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"Though this be madness, yet there is method in ‘t”
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Sommario

Questo elaborato si pone 'obiettivo di studiare il problema del traffico, concentran-
dosi su un modello semplificato in cui i veicoli sono confinati su una circonferenza
e la cui velocita ¢ determinata dal modello optimal velocity.

Il discorso si sviluppa su tre capitoli: nel primo viene presentato il modello
optimal velocity per il flusso del traffico e si procede a uno studio della stabilita
lineare attorno al punto di equilibrio stazionario. Nel secondo capitolo lo stesso
modello viene studiato nel limite termodinamico per un numero infinito di ve-
icoli. Si ricava una soluzione costituita da un’onda di traffico che si propaga in
verso opposto al moto delle auto. Nel terzo e ultimo capitolo il modello viene stu-
diato tramite teoria perturbativa nell’intorno del punto critico, introducendo un
potenziale termodinamico e seguendo la teoria di Landau delle transizioni di fase.
Vengono infine ricavate le medesime condizioni di stabilita del sistema trovate nel
primo capitolo.

Abstract

The aim of this work is to study the problem of traffic focusing on a simplified
model in which vehicles move on a loop with their velocity governed by the optimal
velocity model.

It consists of three chapters: in the first, we present the optimal velocity model
for traffic flow and we proceed in the study of linear stability near the stationary
equilibrium point. In the second, we study the same model in the thermodynamic
limit for an infinite number of vehicles and we find an analytic solution that de-
scribes a backward propagating traffic soliton wave. In the third and last chapter
we study the model near the critical point, introducing a thermodynamic poten-
tial according to Landau’s phase transition theory. We finally recover the same
stability conditions obtained in the first chapter.
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Introduction

Traffic models are a clear example of how physics of complex system can design
mathematical descriptions of everyday phenomena. As a matter of fact, willingly
or unwillingly, we all have to deal with traffic in our lives: we have to take it into
consideration when we go to work, to university and especially when we go on
vacation. The development of traffic science is therefore beneficial to the society:
in fact, understanding the factors that cause traffic would mean to know how to
prevent it and therefore enhance the living standards by building roads that are
less prone to traffic jams.

Traffic science aims to discover the fundamental properties and laws in trans-
portation systems [11]. Physicists have proposed simplified models in order to
discover the essential factors affecting on the traffic behaviour and, despite the
complexity of traffic and the complications of human behaviour, physical traf-
fic theory is an example of a highly quantitative description of a living system
that exhibits a rich variety of phenomena, such as dynamical jamming transition,
metastability and nonlinear waves [11].

The scientific studies for traffic problems were started in 1935 [11]. Substan-
tially, traffic can be viewed from two different point of views: macroscopically as a
compressible fluid, microscopically as a collection of small entities. Several models
were proposed for both of them: Lighthill and Whitham have presented the oldest
and most popular macroscopic traffic model, in which traffic jam was studied as
a shock wave |11],[8]. On the other hand, the most popular microscopic models
are the car following models. Newell in 1961 introduced the optimal velocity model
[11], that was later extended by Nagatani [10] with the next-nearest-neighbour
interaction. Mason and Woods [9] introduced the presence of different vehicles,
Nakayama et. al [12] the backward-looking model.

This work studies in detail an idealized situation of vehicles in motion on a
loop, with their velocities obeying the optimal velocity model. The outline is as
follows.

In the first chapter we briefly present the various traffic models, focusing on
the optimal velocity model. We present our idealized model, in which N identical
vehicles move on a loop with their velocities governed by the optimal velocity
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model. We study the linear stability near the stationary equilibrium state and we
explicitly write the conditions for stable equilibrium in the presence of small delay.

In the second chapter, we develop a continuum analysis of our traffic model
in the limit of an infinite number of vehicles. We rewrite the traffic equations in
the continuum case and, following Hasebe [7], Bazzani [5], we find a backward-
travelling traffic wave solution. We present the results of a numerical simulation
of our traffic model.

In the third and last chapter we apply perturbation theory to our problem [5]
and we analyze the stability and instability conditions near the critical equilibrium
point using Landau’s phase transition theory |13]. We introduce a thermodynamic
potential and we study the stability and instability conditions according to the
different values of the delay. We finally recover the same solutions we found in the
first chapter.



Chapter 1

Modelling traffic

We present some models describing traffic flow on a highway, dividing them into
two macro-categories: macroscopic and microscopic traffic models. We will later
focus on the optimal velocity model, that will be the object of an analysis con-
cerning the stability of its stationary equilibrium solution in presence of a small
perturbation.

1.1 Traffic models

Among the various mathematical descriptions of traffic, we can identify two cat-
egories: macroscopic and microscopic models (see [11]) . The main idea at the
foundation of the former is the parallelism with the motion of a compressible fluid.
This description gives an overall view of the vehicles” motion without focusing
on every single entity, but relying on average quantities. Microscopic models in-
stead offer an opposite description of traffic, viewing it as made up of interacting
individuals, the motion of each one taken into account simultaneously.

The typical example of microscopic traffic model is the car-following model
[11], in which the j-th vehicle is only affected by the (j + 1)-th, called the lead-
ing vehicle. Non-integer car-following models are called follow-the-leader models.
Among the car following models we can find the optimal velocity model, which we
will discuss shortly, and the next-nearest-neighbour model [10], in which the j-th
vehicle’s dynamics is also influenced by the headway between the (j + 1)-th and
the (j +2)-th. Mason and Woods [9] have achieved a further generalization of the
optimal velocity model, including vehicles of different types (cars and trucks) and
introducing different delays depending on the type of vehicle. Another general-
ization comes from the work of Nakayama et al [12] in which the driver looks at
the following vehicle as well as the preceding one and is, in fact, called backward-
looking model. Macroscopic traffic models, on the other hand, treat traffic as a

11



12 CHAPTER 1. MODELLING TRAFFIC

compressible one-dimensional fluid [11] whose state is described by the spatial ve-
hicle density and the average velocity. The oldest continuum model, along with a
continuity equation, was proposed by Lighthill and Whitham [g].

1.2 Optimal Velocity model

We focus on the optimal velocity model and we apply it to traffic on a circular lane.
In 1961, Newell [11] proposed the delay differential equation that characterizes
this model (more details on delay differential equations and the differences with
ordinary differential equations can be found in App.

iL‘k<t + T) = %pt(Axk(t)) ke [O,N] (11)

where 7 is the delay, Az (t) is the distance between the (k+ 1)-th and k-th vehicle
at time ¢, N is the number of vehicles and Vi (Axk(t)) is the optimal velocity
function. In Sect.[1.5] we present all the properties that Vo (z) must satisfy so that
our model adapts to our intuition of a real, even if simplified, traffic situation. All
vehicles are ordered so that xy; > xp for all the duration of the motion. We will
avoid situations of collisions and overtaking, since they require a more articulate
discussion.

The idea that lead to this form of equation is that, while driving on a one-way
lane without junctions, the driver focuses only on the preceding vehicle, adjusting
its velocity according to the distance from it in order to avoid collisions. The
driver’s reaction time is mathematically described by the delay. The average brake
reaction time for an unalerted driver in a surprise situation is 1s [15].

Without any changes in our model, we can move the delay on the right hand

side of Eq. (|1.1]) as following

in(t) = Vip(Azp(t — 7)) k€ [0;N] (1.2)

This is the form of the optimal velocity model that will be used in our future
calculations.

1.3 Vehicles on a loop

We simplify our description of traffic assuming that the IV vehicles are alike, each
one measuring dy in length and travelling on a loop of length L without junctions.
The absence of junctions implies the conservation of the number N of vehicles,
since new vehicles can not enter the road nor already present vehicles can exit
it. Thanks to this periodic boundary condition, the last vehicle (namely, the
(N — 1)-th) obeys the same dynamic as the others. The function z(t) indicates
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the position of the centre of the k-th vehicle, so that the normalized distance
between two consecutive vehicles can be written as:
x t) — xp(t) — d,
Azy(t) = era(t) = Zult) = do (1.3)
do
where d; is the vehicles’ length. In our model, the optimal velocity equation takes
the form:

Tpp1(t —7) — 2p(t — 7) _d0> (1.4)

1) = Voo .
0

We introduce a periodic boundary condition on the 0-th and N-th vehicle since
we defined

In the case of a small delay, Eq. (1.2)) can be approximated by

ik(t—i—T) ijk(t)—FTik(t) TK1 (16)

so that we have an expression for Z(t)

Bu(1) = ~[Vapa (Au(0) = (1)
= BlVop (Ar(1)) — (1)

Where f is the inverse of delay time called sensitivity. We remark that Eq.
and Eq. are not mathematically equivalent: the former is only an approxima-
tion for small values of 7 of the latter and has lost the character of delay differential
equation since it does not presents anymore a dependence from a delay.

Eq. can be written as the system:

Uk(t) = BVopt (Azy(t)) — dr(t)]

We can rescale it in order to get only one relevant parameter, namely 3, leaving
the others rid of the physical dimensions

(1.7)

k € [0, N] (1.8)

= xp/dy U, — UL/ Vs t' = tus /do (1.9)
so that

d 1 d d 1 d d v d
—_— = — = —— 1.10
dv v dv/ dt do dt’ ( )

dzy, - d_o dz},
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and the rescaled system of Eq. (1.8]) becomes

{fb%(t’) = vi(t)
W(t) =B (Vo (Aai(t) — 23(t)

Vopt/Voo and the only relevant parameter is 5 = f—o that includes

k [0, N] (1.11)

where V’

opt =

the others.

1.4 Relevant parameters

We analyze a few relevant parameters and variables that will be frequently used
in the following discussion:

e wy(t), the normalized distance between two consecutive vehicles
e (', the road’s capacity

e o, the average vehicles’ density

We start from the first one, wg(t). It is defined as
l‘k+1(t) - l’k<t) — do

w(t) = 7 kel0,N—1] (1.12)
0
summing over the index k we obtain:
L Nd
Z wp(t) = ——=2 (1.13)

0

that is, the normalized length of the free road, cleared from the space occupied by
the vehicles. The sum in Eq. is a useful indicator of the road’s congestion
level: for this reason, we introduce the parameter C' that measures the road’s
capacity:

C = Zwk :__N (1.14)

It is always C' > 0, with the equahty indicating a fully congested road. Lastly, we
introduce the average vehicle density pg

Nd, N ,
with C" = C'dy/ L and where N,,, = L/d, indicates the maximum number of vehicles
that can be held by the lane. pg is a road’s congestion indicator as well: this time
we have py < 1, with the equality always meaning the presence of a fully congested
road: in fact, it is realized when N = N,,, that is, when there is no space between
two consecutive vehicles.
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1.5 Optimal Velocity function

We analyze the properties of the key feature of the optimal velocity model: the
optimal velocity function. In its most general expression Viui(w) is a sigmoid
function of the normalized distance between two consecutive vehicles. We require
it to fulfil the physical conditions:

o lim V (w)=0
w—0 op ( )
o lim Vi = vo
w—00
e V., must be monotonically increasing

The first two properties only reflect the behaviour of the vehicles in two extreme
cases: in a congested road, as the distance between vehicles tends to zero, so
does their velocity; while in a free road the velocity of each vehicle tends to the
speed limit, here indicated as v,. Mathematically, and these properties will be
extensively exploited in Ch. |3| we need our optimal velocity function to present
a flex point at a distance w = w, that is the critical distance between two

consecutive vehicles (see Sect. [L.7). We will also assume that Vou(w) € C3(R),

so that VJ  (w) presents a maximum at w = wg and V) (w¢) = 0 along with
Vopt (we) <0.

The analytical form of the optimal velocity function should be deduced from
empirical data and probably does not exist a universal function that can be used
for all models. For our discussion, we will assume that the optimal velocity has
the expression

Vopa(£) = == (tanh (aw — w) + tanh (wf,)) (1.16)

where w% > 1 so that lim V,,, = v is satisfied. Fig. shows the optimal

w—r 00
velocity function with the following choice of parameters: v, = 2,a = 1,wd = 6.

In Fig. [1.2]is plotted its first derivative.
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Figure 1.1: Plot of Vop(w) (1.16]) for ve = 2,0 =1, w2 =6

Headway (a.u.)

Figure 1.2: Plot of V, (w) (L.16) for v = 2,a = 1,wg, = 6
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1.6 Linear stability

Following Bazzani [5], we now proceed to study the stability near an equilibrium
point using linear stability theory, that is one of the most common and fruitful
approach to the study of any dynamical system, since it provides satisfying ap-
proximate solutions to non-linear systems that allow to understand their main
features without the need of analitically solving them.

1.6.1 Equilibrium points

A dynamical system described by an equation of the form:

#(t) = f(x)

has an equilibrium point when the condition &(¢) = 0 is satisfied. In our problem
x is also a function of the index k, that identifies the vehicle’s number, and f(z) is
given by the optimal velocity function. The condition #(¢) = 0 causes the optimal
velocity function to vanish, implying the stillness of all vehicles: it is not the kind
of equilibrium we are looking for, since it does not allow the system to evolve in
time.

We therefore look for an equilibrium solution in which all vehicles, indepen-
dently from time and vehicle number, move with the same velocity, that remains
constant during motion. Looking at our problem, it is easy to see that if we put
the reciprocal distance between vehicles equals to w® = C'/N, we obtain the sta-
tionary solution we are looking for. That is easily explained using the definition

of wy, and C found in Eqgs. (1.12)) and ([1.14])

wo =
. do (1.17)
C=——-N
do
inserting the definition of C' in the expression for w°
0 0
= -1 1.18
dy do N (1.18)

and isolating the distance between the centres of two consecutive vehicles, we
obtain
0 o_ L
Thpt ~ Tp = 5 (1.19)
that is, all vehicles are placed at the reciprocal distance obtained by dividing the
total length of the lane by the number of vehicles. The optimal velocity for the

trivial equilibrium condition is written as: Vi, (w®).
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1.6.2 Perturbation of the stationary solution

We now proceed to study the conditions for stability in presence of a small oscil-
lating perturbation, that we can write as

wy(t) = w'(1 + eexp(At + 2mink/N)) kel0,N —1] (1.20)

where n is the oscillation number and A is a complex parameter. The perturbation
is periodic of period N in the spatial variable. Our approach for finding the
stability conditions consists in studying under which conditions the real part of
the parameter A is non-positive: in fact, when this happens, the solution does not
diverge, but it oscillates for Re A = 0 and it decays for Re A < 0 respectively.

We rewrite Eq. as the time derivative of the distance between two con-
secutive vehicles by subtracting term by term two of its successive instances

Eri1(t) = Vopr(Wpsa (t — 7)) —

(1) = Vope(wi(t — 7)) 2
so that we obtain, setting dy = 1
wi(t) = [Vopt (w1 (E — 7)) — Vope (wi(t — 7))] (1.22)

We will show in App. [C|how this relation can be used to describe the dynamics of
nodes in a network.

We expand up to the first order in €, inserting the perturbed expression for
wy(t) in Eq. (1.22). On the left hand side we obtain

Wy (t) = wAeexp(Mt + 2mink/N) (1.23)
while on the right hand side we have

Vopt (W41 (t = 7)) = Vopi (wi(t — 7)) =
(w")

Vopt + Opt( Nuweexp(A(t — 1) + 2min(k + 1)/N)
0 o . (1.24)
— Vopt(w”) — Opt( Yweexp(A(t — 7) + 2mink/N) =
Voo (w)u’eexp(A(t — 7) + 2mink/N)[exp(2min/N) — 1]
Eq. then becomes
w’ Ae exp(\t + 2mink /N) =
Vo (w w’eexp(A(t — 7) + 2mink/N)[exp(2min/N) — 1] (1.25)
simplifying,

AN = VI () [exp(2min/N) — 1] (1.26)
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using Euler’s identity we get
AN =V (w”)[cos(2mn/N) — 1 + isin(2an/N)] (1.27)

We first see what happens if the delay is absent, 7 = 0. We have that Eq. (1.27))
becomes
A=V (w)[cos(2mn/N) — 1 +isin(2rn/N))] (1.28)

Writing A = Ag + ¢A; and dividing the real from the imaginary part

A = VI (w)[cos(2mn/N) — 1]

opt
1.29
A1 = Vi (w) sin(27n/N) (1.29)
We notice that
Ar =V (w”)[cos(2mn/N) —1] <0 VneN (1.30)

We can conclude that, when the delay is absent, the initial perturbation evolves
into a situation of linear stability for all ns: the distance between two vehicles does
not grow uncontrollably, instead, it oscillates decaying exponentially following the
parameter A\r and therefore resulting in a damped oscillating motion. For Re A = 0
the distance between vehicles oscillates without damping.

1.6.3 Finite delay

We now study the evolution of the system for nonzero values of 7.
Writing A = Ag + 17, Eq. (1.27) becomes

Mg +iXf]eET[cos(A\T) + isin(A;7)] =

1.31
Voo (w)[cos(2mn/N) — 1 + isin(2rn/N)] (1.31)
separating real and imaginary parts, we obtain the system
eMT[Ag cos(A7) — Arsin(Ar7)] = Vo (w®)[cos(2an/N) — 1] (1.32)
e[\ cos(ArT) + Arsin(A;7)] = Vi, (w°) sin(2n/N) '

We are interested in the conditions that keep Ag < 0. We first impose the condition
Ar = 0 in the system of Eq. (1.32)) in order to obtain the critical value of 7 that
demarcates instability from stability. We get the following

{)\1 sin(A\;7) = —V;/pt( O)[cos(2mn/N) —1] = 2vo/pt( ") sin’(mn/N) (1.33)

Arcos(Arr) = Vo (w®) sin(2rn/N) = 2V, (w°) sin(7n/N) cos(mn/N)
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we have a solution in terms of 7 and A;

™

n
/\[T = W /\[ = QV,

opt

(w®) sin(7n/N) (1.34)

so that we can define the critical value of T, 7o: the value in correspondence of
which the parameter Ar goes to zero and the solution is stable and oscillating

™

K 2NV (w0) sin(mn/N) (1.35)
in the limit n/N < 1 we can write it as
e~ 2V (w”)] n/N < 1 (1.36)

taking advantage of the known limit hII(l) sin(z)/z with x = mn/N.
z—

In the case of small 7 it is possible to get an explicit estimate for Az < 0. We
follow the work of Bazzani [4]. Starting from two consecutive instances of Eq. (1.8))

Tr1(t) = veya(t)
b (t) = Vo (A (1) = v (1)

(1.37)

subtracting memberwise every equation in the system, we move on the frame of
reference in which the variables are the relative distances between the vehicles

(1.38)

—_

uk(t) = ;[‘/:)pt(wk+l) - ‘/opt(wk) - uk(t)]

where we wrote uy(t) = vgy1(t) —vg(t). We perturb wy(t) as we have already done
before, obtaining
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. 0 n
Wy = Uy, = €W\ exp (27rzk:ﬁ + )\t>

U, = ew’ A% exp (QWik% + )\t>

(1.39)
Vopt (W 4+ Aw) = Vope (w®) + Vo/pt(wo)Aw
= Vo (w?) + Vo (w”)ew® exp (27?2'%;% + At)
So that the second equation in the system ([1.38)) looks like
ew’ exp (2m’k% + )\t> N =
- o N ” (1.40)
—ew exp <2mkﬁ + )\t) [—)\ + Vopt (w”) (exp(QmN> - 1)]
reducing, and writing Vo (w) = K, we get
1 n
N2 =~ |=x+ K (exp(2mit ) — 1)] 1.41
- + K (exp|(2mi N (1.41)
which is a second order equation in the variable A. Solving it, we obtain
1 1 K n
o=k \/4_72 = [exp(QmN> - 1} (1.42)
that can be written in the form
1 2 2
Ae = oo |1 \/1 +ATK [cos(%) — 1+ isin(%)} (1.43)

For future convenience, we introduce 6§ = 2rn/N and A = 4K7. The solution A_
is always stable, since its real part will clearly be negative. We focus on A, and we
look for the instability conditions, resulting from Re A, > 0, that can be written
as

Re/1— A+ Aexp(if) > 1 (1.44)
We can compute the square modulus of the square root argument

11— A+ Aexp(if)]> = |1 — A+ Acosf + iAsinf|* =

1.45
(1—A)*+2Acosf(1 — A) + A? (1.45)



22 CHAPTER 1. MODELLING TRAFFIC

thus we can explicitly write its phase ¢

cos = 1 —A(1 —cosb) (1.46)
V(1 — A2 +2A(1 — A)cosf + A2
using the equality
2
[Re V1—A+ Aexp(if)| =
V(1 —A)2+24(1 - A) COSQ—FAQCOSQg = (1.47)
V(L= A2 +2A(1 —A)cos.G—i—AQCOS(#++1

We can write the instability condition as follows

1— A(l —cos) + /(1 — A)2 +2A(1 — A) cos§ + A2 > 2 (1.48)
We get to

(1— A2+ A2+ 24(1 — A)cosb > [1 4+ A(1 — cosh)]? (1.49)

where

[14+ A1 —cosf)]® = (14 A)? —2A(1 + A) cos 0 + A% cos 6 (1.50)

Developing the calculations a little bit further we get to the final condition

4A —4AcosO + A%cos’0 — A2 <0

1.51
= A(1 —cosf)[4 — A(l +cos0)] <0 (1.51)
In order for it to be satisfied, we then must have
4 1
0>——-1=—-1 1.52
o8 A TK (152)

that is the condition for linear instability. When the sensitivity satisfies ' < 2K
and the value of N or n makes 6 decrease to zero (and therefore cosf — 1) we
have an unstable solution, since the conditions for linear instability are satisfied

2nmt [
— > —=-1 1.53
cos — e (1.53)
For example, we can say that perturbations characterized by long wavelengths,
namely with small n, and with ' < 2K are linearly unstable. On the contrary,

the condition for linear stability reads as

1
——1>1
TK
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that is . )
_ 0
; Z 2K = 2‘/;),pt(w ) %
1
S (1.54)
2V55 (w?)
=7< 1710

1.7 Conclusions

We summarize the results obtained with the previous analysis:

e 7 > 7¢: the traffic flow is unstable, small perturbations tend to amplify and
the flow changes to a different dynamical state.

e 7 < 7¢: the traffic flow remains stable and perturbations decay with time.
e T = 7¢ is a condition of neutral stability.

From Eq. we can write the condition on 7 as a condition on N: there
is a critical value of N, N¢, beyond which the traffic low becomes unstable.
Usually, when one has to deal with a finite number of vehicles, fixes 7 and writes
Eq. as a condition on N. When there are a few vehicles, w® increases (see
Egs. (1.19), (L17)) and V], < 1, so the condition 7 < [2V] (w®)]! is satisfied
and the system is stable. This means that any perturbation caused, for example,
by a vehicle that moves slightly out of the uniform flow, will be reabsorbed in the
system, that continues in its uniform evolution.

When the number of vehicles increases, we assist to a decrease of w® and to an
increase in V, (w°): there are critical values N¢ and wg reached when Vo (w®)
is in the flex point and V! (w°) is in the maximum point (see Fig. [1.2)). For these
values, the equilibrium solution becomes unstable

opt
7~ [2V 5 (we)]

Any variation from the uniform motion will cause the entire system to change
its dynamical state: a backward-moving traffic soliton will appear and the time
evolution of the distance between two consecutive vehicles will be controlled by
this soliton wave. This phenomenon will be the object of study of the successive
chapters of this work. When N > Ng, VJ decreases (see Fig. , so a stable
solution is recovered.

-1

(1.55)
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Chapter 2

Continuum limit

In this chapter we present the continuum version of the optimal velocity model, we
perform an analogous study on the linear stability near the equilibrium point and
we look for a travelling wave solution called traffic soliton. In Sect. we present
the results of a numerical simulation carried out in order to show the pattern of
oscillating congested traffic on a circular lane.

2.1 Thermodynamic limit

In order to obtain the continuum version of the traffic model (see [5]), we will em-
ploy a frequently used approach derived from statistical mechanics called thermo-
dynamic limit that will allows us to focus on average quantities without considering
fluctuations about their mean values.

We take the limit for an infinite number of vehicles, N — oo, with the con-
straint of keeping the stationary equilibrium distance between consecutive vehicles
constant w® = C'/N: this means that C' must go to infinity as well. Otherwise,
the vehicles’ distances and velocities would reduce to zero and we would get to a
still state that does not evolve in time.

Our thermodynamic limit takes the form:

N —o00,C —o0o | w'=C/N = constant (2.1)

2.2 'Traffic equations in the continuum limit

We now introduce three parameters frequently used in the following discussion:

e n, the oscillation number

e 5 =n/C, the wave number

25
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° 2 = k:% = kw" a real index used, as in the discrete case, to indicate the
equilibrium position of the k-th vehicle

In analogy with wg(t), the distance between consecutive vehicles in the dis-
crete case, we introduce the quantity ¢(t, z), that is necessary to write the traffic
equations in the continuum limit. The dependence of w from k is realized in g
with the parameter z: to maintain an appropriate notation, wy,(t) (a € N) will
be indicated as g(t, z + aAz) with Az = w°.

We finally rewrite Eq. using continuous variables

9g(t, 2)

ot
The equation depends on the parameters (w®, 7). For a finite number of vehicles
we have a constraint on wg(t), (1.14)), translating in the continuum case, the sum

becomes an integral extended from 0 to C, since we are integrating on the spatial
variable z in order to obtain the total length of the free road

= Vopi(9(t = 7,2 + Az)) = Vo (g(t — 7, 2))] (2.2)

N-1 1 C
wi(t) =C = Clim —0/ dzg(t,z) =C (2.3)
k=0 N o

since dz = w°dk. We can write it as

| N 1 /€
ol Z wi(t) =1 = Clgréo 5/0 dzg(t,z) = w" (2.4)
k=0 N—o0

2.2.1 Consistency with the discrete case

We can now demonstrate the consistency between the two models. The stationary
solution, in which all vehicles move keeping the same reciprocal distance, has
obviously no time dependence: we can write it as gg = go(z). Since vehicles move
with non-zero velocity, it also must be periodic of period w°:

go(2) = go(z + Az) (2.5)

where Az = w" is the gap between vehicles in the stationary solution. The sta-
tionary continuum case has also a physical solution that is go(z) = const, where
the distance between consecutive vehicles is everywhere the same. If we insert
the physical solution in the constraint in Eq. (2.4), we finally have go(z) = w’:
this means that the equilibrium solution is the same as the discrete case and our
continuum model is consistent with the discrete one.
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2.3 Linear stability in the continuum limit

We now introduce a perturbation in the stationary solution as we previously did

in the discrete case (Sect. [1.6.2)

g(t,z) = lim wy(t) = w'(1 + eexp(At + 2midz)) (2.6)

N—oo

where the second addend in the exponential term was obtained by multiplying and
dividing by C' and using the definitions of z and §. We proceed with the same
linear stability study already carried out in Sect. for a discrete number of
vehicles, expanding Eq. up to the first order in €. For the left side we obtain

dq(t, 2) _

T w’ \e exp(\t + 27i62) (2.7)

while the right side gives

Vopt (9( = 7,2 4+ A2)) = Vope(g(t = 7,2)) =

Vot (90) + Vi (g0)w’e exp(A(t — 7) + 27id (2 + Az)) 2.8

— Vopt(g0) — Opt(go)w eexp(A(t — 7) + 2midz) =

Voo (go)w’eexp(A(t — 7) + 2midz)[exp(2mid Az) — 1]
So that Eq. becomes

w’Ae exp(At + 27idz) =

Voo (go)w’eexp(A(t — 7) + 2midz)[exp(2mid Az) — 1] (2:9)
simplifying

A = VI (go)lexp(2mid Az) — 1] (2.10)

As we did before, focusing on the case in which the delay is absent, and writing
A = Ag + i)\, we obtain the following expressions for its real and imaginary part

{AR = Vi (a0)[cos(2miAz) — 1] @11)

A1 =V (go)sin(2mdAz)

opt

This result is clearly analogous to the one obtained in the Sect. [1.6.2, Eq. ([1.30))

Ar=V,

opt

(go)[cos(2m6Az) —1] <0 V6 eR (2.12)

We can conclude that, in the absence of delay, the equilibrium is always stable, as
in the discrete case.
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Even when the delay 7 is finite, we get the same result obtained in Sect.
We repeat the most relevant passages, firstly dividing the real and imaginary part
obtained by substituting A = Ag + iA; in Eq. (2.10))

e[ \g cos(A;T) — Arsin(A\7)] = Vo’pt(go) [cos(27r5w0) — 1} (2.13)
e MTIA cos(ArT) + Arsin(Ar7)] = Vi (go) sin (2mow’) .
Setting Ag =0
Arsin(Ar7) = =V (o) [cos(2mow®) — 1] = 2V, (go) sin®(méw") (2.14)
Arcos(ArT) = Vi (go) sin (2m6w®) = 2V (go) sin (mdw") cos(row’) '
The result still being
AT = mow’ Ar =2V} (g0) sin(méuw®) (2.15)
with the same critical value of 7
mow’
TC = - 2.16
© = V7 (go) sin(mow") (2.16)
along with the same stable equilibrium condition for small delays
< o (2.17)
T =T :
Wialg) ~©

2.4 Analytic solution

We look for a travelling wave solution of Eq. (2.2)), in which we will use the ex-
pression for Vot (w) found in Sect. that we remind here for clarity’s sake
Vopt (W) = 2%o[taunh(cmu — w¢) + tanh(wl)] w >0

with w® > 1 so that lim V., = vs. Following Bazzani [5], Hasebe [7] the solution
w—r00

we are looking for should have the travelling wave form

g(z,t) = H(z + vt) (2.18)

With v being the wave’s velocity. We set u = z + vt for the sake of convenience.
Inserting the wave form in Eq. (2.2)), we obtain

OH (z + vt)

) Wopa(H (= + 0 4 w(t = 7)) = Vo (H( 4 vt = 7)))]  (2.19)
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In terms of the variable u, the previous equation can be written as

dH (u)
du

We proceed with a rescalation of the variable u, v/ — u/w°, to fix the spatial scale
and we set the travelling wave’s velocity v = w®/27. We can write Eq. (2.20) as

v dH(u) 1 1
v v (w1 o\ v (-t 2.21
aar (g (o)) e

that becomes

14

— [Vopt(H(u +w® — VT)) — Vot (H(u — v7))] (2.20)

v dH (W)
wd  du

Expliciting the optimal velocity function, the right hand side takes the form

= Vope(H (u' +1/2)) = Vo (H (v — 1/2)) (2.22)

Vopt (H (u' +1/2)) = Vopr (H (v — 1/2)) =

tanh(H (u' + 1/2)) — tanh(H (v’ — 1/2)) (2.23)
Defining G(u') = tanh(H (v')), we obtain
dG(v) _ 2 dH (W) L o dH(W)
T = L tanh® H()| =2 = [1 = G*(u)| =~ (2.24)

so that Eq.( [2.22]) becomes

2.4.1 Jacobi elliptic functions

We now give a brief insight on the definition and some properties of Jacob: elliptic
functions and we will show that they constitute a solution of Eq. . Jacobi
elliptic functions belong to the class of elliptic functions, that appear in common
mathematical and physical problems: as trigonometric functions appear in the
problem of the parametrization of the arc-length of the circle, elliptic functions
emerge in the parametrization of the arc-length of an ellipse so that they are
often referred to as a generalization of trigonometric functions. In physics, we
can find them in the calculations of the period of a pendulum abandoning the
approximation of small angles.
We can introduce Jacobi elliptic functions from integrals of the form

e [0;1] (2.26)

¢ de
u= -k
/0 V1 —ksin®6



30 CHAPTER 2. CONTINUUM LIMIT

where we call the angle ¢ amplitude: ¢ = amu. There are in total twelve Jacobi
elliptic functions, we will focus on the most used ones that are [1]

sn(u) = sin(yp)
cn(u) = cos(y) (2.27)
dn(u) = (1 = ksin®(9))"? = A(p)

We now demonstrate that, using the properties of Jacobi elliptic functions, we can

obtain an equation analogous to Eq. (2.25)).
Focusing on the addition property for sn(u) [1]

sn(z) en(y) du(y) + sn(y) cn(z) dn(a)

sn(m + y) = 1_ k SDQ(ZE) an2 (y) (2.28)
with o +y = £1/2
;o1 / 1
sn <u —I—§,k‘) —sn (u —5) =
sn(u/) en(3) dn(3) + sn (3) en(«) dn(w) (2.29)

1 — ksn?(v)sn? (1)

B sn(uw)en (—3) dn (=3) +sn (—3) en(u) dn(w)

1 — ksn? (u)sn? (—3)

and, knowing that sn(zx) = —sn(—z), cn(z) = cn(—=z) and dn(z) = dn(—=z), we

obtain
1 1 en(u') dn(u’) sn (3
e - =2 2 2.
sn <u +2) sn (u 2) T~ ke () sw?(u) (2.30)
The derivative of sn(u’) takes the form
dsn(u)
v en(u’) dn(u) (2.31)

so that we can write the previous equation as

o () (v D) n(el) e

We finally obtained the same form of Eq. (2.25)).

2.4.2 Traffic soliton

We showed that the solution of Eq. (2.25) must have the form G(u') = Bsn(u/, k),
where we highlighted the dependence from the parameter k. Using it to rewrite
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the left side of Eq. (2.25)
v dG(u')/du’  vB  sn'(u, k)
wl 1 —G2(w) w1l — BZsn2(u/, k)
for the right hand side we obtain

(1) ol D) mmamfus D) sm(w 1)

So that Eq. (2.25) becomes

v sn’ (v, k) , 1 , 1

= - = — - 2.35

w1 — B2sn?(v, k) o (u + 2 S (2.35)
The similarities between Eqs. (2.32) and (2.35)) lead us to set some constraints in
order to have a solution of the chosen form

v 1
E =2sn (5, k)
1
6 = :]:\/ESH <§, k)

Recalling that v = w®/27, we obtain for the first constraint

1 1
k) == 2.
sn (2, ) py (2.37)

an equation that determines k£ < 1, that is related to a spatial scale. The parameter
[ is determined in the second constraint using the result that we have just obtained

vk
5:iz

Therefore, we have found that the fundamental parameter is in fact 7, since alone
it determines the soliton velocity, v, and the wave form via k and 8. The soliton
velocity also helds a dependence from the number of vehicles, since it contains the
parameter w’.

At the critical density, we have:

(2.33)

(2.36)

(2.38)

Vot (w 2)=1/271¢ (2.39)
so that the critical wave velocity can be expressed as a function of VJ (wg):

ve = weVop (We) (2.40)
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We can conclude that when the number of vehicles reaches the critical value, any
small perturbation leads to the formation of a localized moving cluster of traffic
with velocity vo as the result of a dynamical phase transition. The traffic cluster
is backward propagating with velocity vo = 1/27¢.

We now write the expression of the traffic soliton wave H(u) by first inverting
the relation

G(u) = tanh(H (u)) (2.41)
that can be solved with
1.1

H(u) = arctanh(G(u)) = 3 In li—% (2.42)

and we have an analytic expression of the traffic soliton wave

w? 1. 1+k/(47)sn(z +w/(27)t, k)
H —t) ==1 ’ 2.4

<Z o7 ) 2 T k/(47)sn(z + w®/(27)t, k) (243)

In App. [B] are reported the defining properties of solitons along with a brief his-
torical introduction.

2.5 Numerical simulation

We performed a numerical simulation in order to concretely view the development
of the oscillating congested traffic, that shows the backward moving traffic waves.
We employed a C++ code to obtain the data. The algorithm works following this
outline: firstly, the equilibrium positions between vehicles are calculated, using
the initial parameters provided by the user. Then, the program adds a sinusoidal
perturbation in the form

21(0) = w’(1 4 asin((2rw’k25)/L)) + z_1(0) (2.44)

with @ = 0.1. It then memorizes the distances between consecutive vehicles at
the present time, at the delayed time and at all the time steps in between the two
(a parameter is used in order to choose the minimum time step that discretizes
the time interval 7). It then calculates the next time step distance between two
vehicles as the sum of the distance they had in the present with the product of
the time step for the difference in the velocities of the two consecutive vehicles.
Finally, it prints on a text file positions and distances between vehicles.

Figs. 2.1] and show the results of a simulation performed with the
following parameters: length L = 5000 m, time step 0.1s, delay 7 = 1s, vehicles’
length dy = 5m, v,, = 7m/s. As a result, we have an inhomogeneous traffic
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flow, with the coexistence of both free and jammed traffic states. The former is
represented by the higher values of the headway, while the latter is represented by
its the lower value. In Figs. we can appreciate the backward propagation
of the traffic waves.

—~ 40
E 35
=~ 30
E i
a0 U0/
I i i TR
. 835 \
4% 840
G 84
0% :50 ) 500 ] 100:;\ - 7500 2000
eng

Figure 2.1: Oscillating congested traffic pattern for N = 250 vehicles on a circum-
ference. We plotted three headway profiles every 10s
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Figure 2.2: The first figure shows the headway profile at consecutive time frames,
t = 820s (blue), t = 830s (red), we can appreciate how the traffic waves propagate
backwards. The second figure presents the headway profile at t = 820s (blue) and
the headway profile at ¢ = 830s (yellow) obtained by translating the positions
ahead of the space travelled backward by the traffic wave in the time interval
between the two plots (10s) with a wave velocity vy = 7.5m/s calculated using the
simulation parameters.



Chapter 3

Perturbative approach

This chapter is dedicated to solving our traffic equations applying perturbation
theory. We remark that this perturbative approach analyzes the dynamics near
the critical state transition point w = w and it is not an approximation of the
soliton solution obtained in Ch. [2| for a generic stationary equilibrium state.

We start again from Eq.(1.22)

() = Vi (W (£ = 7)) = Vope (wp(t = 7)) (3.1)

Following Bazzani [5], we look for a wave solution in the form

wi(t) = we + H(kAz +vAzt, t) = wd + H(X,t) (3.2)

where H(X,t) is the undulatory term that moves with velocity vAz. Az denotes
the gap between two consecutive vehicles in the stationary state, here it is used
as an index; later we will set Az = 1 therefore we will simply indicate the wave
velocity with v. Our study addresses the analysis of the system near the critical
transition point, namely the distance w = w® in correspondence of which the
optimal velocity function presents a flex point. For this reason, we write v as

v="V+Av (3.3)
where
dVq
Vi = dzpt =1 Av = eV], (3.4)
’LU:U]C

In our perturbative expansion we will consider 0H /0t < 1 since the perturbation
is about the stationary solution and therefore variations with respect to time are
very slow. For this reason, in our future calculations we will not proceed beyond
the first order when expanding our function with respect to the variable ¢t. For

35
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clarity’s sake, we remark a few properties of the optimal velocity function along
with a few results we obtained in the previous chapters:

e Vipt is a sigmoidal function with a flex point at w = wg,, therefore V[ (wg)
is a maximum point, VJ (w¢) = 0 and V1 (wg) < 0. In the development
of our calculations, we will set wd = Az =1, V! (wd) ~ 1, V/ (wd) = =2

opt opt
(see Figs. [1.2] 3.1)).

e We have a critical value of 7, 7¢ = 1/ 2V (w®)). If 7 < 7¢ the equilibrium
solution is always stable, while if 7 = 7¢(1 + €), the dynamical state changes

and a traffic soliton wave develops.

05

-05

Vopt (a.u.)

15 F

1 1 1 1

0 2 4 6 8 10
Headway (a.u.)

Figure 3.1: Plot of V" (w) (L.16) for vee = 2,a = 1,wg, =6
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3.1 Development

Firstly, we remark that here and in the following sections we will write Vou, Vo,

and V7, intending the values of these quantities evaluated at the critical point w.

We insert our ansatz in Eq. (3.1)) and we expand up to terms of order O(7?)
in the X variable, while in the ¢ variable we consider only a first order expansion,
since H(X,t) has a slow dependence on ¢, as previously said. For the left side we
obtain

d d
< - SH(X -
dtwk(t+7)) % (X,t+ 1)
dX (3.5)

8tH(X,t+T)+aXH(X,t+T)E ==

OH(X,t+7)+0xH(X,t+7)Azv
Now expanding up to the third order in 7 we get

O H(X, t+7)+0xH(X,t+7)Azv =
OH +vAzOxH + vAz10x 0, H+ (3.6)

2 3
(vAz)210% H + (yAz)3%a§H + (mz)‘*%%ﬂ
We expand V¢ (wy) considering H as a perturbation

Vo (t04(8)) = Vo (w + H(X, 1)) =
e (3.7)
Vops + Vi H (K, ) + =2 HP (k1)

opt

where we used the fact that V), = 0 since V] has a maximum at w = wg.

Therefore for the right side of Eq. (3.1) we obtain the expansion
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Vopt (W 1(t)) = Vopi (wi(t)) =

"

v
Vi (H(k+1,t) — H(k,t)) + %“(H?’(k: +1,t) — H*(k,1)) =

A 2 A 3 A 4
Vi (H(k, t) + Azdx H(k, 1) + TZaiH + TZ{?}H + iaﬁfﬂ — H{(k, t))

v AZQ
+ (H3(k, 1)+ AzOx H + = ~03 H® — HO(k, t)) -

A Az? Az3
VI Az|OxH + 0% H + — 0% H + ——0%H
2 6 24
" AZ
+ Cépt Az |:8XH3 + 76§(H3:|
(3.8)
Equating Eqgs. (3.6) and (3.8) and letting Az = 1, we get
-2
OH +voxH + vrdx0:H + 1/278§<H + y358§<H—|—
ot v owm s torm s tovm 4 Lotn
VEX — Vopt [YX +§X +6X +ﬁX (39)
" 1
ot | g4 Loz
6 2
that we can write as
1
(Vo'pt — y)axH + 5(‘/;’pt — 27-1/2)8§(H+
1 2.3\ 93 1 (Vo 3.4\ a4
6( opt — 3TV )aXH+6<T_T vt | Ox H+ (3.10)
///t 1
op H3 — 92 H3 —
O.H +vroxo:H

We now write v = 1/(27) and we also know that v = V , + €V, according to
Eq. ,that is, we are considering the dynamics near the transition point (i.e.
the flex point of V). We simplify the terms between parentheses keeping only
the leading terms
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‘/o/pt V= ‘/olpt V;)/pt V;)pt 6‘/olpt
1 EVO’
5(‘/O/pt - 27—’/2) = ( opt — ) =
2 1%
6 (V;)/pt — 37V ) 6 <V;>/pt 4_> opt

‘/o/t 3 4 opt
T

So that Eq. (3.10) becomes

/

eV! V.
OxH — °pta§(H+ L3 H +

V/
~ € 24

opt

V/
opt 4
oyH
48

" 1 (3.11)
—opt [8 H? + 82 Hﬂ = {1 + 58){} OH
carrying everything on the left side
8 ‘/0/ V//
[1 + TX} [E)X< Vo H + ptﬁx | t|H3> —3,:]—]] =0 (3.12)
That leads us to the wave equation
V/ V//
O,H = aX< eV H + ;Zt 0% H el H3> (3.13)
We can now introduce the thermodynamical potential
2 |V/Ht
H)=¢V — + 22 H! 14
and the functional
V/
O(H) = /dX { Ajgt (OxH)* + ¢(H) (3.15)
so that we can write Eq. (3.13)) as
0P
0:H + 0 =0 3.16
pH A+ XSH T (3.16)

where we varied the functional as it is customary to do in classical mechanics.
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3.2 Landau phase transition theory

Landau proposed a theory of phase transitions that allows us to study how our
thermodynamical potential varies according to the variations of the parameter 7.
Landau’s phase transition theory requires that for a non-equilibrium state of the
system we can write a thermodynamical potential function of an order parameter
whose average over the whole system is set. As described by Zacharovi¢c and
Leonidovié |13], Landau’s potential can be developed in the proximity of the critical
point as
¢* ¢
where V' indicates the system’s volume. In our case, we have a density of potential,
since the volume is not explicit, and our order parameter is H
2 | ///t
gt 3.18
2 24 ( )
We want to express our density of potential in terms of the parameter 7. We start
from the equation for € as a function of 7, namely

1
5 = Vopr(1+€) (3.19)
that we have deduced from Eq. (3.13)). We can write the expressions for 7 and ¢

L (3.20)

T= )
2‘/:),pt(1 + 6)

1

€= -1 (3.21)

2V T

We remark that, as we previously found with our linear stability analysis in
Ch. [1, our system’s equilibrium solution is stable if ¢ > 0, meaning 2V’ < 1,
while is unstable for —1 < ¢ < 0, that would mean 2V’ > 1. For ¢ < —1, we
would have 7 < 0 that is not a physical value, since it represents a time interval
and therefore must be non-negative. In Fig. [3.2] we have plotted the functional
dependence of 7 from € for physically acceptable values of 7.
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Figure 3.2: Plot of 7 = 7(€) and 7 = 1/2 for physical values of 7. We can see that
for —1 < e < 0 7 is greater than its critical value, leading the system to instability;
while it’s smaller than its critical value for € > 0.



42 CHAPTER 3. PERTURBATIVE APPROACH

We can write our density of thermodynamic potential expliciting € as a function

of V! 1

opt?

1 H2 |V
o(H) = (QV, _— 1) — |—ptH4 (3.22)
opt

2 24
(wd) =1, V2 (wd) = —2, we get to

opt

$(H) = (% - 1) LAy (3.23)

Now writing V

2 12
In Fig. [3.3 we finally study ¢(H) as a function of 7. For 7 < 1/2 we have a stable
dynamics that presents one minimum, while for 7 > 1/2 our potential presents
two wells symmetric with respect to the origin, that therefore is an unstable point.

Its dynamics in fact forces the system to ”choose” one of the two wells, causing a
break in the symmetry.
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Figure 3.3: Plot of ¢(7) (3.23]) for various values of 7: 7 = 1/2 is the critical value
and along with 7 = 1/4 < 1/2 constitutes the stable case, 7 = 1 > 1/2 presents a
structure with two wells and the dynamics at the origin is therefore unstable.
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The functional ®(H) is an integral of motion for Eq. (3.13)) since

d® d
At dt

1 d
= /dX {ﬂﬁxH{?x@tH—l—ﬁ&H]

‘/o/pt 2
ax [ oy + o) o

integrating by parts the first term we get to
do vy d
= /dX[ pt8XH+ ﬂat
|74 do do
- X opt 52 H— opt 12 H—

/d { 2 Ox dH}aX[ o0 H = G (3.25)

1 Vi
= ——/anX( L2 H — %) =0

2 24 dH

where, in the second line, we used Eq. (3.16). The equality to zero is due to the
boundary conditions.

3.3 Minimal action principle

We can also introduce a Lagrangian function

‘/opt
L=~ (0xH)’ + 6(H) (3.26)

since the right hand side can be seen as a sum of a kinetic term and a potential
term given by —¢(H). Therefore, we can write the functional ®(H) in the form
of an action

B(H) — / X £ (3.27)

We now use the minimal action principle, firstly writing the variation of the action
(13.27)

) [ax [06 L 0L]
oH OH dXom|
(3.28)

V/ |V///
/dX —%8§H+ VO’ptH+%H3 oH
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where H = Oy H. We equate to zero

V! |V///
/dX —Q%’taiH +eVe H+ %H?’ =0 (3.29)

That is true for any choice of d H, therefore the term between parentheses must
be equal to zero

V/ V/// d
2%?8§(H:€VgptH+|%ptH3:£ (3.30)

We recovered Newton’s equation for a potential of the form —¢(H).

We can find the equilibrium states studying the potential —¢(H), as we did
before in Sect. (see also Fig. [3.3). For € > 0 the only equilibrium state is for
H = 0, while for ¢ < 0 we have three equilibrium points

6le|V!
Hy,=+ % H; =0 (3.31)

opt

where the subscript ¢ indicates that the point is of unstable equilibrium.

When € < 0 (i.e. 2V'7 > 1) the solution with zero energy is a separatrix that
can be analytically computed in the form H(X) = tanh(aX). At the separatrix
we have

2

V! 6le| V!
P (xH)? — | H? - ’€|m°pt —0 (3.32)

2|V0pt ’V;th

so that
‘/;), t 2 2 2 6|6|‘/0/ t i
aZBQQ}VI:” (1 — tanh*(aX))” — B*| tanh®(aX) — v lﬂp? =0  (3.33)
opt opt

It follows that

_ 6|6|‘/0/pt _
opt

Recalling our expression for X = z + vt we get the soliton wave

6|6“/0/pt
’VW ’

opt

wi(t) = wy £

tanh(dlZ[d(lﬂAz + qut)) (3.35)
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where we have two asymptotic values

6‘6|‘/o/pt
|VW ’

opt

Was(t) = wey (3.36)

corresponding to the stopping and go traffic phases respectively.



Appendix A

Delay differential equations

We give a brief introduction to delay differential equations and their main prop-
erties, along with the differences with ordinary differential equations.

In many physical problems it is quite natural to introduce a delay in the sys-
tem’s response time that causes the system’s evolution at time ¢ to depend on the
state at time ¢t —7. This description of a system is in many case more realistic than
the ones that consider its evolution a function of only the present’s state. This is
where the necessity of studying delayed equations arises.

We can define a delay differential equation (DDE) as following

dax(t
" ft.a().2(t - 7)) (A1)
with 7 > 0 being a constant not surprisingly called ”delay”.
Following Smith [14], we can first distinguish between discrete and distributed
delay: in the former the delay is contained in terms of the type x(¢t — 7), while the

latter contains a weighted average of delays x(t — 7) expressed as

K<mmkga$:/}m@n@—@ (A.2)

—T 0
with 7 € [0; 00]. They are considered more realistic, but are harder to solve and
it is difficult to estimate the expression of the kernel k from data. Discrete delay
differential equations can contain more than one delay

da(t)
o = Tta(t),a(t =), .ot = 7)) (A.3)

Another classification arises distinguishing the cases in which the kernel k(u) is
identically zero for all u > wuy 4x; in this case the distributed delay represented by

/ dsx(s)k(t —s) = /OOO duz(t —u)k(u) (A.4)

—0o0
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is classified (Smith [14]) as bounded delay because the integral considers values
of x(t) only for a bounded set of past times [t — upax,t]; otherwise, it is called
unbounded delay or infinite delay. In our later discussion we will deal with discrete
delay differential equations that are obviously bounded delays.

If 2(t) satisfies a discrete delay differential equation of the form on the
interval [a, b], then x(t — 7) must at least be defined on [a — 7,b] although it does
not need to be differentiable on [a — 7,a]. This motivates the following definition
of solution of a discrete delay differential equation |14].

Definition A.0.1. Solution of a discrete differential equation
x(t) : [a — 7,b] — R is a solution of a delay differential equation of the form (A.1))
if it is continuous, differentiable on [a, b) and satisfies the Eq. (A.1) for a <t < b.

Another difference between ordinary and delayed differential equations lies in
the form of the general initial value problem: in order to obtain the unique solution
of a n-th order ordinary differential equations it is necessary to give n initial
conditions, namely n values of the unknown function and its derivatives; on the
contrary, for a first order delayed differential equation we need to specify a function
on an interval [—7, 0], where 7 is the delay, as initial condition( Dads [2]). DDE
therefore are systems with infinite degrees of freedom.

Following Bazzani [3] we study an interesting case of a linear delay differential
equation

T = AZ(t —7) (A.5)
in which the eigenvalues of A are negatives so that the equilibrium at ¥ = 0 is
stable. Diagonalizing A via a linear change of variables ¥ = Ty, we obtain this
type of equations

y=—ylt—1) (A.6)
in which ~ represents an eigenvalue of A. As it is customary to do with ordinary
differential equations, we look for solutions in the form y(t) = y;e* but this time
with the initial condition y;(s) = yoe® with s € [—7,0]. We obtain the character-
istic equation:

A= —ye ™ (A7)
Writing A = 7 + iw, we get

N+ iw = —ye T [cos(wT) — isin(wT)] (A.8)

that we can divide in its real and imaginary part as

n= —yf_”T.cos(wT) (A.9)
w = ye T sin(wT)
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When 7 = 0 we have a solution with n = —y and w = 0. We are interested in
following with continuity this solution until the real part vanishes. So, assuming

w =0, we write Eq. (A.7) as
xr=—y1e " with = =n7 (A.10)

That admits two solutions for x < 0 as long as y7 < 1.
When y7 = —1 and y7 = —e we have a double solution, thereafter there are
not anymore real solutions.
Varying w we get
n? + w? =yl " (A.11)

from which we get the constraint

w = t/y2e 21" — p? (A.12)

We have then found an equation for n, namely

n=—ye cos(x/fyze*zm — 7727> (A.13)

We look for a pure imaginary solution, n = 0. In that case we must have wr =
+7/2 + km, therefore the following must hold

T =7"" (g + ki?T) (A.14)

that leads w = 7.
If 7 exceeds this value of a quantity AT

m
T = % + AT (A.15)

let ¢ = wr = 7/2 4 A¢ and Taylor expanding up to the first order we get

cos(¢) ~ —Agp (A.16)
Substituting in Eq. (A.13) we get
n~~ye "Ap (A.17)

that means 1 > 0 and the solution is unstable. At the first order follows that

NeAAd = A g (A.18)
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It follows that

w:’y+Aw2fy<1—nl> (A.19)
2y
that means
Aw ~ —77% (A.20)
Putting altogether the conditions, we get
Ap = ——Aw+AT ~ (A.21)
2y gl

and we finally obtain the relation that connects n and At
Ar = 1+(7T>2 (A.22)
VAT >~ ) 5 )

B VAT
1+ (7/2)?

We now report an example from Smith [14] to concretely describe the differences
arising when we solve one of the most simple delayed equations

rewriting

U] (A.23)

du(t)
dt
that describes a system governed by a negative delayed feedback indicated by the
minus sign on the right hand side.
The associated ordinary differential equation is found setting 7 = 0

= —u(t—7) 7>0 (A.24)

du(t)
dt
that can be easily solved for u(t) = uge™.
On the contrary, the solution of Eq. is not so straightforward. To have a
more simple solution, we firstly prescribe the initial condition for u(t):

= —u(t) (A.25)

u(t) =1 —7<t<0 (A.26)

Then, we can find the expression for u(t) for the time interval 0 < ¢ < 7 by
simply substituting the initial condition and integrating. We iterate this method
for the successive time interval: we use the function we have just found as the
initial condition for finding the expression of u(t) in the time interval 7 <t < 27.
Iterating n times we can find the expression for u(t) in the time interval [(n—1)7, 7]



o1

as shown by Smith [14]

u(t) =1+ (1) t= (kk,_ Ll [(n — 1)7, n7] (A.27)
k=1 )

this procedure, called ”"the method of steps”, is frequently used to find the solution
of delay differential equations and clearly show that even for resolving the simplest
DDE one has to use more elaborate methods than for ODE.

We conclude this brief introduction by remarking that a delay differential equa-
tion is completely different from an ordinary differential equation, but, for very
small delays, the solutions of delay and ordinary equations have the same con-
ditions for stability. This fact will be exploited in Sect. where we find the
conditions for linear stability in the case of a small delay.
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Appendix B

Solitons: history and defining
properties

On a historical note [6], the first description of a soliton was provided by John Scott
Russell in 1834 when he observed the phenomenon of a solitary wave produced by
a boat that kept moving maintaining its shape even when the boat stopped, in the
Union Canal in Scotland. He wrote down what he had experienced to the British

Association in his ”Report on Waves”:

I was observing the motion of a boat which was rapidly drawn along a
narrow channel by a pair of horses, when the boat suddenly stopped —
not so the mass of water in the channel which it had put in motion; it
accumulated round the prow of the vessel in a state of violent agitation,
then suddenly leaving it behind, rolled forward with great velocity,
assuming the form of a large solitary elevation, a rounded, smooth
and well-defined heap of water, which continued its course along the
channel apparently without change of form or diminution of speed. I
followed it on horseback, and overtook it still rolling on at a rate of
some eight or nine miles an hour, preserving its original figure some
thirty feet long and a foot to a foot and a half in height. Its height
gradually diminished, and after a chase of one or two miles I lost it in
the windings of the channel. Such, in the month of August 1834, was
my first chance interview with that singular and beautiful phenomenon

which I have called the Wave of Translation.

He later reproduced the phenomenon in a wave tank and called it ”"wave of trans-
lation” and was able to deduce a formula for the speed of the solitary wave. His
contemporaries, between the others is appropriate to mention George Airy and
George Stokes, were appalled by his experimental observations as they were not
explainable with the current theories on hydrodynamics. Finally, in 1870, Joseph

23
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Boussinesq and Lord Rayleigh recognized his work and the discovery of a new
phenomenon and were able to deduce, from the equations of motion of an inviscid
compressible fluid, Russel’s formula and the functional form of the wave profile.
This initial acceptance of Russel’s observations was then followed by the publica-
tion of the Kurteweg-de Vries equation for the solitary wave’s profile by Diederik
Korteweg and Gustav de Vries. Further discoveries were made by Zabusky and
Kruskal many years later (1965) in a completely different context, studying the
solution of an instance of the Kurteweg-de Vries equation. They gave these non-
linear waves the name soliton in order to emphasize their particle-like property:
they could, in fact, interact strongly with each other and then continue with their
motion almost as if there had not been any interaction at all.

We now present a summary of the solitons’ properties to clarify which phe-
nomenon we have encountered with our traffic equations.

The term soliton comprehend a wide variety of solutions of non-linear differ-
ential equations that have in common the following defining properties [6]:

e constitute a wave of permanent form
e are localised, meaning that they decay or approach a constant at infinity

e interact strongly with each other preserving their identity unaffected



Appendix C

Network view

Following Bazzani [5] we can re-interpret Eq.[1.22]in a different framework: suppose
we have a network of N nodes connected in a circle structure with wy(¢) being the
state of the k-th node. Its evolution is a function of the states of the connected
nodes (k — 1) and (k + 1) and can decay to zero due to dissipative effects. Our
system is for all intents a micro-canonical ensemble, that is, a collection of identical
copies of a single entity that maintain constant its total energy and the number of
particles in it. The average activity of the network is fixed by the micro-canonical
condition

d up=C (C.1)

We introduce the activation function U(w) in analogy with the optimal velocity
function as a positive sigmoid function, that satisfies

{ U0)=0 -
lim U(w) = Uy (C2)

w—r00

In our network model, U(w) synchronizes the internal activity of a node with the
activity of the others.
The dynamic of the k-th node is governed by

wy(t) = U (Z Trnwp (t — T)) — U(wp(t — 1)) (C.3)

with 7, being the interaction structure related to the network. Eq. is a re-
reading of Eq. in terms of our network model. The delay is necessary because
signals are not instantaneous, but propagate with finite velocity.

25
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Without external signal, the delay differential equation becomes
we(t) = =U(w(t — 1)) (C.4)

and has a stable fixed point at wy(t) = 0 since U(0) = 0. We show the stability:

. dU(0
we(t) = —%w(zﬁ —7) (C.5)
dg—? > () since we assumed our activation function to be positive.

Taking w ~ exp(At), gives

dU(0)
dw
that forces A < 0 in any case, since U’(0) > 0.
The network structure and activation function define when a global synchro-
nization is possible and when there exist synchronization soliton waves. Then, one
should consider the stability problem for the soliton wave solutions.

e)\t)\: o

(C.6)
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