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Abstract

La presente tesi si pone come obiettivo lo studio di meccanismi in grado di generare
figure luminose nello spazio. Il metodo proposto è quello di riuscire a illuminare un pic-
colo punto nello spazio e di muoverlo ad una velocità tale da dare l’illusione di osservare
un immagine fissa. Tale punto si assume che possa essere replicato più volte, in modo
tale da costruire immagini più complesse grazie alla combinazione degli effetti.
Il principio fisico a supporto dell’idea è stato trovato nei fenomeni di emissione spon-
tanea, quindi in quei processi che vedono un atomo passare spontaneamente da uno
stato elettronico eccitato a uno ad energia minore, liberando fotoni. Si sceglie di utiliz-
zare uno schema di transizioni a quattro livelli energetici e di studiare la dinamica delle
popolazioni di ciascun livello in funzione del tempo; la scelta di uno schema a quattro
livelli è suggerita dalla possibilità di ottenere un emissione di fotoni ”visibili”, quindi con
frequenza appartenente allo spettro visibile, a seguito di un eccitazione da parte di due
laser ”non visibili”, in particolare infrarossi. Questa configurazione è particolarmente
efficace se si considerano atomi con un unico elettrone di valenza.
Inoltre, si vuole ricercare un elemento chimico che rispetti esattamente le condizioni
richieste per eseguire le transizioni specificate; tra i vari elementi possibili è stato scelto
il rubidio in stato gassoso, con i relativi livelli energetici da utilizzare.
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Introduction

There’s one cool gadget, besides lightsabers, that Star Wars franchise depicted very
carefully: 3D holograms. Now, as it usually happens in science fiction movies, they don’t
explain very accurately how those devices are made, or what is the physical principle
behind them; we just have to invent it ourselves. It is therefore important to identify
the physical phenomena that could help us reproduce a similar result and comprehend
it deeply in order to being able to utilize it properly. Now, the standard quality of a
3D hologram that has been established in the collective imagination is way far beyond
any possible result we can obtain by now; the aim of this study is to see if it’s actually
possible to create the conditions required for a 3D hologram and then try to give an
analytical model that describes it.
The content of this thesis is as follows: In the first chapter, we describe in general what
are the light production processes, focusing especially in photoluminescence phenomena
which are fluorescence and phosphorescence. In addition, we show some concrete appli-
cations of those two processes, both in science and in everyday entertainment. Then we
report some of the latest studies in 3D hologram field, which are carried out by relatively
small companies; in order to generate a luminous image, some of them use scattering,
others high intensity lasers that cause air ionization, which then emits light and noise
(plasma).
In chapter two, we give an introduction to the theory needed to understand our project;
the main topics are the atomic model, with the fundamental steps that improved it over
time, and the theory of spontaneous and stimulated emissions, which is of primary inter-
est for the study.
In the last chapter we introduce the mathematical modeling of a four level transition
scheme, that is the one that allows us to generate visible light using non-visible lasers.
As we will see during the study, we had to make significant approximations in order to
obtain an analytical solution to the problem; with a good amount of well-aimed experi-
mental data it would be easier to make a better mathematical model of the system, that
we leave for future developments of this subject.
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Chapter 1

Luminous experiments and
technologies

We shall approach our study on generating luminous figures with a quick look at what
has already been done in the last centuries and what we could use to take inspiration
from. Countless studies have been carried out on inspecting luminescence phenomena,
especially in the last century. In this chapter, we will briefly introduce the methods
used to generate light; in particular, our attention will be focused on fluorescence and
phosphorescence, which goes under the category of photoluminescence. After a simple
introduction on the processes that can generate electromagnetic radiation, we will take a
look at the historical background, showing the main known discoveries and retracing the
major studies made by Stokes, Jean Perrin and Francis Perrin. Then we will properly
define the differences between fluorescence and phosphorescence, which can be explained
only by using quantum mechanics, and we will see some examples of end-uses in science
and entertainment. For the sake of completeness, at the end of this introduction we will
list some of the current techniques and prototypes to create what is roughly called a
”hologram”.
Before we begin, let’s report a funny comment that gives a proper idea of the amount
of work that has been done in this field (like in any other field of science). Right
in the introduction of his paper entitled ”Uses of Fluorescence in Biophysics: some
recent developments”, Gregorio Weber, one of the most important scientist in the field of
fluorescence, said: ”The use of fluorescence emission ... has undergone rapid development
in the past fifteen years so that it is already next to impossible for any one person to keep
up with the vast amount of information presented”; we’ll be sure to always keep those
words in mind.

3
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1.1 Light production processes

First of all, we have to clarify that a general body has several ways to emit light,
depending on its physical and chemical properties. There are indeed many physical phe-
nomena identified as luminescence which differ from the others by the chemical reaction
involved and the duration of the process; here we have a list of the main subcategories
of luminescence [1]:

• Chemiluminescence: A material emits electromagnetic radiation as the result of a
chemical reaction; this involves even light emitted by certain materials at elevated
temperatures.

• Crystalloluminescence: A materials may emits electromagnetic radiation during
crystal growth and destruction [2].

• Electroluminescence: A material traversed by a current or a strong electric field
may generate optic and electromagnetic phenomena; this doesn’t involve emission
resulting from heat.

• Mechanoluminescence: A material subject to a mechanical action, such as increase
pressure or traction, may emits electromagnetic radiation.

• Photoluminescence: This phenomenon is the light emission from any form of matter
after the interaction with electromagnetic radiation (photons); it is in turn divided
in two physical phenomena: fluorescence and phosphorescence. It is of primary
interest for our theoretical study.

• Radioluminescence: A material bombarded with ionizing radiation, such as alpha
particles, beta particles, or gamma rays may emits electromagnetic radiation.

• Thermoluminescence: A material exposed to electromagnetic radiation (or even
ionizing radiation) and heated up by absorbing its energy may re-emit it; this
process can continue even once the source of radiation is switched off.

Instead of using the word ”light”, we have carefully used the term ”electromagnetic
radiation”, because many of this phenomena might emit radiation outside the visible
spectrum, which can be misunderstood. We will not describe all the points listed above,
but we will fully tackle the Photoluminescence and its end-uses.

1.1.1 Phosphorescence and fluorescence

It has already been said that photoluminescence is divided in two different subsec-
tions, which are fluorescence and phosphorescence. The term phosphorescence comes
from the Greek (φως = light and φo%ειν = to bear). In fact, phosphor literally means
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”which bears light”. The term phosphor has indeed been assigned since the Middle Ages
to materials that glow in the dark after exposure to light [3]. Materials that exhibit this
property were known long time ago; the images displayed in Figure 1.1 and Figure 1.2
show the typical behavior of a phosphorescent material, which emits light for some time
after exposure, with a typical decrease in intensity as a function of time.

Figure 1.1: Light emitted by pigments
of zinc sulfide ZnS (left) and strontium
aluminate SrAl2O4 (right) 1 minute after
light exposure.

Figure 1.2: Light emitted by pigments
of zinc sulfide ZnS (left) and strontium
aluminate SrAl2O4 (right) 4 minutes after
light exposure.

One of the most famous material with phosphorescence properties (but not the earliest
known) was the Bolognian phosphorus (impure barium sulfide), discovered by Vincenzo
Cascariolo (1571-1624) in the 1602. Later, the same name phosphor was assigned to
the element phosphorus isolated by the German merchant and alchemist Hennig Brand
(1630-1710) in 1677 because, when exposed to air, it burns and releases glowing vapors.
The light emitted due to this process is in this case chemiluminescence, not photolumines-
cence; the species that emit light are excited by the energy provided by the combustion
reaction and not by the absorption of a photon [4]. The history of the term fluorescence
is more recent and straight forward; it was coined by the mathematical and physician
George Stokes in one of his studies of refrangibility of light in the middle of the 19th
century. In his first paper, Stokes called the observed phenomenon dispersive reflexion,
but in a footnote he wrote ”I confess I do not like this term. I am almost inclined to
coin a word, and call the appearance fluorescence, from fluorspar, as analogous term
opalescence is derived from the name of a mineral.” [5].
For a long time after Stokes’ studies and papers, the distinction between fluorescence and
phosphorescence was based on the duration of emission after the end of the interaction
with the radiation source: fluorescence was considered as an emission of light that disap-
pears very quickly (∼ 10−8s) when ending the excitation, whereas in phosphorescence,
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the emitted light persists for a variable time after the end of the excitation, that can
be seconds, days or even years [4]. However this empirical distinction was insufficient in
order to rigorously define the two phenomena. A proper separation between the two
arrived after the advent of quantum theory and with that the better understanding of
atomic orbitals. Two of the main scientists who dedicated about a decade each to the
study of luminescence were Jean Perrin (1870-1942) and Francis Perrin (1901-1992).
Jean Perrin was one of the first to apply the ideas of quantum theory to the absorption
and emission of radiation by molecules. In particular, he even presented a molecular
energy diagram with transitions between states, which was probably the first time in
history [6] [7]. His son Francis Perrin continued and extended his father’s studies, working
in his laboratory from 1924, with many and important personal contributions [8] [9]. In
that period, another important scientist devoted to luminescence theory was the Polish
physics Aleksander Jablonski (1898-1980), to whom is attributed the Jablonski diagram.
The history of the diagram has been the subject of a recent and thorough investigation [10].
The Jablonski diagram shows that the fluorescent state of a molecular entity is the low-
est excited state from which the transition to the ground state is allowed, whereas the
phosphorescent state is a metastable state below the fluorescent state, which is reached
by radiationless transition. From their studies and the introduction of the Jablonski
diagram is now possible to properly distinguish the phenomena, like shown in Figure
1.3.

Both phosphorescence and fluorescence are generated by spontaneous emission of elec-
tromagnetic radiation. After the exposure to source of light, the molecules (or atoms)
adsorb energy and make a transition from the ground state E0,0 to an excited one E1,i ,
where we used En,i to indicate all the energy levels of our system, the main ones denoted
with n and the ones with minor energy impact with i ; the previous levels are only used
as an example. We see from the Figure 1.3 that the difference between fluorescence and
phosphorescence are due to the emission from a singlet state and a triplet state respec-
tively. A singlet state is a quantum mechanic system in which the overall spin quantum
number vanishes, S = 0. This means that all the electrons in a singlet state are paired.
On the contrary, a triplet state (sometimes called metastable) is a quantum mechanics
system in which the total spin is S = 1, therefore we have three allowed values of the
third component of the spin ms = −1, 0, 1. This specific issue will be considered in detail
later on.
With this deeper knowledge of what happens at the atomic level, it is possible to give
the modern definition of the two phenomena using spin multiplicity; we consider flu-
orescence when a molecule (or atom) transit from singlet state E1,i directly to the
ground state and we have phosphorescence when the decay happens with an interme-
diate triplet state E1,j , through a process called intersystem crossing. This process is
enhanced if the vibrational levels of the two excited state are very close, since little energy
must be exchanged. We know from quantum mechanics that transitions from ground
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Figure 1.3: The Jablonski diagram of the necessary steps to generate fluorescence and
phosphorescence phenomena.
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Figure 1.4: Schematization of singlet and
triplet energy levels. The arrows represent the spin
orientation of the electrons, the horizontal lines the
levels.

state to an excited triplet state are forbid-
den. This fact implies that some others
techniques are required to get our system
in to the excited triplet state. Transitions
between excited singlets and triplets de-
pends on the energy gap and have a van-
ishing probability for most of the materials;
but for some materials the energies are so
close that transitions do occur. In these
cases the transitions are called intersystem
crossing and can happen just by thermal
motion. When a system is in a triplet state
it can either fall to the ground state (gen-
erating phosphorescence) or go back to the
singlet one by energy exchange; every state is represented in Figure 1.4. Finally, we also
understand why the duration of the two processes is different; quantum theory shows us
that every transition has its probability to occur and with that a certain rate. It is more
likely for a system to decay from a singlet state to the ground rather than a triplet; that’s
even the reason why the excited triplet state is called metastable as it is definitely more
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stable than the others. There are different methods that quantify photoluminescence
lifetime; the easiest approach to the problem is by set the following differential equation:

Ṅ(t) = − 1

τ(t)
N(t) , (1.1)

where N(t) is the time dependent number of excited molecules and τ(t) is the decay time
of the system. If τ(t) = τ0 is constant, we have the exponential solution:

N(t) = N0 e
− t
τ0 +N1 , (1.2)

with N0 the number of the initially excited molecules and a constant N1 that can be
omitted. For example, the decay of protein fluorescence is usually described by a mul-
tiexponential model, therefore an arithmetic sum of exponents characterized by their
specific parameters. Now, recent studies have shown that experimental data are better
explained by a power-like function [11], which is:

N(t) =
2− q
τ0

[
1− (1− q) t

τ0

] 1
(1−q)

. (1.3)

In this case, τ0 represent the mean value of lifetime distribution and q is called parameter
of heterogeneity, which describe the relative variance of fluctuations of γ ≡ 1

τ
around

γ ≡ 1
τ0

[11] :

q = 1 +
〈(γ − 〈γ〉)2〉
〈γ〉2

= 1 +
2

N
. (1.4)

The mean decay time 〈td〉 is obtained from the integration of equation (1.3), which gives:

〈td〉 =
τ0

3− 2q
. (1.5)

In Figure 1.5 and Figure 1.6 we find an experimental comparison between multiexponen-
tial and power-like method. We remark that in general decays from an upper energy level
to the ground can be radiative or non-radiative; the difference between the two process
is that radiative decays emit photons, while non-radiative don’t (intersystem crossing is
a non-radiative transition) [12].
Now we consider phosphorescence; experimentally, almost every decay trends follow sim-
ilar patterns, which were carefully analyzed by the French physicist Edmond Becquerel
(1820-1891). Becquerel described phosphorescence decays using an exponential of time,
analogously to fluorescence decays in equation (1.1), or even a sum of two exponen-
tials. However, in the case of inorganic solids, he obtained a better fit with the following
empiric relation [3]:

I(t) =
1

(1 + t/c)
1
m

; (1.6)
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Figure 1.5: Fluorescence intensity decay
(λexc/λem 270/335 nm) of ternary complex
of E. coli PNP, FA, and Pi shown by dot-
ted curve. The lower panels show residual
differences between experimental and theo-
retical values.

Figure 1.6: Fluorescence intensity decay
(λexc/λem 275/320 nm) of NATyrA shown
by dotted curve. The lower panels show
residual differences between experimental
and theoretical values.

the equation (1.6) shows the dependence of the normalized intensity I(t), which means
that I(0) = 1, from time t. The terms c and m are respectively a time constant and a
parameter such that 1/2 ≤ m ≤ 1. When m is less than 1, this function decays faster
than a hyperbola and can thus be called a compressed or even squeezed hyperbola.

1.1.2 Applications to instruments and gadgets

Fluorescence and phosphorescence are both fascinating and complex phenomena
which occur spontaneously in nature. In fact, as well as the inorganic compounds even
organic materials exhibit these properties. In the case of fluorescence, in order to make
a material glow you normally have to use a low/medium/short wavelength UV flashlight
which emits light from about 250 nm to 365 nm. That’s because most of the minerals
are not fluorescent enough under (∼ 390 nm). It is worth mentioning a fun fact, just
to present a likable aspect of fluorescence: there are plenty of ”amateur explorers” who
enjoy searching for fluorescent minerals and report their discoveries online. One of the
main crow-founded website, whose fan base comunity even organize events and trips, is
”Nature’s Rainbow: a Fluorescent Mineral SuperSite”. In this website you can find for
free an endless number of reports and precious information about these minerals. They
usually use Convoy UV flashlights that allow them to recognize the relevant materials.
In Table 1.1 we have a list with some fluorescent minerals [13] and phosphorescent com-
pound [14].
Let’s now look at some phosphorescence problems of the recent past; after Cascariolo,
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Fluorescent materials

Name Chemical formula Wavelength required

Adamite Zn2(AsO4)(OH) (254-365) nm

Baryte BaSO4 (254-365) nm

Calcite CaCO3 (254-365) nm

Esperite PbCa3Zn4(SiO4)4 254/365 nm

Fluorite CaF2 (254-365) nm

Hydrozincite Zn5(CO3)2(OH)6 254 nm

Wiellemite Zn2SiO4 254/365 nm

Zircon ZrSiO4 254 nm

Phosphorescent materials

Name Light wavelength Maximum duration
Strontium aluminate
(Based) (SrAl2O4)

520 nm (12− 20) h

Strontium aluminate
(Based) (Sr3Al2O6)

612 nm (12− 20) h

Strontium aluminate
(Based) (SrAl2O7)

480 nm (12− 20) h

Calcium sulfide (CaS) 620 nm (1− 2 )h

Table 1.1: List of some fluorescent and phosphorescent materials. It is difficult to
obtain detailed information about these phenomena, or they are overly specific for our
purposes.

luminous paints were based on the luminescence emission from zinc sulfide, doped with
copper (Cu). These sulfide-based materials were used in optoelectronic devices (elec-
tronic devices that interacts with light) and in catalysts. Their applications were later
limited by their short afterglow time and low brightness. Radioactive elements such as
cobalt (Co) and promethium (Pm) were codoped to enhance the luminescence duration
of these sulfide-based materials. Although this doping prolonged luminescence dura-
tion, the use of radiating elements are strongly not recommended due to environmental
safety issue. In addition, sulfide-based phosphors are sensitive to carbon dioxide (CO2)
and moisture and they are chemically unstable. Researches have been continued for an
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Figure 1.7: Phosphorescent paint avail-
able online; it can be use to realize paint-
ings or, sometimes, it can be apply on the
body to generate some interesting effects.

Figure 1.8: An example of a toy for chil-
dren made with some phosphorescent pig-
ments.

eco-friendly and chemically stable luminescent materials, having long after glow prop-
erties. The innovation of SrAl2O4 : Eu2+, Dy3+ phosphor (Europium and Dysprosium)
by Matsuzawa and Yamamoto in 1997 [15] was the breakthrough in the field of phospho-
rescence. For the first time, they introduced the trivalent rare-earth ions (Dy3+) as an
auxiliary activators in SrAl2O4 : Eu2+ (and in CaAl2O4 : Eu2+) to prolong the duration
of the emission. For the sake of clarity, rare-earth materials are a collection of seven-
teen elements of the periodic table and, despite their name, are relatively common on
Earth [1]. Thus, the first group of modern luminescent complexes was the Eu2+-doped
and rare-earth (R3+) co-doped alkaline earth aluminates. The Eu2+ activated strontium
aluminate phosphors have long phosphorescence, higher stability (also with moisture),
and quantum efficiency than the sulfide-based luminescent materials. Such materials can
gain the energy or radiation from ambient solar light and can remain photoluminescent
for longer period of time (12− 20) h [14].

Luminous phenomena in art and entertainment

Phosphorescent pigments were widely commercialized all over the world and after
Yamamoto’s work they became quite common. Many playing cards, action figures and
even paintings have been created using these luminous properties. If we think about
how many priceless studies and efforts have been made to achieve this technology, it’s
extraordinary how casually they managed to create and distribute such highly accessible
products. In Figure 1.7 and Figure 1.8 are presented two low-price items that you can
actually by online. We have examples of use even in contemporary art; the American
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Figure 1.9: Brooklyn Bridge with New
York - Skyline II. Glowing painting by Tom
Bacher.

Figure 1.10: The Crown. Glowing
painting by Tom Bacher.

painter Tom Bacher (1952) has always been fascinate by phosphorescence and its uses,
enough to make him wonder if it was possible to realize a glowing paint, as he declares
in an interview [16]: I got the idea to make luminous paintings 40 years ago. I was always
fascinated with plastic toys that glowed in the dark and figured that whatever made plastic
toys glow, maybe I could make acrylic paints glow as well. I found out what the glow
chemical was and tried mixing it with paints and it worked! Since that moment, 40 years
ago, every piece of art I ever made since has glowed in the dark”. In Figure 1.9 and
Figure 1.10 are shown two glowing paintings made by Bacher. Unfortunately we are
not able to fully appreciate the changing in light effect, but both are realized with a
normal-paint background so that when the lights are turned off, the paintings give the
suggestive sensation of a night town scene.

In summary, we have seen that luminescence phenomena (particularly phosphores-
cence), are used in entertainment both as recreation objects and as a new artistic ex-
pression.

Applications in biophysics and spectrometry

Now we shall consider a more complex field of application of luminescence, especially
fluorescence. Because of the immense amount of books and papers written about sci-
entific fluorescence application, this paragraph will be just a brief introduction about
what has been mainly studied and what has been achieved. The importance of fluo-
rescence methods in biology derives from few circumstances [17]: The amount of energy
that they involve is sufficiently small so that they may be introduced into living systems
without causing irreparable damage or undesirable side reactions, but at the same time
it’s sufficiently large so that individual photon detection is possible. The entire process
of photoexcitation and fluorescence decay involves times that range from 10−12 to 10−7



13

seconds: this time scale is of particular interest to the biologist, since it encompasses
the fastest sub-molecular motions on one extreme and the rotations and translations of
the large macromolecules that compose the living organisms on the other. One pow-
erful technique is dynamic fluorescence depolarization; this is a method to analyze the
dynamic of proteins folding on ribosomes, by anisotropy decay measurements of some
fluorescence-active species [18]. Understanding how proteins achieve their native structure
is of prime importance in modern biology, because protein folding is a prerequisite for
cell function. The necessity of using fluorescence comes from the difficulties of studying
protein folding in vitro and in vivo. Both the techniques in fact don’t represent a reliable
simulation of what is really going on; in vitro we can’t get information about the influence
that a nascent protein’s native environment has on its ability to sample conformational
space during and after biosynthesis, while in vivo environment may well alter the flux
across different folding routes and the transient and equilibrium chain dynamics [18]. Flu-
orescence anisotropy decays are indeed uniquely suited to yield direct information on the
local dynamics of nascent proteins. It comes by itself that understanding how proteins
(and in general molecules) work will enormously help medical researches.
Fluorescence is widely used even in spectrometry to show the structure of some specific
materials. In particular, the technique used for chemical analysis utilizes X-ray fluores-
cence (XRF), that has been drastically improved in the period from 1947 to the middle
1960s [19]. That is not to say that the more recent years have been devoid of develop-
ments, but as the field has become mature, progress becomes slower and less frequent.
There are many types of X-ray fluorescent spectrometers available on the market today
but most of these fall roughly into two categories, wavelength dispersive instruments
and energy dispersive instruments. The first ones exploit the diffracting property of a
single crystal to separate the polychromatic beam coming from the speciem, and then
processing the incoming radiation to get information about the structure; this technique
was introduced in the early 1950s. The second ones, a Si(Li) detector is utilized to give a
spectrum of voltage pulses that is directly proportional to the spectrum of X-ray photon
energies entering the detector. Then, an electronic voltage level sorter (multi-channel
analyzer) is used to separate and collect these voltage pulses and store them in terms of
their energies [19], in order to elaborate the structure of the speciem.

1.1.3 Luminescence and scattering in holograms

In the previous sections we had an introduction of photolumiescence and its area of
application. Both fluorescence and phosphorescence are produced by transitions from
excited energy levels to the ground one, which cause spontaneous emission. However, to
date we don’t have any technology that can properly manipulate these phenomena in
order to generate luminous figure in space. In fact, most of the current devices utilize
optical illusions or scattering. We now want to consider some of the few projects which
don’t completely use optical tricks, but that are realized by scattering or even with
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Figure 1.11: Simplified schematization of the functioning of holographic apparatus; as we
can see, the light diffracted by the object and the reference beam interfere on the photographic
plate.

plasma.

Holography

Let’s start by saying that the popular concept of ”hologram” is usually mistaken
(mostly because of Star Wars) with the idea of a 3D image floating in mid air. In real-
ity an hologram is the result of an holographic process, which consists in printing on a
photographic plate the superposition of two coherent light beams: as we can see from
Figure 1.11, the light beam is splitted in two by a semi-transparent glass (beamsplitter),
then one is diffracted by the object that we want to depict, the other goes straight to the
photographic plate; the result of the superposition on the plate is an image that retains
some properties of the scene which are [20]:

• Parallax : As you change your viewpoint, the relative position of the objects
appears to change as well.

• Relative size : Closer objects appear bigger then more distant ones.

• Stereopsis : The same image gets to each eye with two slightly different perspec-
tives. The brain then processes these differences as depth. (We can test this simple
property by looking at a finger close to our nose)
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Figure 1.12: Interactive card game gen-
erated by scattering (MisTable).

Figure 1.13: Schematization of the
MisTable prototype components.

These properties are necessary to give the observer the perception of depth. As we know
from physical optics, the detail of the hologram depends on the wavelength of the beam;
in fact, it has to be at least comparable with the size of the object [20]. Holography was
first invented by the Hungarian-British physicist Dennis Gabor (1900-1979), for which he
received the Nobel Prize in Physics in 1971. He invented holography as an improvement
of X-ray microscopy, using electronic waves instead of electromagnetic [21]. We have then
defined what an hologram is and how can be obtained. With that in mind, we will keep
using the word ”hologram” to identify a 3D luminous image, for the sake of brevity.

Scattering holograms

The easiest way to explain scattering, and it will be enough for our purposes, is to
imagine a process where you have a photon beam colliding with a small particle, let that
be a molecule; if we don’t consider photons absorption, we can say that the collision is
elastic and the photons are then bouncing in any direction from the molecule. This will
make the particle like a luminous point in space emitting light of the same frequency
of the source. The intensity of the light reflected will be proportional to the number of
particles scattered and to the intensity of the beam. With this idea attempts have been
made to build a device capable of generating holograms. In general, the concept behind
every device is to use a dense gas limited within a volume and properly project on it some
light beam in order to generate by scattering the required image. The majority of the
gas utilized are steam, or water solutions with propylene glycol, or glycerol, both non-
toxic chemical compound [22]. The team of researchers BIG (Bristol Interaction Group)
developed an interesting device which can recreate interactive images, called MisTable [23],
like shown in Figure 1.12. We can actually see in Figure 1.13 that in this case the volume
is not entirely occupied by fog, but they just used two fog screens with their respective
projector. In order to recreate a 3D scene, they have used the possibility to go behind
the image, then they properly calibrated the response of your interactions by tracking
your hand movements. This is not a real hologram, but it is a clever way to utilize
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scattering of light to recreate interactive scenes. The main problem with scattering is
that all the particles interacting with the light beam emits at the same frequency of the
incident radiation; this means that if you have a volume full of a dense gas and you just
want to illuminate a single small portion of this volume, let’s say in the middle, you will
have to deal with the all previous and subsequent particles along the path. You could
overcome this issue by utilizing plenty of weaker beams focused on the same point, so
that you won’t be able to perceive them singularly and the point will still be illuminate.
However, is obvious that this solution is not particularly recommended. The ideal case
would be to only illuminate that point, without having any interactions (or maybe not
visible ones) with the rest of the volume. In the next chapter we will carefully introduce
the theory required to explain a method that allows us to recreate (in theory at least)
this particular situation described.

Plasma holograms

Figure 1.14: Small, but high detailed
3D hologram generated by DNG.

Figure 1.15: Result of a simulation of
the Burton Inc. plasma hologram.

Another way to realize luminous figures in space is through a ionization process of
a gas, typically by driving a an electric current through it. In fact, plasma is defined
as a strongly ionized gas and sometimes it is considered as a fourth sate of matter; you
have a solid at low temperatures, heating it up gives you a liquid, then a gas and in
the end you eventually have a plasma. As we mentioned, if we want to generate plasma
is not usually enough to simply heating up a container of gas. The problem is that
for the most part a container cannot be as hot as a plasma needs to be in order to be
ionized, or the container itself would vaporize and become plasma as well. Generally,
energy is give directly to free electrons in the plasma so that electron-atom collisions
liberate more electrons and the process cascades until the desired degree of ionization is
achieved [24]. The two Japanese companies Burton Inc. and Digital Nature Group utilize
ionized gas to create luminous 3D images, both by using high-intensity lasers focused in
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small volumes. In Figure 1.14 e Figure 1.15 are showed the result of each project; as
we can see, the approaches of the two companies are completely different: one wanted
to generate large-sized images, the other chose to obtain high level of detail but with
hardly noticeable figures. Digital Nation Group used two pulsed lasers, one at a power
of 2W at 103 dot/s, the other 10W at 2 · 106 dot/s [25]. We won’t dig into details, but
they exhaustively explained their apparatus in the paper [25] in the references section.
Unfortunately there aren’t much information of Burton Inc. project, except for their
website.
The result obtained with plasma holograms are worthy of interest, but this technology
has real safety issues difficult to overcome because of the energy required to achieve the
phenomenon.





Chapter 2

Theory behind the project

We will now discuss about the physical principles that are the main ingredients of
the model for a device able to show 3D figures in space. The device has been named
ODSE (Optical Diffusion by Spontaneous Emission). In this chapter we review briefly the
atomic orbital theory retracing the main steps that lead to fine and hyperfine structure,
such as hydrogen spectral lines, Stern-Gerlach experiment, Zeeman and Stark effect.
Then we will tackle some processes of radiation-matter interaction, in particular the
emission and absorption of photons by simple atoms. Finally, an introductory discussion
on laser light generation will be given: the three level mechanism used to generate laser
light will be exploited to produce at first single light spot in a gas volume and later more
complex images.

2.1 Atomic orbital theory

In order to be able to make predictions about our key quantity, like the wavelength
of the emitted light or the emission rate, a careful look at the quantum atomic model is
required. Let’s note that is not possible to find analytical solutions of the Schrödinger
problem for multi-electrons atoms (except for helium), since their hamiltonian is not inte-
grable; for these problems we can get just approximate solutions through a method called
perturbation theory. We are going to describe in detail the structure of an hydrogen-like
atom and then we will try to expand that model to a generic atom.

2.1.1 Bohr model

Bohr model of atom, which is an evolution of the previous one suggested by Ruther-
ford, uses (fairly) some rough assumptions and principles formulated just to find a way
around certain sperimentals problems. In fact, Bohr postulated the following proper-
ties [26]:

19



20

(a) An electron in an atom moves in a circular orbit about the nucleus under the
influence of the Coulomb attraction with it and the nucleus itself.

(b) It is only possible for an electron to move in an orbit for which its orbital angular
momentum L is an integer multiple of the reduced Planck constant ~ ≡ h

2π
, so

where L = n~.

(c) The total energy of the electron is conserved, despite the fact that a charge con-
stantly accelerated.

(d) When an electron transit from an orbit of energy Ei to another orbit of energy Ef
electromagnetic radiation is emitted if Ef < Ei ; on the contrary, electromagnetic
radiation is absorbed if Ef > Ei. The frequency of this radiation is obtained from

the Planck-Einstein relation: ν =
|Ei−Ef |
h

.

Let us consider an atom consisting of a nucleus of charge Ze, mass M and a single
electron of charge −e interacting through a coulombic potential

V (r) = − Ze2

4πε0r
, (2.1)

where r is the radius of the orbit. We introduce µ ≡ Mme

M+me
as the reduced mass of the

nucleus(M) − electron(me) system, with which we write its hamiltonian

H =
p2

2µ
+ V (r) =

p2

2µ
− Ze2

4πε0r
. (2.2)

Now, the coulombic potential (2.1) assures us that we are dealing with a central potential
problem, therefore we can write the balance between the central force and the radial
acceleration by means of the second principle of dynamics as:

µ
v2

r
=

Ze2

4πε0r2
= v

L

r2
= v

n~
r2

, (2.3)

where we used (b) Bohr’s postulate. From the (2.3) we can obtain the fundamental
relations describing v and r in a semi-classical look:

v =
Ze2

4πε0

1

n~
, (2.4)

r =
4πε0

Ze2µ
(n~)2 . (2.5)
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In particular, if we substitute all the values listed in Appendix A with Z = 1 in
equation(2.5), we get Bohr radius

a0 =
4πε0

e2µ
(n~)2 ' 52.918 pm . (2.6)

In Bohr model, a0 represent the distance between the electron and the nucleus of the
hydrogen atom; this result is perfectly in agreement with the latest hyperfine structure
model. To calculate the energy levels, we use relation (2.2), writing the total energy by
the substitution p = µv :

E =
µ v2

2
− Ze2

4πε0r
=
µ

2

(
Ze2

4πε0

1

n~

)2

− µ

(
Ze2

4πε0

1

n~

)2

= − µ
2

(
Ze2

4πε0

1

n~

)2

, (2.7)

where we have used relations (2.4) and (2.5). Finally, introducing fine-structure constant
α we get the energy levels labeled with the principal quantum number n in the form:

En = −αµ c
2Z2

2n2
, (2.8)

with

α ≡ e2

4πε0~c
=

e2

2ε0hc
' 1

137
.

We can find all the terms and their values of the (2.8) listed in Appendix A. We have
already pointed out that Bohr atom model is a strong simplification of the reality, but
it’s possible nevertheless to predict with impressive accuracy the value relative to the
first energy level of the hydrogen atom (n = 1); in fact, substituting all the values in the
equation (2.8) we obtain:

En = −13.6 eV

n2
. (2.9)

We verify this result by looking at the emission spectrum of hydrogen atom, which is
shown in Figure 2.1. Without digging too much into historic details, we just mention
that Thomas Melvill (1726-1753) in 1752 showed that light from incandescent gas was
composed of a large number of discrete frequencies called emission lines [27]. It was
subsequently discovered that atoms exposed to white light can only absorb light at
specific frequencies, called absorption lines. After many studies, it was found that each
atom has its own characteristic line spectrum and this information proved to be crucial
in many fields, for example to determine the elements in the sun and stars. In the
late 1800s Balmer, Rydberg and scientists began to approach the spectral line problem
analytically; first in 1885 Balmer observed the hydrogen emission in the visible spectrum,
then Rydberg developed an empirical formula to estimate those values, which is [30]:

k = Z2RH

(
1

n1
2 −

1

n2
2

)
, (2.10)
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Figure 2.1: Representation of absorption (top) and emission (bottom) spectral lines of
hydrogen atom. The values of the wavelength are the first four terms of Blamer series, which
are approximately in visible spectrum.

Name Wavelength ranges Formulas Index

Lyman (1906) Ultraviolet k = RH

(
1− 1

n2

)
n = 2, 3, 4, ...

Balmer (1885) Near ultraviolet/visible k = RH

(
1
22 − 1

n2

)
n = 3, 4, 5, ...

Paschen (1908) Infrared k = RH

(
1
32 − 1

n2

)
n = 4, 5, 6, ...

Brackett (1922) Infrared k = RH

(
1
42 − 1

n2

)
n = 5, 6, 7, ...

Table 2.1: Empirical series for hydrogen spectral lines. The value k is the wavenumber
1/λ . The term RH is an empirical constant called Rydberg constant for hydrogen; its
value is listed in Appendix A. It is also reported the year when the series was first
observed [26] [27].

where k is the wavenumber defined as 1/λ, Z is the atomic number, RH is Rydberg
constant (Appendix A), n1 and n2 are the principal quantum number of the two energy
levels involved in the transition, with n1 ≤ n2 for obvious reasons. In Figure 2.2 are
illustrated the first six terms obtained with the equation (2.9) and in Figure 2.3 are
shown fours series of hydrogen spectral lines. If we want to estimate the accuracy of
Bohr model for the first terms, we can confront the predicted wavelength value of the
first emission with the one given empirically by Leyman series. We obtain the energy
difference between the energy levels relative to n = 1 and n = 2 from equation (2.9):

E2→1 =

(
13.6− 13.6

22

)
eV = 10.2 eV . (2.11)
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Figure 2.2: Graphic representation
of hydrogen energy levels by using the
relation obtained with Bohr model of
atoms.
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Figure 2.3: The spectrum of atomic hydro-
gen. The only series relative to the visible wave-
length emissions is Balmer series, the other
ones are over and below visible spectrum. The
scales are exaggerated for the sake of clarity.

Now we evaluate the wavelength of the photons involved in this transition by Planck-
Einstein relations:

λ =
c h

E2→1

= 121.6 nm , (2.12)

where we have substituted all the values listed in Appendix A. we can derive the exper-
imental value observed from Lyman series in Table 2.1 by taking the inverse, which is
in fact 121.6 nm and correspond perfectly; however, if we repeat the process considering
the visible transition between n = 2 and n = 3 (first Balmer series term) we obtain:

λ =
c h

E3→2

= 667.0 nm , (2.13)

from which we can already see a 2% difference between the value obtained and the one
experimentally observed. We conclude that Bohr model of atom achieved important
results for a better understanding of the structure of atoms, but it is clearly immature
to properly explain radiative phenomena. Also, the energy levels predicted by the (2.9)
are not all the possible ones, as we will see in the next section.
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2.1.2 Towards quantum mechanics

Before we introduce the theory of fine structure of atoms we shall take a quick look
at the historical background; it’s not of primary importance to solve completely the fol-
lowing problems, what matters is to give as best we can the chronological order of the
various discoveries and experiments. We said in the previous paragraph that the energy
levels given by Bohr’s formula (2.9) are not all the possible ones; this was very well
observed by the Dutch physicist Pieter Zeeman (1865-1943) who was the first in 1896
to examine what is today known as Zeeman effect ; this phenomenon was crucial for the
understanding of energy level degeneracy and the development of quantum mechanics.
The Zeeman effect consists in splitting a spectral line into discrete components as the re-
sult of an interaction with a weak static magnetic field [27]. This discovery suggested that
energy levels should have had more layers than the ones known at that time. Today we
would say that a generic system is identified by specific quantum states, each labeled with
a set of quantum numbers such as n, and if an energy level corresponds to two or more
quantum states then it is degenerate. Zeeman in his experiment observed that the spec-
tral lines were splitted in evenly spaced sub-lines as shown in Figure 2.4 and Lorentz even

Normal Anomalous

Weak

magnetic field

Strong

magnetic field

Normal Normal

(Zeeman effect)

(Paschen-Back

effect)

Figure 2.4: Representation of photographic
plates showing the splitting of spectral lines in
the normal and anomalous Zeeman effect (up) and
Paschen-Back effect (below). The normal was the
only possible split predicted by Lorentz.

managed to explain part of the phe-
nomenon in terms of a classical the-
ory [26]. One year later, the scientist
Thomas Preston (1860-1900) found out
that in general cases those splits were
more chaotic and Lorentz theory couldn’t
predict them. Those unexplained cases
were called Anomalous Zeeman effects ; in
reality, both are exactly the same physi-
cal phenomenon, whose different behav-
ior is due to the intensity of the mag-
netic field used.. With the introduction
of orbital angular momentum L and spin
S it is easily explainable. For now we
just say that in an atom (or molecule)
there are reasonably strong internal mag-
netic fields (∼ 1 T) that interact with the
moving electrons and therefore defining a
specific internal structure, in particular a
magnetic dipole moment µB and a spin
magnetic moment µS; in addition, spin
and orbital angular momentum interact with each other generating a term called spin-
orbit interaction, that constitute a specific bound between L and S. When an external
magnetic field perturbs the atom (or molecule) the two dipole moments interact with it,
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removing the degeneracy of the energy levels involved and forcing them to split. The
difference between normal and anomalous Zeeman effect is just due to the different quan-
tum numbers defining the states in the same energy level, in particular we can say that
every singlet level is splitted in three lines and only depends on the orbital quantum
number, the others depends on the combination of orbital and spin contributions. Now,
Zeeman used weak magnetic field and the splits were extremely small; in 1921 the two
physicists Friedrich Paschen (1865-1947) and Ernst Back (1881-1959) repeated the ex-
periment using a magnetic field stronger than the one inside the atom (greater than
1 T) and reported that with such fields the only noticeable phenomenon was the stan-
dard Zeeman effect ; that happens because the external magnetic field interferes with the
spin-orbit interaction and by doing so it reintroduce the degeneracy due to that inter-
action. In 1913 analogous experiment leaded by the German physicist Johannes Stark
(1874-1957) was made replacing the magnetic field with an static electric field and he
observed a splitting and also shifting of spectral lines of atoms; this took the name of
Stark effect. These phenomena remained unexplained until the introduction of spin and
spin-orbit interaction after 1924 thanks to Wolfgang Pauli (1900-1958) as he explained
in his Nobel lecture in 1946 [31].
The first attempt to correct Bohr model and explain spectral lines splitting was made
by the German theoretical physicist Arnold Sommerfeld (1868-1951), who developed an
empirical method that allowed him to discretize coordinates that were periodic functions
of time (Wilson-Sommerfeld quantization rule). He managed to introduce a second and
a third quantum numbers, l and ml, known as orbital and magnetic quantum numbers
respectively. The new model, which took the name Bohr-Sommerfeld model (also known
as old quantum theory), gave a first explanation of normal Zeeman and Stark effects and
introduced the idea of the fine structure of spectral lines. Sommerfeld showed that the
total energy of an electron in an orbit is equal to [26]:

En,l = En

[
1 +

Z2α2

n2

(
n

l + 1
− 3

4

)]
, (2.14)

where the quantum number l satisfy the relation l = 0, ... , (n−1). The Bohr-Sommerfeld
model was a great achievement for the development of quantum theory. However, ob-
servation of the spectral lines showed that some transition predicted by the model were
not found on the spectrum, like the one shown in Figure 2.5. To counterbalance this
unexplained issue, it has been empirically derived a simple method to recognize the pos-
sible transitions from the forbidden ones, which took the name of selection rule. The
rule states that the transition only occur if the following relation holds:

li − lf = ±1 , (2.15)

where the subscripts i and f represent respectively the initial and the final orbital quan-
tum number [27]. We shall repeat the comparison between the hydrogen experimental
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n = 1, l = 0

n = 2, l = 0

n = 2, l = 1

n = 3, l = 0

n = 3, l = 1

n = 3, l = 2

n = 4

Figure 2.5: The fine-structure of some energy levels of the hydrogen atom. The splitting is
greatly exaggerated for the sake of understanding. The dashed lines are the transitions that
do not occur experimentally.

values of wavelength emission with the ones obtained with the equation (2.14), as we did
with Bohr model. Let’s consider the first transition shown by Balmer series between the
energy levels relative to n = 3 and n = 2 that emits light with a wavelength of 656.3 nm.
Proceeding in the same way as we did in the previous paragraph, we write the energy
gap between the levels, considering both with l = 0 and Z = 1:

E3→2 =

(
13.6

32

[
1 +

α2

32

(
3

1
− 3

4

)]
− 13.6

22

[
1 +

α2

22

(
2

1
− 3

4

)])
eV = 1.8889 eV ,

(2.16)
with the associated wavelength given by Planck-Einstein relations:

λ =
c h

E3→2

= 656.9 nm . (2.17)

If we confront the value obtained with the one given by Balmer series, which is 656.3 nm,
we can already see the remarkable accuracy gained with Sommerfeld quantization.

2.1.3 Fine structure of atoms

Now it’s time to properly introduce the modern theory that rigorously explains the
structure of atoms and the transitions between energy levels.

Schrödinger equation

We know from quantum mechanics that Schrödinger wave function Ψ represents a
statistical ensemble of copies of quantum particles, which encodes all the information we
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need to investigate particles behavior [29]; this function is given by the following linear
differential equation, known as Schrödinger equation:

i~
∂Ψ(r, t)

∂t
=

[
− ~

2m
∇2 + V (r, t)

]
Ψ(r, t) , (2.18)

or written in the general form using Dirac algebra notation:

i~
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 , (2.19)

where Ĥ is the hamiltonian operator. For obvious reasons we won’t be able to explore
the theory behind Schrödinger and Dirac’s works, but we will only recall some of their
important conclusions. In easier terms, Ψ(r, t) is a wave function relative to a single
particle under the influence of a time-dependent potential V (r, t) defined in the configu-
ration space E3; according to Born’s statistical interpretation the Ψ(r, t) square module
gives the probability of finding the particle in a generic region σ in configuration space
at time t [28]: ∫

σ
d3xΨ∗(r, t)Ψ(r, t) =

∫
σ
d3x |Ψ(r, t)|2 ≤ 1 , (2.20)

with the necessary normalized condition when we expand σ to the whole space:∫
E3

d3xΨ∗(r, t)Ψ(r, t) =

∫
E3

d3x |Ψ(r, t)|2 = 1 . (2.21)

Now, if we consider an time-independent potential V (r) we notice that Schrödinger equa-
tion becomes a differential equation with separable variables, so we look for a factorized
solution in the form:

Ψ(r, t) = φ(r)ψ(t) . (2.22)

In particular equation (2.18) must hold for every value of r and t, therefore with the
factorization we conclude that the following equations must be constant:

i~
1

ψ(t)

dψ(t)

dt
= E , (2.23)

− ~2

2m
∇2φ(r) + V (r) = E , (2.24)

where we have substituted the solution (2.22) in (2.18) and named the constant value E,
which has the dimension of an energy. It’s easy to obtain the solution of equation (2.23)
by a simple integration that gives the phase

ψ(t) = e−iEt/~ . (2.25)
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Finally, we rewrite the fundamental equation (2.24) in the usual form[
− ~2

2m
∇2 + V (r)

]
φ(r) = Eφ(r) , (2.26)

that can be written even in Dirac algebra notation:

Ĥ |Ψ〉 = |Ψ〉E . (2.27)

Equation (2.26) is called the time-independent Schrödinger equation and it’s of primary
interest in determining atomic orbital structure; it is even the irreducible form of the
problem, if we want to go further we need to specify V (r) [28]. The solution φ(r) to
the time-independent Schrödinger problem is called energy eigenfunction of the energy
eigenvalue E and it determines the stationary state of the system analyzed. We can
have more eigenfunctions φ1(r), .., φN(r) belonging to the same eigenvalue E and when
it happens we said that φ1(r), .., φN(r) are degenerate. It is important to notice that an
eigenfunction can’t be the zero function, as it determinate the probability of finding a
particle and so it can’t vanish.
Now, in general the wave function Ψ(r, t) can be expanded in the following way by
superposition principle:

Ψ(r, t) =
∑
nd

∫
dnc cnΨn(r, t) ; (2.28)

where nd are discrete indexes and nc are continuous; the separable solutions themselves

Ψn(r, t) = φn(r)e−iEnt/~ (2.29)

therefore encode all probabilities and expectation values that do not depends on time
because of the exponential factor, a property that is not shared by the general solution
of (2.18). From this time independence property comes the name stationary state.

Hydrogen-like atoms

Now we have the possibility to obtain the wave function of a generic quantum par-
ticle by solving Schrödinger equation (2.18) and with that its spatial distribution. The
difficulty of the problem is due to the expression of the interaction potential V (r, t),
which is non trivial for most of the problems we can consider. Fortunately we can set
the Schröedinger problem for an hydrogen-like atom and completely solve it. In fact, we
consider a time-independent coulombic potential

V (r) =
−Ze2

4πε0

√
x2 + y2 + z2

=
−Ze2

4πε0r
, (2.30)
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where for convenience we use spherical coordinates
x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ

that transform the Laplacian operator ∇2 in the following expression:

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2
. (2.31)

If we rewrite the time-independent Schrödinger equation (2.26) in spherical coordinates
we can easily notice the absence of mixed derivative terms; this suggests a natural ansatz
for its solution

φ(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ) = R(r)Y(θ, ϕ) , (2.32)

which can be trivially verified. Since we are dealing a central potential, we can use the
effective potential to simplify our discussion:

Veff (r) = V (r) +
L2

2µr2
, (2.33)

which contains the repulsive centrifugal force in addition to V (r). Leaving the details to
a quantum mechanics book, the solution (2.32) that describes the stationary states of an
hydrogen-like atom is expressed as the product of a radial term Rn′,l(r) and an angular
one Yl,ml

(θ, ϕ). The Schrödinger equation (2.26) for a hydrogen-like atom becomes:[
− ~2

2µ
∇2 − Ze2

4πε0r

]
Rn′,l(r)Yl,ml

(θ, ϕ) = ERn′,l(r)Yl,ml
(θ, ϕ) , (2.34)

with ∇2 given by (2.31). Now, the angular term must satisfies the following eigenvalue
equations: {

L2Yl,ml
(θ, ϕ) = l(l + 1)~2 Yl,ml

(θ, ϕ)

LzYl,ml
(θ, ϕ) = ml~2 Yl,ml

(θ, ϕ)
(2.35)

that show the possible values of the magnitude of angular momentum L and explain us
the meaning of the subscripts; in fact Yl,ml

(θ, ϕ) depends on the orbital quantum number
l and on the new one ml, which indicates the third component of the angular momentum
L . Yl,ml

(θ, ϕ) are known functions called spherical harmonics. Finally, substituting
(2.30) and (2.31) in (2.26) and using the quantization relation of L2 given by (2.35), we
obtain the radial Schrödinger equation that defines Rn′,l(r):{

− ~2

2µ

[
1

r2

d

dr

(
r2 d

dr

)
− l(l + 1)

r2

]
− Ze2

4πε0r

}
Rn′,l(r) = ERn′,l(r) . (2.36)
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The energy levels relative achievable from this models are given as follows:

En′, l = −µ
2

(
Ze2

4πε0~

)2(
1

l + n′ + 1

)2

≡ −µ
2

(
Ze2

4πε0~

)2(
1

n

)2

, (2.37)

where we have defined the already known principal quantum number as n = n′+ l+1 [29];
we list now the values of the indexes:

n′ = 0, 1, ...,+∞ ,

l = 0, 1, ..., n− 1 ,

ml = −l,−l + 1, ..., l .

From Schrödinger model we conclude that the predicted energy levels are exactly the
same as Bohr model, but with a crucial difference: each energy level is n2 times degen-
erate, therefore to every level correspond n2 different quantum states. Unfortunately,
this degeneracy does not occur, because there are small differences in energy between
the levels corresponding to the same principal quantum number.

Magnetic interaction

In addition to Schrödinger analysis, we have to consider that a charge who is moving
around a nucleus produces a magnetic field. We will approach the problem in a classical
way,

B

B

−ev

r

N

S

L

µlµlµlµlµl

Figure 2.6: Representation of the orbital
angular momentum L and the magnetic dipole
moment µl of an electron −e moving in a cir-
cular orbit. The fictitious magnetic dipole is
indicated by its poles N and S.

but it is possible to obtain the same results with
quantum mechanics. It is true that the angu-
lar momentum L in a central field problem is
express as:

L = me(r× v) = mevr n̂ , (2.38)

where n̂ is the unitary vector perpendicular to
the oriented surface A defined by the circu-
lar orbit. It’s useful to assume the presence
of a magnetic dipole with its relative magnetic
dipole moment µl = iA, which results antipar-
allel to L because of the negative charge of the
electron, as shown in Figure 2.6. Now, if we in-
dicate the current i as the result of the charge
−e which runs along a circumference of 2πr
with a constant speed v, by using (2.38) we ob-
tain:

µl
L

=
iA

L
=

(ev)πr2

(2πr)mevr
=

e

2me

≡ gl µb
~

.

(2.39)
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We see that the ratio between magnetic dipole moment and angular momentum is a
universal constant; it is common to express the ratio using Bohr magneton µb (Appendix
A) and the orbital g-factor gl, where in this case is equal to 1 . From relation (2.39) and
in agreement with the considerations on the directions of µl and L we have:

µl = − glµb
~

L . (2.40)

Using the quantization relation of the angular momentum obtained in (2.35), we get:{
µl =

gl µb
~
√
l(l + 1)~ = gl µb

√
l(l + 1)

µlz = − glµb~ ml~ = −glµbml

(2.41)

expressing the magnitude and the third component of the dipole moment µl in quantum
mechanics. Finally, we know from electromagnetism that a magnetic dipole placed in an
magnetic field has a potential energy

UL = −µl ·B (2.42)

and it’s easy to demonstrate that if B varies in one direction in space (let’s say z), the
force acting on the dipole is:

Fz = −∇U =
∂Bz

∂z
µlz =

∂Bz

∂z
(−glµbml) . (2.43)

Stern-Gerlach experiment and the discovery of spin

The last experiment before a formal introduction of spin in quantum mechanics was
made by the German physicists Otto Stern (1888-1969) and Walther Gerlach (1889-1979)
in 1922. In fact, they realized a simple apparatus, like the one reported in Figure 2.7,
which was able to verify the spatial quantization of L and µl. However, the measures
were different from the expected values; if we look at the force given by (2.43) it’s clear
that the splitting lines should always be an odd number, in particular with one in the
middle, since ml = −l,−l + 1, .., 0, .., l. The explanation to this phenomenon was that
in the atom there must be another angular momentum that followed quantization rules
like the ones seen for L. That momentum took the name of spin S, indicated as follow:{

S =
√
s(s+ 1)~

Sz = ms~
(2.44)

with its magnetic dipole moment µs{
µs = − gsµb~ S

µsz = −gsµbms

(2.45)

where in this case s is the spin quantum number, ms is the quantum number relative to the
value of the third component of S, which experimentally is equal to ±1/2 for electrons,
and gs is the spin g-factor, whose value depends on the quantum state considered.
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Figure 2.7: Schematization of Stern-Gerlach experimental apparatus. The result highlights
that there must be another magnetic dipole moment in addition to the angular one, since a
splitting occurred even if it was unexpected.

Spin-orbit interaction

Spin introduction by Pauli’s suggestion was of tremendous help for the study of atomic
and molecule structure; for instance, spin allowed to perfectly determine the permitted
transitions between the levels and it doubles the number of electrons to populate the
quantum states of multi-electrons atoms, property that goes under the name Pauli ex-
clusion principle. Now, in order to calculate the interaction between the angular and the
spin momentum we consider the potential energy (2.42) of a magnetic dipole immersed
in a magnetic field generated by the moving electron, but using the spin magnetic dipole
moment µs :

US = −µs ·B . (2.46)

Using relation (2.45) we obtain

US =
1

2

gsµb
~

S ·B , (2.47)
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with the factor 1/2 given by a relativistic effect called Thomas precession. We want to
express the potential energy in terms of S and L, so we use the following expressions:

B = −1

c
v× E , (2.48)

F = −eE , (2.49)

F = −dV (r)

dr

r

r
; (2.50)

With these relations we get an easy expression of the magnetic field produced by the
moving electron:

B = − 1

ec2r

dV (r)

dr
v× r =

1

emc2r

dV (r)

dr
L , (2.51)

where we used the known relation L = r ×mv = −mv × r . Finally, by substituting
(2.1.3) in relation (2.47) we obtain the energy interaction between L and S as follow:

USO(r) =
gsµb

2~emc2r

dV (r)

dr
S · L =

1

2m2c2r

dV (r)

dr
S · L , (2.52)

that can be rewritten using quantization relations and angular momentum theory as:

〈USO〉 = ξ

(
j(j + 1)− l(l + 1)− s(s+ 1)

2

)
, (2.53)

where ξ can be measured experimentally. Spin-orbit interaction is responsible for the
removal of J degeneracy and so for the fine-structure of atom, where J = L + S is the
total angular momentum. Equation (2.52) is the general form of spin-orbit interaction,
because the potential V (r) is not evaluated; if we have the internal potential interaction,
it can even be applied to multi-electron atoms. For an hydrogen-like atom, we use the
potential energy given by equation (2.30) and we simply get:

USO =
e2

2(4πε0)em2c2r3
S · L . (2.54)

Without given any demonstration, we report the general equation of the complete one-
electron atom hamiltonian, called Dirac equation:

H = H0 +H1 +H2 +H3 =

=

[
p2

2µ
+ V (r)

]
+

[
− p4

8µ3c2

]
+

[
1

2µ2c2 r

dV (r)

dr
S · L

]
+

[
π~2

2µ2c2

Ze2

4πε0
δ(r)

]
, (2.55)

where appear two new terms, H1 and H3, which are purely relativistic corrections; those
corrections are called respectively Thomas relativistic correction and Darwin term; this
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very last one is orthogonal to the spin-orbit interaction since it only appears when L = 0.
If we evaluate the contribution of all the terms in equation (2.55) by using perturbative
theory, we obtain the total energy eigenvalue:

En,j = En

[
1 +

Z2α2

n2

(
n

j + 1/2
− 3

4

)]
, (2.56)

where j is the quantum number relative to the total angular momentum J = L+S, such
that: {

j = |L− S|, ..., L+ S ,

mj = −j,−j + 1, ..., j .

Now, as we can see in relation (2.56) the energy levels depend on the quantum number
j; this implies that each level with l 6= 0 will be splitted in j components of different
energy, thanks to the spin-orbit interaction. As we have already seen in relation (2.15),
it has been empirically shown that some transitions occur, while other don’t. We could
even justify it now, but we will simply list the full selection rules now that we have more
energy levels, which are:


∆L = ±1 (∆L = 0 only if it’s not an electron transition)

∆J = 0,±1 (transitions from levels with Ji = Jf = 0 are not allowed)

∆mj = 0,±1 .

(2.57)

2.2 Multi-electrons atom

Let’s consider a generic multi-electron atom with N electrons and an atomic number
of Z; we write its hamiltonian in atomic units:

H = −
N∑
i=1

(
∇2
i

2

)
−

N∑
i=1

(
Z

ri

)
+

N∑
i=1

N∑
j=1,i<j

(
1

rij

)
, (2.58)

which are in order kinetic, coulombic attractive and repulsive terms. In order to solve
the Schrödinger problem, we have to use what is known as central field approximation,
since the repulsive terms are too intense to be considered a perturbation. If we subtract
the central interactions from the repulsive terms we can however define a new central
potential as the result of the sum of the attractive and repulsive central terms, leaving
some small interactions that can now be treated with variational method. We begin
writing the hamiltonian for the i-th electron as:

H = Hc +H1 = −
(
∇2
i

2

)
−
(
Z

ri

)
+

N∑
j=1,j 6=i

S(ri) +
N∑

j=1,i<j

1

rij
−

N∑
j=1,j 6=i

S(ri) , (2.59)
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and then we isolate the central terms:

Hc = −
(
∇2
i

2

)
−
(
Z

ri

)
+

N∑
j=1,j 6=i

S(ri) , (2.60)

where S(ri) are the mean value of the central interactions on the i-th electron from the
repulsive terms. In order to evaluate S(ri) we use Hartree iterative method : we evaluate
the central eigenfunction uα,i(rj) to get S(ri), and then we solve the central hamiltonian
problem obtaining a new central eigenfunction that allows us to calculate again S(ri) as
follow:

S(ri) =
N∑

j=1,j 6=i

∫
u∗α,i

1

rij
uα,i =

N∑
j=1,j 6=i

〈uα,i(rj)|
1

rij
|uα,i〉 (rj) , (2.61)

which we evaluate experimentally the first time to begin the iteration, then we solve the
central hamiltonian problem:[

−
(
∇2
i

2

)
−
(
Z

ri

)
+

N∑
j=1,j 6=i

〈uα,i|
1

rij
|uα,i〉

]
uα,i(rj) = Eα,juα,i(rj) , (2.62)

which finally gives us uα,i(rj). We continue this process until we’re satisfied with the
precision obtained. Now we can proceed writing the total central eigenfunction of the
problem with a useful tool known as Slater determinant ; we first write it down and then
we discuss it:

ψc(q) =
1√
N !

det

uα0(q1) . . . uαN
(q1)

...
. . .

...
uα0(qN) . . . uαN

(qN)

 , (2.63)

where we defined the functions as:

uαi
(qj) ≡ un,l,ml,ms(qj) = un,l,ml

(rj)χ 1
2
,ms

, (2.64)

with χ the spin function relative to the j-th electron and un,l,ml
(rj) the spatial eigen-

function, both depending by their quantum numbers. From (2.63) we notice that
ψc(q1, ..,qN) is antisymmetric for the exchange of any pair of electrons as requested
by Pauli’s principle, it vanishes when we have the same set of quantum numbers, be-
cause the determinant has linear dependent vectors, and finally the energy eigenvalue
associated is the sum of the individual orbitals contributions. This discussion is valid for
every element; the differences between atoms are in the type of central potential obtained
and in the attractive coulombic terms. However, once we know those terms we can pro-
ceed by using variational method to find the final result of the interested quantum state.
Without giving any demonstration, a good estimation of the total energy of a specific
quantum state is given by:

E = Eu + ∆E = Eu + 〈Ψ|H1|Ψ〉 , (2.65)
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where Eu is the unperturbed energy relative to ψc(q1, ..,qN) and H1 are the non-central
terms given from equation (2.59).

2.3 Spontaneous and stimulated emission

In the previous paragraphs we have introduced the atomic orbital theory, now it’s
time we introduce the physics of the absorption and emission of photons, in particular
spontaneous and stimulated emission.

As we know, one of the ways an atom has to exchange energy with its surrounding
is by absorbing and emitting photons; when these processes occur, the atom changes its
energetic state. Now, after absorbing a photon the atom has different ways to get back
to its ground state, that can be either radiative or non-radiative. If we consider radiative
emissions, we found that there are two possible ones: spontaneous, which gives rises to
photoluminescence phenomena, and stimulated emissions, which is used to create lasers.
Spontaneous emission occurs when an atom emits a photon without receiving any other
external interactions, which cause an uniform distribution of emitted photons throughout
the space. Stimulated emission is a stochastic process of quantum resonance, therefore
it needs an external perturbation in order to happen; briefly, it occurs when an atom is
excited by a sequence of photons that comprise an electromagnetic field applied to the
atom itself [26]. The main properties of stimulated emission are two:

(a) The stimulated photons have the same energy as the stimulating ones and hence
the same frequency.

(b) The light waves associated to the stimulated photons are in phase and have the
same state of polarization of the stimulating waves.

These properties assure us that the stimulated radiation is coherent. Under normal
conditions of thermal equilibrium it is extremely more likely to observe spontaneous
emission, by a factor of ∼ 1032 : 1; that’s why most of the radiation source emits
incoherent radiations.

Let’s assume we have N0 atoms in a generic ground state E0 that transit to an excited
one E1. We indicate the absorption rate P0→1 from E0 to E1 with:

P0→1 = N0(nhν)B0,1 = N0 ρνB0,1 , (2.66)

where n is the number of stimulating photons per unit volume, hν is the energy of each
photon and therefore ρ(ν) = nhν is the energy density of the absorbed photons; B0,1 is
a constant coefficient. Analogously we repeat the argument for the stimulated emission
rate:

P1→0 = −N1(nhν)B1,0 = −N1 ρνB1,0 , (2.67)
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where N1 is the number of atoms in the excited state E1 and B1,0 is another constant
coefficient. We note that the energy density ρν is the same because the required exter-
nal perturbation doesn’t change with time. Finally, we simply define the spontaneous
emission rate S1,0 as:

S1→0 = N1A1,0 , (2.68)

with the last constant coefficient A1,0. These three coefficients B0,1 , B1,0 and A1,0 are
called Einstein coefficients, because of Einstein’s work on them [26]. It’s important to
notice that both P0→1 and P1→0 depend on the energy density ρν , unlikely S1→0. It’s
reasonable to think the following relation between the rates must hold:

P0→1 = P1→0 + S1→0 , (2.69)

from which we can explicit ρν as

ρ(ν) =
A1,0/B1,0

(B0,1N0)/(B1,0N1)− 1
. (2.70)

Now, we know from statistical mechanics that the number of atoms Nj in the i-th level
of a system in thermal equilibrium conditions is given by Boltzmann distribution:

Nj = Ntot
exp (−Ej/kBT )∑
i exp (−Ei/kBT )

, (2.71)

where Ntot is the total number of atoms , Ej is the energy relative to the level j and kB
is Boltzmann constant. From equation (2.71) we can easily obtain the ratio of the atoms
relative to two different energy levels, in our case between N1 and N0 , as follow:

N0

N1

= �
��Ntot

��
�Ntot

· exp (−E0/kBT )∑
i((((

((((
(

exp (−Ei/kBT )
·
∑

i(((
((((

((
exp (−Ei/kBT )

exp (−E1/kBT )
= exp [(E1 − E0) /kBT ] (2.72)

and by substituting this ratio in equation (2.70) and using Planck-Einstein relations we
obtain:

ρ(ν) =
A1,0/B1,0

(B0,1/B1,0) exp(hν/kBT )− 1
. (2.73)

We recall the relation of the energy density of black body radiation in thermal equilibrium

ρb(ν) =
8πhν3

c3

(
1

exp(hν/kBT )− 1

)
, (2.74)

which must be consistent with the one expressed by relation (2.73), hence we conclude
that [26]:

B0,1

B1,0

= 1 , (2.75)

A1,0

B1,0

=
8πhν3

c3
. (2.76)
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These relations were first obtained by Einstein (1879-1955) in 1917. The value of the
coefficients is unknown and depends on the atoms and the energy levels we consider.
It’s important to highlight that from (2.76) we see how the energy difference between
the two levels affects the probability of having spontaneous or stimulated emission by a
factor of ν3 .



Chapter 3

Presentation of the project

In the first chapter we have seen some curious luminous phenomena, in particular
phosphorescence and fluorescence, which has been studied and observed since the XVI
century; recently these phenomena has been better understood and they have been used
in a wide variety of ways, from entertainment to scientific applications. After this first
introduction to the topic, we have analyzed the basics behind luminous phenomena, es-
pecially the way the matter interact with electromagnetic radiation from a semi-classical
and quantum point of view, giving particular importance to the atomic model and how
it is structured.
The purpose of this final chapter is to present a simple idea of how we can generate and
control luminous phenomena in order to replicate images or scenes, utilizing when it’s
required the theory previously made. We’ll begin by presenting the ideal situation of
the apparatus, then we will tackle the problem analytically with some approximations
and finally we’ll draw some conclusions on the possibility of creating the phenomenon
requested.
As well as the other luminous gadgets created, a more efficient version of this project
could be used both in entertainment and science field; we can imagine it utilized for
example as a 3D real-time representation of a human organ, or a 3D function visualizer.

39
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3.1 Description of the model

The result we want to obtain is simple: illuminate a small portion of space and being
able to accurately move it in a free space. If we manage to come up a device who’s
capable of satisfy the requested condition, we can utilize the afterimage of the point to
generate more complex figures by moving it quickly in a portion of space. Now, obviously
it’s impossible to represent full images with just a point; fortunately the human eye isn’t
capable of distinguish more than 30Hz of image refresh on average. In addition, the
illusion of a moving scene can be obtained even with a refresh rate of 15Hz.
The idea of the model is the following: we utilize a monoatomic gas contained in a finite
volume and exploit its excitation properties in order to obtained localized transitions
that emit visible light; we use fast laser impulses to excite the atom where required. The
main requirements are:

(a) The emission of visible light must be isotropic, so it must be equally distributed
on a solid angle.

(b) The laser light used to excite the atoms must be out of the visible spectrum, so
that scatter effects won’t be noticed.

(c) The transition rate must be fast, possibly a lot more then the human eye refresh
rate. Also, faster transition rates allow us to move the point faster around the
space, so that we can create bigger images with the same dot.

(d) The intensity of the visible emission must be enough to be perceived, possibly even
in medium light conditions.

It’s important to notice that the points above are just a heavy restriction of the pool of
elements that we can choose from; the study we have done it was based on the rubidium
(Rb) in gas state, mainly because it gives the possibility to satisfy the point (b), and
because it is a monoatomic gas. There’s nothing holding us on this particular element;
if there are better compounds, or easier elements to handle, we’re more than happy to
use them. However, the following discussion is general enough to be applied on every
monoatomic gas.

3.1.1 Energetic levels and transitions

Let’s consider a limited volume V filled by Ntot atoms of the same element Z. We
reasonably assume that all the atoms are at first in the ground state ε0 and are maintained
at thermal equilibrium at a temperature T . Let assume that the motion of the atoms is
slow enough to ignore relativistic effects; this request has to be analyzed buy estimating
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the velocity of atoms in that volume. Using Maxwell speed distribution, we obtain:

v̄Z =

√
3kBT

mZ

, (3.1)

where kB is Boltzmann constant and mZ is the mass of an atom Z. We ask that v̄Z � c,
in particular that v̄Z is less than 5% of the speed of light (∼ 1.5 · 107m/s). We find that:

Tmax =
mZ c

2

1200kB
, (3.2)

and that all the temperature values must lay under that limit. This is obviously respected
for almost every laboratory situation we can imagine, but soon we will see that we have to

ε0

ε1

ε2

ε

Energy

λ1

λ2

λ

Figure 3.1: Representation of the
transitions required for the atom Z. It
first goes to the level ε1, then to ε2 and
finally it goes back to the ground state.

add another restriction to the temperature. In fact,
we should request that all the atoms that are first
excited by the first laser will remain in the volume
Veff until the second one arrives. If the distance
between L2 and the volume is dp, then the time
required from the laser impulse to get there will be:

td =
dp
c
. (3.3)

Let deff be the linear dimensions of the volume
Veff ; we impose that the distance traveled by one
atom in the volume in a time td has to be less than
the volume linear dimensions:

vZ td < deff , (3.4)

which gives us the following condition on the tem-
perature:

T ′max =
d2
eff c

2mZ

3 d2
p kB

. (3.5)

If the first laser is constant, this condition can be
reasonably ignored. Now let’s take one of the atoms available and we consider three of it’s
energy levels where relations (2.57) hold: ε0 the ground state, ε1 and ε2 the excited ones,
with ε2 > ε1 . The transitions that we want are shown in Figure 3.1. In order to have
those transitions we have to use two different lasers, one for each upper jump; the two
lasers L1 and L2 will have wavelength λ1 and λ2 which are relative to the jumps ε0 → ε1

and ε1 → ε2 respectively. As requested by point (b), both the wavelength are out of the
visible spectrum. The transition that we are interested in is the spontaneous one from
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the intermediate energy level ε to the ground ε→ ε0; as we know from Planck-Einstein
relations, the wavelength of the photon emitted in that transition is:

λ =
c h

∆E
=

c h

ε− ε0

, (3.6)

this wavelength must be in the visible spectrum, so we have the following restriction:
λ∈ [400 nm, 700 nm] . It also has been measured that the maximum spectral sensitivity of
the human eye under daylight conditions is at a wavelength of 555 nm, while at night the
peak shifts to 507 nm [32]. This information suggests us that if we want the to increase the
efficiency of the device, it could be useful to study carefully some elements who have this
wavelength emission as the one used to realize the image. The rubidium (Rb) transition
utilize in our study has a wavelength emission of 420 nm. Now that we have established
the transition pattern we want to replicate, we need to maximize the number of atoms
that will decay from ε2 to ε0.

3.1.2 Two laser interaction volume

First of all, let’s consider the spatial dimensions of the point that we will use to draw
our image; it will be the result of the intersection between two laser beams, which we
assume to be cylindrical and with the same radius r1 = r2 = r. The intersection can be
calculated with a multiple integral, which gives the following result:

Veff =
8

3
r3(tan(θ/2) + cot(θ/2)) =

8

3
r3

(
2

sin θ

)
, (3.7)

where θ is the angle between the direction of the two beams; the footnote ”eff” means
”effective”, because it gives the actual maximum of atoms we can use in our process. In
fact, from the Ntot atoms we have in our volume V now we just consider a very small
portion of it, which is indeed Veff . It’s clear that the equation (3.7) is useful only if the
two beams are not parallel, since the volume would be infinite; in order to avoid that
singularity we could define some boundary conditions, but it’s not of primary interest
here, because the angle θ is always contained in a rage of approximately 25◦ to 55◦ . We
can now estimate the number of atom that we can use as a simple ratio between the
effective volume and the total one:

Neff = Ntot ·
Veff
V

, (3.8)

as long as we can consider the atoms equally distributed in the whole volume. Another
easy way to estimate the volume of the intersection is by using Monte Carlo method, by
simulating the probability of a point being outside the intersection; an example is shown
in Figure 3.2, with the code in Appendix B.
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Figure 3.2: 3D simulation of the points contained in the intersection of two cylinders with
Monte Carlo method.

3.1.3 The excitation process

Now we can consider the excitation processes; as we have seen in the previous chapter,
in order to excite an atom from a level A to another B it has to interact with a photon
with an energy equal to the energy gap between the two levels. This will affect the
number of photons in Veff coming from the two beams; in fact, the one with wavelength
λ1 will interact with all the atoms on its way to Veff , while the other beam won’t because
of its different wavelength λ2. This factor has to be taken into account when choosing
the power of the two lasers, especially if the distance traveled from the first beam is fairly
large. Let’s consider the Neff atoms: if we made interact these atoms with L1 constant,
what we would get would be a good number of excited atoms N1 in ε1, but even the
possibility of a stimulated emission described by equation (2.67) that we would like to
avoid.
Now, it’s impossible to completely remove the stimulated emissions, however we can
limit them by using laser pulses of a specific duration. The duration of the beams can
be estimated knowing the average life time of the excited levels; let’s consider εi and εi+1

first: it’s clear that with the beam Li constant the number Ni = Ni(t) of excited atoms
will get to a maximum value such that:

Ni(t = tmax) < Neff . (3.9)

What’s important is that we don’t have to keep the laser on to get to that value; in fact,
after the excitation of the first atom, the number Ni(t) grows approximately unperturbed
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for all the duration of the level average life time, that we name t = τi. We call the
maximum number of atoms in the excited energy level εi as N i = N i(ρ(λi)) , where ρ(λi)
is the energy density of the absorbed photons relative to the laser Li. The dependence
from the energy of the beam is clear, since more energy implies more photons; however,
from the theory of Einstein coefficients, we see that the number of atoms that can be
excited will be at most 1/2 of the total as shown in equation (2.75). In addition, since the
laser pulse is a quick external interaction force, the Breit-Wigner distribution allows us
to calculate the resonance frequencies that we want to use in order to have the maximum
excitation:

I(ω) =
k

(ω − ω0)2 + Γ2

4

, (3.10)

where ω0 is the mean energetic value of the level, k is a physical constant, Γ is the energy
level width, which it’s related to the average lifetime by the relation:

Γ =
~
τ
. (3.11)

Equation (3.10) gives us the best laser width that it needs to have; in fact, as it happens in
classical mechanics, if the laser Breit-Wigner distribution is the same of the distribution
of the level we will have an intense resonance phenomenon. Besides, if the laser width
is too large it could alter the image by exciting other energy levels. We conclude that
the duration of the laser process has to be equal to the average lifetime of the excited
level plus eventually some correction terms that depends on the amount of photons lost
during the path:

ti = τi + t′i ; (3.12)

This discussion is valid for both the excitation steps. Now, the idea of having pulsed laser
came form the necessity to minimize the stimulated emission; however, if we consider the
level ε1, its population after the ending of the perturbation will decrees exponentially;
this results in a significant loss of excited atoms. We could increase the duration of the
pulse, but at that point we will have stimulated emissions anyway. Some more accurate
estimates could be done in the future; by now, we will consider the first laser L1 constant,
so that to a first approximation we will have a constant number of atoms in the level ε1.
The second laser L2 will remain pulsed, since the time that the atoms spend in the level
ε2 is irrelevant.
Assuming that L2 last for a time t2 = τ2 we finally managed to get the maximum number
of atoms N2(ρ(λ2)) in the final excited level, so that we can proceed with the last part of
the process. As we see in Figure 3.1, we impose that between the levels ε2 and ε0 there
is at least another level ε additional to ε1 such that the transition ε2 → ε is permitted,
while the one ε2 → ε0 is forbidden by the selection rules. The atoms that will perform
the spontaneous transition ε2 → ε will be a portion of N2(ρ(λ2)) ; in fact, the probability
of following one decay path instead of the other depends on the energy gap between the
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levels and their widths. It’s inevitable that a relevant fraction of atoms will decay back to
the level ε1; however, having L1 constant helps in regaining some of the atoms according
to (2.66). Then it occurs the spontaneous transitions ε → ε0 that we are interested in,
which gives the number of photons Nγ = N distributed on the solid angle. Basically, the
goal of the study is to to maximize the number of atoms N on the energy level ε .
In order to simplify the problem, we define the laser impulse as the following function:

ρν(t) =

{
ξ , 0 < t ≤ tmax

0 , t > tmax .
(3.13)

Let’s consider the very first transition; The differential equation describing the level
population by using a pulsed laser is:

dN0(t)

dt
= −N0(t)ρν(t)B0,1 +N1(t)A1,0 +N1(t)ρν(t)B1,0 +N(t)Aε,0 . (3.14)

This is a linear differential equation with non constant coefficients that is not easy to
elaborate, even with the impulse simplification. Using a constant laser instead, we can
extremely simplify this first step considering just the mean value of atoms N0 after
a certain amount of time; this allows us to treat the level of the population N1(t) =
Neff − N0 as constant. With this said, we can consider the second transition, which is
described by the equation:

dN2(t)

dt
= N1ρν(t)B1,2 −N2(t)Γ2 −N2(t)ρν(t)B2,1 . (3.15)

If we eliminate the last term, we can rewrite the differential equation:

dN2(t)

dt
+N2(t)Γ2 = N1ρν(t)B1,2 = N1B1,2 ·

{
ξ , 0 < t ≤ tmax

0 , t > tmax ,
(3.16)

which gives the following solution:

N2(t) =

{
N1B1,2 ξ(1− e−Γ2t) , 0 < t ≤ tmax

N ′2 e
−Γ2t , t > tmax ,

(3.17)

where we have used the boundary conditions N2(0) = 0 and N2(+∞) = 0, with the
coefficient N ′2 representing the maximum number of excited atoms in the energy level
ε2 :

N ′2 = N1B1,2 ξ(e
Γ2tmax − 1) . (3.18)

The relation (3.18) can be obtained by imposing the continuity of the function N2(t) for
t = tmax ; we can see the plot of the function obtained in Figure 3.3. This discussion
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Figure 3.3: Plot of the function N2(t) according to the solution found of the differential
equation.

is strictly connected with the rubidium transitions studied, but it’s not mandatory to
follow the same pattern for other possible elements.
Now that we have the number of atoms in the final excited level, we can find the number
Nγ of photons emitted from the transition ε → ε0 by knowing the interested decay
probability P2 :

Nγ = N2(t)P2 . (3.19)

We show now a rough first estimates of the number of photons equally distributed on
the solid angle, considering the best case scenario. Let’s start with Neff atoms; we lose
half atoms in the transition ε0 → ε1. After that, assuming that the laser L2 is pulsed,
the number of atoms on the level ε2 will be N ′2 at most, which depends from N1.
Finally, we can obtain the number of atoms that decay to the level ε, by the simple
relation: N ′2 P2 . The pattern of the transitions with the associated probabilities is
outlined in Figure 3.4. This leads to the relation:

Nγ =
Neff

2
P2B1,2 ξ(e

Γ2tmax − 1) . (3.20)

It’s clear that just a small portion of that number will be perceived form the eye, which
will be proportional to the vision solid angle. Then, that portion needs to be compared
with the minimum intensity required from the human eye in order to see the luminous
point. If that value is below the minimum required some changes has to be made to
the device, which could be increasing the number of atoms Ntot , changing the element
Z, or even using a special camera that allows the perception of even a small amount
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Figure 3.4: Simple schematization of the absorption/emission processes considering all the
approximations.

of photons. Once the luminous point is obtained, we can move it around and create
afterimages; in order to represent more complex figures we can divide the whole volume
in sub-volumes, each with its luminous point operating.

3.2 Expected light yield

The two laser excitation process proposed required that the one relative to the first
transition is constant, while the second one is pulsed. The total number of effective atoms
that can perform the transitions are obtained by the intersection of the two lasers, which
is:

Neff = Ntot ·
8

3V
r3

(
2

sin θ

)
, (3.21)

where Ntot are the atoms contained in the whole volume V , assuming that the ray
of the two lasers is the same. After a series of assumptions and approximations, we
managed to obtained a rough estimation of the total number of photons emitted for
the transition considered through the whole solid angle. This number is given by the
following expression:

Nγ =
Neff

2
P2B1,2 ξ(e

Γ2tmax − 1) .

Now, the photons that are actually perceived by the human eye are just a small fraction
of Nγ ; this fraction will be proportional to the field of view of the eye. Then, depending
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upon the environment light conditions, the intensity required of the emission will be
higher or lower; in a dark room will be way easier to perceive the phenomenon instead
of a bright one.

3.3 An example: transitions in a rubidium atom

There are several hydrogenoid atoms that can be used as concrete examples; due to
the wide literature available we consider a rubidium atom. The transitions that satisfy
the conditions required are shown in Figure 3.5. We can see the correspondence between
the levels used in the mathematical model and the ones that are used to excite the
rubidium atom: 

ε0 −→ 5S1/2

ε1 −→ 5P3/2

ε2 −→ 5D5/2

ε −→ 6S3/2 ,

where 5S1/2 is in fact the rubidium ground state. In addition, we see that the energy
gaps between the levels are exactly the ones we need in order to have a spontaneous
emission of ”visible” photons as the result of a double excitation by two infrared lasers.
The two lasers wavelength required to excite the rubidium are:{

λ1 = 780nm

λ2 = 776nm ;

we see now why we want the lasers to have a narrow width; the laser must excite only
the level their supposed to, or the image could be corrupted. Finally, we see that the
emitted photon wavelength is λ = 420nm, which is relative to a bluish color and with
an energy of:

∆E =
c h

λ
= 2.95 eV . (3.22)

That’s a good example of an element that satisfy the strict parameters we imposed for
our study. The problems will now just be technical ones, the possibility of generating
luminous points in space is guaranteed by the theory and the experimental values [33].



Figure 3.5: Transitions pattern for rubidium atom that generate visible radiation from two
infrared lasers. As we can see, the wavelength of the photons emitted is λ = 420nm, that
corresponds to a blue light.





Conclusions

The aim of this thesis was to find a method to generate luminous images in space. We
wanted to generate a luminous point in space and being able to move it freely in a limited
volume. The solution was found in the process of stimulated emission; in particular, it
has been used a four-level energy system with a precise transition pattern that must be
performed. The four-level model is suggested by the opportunity to have a spontaneous
emission of photons with frequency in the visible spectrum as the result.
In order to describe the system, we have studied the atomic structure of atoms and how it
improved until the fine structure. We have analyzed the mechanisms involved in atomic
transitions so that we could understand how the system evolved after an excitation or a
de-excitation. We also wanted to know the behavior of the energy level populations after
the interaction with the external photons, therefore we introduced Einstein coefficients.
Our work has begun with the estimations of the total atoms that could be used for our
purpose, then we manage to set a mathematical model that described the system. After
some necessary approxmations, the mathematical model we chose allowed us to obtain
the maximum value of photons spontaneously emitted, which is given by the following
expression:

Nγ =
Neff

2
P2B1,2 ξ(e

Γ2tmax − 1) .

At the end of the study we were able to obtain a physical model capable of describing
the transition pattern proposed, which gives us the theoretical possibility of generating
”visible” light by using two ”non-visible” laser beams.
This pattern is also realistically doable; in fact, we have found an element (rubidium)
who follows the exact same transitions required and that perfectly matches the requested
values for the wavelengths relatives to the emission/absorption processes. The ideas
explored here need to be verified experimentally; a crucial help to the model could be
obtained by collecting and analyzing experimental data, only part of them are known
from literature. Notwithstanding the limitations of this first approach to the problem of
generating holograms in space by point-light sources, we’ve found a viable solution that
is worth to be studied further.
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Appendix A: Table of physical constants

Name Symbol Value Unit

Elementary charge e 1.60217733 · 10−19 C
Fine-structure constant α = e2/(2hcε0) ≈ 1/137
Speed of light in vacuum c 2.99792458 · 108 m/s (def)
Permittivity of the vacuum ε0 8.854187 · 10−12 F/m
Permeability of the vacuum µ0 4π · 10−7 H/m
(4πε0)−1 8.9876 · 109 Nm2C−2

Planck’s constant h 6.6260755 · 10−34 Js
Reduced Planck constant ~ = h/2π 1.0545727 · 10−34 Js
Bohr magneton µb = e~/2me 9.2741 · 10−24 Am2

Bohr radius a0 52.918 pm
Rydberg’s constant Ry 13.595 eV
Electron Compton wavelength λCe = h/mec 2.2463 · 10−12 m
Proton Compton wavelength λCp = h/mpc 1.3214 · 10−15 m
Reduced mass of the H-atom µH 9.1045755 · 10−31 kg
Rydberg constant of hydrogen RH 10967757.6 m−1

Stefan-Boltzmann’s constant σ 5.67032 · 10−8 Wm−2K−4

Wien’s constant kW 2.8978 · 10−3 mK
Molar gasconstant R 8.31441 J·mol−1·K−1

Avogadro’s constant NA 6.0221367 · 1023 mol−1

Boltzmann’s constant kB = R/NA 1.380658 · 10−23 J/K

Electron mass me 9.1093897 · 10−31 kg
Proton mass mp 1.6726231 · 10−27 kg
Neutron mass mn 1.674954 · 10−27 kg
Elementary mass unit mu = 1

12
m (12

6C) 1.6605656 · 10−27 kg
Nuclear magneton µN 5.0508 · 10−27 J/T

Atomic Units Symbol Value Unit

Electron mass me 1 a.u.
Elementary charge e 1 a.u.
Reduced Planck constant ~ 1 a.u.
Permittivity of the vacuum 4πε0 1 a.u.
Boltzmann’s constant kB 1 a.u.
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Appendix B: ROOT program for laser intersection volume

#include <iostream>
#include<cstdlib>
#include<cmath>
#include<random>
#include<ctime>
#include<TGraph2D.h>
#include<TCanvas.h>
#include<TPad.h>
#include<TRandom.h>

//*-----------------------------------------------------------*

//In order to run this program you have to install ROOT CERN.

//*-----------------------------------------------------------*

double MIN = -10000, MAX = 10000; //Box dimension respect to the origin.
int INSIDE = 0, OUTSIDE = 0, POINTS=100000, PRIMO=0,SECONDO=0;

const double RADIUS = 5000;

double cylinderVersor1[3] = { sqrt(2./3.), 1./sqrt(6.), 1./sqrt(6.) };
//double cylinderVersor1[3] = { 1. / sqrt(3.), 1. / sqrt(3.) , 1. / 
sqrt(3.) };
//double cylinderVersor1[3] = { sqrt(3.)/2.,1./2.,0.};
double cylinderVersor2[3] = { 0.,0.,1. };

double pointVector[3];
double *vectorProjection1 = new double[3];
double *vectorProjection2 = new double[3];

TGraph2D *Space=new TGraph2D(POINTS);
TGraph2D *firstCylinder=new TGraph2D(POINTS);
TGraph2D *secondCylinder=new TGraph2D(POINTS);

TRandom R=TRandom();

TGraph2D *box=new TGraph2D(POINTS);
//TGraph2D *zulu=new TGraph2D(POINTS);

std::default_random_engine generator{static_cast<long unsigned 
int>(time(0)) };
std::uniform_int_distribution<int> Uniform(MIN, MAX);

double Norm(double *v1)
{

return sqrt(v1[0] * v1[0] + v1[1] * v1[1] + v1[2] * v1[2]);
}

double* VectorialDifference(double *v1, double *v2)
{

double *v3 = new double[3];
v3[0] = v1[0] - v2[0];
v3[1] = v1[1] - v2[1];
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v3[2] = v1[2] - v2[2];
return v3;

}

double ScalarProduct(double* v1, double* versor)
{

return (v1[0] * versor[0] + v1[1] * versor[1] + v1[2] * versor[2]);
}

int main()
{

for (int i = 0; i < POINTS; i++)
{

pointVector[0] = Uniform(generator);
pointVector[1] = Uniform(generator);
pointVector[2] = Uniform(generator);

box-
>SetPoint(i,pointVector[0],pointVector[1],pointVector[2]);

vectorProjection1[0] = cylinderVersor1[0] * 
ScalarProduct(pointVector, cylinderVersor1);

vectorProjection1[1] = cylinderVersor1[1] * 
ScalarProduct(pointVector, cylinderVersor1);

vectorProjection1[2] = cylinderVersor1[2] * 
ScalarProduct(pointVector, cylinderVersor1);

vectorProjection2[0] = cylinderVersor2[0] * 
ScalarProduct(pointVector, cylinderVersor2);

vectorProjection2[1] = cylinderVersor2[1] * 
ScalarProduct(pointVector, cylinderVersor2);

vectorProjection2[2] = cylinderVersor2[2] * 
ScalarProduct(pointVector, cylinderVersor2);

//std::cout<<"Componenti Punto: 
("<<pointVector[0]<<','<<pointVector[1]<<','<<pointVector[2]<<")\n\n";

//std::cout<<"Risultato Differenza (<5000 NECESSARIO): 
("<<Norm(VectorialDifference(pointVector, vectorProjection1))<<")\n\n";

if(Norm(VectorialDifference(pointVector, 
vectorProjection1)) <= RADIUS)

{PRIMO=PRIMO+1;
//std::cout<<"Componenti Punto (PRESO): 

("<<pointVector[0]<<','<<pointVector[1]<<','<<pointVector[2]<<")\n\n";
firstCylinder-

>SetPoint(i,pointVector[0],pointVector[1],pointVector[2]);
}
if(Norm(VectorialDifference(pointVector, 

vectorProjection2)) <= RADIUS)
{SECONDO=SECONDO+1;
secondCylinder-

>SetPoint(SECONDO,pointVector[0],pointVector[1],pointVector[2]);
}
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if (Norm(VectorialDifference(pointVector, 
vectorProjection1)) <= RADIUS &&

Norm(VectorialDifference(pointVector, 
vectorProjection2)) <= RADIUS)

{
Space-

>SetPoint(INSIDE,pointVector[0],pointVector[1],pointVector[2]);
INSIDE = INSIDE + 1;

}
else OUTSIDE = OUTSIDE + 1;

}

TCanvas *Box=new TCanvas("Box","Box");
//box->SetMargin(0.5);
box->SetTitle("Box");
box->SetMarkerColor(2);
box->Draw("P");

TCanvas *cylinderIntersection=new 
TCanvas("cylinderIntersection","Cylinder Intersection");

Space->GetXaxis()->SetRange(2*MAX);
Space->SetMarkerColor(kBlack);
Space->SetTitle("Cylinder Intersection");
Space->Draw("P R");

TCanvas *cylinder1=new TCanvas("cylinder1","First Cylinder");
//firstCylinder->SetMargin(0.5);
firstCylinder->SetMarkerColor(kRed);
firstCylinder->SetTitle("First Cylinder");
firstCylinder->Draw("P");

TCanvas *cylinder2=new TCanvas("cylinder2","Second Cylinder");
secondCylinder->SetMargin(0.5);
secondCylinder->SetMarkerColor(kRed);
secondCylinder->SetTitle("Second Cylinder");
secondCylinder->Draw("P");

std::cout << " -Points Inside: " << INSIDE << std::endl;
std::cout << " -Points Outside: " << OUTSIDE << std::endl;
std::cout << " -Volume Fraction: " << INSIDE / (double)(INSIDE + 

OUTSIDE) << std::endl;
}
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