
Alma Mater Studiorum · Università di Bologna

Scuola di Architettura e Ingegneria
Corso di Laurea in Ingegneria e Scienze Informatiche

Accelerating large data modeling for

quantum computation with GPUs

Relatore:

Chiar.mo Prof.
Dario Maio

Correlatore:

Dr. Marco Gatta

Presentata da:

Chiara Varini

Prima Sessione di Laurea
Anno Accademico 2019/2020

2

Abstract

The goal of this dissertation is to introduce a new kind of system capable of increasing
the speed of the QUBO model creation, by virtue of the paradigms of parallel
programming and GPU computing. At a time when the first Quantum Annealers
broke on the scene, QUBO model was applied to solve combinatorial optimisation
problems. Quantum Annealers are a type of Quantum Computers that take advantage
of the natural properties of physical systems, both classical and quantum, in order to
find the optimal solution of an optimisation problem described through a minimisation
function. The usage of Quantum Computing techniques boosted the problem solution
finding so that, at present, the bottleneck is in the creation of the model itself. The
project QUBO on GPU (QoG), presented in this dissertation, aims to propose a brand
new approach in building the QUBO model exploiting the GPU computation and so
obtaining better performances in terms of speed to solve optimisation problems.

First, we present the basics of Quantum Computing and the necessary concepts
to understand the principles behind the Quantum Annealing and the quantum
computers based on this metaheuristic. Subsequently we will focus on Quantum
Annealing and the related D-Wave’s Quantum Annealer, the only one existing so
far and so highly representative. After this introduction to the world of Quantum
Computing, QUBO model is presented by describing it in its mathematical basics
and providing two modelling examples: the logic gate AND and the Map Colouring
optimisation problem.

An introduction to the General-purpose GPU programming (GPGPU) will then
follow, with its main paradigms and architectures and the technology being used
in the project, namely CUDA. CUDA is the hardware architecture and framework
software that NVIDIA introduced. These two aspects cannot be considered separately
but they are inseparable components of the same technology, so CUDA has been
used both as a programming language and a GPU architecture.

The main purpose of this work is to create a QUBO model for a generic combina-
torial quadratic problem as fast as possible. Since QUBO model is represented via
an upper triangular matrix, the project also looks for the best solutions in order to
compute and memorise a sparse matrix and how to optimise the access to its entries.

4

Sommario

L’elaborato di tesi propone un nuovo sistema con il quale è possibile velocizzare la
creazione del modello QUBO sfruttando i paradigmi della programmazione parallela
e il calcolo su GPU. Questo modello è stato reintrodotto nel campo della risoluzione
dei problemi combinatoriali di ottimizzazione grazie alla nascita dei primi Quantum
Annealer. Questa categoria di quantum computer sfrutta le naturali proprietà dei
sistemi fisici, sia classici che quantistici, per trovare la soluzione ottima di un problema
di ottimizzazione descritto tramite una funzione di minimizzazione. Grazie all’utilizzo
del quantum computing è stato possibile abbattere i tempi per la risoluzione di tale
modello. Tuttavia, per avere un ulteriore vantaggio utilizzando il modello QUBO
è necessario anche accelerare la parte di creazione della matrice QUBO relativa al
problema di interesse. Tale processo infatti comporta ancora un gravoso rallentamento
del modello stesso.

Il progetto QUBO on GPU (QoG), presentato nella tesi, propone un nuovo
approccio per la costruzione del modello QUBO che sfrutta la computazione su GPU.
Questa soluzione permette di diminuire considerevolmente il tempo utilizzato per
questa fase e quindi di ottenere una notevole accelerazione anche nella risoluzione di
problemi di ottimizzazione.

Nella prima parte della tesi vengono presentati i concetti fondamentali di quantum
computing che stanno alla base del quantum annealing. Viene poi proposto un
approfondimento sul Quantum Annealing e, in particolare, sul Quantum Annealer
dell’azienda D-Wave poichè, al momento, risulta essere il più rappresentativo. Quindi
viene presentato il modello QUBO attraverso una sua descrizione matematica e due
esempi applicativi: la modellazione della porta logica AND e la modellazione del
problema di ottimizzazione Map Coloring.

Nella seconda parte viene sviluppata un’analisi della programmazione general-
purpose su GPU presentandone i principali paradigmi ed architetture. Segue un
approfondimento di CUDA la piattaforma hardware e software proposta da NVIDIA.
Data la sua duplice natura CUDA viene analizzata sia come architettura hardware
che come linguaggio di programmazione.

Questo lavoro si pone come principale obiettivo quello di riuscire a realizzare
velocemente il modello QUBO associato a un generico problema combinatoriale
quadratico. Essendo il modello QUBO una matrice quadrata superiore, il progetto
analizza anche le migliori soluzioni per la memorizzazione di una matrice sparsa e le
modalità per ottimizzare l’accesso agli elementi di tale struttura.

keywords: Quantum Computing, Quantum Annealing, QUBO, D-Wave, GPGPU,
CUDA

6

Contents

1 Introduction 13

2 Theoretical Background 17
2.1 Fundamentals of Quantum Computing 17

2.1.1 State . 18
2.1.2 Entanglement . 20
2.1.3 Quantum gates . 21
2.1.4 Tunnelling . 24

2.2 Adiabatic Quantum Computing . 24
2.2.1 D-Wave . 26
2.2.2 QUBO Model . 29
2.2.3 QUBO implementing AND logic gate 31
2.2.4 QUBO implementing Map Colouring Problem 33

3 Technical Background 37
3.1 General-purpose computing on GPU 37

3.1.1 Standard architectures . 38
3.2 CUDA C . 40

3.2.1 Compilation . 40
3.2.2 Execution . 41
3.2.3 Architecture . 43

4 QoG 47
4.1 Requirements analysis . 47

4.1.1 Problem definition . 48
4.1.2 Constraints definition . 50
4.1.3 Building of the QUBO matrix 50
4.1.4 Matrix saving . 51

4.2 Design . 51
4.2.1 Uploading the problem data 53
4.2.2 Defining the constraints . 54
4.2.3 Creating the matrix . 54
4.2.4 Saving the data . 57

4.3 Technologies . 59
4.3.1 Scala . 59
4.3.2 CUDA and JCuda . 61

4.4 Implementation . 64

7

8 CONTENTS

4.4.1 Scala advanced features . 64
4.4.2 Indexing . 65

4.5 Testing and performances . 68
4.6 Future developments . 72

5 Conclusions 73

List of Figures

2.1 Bloch sphere [39] . 20
2.2 Quantum circuit to entangle two qubits 22
2.3 Quantum tunnelling . 24
2.4 Graphic representation of Quantum Tunneling and Adiabatic evolution

[44] . 26
2.5 D-Wave QPU [12] . 27
2.6 D-Wave Quantum Annealer [12] . 27
2.7 D-Wave Quantum cloud service [23] 28
2.8 D-Wave’s Ocean SDK stack [23] . 28
2.9 QUBO matrix to simulating the AND gate 31
2.10 Coloring a map of Canada with four colors [16] 33
2.11 Problem colouring regions connections graph 34
2.12 QUBO model for colouring regions problem 35

3.1 Many-core vs Multiple-thread models 38
3.2 Heterogeneus co-processing computing model 38
3.3 OpenMP vs MIP architetcures . 39
3.6 CUDA program simple processing flow [50] 42
3.7 Multidimensional CUDA grid . 44
3.8 NVIDIA GPU GeForce Streaming multiprocessor structure 46

4.1 QUBO costs examples . 49
4.2 QUBO costs loaded from problem.csv file 49
4.3 QUBO constrained example . 51
4.4 System main data flow . 52
4.5 System architecture . 53
4.6 DataLoader flow . 54
4.7 Single constraint definition . 55
4.8 QUBO matrix computation . 55
4.9 Row-major model . 56
4.10 Kernel Factory . 57
4.11 KernelDimension Factory . 57
4.12 Matrix saving functions . 58
4.13 NVCC CUDA compilation . 62
4.14 Technological stack . 63
4.15 Resources and Job computation . 65
4.16 Test coverage . 68

9

10 LIST OF FIGURES

4.17 QUBO space usage . 69
4.18 Testing QUBO . 70
4.19 Test results . 71

Listings

2.1 Ocean QUBO example implementation 32
3.1 CUDA memory menagement . 42
3.2 CUDA threads indexing [11] . 44
4.1 Type members example [37] . 59
4.2 Implicits example [30] . 60
4.3 Type members definition . 64
4.4 Implicits definition . 64
4.5 resources and jobs ids computing . 66
4.6 CUDA kernel implementation . 66
4.7 CUDA kernel launching . 67
4.8 Python script for creating QUBO models 70

11

12 LISTINGS

Chapter 1

Introduction

Moore’s law has been an accurate description of the computers power growth for
decades, stating that every 18 moths a chip doubles its number of transistors.
According with this law, we are now currently dealing with systems (i.e. transistors)
just made of particles. Being atomic elements, they do not follow the laws of
Classic Physics, but those of Quantum Physics, in particular those of Quantum
Mechanics. Born blending Quantum Mechanics and Computer and Information
Science, Quantum Computing (QC) is a new branch of Science that focuses on the
information processing tasks that can be accomplished using quantum systems. In
1985 British physicist David Elieser Deutsch formally expressed the first Universal
Quantum Turing Machine, which is the quantum equivalent of the Classical Turing
Machine in “normal” ICT theory and technology.

The QC fundamental data unity is the Quantum Bit, generally called qubit.
Quibts deeply differ from the common bit idea and provide a quantum counter part.
Qubits can be implemented through any double-state quantum system (i.e. the
electron spin) and the main differences between qubit and bit come from the typical
quantum system phenomenons:

• superposition of state;

• entanglement;

• tunnelling.

All these properties are described in the chapter 2. Thanks to these properties it is
possible to boost some specific tasks, which are classically considered computationally
hard such as the integer factorisation proposed by Peter Shor in [46], the efficient
database research designed by Lov Kumar Grover in [29] and many more. Moreover,
Quantum Computing permits also to solve problems that cannot be classically solved.
The experiment presented in [49] is the very first try to bring out the quantum
supremacy.

Two main QC technologies broke into the scene to the present day are reported
below:

• Universal quantum computer: built on the gate-based quantum computing
model and they handle all the computation phases by controlling the status

13

14 CHAPTER 1. INTRODUCTION

changes of the qubits. Universal Quantum Computers can only use some dozen
of qubits, given the complexity in managing the interaction among qubits1;

• Quantum annealer: built on the Adiabatic Quantum Computing (AQC) model
also called Quantum Annealing (QA). It exploits the natural evolution of
quantum systems and therefore not every bit needs to be checked, it can
perform computations on several thousands of qubits2.

Thanks to the high number of qubits available to Quantum Annealers, it is
possible to speed up systems and to find new solution methods in different fields,
such as complex discrete optimisation systems, Artificial Intelligence (AI), Machine
Learning and materials science simulations [14]. The solution of an optimisation
problem using a Quantum Annealer is made possible by a specific model called
Quadratic Unconstrained Binary Optimization (QUBO) and will be detailed in
section 2.2. The critical point that this model presents, lies from the performances
point of view, that is to say the creation of the model itself. In fact, this aspect
requires more time than the other phases of the design work[8].

The main goal of this work is to propose a system capable of creating the QUBO
model for any problem as efficiently as possible: the QUBO on GPU system (QoG)
presented in the dissertation allows us to define the model in an easy way. The main
idea to massively parallelise the creation of the QUBO model, taking full advantage
of GPU computation. This kind of approach permits then to cut the creation timeline
and increasing the speed up in solving problems on Quantum Annealers.

The entire work has been completely designed, developed and tested with support
from the Data Reply Quantum Computing Team in the premises of Turin. The
dissertation is organised as follow:

• Chapter 1: the basics of Quantum Computing, Quantum Annealing and
QUBO model are presented, so to clarify the goal of the project. The chapter
is subdivided into two parts as reported below:

1. Fundamentals of Quantum Computing: firstly, the basic unit of
quantum information, namely qubit, is presented with all its properties.
The state of a single qubit is then described in mathematical and geomet-
rical terms and then a brief description is given of to the phenomenon of
entanglement and the different kind of available operators to manipulate
the state of one or more qubits that are named quantum gates. This
part is closed by the presentation of the tunnelling effect, widely used in
Quantum Annealers.

2. Adiabatic Quantum Computing: this section gives a quick overview
on the state-of-art of Quantum Computers, with a special focus on D-
Wave Quantum Annealer. Then it analyses in detail the QUBO model
presenting two concrete case studies: the first is purely theoretical and
shows how QUBO can be used to simulate the working of the AND gate,
while the second one is more realistic and is centred on the solution of a
map-colouring problem on a concrete example.

1At the end of 2019 Google Quantum Computer had 54 qubit
2D-Wave latest model is composed by more than 5000 qubits

15

• Chapter 2: technical issues of general purpose programming on GPU are
presented as well as the main architectures available on the market. This
chapter is subdivided into two sections as below:

1. General-purpose computing on GPU: in this section a brief glance
on the evolution and the state of art of GPGPU programming with all
the major architectures and framework available for that purpose is given.

2. CUDA C: a detailed review on architecture for GPU CUDA and the
related API provided from the homonymous framework is presented.
Furthermore, the functioning of the dedicated compiler NVCC and how
the paradigm SPMD handles the computation is described; finally, the
hardware structure CUDA uses is presented with a focus on the addressing
of the threads for the parallel computation.

Chapter 3: in this chapter, the QoG project, specially designed for this thesis,
is presented through a six sections articulation:

1. Requirements analysis: here all the QoG requirements are defined
with all the most relevant issues. Each requirement is deeply analysed
providing specific examples when needed, so the requirement itself can be
better explained.

2. Design: in this section the design choices are displayed. Through the
use of some UML schemes, the whole architecture is explained, including
detailed descriptions of the main components. The inputs and outputs
for each phase are highlighted by flow charts, describing also the proper
functioning of any part.

3. Technologies: here the different technologies that have been used for
the development of the system are presented, with the emphasis on Scala
advanced features and framework JCuda main properties. It will be shown
also how to interface a Java (and so Scala) project to a CUDA project by
using JCuda.

4. Implementation: in this section the main implementation solutions are
displayed, presenting only the most relevant portion of code. Furthermore
is reported a detailed description of the QUBO matrix indexing using
a row-major model and how acceding to each cell in the smartest way,
avoiding useless cycles.

5. Testing and performances: the effective functioning of the system is
here presented, and for each one of the goal (time and space) detailed
tables are given with all performances recorded during appropriate tests
brought forth during the validation stage. The execution time is flanked
by the hardware features on which the tests were carried out.

6. Future developments: in this final part, an overview on the main
future developments for QoG is given. Every proposal and blueprint for
development is thought to be more and more independent and accessible
through other systems. These proposals are only sketched and must be
deepened and evaluated during further future development work.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Theoretical Background

This chapter provides an introduction to Quantum Computing, in order to make the
project covered by the thesis understandable to the reader. The chapter is composed
by two sections:

• a description of the basics of quantum computing;

• a focus on the Adiabatic Quantum Computing splitting in:

– glance on the state-of-the-art of the D-Wave system;

– QUBO model and its usage with the quantum annealers in solving opti-
misation problems;

– two examples of modelling with the QUBO.

2.1 Fundamentals of Quantum Computing

The quantum bit, usually shortened to qubit, is the fundamental unit of data for
quantum computing. As the classical bit, a qubit can be described according to
two perspectives, namely from a mathematical or a physical point of view. In this
section we will focus mostly on the qubit properties in mathematical terms; some
examples of physical implementations of a qubit can be found in [39] and [28]. As
we will see, the qubit presents profound differences with its classical counterpart:
if a bit can represent one of two different states (0, 1), potentially, a qubit can
represent an infinite number of states between 0 and 1. This property is called
superposition of states and it will be described more in detail in the next section.
While a classical bit can be represented by any system that can be in exactly one of
the two different states, (i.e. logically a transistor acts as a switch), a qubit must
be rather represented by a quantum system, such as the spin of an electron or the
polarisation of a photon. Therefore, their behaviour is intrinsically probabilistic and
the outcome of measurements of such systems is described in depth by Probability
Theory[4].

17

18 CHAPTER 2. THEORETICAL BACKGROUND

2.1.1 State

To represent a probabilistic state, mathematically speaking, it is possible use a linear
combinations of two vectors. Being a quantum system, the state of a qubit can be
also represented by a vector, in particular by a unitary vector in a two-dimensional
complex space, that is a Hilbert space. The canonical computational base of a qubit

state is {(1, 0), (0, 1)} that can be expressed as {|0〉 =

1

0

 , |1〉 =

0

1

}.
The standard notation used to describe a quantum state is the Bra-Ket notation,

and it was introduced by British physicist Paul Dirac. This particular name comes
form the notation itself which is, in fact, mainly composed by the two symbols:

• 〈...| called bra that corresponds to a horizontal vector;

• |...〉 called ket that corresponds to a vertical vector.

As a result, we obtain that the 〈x | y〉 corresponds to the inner product of the
two vectors x, y and the |x〉 〈y| their outer product in a finite-dimensional Hilbert
space [2].

The main difference1 between bits and qubits is that a bit can be just in one of
two states (0,1), whilst a qubit can be expressed as a linear combination of them,
often called superposition [39]. The qubit state |0〉 and |1〉 can be seen as the
corresponding bit state 0 and 1, but only a qubit can be in a state like:

|ψ〉 = α |0〉+ β |1〉

In this state, the different members correspond to:

• |0〉 is the vector (1, 0)T ;

• |1〉 is the vector (0, 1)T ;

• α is the amplitude of |0〉;

• β is the amplitude of |1〉;

In order to measure a quantum system we have to interact and perturb it and
so changing its state. In Quantum Mechanics this typical effect is explained by the
decoherence principle. That states that when a quantum system interacts with the
environment, it changes its states and loses its quantum properties. Being a quantum
system, a qubit follows all the Quantum Mechanics laws too, so it is subject even to
the quantum decoherence principle; for a qubit that means when it is observed or
measured, its state will collapsed to |0〉 or |1〉. This implies that even if a qubit can
store a possible unlimited amount of data, these information can not be accessed
directly. Measuring a qubit, the probability to get |0〉 as a result is |α|2 and to get
|1〉 is |β|2, and as consequence the fact that |α|2 + |β|2 = 1.

1A very intuitive and well formed table reporting all the main differences between the qubits
and bits is at page 35 of [38]

2.1. FUNDAMENTALS OF QUANTUM COMPUTING 19

Moreover the result of a qubit measurement depends on which base we choose
to do it. Usually the standard base |0〉 , |1〉 is used but, in principle, we can resort
to any C2 orthonormal base to measure a qubit state. Using a different base the
measurement result will be one of the two states of the computational base. For
example another frequently base used is |+〉 , |−〉 in which

|+〉 =
1√
2

(|0〉+ |1〉) (2.1)

|−〉 =
1√
2

(|0〉 − |1〉). (2.2)

Using this last base we can translate the qubit state using

|0〉 =
1√
2

(|+〉+ |−〉) (2.3)

|1〉 =
1√
2

(|+〉 − |−〉). (2.4)

and so obtaining:

|ψ〉 = α |0〉+ β |1〉 =
α + β√

2
|+〉+

α + β√
2
|−〉 (2.5)

Therefore, the subsequent measurement of the qubit will be |+〉 or |−〉, both
with the same probability 1

2
.

Another possible way to describe a qubit, is by using a geometrical representation.
In fact, it is also possible to rewrite a qubit state as:

|ψ〉 = eiγ
(
cos

θ

2
|0〉+ eiφsin

θ

2
|1〉
)

where θ, φ and γ are real numbers. Essentially, they define a point on a unit
three-dimensional sphere called Block sphere and depicted in fig. 2.1. In this sphere,
if we use the standard measurement base z:

• the north pole represents the qubit state |0〉;

• the south pole represents the |1〉;

while any other state is a superposition of this two. With this representation any
measurement can be seen as a projection of its state onto the computational basis.

20 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1: Bloch sphere [39]

2.1.2 Entanglement

A quantum system can be composed by multiple qubits so that the whole system
state is represented by the tensor product of all them.

The tensor product, represented by ⊗, is an operation that combines vector

spaces in order to build a big ones. Given two complex vector spaces Cm and Cn

and two vectors v ∈ Cm and w ∈ Cn the tensor product is defined as:

⊗ : Cm × Cn → Cmn (2.6)

with

v ⊗ w =

v1w
...

vjw
...

vmw

(2.7)

where for each 1 ≤ j ≤ m, vjw is the product between the column vector w and
the scalar value vj.

So a quantum system composed by two qubits can be:

|ψ〉 = |00〉
= |0〉 ⊗ |0〉

= (1, 0, 0, 0)T

(2.8)

A system composed by multiple qubit is entangled if its state cannot be written
as a tensor product of its component. The entanglement is one of the most discussed
property of quantum systems. If two o more qubits are entangled, it means they are

2.1. FUNDAMENTALS OF QUANTUM COMPUTING 21

very strictly correlated, so, if one of them changes its state, this change instantly
modifies the state of the other qubits. Furthermore, if a qubit is measured when
two or more qubits are entangled, the state of all the others in entanglement can
be found deterministically. The best examples of entanglement are the Bell states
known also as EPR pairs. These are the basic two-qubits entangled systems and
each one of them cannot be written as product of its components. They are:

|β00〉 =
|00〉+ |11〉√

2

|β01〉 =
|01〉+ |10〉√

2

|β10〉 =
|00〉 − |11〉√

2

|β11〉 =
|01〉 − |10〉√

2

(2.9)

The correlations among the qubits in an entangled quantum system finds a lot of
useful applications, such as quantum teleportation and super-dense coding [39].

2.1.3 Quantum gates

The quantum gates are used to manipulate the state of a quantum system. A
quantum gate is represented by a unitary and subsequently reversible matrix, that
performs a change on the qubit state. On the Block sphere it can be seen as a
rotation of a vector |ψ〉 representing the qubit state.

The fundamental single-qubit gates the four Pauli transformations (I,X, Y, Z)
and the Hadamard matrix (H):

σI =

1 0

0 1

 σx =

0 1

1 0

 (2.10)

σy =

0 −i
i 0

 σz =

1 0

0 −1

 (2.11)

H =
1√
2

1 1

1 −1

 (2.12)

The Hadamard gate is one of the most important operations to perform on a
qubit since it turns its state into a perfect superposition. That means that measuring
it, we will have the same probability to get |0〉 or |1〉 [43].

22 CHAPTER 2. THEORETICAL BACKGROUND

A widely used quantum gate on two qubits is the CNOT gate.

CNOT =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

This gate takes two qubits as input and returns two qubits: if, and only if, the

former qubit is in the state |1〉, the latter flips its state. As shown in the fig. 2.2, the
CNOT gate, together with the H gate, is used to put two qubits in an entangled
state [5]. In the following quantum circuit, replacing x and y with the chosen starting
qubits states, we can obtain the same Bell state shown in eq. (2.9).

Figure 2.2: Quantum circuit to entangle two qubits

The behaviour of all the explained gates is reported in the table table 2.1 1.

1the gates symbols are taken from [42], page 214

2.1. FUNDAMENTALS OF QUANTUM COMPUTING 23

Gate Symbol Description

I

It does not change the qubit state.

I |0〉 = |0〉
I |1〉 = |1〉

X

It acts like the classical NOT gate flipping the qubit state.

X |0〉 = |1〉
X |1〉 = |0〉

Y

It flips the qubit state like X and its phase.

Y |0〉 = i |1〉
Y |1〉 = −i |0〉

Z

It flips the qubit phase.

Z |0〉 = |0〉
Z |1〉 = − |1〉

H

It puts the qubit in a perfect superposition.

H |0〉 = 1√
2
(|0〉+ |1〉)

H |1〉 = 1√
2
(|0〉 − |1〉)

CNOT

It changes the second qubit state if the first qubit is |1〉.
CNOT |00〉 = |00〉
CNOT |01〉 = |01〉
CNOT |10〉 = |11〉
CNOT |11〉 = |10〉

Table 2.1: Quantum gates

24 CHAPTER 2. THEORETICAL BACKGROUND

2.1.4 Tunnelling

In Classical Mechanics, a typical object cannot pass through a barrier but it has to
go around it to cross it. In the quantum world, however, this is technically made
possible by virtue of Heisenberg Uncertainty principle [6]. According to this, a certain
subatomic particle does not have a precised state but, in general, it can behave as
particle or wave. So in Quantum Mechanics a subatomic particle can pass through a
potential barrier with a certain probability, dependent on the barrier weight, thanks
to its wave properties. This important property applies in Quantum Annealing to
explore an energy landscape and consuming the minimum energy. This last concept
will be further explained in the next section. In fig. 2.3, a typical scheme of the
tunnelling effect is reported.

Figure 2.3: Quantum tunnelling

2.2 Adiabatic Quantum Computing

In the field of Quantum Computing, two main technologies took over:

• quantum gate model: also known as circuit model, this model has been
conceived in 1989 by Deutsch’s as an universal gold standard when speaking
Quantum Computing, and in fact it is still the standard;

• quantum annealing model: introduced in 1988 as a quantum stochastic
optimisation, namely a solver for combinatorial and optimisation problems, it
was later renamed Adiabatic Quantum Computing or quantum annealing [48].

Adiabatic Quantum Computing, also known as Quantum annealing, meaningfully
differs from the gate model:

• in the gate model the computation is handled as a series of quantum logic
gates to apply to a set of qubits initialized to the state |0〉 and it takes care of
all the single transformations of their state;

2.2. ADIABATIC QUANTUM COMPUTING 25

• in QA the process starts with a system description using a Hamiltonian. Then
system is left to evolve until it reaches its ground state that encodes the problem
solution1.

In fact, AQC is a computation model based on the adiabatic theorem of Born-Fock,
which describes the natural evolution of a Hamiltonian system towards its lowest
energy point. In nature, both in classical and quantum mechanics, the following
rules apply: hot things cool down, sloping objects descend and so on. Atoms too
tend to their balance point that, in this case, is the one with minimum energy level.
The time evolution of a quantum system can be described by Schrödinger equation:

i~
d

dt
|Ψ(t)〉 = Ĥ |Ψ(t)〉 (2.13)

where i is the imaginary unit, ~ is Planck constant, |Ψ〉 is the state vector if
the quantum system and Ĥ is the Hamiltonian operator. The eigenstate of the
Hamiltonian related to the smallest eigenvalue represents the lowest energy system,
namely the ground state. AQC focuses on Hamiltonian operators and how using
them to encode the goal functions of optimisation problems, whose ground state
corresponds to the optimal solution for the problem under consideration.

Computers that resort to this kind of approach are known as Quantum Annealers:
by virtue of the intrinsic properties of quantum systems, QA can efficiently find
optimal (or very good) solutions for combinatorial optimisation problems described
by a Hamiltonian. The stages behind this approach are:

1. defining the QA initial state through a known-value ground state H0;

2. defining a goal function using a specific Hamiltonian H1;

3. slowly enabling the system to evolve adiabatically until it reaches H1 in accor-
dance with

H = (1− s)H0 + sH1

The parameter s defines the velocity gradient when evolving from H0 to H1. s
varies between 0 and 1 and for each change, the corresponding ground state H is
evaluated. The less the algorithm cools down in terms of speed, the higher will be
the probability to find the lowest energy point of the final system H1, that is the
initial goal function. This process is reported in fig. 2.4.

However, reaching the ground state cannot be taken for granted: if a local
minimum point is achieved we obtain only an approximate solution. The Quantum
Annealer also makes use of the quantum properties of the system in order to find
better solution in a shorter time. The main properties used at this purpose are:

• superposition: to examine many solutions at once;

• tunneling: to bypass local minimum points without loss of energy, as reported
in fig. 2.4;

1A deeply detailed introduction to AQC can be found in [48]

26 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.4: Graphic representation of Quantum Tunneling and Adiabatic evolution
[44]

• entanglement: to find better solution using the correlations among the minimum
points;

• quantum fluctuations: to create particle-antiparticle pairs of virtual particles.

2.2.1 D-Wave

D-Wave is a leader company in developing quantum annealers. Since 1999, it has
always proposed cutting-edge designs, until reaching the ongoing 4th generation of
Quantum Computers, doubling the qubit numbers with every new model 1. The
process unit of the D-Wave systems is called Quntum Process Unit (QPU) and it is
composed by several qubits connected by couplers as depicted in the fig. 2.5. The
QPU is designed to solve quadratic unconstrained binary optimisation problems,
where each qubit represents a variable, and couplers between qubits represent the
costs associated with qubit pairs. The QPU is a physical implementation of an
undirected graph with qubits as vertices and couplers as edges among them [40].

To solve an arbitrarily posed binary quadratic problem directly on a D-Wave
system it is necessary perform a mapping, called minor embedding, to a precise
topology that represents the system’s quantum processing unit, this procedure is
detailed in [17].

The main requirements of the D-Wave’s quantum annealer are:

• Cryogenic temperatures: in order to kept the QPU temperature near absolute
zero. It is achieved using a closed-loop cryogenic dilution refrigerator system.
The QPU operates at temperatures below -273.135◦;

• Shielding from electromagnetic interference: in order to kept the system isolated
from the surrounding environment and behave quantum mechanically. It is

1D-Wave One (2011) operates on a 128-qubit chipset; D-Wave Two (2013) works with 512
qubits, D-Wave 2X (2015) works with 1000 qubits, D-Wave 2000Q (2017) works with 2000 qubits

2.2. ADIABATIC QUANTUM COMPUTING 27

Figure 2.5: D-Wave QPU [12]

achieved using a radio frequency (RF)–shielded enclosure and a magnetic
shielding subsystem.

Figure 2.6: D-Wave Quantum Annealer [12]

The current on sale model is called D-Wave 2000Q and consists of 2000 qubits.
We can see it in fig. 2.6. Every D-Wave model can be directly purchased or remote
accessed through the cloud service Leap. Both Leap and the embedded SDK Ocean,
are made by D-Wave itself, as represented in fig. 2.7. At the end of 2019, D-
Wave announced its next generation model Advantage [13], with the following
enhancements:

• increasing the qubits on the QPU: Advantage will use more than 5000 qubits;

• presenting a brand new topology for qubits: the current Chimera gives way to
Pegasus, rising in the qubits link from 6 to 151;

• a noise reduction on the QPU.

28 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.7: D-Wave Quantum cloud service [23]

At the present time, Leap is the only cloud service and Quantum Application
Environment (QAE): the developing of quantum applications becomes faster and fully
supported at an industrial level, supplying a live access to the quantum computer,
software development kit (SDK), resources and also to an on-line community. In
addition to the cloud service, D-Wave developed also a set of open-source Python
tools that, as in classical computer science, simplifies the creation of application
without knowing the physical properties of the quantum computer. All these tools
are enclosed in D-Wave open-source Ocean SDK. The stack software implements
every necessary operation to transform high-level problems into quantum solvable
problems.

Figure 2.8: D-Wave’s Ocean SDK stack [23]

As is clear from fig. 2.8, Ocean is located between the application code and the
HW resources. The main features this framework offers, as stated in D-Wave official
documentation[1], are as below:

1More details on both architecture can be found in [35] and in [21]

2.2. ADIABATIC QUANTUM COMPUTING 29

• Application: original problem in its context (the “problem space”) including
application data and a clearly defined goal;

• Mapping Methods: tools that translate the application goal and data into a
problem form suitable for quantum computing. They also receive solution
samples and translate them back into solutions for the application layer;

• Uniform Sampler API: abstraction layer that represents the problem in a form
that can access the selected sampler;

• Samplers: tools that receive a problem in the form of a binary quantum model
(BQM) and return solution samples. Ocean implements several samplers that
use the D-Wave QPU as well as classical compute resources. You can use
Ocean tools to customise a D-Wave sampler, create your own, or use existing
classical ones;

• Compute Resources: the processing hardware on which the problem is solved.
This might be a D-Wave QPU but it may also be the CPU of your laptop
computer.

By virtue of this framework, every user can implement its own application at a
very high-level and the next step will be automatically carried out by assigning proper
weights to any qubit and to strength of the couplers, namely the links, or arches,
between two different qubits. At this point, these values and possible user-defined
parameters, are taken as inputs so that the system sends a single Quantum Machine
Instruction (QMI) to the QPU. The solutions we obtain are the lowest points in the
energy landscape and the number of these solutions can be defined by the user itself.
It is important to emphasise that we can obtain more than one solution, because
of the probabilistic nature of quantum computing so that good solution may come
together the optimal one [20].

The current family of D-Wave computers can solve problems formulated in either
Ising form or QUBO form as shown in [36].

2.2.2 QUBO Model

QUBO, an acronym for Quadratic Unconstrained Binary Optimisation, is the most
widespread model in solving optimisation problems through quantum annealers. This
kind of problems are very common in computer science and include some of the
most famous NP-hard problems, namely those problems for which there are not
yet efficient algorithms to solve them. That means that real-world problems with a
high number of variables cannot be solved with this model using classical machines.
However, thanks to the new quantum computing techniques, i.e. quantum annealing,
we can find an optimal solution for this problems in short span of time. Some of the
most famous real problems which this model can be applied to are: Knapsack [7],
traffic flow optimization [40], Max Cut problem [47], Distributed Task allocation
problem, Number Partitioning problem and many more [27]. In order to solve a
problem using a quantum annealer, it is possible to use another model too, called
Ising model. The Isign model represents a natural physics system. The goal is the

30 CHAPTER 2. THEORETICAL BACKGROUND

same of the QUBO, that is to say: finding the optimal solution in order to minimised
an objective function. These two models are very similar, the main difference is the
coding of the variables: in the QUBO the variables can be 0 or 1, in the Ising 1 or
-1. The conversion between these coding can be done as 1:

• from QUBO to Ising: y = s+ 1/2;

• from Ising to QUBO: s = 2y + 1;

Ising and QUBO models are exchangeable, as detailed in [15], [51] and [19]. In
this section we will focus only on the QUBO, the model chosen for the project.

QUBO allows to solve a lot of combinatorial problems in both private and public
industrial fields, where yes or no decisions are required: these decisions all represent
different values of the goal function. QUBO permits to solve a lot of these problems
in a very efficient way, once they have been formulated following its specific rules.[3].
The term unconstrained does not imply that problems cannot present constraints,
but that they are directly put into the model itself, which is the matrix Q. Given a
problem, this model is used to find the optimal variables assignment, so that the
specific goal function can be minimised. The variables are binary values so they can
be only:

• 1, if they are part of the solution;

• 0, otherwise.

The variables assignment is represented by a binary vector x = (x0, x1, ..., xn−1),
where n is the number of boolean variables the problem presents. If a certain i-th
variable is contained in the final solution, the i-th cell of vector x will be a 1, 0
otherwise.

QUBO model is defined by:

• an upper triangular N ×N real numbers matrix Q, where N = n;

• a binary variables vector x that minimise the goal function:

f(x) =
∑
i

Qi,ixi +
∑
i<j

Qi,jxixj (2.14)

In a QUBO matrix, the entries on the main diagonal Q i, i represents linear
coefficients, while the others above it Q i, jwithj > i are the quadratic one. In
several studies, in order to underline that the goal is to find the x vector, a more
concise notation is preferred such as:

min
e∈{0,1}n

xTQx (2.15)

There is also a scalar version of this model, as defined in [23]:

1y represents the QUBO variable, s the Ising one

2.2. ADIABATIC QUANTUM COMPUTING 31

Equbo(ai, bi,j; qi) =
∑
i

aiqi +
∑
i<j

bi,jqiqj (2.16)

where ai are the biases or weights for each qubit, qi, and bi,j the coupler strength
between qubits i and j. The optimisation problems are solved by setting biases ai
and coupler strengths bi,j such that the qubits qi in the minimised objective satisfy
the problem constraints. The constraints to be applied to the QUBO model are
usually in the form of:

• equalities: directly mappable into QUBO matrix [22];

• inequalities: not directly mappable into QUBO matrix, in fact we need to
use some ancilla variables to represent the slack values [19]. An example can
be found in the QUBO model applied to a knapsack problem, as reported in
[7].

2.2.3 QUBO implementing AND logic gate

To model a problem, an easy way to familiarise with using QUBO, is the one that
follows: suppose we want to simulate the logic gate AND through a matrix. To do so
we need to build a 4×4 matrix because AND is a binary operator and all the possible
variable combinations are 4 (00, 01, 10 and 11). In this matrix, appropriate weights
are to be used so that the final result is the combination of input variables (1, 1),
corresponding to the x vector (0, 0, 0, 1). Each value of the vector x corresponds to a
QUBO row, so if the i-th x value is 1 the i-th QUBO row is activate and it concurs to
the final energy value. QUBO is essentially a matrix whose entries define the initial
energy landscape of the quantum annealer and, using quantum annealing techniques,
it spans this landscape looking for the optimal solution, namely the one with lesser
energy. Given a point, greater is its value (the energy relating to that point) and
lesser is the is probability to include that combination in the final solution. On the
basis that the QUBO matrix is upper triangular, we ought to decrease the value
in the right variable combination, that is 11, and therefore increase the others of a
given value, like λ = +10 as reported in fig. 2.9.

Figure 2.9: QUBO matrix to simulating the AND gate

32 CHAPTER 2. THEORETICAL BACKGROUND

All the existing solutions for this problem are presented in table 2.2. As we can
see, the desired solution is the one with the lowest value. The costs of each solutions
is computed as eq. (2.15) where the x is the selected solution and the Q is the matrix
of fig. 2.9 where x is the current solution and Q is the matrix proposed in fig. 2.9.

solution value solution value

0000 0 1000 10

0001 -10 1001 10

0010 10 1010 30

0011 10 1011 40

0100 10 1100 30

0101 10 1101 40

0110 30 1110 60

0111 40 1111 80

Table 2.2: QUBO solutions

This sample can be implemented using the D-Wave framework Ocean 1 as in the
listing 2.1.

1

2 from D−Wave qbsolv import QBSolv
3 Q = { (0 , 0) : 10 , (0 , 1) : 10 , (0 , 2) : 10 , (0 , 3) : 10 ,
4 (1 , 1) : 10 , (1 , 2) : 10 , (1 , 3) : 10 ,
5 (2 , 2) : 10 , (2 , 3) : 10 ,
6 (3 , 3) : −10}
7

8 re sponse = QBSolv () . sample qubo (Q)
9

10 pr in t (” samples=” + s t r (l i s t (r e sponse . samples ())))
11 # output = samples =[{0: 0 , 1 : 0 , 2 : 0 , 3 : 1}]
12

13 pr in t (” e n e r g i e s=” + s t r (l i s t (re sponse . d a t a v e c t o r s [’ energy ’])))
14 #output = e n e r g i e s =[−10.0]

Listing 2.1: Ocean QUBO example implementation

Using Ocean to solve a QUBO matrix, we firstly need to describe it through a
Python dictionary, in which the keys represent the row-column coordinate of the
cell in which the default value is to be put in. After that, it is sufficient to recall
the function Qbsolv().sample qubo(Q) with the newly created dictionary. The
parameter solver for the method sample qubo() may be of the following types:

• ‘tabu’(default): sub-problems are called via an internal call to tabu;

• ‘dw’: sub problems are given to the D-Wave library;

1The Ocean documentation is on the web page [18]

2.2. ADIABATIC QUANTUM COMPUTING 33

• instance of a dimod sampler: the specific sample qubo method is invoked;

• callable: that has the signature (qubo: dict, current best: dict) and
returns a result list/dictionary with the new solution.

The previous call generates a solutions vector held in the samples field, containing
all the same energy optimal solutions.

Two interesting examples of QUBO models applied to solve graph covering
Isomorphism have been reported in [31].

2.2.4 QUBO implementing Map Colouring Problem

Another interesting problem that can be modelled by QUBO is the map colouring.
This problem requires to find the assignment of a colour to each region given a finite
set of colours and a finite set of regions. Moreover the colour assignment has to
respect the following rules:

• one and only one colour of the set must be assigned to any region;

• a certain colour, once it has been assigned to a region, cannot be used in any
other adjacent regions.

An example of a solution for this kind of problem is represented in fig. 2.10.

Figure 2.10: Coloring a map of Canada with four colors [16]

These problems can be modelled as satisfiability problems as follows: let xij = 1
if node i is assigned color j, and 0 otherwise. Since each node must be coloured with
only one color, we have the equality:

k∑
j=1

xij = 1 i = 1, ..., n

where k is the number of colours and n is the number of regions. In order to model the
feasible colouring constraint, in which different colours are assigned to any adjacent
nodes, we can use the following inequality:

xip + xjp ≤ 1 p = 1, ..., k

34 CHAPTER 2. THEORETICAL BACKGROUND

for all adjacent nodes i,j in the graph.
Let us consider the problem of finding a feasible colouring of the fig. 2.11 graph

using K = 3 colours and n = 5, giving a model with 15 variables (5× 3), where a
single variable xij corresponds to a one relation between the region i and the colour
j.

Figure 2.11: Problem colouring regions connections graph

One possible way to proceed is to start with a 15-by-15 Q matrix where initially
all the elements are equal to zero and then re-define appropriate elements based on
the penalties obtained from the constraints:

xi1 + xi2 + xi3 = 1 i = 1, 5 (2.17)

xip + xjp ≤ 1 p = 1, 3 (2.18)

fixing λ1 = 4 and λ2 = 2 respectively for the former and the latter constraints
the resulting QUBO is represented in fig. 2.12. The whole mathematical procedure
is detailed in [27]. The constraint expressed by the eq. (2.17) is represented by the
blue values while the other expressed by eq. (2.18) by the green values.

2.2. ADIABATIC QUANTUM COMPUTING 35

Figure 2.12: QUBO model for colouring regions problem

36 CHAPTER 2. THEORETICAL BACKGROUND

Chapter 3

Technical Background

The purpose of this chapter is to introduce the basic concepts of heterogeneous
systems and the GPU programming with a focus on the framework CUDA. An
insight on these ideas will give a better understanding of the technological choices
and the implementation details presented in the Project chapter. The first section is
focused on the GPGPU programming model while the second on a detailed analysis
on CUDA from both hardware and software perspective.

3.1 General-purpose computing on GPU

CPUs and GPUs, although they both execute programs, are a world apart in
their design goals: while CPUs use a Multiple Instruction, Multiple Data (MIMD)
approach, GPUs use a Single Instruction, Multiple Thread (SIMT) instruction model
[9]. GPUs’ development has always been the core business of the main video-games
industries, whose technological efforts are always made to get with the times in
providing more and more realistic virtual experiences. Reaching this goal requires an
impressive number of calculations (i.e. rotation-translation), that typically consist in
floating point operations for any pixel of the screen. GPUs were precisely created
as specific devices conceived for highly parallel computations, which is the case of
graphic rendering. GPU’s architectures are shaped on multi-thread model rather
than many-core, so they are focused on data processing optimisation rather than on
data caching and flow control. Both models are represented in fig. 3.1.

The General-purpose on graphical process unit computing paradigm permits to
use the GPU computing power not only for the rendering of videogames but also
for scientific and engineering generic purpose computation, such as the optimisation
in the simulation of real physical systems. Thanks to the GPGPU, data transfer
between CPU and GPU becomes bi-directional and, subsequently, systems that
require a lot of precise operations to be quickly evaluated on a large amount of data
are definitely enhanced in their performances. Any smart GPU implementation of a
SIMD can present up to 100x speed up if compared to a sequential one on a single
core CPU. According to Flynn’s taxonomy, a system is a SIMD (Single Instruction
Multiple Data) if a single instruction, or even a small set of instructions, is run in
parallel on a lot of data [41].

A generic system is not usually parallelizable in all its parts, so the speed up is

37

38 CHAPTER 3. TECHNICAL BACKGROUND

Figure 3.1: Many-core vs Multiple-thread models

normally limited only to a small portion of code. Thus, we need to design systems
in which some parts are to be conceived in parallel, while others in a serial way. For
that reason, under the GPGPU model, CPU and GPU co-operate with each other,
giving rise to a heterogeneous co-processing computation model, in which:

• the CPU is responsible of the sequential part;

• the GPU takes care of the computationally-intensive part.

This duality is clarified in fig. 3.2.

Figure 3.2: Heterogeneus co-processing computing model

At the beginning, GPUs and parallel programming languages were limited to a
very diverse market than CPUs. In the ”classical” CPU programming, the compati-
bility among different versions of the same software is, from the beginning, a basic
requirement, whilst the innovation in terms of GPU improvement led often to drastic
changes in the hardware. Such changes in technology have meant a loss of portability
among the different models: because of the new hardware introduction, brand new
GPU architectures have been proposed, with significant differences among them.
These architecture required almost always a whole re-definition of their codes, then.

3.1.1 Standard architectures

Two different standards have been proposed, in order to avoid the risks mentioned
above:

3.1. GENERAL-PURPOSE COMPUTING ON GPU 39

• OpenMP: this standard is centred on parallelisation on a single node for
memory-shared multi-core machines. The software must run on the same
machine, providing an almost easy but limited model to adopt;

• MPI: this standard provides for parallelisation on diverse nodes and it is
thought to be applied on networked machine clusters. It is often used as a
supercomputer architecture, in which thousands of nodes are connected together
through a dedicated network. Any problem is split into several sub-parts, each
one of them is solved by a specific node. This model is a lot more flexible
than the previous one and it requires and offers more resources: in fact, any
node keeps its own internal resources (that is to say CPU, cache, storage, etc.).
The main limitations for this kind of approach are augmented complexity and
network speed, in terms of the mutual interchanges and communications among
the nodes.

In fig. 3.3, two representations for these architectures are given.

Figure 3.3: OpenMP vs MIP architetcures

OpenMP allows the programmer to reach a high-level of parallelisation, specifying
the specific portions of code to optimise. On the other hands, MPI explicitly uses
the communication among processes in order to increase the amount of work. Due
to the intrinsically different nature of these standards, they are almost never used at
the same time.

NVIDIA introduced a programming language called CUDA, in order to provide
an heterogeneous programming framework. This is a very powerful tool since it
allows to use OpenMP and MPI together. In fact, the acronym CUDA stands for
Compute Unified Device Architecture. However, CUDA consists also in a hardware
architecture so, in order to properly use this framework, a CUDA-capable GPU is
needed. Since CUDA has been developed by NVIDIA, each one of its last generation
GPU supports it. The architecture of a typical NVIDIA CUDA-capable GPU is
shown in fig. 3.4. The differences among the several models can traced in Streaming
Multiprocessors (SMs) and Stream Processors (SPs), but we will not take this concept
any further. Each GPU currently comes with gigabytes of Graphics Double Data
Rate (GDDR), Synchronous DRAM (SDRAM), referred as Global Memory [24].

40 CHAPTER 3. TECHNICAL BACKGROUND

Figure 3.4: Architecture of a CUDA-capable GPU. Image taken from [24] page 20

3.2 CUDA C

As we said before, the acronym CUDA stands for Compute Unified Device Archi-
tecture and it is the commercial name for the framework that NVIDIA designed
for GPGPU application programming. It provides several extensions of mainstream
programming languages such as C, C++, Python, Fortran, OpenCL, OpenACC,
OpenMP and many others [24]. In this way it is possible to raise the level of GPU
programming by simplifying the implementation of parallel and scalable systems. In
fact, this language integration allows that device functions, which must perform on
the GPU, look very much like host functions, that have to be performed on the CPU.
At run-time the CUDA compiler takes care of the business of invoking device code
from the host [32]. This framework is based on a variant of the SIMD model called
Single Program Multiple Data model (SPMD), in which all the threads of the GPU
run the same CUDA code. Parallel programming is based on the idea of thread, that
is the representation of a single execution flow in a program. When parallelsed, any
thread of the program co-operates with the others to reach the common goal that
has been defined in the program itself.

3.2.1 Compilation

CUDA C is an extension made for the programming language C by adding the
necessary syntax to implement heterogeneous systems. This way of modelling mirrors
the very nature of programming GPGPU, providing the appropriate instructions to
handle the consistency of a single host (CPU) and of one or more devices (GPUs) on
a specific machine. In fact, any CUDA source code can contain a mixture of both
host and device code. To properly compile a CUDA file, it is necessary to use NVCC,
the dedicated compiler, that has to split the code into two parts: one for the CPU
portion and one for the GPU part. NVCC operates this way:

3.2. CUDA C 41

• the C code is compiled by a classic C/C++ compiler (i.e. GCC);

• the GPU functions, properly marked with specific keywords, are compiled by a
just-in-time CUDA compiler.

In fig. 3.5 is shown the architecture of the compiler NVCC.

Figure 3.5: NVCC compilation process. Image taken from [24] page 36

In order to distinguish and so detect the host code from the device one, CUDA
makes available 4 main keywords:

• global : the function, started by the host and launched on the device, is a
kernel and has to be run on the GPU;

• device : the function, started by the device, can only be used on the device;

• host : it marks a C function that is started by the host and launched on it.
Every default CUDA functions are host function so thy keyword is often
omitted;

• host device : this function is used by both the host and the device.
This keyword allows the programmer to avoid useless code repetitions.

3.2.2 Execution

Runtime for a CUDA program, starts with the host code launching: when a kernel is
started, the control flow is passed to the GPU that will execute the kernel on more
threads. Once the parallel computation is ended, the flow control returns under the
host control. CUDA allows also to run host code and device simultaneously, but
the approach we choose is the most typically used [25]. A specific kernel function
specifies the code that has to be run in parallel on the device. In order to run a

42 CHAPTER 3. TECHNICAL BACKGROUND

kernel on the GPU, we need first to allocate the global memory on the GPU and
to transfer them from the host to the GPU: this is a fundamental step because the
CPU memory is kept separated from the GPU one. The data acquisition, once the
execution of the kernel is over, requires to perform the reverse operation, that is to
transfer the data from the GPU to the CPU. At this point, it will be possible to free
the GPU memory. A simple example of a processing flow for a CUDA program is
shown in fig. 3.6.

Figure 3.6: CUDA program simple processing flow [50]

Accessing to memory is one of the most critical operation in terms of the system
performances. To cope with this, CUDA gives an explicit control on memory
allocation and manipulation, providing for the right functions to exchange data
between the CPU and the GPU. These functions are reported in the sample code
listing 3.1. The standard used to define the variables states that the variables are to
be preceded by prefixes:

• h for the variables on the host;

• d for the variables on the device.

1

2 . . .
3

4 i n t n = 10 ;
5 i n t s i z e = n ∗ s i z e o f (i n t) ;
6 i n t ∗h A = (i n t ∗) mal loc (n∗ s i z e o f (i n t)) ;
7

8 // i n i t i a l i z e h A with some va lue s
9

10 cudaMalloc ((void ∗∗) &d A , s i z e) ;
11 cudaMemcpy(d A , h A , s i z e , cudaMemcpyHostToDevice) ;
12

13 kenre l <<<1, 10>>>(args) ;
14

15 cudaMemcpy(h A , d A , s i z e , cudaMemcpyDeviceToHost) ;
16

17 cudaFree (d A) ;
18

19 . . .

Listing 3.1: CUDA memory menagement

The kernelName<<<...>>>() function can be used to launch a kernel. It takes
a configuration that is specified by inserting an expression of the form

3.2. CUDA C 43

<<<Dg, Db, Ns, S >>> between the function name and the parenthesized argument
list, where:

• Dg: is of type dim3 1 and specifies the dimension and size of the grid, such
that Dg.x * Dg.y * Dg.z equals the number of blocks being launched;

• Db: is of type dim3 and specifies the dimension and size of each block, such
that Db.x * Db.y * Db.z equals the number of threads per block;

• Ns: is of type size t and specifies the number of bytes in shared memory
that is dynamically allocated per block for this call in addition to the statically
allocated memory; this dynamically allocated memory is used by any of the
variables declared as an external array as mentioned in shared ; Ns is an
optional argument which defaults to 0;

• S: is of type cudaStream t and specifies the associated stream; S is an optional
argument which defaults to 0.

There are other useful functions that CUDA provides in order to manage the
GPU, such as defining the available GPUs on the machine, how much memory is
allocated on each one of them, managing the communication and synchronization
among the different kernels, etc.

3.2.3 Architecture

When a program launches a CUDA kernel calling the function kernelName<<<grid.x,

grid.y, grid.z, block.x, block.y, block.z>>>(params);, the CUDA runtime
system creates a threads grid split into blocks. Each block can contain up to 1024
threads and the dimension of the grid and thread blocks are defined into the function
with which the kernel is run within the 3 angular brackets. The grid and blocks
are characterized by 1, 2 or 3 dimensions, x, y and z respectively. The choice of
these dimensions is usually made according with the data structures to handle. The
architecture of a CUDA grid is reported in fig. 3.7 and the coordinates order is (x, y,
z).

In order to identify any thread instantiated into the grid, we can use the following
variables:

• blockDim: it comes with 3 fields (x, y, z) in which the block dimensions are
saved;

• blockIdx: this is a unique identifier of a block within the grid. The blocks
are labelled with progressive numbers starting from 0 to n− 1, where n is the
number of initialized blocks;

• threadIdx: this is a unique identifier of a thread within a block. The threads
are labelled with progressive numbers starting from 0 to n− 1, where n is the
number of initialized threads.

1dim3 is a built-in variables which specifies the grid and block dimensions.. They are only valid
within functions that are executed on the device.

44 CHAPTER 3. TECHNICAL BACKGROUND

Figure 3.7: Multidimensional CUDA grid

By virtue of the use of these variables, a thread can be identified as stated in
listing 3.2.

1

2 // Gr idS i z e B lockS i z e
3

4 d e v i c e
5 i n t getGlobalIdx 1D 1D () {
6 re turn blockIdx . x ∗ blockDim . x + threadIdx . x ;
7 }
8 d e v i c e
9 i n t getGlobalIdx 1D 2D () {

10 re turn blockIdx . x ∗ blockDim . x ∗ blockDim . y
11 + threadIdx . y ∗ blockDim . x + threadIdx . x ;
12 }
13 d e v i c e
14 i n t getGlobalIdx 1D 3D () {
15 re turn blockIdx . x ∗ blockDim . x ∗ blockDim . y ∗ blockDim . z
16 + threadIdx . z ∗ blockDim . y ∗ blockDim . x
17 + threadIdx . y ∗ blockDim . x + threadIdx . x ;
18 }
19

20

21 d e v i c e
22 i n t getGlobalIdx 2D 1D () {
23 i n t b lockId = blockIdx . x + blockIdx . y ∗ gridDim . x ;
24 i n t threadId = blockId ∗ blockDim . x + threadIdx . x ;
25 re turn threadId ;
26 }
27 d e v i c e
28 i n t getGlobalIdx 2D 2D () {

3.2. CUDA C 45

29 i n t b lockId = blockIdx . x + blockIdx . y ∗ gridDim . x ;
30 i n t threadId = blockId ∗ (blockDim . x ∗ blockDim . y)
31 + (threadIdx . y ∗ blockDim . x) + threadIdx . x ;
32 re turn threadId ;
33 }
34 d e v i c e
35 i n t getGlobalIdx 2D 3D () {
36 i n t b lockId = blockIdx . x + blockIdx . y ∗ gridDim . x ;
37 i n t threadId = blockId ∗ (blockDim . x ∗ blockDim . y ∗ blockDim . z)
38 + (threadIdx . z ∗ (blockDim . x ∗ blockDim . y))
39 + (threadIdx . y ∗ blockDim . x) + threadIdx . x ;
40 re turn threadId ;
41 }
42

43

44 d e v i c e
45 i n t getGlobalIdx 3D 1D () {
46 i n t b lockId = blockIdx . x + blockIdx . y ∗ gridDim . x
47 + gridDim . x ∗ gridDim . y ∗ blockIdx . z ;
48 i n t threadId = blockId ∗ blockDim . x + threadIdx . x ;
49 re turn threadId ;
50 }
51 d e v i c e
52 i n t getGlobalIdx 3D 2D () {
53 i n t b lockId = blockIdx . x + blockIdx . y ∗ gridDim . x
54 + gridDim . x ∗ gridDim . y ∗ blockIdx . z ;
55 i n t threadId = blockId ∗ (blockDim . x ∗ blockDim . y)
56 + (threadIdx . y ∗ blockDim . x) + threadIdx . x ;
57 re turn threadId ;
58 }
59 d e v i c e
60 i n t getGlobalIdx 3D 3D () {
61 i n t b lockId = blockIdx . x + blockIdx . y ∗ gridDim . x
62 + gridDim . x ∗ gridDim . y ∗ blockIdx . z ;
63 i n t threadId = blockId ∗ (blockDim . x ∗ blockDim . y ∗ blockDim . z)
64 + (threadIdx . z ∗ (blockDim . x ∗ blockDim . y))
65 + (threadIdx . y ∗ blockDim . x) + threadIdx . x ;
66 re turn threadId ;
67 }

Listing 3.2: CUDA threads indexing [11]

Concretely, on the hardware, the CUDA architecture is built around a scalable
array of multithreaded Streaming Multiprocessors (SMs) as shown in fig. 3.8. Each
SM has a set of execution units, a set of registers and a chunk of shared memory.
Each SM can execute concurrently a fixed number of threads grouped into multiple
structures called wraps.

Another interesting programming language, within the field of GPGPU program-
ming, is the one provided by the framework OpenCL. This language, on par with
CUDA, allows to extend the syntax of certain languages through dedicated run-time
API. In this way the programmer is able to manage the parallelism and data exchange
in massively parallel applications. OpenCL is a standardized programming model by
which it is possible to implement parallel cross platform applications, that can run on
several kind of GPU (NVIDIA, AMD, etc) without changing the code. Since CUDA

46 CHAPTER 3. TECHNICAL BACKGROUND

Figure 3.8: NVIDIA GPU GeForce Streaming multiprocessor structure

is a proprietary code, self-made by NVIDIA, it generally offers better performances
on GPU CUDA-capable with native language, because of the direct support the
company can assure. A concrete example of restrictions on OpenCL system run on
GPU NVIDIA, is the DECINE-X model:

• if OpenCL is enabled, only 1 GPU can be used;

• if CUDA is enabled, 2 GPUs can be used for GPGPU.

Chapter 4

QoG

This chapter explains the main features of the QoG system that has been developed,
in order to accelerate large data modeling for quantum computation. The chapter is
subdivided into six parts: introduction, requirements definition, technological choices,
design, implementation, testing and future developments.

The purpose of all of this is to realise and develop a system capable of creating a
QUBO model in the fastest and smartest way, on the basis of a specific problem as
defined by the user.

As already stated in the section 2.2.2, QUBO model can represent a given binary
quadratic optimisation problem by describing it through an upper triangular matrix.

Using a traditional approach, this model require very long time to be solved,
but thanks to the brand new approach of quantum annealing, a possible optimal
solution can be found in shorter time. However, getting a real speedup, also requires
to accelerate the creation of the QUBO matrix: this particular aspect is a sensitive
real bottleneck.

The modeling and technological problem of creating these matrices is an old issue
that the quantum annealing has recently unearthed, but we do not have efficient
techniques for this purpose at the present time. The core of this project is to create
an efficient memory storage of this model, making use of the parallel computation
on GPU; in this way, we can obtain a general abstract system, valid in a wide range
of cases.

The system efficiency has to be verified by evaluating two different aspects:

• time: given the large dimensions of the matrices minimising the time requires
the use of the proper technologies;

• space: given the large dimensions of the matrices minimising the space requires
the use of the proper storage techniques;

4.1 Requirements analysis

The system should be able to create an appropriate QUBO matrix for each given
problem to solve. If the particular problem being analyzed has certain constraints to
comply with, they have to be handled by modifying the appropriate costs, namely
the entries of the QUBO matrix. The matrix has to be generated starting with the

47

48 CHAPTER 4. QOG

user defined unconstrained costs. Those costs can be altered by properly adding or
subtracting the value related to each constraint. Once the QUBO matrix is defined
and generated, it is necessary to save it permanently on the file system, so that the
matrix can be used by other systems to evaluate its solutions. For this system the
main spotted use case are as follows:

• user problem definition (define problem);

• constraints definition (add constraint);

• building of the QUBO matrix (build QUBO);

• matrix saving (save matrix).

4.1.1 Problem definition

The problem has to be described in a very easy and compact way. The most common
problem to be solved with this kind of approach are of the RAP type, that is resource
allocation problems. In this kind of problem, the main goal is to find the best
assignment for a certain job set, starting with a given available resource set. Defining
a problem by using a QUBO matrix requires, firstly, the identification of the proper
number or variables to be used to set the matrix dimension. The number of variables,
for RAP problems, can be calculated as the product of the number of available
resources and the number of jobs to be performed, as every variable represents the
association resource-job. Some examples of these kinds of problems are shown in
table 4.1.

resources jobs

trucks routes

teams projects

workstations employees

radio antennas radio frequencies

Table 4.1: Resource allocation problem examples

Once the number of variables has been defined, specifying the associated costs
to the different combinations of variables for filling the QUBO matrix is needed. It
must be possible to define such costs either in a customized way or using pre-built
templates: Uniform, Ascending, Descending, Random. Examples of these pre-built
templates, as applied to a 3× 3 QUBO matrix, are shown in fig. 4.1.

Seeing more in detail some aspects about the definition of the customized costs:
it all starts with an homogeneous 0 cost for every entries of the matrix, then the cost
related to a certain i, j combination must be assigned in an independent manner
from the others. An example of a QUBO matrix obtained by the custom problem.csv
file is shown in fig. 4.2 (the file is given in the left half of the image).

Every information about a single problem must be defined in a specific configura-
tion file, which can be of two different types:

4.1. REQUIREMENTS ANALYSIS 49

Figure 4.1: QUBO costs examples

Figure 4.2: QUBO costs loaded from problem.csv file

• problem.conf: this is a concise and synthetic file and for that reason highly
recommended for problems with a large number of variables. The problem can
be fully defined through the use of only 4 fields:

– resources number: to define the number of resources;

– jobs number: to define the number of jobs;

– type cost: to define the costs’ type. The possible values for this field
are: Uniform, Ascending, Descending and Random;

– base cost: the primary cost from which all the other costs are derived.
For a Uniform value, every cost is to be set as base cost, for Ascending
and Descending values, the first cost is the base cost (the others being set
to the result of the sum of ±1) whilst for a Random value, it will be the
upper bound of random numbers.

50 CHAPTER 4. QOG

• problem.csv: this file is more detailed and flexible than the previous one, in
order to define the resource number, the job number and the cost of every i, j
index combination.

4.1.2 Constraints definition

Once that the primary costs of the QUBO matrix are defined, any further constraint
is to be imposed. These constraints are specific rules, stemmed from the particular
semantic of the correlation between two variables. Given all the possible resource-
job combinations, a constraint can be applied on a subset of this set (i.e. all the
combinations of variables with the same resource value). Once a constraint is fully
defined, the pairing variables can either respect it or not, or even not being influenced
by it. All these scenarios imply the potential change of the cost value, in the following
manners:

• if an i, j couple is not influenced by the constraint, then its cost does not
change;

• if an i, j couple is influenced by the constraint and it obeys, then its cost
changes.

More to the point and by virtue of the quantum annealing properties, there is an
inverse relationship between the cost value of a certain i, j combination and the
probability it will be part of the final solution: namely, the more the cost value
increases, the more the probability will decrease and vice versa, so in order to promote
a particular combination, we need to decrease the related cost. The value to be
added or to be subtracted directly depends on the importance of the constraint: the
more this value is high, the more the importance will rise. A particular attention
has to be given to this value because it could lead towards infeasible solutions.

A simple and trivial example can be obtained by assigning one job per resource.
In this case it will be necessary to decrease the cost of every association marked by
the same resource and job. Meanwhile to the associations with the same resource but
different job will ”give a penalty” by increasing the cost. In the end the associations
with different resources in their variables will not be altered on this as not subjected
to the specific constraint. In this case the associations with the same resource-job
lie on the main diagonal of the QUBO matrix. In fig. 4.3 a constraint applied to a
matrix with all 0 entries with 1 resource (R0) and 3 jobs (J0, J1, J2) is shown.

4.1.3 Building of the QUBO matrix

At this point, once all the necessary data and information - costs and constraints - are
known, the system needs to be able to give an internal representation of the QUBO
matrix. By the term internal representation we intend the saving of the matrix in an
appropriate data structure into the system. Two non-functional requirements come
into play by now:

• time: the matrix creation must take place as quickly as possible, trying to
maintain a constant time elapsed in the face of a suitable number of additional
variables and, therefore, a remarkable matrix size increase;

4.2. DESIGN 51

Figure 4.3: QUBO constrained example

• space: creating a matrix shall not take up too much space but as little space
as possible, in view of optimizing the chosen data structures.

4.1.4 Matrix saving

The last step required is now that of saving the matrix to disk, so it can be associated
to different kind of linear systems and so reaching optimal solutions to the primary
problem. The storage can be performed in two different ways:

• whole: it must be possible to save the whole matrix on a .csv or .txt file. By
the term whole matrix we intend the matrix with all its entries, even those
under the main diagonal (which are all set to 0, being this matrix an upper
triangular one). By doing that, it is possible to speed up the allocation of the
data structure related to other systems aimed to evaluating the solution;

• compact: if needed, only the not null portion of the matrix ought to be saved
on a .csv or .txt file. In this way there is an optimization as regards the storage
capacity consumed on the disk.

4.2 Design

The system is mainly composed by 4 parts to be run one by one:

1. uploading the problem data;

2. defining the constraints;

3. creating the matrix;

4. saving the data.

All the users have to do, is defining the problem data and the constraints to
impose, so the application can create and save the specific matrix in the desired format
(.csv or .txt). As it will be shown in the remainder of the discussion (specifically in the
section 4.3), a general-purpose computing on graphics processing units programming

52 CHAPTER 4. QOG

approach was chosen in order to take full advantage of the parallelizable properties
of creating a matrix. More specifically, using CUDA as programming language,
the constraints to be applied can be directly implemented in an ad-hoc kernel: in
every single kernel, more than one constraint can be placed into it, so only one
kernel with any mandatory constraint is necessary. Every information concerning
the problem, as user-defined in the initial configuration file, is loaded throughout a
specific component called DataLoader. This last one is responsible for the wrapping
in the information within an object called ProblemInfo, which keeps a record of any
fundamental information about the problem under consideration. The constraints to
be applied to the matrix are implemented in a CUDA kernel. Once every necessary
information is defined, the QUBOBuilder component deals with both the matrix
creation on the GPU and the model saving on the file system. fig. 4.4 gives the main
stream of the system.

Figure 4.4: System main data flow

fig. 4.5 shows the main system architecture as emerged from the requirements
analysis and a preliminary draft. In this UML diagram, we can see the main classes
of the model, the latter being responsible for:

• data loading;

• kernel and constraints definition;

• creating and saving the QUBO matrix.

4.2. DESIGN 53

Figure 4.5: System architecture

4.2.1 Uploading the problem data

This part of the system is mandated to upload the data contained in the configu-
ration file, to properly parse and store them into an ProblemInfo object. Since a
configuration file contains different information, everyone must necessary be parsed
in different ways, however, in both cases information are to be put in a ProblemInfo
object. These information are:

• the number of resources;

• the number of jobs;

• the number of variables;

• the length of the QUBO array;

• the vector with the unconstrained costs.

According to the requirements emerged during the analysis phase, the problem
data can be defined through the following files:

• problem.conf, more synthetic;

• problem.csv, more flexible.

54 CHAPTER 4. QOG

In both cases the number of resources and jobs is automatically taken from the
text while the number of variables is calculated as their product. The real difference
stands in the generation of the costs vectors: in this respect it is recalled that the
vector is a row-major order representation of the upper triangular part and the main
diagonal of the QUBO matrix. The length of the array is given by N∗(N+1)

2
where N

is the number of variables. If the data are uploaded from the file problem.conf, the
array will be created following the rules spotted by the parameters type cost and
base cost; if they are taken via the file problem.info, it will be necessary to create an
array of zeros for the costs that will be arranged on the basis of the configuration
defined in the file. In fig. 4.6 a graphic representation of the above is given.

Figure 4.6: DataLoader flow

4.2.2 Defining the constraints

The constraints for the QUBO matrix depend on the problem semantics, in particular
on the properties elapsing in any i, j resource-job pair. Depending on the will of
enhancing or not a certain i, j couple in the final solution, every cost in a certain
i, j position in the matrix may decrease or increase. In order to define a constraint,
given a variable it is therefore essential being able to trace its specific resource-job
combination R, J back. When all these information are traced back, both for variables
i and j, “shaping” the constraint is now made possible. For every i, j cell, if that
association is affected by the constraint and the constraint is respected, the cost will
decrease of an α factor. Otherwise the cost will rise of a β factor. Coefficients α and
β may have the same value and are user defined. As described in the Technologies
section, the constraints to apply to the matrix will be implemented in an ad-hoc
CUDA kernel. This phase is represented in fig. 4.7.

4.2.3 Creating the matrix

The step of creating the matrix is the very crux of the whole system and therefore
its performances. At this point we need to upload any information about the
problem itself in a ProblemInfo object and set the kernel we are going to use to
apply the constraints. Thereafter we can move on to the actual creation of a brand

4.2. DESIGN 55

Figure 4.7: Single constraint definition

new QUBO matrix using the function compute(problem, kernel) provided by the
QUBOBuilder object. The inputs of this particular function are all the information
needed for the creation and, as a result of its invocation, it will copy every data
structure from the CPU to the GPU and finally recall the kernel. The new matrix
will be allocated on the GPU variable d costVector so that copying this structure
on the CPU will allow to de-allocate the occupied space on the GPU, as shown in
fig. 4.8.

Figure 4.8: QUBO matrix computation

Due to the particular nature of the matrix, we will need to save only the upper
triangular portion of the matrix - entries above the main diagonal and the diagonal
itself - in order to optimize the space occupied by the data structures, both on the
CPU and the GPU. As seen before, a row-major order model has been chosen so

56 CHAPTER 4. QOG

that the matrix can be represented through a one-dimensional array. This model
provides for the saving a single matrix placing each row side-by-side and saving
about to 50% the space taken up. In fact, if we notice that the rows of the upper
triangular section decrease linearly, then combining them side-by-side we obtain a
N∗(N+1)

2
length array, where N is the number of variables. fig. 4.9 provides a simple

but exhaustive example of what has just been stated.

Figure 4.9: Row-major model

So we just presented some important issues in terms of space reduction. Regarding
instead the computing time, it is possible to say that this time can be optimized
too, by virtue of the parallel computation on GPU. On the assumption that the
value of any cell is independent of the other, the constrained cost of each cell of the
matrix can be evaluated in parallel. Since we register a diminution, in terms of time,

from Θ
(
N∗(N+1)

2

)
to Θ(1), we will have a total time reduction of a O(N2) factor.

Technically, the computing time on the GPU will not be exactly Θ(1), because of the
costs associated to the allocation of thread-blocks grid that CUDA uses to compute
the kernel. But, despite this, there is a substantial reduction of the operational
timelines.

Any kernel vowed to the evaluation of the final matrix is totally identified through
the following parameters:

• kernelName: the name of the .cu file containing the kernel;

• kernelFunctionName: the name of the function implemented within the file to
be run on the GPU;

• kernelDimension: the dimension of the CUDA grid to be used for the computa-
tion of the kernel.

The available functions for a kernel object are:

• init(): the function used to initialize the base model of JCuda driver;

• launchKernel(): the function used to launch the kernel.

So it will be possible to define a different kernel for every problem to solve, we
opted for a pattern factory [26] in order to facilitate both the new kernel definition
and its usage. The UML scheme is shown in fig. 4.10. The dimensions of the CUDA
grid which the kernel can be launched with are wrapped in a specific object called
kernelDimension. The pattern factory has been used again for the grid dimension,
given that different sizes are available for that component. In fig. 4.11 there is the
UML model for that.

4.2. DESIGN 57

Figure 4.10: Kernel Factory

Figure 4.11: KernelDimension Factory

4.2.4 Saving the data

Two different ways of saving the matrix must be handled:

1. whole: in this case the matrix has to be saved N ×N , so even the portion of
zeros under the main diagonal. To do so, it will be required to add a certain

58 CHAPTER 4. QOG

number of 0 to the left of the row equivalent to the row index, i.e. no adding
for the first row (i = 0), one 0 for row number 1 (i = 1) and so on until the
reaching of i = N − 1. This operation inputs are QUBOVector with the values
to be stored, the number N of variables and the name of the file on which to
save the data;

2. compact: in this manner it is necessary to save the costs array as reported on
the file only. Inputs are the QUBOVector with the values to be stored and the
name of the file on which to save the data.

A UML rapresentation of the saving process is given in fig. 4.12.

Figure 4.12: Matrix saving functions

4.3. TECHNOLOGIES 59

4.3 Technologies

Choosing the appropriate technologies is a fundamental step for the success of the
work and so two aspects have been deeply analysed:

1. the main architecture of the project requires the use of an appropriate pro-
gramming language such as Scala. This particular choice is due to the fact
that Scala is simultaneously an object and functional language, in addition it
has advanced mechanisms, such as type members and implicits;

2. time optimisation and the parallelisation of the system are the main goals of
the project and also the reason why CUDA has been adopted. In fact CUDA,
among all the existing GPGPU frameworks (i.e. OpenCL, Vulcan, etc), makes
it possible to take full advantage of the computational power of the computers
available (equipped with NVIDIA GeForce GTX GPUs).

4.3.1 Scala

The main structure of the application has been conceived using Scala as programming
language. Scala allows to create really complex systems which can be also extended
through a very concise and readable code: the combination of the object oriented
and functional paradigms provides a unique and highly versatile language.

As just mentioned in the opening of the chapter, we used two main advanced
Scala functionalities:

• type members;

• implicits.

Type members

Type members are abstract terms defined within a trait, a class or an object. These
terms, identified via the keyword “type”, can be used as alias for other default types
(i.e. Int, Array[Double], etc). Once a new type member type T = String is
defined, it will be automatically turned into a String type during the compilation,
and this will happen every time a T type is used; for this reason any type member
can also be treated as a built-in type in order to define variables and the parameters
of the functions.

An example of using type members to easily create simple alias for more compli-
cated data types is reported in listing 4.1:

1 c l a s s Book {
2 import s c a l a . c o l l e c t i o n . mutable .
3 type Index = HashMap [Str ing , (Int , Int)]
4 }

Listing 4.1: Type members example [37]

60 CHAPTER 4. QOG

In this particular case, the alias Index enables to write a better code in terms of
linearity, conciseness and expressiveness, and especially using the same concrete-type
semantic. In the end the code will be more readable and so easier to maintain.

Another important feature of type members is that of being capable to establish
Abstract types in trait or abstract class, which in turn are concretely defined
in inherited concrete classes. We will not discuss this any further, because this
functionality has not been used for our purposes.

Implicits

Implicits are normal unary functions marked with the implicit keyword from the
beginning. The compiler uses these functions to automatically convert the objects
type if needed without to explicitly recall the method in the code. The implicit are
used every time the type checker founds a type-error in the code and, in this case, it
will verify if a proper conversion exits in the scope on its own, so the error can be
fixed. Some rules the implicits are to follow are [37]:

• marking rule: a function, to be an implicit, must be marked with the keyword
implicit at the beginning of its signature;

• scope rule: an implicit has to be present in the code scope in order to be
applied;

• non-ambiguity: implicit conversion are used by the compiler to fix typing
problem as a last resort;

• one-at-a-time rule: every conversion may provide for one implicit at most;

• explicits-first rule: whenever code type checks as it is written, no implicits are
attempted.

The implicits can be used in three different cases:

1. the expression type is different from the expected one;

2. an object member to which you are trying to accede does not exist;

3. the actual parameters are different from the expected when recalling a function.

An example of definition and use of an implicit is given in the listing 4.2:

1

2 case c l a s s Complex (re : Double , im : Double) {
3 de f +(that : Complex) = Complex ((t h i s . r e + that . re) , (t h i s . im +

that . im))
4 }
5

6 de f printComplex (c : Complex) = p r i n t l n (s ” r e a l : $c . re imaginary : $c . im
”)

7

8 i m p l i c i t de f IntToComplex (x : Int) : Complex = Complex (x , 0)
9

4.3. TECHNOLOGIES 61

10 x : Int = 1
11 z : Complex = Complex (1 , 2)
12

13 z + x // 1 . Complex c l a s s does not have +(Int)
14

15 x . re // 2 . Int c l a s s does not have re member
16

17 printComplex (x) // 3 . the printComplex func t i on does not accept Int
parameter

Listing 4.2: Implicits example [30]

The implicits also apply to define some function parameters. If a function
parameter is marked with the keyword implicit and it is not given when the function
is called, Scala compiler will provide for that assignment. Since we did not use this
functionality, we only mention it exists.

4.3.2 CUDA and JCuda

The main reason why CUDA has been chosen for the parallel creation of the QUBO
matrix is because it allows to manage heterogeneous systems in which CPU and GPU
computation coexist. The particular notion of kernel is the way CUDA permits us
to handle the GPU elaboration. Throughout this kind of abstraction, the SPMD
paradigm ensures the definition of the operations set to be performed on a large
amount of data. In addition, synchronisation techniques or multiprocessor streaming
have not been called into action, because any constraint is run by a single kernel.

However, CUDA and Scala are not directly inter-operable: in fact NVCC - the
CUDA compiler - cannot be used to compile Java code and, vice versa, Java does not
support any CUDA extension. For example the CUDA call kernel<<<gridSize,
blockSize>>> cannot be used in Java. To circumvent this, we used the JCuda
framework [10] to run CUDA code form Java and therefore from Scala. JCuda
offers a large set of Java classes that, by using the Java Native Interface (JNI) and
the CUDA Driver API, makes possible to employing any CUDA function directly
from Java. JCuda enables Java programs to call CUDA kernels directly from Scala
CPU-Code. In order to call the CUDA kernels the GPU-Code, including kernel and
device functions, have still to be written in C, and should be converted into PTX or
CUBIN file by NVCC compiler. There are two ways to compile GPU-Code [34] both
represented in fig. 4.13:

• Just-In-Time (JIT) Compilation: Java programs call a Java API,
Runtime.getRuntime() to let NVCC compile GPU-Code into PTX or CUBIN;

• Off-line Compilation: GPU-Code is compiled in advance. Finally, JCuda
programs can load kernels from PTX and CUBIN files through JCuda Driver
API, cuModuleLoad, for the execution on GPU.

62 CHAPTER 4. QOG

Figure 4.13: NVCC CUDA compilation

Precompiled kernels, both in PTX and CUBIN format, can be run thanks to API
CUDA Drivers [41]. Now, most of the time, kernel run by the implemented system
will be compiled into CUBIN format, in order to avoid to recall the just-in-time
CUDA compiler for any implementation, and to translate PTX files in CUBIN
code that can be executed on the specific GPU architecture. In the JCuda samples
repository [33] we can find the methods provided to run the just-in-time compiler.

The useful functions JCuda offers to interact with the GPU are:

• Kernel compilation through a function to recall directly the NVCC compiler;

• GPU’S memory allocation and de-allocation using the dedicated func-
tioncuMemAlloc() and cuMemFree();

• CPU to GPU data transfer through the functions cuMemcpyHtoD() and
cuMemcpyDtoH();

• loading of the file containing the kernel using cuModuleLoad();

• kernel function loading through the function cuModuleGetFunction();

4.3. TECHNOLOGIES 63

• definition of the parameters as input for the kernel by a Pointer ab-
straction: this class identifies a pointer in the same way C language does, but
as referred to the GPU memory;

• kernel execution by using cuLaunchKernel();

• synchronisation between CPU and GPU using the function cuCtxSynchronize().

As a consequence of the technological choices we made, the system architecture
can be given as drawn in fig. 4.14.

Figure 4.14: Technological stack

64 CHAPTER 4. QOG

4.4 Implementation

As already mentioned in the Technologies section, the project has been realised using
two different programming languages:

• Scala: for the creation of the system infrastructure;

• CUDA: for the computing time optimisation in creating the final QUBO matrix.

4.4.1 Scala advanced features

During the analysis phase, it has been noticed that the matrix can be composed
of both Int and Double numbers. Distinguishing these two kinds of data is very
important, especially for the GPU allocation stage. Moreover, in case of Int numbers,
it is possible to save half of the occupied space in memory: in fact, it takes only
4 bytes to save an Int, while a Double requires exactly twice (8 bytes). The new
Scala type member NumType identifies the nature of the values to put in the QUBO
matrix, interchanging between Int and Double. This idea has found application also
for the Cost type, which associates the name of a cost type and the NumType array
with the actual costs. So, by using the type members technique we can define the
more appropriate data type for any problem to solve, without having to edit the
code once more. The code snippet in listing 4.3 is related to the definition of these
new data types.

1 ob j e c t Cost {
2

3 type NumType = Double
4 type Cost = (Str ing , Array [NumType])
5 }

Listing 4.3: Type members definition

Another interesting issue that Scala offers, which has proven itself quite resource-
ful, is the implicit that has been already introduced before. It provides automatic
conversions managed by the compiler whenever necessary. This worthwhile function-
ality has been very useful for this project particularly as regards the conversion from
Array[Int] to Array[Double] and vice versa. The code in listing 4.4 is related to
the creation of these implicits.

1

2 i m p l i c i t de f intToDouble (a : Int) : Double = a . toDouble
3

4 i m p l i c i t de f ArrayIntToArrayDouble (a : Array [Int]) : Array [Double] = a .
map(. toDouble)

5

6 i m p l i c i t de f ArrayDoubleToArrayInt (a : Array [Double]) : Array [Int] = a .
map(. t o In t)

Listing 4.4: Implicits definition

4.4. IMPLEMENTATION 65

4.4.2 Indexing

Another important implementation issue is worth underling regards the QUBO matrix
creation: as mentioned before, the matrix is represented as a N∗(N+1)

2
length one-

dimensional array using the row-major model, where N is the variables number. Once
the unconstrained cost matrix is mapped to the related array, the new constrained
costs are evaluated in parallel running a CUDA kernel. More specifically, each CUDA
thread will evaluate a single cell of the costs array and the index of the cell to be
evaluated is given by the CUDA thread id: for example, a thread with id=0 will
compute the value related to the first cell of the QUBO array, a thread with id=1
the one to the second cell and so on. However, as described in the Design section,
knowing the pair resource-job related to an i, j couple is needed if we want to apply
any constraint to that particular i, j. So, to track these information back, we need,
first of all, to define the row i and column j index of a certain cell starting from
the linear index. Despite the complexity increases in the kernel managing, what has
been presented allows to avoid any kind of cycle within CUDA threads. The process
of switching from the linear index of the matrix to the resource-job definition for a
generic i, j couple is given in fig. 4.15.

Figure 4.15: Resources and Job computation

To trace back the row-column pair of a certain linear index of an upper triangular
matrix, for which the row-major model has been used, we inverted the formulas we
used earlier to find the linear index, starting from rows and columns of the matrix
itself.

Given the parameters:

• n the number of variables;

• k the linear index;

• i the row index;

66 CHAPTER 4. QOG

• j the column index.

We can write as follows:

k = j + ni− i(i+ 1)

2
(4.1)

j = k − ni+
i(i+ 1)

2
(4.2)

i = b
2n+ 1−

√
(2n+ 1)2 − 8k

2
c (4.3)

We assume that all the data structures indices (QUBO array, resources and jobs)
start with 0 and are linearly increasing of one unit each. In this way, once the raw
and column indices are obtained, the resource-job ids can be calculated as follows:

Ri = b i
z
c Rj = bj

z
c

Ji = i mod z Jj = j mod z

Listing 4.5 presents the code used within the CUDA kernel to get the resource-job
ids as referred to a certain cell (k) of the QUBO array. The linear index is determined
following the indexing operation of the one-dimensional CUDA grid threads, as stated
in the 3.2 section.

1

2 i n t k = blockId . x ∗ blockDim . x + threadIdx . x ;
3

4 i n t i = f l o o r ((− s q r t ((2∗n+1) ∗ (2∗n+1) −8∗k) + 2∗n+1) /2) ;
5 i n t j = k + n∗ i + i ∗(i +1) /2 ;
6

7 i n t r e s i = f l o o r (i / z) ;
8 i n t j o b i = i % z ;
9

10 i n t r e s j = f l o o r (j / z) ;
11 i n t j o b j = j % z ;

Listing 4.5: resources and jobs ids computing

Listing 4.6 shows the CUDA kernel developed to build the matrices used during
the testing phase.

1

2 extern ”C”
3 g l o b a l void bu i ld mat r ix (i n t num elem , i n t num var , i n t num job ,

double ∗mat) {
4 i n t t i d = blockIdx . x ∗ blockDim . x + threadIdx . x ;
5

6 i f (t i d < num elem) {
7

4.4. IMPLEMENTATION 67

8 i n t row = f l o o r f ((− s q r t f ((2∗ num var+1)∗(2∗num var+1)−8∗ t i d)+2∗
num var+1)/2) ;

9 i n t c o l = t i d + row − row∗(2∗num var−row+1) /2 ;
10

11 i n t r e s1 = f l o o r f (row / num job) ;
12 i n t job1 = row % num job ;
13

14 i n t r e s2 = f l o o r f (c o l / num job) ;
15 i n t job2 = c o l % num job ;
16

17 i n t lambda1 = 1 ;
18 i n t lambda2 = 1 ;
19

20 // Constra int 1
21 i f (r e s1 == re s2 && job1 == job2) {
22 mat [t i d] = −1∗lambda1 + mat [t i d] ;
23 } e l s e i f (r e s1 == re s2 && job1 != job2) {
24 mat [t i d] = 2∗ lambda1 + mat [t i d] ;
25 }
26

27 // Constra int 2
28 i f (r e s1 != re s2 && job1==job2) {
29 mat [t i d] = 1∗ lambda2 + mat [t i d] ;
30 }
31

32 }
33 }

Listing 4.6: CUDA kernel implementation

This kernel is launched within the function Kernel.launchKernel() called into
the method QUBOBuilder.compute(). The launching of the kernel is performed by
using the API provided by JCuda: in particular, to launch the execution of a kernel
we used the function listed in listing 4.7.

1

2 cuLaunchKernel (funct ion ,
3 gridX , gridY , gridZ , // Grid dimension
4 blockX , blockY , blockZ , // Block dimension
5 0 , nu l l , // Shared memory s i z e and stream
6 parameters , n u l l) // Kernel− and extra parameters

Listing 4.7: CUDA kernel launching

The chosen dimensions used to test the system are:

1 i n t blockX = 1024 ;
2 i n t blockY = 1 ;
3 i n t blockZ = 1 ;
4

5 i n t gridX = c e i l (L / 1024) ; // L = QUBO array l ength
6 i n t gridY = 1 ;
7 i n t gr idZ = 1 ;

GridX is set to the length of the QUBO array L divided by blockX, that, in this
case, is 1024. For a 100 variables matrix, the gridX dimension will be calculated as:

68 CHAPTER 4. QOG

1 i n t N = 100 ;
2 i n t L = (100 ∗ 101) / 2 ;
3

4 i n t blockX = 1024 ;
5 i n t gridX = c e i l (L / blockX) ;

4.5 Testing and performances

The project has been implemented following the rules prescribed by the test-driven
approach: this makes the diverse components of the system be implemented after
their tests design and implementation. To verify the proper functioning of the
project, Unit and Component tests have been set up throughout the framework
[45]. In particular, Unit tests have been used to verify the correct behaviour of
every single component while Component tests checked simultaneously more than
one component and their interaction. Tests results and their coverage are shown
in fig. 4.16, highlighting the fact that 73% of the classes have been tested. This
percentage is related to the 100% of the model classes, while the remaining portion
(27%) does not fit into the test. This portion, in fact, is composed only by utility
classes that are not central in terms of the core system. Moreover it is clear that
98% of methods of the 73% classes and 96% of the code lines of the 98% methods
have been also tested.

Figure 4.16: Test coverage

The disk space usage optimisation reached by using the row-major model to store
a QUBO matrix of double numbers is reported in fig. 4.17. On the x axis there are
the QUBO variables number and on the y axis the bytes used to store the matrices.
The complete values represent the storing of the N ×N matrix elements whilst the
row-major values represent the storing of (N × (N + 1))/2 matrix elements. In order
to calculate the exact number of bytes used by the matrices the number of elements
of each matrix has been multiplied by 8 because a single double number requires 8
bytes to be stored.

4.5. TESTING AND PERFORMANCES 69

Figure 4.17: QUBO space usage

In order to assess the efficiency of the developed system, we used also a python
script to simulate the functioning of previous system used by the company itself.
This python code is reported in listing 4.8. Both the new project system, defined as
GPU, and the python one, called CPU, were tested in the same application scenarios,
creating QUBO matrices with an increasing number of variables (100, 1000, 5000,
10000, 15000, 20000 e 30000). All these matrices have been created with the same
structure, primary costs set to 0 and two constraints:

• the assignment of any resource to only one job;

• the assignment of any job to only one resource.

70 CHAPTER 4. QOG

1 r e s = resources number
2 j obs = jobs number
3 var = r e s ∗ j obs
4 mat = np . z e r o s ((var , var))
5

6 f o r i in range (0 , r e s) :
7

8 i th node = np . z e r o s ((jobs , j obs))
9

10 # C1 : each r e sou r c e can get only one job
11 constr comp = 2 ∗ np . ones ((jobs , j obs))
12 np . f i l l d i a g o n a l (constr comp , −1)
13 i th node += np . t r i u (constr comp)
14

15

16 f o r j in range (i +1, r e s) :
17

18 i j n o d e = np . i d e n t i t y (jobs)
19

20 # C2 : each job can be as s i gned to only one r e sou r c e
21 i th node = np . concatenate ((i th node , i j n o d e) , a x i s =1)
22

23 # QUBO matrix updating
24 mat [i ∗ j obs : (i +1)∗ jobs , i ∗ j obs :] = i th node

Listing 4.8: Python script for creating QUBO models

These particular constraints involve the matrices shown in fig. 4.18. Models
involved in real problems resolution are more complex than the model represented
by the simple base matrices in the example mentioned above.

Figure 4.18: Testing QUBO

All the performed tests have been run on the same machine, an ASUS FX505G
equipped with an i7-875H Intel processor and an Nvidia CTX GEFORCE GPU. In
order to have reliable statistics, for any N ×N matrix, both systems evaluated the
constrained QUBO 50 times; the average times of all the results are provided in
fig. 4.19.

The performances are reported in fig. 4.19 bear witness to the dependence between
the elapsed time and the matrices dimensions. On the other hand, the GPU system

4.5. TESTING AND PERFORMANCES 71

presents an increase in terms of computing time but, as stated in advance, an increase
in the range of a few milliseconds borne by the GPU is not directly related to the
matrix dimension but to the number of thread blocks to instantiate on the GPU. In
fact, for a 1000× 1000 matrix, the time the CPU takes to work on it is considerably
higher than for a 100× 100 matrix. For the GPU system the time remains almost
the same, regardless of the matrix dimensions. The following diagram allows us to
deduce that the new system performances are, at the best of times, up to four orders
of magnitude better than that of the CPU system.

Figure 4.19: Test results

72 CHAPTER 4. QOG

4.6 Future developments

The developed system, at present, is only a prototype to be used in simple examples.
By extending some of its features, it will be able to make it usable within a more
realistic environment. The main possible developments we identified are:

• creation of a microservice: the system will be wrapped on a microservice.
This step is fundamental in as much as microservices permit to create indepen-
dent application, to which you can accede through precise APIs. This would
facilitate a machine-to-machine (M2M) interaction with other applications and
the use of third-party functionalities from existing systems. The microservice
will probably exhibit two endpoints:

– a POST with which it receives the problem information;

– a GET with which it supplies the proper QUBO matrix.

• Interprocess communication (IPC): using IPC techniques provided by
CUDA would be an affordable and smart way to bypass the matrix on-disk
saving. By doing so, the system would be considerably enhanced in terms
of time because it would be no longer necessary transfer the QUBO matrix
from GPU to CPU. Creating the matrix on the GPU and sharing the memory
address of the matrix would only be necessary to use it. Of course, the processes
the system has to interact with should be run on the same machine, so the
GPU memory could be shared. However this seeming limitation should not
result as a vital problem: in fact, running any process that requests to accede
to the matrix on the same server should ease this drawback;

• OpenCL: a useful expansion for this system is represented by the possibility
of choosing OpenCL or CUDA as programming languages for the creation of
the QUBO matrix. This would permit to keep the best computation speed
when working on Nvidia GPUs and also enables the computation on other
kinds of GPU (i.e. AMD).

Chapter 5

Conclusions

The goal of the QoG project is to design and implement a system to create in the
fastest way a QUBO model related to a combinatorial optimisation problem. Then
this model can be solved through a Quantum Annealer that quickly finds the optimal
solution for the initial problem, thanks to the properties of the Quantum Annealer
itself.

Merging the programming language CUDA with a Scala system is possible to
combine the optimisation given by the use of the GPU and the paradigm of object
oriented programming. In this way, the resulting system is made capable of exploiting
the GPU computing power and being readable and maintainable at the same time.
The design part has been presented in detail in the section 4.2 section.

The system has been initially tested on a simple example of QUBO model, which
consists of two recurrent constraints in several optimisation cases:

• the association of a resource to only one job;

• the association of a job to only one resource.

A matrix representation of this model can be found in fig. 4.18. Despite the apparent
simplicity of this model, the tests we conducted gave us important results. By
comparing the performances of the QoG with the Python system, as reported in
fig. 4.19, we notice that the first one is much faster than the second one: for
30000 × 30000 matrices results differ by 4 orders of magnitude. Considering the
standpoint of performances, the goal has been fully achieved.

The second goal was the optimisation in terms of space required to store and save
the model to the device. As stated in section 4.2.3 section, by virtue of saving the
QUBO matrix using a row-major model, it was possible to memorise only the portion
with entries of the matrix, saving the memory needed in case the whole matrix was
to be stored. The graph 4.17 shows what has just been affirmed and compares the
memory usage of a whole matrix with a row-major modified matrix. In any case,
the saving memory is approximately the 50% of the space required to the whole
matrix. Therefore, the second goal has been achieved too. The main QoG future
development is the creation of a microservice that wraps the system in order to
simplify the interaction and the integration with other systems. A second important
development is the integration of an IPC into QoG so it can be used to avoid the
saving of the QUBO matrix on the filesystem. Once the QoG system was tested on

73

74 CHAPTER 5. CONCLUSIONS

different base cases, it has been used in several other projects developed by the Data
Reply Quantum team. In any case, the integration of a new kernel was very easy and
quick, thanks to the usage of pattern factory. The speedup of the creation of QUBO
model has been a crucial point for the resolution of real optimisation problems.

Glossary

AI Artificial Intelligence.

API Application Programming Interface.

AQC Adiabatic Quantum Computing.

BQM Binary Quantum Model.

CPU Central Process Unit.

CUDA Compute Unified Device Architecture.

GDDR Graphics Double Data Rate.

GPGPU General-purpose computing on graphics pro-
cessing units.

GPU Graphics Processing Unit.

ICT Information and Communication technology.

IPC Interprocess communication.

M2M Machine to Machine.

MIMD Multiple Instruction Multiple Data.

MPI Message Passing Interface.

QA Quantum Annealing.

QAE Quantum Application Environment.

QC Quantum Computing.

QMI Quantum Machine Instruction.

QoG QUBO on GPU.

75

76 Glossary

QPU Quantum Process Unit.

qubit Quantum bit. It is the fundamental data unit
for a quantum computer.

QUBO Quadratic Unconstrained Binary Optimisa-
tion.

SDK Software Development Kit.

SDRAM Synchronous DRAM.

SIMD Single Instruction Multiple Data.

SIMT Single Instructions Multiple Thread.

SM Streaming Multiprocessors.

SP Stream Processors.

SPMD Single Programming Multiple Data.

Bibliography

[1] url: https://www.dwavesys.com/quantum-computing.

[2] Scott Aaronson. Quantum Computing since Democritus. Cambridge, 2013.
isbn: 9780521199568.

[3] alphaQUBO platform. url: http://meta-analytics.net/Home/AlphaQUBO.

[4] Luca Asproni. “Quantum machine learning and optimisation: approaching
real-world problems with a quantum coprocessor”. Politecnico di Torino, 2019.

[5] Chris Bernhardt. Quantum Computing for everyone. MIT Press, 2019. isbn:
9780262039253.

[6] Fabio Chiarello. L’officina del meccanico quantistico. Maggioli editore, 2014.
isbn: 9788891602640.

[7] Mark W. Coffey. “Adiabatic quantum computing solution of the knapsack
problem”. In: (2017), p. 22.

[8] Dr. Gabriele Compostella. “Quantum Computing at Volkswagen: Traffic Flow
Optimization using the D-Wave Quantum Annealer”. In: D-Wave, Volkswagen.
2017, p. 23.

[9] Shane Cook. CUDA programming: A developer’s guide to parallel computing
with GPUs. 1st ed. Applications of GPU computing. Morgan Kaufmann, 2012.
isbn: 0124159338.

[10] CUDA Documentation. url: http://www.jcuda.org.

[11] CUDA thread indexing samples. url: https://cs.calvin.edu/courses/cs/
374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf.

[12] D-Wave. Getting Started with the D-Wave System. English. D-Wave. 2018.
39 pp.

[13] D-Wave. PRACTICAL QUANTUM COMPUTING D-Wave Technology Overview.
D-Wave. 2020. url: https://www.D-Wavesys.com/sites/default/files/D-
Wave_Tech20Overview2_F.pdf.

[14] D-Wave Applications. url: https://www.dwavesys.com/applications.

[15] D-Wave Ising, QUBO, and BQMs. url: https://docs.ocean.dwavesys.
com/projects/dimod/en/latest/reference/bqm/binary_quadratic_

model.html.

[16] D-Wave Map Coloring Problem. url: https://docs.dwavesys.com/docs/
latest/c_handbook_1.html.

77

https://www.dwavesys.com/quantum-computing
http://meta-analytics.net/Home/AlphaQUBO
http://www.jcuda.org
https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf
https://cs.calvin.edu/courses/cs/374/CUDA/CUDA-Thread-Indexing-Cheatsheet.pdf
https://www.D-Wavesys.com/sites/default/files/D-Wave_Tech20Overview2_F.pdf
https://www.D-Wavesys.com/sites/default/files/D-Wave_Tech20Overview2_F.pdf
https://www.dwavesys.com/applications
https://docs.ocean.dwavesys.com/projects/dimod/en/latest/reference/bqm/binary_quadratic_model.html
https://docs.ocean.dwavesys.com/projects/dimod/en/latest/reference/bqm/binary_quadratic_model.html
https://docs.ocean.dwavesys.com/projects/dimod/en/latest/reference/bqm/binary_quadratic_model.html
https://docs.dwavesys.com/docs/latest/c_handbook_1.html
https://docs.dwavesys.com/docs/latest/c_handbook_1.html

78 BIBLIOGRAPHY

[17] D-Wave Minor Embedding. url: https://docs.ocean.dwavesys.com/en/
stable/concepts/embedding.html.

[18] D-Wave Ocean documentation. url: https://ocean.D-Wavesys.com/.

[19] D-Wave QUBO Isign models. url: https://docs.D-Wavesys.com/docs/
latest/c_handbook_3.html.

[20] D-Wave software overview. url: https://www.D-Wavesys.com/software.

[21] D-Wave Topologies. url: https://docs.ocean.dwavesys.com/en/stable/
concepts/topology.html.

[22] D-Wave Using QUBOs to Represent Constraints. url: https://docs.dwavesys.
com/docs/latest/c_gs_6.html.

[23] D-Waves documentation 1. url: https://docs.D- Wavesys.com/docs/

latest.

[24] Wen-Mei W Hwu David B. Kirk. Programming Massively Parallel Processors:
A Hands-On Approach. 1st ed. Morgan Kaufmann, 2016. isbn: 0128119861.

[25] Mete Yurtoglu Duane Storti. CUDA for Engineers. An Introduction to High-
Performance Parallel Computing. Addison Wesley, 2016. isbn: 978-0-13-417741-
0.

[26] Ralph Johnson Erich Gamma Richard Helm and John Vlissides. Design Patterns
Elements of Reusable Object-Oriented software. 2nd ed. Addison-Wesley, 1994.
isbn: 978-0-201-63361-0.

[27] Yu Du Fred Glover Gary Kochenberger. “Quantum Bridge Analytics I: A
Tutorial on Formulating and Using QUBO Models”. In: 6 (2019), p. 46. doi:
https://arxiv.org/abs/1811.11538.

[28] John Gribbin. Computing with quantum cats, from Alan Turing to teleportation.
Black Swan, 2013. isbn: 9780552779319.

[29] Lov K. Grover. “A fast quantum mechanical algorithm for database search”.
In: (1996), p. 8. doi: https://arxiv.org/pdf/quant-ph/9605043.pdf.

[30] Cay S. Horstmann. Scala for the Impatient. 2nd ed. Addison-Wesley, 2016.
isbn: 0134540565.

[31] Richard Hua. “Adiabatic Quantum Computing with QUBO Formulations”.
University of Auckland, 2016.

[32] Edward Kandrot Jason Sanders. CUDA by Example: An Introduction to
General-Purpose GPU Programming. 1st ed. 2010. isbn: 0131387685.

[33] JCUDA Samples repository. url: https : / / github . com / jcuda / jcuda -

samples.

[34] Jie Zhu, Hai Jiang, Juanjuan Li, Erikson Hardesty, Kuan-Ching Li, Zhongwen
Li. “Embedding GPU Computations in Hadoop”. In: International Journal
of Networked and Distributed Computing 4 (2014), p. 10. doi: https://www.
atlantis-press.com/journals/ijndc/14323.

https://docs.ocean.dwavesys.com/en/stable/concepts/embedding.html
https://docs.ocean.dwavesys.com/en/stable/concepts/embedding.html
https://ocean.D-Wavesys.com/
https://docs.D-Wavesys.com/docs/latest/c_handbook_3.html
https://docs.D-Wavesys.com/docs/latest/c_handbook_3.html
https://www.D-Wavesys.com/software
https://docs.ocean.dwavesys.com/en/stable/concepts/topology.html
https://docs.ocean.dwavesys.com/en/stable/concepts/topology.html
https://docs.dwavesys.com/docs/latest/c_gs_6.html
https://docs.dwavesys.com/docs/latest/c_gs_6.html
https://docs.D-Wavesys.com/docs/latest
https://docs.D-Wavesys.com/docs/latest
https://doi.org/https://arxiv.org/abs/1811.11538
https://doi.org/https://arxiv.org/pdf/quant-ph/9605043.pdf
https://github.com/jcuda/jcuda-samples
https://github.com/jcuda/jcuda-samples
https://doi.org/https://www.atlantis-press.com/journals/ijndc/14323
https://doi.org/https://www.atlantis-press.com/journals/ijndc/14323

BIBLIOGRAPHY 79

[35] Jack Raymond Kelly Boothby Paul Bunyk and Aidan Roy. Next-Generation
Topology of D-Wave Quantum Processors TECHNICAL REPORT. 2019. url:
https://www.dwavesys.com/sites/default/files/14-1026A-C_Next-

Generation-Topology-of-DW-Quantum-Processors.pdf.

[36] Andrew Lucas. “Ising formulations of many NP problems. Frontiers in Physics”.
In: (2014).

[37] Bill Venners Martin Odersky Lex Spoon. Programming in Scala. 1st. Artima
Inc, 2008. isbn: 9780981531601.

[38] N. David Mermin. Quantum Computer Science An introduction. Cambridge,
2007. isbn: 9780521876582.

[39] Isaac L. Chuang Michael A. Nielsen. Quantum computing and quantum infor-
mation. 10th ed. Cambridge, 2016. isbn: 9781107002173.

[40] Florian Neukart et al. “Traffic flow optimization using a quantum annealer”.
In: 2 (2017), p. 17. doi: https://arxiv.org/abs/1708.01625.

[41] NVIDIA. NVIDIA CUDA C Programming Guide. English. Version 9.1. NVIDIA.
2018. 301 pp. url: https://docs.nvidia.com/cuda/archive/9.1/pdf/
CUDA_C_Programming_Guide.pdf.

[42] David Petrosyan Peter Lambropoulos. Fundamentals of quantum optics and
quantum information. 1st ed. Springer, 2007. isbn: 9783540345718.

[43] Quantum Computing Appunti delle lezioni. url: http://profs.sci.univr.
it/~dipierro/InfQuant/articles/Lezioni-IQ.pdf.

[44] Quantum Annealing. url: https://medium.com/@quantum_wa/quantum-
annealing-cdb129e96601.

[45] Scala test documentation. url: https://www.scalatest.org/.

[46] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer”. In: (1996), p. 28. doi: https:
//arxiv.org/pdf/quant-ph/9508027.pdf.

[47] Solving Max Cut problem using QUBO. url: https://tc3-japan.github.
io/DA_tutorial/tutorial-3-max-cut.html.

[48] Daniel A. Lidar Tameem Albash. “Adiabatic Quantum Computing”. In: (2018),
p. 71. doi: https://arxiv.org/pdf/1611.04471.pdf.

[49] Google AI Teams. “Quantum supremacy using a programmable superconduct-
ing processor”. In: Nature (2019), p. 7. doi: https://www.nature.com/
articles/s41586-019-1666-5.pdf.

[50] Cyrill Zeller. CUDA C/C++ Basics. English. NVIDIA. 2011. 68 pp.

[51] William G. Macready Zhengbing Bian Fabian Chudak and Geordie Rose. “The
Ising model: teaching an old problem new tricks”. In: (2010), p. 60. doi: https:
//www.D-Wavesys.com/sites/default/files/weightedmaxsat_v2.pdf.

https://www.dwavesys.com/sites/default/files/14-1026A-C_Next-Generation-Topology-of-DW-Quantum-Processors.pdf
https://www.dwavesys.com/sites/default/files/14-1026A-C_Next-Generation-Topology-of-DW-Quantum-Processors.pdf
https://doi.org/https://arxiv.org/abs/1708.01625
https://docs.nvidia.com/cuda/archive/9.1/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/archive/9.1/pdf/CUDA_C_Programming_Guide.pdf
http://profs.sci.univr.it/~dipierro/InfQuant/articles/Lezioni-IQ.pdf
http://profs.sci.univr.it/~dipierro/InfQuant/articles/Lezioni-IQ.pdf
https://medium.com/@quantum_wa/quantum-annealing-cdb129e96601
https://medium.com/@quantum_wa/quantum-annealing-cdb129e96601
https://www.scalatest.org/
https://doi.org/https://arxiv.org/pdf/quant-ph/9508027.pdf
https://doi.org/https://arxiv.org/pdf/quant-ph/9508027.pdf
https://tc3-japan.github.io/DA_tutorial/tutorial-3-max-cut.html
https://tc3-japan.github.io/DA_tutorial/tutorial-3-max-cut.html
https://doi.org/https://arxiv.org/pdf/1611.04471.pdf
https://doi.org/https://www.nature.com/articles/s41586-019-1666-5.pdf
https://doi.org/https://www.nature.com/articles/s41586-019-1666-5.pdf
https://doi.org/https://www.D-Wavesys.com/sites/default/files/weightedmaxsat_v2.pdf
https://doi.org/https://www.D-Wavesys.com/sites/default/files/weightedmaxsat_v2.pdf

	Introduction
	Theoretical Background
	Fundamentals of Quantum Computing
	State
	Entanglement
	Quantum gates
	Tunnelling

	Adiabatic Quantum Computing
	D-Wave
	QUBO Model
	QUBO implementing AND logic gate
	QUBO implementing Map Colouring Problem

	Technical Background
	 General-purpose computing on GPU
	Standard architectures

	CUDA C
	Compilation
	Execution
	Architecture

	QoG
	Requirements analysis
	Problem definition
	Constraints definition
	Building of the QUBO matrix
	Matrix saving

	Design
	Uploading the problem data
	Defining the constraints
	Creating the matrix
	Saving the data

	Technologies
	Scala
	CUDA and JCuda

	Implementation
	Scala advanced features
	Indexing

	Testing and performances
	Future developments

	Conclusions

