D(t) is

D(t) = 1 +
ko + ki + kc −

√
(ko + ki + kc)2 − 4kiko − 2kiko/(ki + ko)

2
√

(ko + ki + kc)2 − 4kiko
eλ2t

−
ko + ki + kc +

√
(ko + ki + kc)2 − 4kiko − 2kiko/(ki + ko)

2
√

(ko + ki + kc)2 − 4kiko
eλ3t

(2.8)

2.1.1 EX1 and EX2 limits

Native state kc � ko

Following the Anfinsen’s dogma, the protein in the native state is folded. We can thus

assume that it is more probable for a residue of a native protein to be in the closed state

C rather than in the opened state O: kc � ko. This assumption is known as native state

approximation.

Wagner and Wüthrich (1979) state that under native conditions the solution is a single

exponential D(t) = 1− exp(−kxt) with exchange rate

kx =
kiko

kc + ki + ko
(2.9)

Eq. 2.9 derives from the Taylor expansion for kc � ko. In fact, defining

∆ ≡
√

(kc + ki + ko)2 − 4kiko (2.10)
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and using the Taylor expansion
√

1− x ≈ 1− x/2 (holding when x→ 0), we obtain:

∆ = (kc + ki + ko)
√

1− 4kiko
(kc+ki+ko)2

≈ (kc + ki + ko)(1− 2kiko
(ki+kc+ko)2

)
(2.11)

Inserting the approximation (Eq. 2.11) in the eigenvalue λ3 we get Eq. 2.9.

EX1 regime ki � kc

From the rate in Eq. 2.9, two limits can be identified relating the intrinsic exchange rate

with the closing rate. The EX1 regime is approached for ki � kc. The meaning of this

approximation is that as soon as the residue gets exposed, its amide hydrogen exchanges

with deuterium. In this situation, the exchange rate reduces to

kx = ko (2.12)

This regime is experimentally fingerprinted by a bimodal pattern of isotopic distribution

in mass spectra (Adhikary et al. (2017); Ferraro et al. (2004); Zhou et al. (2017)). Such

a condition can be reached by increasing the temperature, adding subdenaturant con-

centrations of denaturant (like urea) or shifting the pH towards alkaline values (Lapidus

(2017); Malhotra et al. (2017)).

The single exponential approximation and the EX1 regime are incompatible (see 2.1.2).

EX2 regime kc � ki

On the other hand, the EX2 limit occurs when kc � ki: the residue is expected to fluc-

tuate between the opened and closed state more probably than to acquire a deuterium.

In this case, the exchange rate can be written as

kx =
ki
P

(2.13)

where we introduced the protection factor P = kc/ko. In the EX2 regime, the kinetics is

sensitive to pH only through intrinsic rates ki and the corresponding isotopic envelope
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(or mass spectrum) evolves progressively towards the fully deuterated limit.

The protection factor measures the degree of protection against the exchange. Dealing

with native conditions ki � kc, from the definition of P it follows that

P ≡ kc
ko
� 1 (2.14)

The parameter can thus be interpreted as a measure of the nativeness of the residue.

The EX2 regime is generally approached in experiments performed at room temperature

and pH>3 and thus the deuterium uptake for the single residue can be written as

D(t) = 1− e−
ki
P
t (2.15)

As a matter of fact, HDX-MS measures the change in mass due to the deuteration of

proteolytic fragments of the protein. The deuterium uptake Dj for a peptide j starting

at residue mj of the sequence of the protein and nj residue long can be written at time

tk as the sum of the uptakes of its residues:

Dj(tk, {Pi}) =
1

nj

mj+nj−1∑
i=mj+1

1− e−
ki
Pi
tk (2.16)

where Pi is the protection factor of residue i and ki is the intrinsic exchange rate of

residue i. The sum starts from the second residue because the first one forms the free

N-terminus of the peptide (Walters et al. (2012)).

2.1.2 About the single exponential approximation

Let us write the general solution (Eq. 2.8) as

D(t) = 1 + αeλ2t + βeλ3t (2.17)

with
α = ko+ki+kc−∆−2kiko/(ki+ko)

2∆

β = ko+ki+kc+∆−2kiko/(ki+ko)
2∆

(2.18)
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where ∆ is defined in Eq. 2.10.

The single exponential approximation (Eq. 2.16) holds only if both native and EX2

approximations are valid. In fact, it holds if in Eq. 2.17 α→ 0 and β → 1 simultaneously.

Using the native approximation (kc � ko) and thus writing ∆ as stated in Eq. 2.11, the

numerator of α reduces to

num(α) = ko + ki + kc −∆− 2kiko
ki + ko

≈ 2kiko
ki + kc + ko

− 2kiko
ki + ko

(2.19)

and we need to use both native and EX2 conditions (kc � ki) in order to get α→ 0. In

fact, we have that

num(α) ≈ 2kiko
ki + kc + ko

− 2kiko
ki + ko

=
2kiko

ki

(
1 + ko

ki
+ kc

ki)

) − 2kiko

ki

(
1 + ko

ki

) → 2ko − 2ko = 0

(2.20)

Analogously, it can be demonstrated that β → 1 only if both native and EX2 limits are

satisfied.

Furthermore, the non validity of the single exponential assumption under the EX1 regime

can explain the bimodality in the experimental mass spectra under such conditions. To

proof this statement, we shall remember that no assumption has been made on the initial

population of closed and opened states C(0) and O(0): these values are fixed once the

rates ko, kc and kint are set. In particular, the solution for the opened population can be

written from Eq. 2.5 as:

O(t, ki, kc, ko) = α2(ki, kc, ko)e
λ2tuy2 + α3(ki, kc, ko)e

λ3tuy3 (2.21)

where uy2 and uy3 are the second component of the eigenvectors in Eq. 2.7 and we defined

α2(ki, kc, ko) =
ko+ki+kc−∆− 2kiko

ki+ko

2∆

α3(ki, kc, ko) = −
ko+ki+kc+∆− 2kiko

ki+ko

2∆

(2.22)



CHAPTER 2. THEORETICAL BACKGROUND 19

∆ is defined in Eq. 2.11. As a consequence, the initial population O(t=0) reads:

O(t = 0, ki, kc, ko) = α2(ki, kc, ko)u
y
2 + α3(ki, kc, ko)u

y
3 (2.23)

If native conditions are fixed (e.g. taking ko/kc = 10−3), the initial population in the

opened state depends on EX1 and EX2 conditions as shown in Fig. 2.1: a pure EX1

system is characterised by O(0)=1 while a pure EX2 system by O(0)=0.

Figure 2.1: Initial population in the opened state O(0) as a function of kc/ki evaluated
from Eq. 2.23 at fixed native conditions ko/kc = 10−3. Low values of kc/ki represent the
EX2 limit, high values the EX1 limit.

As a consequence, a pure EX1 process can be modeled with Eq. 2.1 using O(0)=1 while

a pure EX2 process has O(0)=0:

Pure EX1 CEX1 −⇀↽− OEX1 → DEX1 OEX1(0) = 1

Pure EX2 CEX2 −⇀↽− OEX2 → DEX2 OEX2(0) = 0
(2.24)

A mixed system can be written with Eq. 2.1 using initial populations C(0) = C0 and

O(0) = O0 = 1− C0:

Mixed Cmix −⇀↽− Omix → Dmix Cmix(0) = C0 (2.25)
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The uptake of the mixed system can be equivalently written as a weighted combination

of two pure systems:

Dmix(t) = C0DEX2(t) + (1− C0)DEX1(t) (2.26)

Such a decomposition can be used to interpret the bimodal pattern of the isotopic enve-

lope arising under mixed conditions: each component in Eq. 2.26 is responsible for the

mode of the spectrum associated to pure EX1 and EX2 conditions.

2.1.3 Intrinsic exchange rates

The intrinsic exchange rate ki is the exchange rate of an amide hydrogen in fully exposed

protein. The dependence of such rates has been widely studied and the values of ki can

be calculated once the sequence of the protein is known (Molday et al. (1972)) together

with the temperature and pH of the solution (Bai et al. (1993)). Such relations have

been extrapolated from experimental studies probing homo-dimers, homo-oligomers and

homo-polypeptides for all the 20 amino acids.

Intrinsic exchange rates have a high dependence on the pH of the solution since exchange

is mainly catalysed by water ions. Experimental studies performed by Bai et al. (1993)

proof that this relation is a V-shaped curve which reads

ki(pD) = kA10−pD + kB10pD−pKD + kW (2.27)

where KD is the dissociation constant of D2O, kA, kB and kW are the second order rate

constants for catalysis by D3O+,DO− and D2O respectively. Glasoe and Long (1960)

and more recently Krezel and Bal (2004) suggest that pD values can be calculated from

pH calibrated electrodes by the application of an empirical correction

pD = pH + 0.4 (2.28)

which was determined by comparing the pH when the same amount of acid or base was

dissolved in H2O and D2O.

The temperature dependence of intrinsic exchange rates was originally estimated for poly
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alanine peptide at temperature 293 K and was used as a reference. The behaviour of ki

with respect to temperature follows the Arrhenius law

ki(T ) = ki(T0)exp
{
− Ea

i

R

( 1

T
− 1

T0

)}
(2.29)

where Ea
i is the activation energy of the catalysis by species, ki(T0) is the constant rate

at T0 =293 K, R is the universal gas constant and T is the temperature in K.

The intrinsic exchange rate also depends on the neighbouring side chains. Taking into

account the effect of two neighbouring sides, it has been demonstrated (Molday et al.

(1972)) that the effects of the neighbours can be both positive or negative and are

additive, meaning that the right and left side chains affect exchange independently.

Again, using poly alanine as reference, the dependence on the neighbouring side chains

on the intrinsic rate can be written as

ki(L,R) = ki(Alanine)φi(L)ρi(R) (2.30)

where φi(L) and ρi(R) are correction factors for the left and right sides.

Intrinsic exchange rates have been calculated both for in-exchange (protonated protein

in deuterated solution) and back-exchange (deuterated protein in protonated solution).

Back-exchange is neglected in Eq. 2.1 supposing that in a deuterated buffer under phys-

iological conditions in-exchange is much more probable than back exchange. However,

back exchange cannot be neglected when the solution is quenched in H2O (Walters et al.

(2012)).



Chapter 3

Experimental workflow and data

Summary of the chapter Experimental data that can be analysed through HDX-

MS are discussed, the experimental workflow of the technique is analysed and isotopic

envelopes are introduced.

3.1 Experimental data

As described in Chapter 2, the deuterium uptake at time tk of a nj-residue long peptide

starting at residue mj can be written as in Eq. 2.16:

Dj(tk, {Pi}) =
1

nj

mj+nj−1∑
i=mj+1

1− e−
ki
Pi
tk

As a consequence, it should be possible to determine protection factor Pi of each residue

of the peptide. However, such an estimation is not trivial: the length of most peptides

(in any dataset) exceeds the number of experimental points available. Thus, the number

of parameters to be estimated (protection factors) is greater than the number of exper-

imental data: the problem is statistically underdetermined (see 1.3.1). Moreover, even

if enough time points were available, it would not be possible to localize the estimated

exchange rates within the peptide: the protection factor of a residue could be arbitrarily

switched with any other rate.



CHAPTER 3. EXPERIMENTAL WORKFLOW AND DATA 23

3.1.1 HDX-MS workflow

The HDX-MS experimental workflow (Masson et al. (2019)) is summarised in Fig 3.1.

Figure 3.1: HDX-MS workflow (Masson et al. (2019)). Proteins are diluted in a deuter-
ated buffer for several time points, allowing the incorporation of deuterium into the
protein backbone. The reaction is then quenched at low pH and low temperature. Pro-
teins are digested by a protease. The proteolytic peptides are desalted and separated
using a UHPLC system, ionized by electrospray, inserted in a mass spectrometer and
subjected to mass analysis. During spectral analysis, the isotopic envelopes of peptides
are visualized and the deuterium uptake is evaluated as the intensity-weighted average
mass (arrows) of the peptide. Deuterium uptake is then graphically depicted as a func-
tion of time for specific regions of the protein. Differences in deuterium incorporation
can be mapped on a 3D representation of the protein.

Proteins are incubated in a deuterated buffer allowing the exchange between amide

hydrogen of the protein and deuterium contained in solution. The concentration of D2O

must be precisely maintained during the labeling reaction: HDX-MS experiments can

be performed at any concentration, but to speed up the exchange high concentrations

(80− 90%) are generally used.

To obtain more specific information, the exchange reaction suffers a switch to acidic pH

and a temperature drop. Optionally, denaturants can be included to enhance protein
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unfolding. These conditions, namely quenching conditions, drastically slow down the

exchange, almost stopping it. Proteins are then digested by an acid-functional protease

like pepsin.

The proteolytic fragments are desalted and separated using UHPLC: ultra high perfor-

mance liquid chromatography. Liquid chromatography (Ramos (2013)) is a chemical

technique used to separate, identify and quantify each component in a mixture. It relies

on pumps to press a liquid solvent containing the mixture through a column filled with an

adsorbing material (generally silica or polymers). Each component interacts differently

with the material, causing different flow rates and leading to the separation of the com-

ponents while flowing out of the column. With respect to traditional chromatography,

performed at low pressures, high-performance liquid chromatography (HPLC) relies on

high pressures (50-350 bar) to speed up the process. In UHPLC pressure is increased at

values bigger than 1000 bar.

Finally, the proteolytic fragments are eluted into a mass spectrometer, where they are

ionized by electrospray and subjected to mass analysis to determine the increase in mass

due to hydrogen deuterium exchange. Electrospray ionization - or ESI (Gross (2017))

- is a technique used in mass spectrometry to ionize molecules and thus to let them

be detected by the spectrometer. The application of high voltages to a volatile solvent

containing low concentration of ionic analyte (10−6 − 10−4 M) leads to the transfer of

ions from condensed to gas phase. Such phase change starts at atmospheric pressures

and increases into the high vacuum of the mass analyser. ESI brings to the formation

of multiply charged ions, shifting even heavier peptides into a m/z range accessible to

most spectrometers.

3.1.2 Isotopic envelopes

During spectral analysis, the isotopic-related mass spectra of the peptides, also known as

isotopic envelopes, are visualized. Isotopic envelopes take into consideration the natural

occurrence of isotopic variants which increases the mass of the monoisotopic species of

the fully protonated peptide.

If the sequence of a peptide (and thus its elemental composition) is known, the monoiso-

topic mass of the peptide can be calculated. The fully protonated isotopic envelope of a
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peptide can be computed by the convolution of the monoisotopic mass with the natural

distribution of isotopes of oxygen, nitrogen and carbon. Such a calculation is performed

by many softwares: we used the online freely available MS-Isotope1.

Because of the importance of isotopic envelopes, it is worth performing an example

(adapted by Skinner et al. (2019)). Let us take into consideration a fictitious sequence

of amino acids: IDSQVLCGAVKW. Since we know the elemental composition of the

peptide, we are able to assert that its monoisotopic mass is 1318.68 Da. Using the MS-

Isotope software previously mentioned, we can calculate the fully protonated isotopic

envelope of the peptide, shown in Fig 3.2.

Figure 3.2: Fully protonated isotopic envelope of a peptide with sequence IDSQVL-
CGAVKW calculated by MS-Isotope. Monoisotopic mass is shown by the left peak (gray
dashed line). Other peaks are calculated taking into consideration natural occurrence of
isotopic variants. The centroid of the envelope is also shown (red dashed line).

The fully deuterated isotopic envelope, i.e. the spectrum detected when all hydrogens

have exchanged into deuterium, is the fully protonated envelope shifted towards higher

values of m/z by N-1 units, N being the length of the peptide under analysis (in the

example in Fig 3.2, the envelope would be shifted of 11 units).

At intermediate times the envelope may assume different shapes: the intensity of each

peak changes with a probability depending on the exchange rates of each residue. For

a peptide formed by n exchangeable amides, the probability that k have exchanged

1prospector.ucsf.edu/prospector
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(0 ≤ k ≤ n) at time t can be written as

Π(k, t) =

|A|=k∑
A∈{1,...,n}

∏
i∈A

Di(t)
∏

j∈{1,...,n}/A

(1−Dj(t)) (3.1)

Di(t) being the deuterium uptake (Eq. 2.16). Referring to the fully protonated isotopic

envelope as πi, the isotopic envelope of the peptide at time t would be given by πiΠ(k, t).

The fully deuterated isotopic envelope can also be obtained by the application of the

time evolution in Eq. 3.1 at infinite time.

Eq. 3.1 introduces an important consequence of the knowledge of protection factors at

single residue resolution. In fact, if we were able to evaluate the protection factor of each

residue, we could evaluate the deuterium uptake of the peptide at every time using Eq.

2.16 and the isotopic envelope could be predicted at any time.

3.1.3 From envelopes to deuterium uptake

Deuterium incorporation is measured as the centroid of the envelope, i.e. the intensity-

weighted mass average. Actually, the uptake associated to an envelope with centroid m

at a specific time is normalized using the following formula:

D =
m−m0%

m100% −m0%

(3.2)

where m0% is the centroid of the experimental fully protonated peptide and m100% is the

centroid of the maximally labeled peptide. As a consequence of Eq. 3.2, 0 ≤ D ≤ 1.

Because of back exchange occurring under quenching conditions, the maximally labeled

envelope m100% does not coincide with the theoretical fully deuterated envelope. In

particular, the former lies at lower values of m/z with respect to the latter (see 6.1).

Repeated measurements of deuterium incorporation are needed in order to ensure the

replicability of the experiment and to estimate the precision of the measurements. Ac-

cording to the experimental recommendations provided by Masson et al. (2019), there

should be at least three technical replicates of the experiment under the same labeling

condition at each time point. The uptake of a peptide is thus given by the mean value of
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Eq. 3.2 averaged over the technical and biological replicates with the associated standard

deviation. Examples of deuterium uptake curves are shown in Fig 3.3.

Figure 3.3: Deuterium uptake curves. Experimental deuterium uptake is shown as a
function of times for two peptides. Technical replicates: 3. Time points: 15. Data from
Moulick et al. (2015).

If the structure of the protein is available, differences in deuterium incorporation due to

different states can be mapped on a three-dimensional representation of the protein to

facilitate structural interpretation (see Fig. 3.1).

3.2 Estimating protection factors

The information contained in the deuterium uptake of the whole protein prevents us

from reaching protection factors at single residue resolution. The time points required

to correctly fit Eq. 2.16 for a small protein (50-100 residues) would be acquired in such

a long time that the idea of high throughput experimentation would be completely lost.

The problem is underdetermined (see 1.3.1). Moreover, even if enough time points were

acquired and a thus unique set of protection factors were estimated, we would not be

able to associate a value Pi to a specific residue i. We address the latter issue as the

problem of switchable residues.

Considering the information encoded in proteolytic peptides does not completely solve

these issues. In fact, most datasets do not exceed 15 time points and fragments are
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generally 10-30 residues long. As a consequence, underdetermination is not solved.

However, the problem of switchable residues can be faced if the proteolytic fragments

show an overlapping pattern (see the peptide map in Fig 3.4). In an ideal case, one

peptide differs from the adjacent ones of one only residue. From the subtraction of the

information encoded in adjacent peptides, it is possible to extract the uptake of the

single residue and protection factors can be thus extracted at single residue resolution.

However, such situation can be reached experimentally only for few isolated amino acids.

Figure 3.4: Example of peptide map for a dataset by Harris et al. (2019). Each segment
encodes a deuterium uptake curve like the ones shown in Fig 3.3; the length of the
segment corresponds to the length of the peptide.

According to Masson et al. (2019), the quality of a peptide map should be evaluated

in terms of coverage and redundancy. Coverage is calculated as the number of residues

analysed divided by the total amount of amides forming a protein and expressed as

percentage. Redundancy is evaluated as the number of identified peptides divided by

total number of amides.

3.3 State of the art

HDX-MS analysis is often limited to qualitative results (Lisal et al. (2005); Ĺısal et al.

(2006); Kan et al. (2011)): the apparent average rate of exchange of different peptides
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is mapped on the structure of the protein and the kinetics of the same fragment under

different conditions is compared. One example of such maps is shown in Fig 3.1. In

order to estimate the rate, single exponential or single stretched exponential curves are

used, returning a value for each peptide that has no physical meaning.

3.3.1 HDSite: an envelope-based approach

Directly using the information contained in the isotopic envelopes, the Englander lab-

oratory pioneered a different approach (Kan et al. (2013)). More recently, a similar

method has been implemented to provide single residue resolution exchange rates of

equine cytochrome c (Hamuro (2017)).

The algorithm developed by the Englander Lab (Kan et al. (2013)), called HDSite, relies

on fitting experimental envelopes in order to determine the uptake level of each amino

acid (D-occupancy). Its workflow is summarised in Fig 3.5.

Figure 3.5: Flow of the HDSite method, from Kan et al. (2013)

After setting an initial set of D-occupancies, the isotopic envelopes are evaluated using
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a standard binomial that is further convoluted with the natural abundance distribution

of elements (Fig 3.6). The predicted envelopes are compared with the experimental ones

and an error is calculated through a weighted sum of squared deviations. D-occupancy

values are then adjusted and the cycle is repeated until the error function decreases no

more or a maximum number of iterations is reached.

Figure 3.6: Simulated 9-residue peptide spectra with different D-occupancies. Insets
specify the D-occupancies used. A) All residue are 50% deuterated; B) Four residues are
protonated, the others are deuterated; C) Four residues are 10% deuterated, the others
are 90% deuterated. In the HDSite workflow, these simulated spectra are compared
with experimental ones and D-occupancies are adjusted in order to minimize an error
function. Figure from Kan et al. (2013).

Once the deuterium uptake is known at a single residue resolution at different times, the

protection factor of the specific amino acid can be evaluated using the single exponential

in Eq. 2.15.

HDSite suffers the problem of switchable residues. In fact, the deuterium uptake curve

of each residue cannot be uniquely determined: looking at Fig 3.6 B we could obtain the

same spectrum considering any 4 deuterated residues (instead of considering the last 4,

we could consider the even ones or the first 4 amino acids). As a consequence, protection

factors are uniquely extracted for a small minority of amino acids. Only if an ideal

dataset were available, the exchange rate of every amino acid could be evaluated exactly.

Adjacent switchable residues are treated as a whole: estimated D-occupancy uptake of

each switchable residue is considered and fitted with a single exponential. The evaluated

protection factors are averaged and associated to every switchable residue composing the

fragment.
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HDSite also takes into consideration a back exchange correction on a per amino acid

basis, exploiting the difference in deuteration between the experimental and theoretical

envelopes (Fig 3.7) due to back exchange occurring under quenching conditions.

Figure 3.7: Experimental (red) and theoretical (black) fully deuterated isotopic envelopes
are compared for a peptide. Data from Moulick et al. (2015).

The difference in terms of centroids of the experimental and theoretical envelopes is

evaluated and fitted using a non linear least squares method to the function

Back(t, {kb,i}) =
1

N − 1

N∑
i=2

1− pe−kb,it (3.3)

where an effective back exchange time τ is evaluated from the knowledge of the intrinsic

back exchange rates kb,i (tabulated by Bai et al. (1993)) and the percentage of deuterium

in solution p, N being the length of the peptide.

Eq. 3.3 assumes that at a single residue level back exchange is not modeled as in-exchange

(Eq. 2.1) but as a two state irreversible model,

D
kb−→ P (3.4)

D and P being the deuterated and protonated states respectively. The solution of such
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a model is straightforwardly a single exponential:

Deuterated D(t) = D0e
−kbt

Back exchanged P (t) = 1−D(t) = 1−D0e
−kbt

(3.5)

D0 being the percentage of deuterium in solution (p in Eq. 3.3). This hypothesis suggests

that protection factors play no role in back exchange and that in exchange is completely

stopped under quench conditions.

The correction must be estimated for every fragment since different peptides provide

different effective back exchange times. In fact, not only does back exchange depend on

experimental conditions like pH, temperature and percentage of deuterium, but also on

the ionic strength of the peptide involved (Walters et al. (2012)). Finally, the effective

back exchange time τ is used to calculate back exchange at single residue resolution using

Eq. 3.5.

Despite providing a nice correlation between exchange rates extracted with respect to

NMR measurements, the method developed by the Englander laboratory provides single

residue resolved protection factors only for a small subset of amino acids. Moreover,

most datasets available are in the form of centroids value and show peptide maps far

from being optimal, limiting the usage of such method to privileged cases.



Chapter 4

ExPfact algorithm

Summary of the chapter. The ExPfact algorithm aiming to reach single residue

resolution is described. The application of the algorithm to synthetic data reveals insights

of the advantages and drawbacks of the algorithm. Moreover, ExPfact is compared with

HDSite through the generation of a dataset with an ideal overlapping of fragments.

4.1 Workflow

The ExPfact (EXtract Protection FACTors) algorithm was firstly implemented by Skin-

ner et al. (2019) in order to reach single residue resolution of protection factors extracted

from HDX-MS data. It relies on the information encoded in the centroids of isotopic

envelopes and fits experimental data with Eq. 2.16 in order to get as a result the set of

{Pi} describing a peptide:

Dj(tk, {Pi}) =
1

nj

mj+nj−1∑
i=mj+1

1− e−
ki
Pi
tk

As discussed in the previous chapters, the problem suffers underdetermination: the num-

ber of time points available is lower than the number of parameters to be estimated.

Consequently, a unique solution does not exist.

The idea of the ExPfact algorithm is that despite the degeneracy of sets of {Pi} in agree-
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ment with experimental data, a finite number of clusters of solutions may be identified,

thus reducing the degeneracy of the problem. The workflow of the ExPfact algorithm is

summarized in Fig 4.1 and can be divided into three components: random search, least

squares minimization and clustering.

Figure 4.1: ExPfact workflow. Random Search: N random sets of protection factors are
randomly initialized and the one with best agreement with experimental data is selected.
Least Squares Minimization: the previously selected set is used as initial guess for a least
squares minimization. Clustering: the process is repeated M times and the results are
clustered together using a model-based clustering algorithm.

Random Search

The first part of the algorithm consists in the random search of a set of protection factors.

In particular, N sets of protection factors are randomly initialised with the constraint

0 ≤ ln(Pi) ≤ 20

This boundaries mean that the exchange rate of an amide can be as fast as in a completely

unstructured peptide (if lnP = 0, the exchange rate kx is equal to the intrinsic exchange

rate ki) or up to 5 × 108 times slower (lnP = 20). These values can also be considered

as empirical limits that can be deduced by HDX-NMR studies.
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For each of these random sets, the value of the cost function is evaluated:

C({Pi}) =
∑
j

∑
k

wjk

[
Dpred
j (tk, {Pi})−Dexp

j (tk, {Pi})
]2

(4.1)

where the sum is performed at each time point available tk and for each peptide j. The

predicted deuterium uptake Dpred
j is evaluated using Eq. 2.16 and an appropriate choice

for the weights wjk is the inverse of the standard deviation of experimental measurements.

Least Squares Minimization

The set of protection factors with the lowest cost function is selected from the ran-

dom search and used as initial guess for a least squares minimization which adjusts the

coefficients {Pi} in order to reduce the value of the cost function itself (Eq. 4.1).

Since a correlation between the protection factors and the structure of a protein has been

found (Best and Vendruscolo (2006)), ExPfact enables the introduction of a penalization

term in order to avoid abrupt changes of protection factors of adjacent residues:

Pen(λ, {Pi}) = λ
n−1∑
i=2

(Pi−1 − 2Pi + Pi+1)2 (4.2)

The value λ has to be properly set depending on the dataset (e.g. using cross validation).

If not specified, the penalization term is neglected (λ = 0). The total cost function to

be minimised reads

Cost({Pi}) = C({Pi}) + Pen(λ, {Pi}) (4.3)

Since the measurements Dexp
j suffer experimental uncertainty, the final value of the cost

function is not 0 and even if synthetic data without uncertainty are considered, the

number of solutions to which the minimization converges is generally not unique because

of the underdetermination of the problem. The existence of a unique solution strongly

depends on the set of experimental data.
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Clustering

Since the solution of the least squares minimization is not unique, repeating the procedure

with different initial guesses will return different sets of protection factors. The random

search and the consequent minimization is thus repeated a number of times and a model-

based clustering approach (Fraley and Raftery (2002)) is used to obtain sets of protection

factors for each region of the whole chain that is covered by overlapping peptides. If the

random search is applied M times (M ≈ 102 − 104), the goal of the clustering algorithm

is to reduce the degeneracy of the solutions from M to a smaller number, ideally finding

one only cluster of solutions for each region covered by overlapping peptides.

The convergence of the algorithm is reached when the addition of solutions of the least

squares minimization does not influence the clustering analysis, i.e. the number of iden-

tified clusters does not change.

The implemented clustering algorithm gathers sets of protection factors of areas covered

by overlapping peptides. If the random search and minimization steps have been applied

M times, M values of protection factors are associated to each residue and a histogram

can be built. Considering the N residues forming a region of the protein composed by

overlapping peptides, the multivariate distribution of the protection factors of those N

amino acids can be acquired. The model based clustering algorithm (Scrucca et al.

(2016)) fits such distribution with a mixture of multivariate gaussians and the fit is

optimized using the EM algorithm (Bishop (2006)).

A mixture of gaussians is a linear superimposition of gaussians:

p(x) =
K∑
k=1

πkN (x | µk,Σk) (4.4)

where µk is the mean of the k-th gaussian and Σk the covariance matrix associated to

the k-th component. The weights πk associated to the components are called mixing

coefficients and are normalized to 1, i.e.
∑

k πk = 1.

The log-likelihood function of the mixture of gaussians in Eq. 4.4 for a set of N obser-
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vations X reads

ln p(X | π,µ,Σ) =
N∑
n=1

ln

[
K∑
k=1

πkN (xn | µk,Σk)

]
(4.5)

Maximizing the derivative with respect to µ,Σ and π and defining

γ(znk) =
πkN (xn | µk,Σk)∑K
j=1N (xn | µj,Σj)

(4.6)

an estimate of the means, covariances and mixing coefficients can be obtained:

µk = 1
Nk

∑N
n=1 γ(znk)xn

Σk = 1
Nk

∑N
n=1 γ(znk)(xn − µk)(xn − µk)T

πk = Nk

N

(4.7)

where Nk =
∑N

i=1 γ(znk) can be interpreted as the effective number of points assigned to

cluster k.

The solution of the EM algorithm is found by the iterative application of two steps.

In the expectation step (or E step), the posterior probabilities (Eq. 4.6) are computed

starting from randomly initialised values of means, covariances and mixing coefficients.

Consequently, in the maximization step (or M step), the posterior probabilities are used

to estimate µ,Σ and π. The procedure is repeated until the change of the log-likelihood

(Eq. 4.5) falls below a certain threshold.

ExPfact applies the EM algorithm with mixtures of gaussians formed by K = 1 − 99

components. The optimal number of components is chosen using the BIC.

4.2 Application to synthetic data

The ExPfact algorithm is applied to synthetic data with no error associated to generated

experimental measurements. First, a toy model is used to reproduce the results obtained
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by Skinner et al. (2019). Furthermore, ExPfact is applied to a dataset with an ideal

overlapping and the outcomes are compared with HDSite (Kan et al. (2013)).

4.2.1 Toy model

Dataset

A synthetic dataset adapted from the original article by Skinner et al. (2019) is created.

The purpose is to study a fictitious 15-residue peptide with sequence IDSQVLCGAVK-

WLIL and to give insights on how the algorithm faces underdetermination and the prob-

lem of switchable residues. Reference protection factors and a peptide map are assigned

(Fig 4.2). The dataset has 100% coverage and redundancy 0.47.

Figure 4.2: Synthetic data.Left: reference protection factors of the fictitious peptide.
Centre: peptide map of the 15-residue peptide. Right: data generated from protec-
tion factors and assignments calculated at times 0.00083, 0.83330 and 277.78 hours at
temperature 300 K and pH 7. Different colors represent different fragments.

Using the reference protection factor and the assignments in Fig 4.2 we can evaluate the

deuterium uptake at any time point for each fragment via Eq. 2.16. To calculate the

intrinsic exchange rates ki, we set temperature T = 300 K and pH = 7. We generate a

dataset with 3 time points at times 0.00083, 0.83330 and 277.78 hr and we associate no

experimental error to the synthetic data (Fig. 4.2, right).

By the application of the ExPfact algorithm, we aim to reproduce the exact pattern of

protection factors shown in Fig. 4.2 starting from the generated synthetic data.
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Random Search

10000 random sets of protection factors are initialised with the constraint 0 ≤ lnPi ≤
20. For each set, the cost function in Eq. 4.1 is evaluated and the set with the best

agreement with experimental data is selected and used as initial guess for a least squares

minimization. Performing one run of the algorithm, an optimized pattern of protection

factors is obtained. An example is shown in Fig. 4.3. The solutions of three different

runs are compared in Fig. 4.4.

Figure 4.3: Results of the random search. On the left, one optimized solution (red) is
compared with the reference pattern of protection factors (black). On the right, the
prediction (red line) for peptide 1 is compared with experimental data (black dots).

Figure 4.4: Degeneracy of ExPfact. Three extracted sets of protection factors with same
agreement with experimental data are compared with the reference pattern.
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As can be noticed from Fig. 4.3 and Fig. 4.4, the estimated pattern of protection factors

differs from the reference set. On the other hand, the predictions of deuterium uptake

differ from experimental data only at the order of machine precision. As a consequence,

different patterns of protection factors have the same agreement with experimental data.

Because of the degeneracy of solutions, a proper statistic needs to be accumulated to

return robust outcomes. The random search is repeated 100 times, thus finding 100

different patterns of protection factors with similar agreement with protection factors.

The results are summarised in Fig. 4.5.

Figure 4.5: Random search applied to synthetic data. On the left, the protection factors
find for each residue by each run (red crosses) are compared with the reference pattern.
On the right, mean values and relative standard deviations (red bars).

The mean values of protection factors found by the random search (Fig. 4.5) show the

average value among the 100 runs of the algorithm. If associated with one standard

deviation, they represent the 68% confidence interval, including the reference protection

factor for most residues. The predictions of deuterium uptake calculated from the mean

values are not necessarily as good as the ones calculated by estimates of single runs.

This is due to the fact that several residues show a multimodal behaviour that can be

visualized with histograms of the estimated protection factors for different residues (Fig.

4.6). The multimodality shown in Fig. 4.6 justifies the usage of a mixture of gaussians

as a fitting model for the clustering algorithm.
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Figure 4.6: Distribution of the protection factors for residues 4, 5 and 11.

Clustering

The histograms in Fig. 4.6 are the marginal distributions of the multivariate probability

distribution that is given as input to the clustering algorithm. The model-based approach

is implemented in the R library mclust (Scrucca et al. (2016)).

Running 1000 times the algorithm and selecting the top 500 solutions (i.e. the half of

solution with lowest cost function), the clustering algorithm identifies 4 components,

drastically reducing the degeneracy of the sets of protection factors. The number of

components is chosen using the BIC (Fig. 4.7).

Figure 4.7: Clustering algorithm for synthetic data. On the left, the 4 patterns of
protection factors (different colors) identified by the clustering algorithm are compared
with the reference set (black). On the right, BIC values associated to 1-6 components.

The clusters identified in Fig. 4.7 unveil the problems of underdetermination and switch-

able residues. Underdetermination is reduced since the degeneracy of solutions is reduced



CHAPTER 4. EXPFACT ALGORITHM 42

from 500 solutions down to 4 components. However, even if synthetic data with no ex-

perimental uncertainty have been used, it is not possible to completely solve the issue.

Concerning the problem of switchable residues, some adjacent residues (2-3, 4-5, 8-9)

show two different and coupled patterns of protection factor. For instance, the highest

protection factor of residue 4 is coupled with the lowest one of residue 5. However, it is

interesting to notice that some residues (6, 7, 10, 12, 13, 14) are provided with one only

protection factors (the 4 components coincide) compatible with the reference pattern.

4.2.2 The ideal dataset

The development of a software must be accompanied by the comparison with existing

methods aiming to reach the same goal. As described in section 3.3.1, the state of the

art of HDX-MS data analysis is represented by HDSite (Kan et al. (2013)). The latter

is able to reach single residue resolution if all the fragments of the dataset differ of one

only residue. A second synthetic dataset is built to proof that ExPfact is also able to

reach such resolution if an ideal overlapping of peptides is available.

The peptide used to generate synthetic data has the same sequence used in section 4.2.1:

the reference pattern of protection factor is shown together with the peptide map and

the generated synthetic data in Fig. 4.8. Three experimental data are generated at time

points 0.00083, 0.83330 and 277.78 hours at temperature 300 K and pH 7. The dataset

has 100% coverage and redundancy 0.6.

Figure 4.8: Ideal dataset. Synthetic data are generated from a reference pattern of pro-
tection factors (left) for a set of fragments with ideal overlapping (centre). Experimental
points are generated at three time points at temperature 300 K and pH 7 (right).

The ExPfact algorithm is applied to the ideal dataset shown in Fig. 4.8. The random
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search is repeated 1000 times and the top 500 solutions are used as input for the clustering

algorithm which identifies one only component which is compatible with the reference

pattern (Fig. 4.9).

Figure 4.9: ExPfact for the ideal dataset. On the left, the random search is applied
1000 times to the ideal dataset in Fig. 4.8 and a comparison with the reference pattern
of protection factors is shown. On the right, the cluster identified by ExPfact and the
reference pattern are compared.

The results in Fig. 4.9 show that ExPfact is able to estimate protection factors at single

residue resolution if a dataset with ideal overlapping is available.

This unveils the interconnectedness between underdetermination and the problem of

switchable residues. The ideal overlapping in the dataset in Fig. 4.8 erases the problem

of switchable residues and this is sufficient for ExPfact to reproduce the reference pattern

of protection factor.

4.3 Software availability

ExPfact is available at the following github repository:

https://github.com/skinnersp/exPfact

Scripts are accompanied by test data and text files describing how to use the algorithm

to replicate the results in the original paper by Skinner et al. (2019). The software is

mainly written in Python but includes scripts implemented in R, Bash and Fortran.



Chapter 5

Application to real world data

Summary of the chapter. The ExPfact algorithm is applied to real data. The

application to mouse prion protein validates the algorithm through a comparison with

protection factors of the same system extracted from HDX-NMR measurements under

the same experimental conditions. Moreover, the application to glycogen phosphorylase

shows the potentiality of ExPfact when dealing with a high-quality dataset.

5.1 Application to moPrP

As a first application of the ExPfact algorithm to real world data, a dataset studying

the mouse prion protein is analysed (Moulick et al. (2015)). Since experimental data are

available for the same protein under the same conditions from both HDX-MS and HDX-

NMR techniques, a comparison between protection factors extracted by the algorithm

and exchange rates estimated by NMR is performed to validate the algorithm.

5.1.1 Prion proteins

The importance of prion proteins is here summarized following Apriola (2001). Back in

1970s, Great Britain altered the process through which animal carcasses are rendered

to provide meat and bone meal supplements to sheep, cattle and other livestock. As a

consequence, after approximately one decade, a new pathology was found in British cattle
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population and it was classified in the group of transmissible spongiform encephalopaty

(TSE) and thus named BSE (bovine spongiform encephalopaty). In 1996, a previous

unknown form of TSE was detected in human population: the Creutzfeldt-Jacob disease

(CJD). The correlation between CJD and BSE has been supported by several studies

and more than 90 variants have been identified. CJD represents the emergence of TSE

as a potentially widespread health treat to human population: this is the reason why it

is crucial to determine mechanisms underlying TSE pathologies.

TSE diseases are characterised by the abnormal accumulation of an anomalous form of

the prion protein (PrP). The normal PrP is a glycoprotein formed by approximately 250

amino acids and it is expressed in the cell surface of several tissues. It is both soluble and

sensitive to digestion with Proteinase-K. On the other hand, the anomalous PrP forms

insoluble aggregates and is partially resistant to digestion with Proteinase-K. Because of

their characteristics, TSE diseases are another form of amyloid diseases like Alzheimer’s,

Huntington’s and type II diabetes. The main difference is that TSEs are transmissible.

Moreover, since no virus or bacteria associated to the disease have been found, TSE

diseases have a unique etiology. The key role of PrPs in TSE diseases is undeniable

and studying the unfolding dynamics of such proteins is crucial in understanding the

mechanisms behind CJD.

The dataset that we are going to analyse is taken from Moulick et al. (2015). In the

paper, HDX-MS and HDX-NMR are coupled to characterize the structural and energetic

properties of the native state of the mouse prion protein (moPrP). Various segments are

found to undergo subglobal unfolding events at pH 4, condition at which the misfolding to

a β−rich conformation is favoured. In addition, the native state is found at equilibrium

with at least two partially unfolded forms (PUFs) that can be accessed through stochastic

fluctuations around the native state and have altered surface exposure. Moreover, one of

these PUFs resembles a conformation that has been found to be an initial intermediate

in the conversion of the monomeric protein into the misfolded oligomer.

5.1.2 Dataset

The dataset used to study HDX of the MoPrP was provided by the authors of the above

mentioned paper (Moulick et al. (2015)). The protein structure is available within the
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Protein Data Bank database (Berman et al. (2000)) with the PDB code 1AG2. The

energetic and structural characterization of the native state of the protein is probed at

pH 4.0 and room temperature (25 oC), conditions at which the misfolding to the oligomer

conformation should be favoured. The sample was inserted in a 95% deuterated buffer.

To stop the exchange and obtain more specific information, the solution was quenched

at pH 2.4 and temperature 0 oC and digested by pepsin.

The experiment leads to the identification of 14 fragments. The peptide map is shown

in Fig. 5.1. The dataset here studied has a coverage of 69% and a redundancy of 0.14.

No fragments have been identified for a central region involving residues 45-59.

Figure 5.1: Peptide assignments for moPrP dataset. 14 fragments are identified by
Moulick et al. (2015) and shown (horizontal solid lines). Dotted lines enhance the regions
of the protein covered by overlapping peptides. Coverage: 70 %; redundancy: 0.14.

Despite the low values of coverage and redundancy of the dataset, the exchange of each

fragment has been studied with quite a remarkable temporal sampling: 15 time points

are available, ranging from 5 s to 24 hr. Some examples of the uptake curves for this

dataset are shown in Fig. 3.3.
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5.1.3 Results

The ExPfact algorithm is used to extract protection factors out of the dataset with

peptide map shown in Fig. 5.1. The algorithm is initialised with 10000 random sets

of protection factors and the best one is selected as initial guess for a penalised least

squares minimization. The penalization term is set to λ = 2× 10−5 by cross validation.

Cross validation

A penalised least squares minimization is introduced to both reduce overfitting and

avoid abrupt changes in the final pattern of protection factors. The functional form of

the penalty term is shown in Eq. 4.2:

Pen(λ, {Pi}) = λ
n−1∑
i=2

(Pi−1 − 2Pi + Pi+1)2

The penalization parameter λ must be properly set.

Leave-one-out cross validation was used. The dataset is divided into a train dataset

composed by 14/15 time points (for all fragments) and a test dataset composed by the

remaining time point. The splitting is repeated by leaving out one time point at a time

from the train dataset so that 15 train (and test) datasets are generated (Fig. 5.2).

Figure 5.2: Schematic representation of leave-one-out cross validation. Figure from
https://aiaspirant.com/cross-validation.

The penalised least squares minimization is performed using the training dataset and

protection factors are estimated. The performance of the minimization at a fixed value
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of the penalization parameter λ is evaluated by setting a seed for the pseudo-random

number generator. The cross validation error

CVE =
1

M

M∑
i=1

K∑
k=1

(
Dpred
i,k −D

exp
i,k

)2

(5.1)

is evaluated for the train dataset. Here M is the number of time points forming the

specific dataset. For the train dataset, M = 14; for the test dataset, M = 1. The cross

validation error must be calculated for all the K fragments available. The estimated

protection factors are used to make predictions for the remaining time point of the test

dataset and the test cross validation error is evaluated. The total cross validation error

error is the sum of the train and the test validation error.

Leave-one-out cross validation is applied to the moPrP dataset with penalization pa-

rameters ranging from 10−15 to 100. The results in Fig. 5.3 show that the total cross

validation error reaches a minimum at λ = 2× 10−5. Such a value is used as the penal-

ization parameter for the penalised least squares minimization.

Figure 5.3: Leave-one-out cross validation on the moPrP dataset. Train error (dashed
line), test error (dotted line) and total error (solid line) are shown as a function of the
penalization term λ.
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Predictions

The predictions of the uptake calculated by the penalised minimization for one run of

the algorithm are shown in Fig. 5.4 for some fragments.

Figure 5.4: Deuterium uptake predictions for the moPrP dataset. Experimental uptake
(black dots) are compared with the deuterium uptake curves (dashed line) predicted by
one run of the ExPfact algorithm for peptides 1, 4, 5, 6, 13 and 14

The results in Fig. 5.4 show a nice agreement between experimental and predicted curves

that can be quantified by looking at the average cost function over all the peptides that

is of the order of magnitude of 10−3.

Clustering

Each run of the algorithm generates a different pattern of protection factors. In order

to accumulate a proper statistic, 5000 solutions were evaluated and the best 2500 were

selected to generate histograms of protection factors for each residue. Such histograms

are the marginal probability distributions of protection factors given as input to the

clustering algorithm. The outcomes of the clustering algorithm for two specific regions

are analysed. First, the region with the best overlapping and redundancy in the dataset

(residues 79-84); second, a region with poor quality (residues 5-9).
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Residues 79-84

The region with the best overlapping and redundancy of the dataset is formed by frag-

ments 9, 10 and 11 and covers the residues 79-84 (Fig. 5.1). Histograms in this region

show one only peak for all adjacent residues (Fig. 5.5).

Figure 5.5: Histograms of protection factors for residues 79-84. One only peak is found
from 2500/5000 runs of the ExPfact algorithm.

As a consequence, one only cluster is identified in this region (Fig. 5.7A). For regions

where one only gaussian component is identified, one only protection factor is identified

at single residue resolution.

Residues 5-9

A region with very poor overlapping can be identified in the area of the protein described

by the first fragment, covering residues 5-9. Because of the low number of amino acids

involved and the high number of time points available, underdetermination should be

solved. However, we are not able to estimate protection factors at single residue res-

olution because of the problem of switchable residues. In fact, if one only peptide is

considered, the problem of switching residues cannot be solved: the set of predicted
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exchange rates (ki/P ) is the same for different runs, but such rates can be arbitrarily

associated to one residue or another (see histograms in Fig. 5.6).

Figure 5.6: Histograms of protection factors for residues 5-9. Different peaks are found
from 2500/5000 runs of the ExPfact algorithm.

As a consequence, more components are identified by the clustering algorithm. For

the specific region covering residues 5-9, 7 clusters are estimated (Fig. 5.7B). Areas

with poor overlapping and/or redundancy are thus characterised by many clusters of

protection factors. The ideal solution to the problem would be to repeat the experiment

by increasing the quality of data. Most times, this is unfeasible. To tackle the problem

and associate one only protection factor to each residue, one could consider mean values

only for those regions where more clusters have been identified.

Figure 5.7: A. Unique cluster of protection factors identified for residues 79-84. B. 7
clusters identified for residues 5-9. Standard deviations are not shown.

The results shown in Fig. 5.7 enhance the fact that a dense temporal sampling (15 time

points) is not sufficient to cancel out the underdetermination of the problem (Fig. 5.7B).
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On the other hand, if a proper number of time points is coupled with a good overlapping

of fragments, then single residue resolution can be achieved (Fig. 5.7A).

Validation

The moPrP dataset provides measurements of hydrogen deuterium exchange rates from

both mass spectrometry and NMR experiments for the same protein under the same

conditions (pH 4.0, temperature 25oC). A comparison between the outcomes of the

two techniques is able to determine if the protection factors extracted by the ExPfact

algorithm are the real exchange rates of the protein.

The protection factors extracted at single residue resolution by MS and NMR are com-

pared in Fig. 5.8. For the regions where one only cluster is found by the clustering

algorithm, the centroid and standard deviation of the cluster is shown. Concerning the

areas where more clusters are identified, mean values are considered.

Figure 5.8: Comparison between protection factors extracted by ExPfact (black bars)
and by NMR (red crosses) for the moPrP at pH 4 and temperature 25 oC.

The results in Fig. 5.8 show that protection factors extracted by NMR and MS experi-

ments are compatible for most residues (for whom measurements are available). Notice
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that clusters with protection factor lnP = −1 may identify prolines or the first residue of

a region covered by overlapping fragments. Since the clustering algorithm makes use of

gaussians distributions, it is possible that the predicted cluster has a standard deviation

leading to negative protection factors, which is not possible.

The correlation between the measurements from the two techniques is shown in Fig. 5.9

and is found to be 0.64. All the NMR measurements are compatible within 3σ to the

protection factor extracted by ExPfact. Moreover, the 83% of measurements (19/23) is

compatible within one standard deviation.

Figure 5.9: Correlation between protection factor extracted by NMR (x axis) and MS
experiments (y axis). The red dashed line represents one standard deviation from the
line y = x (solid red line), the red dotted line represent the 3σ interval.

The compatibility between protection factors extracted by the ExPfact and calculated

by NMR validates the ExPfact algorithm.

5.2 Application to Glycogen Phosphorylase

The second application of the ExPfact algorithm to real world data regards the high

quality dataset provided by Kish et al. (2019) to study the allosteric regulation of glyco-

gen phosphorylase. The high quality is guaranteed both by a remarkable overlapping

and redundancy and by a dense temporal sampling exploiting the millisecond regime.
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5.2.1 Glycogen Phosphorylase

Glycogen phosphorylase (GlyP) is the enzyme that catalyses the sequential removal

of glycosyl residues from unbranched glycogen, producing glucose 1-phospate (Lackie

(2019)). The historical importance of GlyP is given by the fact that it was the first

allosteric enzyme to be discovered. In biochemistry, allosteric regulation is the regulation

of an enzyme by binding an effector molecule at a site (allosteric site) other than the

enzyme’s active site. The effector acts by altering the equilibrium between the active

and inactive state.

Since GlyP regulates the glycogen metabolism, understanding in detail its mechanics is

fundamental for a number of objectives. In fact, glycogen regulates glycemia in the liver,

it provides energy for muscular contraction in muscles and acts as an emergency store

in the brain (Mathieu et al. (2017)).

The goal of Kish et al. (2019) in studying the allosteric regulation of glycogen phosphory-

lase is to quantify changes in local stability between the activated and inhibited forms of

the enzyme. Despite being one of the most studied enzymes, the nature of its regulatory

mechanism remains ambiguous. In particular, changes in local stability in response to

allosteric regulation are detected for the first time in the so-called tower helix, i.e. the

280s loop gating access to the active site.

Moreover, Kish et al. (2019) describe the construction, validation and implementation

of a novel HDX-MS apparatus allowing measurements in the millisecond regime.

5.2.2 Dataset

The dataset used to study the allosteric regulation of GlyP through HDX was provided

by Kish et al. (2019). GlyP was studied under three different conditions: the apo state,

i.e. the inactive and unbound state (PhosA), the active state (PhosB) and the bound

inactive state (PhosC). The structure of the protein is available for the active and inactive

states with PDB codes 1GPB and 9GPB respectively. These three states were studied

under physiological pH 7 and at temperature 23 oC. The solution was then quenched at

temperature 0oC and pH 2.5 and digested by pepsin.
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The 263 fragments identified in the dataset are shown in the peptide map in Fig. 5.10.

The assignments have a coverage of 96% and a redundancy equal to 0.31. Despite the

high number of fragments provided, the redundancy is still low because of the dimensions

of the enzyme: GlyP is formed by 842 residues. For each fragment, 9 time points were

acquired, ranging from 50 ms to 300 s. The experiment was performed in triplicate.

Figure 5.10: Peptide assignments for the GlyP dataset. The 263 fragments identified
by Kish et al. (2019) are shown with horizontal solid lines in 4 different plots. Top
left: fragments 1-70; top right: 71-140; bottom left: 141-210; bottom right: 211-263.
Coverage: 96%; redundancy: 0.31.

5.2.3 Results

The ExPfact algorithm was applied to the dataset with peptide map in Fig. 5.10. 1000

runs of the algorithm were performed and the top 700 were considered.

The predictions for the extensive GlyP dataset started being challenging in terms of

computational cost. The average time required to compute one solution is about 30

minutes. The average value of the cost function for the top 700 solutions is shown in

Fig. 5.11 and is equal to 0.03 for PhosA and PhosC, while it is slightly higher (0.04) for
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PhosB. This degree of agreement with experimental data was a compromise between the

quality of the predictions and the time required to compute one solution.

Figure 5.11: Average cost function per fragment for states PhosA (left), PhosB (centre)
and PhosC (right) over the top 700/1000 runs. Red dotted lines represent the average
cost function over all fragments.

Some peptides have higher average cost function with respect to others because the

inverse of the standard deviation was used to weight experimental data. The higher the

standard deviation, the lower the weight of a specific measurement. As a consequence,

fragments with greater uncertainties are associated with higher cost functions.

When the clustering algorithm identifies one only cluster, the protection factor associated

to the residue is the cluster itself. When more clusters are identified, the protection factor

is computed as the average value over all the runs considered. The resulting pattern of

protection factors for the whole protein is depicted in Fig. 5.12.

Figure 5.12: Protection factors for states PhosA (blue), PhosB (orange) and PhosC
(green). On the left, residues 1-400. On the right, residues 401-823.
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The differences between the patterns of protection factors estimated for the different

states can be quantified through a t-test. To confirm the findings of Kish et al. (2019),

we show the results of the t-test statistic for a comparison between states PhosA (apo

state) and PhosC (bound inactive state) in Fig. 5.13.

Figure 5.13: Results of t-test analysis of patterns of protection factors for states PhosA
and PhosC. Most relevant regions (p value < 10−10) are shown with vertical red lines.

As stated by Kish et al. (2019), PhosA and PhosC states are similar. The most significant

changes can be identified in the region of the allosteric sites (residues 35-78) since the

effector is bound to the enzyme in the state PhosC and is not in state PhosA. Minor

differences can be found in the region of the tower helix providing the evidence of an

entropic switch regulating the access of the substrate to the active site.

Allosteric sites (residues 35-78)

The first region of interest that we analyse is the area where allosteric sites are situated,

formed by residues 35-78. Deuterium uptake curves for 6 fragments partially covering

this region are shown in Fig. 5.14. Some of them show a compatible behaviour among the

different states (peptides 14 and 17). The majority of the fragments, however, highlights

significant differences between the curve for the apo state PhosA with respect to the

other states (peptides 15, 16, 18, 19).



CHAPTER 5. APPLICATION TO REAL WORLD DATA 58

The extracted pattern of protection factors is depicted in Fig. 5.15. Again, the state

PhosA shows significant differences with respect to states PhosB and PhosC. One ad-

vantage of using protection factors (Fig. 5.15) instead of uptake curves (Fig. 5.14) is the

ability to encode the information in one only parameter. Moreover, being ExPfact able

to reach single residue resolution, local changes can be further localised.

Tower helix (residues 246-286)

A second region that mostly showing minor differences between states PhosA and PhosC

(Fig. 5.13) is the area around the 280s loop. The uptake curves in this region are shown

in Fig. 5.16 for peptides 72-77. For peptides 72 and 73, the behaviour of states PhosA

and PhosB is compatible while significant changes can be visualized for state PhosC. In

other fragments (peptides 74, 75 and 76), the uptake is different for each state. Another

situation is found in peptide 77 where PhosA differs from PhosB and PhosC.

The patterns of protection factors are shown in Fig. 5.17, highlighting significant differ-

ences only for state PhosA with respect to the other states and only in specific regions

(residues 260-265 and 275-286). Protection factors for the active and inactive states

PhosB and PhosC are compatible. The usage of protection factors enhances that the

differences in uptake, whose interpretation differs from peptide to peptide (Fig. 5.16),

can be summarized in a difference in terms of protection factor of the state PhosA with

respect to states PhosB and PhosC.
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Figure 5.14: Deuterium uptake for peptides 14-19 within the region where allosteric sites
are situated (residues 35-78). States PhosA (blue), PhosB (orange) and PhosC (green)
are compared.

Figure 5.15: Patterns of protection factors of residues 40-67, partially covering the al-
losteric sites, for states PhosA (blue), PhosB (orange) and PhosC (green). Confidence
intervals are shown within one σ.
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Figure 5.16: Deuterium uptake for peptides 72-77 within the region where the tower
helix is situated, close to the 280s loop.. States PhosA (blue), PhosB (orange) and
PhosC (green) are compared.

Figure 5.17: Patterns of protection factors of residues 246-286, covering the 280s loop,
for states PhosA (blue), PhosB (orange) and PhosC (green). Confidence intervals are
shown within one σ.



Chapter 6

Exploiting protection factors

Summary of the chapter. Once protection factors are known at single residue res-

olution, they can be exploited to further study hydrogen deuterium exchange. A back

exchange correction is introduced to reproduce experimental isotopic envelopes. Also, a

structural model connecting protection factors to the structure of a protein is presented

and developed via the introduction of a dependence on the electric potential.

6.1 Back exchange

The Michaelis Menten model used to calculate the uptake of a peptide (Eq. 2.1) assumes

that the deuteration process is irreversible. However, experiments show that back ex-

change is not negligible especially during the LC/MS step of the experimental workflow

(Fig. 3.1) when the solution is quenched. In fact, the intrinsic exchange rates have been

tabulated both for in-exchange and back-exchange by Bai et al. (1993): while in-exchange

rates ki are higher than back-exchange rates kb at room temperature and physiological

pH, they have the same order of magnitude at acidic pH and low temperature. As a

consequence, back-exchange cannot be neglected.

The problem is tackled by the normalization in Eq. 3.2: the uptake of a peptide is con-

strained to be 1 for the maximally labeled envelope. This means that the mass m100% is

not the centroid of the fully deuterated envelope, but of the mostly deuterated envelope

that has been detected. However, the fully deuterated envelope and the maximally la-
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beled envelope do not coincide because of back exchange. In order to properly reproduce

experimental envelopes starting from protection factors extracted by ExPfact, a back

exchange correction must be introduced.

Finding datasets with isotopic envelopes is not trivial. Because of the dimensions of the

files, research groups tend to show only raw data concerning centroids of the envelopes.

Also, the format of the files containing information related to envelopes is dependent on

the software used by the operator.

The moPrP dataset, provided by Moulick et al. (2015) and already analysed in section

5.1, contains isotopic envelopes at five time points for three different peptides. For a

detailed description of the dataset, we address the reader to section 5.1.2. In particular,

isotopic envelopes are available for peptides 1, 5 and 13 at time points 1 min, 1 hr, 24

hr; the fully protonated and fully deuterated samples are also given. The sequences and

charge states of the peptides are shown in Table 6.1.

Peptide Charge Sequence
1 1 YMLGSA
5 3 YRYPNQVYYRPVDQ
13 2 MERVVEQM

Table 6.1: Peptides in the moPrP dataset (Fig. 5.1.2) for which envelopes are available.

We shall note here that the results obtained in this section are partial because of the

small dataset provided and should be intended as the starting point for further research.

6.1.1 Isotopic envelope calculation

Fully protonated envelope

The calculation of the fully protonated isotopic envelope does not require the knowledge

of protection factors. In fact, such envelope is nothing but the mass spectrum of the

protonated peptide. To calculate it, the sequence of the peptide is sufficient: if the amino

acids forming the peptide are know, than the monoisotopic mass can be calculated by

adding up the masses of the elements forming the sequence. Such value is then convoluted

with the natural abundance of elements in order to obtain the isotopic envelope of the
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fully protonated peptide. Several tools enable the calculation of the fully protonated

envelope. The reference software for this section is MS-Isotope1.

The charge state of the peptide has to be known. In fact, the positive charge acquired

during MS analysis by the peptide is given by an additional proton bound to the peptide

that increases its mass. If the charge state is bigger, a bigger mass is detected. Isotopic

envelopes are plotted as a distribution of m/z to discriminate different charge states.

The fully protonated envelopes for the peptides listed in Table 6.1 are shown in Fig. 6.1.

Figure 6.1: Fully protonated isotopic envelopes of peptides 1 (left), 5 (centre) and 13
(right) for the moPrP dataset (Fig. 5.1.2). Experimental envelopes (red) are compared
with theoretical envelopes (black) predicted by MS-Isotope.

As Fig. 6.1 shows, experimental and predicted isotopic envelopes present minor differ-

ences, mainly due to two experimental artifacts:

• Saturation. In order to further separate peptides, liquid chromatography can be

coupled with ion mobility: peptides are separated in their gas phase before reaching

the mass spectrometer. This is helpful to identify with higher intensities peptides

that were previously found with low probability. On the other hand, peptides that

already had high intensities tend to reach the maximum intensity value detectable

by the spectrometer, thus deforming the shape of the envelope.

• Carryover effect. It consists in the fact that some peptides can be identified from

previous runs. This happens in all LC-MS systems: despite being washed between

different runs, the columns of the LC system could still contain some peptides.

When performing the next run, such peptides are completely back exchanged and

tend to deform the lower peaks of the isotopic envelope.

1prospector.ucsf.edu/prospector/mshome.htm
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The presence of these artifacts is checked by the operator: envelopes that are saturated

or affected by the carryover effect are considered or not depending on a manual choice

of the operator.

Fully deuterated envelope

The fully deuterated envelope represents the mass spectrum of a peptide after exchange

occurred for every residue. Theoretically, it can be calculated by shifting the fully proto-

nated envelope of N-1 m/z units, N being the length of the peptide. In agreement with

the model in Eq. 2.1, this calculation assumes that back exchange is not possible.

Experimental and predicted isotopic envelopes of the fully deuterated samples are shown

in Fig. 6.2 for the peptides available. The envelopes in Fig. 6.2 clearly show that back

Figure 6.2: Fully deuterated isotopic envelopes for peptides 1 (left), 5 (centre) and
13 (right). Experimental envelopes (red) are compared with predicted ones (black),
calculated by shifting the fully protonated envelopes in Fig.6.1.

exchange cannot be neglected. In fact, if back exchange is not considered as in the model

in Eq. 2.1, the predicted fully deuterated samples always assume greater values of m/z

with respect to experimental spectra. This is true even if intermediate time points are

considered.

Evolution of the envelope

At intermediate times, the envelope may assume different shapes. The intensity of each

peak depends on the exchange rates of the residues forming the peptide. Within a peptide

formed by n residues, the probability that k have exchanged, with k ≤ n is expressed by
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Eq. 3.1 that we report here for the sake of completeness:

Π(k, t) =

|A|=k∑
A∈{1,...,n}

∏
i∈A

Di(t)
∏

j∈{1,...,n}/A

(1−Dj(t))

The time evolution of the isotopic envelope here described follows the assumption of the

model in Eq. 2.1 that back exchange is not possible.

A python script was implemented to calculate the evolution of the isotopic envelope at

given time points, starting from the fully protonated envelope calculated by MS-Isotope.

In particular, the predicted isotopic envelopes are compared with the experimental ones

for the peptides available in Fig. 6.3.

Figure 6.3: Evolution of the isotopic envelopes for peptides 1 (top), 5 (centre) and 13
(bottom) at times 1 min (left), 1 hr (centre) and 24 hr (right). Experimental (red) and
predicted (black) envelopes are compared.
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As expected from previous considerations (Fig. 6.2), the predicted isotopic envelopes lie

at higher values of m/z since the model implemented does not consider back exchange.

To evaluate the time evolution of the isotopic envelope, the deuterium uptake of each

residue - and thus protection factors at single residue resolution - must be known. The

protection factors used for the calculation of the isotopic envelopes in Fig. 6.3 are the

ones that have been estimated by ExPfact for the moPrP dataset (Fig. 5.8).

6.1.2 Back exchange correction

In order to properly reproduce experimental isotopic envelopes, back exchange must be

taken into account. The aim of this section is to provide a procedure to obtain isotopic

envelope reducing the back exchange problem to the proper setting of one only parameter.

The first assumption is that back exchange occurs only during LC analysis (i.e. under

quenching conditions): we can thus assume that the envelopes predicted in Fig. 6.3 are

the actual spectra before LC analysis.

The second assumption is that under quenching conditions in-exchange is completely

stopped and only back exchange can occur. As a consequence, to reproduce experimental

envelopes (red spectra in Fig. 6.3) starting from the predicted envelopes (black spectra in

Fig. 6.3), the time evolution shown in Eq. 3.1 can still be exploited, but 1) the evolution

must be towards lower m/z values and 2) the intrinsic exchange rates to be considered

are the back exchange rates under quenching conditions (pH 2.4 and temperature 0 oC

for the moPrP dataset).

The aim is to determine the effective back exchange time τ that minimizes the difference

between experimental and predicted envelopes. A second python script was developed to

perform this back exchange evolution starting from the envelope predicted at a specific

experimental time. A number of back exchange effective times is set, ranging from 0 to

100 hours, and the back evolution is performed. For each effective time, a cost function

is evaluated and the effective back exchange time associated to the lowest cost function

is chosen.

Naming Πpred
k (τ, t) and Πexp

k (t) the predicted and experimental envelopes evaluated at
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m/z = k respectively, the cost function reads:

C(τ) =
1

K

√√√√ K∑
k=1

(
Πpred
k (τ, t)− Πexp

k (t)
)2

(6.1)

K being the number of points at which the envelope is defined.

The results of the application of the back exchange evolution to isotopic envelopes pre-

dicted at experimental times (black spectra in Fig. 6.3) are shown in Fig. 6.4 for the

peptides available and the goodness of predictions is quantified via R2 statistic.

Figure 6.4: Evolution of the isotopic envelopes for peptides 1 (top), 5 (centre) and 13
(bottom) at times 1 min (left), 1 hr (centre) and 24 hr (right). Experimental (red)
and predicted (black) envelopes are compared with the application of back exchange
evolution. Goodness of fit is quantified through R2 statistic.

Fig. 6.4 shows that it is possible to reproduce the experimental isotopic envelopes if
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the protection factors of the peptide are known. The procedure to obtain them can be

summarized as follows:

1. Calculate the fully protonated isotopic envelope of the peptide, e.g. using the

software MS-Isotope.

2. Use the temporal evolution of the isotopic envelope (Eq. 3.1) to estimate the

envelope at a specific time. Protection factors, in-exchange intrinsic rates ki and

pH of the deuterated buffer are needed.

3. Use the temporal evolution of the isotopic envelope (Eq. 3.1) to apply a back

exchange correction to the the envelope at a specific time. Protection factors,

back-exchange intrinsic rates and pH of the quenched solution are needed.

The effective back exchange times minimizing the difference between experimental and

predicted envelopes (Eq. 6.1) are shown in Fig. 6.5 as a function of the time spent in

the deuterated buffer. The different orders of magnitude covered by the effective back

Figure 6.5: Back exchange effective time τ that minimize difference between experimental
and predicted envelopes are shown as a function of in-exchange time.

exchange times evaluated at the same in-exchange time for different peptides suggest

that the back exchange correction depends on the peptide considered.
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Within the same peptide, the effective time τ tends to increase as the time spent in

the deuterated buffer increases. This suggests that back exchange is not completely

stopped in the deuterated buffer. Regarding this, it is worth noting that the moPrP

dataset involves a deuterated buffer with pH 4.0: such an acidic condition could lead

back exchange not to be negligible.

To conclude, the back exchange correction here introduced enables to reproduce the

experimental envelopes starting from patterns of protection factors estimated by the

ExPfact algorithm. Moreover, it lays the foundations for further research about back

exchange: the usage of an extensive dataset could lead to the understanding of the main

parameters influencing the phenomenon and solve a number of open questions: is back

exchange completely stopped in the deuterated buffer? Is back exchange dependent on

the analysed peptide? Can the effective back exchange time be related to experimental

parameters like the percentage of deuterium in solution?

6.2 Structural model

One of the most ambitious goals of high throughput experimentation is to directly and

rapidly fingerprint the structure of a protein. In HXD-MS this can be translated into the

development of a structural model connecting protection factors to the structure of the

sample. To take some steps towards this ultimate goal, the inverse (and simpler) problem

shall be deepened: is it possible to estimate protection factors when the structure of a

protein is available?

One attempt to connect the structure of a protein to protection factors was developed

by Best and Vendruscolo (2006). In the present section, we describe such a structural

model and we test its correlation with a dataset formed by 6 different proteins for which

protection factors are known. Moreover, we introduce in the model a dependence on the

electric potential of the protein and we show how this term improves the model.
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6.2.1 Best model

The model developed by Best and Vendruscolo (2006) aims to connect the structure

of a protein with its protection factors. The structure of the protein X is the set of

Cartesian coordinates of each atom of the protein. The most common format to store

such information is the PDB format (Berman et al. (2000)).

The exchange rate for one amino acid is given by

kex =
kint
P

where the intrinsic exchange rate encodes the dependence of the exchange rate on both

the experimental conditions (pH and temperature) and the sequence of the protein (see

section 2.1.3).

Assuming that the protection factor P of a residue only depends on the structure of the

protein, Best and Vendruscolo (2006) stated that it can be written as a linear combination

of the number of burial contacts N c (i.e. number of connected heavy atoms) and the

number of hydrogen bonds Nh. The protection factor for the residue i can be thus

written as

lnPi(X) = βcN
c
i (X) + βhN

h
i (X) (6.2)

where βc = 0.35 and βh = 2.0 are the weights of the number of heavy contacts and

hydrogen bonds respectively. Such parameters were optimized by Best and Vendruscolo

(2006) using a dataset formed by 7 proteins for which protection factors are known.

Note that in their paper Best and Vendruscolo (2006) suggest that the protection factor

should be evaluated as an average value over a conformational space sampled during

Molecular Dynamics simulations (Rapaport (2004)):

P̄ =
1

N

N∑
i=1

Pi (6.3)

where N is here the total number of frames constituting a trajectory. Some simula-

tion softwares like CHARMM (Brooks et al. (2009)) can automatically implement this

calculation. Here we focus only on the PDB structure.
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Following the implementation in CHARMM, the number of heavy contacts and hydrogen

bonds for a residue i can be calculated as follows:

N c
i =

∑
j∈Hi

1
1+exp 5(rij−6.5)

Nh
i =

∑
j∈Oi

1
1+exp 10(rij−2.4)

(6.4)

where Hi is the list of heavy atoms (i.e. all atoms but hydrogens) that are not part

of residues i-1, i or i+1. Analogously, Oi is the list of oxygens that are not included in

residues i-1, i or i+1. The value rij is the euclidean distance between the amide hydrogen

of residue i and the j-th atom.

Results

Using the Best model (Eq. 6.2), protection factors are calculated for a dataset composed

by 6 proteins, probed under different conditions, for which exchange rates are known:

• 1BRN: Barnase (Jane et al. (1993)).

• 1FRC: Horse heart ferrocytochromce c (Chevance et al. (2003)).

• 1MBC: Carbon-monoxy (Fe II)-myoglobin (Uzawa et al. (2008)).

• 2LN3: De novo designed protein IF3-like fold (Basak et al. (2019)).

• 3NPO: Bovine beta lactoglobulin (Forge et al. (2000)).

• 8PTI: Mutant of bovine pancreatic trypsin inhibitor (Key-Sun et al. (1993)).

For the sake of simplicity, we will refer to these proteins using their PDB code.

Protection factors predicted by the Best model in Eq. 6.2 with parameters βc = 0.35 and

βh = 2.00 (i.e. the parameters found by Best and Vendruscolo (2006)), are compared

with experimental protection factors in Fig. 6.6.

The Best model shows a poor correlation (0.08) between predicted and experimental

protection factors for the considered dataset. This may be only due to the fact that

we are only considering the PDB structure without averaging the protection factor over



CHAPTER 6. EXPLOITING PROTECTION FACTORS 72

Figure 6.6: Left: correlaton between experimental and predicted protection factors using
the Best model (Eq. 6.2); the black dashed line shows the line y = x. On the right,
residuals are shown and fitted with a gaussian distribution (red dashed line). Parameters:
βc = 0.35, βh = 2.00.

an ensemble of conformations, but Radou (2015) showed that performing Molecular

Dynamics simulations only introduce minor changes in the predicted rates. Such a poor

correlation is more likely to be linked to the fact that the optimal parameters βc and βh

change if different datasets are implemented. In fact, as the gaussian fit of the residual

plot shows, the parameters βc = 0.35 and βh = 2.00 optimized by Best and Vendruscolo

(2006) introduce an overestimate of the predicted protection factor with respect to the

experimental values (from the gaussian fit, µ = 5.12).

To properly assess the quality of the Best model in estimating protection factors directly

from the structure of the protein, we optimize the parameters βc and βh in Eq. 6.2 on the

dataset here used. Since we are dealing with a linear model, an ordinary least squares

regression implemented in python (Pedregosa et al. (2011)) can be used to estimate such

coefficients. The weights that minimize the residual sum of squares reads:

βc = 0.20 βh = −3.08 (6.5)

It is interesting to note that the coefficient associated to hydrogen bonds is negative

(βh = −3.08): hydrogen bonds lead the protection factor to be lower. The results for
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the Best model with parameters optimized over the dataset are shown in Fig. 6.7.

Figure 6.7: Left: correlation between experimental and predicted protection factors using
the Best model (Eq. 6.2); the black dashed line shows the line y = x. On the right,
residuals are shown and fitted with a gaussian distribution (red dashed line). Parameters:
βc = 0.20, βh = −3.08.

The parameters βc and βh optimized over the dataset are able to reduce the overestima-

tion of the predicted protection factors (from the gaussian fit of the residuals, µ = −0.6).

However, the correlation between predicted and experimental protection factors is still

low (0.11), showing that the dependency of protection factors on burial contacts and

hydrogen bonds is not sufficient to exhaustively reproduce experimental exchange rates.

6.2.2 Introducing potential dependence

Potential dependence

In order to improve the correlation between protection factors calculated by the Best

model (Eq. 6.2) and experimental rates, we add a third variable in the linear model,

namely the electrostatic potential U of the protein:

lnPi(X) = βcN
c
i (X) + βhN

h
i (X) + βuUi(X) (6.6)
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More specifically, Ui(X) is the electrostatic potential of the configuration X evaluated at

the amide hydrogen of the residue i.

The introduction of the dependence on the electrostatic potential comes from consider-

ations regarding an article by Barnes et al. (2019). The analysed protein (PDB code:

6OBI) is the single α-helical domain of myosin-VI. Being an helix, it is quite symmetric

and one could expect protection factors to show a periodic pattern. From HDX-NMR

measurements, however, such periodicity is not detected and the electrostatic potential

of the protein can be addressed as a responsible.

The introduction of such a variable arises two issues: how to calculate the potential and

how to interpolate it at the amide hydrogen of each residue of the protein.

Calculating the potential

The electrostatic potential of a protein can be calculated using the software APBS (Dolin-

sky et al. (2004)), which solves the equations of continuum electrostatics for biomolecular

assemblies. It requires accurate and complete structural data (like a PDB structure) as

well as force fields parameters. APBS is coupled with PDB2PQR, a software enabling

the automatic preparation of a PDB structure for continuum electrostatics calculations.

Electrostatic models generally belong to two families: explicit or implicit solvent models.

Explicit solvent models treat each atom of the solvent with the same accuracy of atoms

of the molecule under analysis, thus leading to a high level of detail that must be coupled

with an extensive sampling of a conformational ensemble. On the other hand, implicit

solvent models treat the solvent as an additional term in the force field: lower level of

detail can be reached, but the need of an extensive sampling is eliminated. Implicit

solvent methods are widely used to calculate the electrostatic potential of a molecule.

The calculation of polar solvation energy relies on the difference in charges from energies

in vacuum and in solvent (Fogolari (2002)). In particular, APBS solves the Poisson

Boltzmann equation, that is a non linear elliptic partial differential equation:

∇ [ε(r)∇φ(r)] = −4πρf (r)− 4π
∑
i

c∞i ziq exp
ziqφ(r)

kT
λ(r) (6.7)
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where φ(r) is the electrostatic potential, ε(r) the dielectric function, ρf (r) the molecular

charge density, c∞i is the concentration of the ion i at infinite distance from the molecule,

q is the proton charge and zi is the valency of ion i; λ(r) is a function describing the

accessibility of ions at point r.

The main advantage of Eq. 6.7 is that all the coefficients can be directly related to the

structure of the protein. The main limitations of this model is the loss of accuracy when

strongly charged systems or high salt concentrations are analysed.

Being a partial differential equation, the numerical solution of the Poisson Boltzmann

equation is evaluated at the nodes of a three dimensional grid. In fact, the output of

APBS is a file containing the value of the electrostatic potential calculated at the nodes

of a grid containing the protein.

The electrostatic potential of the 6 proteins in the dataset here analysed can be visualised

with a visualization software like PyMol (Schrödinger, LLC (2015)). The results are

shown in Fig. 6.8, where the electric potential is shown on a surface surrounding the

protein (Connolly surface).

Figure 6.8: Electrostatic potential on the Connolly surface surrounding the proteins in
the dataset. Potential values range from -5 kT/e (red) to +5 kT/e (blue).
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Interpolation

APBS returns the values of the electrostatic potential evaluated at the nodes of a grid

containing the protein under analysis. Since we want to evaluate the protection factor

at single residue resolution (Eq. 6.6), we need to calculate the potential for each amino

acid of the protein. In order to do so, we need to interpolate the grid in order to find a

specific value of potential to be associated to the coordinates of the atoms of the protein.

The first question to be answered is: what is the point at which interpolation shall be

performed? For instance, the potential could be evaluated for each atom of the protein

and then an average value over all the atoms forming a residue could be used as the

potential of the amino acid. Alternatively, the value of the potential interpolated at the

alpha carbon of each residue could be used. However, since hydrogen deuterium exchange

mainly involves the amide hydrogen of the residue, we opted for an interpolation at the

coordinates of such atom.

Nearest Neighbour interpolation was used: the value of the electrostatic potential asso-

ciated to a specific residue is thus the potential evaluated at the node of the grid nearest

to the amide hydrogen of that specific residue.

The electrostatic profiles of the 6 proteins in the dataset are shown in Fig. 6.9.

An interesting remark regards the fact that the potential may assume both positive and

negative values that will result in opposite influence on the final value of protection factor

(Eq. 6.6). Moreover, it is worth noting that several periodicities may be found in some

patterns. The protein 2LN3, for example, has two helices at residues 11-26 and 37-56,

both showing a potential decreasing towards a minimum.

Results

After the calculation of the electrostatic potential of a protein and its interpolation at

the amide hydrogen of each residue, we optimize the parameters βc, βh and βu of the

Best model with the introduction of the potential dependence (Eq. 6.6). As previously,

an ordinary least squares can be performed since we are dealing with a linear model.
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Figure 6.9: Potential profiles of the 6 proteins in the dataset. The electrostatic potential
at each residue is evaluated through a Nearest Neighbour interpolation from the grid
calculated with APBS (Fig. 6.8).

The optimization leads to the following values for the parameters:

βc = 0.21 βh = −1.33 βu = −0.94 (6.8)

As for the parameters of the Best model optimized over the dataset (Eq. 6.5), hydrogen

bonds have a negative influence on the final value of protection factors. At the same time,

the coefficient βu is negative, meaning that positive values of potential have a negative

influence on the protection factor and vice versa.

Protection factors estimated with the updated Best model (Eq. 6.6) are compared with

experimental values in Fig. 6.10 and show the improvement of the model with respect

to the classic Best model (Fig. 6.6 and Fig. 6.7).

The introduction of the dependence on the electrostatic potential in the structural model

(Eq. 6.6) improves the model developed by Best and Vendruscolo (2006). In fact,

correlation increases up to 0.66, six times higher than the value found for the classic

Best model for the same dataset (Fig. 6.7). Moreover, the gaussian fit of the residuals

shows that overestimation of predicted protection factors is further decreased.
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Figure 6.10: Left: correlation between experimental and predicted protection factors
using the Best model with the introduction of a dependence on the electrostatic potential
(Eq. 6.6); the black dashed line shows the line y = x. On the right, residuals are
shown and fitted with a gaussian distribution (red dashed line). Parameters: βc = 0.21,
βh = −1.33, βu = −0.94

To summarize, the model developed by Best and Vendruscolo (2006) is not able to repro-

duce experimental protection factors for the dataset here analysed. The low correlation

found using the parameters βc and βh defined in the original paper (Fig. 6.6) cannot

be significantly increased even if such parameters are optimized using the dataset (Fig.

6.7). The introduction of the electrostatic potential of the protein evaluated at the amide

hydrogen of the residue leads to an improvement of correlation (Fig. 6.10).

The final value of correlation (0.66) should be considered as an initial step towards fur-

ther development of the model. Insights of the model could be obtained by considering

protection factors averaged over an ensemble of structures calculated through Molecu-

lar Dynamics simulations, recovering the original idea of Best and Vendruscolo (2006).

Moreover, other variables could be introduced: for instance, the flexibility of the protein

could be considered.
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Conclusions

The purpose of this work was to provide computational methods to extract high resolu-

tion information from coarse data. In the context of high-throughput experimentation,

HDX-MS has been established as a powerful technique to rapidly fingerprint both struc-

tural and dynamical properties of a protein.

The theoretical background of the phenomenon introduces several approximations that

must be taken into consideration while analysing experimental data. On the other hand,

the procedure to monitor the exchange of the amide hydrogens of a protein with deu-

terium contained in solution shall be accurately known since the presence of artifacts is

not negligible. In fact, despite being highly automatized, HDX-MS experiments still rely

on a manual correction of the isotopic envelopes performed by operators. Not only is

such an operation time consuming, but the results of this procedure are hardly repeat-

able. Softwares discriminating saturated peptides and correcting the carryover effect in

experimental isotopic envelopes would be appreciated by the HDX-MS community.

After introducing the state of the art in data analysis of HDX-MS experiments, the

ExPfact algorithm initially developed by Skinner et al. (2019) was described in detail.

First, it was applied to synthetic data to show the main issues arising from its usage and

to proof that, if an ideal dataset is available, the true values of protection factors can

be calculated. ExPfact was then applied to real world data. A first application probing

the mouse prion protein enables a comparison of protection factors extracted by the

algorithm with experimental values estimated by HDX-NMR, leading to the validation of

the algorithm. Protection factors of glycogen phosphorylase in three different states were
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then calculated by the algorithm, enabling the localization of conformational changes at

single residue resolution.

If high-quality datasets are available, ExPfact is able to calculate protection factors at

single residue resolution. Once protection factors are known, the evolution of isotopic

envelopes can be calculated and compared with experimental spectra. A back exchange

correction was proposed to recover experimental data. Such a correction reduces the

problem of back exchange to the estimate of one only parameter, namely the effective

back exchange time. The application of this correction to an extensive dataset could

relate such a parameter with experimental variables. Finding such a relation would

mean to characterize the effective back exchange time directly from experimental data.

As a consequence, the envelopes could be reproduced starting from protection factors

extracted by uptake curves. This would mean that the information encoded in the

centroid of the envelope is sufficient to completely describe experimental data.

Protection factors calculated for several residues of a protein can also be used to improve a

structural model connecting the structure of a protein to its exchange rates. A structural

model developed by Best and Vendruscolo (2006) has been introduced and improved with

the introduction of a dependence of the protection factor on the electrostatic potential of

the protein. Such a dependence enables to characterize protection factors if the structure

of the protein is known:

Structure → Protection Factor

Despite improving correlation between predicted and experimental protection factors,

the correlation of the structural model is still low to exhaustively explain the relation

between structure and exchange rates. Since ExPfact enables the estimation of protection

factors at single residue resolution, it may allow the creation of novel datasets that could

be exploited to study other dependencies of the structural model. In addition, a complete

characterization of protection factors starting from the structure of a protein would open

pathways to address the inverse ambitious problem, i.e. to estimate the structure of a

protein starting from the estimated protection factors:

Protection Factor → Structure

ExPfact is constantly under development, mainly proceeding towards its computational
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optimization and user-friendliness. The importance of the achievements of the algorithm

is testified by the interest of pharmaceutical companies like GSK and Astra Zeneca

in using ExPfact to find patterns of protection factors at single residue resolution for

different purposes.
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