
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE

Corso di Laurea Magistrale in Informatica

Dragonfly:

next generation sandbox

Relatore:
Chiar.mo Prof.
Marco Prandini

Correlatori:
Dott. Mag. Davide Berardi,
Dott. Mag. Matteo Lodi,
Ph.D. Andrea Melis

Presentata da:
Simone Berni

Controrelatore:
Chiar.mo Prof.

Renzo Davoli

Sessione I
Anno Accademico 2019/2020

Introduction

An endless battle between malwares and malware analysts is fought every

day. Many techniques of analysis are deployed, allowing the study of targets

in a clean environment. Isolation is commonly provided by sandboxes, but

it is not the only way: a new paradigm is emerging, emulation, that allows

the study of targets without having to fear that its own infrastructure can

be infected.

Malwares are detected and categorized using rules, simple regex queries that

describe their behaviours and are matched against the static sample, but

thanks to the emulation we can move this process a step further: Dragonfly

allows deeper and more precise rules that are matched during the emulation

of the target, allowing even the execution of custom user functions when a

rule is matched to bring the analysis to its next step.

The thesis is divided into three chapters, and in the following their de-

scription.

Chapter1 provides a brief description of concepts that the reader must know,

focusing on emulation, malware analysis methodologies, and sandboxes.

Chapter 2 describes the Qiling frameworks, with a focus on its goal, architec-

ture, and functionalities. Moreover, its explained its usage, the issues that

have been found, and the results when used with real world malwares.

The chapter 3 explains what is the personal contribution of the author in

the malware analysis field: the main object of this dissertation is Dragonfly,

its architecture, usage, rules, results and future development. A brief de-

i

ii INTRODUCTION

scription of what has been upgraded inside Qiling to allow the creation of

Dragonfly is provided.

Contents

Introduction i

1 Overview 1

1.1 Emulation . 2

1.1.1 QEMU . 3

1.1.2 Unicorn Engine . 3

1.1.3 WSL . 5

1.2 Malware Analysis . 5

1.2.1 Dynamic Analysis . 5

1.2.2 Static analysis . 6

1.3 Sandbox . 9

1.3.1 Cuckoo . 10

1.3.2 Drakvuf . 12

2 Qiling 15

2.1 Comparisons . 16

2.1.1 Cuckoo . 16

2.1.2 Unicorn Engine . 17

2.1.3 QEMU . 17

2.1.4 Usercorn . 18

2.1.5 Binee . 18

2.2 Architecture . 19

2.3 Usage . 22

2.4 Issues . 23

iii

iv INTRODUCTION

2.5 Results . 24

3 Dragonfly 25

3.1 Architecture . 26

3.2 Qiling for malware analysis . 29

3.2.1 API . 29

3.2.2 Profiles . 30

3.2.3 Storing information . 33

3.2.4 Results . 33

3.3 Rules . 35

3.3.1 Modules . 37

3.3.2 Variables . 41

3.3.3 Json-schema . 42

3.4 Usage . 42

3.4.1 Flow . 44

4 Results and Future Work 47

4.1 Testing . 47

4.1.1 Al-Khaser . 48

4.1.2 Gandcrab . 49

4.2 Future Developments . 50

4.2.1 Rules . 50

4.2.2 Modules . 51

4.2.3 Anti anti-evasion . 51

Conclusioni 54

A Rules 55

A.0.1 Examples . 55

A.0.2 Gandcrab . 57

A.0.3 Al-khaser . 60

B Json-Schema 63

INDICE v

Bibiography 67

List of Figures

1.1 Cuckoo architecture . 10

1.2 Drakvuf architecture . 13

2.1 Qiling architecture [11] . 19

2.2 Qiling core class architecture 20

2.3 Qiling loader class architecture 20

2.4 Qiling os class architecture . 21

2.5 Qiling arch class architecture 22

3.1 Dragonfly’s class diagram . 26

3.2 Dragonfly’s rule implementation 28

3.3 Number of Windows API called 34

3.4 Number of unique Windows API called 34

3.5 Number of samples that crashed during the emulation 35

3.6 Dragonfly’s analysis flow . 44

3.7 Dragonfly’s analysis flow . 45

vii

Chapter 1

Overview

Malware is any software intentionally designed to cause damage to a com-

puter, server, client, or computer network1. A wide variety of types of mal-

ware exist, including computer viruses, worms, Trojan horses, ransomware,

spyware, adware, rogue software, and scareware.

Malware analysis is the study or process of determining the functionality,

origin and potential impact of a given malware sample2.

The method by which malware analysis is performed typically falls under one

of two types:

• Static analysis is performed by dissecting the different resources of

the binary file without executing it and studying each component.

• Dynamic analysis is performed by observing the behavior of the mal-

ware while it is actually running on a host system.

A sandbox is a security mechanism for separating running programs from

the infrastructure, usually in an effort to mitigate system failures or software

vulnerabilities from spreading: the ideal environment to perform malware

analysis. A sandbox typically provides a tightly controlled set of resources

1https://docs.microsoft.com/en-us/previous-versions/tn-archive/

dd632948(v=technet.10) (visited on 16/05/20)
2https://web.archive.org/web/20160418151823/http://www.ijarcsse.com/

docs/papers/Volume_3/4_April2013/V3I4-0371.pdf) (visited on 16/05/20)

1

https://docs.microsoft.com/en-us/previous-versions/tn-archive/dd632948(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions/tn-archive/dd632948(v=technet.10)
https://web.archive.org/web/20160418151823/http://www.ijarcsse.com/docs/papers/Volume_3/4_April2013/V3I4-0371.pdf)
https://web.archive.org/web/20160418151823/http://www.ijarcsse.com/docs/papers/Volume_3/4_April2013/V3I4-0371.pdf)

2 1. Overview

for guest programs to run in, such as storage and memory space. Network

access, the ability to query the host system and read from input devices are

usually disallowed or heavily restricted, not allowing the sample analysed to

perform malicious activities on the host machine.

To solve the issues of configuring and maintaining a complex sandbox

system, malware analysis is going toward a new paradigm, emulation. It

is possible to emulate the malware, directly in the host machine, without

building the infrastructure that a sandbox requires, and, it is possible to

have a fine-grain control of the environment that the malware is using.

1.1 Emulation

Emulation commonly refers to the use of one hardware device to mimic

the function of another hardware device. In that sense, emulation is the use

of software to emulate hardware, and on top of it, it is possible to execute

an higher level of software.

The core of the emulation is the translation of the target instruction set to

the user instruction set. CPU instructions must be translated, but even the

memory management and the GPU instructions have to be considered.

After having emulated the hardware, the foundations are done: now it is

possible to build over this emulated hardware new software, add features, or

let the user monitor and change the behaviour of the lower levels. The su-

pervision of the emulation is done through hooks, a sort of APIs that allows

the users to execute custom callback functions when a particular condition

is found.

1.1 Emulation 3

1.1.1 QEMU

QEMU3 is a hosted virtual machine monitor: it emulates the machine’s

processor through dynamic binary translation and provides a set of different

hardware and device models for the machine, enabling it to run a variety

of guest operating systems. It can also be used with KVM4 to run virtual

machines at near-native speed (by taking advantage of hardware extensions

such as Intel VT-x). QEMU can also do emulation for user-level processes,

allowing applications compiled for one specific architecture to run on top of

another one.

QEMU can be used in two different operating modes:

• User-mode emulation: it is able to run Unix programs that were

compiled for a different instruction set.

• System emulation: it is able to run operating systems for any ma-

chine, on any supported architecture.

The core binary translation engine that allows QEMU to emulate foreign

processors on any given supported host is called The Tiny Code Generator :

the TCG works by translating each guest instruction into a sequence of host

instructions. As a result there will be a level of inefficiency, which means

TCG code will not be as fast as running native code.

1.1.2 Unicorn Engine

Unicorn Engine5 is a lightweight, multi-platform, multi-architecture CPU

emulator framework based on QEMU. Unicorn offers some unparalleled fea-

tures:

• Multi-architecture: ARM, ARM64 (ARMv8), M68K, MIPS, SPARC,

and X86 (16, 32, 64-bit)

3https://github.com/qemu/qemu (visited on 17/05/20)
4https://www.linux-kvm.org/page/Main_Page (visited on 17/05/20)
5https://github.com/unicorn-engine/unicorn (visited on 17/05/20)

https://github.com/qemu/qemu
https://www.linux-kvm.org/page/Main_Page
https://github.com/unicorn-engine/unicorn

4 1. Overview

• Clean/simple/lightweight/intuitive architecture-neutral API

• Implemented in pure C language, with bindings for Crystal, Clojure,

Visual Basic, Perl, Rust, Ruby, Python, Java, .NET, Go, Delphi/Free

Pascal, Haskell, Pharo, and Lua.

• Native support for Windows & *nix (with Mac OSX, Linux, *BSD &

Solaris confirmed)

• High performance via Just-In-Time compilation

• Support for fine-grained instrumentation at various levels

• Thread-safety by design

Unicorn is designed to be used as a framework to create over it different

tools: its showcase is endless, and some of the most famous ones that use or

are built over Unicorn are the following:

• Radare26

• Gef7

• Angr8

• Pwntools9

• Cuckoo10

• Unicorn-afl 11

6https://github.com/radareorg/radare2 (visited on 18/06/20)
7https://github.com/hugsy/gefn (visited on 18/06/20)
8https://github.com/angr/angr (visited on 18/06/20)
9https://github.com/Gallopsled/pwntools (visited on 18/06/20)

10https://github.com/cuckoosandbox/cuckoo (visited on 18/06/20)
11https://github.com/Battelle/afl-unicorn (visited on 18/06/20)

https://github.com/radareorg/radare2
https://github.com/hugsy/gefn
https://github.com/angr/angr
https://github.com/Gallopsled/pwntools
https://github.com/cuckoosandbox/cuckoo
https://github.com/Battelle/afl-unicorn

1.2 Malware Analysis 5

The power of Unicorn is that it is possible to insert hooks during the emu-

lation: it is possible to read or write a specific address, execute a callback

if a specific opcode is found, hook an entire block or a specific interrupt,

making it useful to understand at a deeper level how the sample emulated

really works.

Many bugs and zero-days are found using Unicorn, and the tools that are

built over it: the most common practice these days is to use fuzzing12.

1.1.3 WSL

Windows Subsystem for Linux (WSL) is a compatibility layer for run-

ning Linux binary executables (in ELF format) natively on Windows 10 and

Windows Server 2019. The first release of WSL provides a Linux-compatible

kernel interface developed by Microsoft, containing no Linux kernel code13

which can then run a GNU user space on top of it, like Ubuntu or Debian.

Such a user space might contain a bash shell and command language, with

native GNU command-line tools, programming-language interpreters, and

even graphical applications.

In May 2019, WSL 2 was announced, introducing important changes such as

a real Linux kernel, through a subset of Hyper-V features14.

1.2 Malware Analysis

1.2.1 Dynamic Analysis

Dynamic analysis is the technique to execute the malware and analyse its

behavior during run time. A good practice is not to run the malware directly

12https://docs.microsoft.com/en-us/previous-versions/software-testing/

cc162782(v=msdn.10) (visited on 18/05/20)
13https://mikegerwitz.com/2016/04/gnu-kwindows (visited on 19/06/20)
14https://devblogs.microsoft.com/commandline/announcing-wsl-2/ (visited on

19/06/20)

https://docs.microsoft.com/en-us/previous-versions/software-testing/cc162782(v=msdn.10)
https://docs.microsoft.com/en-us/previous-versions/software-testing/cc162782(v=msdn.10)
https://mikegerwitz.com/2016/04/gnu-kwindows
https://devblogs.microsoft.com/commandline/announcing-wsl-2/

6 1. Overview

to avoid any harm caused by it, so some steps to isolate the effects of the

malware must be made.

Commonly a sample is analysed inside a Virtual Machine, allowing the cre-

ation of an isolated environment where the malware can be analysed in almost

total security.

Many tools can be used to perform dynamic analysis: debuggers do the

work for a manual analysis, but more complex tools must be used to autom-

atize the process, like sandboxes. The description of what a sandbox is, how

to use it, and what it can provide to its users, is provided in section 1.3.

The main issue that is found during dynamic analysis, is that a smart mal-

ware is able to recognize to be analysed: it will change its behaviour and

signatures, making its study useless and misleading.

1.2.2 Static analysis

Static program analysis is the study of computer software that is per-

formed without actually execute the sample, avoiding its malicious effects on

the host machine.

There are an endless number of tools that can be used to perform static

analysis on a sample, like Ghidra15, IDA16 or BinaryNinja17.

It is possible to follow the execution flow of the sample, trying to understand

its nature, or it is possible to check precisely elements, like strings, system-

calls or Windows API, that can match a typical malware behaviour.

The main idea of static analysis is to understand the execution branches that

the sample can follow, obtaining an overview of what it is going to do, and

for which reason.

15https://github.com/NationalSecurityAgency/ghidra (visited on 21/06/20)
16https://www.hex-rays.com/products/ida/ (visited on 21/06/20)
17https://binary.ninja// (visited on 21/06/20)

https://github.com/NationalSecurityAgency/ghidra
https://www.hex-rays.com/products/ida/
https://binary.ninja//

1.2 Malware Analysis 7

Signatures

As the two sections before tried to explain, many aspects of the sample

must be analysed before it is possible to understand if the target is a mal-

ware or not. Moreover, this study requires time, a resource that sometimes

analysts do not have. For these reasons, what it is commonly done, since

it is not possible to manually analyse every sample that is found, is to use

signatures. A signature encodes characteristics that distinguish a malware

from a genuine executable, and must be created before being able to use

them against a new target. For this reason it is still necessary to manually

analyse samples, obtaining new features that distinguish malwares, or even

characteristics that are present only in a precise malware family, recognizing

them.

Obviously this method can produce false positive and false negative, but

malware analysts are aware of that and precautions to lower these percentage

have been taken.

In fact each rule has a weight, which embodies the probability to correctly

indicate that the sample is a malware. The higher the weight, the higher the

probability that the target is a malware. Every rule that an analyst has in its

database can be matched against the same sample, increasing the probability

that the binary analysed is a malware: if the total weight exceed a threshold,

the target is considered malicious and a deeper study will be made.

Rules are commonly applied during static analysis against a sample, but

nothing stops to use them against the output of a dynamic analysis tool. At

the end, rules are matched using regular expressions, meaning that every

type of files can be matched.

The standard to create and share signatures is YaraRules18, and its made of

four components:

• A unique name to distinguish rules between them.

18https://github.com/Yara-Rules/rules

https://github.com/Yara-Rules/rules

8 1. Overview

• A meta section where the author, the weight and the references are

provided.

• A strings section, where the strings, or bytes, that describe a malware

behaviour are written.

• A condition section, where it is possible to specify constraints about

the strings section.

VirusTotal19 created the Yara-Python20 library, allowing the use of YARA

from a Python program, increasing the ease of use. The following is an

example of YaraRule that should match if the sample tries to disable the

host antivirus.

1 r u l e d i s a b l e a n t i v i r u s {
2 meta :

3 autho r = ” x0r ”

4 d e s c r i p t i o n = ” D i s a b l e An t iV i r u s ”

5 v e r s i o n = ”0.2”

6 s t r i n g s :

7 $p1 = ” So f tware \\Mic r o s o f t \\Windows\\ Cu r r e n tVe r s i o n \\
P o l i c i e s \\ Exp l o r e r \\Disa l l owRun ” nocase

8 $p2 = ” So f tware \\Mic r o s o f t \\Windows\\ Cu r r e n tVe r s i o n \\
Un i n s t a l l \\” nocase

9 $p3 = ”SOFTWARE\\ P o l i c i e s \\Mic r o s o f t \\Windows Defender ”

nocase

10 $c1 = ”RegSetValue ”

11 $ r1 = ” An t i V i r u sD i s a b l eN o t i f y ”

12 $ r2 = ” Don tR epo r t I n f e c t i o n I n f o rma t i o n ”

13 $ r3 = ”D i sab l eAnt iSpywa r e ”

14 $ r4 = ” Run I n v a l i d S i g n a t u r e s ”

15 $ r5 = ” An t i V i r u sOv e r r i d e ”

16 $ r6 = ”CheckExeS igna tu re s ”

17 $ f 1 = ” b l ackd . exe ” nocase

18 $ f 2 = ” b l a c k i c e . exe ” nocase

19 $ f 3 = ” lockdown . exe ” nocase

19https://www.virustotal.com/ (visited on 22/06/20)
20https://github.com/VirusTotal/yara-python (visited on 22/06/20)

https://www.virustotal.com/
https://github.com/VirusTotal/yara-python

1.3 Sandbox 9

20 $ f 5 = ” t a s k k i l l . exe ” nocase

21 $ f 6 = ” t s k i l l . exe ” nocase

22 $ f 7 = ” s n i f f em . exe ” nocase

23 $ f 8 = ” z l c l i e n t . exe ” nocase

24 $ f 9 = ” zonea la rm . exe ” nocase

25 cond it ion :

26 ($c1 and $p1 and 1 o f ($ f ∗)) or ($c1 and $p2) or 1 o f (

$ r ∗) or $p3}

1.3 Sandbox

Sandbox is a traditional approach in which it is possible to execute files

in a self-governing virtual computerized technology excluding any physical

harm to the host machine. While running these files in sandbox, the sand-

box system can highlight malicious activities, such as modification entry in

registry, deleting and uploading files in a system[6]. Moreover, sandbox are

able to retrieve artifacts from the analysed sample: temporary files that it

creates, files deleted or modified, and even network traffic that it generates.

The artifacts are then saved and it is possible to separate them indepen-

dently, with different tools depending on the type of file.

A sandbox is the most common environment for analyse a malware, au-

tomating the analysis steps and producing a clear output about the predicted

maliciousness of the sample, and the artifacts that it generates. The detec-

tion is commonly done through rules: this methodology was explained in

section 1.2.2.

Many sandbox are available, some of them are open source, some are not.

The following sections describe only few of the open source freely available,

while closed source solutions, like VmWare21 will not be discussed.

21https://www.vmware.com/

10 1. Overview

1.3.1 Cuckoo

Cuckoo22 is the leading open source automated malware analysis system.

It can be used to analyze:

• Generic Windows executables

• DLL files

• Microsoft Office documents

• PDF documents

• URLs and HTML files

• Almost every other possible attack vectors

Figure 1.1: Cuckoo architecture

Its architecture is shown in figure 1.1, and it is made by two parts primary:

the host that manages the guests virtual machines and is in charge of post

22https://github.com/cuckoosandbox/cuckoo

1.3 Sandbox 11

execution analysis, and many guest machines that are responsible to execute

the samples that the host sends, storing every artifact that was possible to

retrieve.

Cuckoo provides a huge number of rest API that can be used to submit and

review the samples, for example:

• /tasks/create/file

• /tasks/create/url

• /tasks/create/submit

• /tasks/view

• /tasks/summary

Cuckoo analysis is split in two parts: the creation of the artifacts, and the

analysis of them. The former is done by Cuckoo itself, thanks to the many

different plugins that are installed:procmemdump, for example, is on them

that, if enabled, dumps the entire memory of the process.

But Cuckoo does not manage the sample analysis itself: it uses external tools

that must be installed in and executed into the host. Oletools23, for example,

is used to analyse .doc files, Wireshark24 to find information inside .pcap, a

memory dump is analysed using Volatility25, a binary or text file with YARA,

and so on.

This explains why Cuckoo setup and maintenance require an entire team:

• Every guest OS that may be used, must be installed and configured.

• Every guest software that will be used to execute the many different

samples must be installed, remembering to install different versions for

compatibility.

23https://github.com/decalage2/oletools (visited on 23/06/20)
24https://www.wireshark.org/develop.html (visited on 23/06/20)
25https://github.com/volatilityfoundation/volatility (visited on 23/06/20)

https://github.com/decalage2/oletools
https://www.wireshark.org/develop.html
https://github.com/volatilityfoundation/volatility

12 1. Overview

• Every host analysis tool must be installed, with probably many versions

for each one, to keep compatibility.

• It is necessary to configure the network routing both between the host

machine and the company infrastructure, and between the host and

the many guests.

• Script everything!

For these reasons, Cuckoo requires more than a single person to run correctly,

and many figures that are needed are sysadmin and programmers, not even

malware analysts.

Moreover, if the OS environment that was created is not sufficient, meaning

that the target analysed must be run against a different OS, with a different

environment, it is necessary to rebuild and reconfigure from scratch the OS

image. This operation requires time, probably a significant amount of time,

that is not possible to have at all during a malware infection that is taking

place.

Written in Python2, the idea to switch to Python3 started in 201526 but was

never realized. For this reason, it is hard that new people and companies

will invest their time, and money, in a tool that uses a language that is not

longer supported. Of course there is an exception, and a Dutch company,

called hatching27 has participated for years in the development of Cuckoo:

their main sell is to customize a Cuckoo instance, built over the client needs.

1.3.2 Drakvuf

Drakvuf28is a virtualization based agentless black-box binary analysis sys-

tem, allowing in-depth execution tracing of arbitrary binaries (including op-

erating systems), all without having to install any special software within the

26https://github.com/cuckoosandbox/cuckoo/issues/594 (visited on 23/06/20)
27https://hatching.io/
28https://drakvuf.com/ (visited on 24/06/20)

https://github.com/cuckoosandbox/cuckoo/issues/594
https://hatching.io/
https://drakvuf.com/

1.3 Sandbox 13

virtual machine used for analysis.

It currently supports the following guests OS:

• Windows 7-8, both 32-bit and 64-bit

• Windows 10 64-bit

• Linux 2.6.x - 5.x, both 32-bit and 64-bit

The main feature of Drakvuf is its almost undetectable footprint from the

target point of view, allowing its use for malware analysis.

Its stealthiness is required because, as dynamic malware analysis systems

have become widely deployed, malware has evolved to detect and evade such

systems by either refusing to execute in a sandboxed environment, or by

modifying its runtime behavior to lead the analysis system astray[9].

Figure 1.2: Drakvuf architecture

14 1. Overview

Drakvuf architecture is similar to Cuckoo, as shown in figure 1.2, the

main difference is that Drakvuf is implemented with the use of virtualiza-

tion technology, in particular it is built on the open-source Xen VM29, as

virtualization provides several benefits that dynamic malware analysis can

take advantage of: this provide external access to the state of the virtualized

hardware components, commonly referred to as virtual machine introspec-

tion (VMI), increasing the effectiveness of the analysis.

Drakvuf ability to hide itself from being detected by the target is done

through the capacity to inject the target process inside another process run-

ning inside the guest, without the aid of any in-guest helper.

Moreover, this sandbox offers deep monitoring functionalities:

• Execution tracing: Drakvuf is able to trace not only windows API,

but also kernel calls, by directly trapping internal kernel functions via

breakpoints injection, allowing to monitor malicious drivers as well as

rootkits. To establish a map of internal kernel functions, the Rekall30

forensics tool has been used.

• Monitoring file system accesses with memory events: When a

file is accessed, either by the OS or by a user-land process, a FILE OBJECT

is allocated within the kernel heap with the accompanying tag, Fil\xe5.

This allows Drakvuf to determine the full path of the file as well as the

access privilege with which the file is accessed without the need to have

any deeper understanding of the file system itself.

• Carving deleted files from memory: When files are created and de-

stroyed rapidly, as it is often the case when malware is being dropped on

a system, the files are never written to disk. In Drakvuf, the carving of

deleted files is implemented by intercepting specific internal kernel calls

that are responsible for file deletion, such as the NtSetInformationFile

and ZwSetInformationFile routines.

29https://xenproject.org/ (visited on 24/06/20)
30http://www.rekall-forensic.com/ (visited on 24/06/20)

https://xenproject.org/
http://www.rekall-forensic.com/

Chapter 2

Qiling

Qiling1 is an emulation framework that it is in an active state of devel-

opment since October 2019, made by the same team that worked on the

creation of Unicorn Engine.

Its main features are the following:

• Cross platform: Windows, MacOS, Linux, BSD

• Cross architecture: X86, X86 64, Arm, Arm64, Mips

• Multiple file formats: PE, MachO, ELF

• Emulate and sandbox machine code in a isolated environment

• Support cross architecture and platform debugging capabilities

• Provide high level API to setup and configure the sandbox

• Fine-grain instrumentation: allow hooks at various levels (instruction/basic-

block/memory-access/exception/syscall/IO/etc)

• Allow dynamic hotpatch on-the-fly running code, including the loaded

library

1https://github.com/qilingframework/qiling (visited on 10/06/20)

15

https://github.com/qilingframework/qiling

16 2. Qiling

• True framework in Python, making it easy to build customized security

analysis tools on top

Qiling is interesting because it tries to merge together the concepts of em-

ulation and, partially, of a sandbox. Unicorn Engine is in charge of the

emulation of the sample and, at the same time, is the core of Qiling. Like a

sandbox needs an operating system environment before being able to execute

the target binary, Qiling is able to build the environment without requiring

any kind of software installation. Commonly, executables gain the knowledge

of the external world thanks to systemcalls, if the sample is a Unix file, or

via Windows Api, in the case of a Portable Executable file. Both the com-

munication ways are emulated inside Qiling, allowing to control and monitor

every aspect of the interaction between the target and its environment.

Qiling is not an analysis tool, but is a framework, designed to allow the con-

struction of tools over it: storing every information that a possible tool may

need, Qiling is the perfect foundation to build dynamic analysis tool, or to

reproduce the concept of sandbox inside the emulation paradigm.

2.1 Comparisons

Qiling is the next step of the emulation paradigm, since it will emulate an

entire operating system, something that was not possible before this project.

It is necessary to consider the pros and cons of this framework, compared

to other emulating projects or sandboxes, to understand if the Qiling idea is

needed.

2.1.1 Cuckoo

As described in section 1.3.1, Cuckoo requires an enormous team work for

its maintenance, that Qiling does not need. It is easy to change the config-

uration parameters of the emulation and the environment that sample must

be run in, like OS variables and even hardware components.

2.1 Comparisons 17

But, while Cuckoo is able to test a multitude of attack vectors, like .pdf,

.doc files, Qiling is able to emulate only executable files.

The installation of Qiling is literally done through a single command, pip

install --user qiling, while Cuckoo requires a specific host configura-

tion, making it a lot easier to install and deploy.

It is necessary to remember that Qiling is an emulation framework, not de-

signed to be a malware analysis tool, nor a sandbox. For this reason, it is not

able to produce an output of the goodness of the target, opposed to Cuckoo.

2.1.2 Unicorn Engine

While Unicorn Engine is able to emulate only CPU instructions, it is

not able to understand high level concepts such as dynamic libraries, system

calls, I/O handling or executable formats like PE, MachO or ELF. Qiling

goal and design is to overcome this restrictions, allowing the emulation of an

entire executable, but at the same time, keeping the ability to have fine-grain

instrumentation.

2.1.3 QEMU

QEMU in user mode is able to emulate every Linux and BSD executable

from a Unix host. For example it does not allow to emulate natively a

Portable Executable file, like Qiling is able to.

Technically it is possible to use QEMU to emulate the entire Windows OS,

then run the sample inside that emulation, and check the result, using the

system mode that was described in section 2.1.3. There are many issues in

that solution:

• It is not possible to retrieve information of what is happening inside

the emulated OS, having zero visibility of the sample behaviour

• It is not possible to hook systemcall or modify the OS environment

runtime

18 2. Qiling

• It is necessary to install and configure entire OS

2.1.4 Usercorn

Usercorn2 is very similar to Qiling as final goal: trying to emulate a

complex environment but still allowing to have fine-grain instrumentation.

Like Qiling, it is a framework, but the problem is that its scope is limited

to emulate only Linux binaries, and since the vast majority of malwares are

Windows PE, its use is too much limited for being used in a production

environment.

2.1.5 Binee

Binee3 is a tool written in Go by CarbonBlack. Its goal is similar to

Qiling’s one: the emulation of binaries, with a focus on introspection of all

IO operations. Its primary feature is to provide a flexible environment for

determining side effects on the system made by the sample. The issue is

that it is able to emulate only Windows sample, limiting, like Usercorn, the

numbers of sample that can be analysed.

Moreover, its Windows support is not fully implemented yet: the number

of Windows API implemented are the same as the one implemented inside

Qiling. For these reasons it is hard to find a real use case.

2https://github.com/lunixbochs/usercorn (visited on 26/06/20)
3https://github.com/carbonblack/binee (visited on 26/06/20)

https://github.com/lunixbochs/usercorn
https://github.com/carbonblack/binee

2.2 Architecture 19

2.2 Architecture

The architecture of Qiling is articulated, complex and undocumented:

only the source code describes the real story of this project, and the docu-

mentation is still under development.

Figure 2.1: Qiling architecture [11]

Figure 2.1 shows how Qiling is structured from an high point of view.

The concept is simple: the executable file, whatever kind it is, is loaded

inside Qiling, and a general setup is started. Then the systemcalls or API

are hooked, meaning that when the executable will call a function, a Qiling

implementation will be called. At this point it is possible to connect instru-

mentation hooks, giving to its users the control. Finally a post process file

is created, containing the information retrieved during the emulation.

20 2. Qiling

Figure 2.2: Qiling core class architecture

The class Core is the main class of the framework, and its task is to create

the Qiling object and load inside its components, as figure 2.2 shows.

Each component is an abstract class that will have many, different imple-

mentations, depending on the OS that must be emulated, the hardware that

should be used, and the type of executable that is given as input.

Figure 2.3: Qiling loader class architecture

2.2 Architecture 21

The Loader task is to, as its name explains, load every information about

the binary in memory. Figure 2.3 shows the classes that Qiling implements

for doing that, each one tasked to load a different type of binary: the class

PE will load a Portable Executable file, the Macho a macOs file, and so on.

Moreover it is necessary to load libraries, that will change depending on the

executable, basic structures that must be already in the memory, the argu-

ments, and more.

Figure 2.4: Qiling os class architecture

The second core component of Qiling, is the Os abstract class, imple-

mented by many different objects, as shown in figure 2.4. Each class is a

different operating system that Qiling supports, allowing its emulation to

some degrees.

These classes are tasked to the setup and the hook of systemcalls, or Win-

dows API, and right now Qiling implements 20% of the functions inside

Kernel32.dll and 30% for Unix systemcalls. Another concept that every Os

class must implement, is the multi threading, and, in the case of the Win-

dows object, the registries and handle manager.

22 2. Qiling

Figure 2.5: Qiling arch class architecture

The last core component is the Arch abstract class. Not only it is nec-

essary to emulate different operating system, but even different family of in-

struction set architectures: figure 2.5 shows which architectures are available

at the moment inside Qiling. Their task is to properly create, set and modify

the registries that Unicorn Engine will use for the emulation, to manage the

stack and the segments that the emulator needs.

2.3 Usage

Since Qiling is a Python framework, its basic usage is to import it as a

package, and use the Qiling object with its parameters configurable during

the object creation. The main function is run(), that, as the name denotes,

starts the emulation. The sample is loaded in the memory, the shared li-

braries are loaded, and the emulation is run until the end of the execution.

What was described is the basic usage of Qiling, but normally its users want

the possibility to have instrumentation.

For doing that, Qiling offers hooks at different levels, giving the possibility

to add a user defined callback that works with the entire Qiling object.

• hook address when the program counter is at the defined address,

2.4 Issues 23

the user defined function will be executed.

• hook mem read every time a read in memory is performed, the user

defined function will be executed.

• hook mem write every time a write in memory is performed, the user

defined function will be executed.

• hook code before every instruction, the user defined function is exe-

cuted.

• set syscall a Qiling systemcall is replaced by the user defined function.

• set api a Qiling Windows API is replaced by the user defined function.

When the emulation is completed, a log file is saved and it is possible to

retrieve the log file created by Qiling, containing every library loaded, every

Windows APIs (or systemcalls) called with its parameters. The following

snippet shows what was described before, hooking a specific address to stop

the emulation and printing the log file.� �
1 import qiling

2 def stop (ql , default_values) :

3 print ("Ok for now")

4 ql . emu_stop ()

5 if __name__ == "__main__" :

6 ql = Qiling (["../ examples/rootfs/x86_windows/bin/GandCrab502.bin"] , "../

examples/rootfs/x86_windows" , output="debug" , profile="profiles/

windows_administrator.ql")

7 ql . hook_address (stop , 0x40860f)

8 ql . run ()

9 print (open ("../ examples/rootfs/x86_windows/GandCrab502.log") . read ())� �
2.4 Issues

Three main issues were found on the study of Qiling:

• A lack of operating system functions implemented : only 30% of Unix

systemcalls have been implemented, and Windows APIs percentages

are even lower.

24 2. Qiling

• A configuration file is missing, meaning that an end user does not have

the possibility to change the parameters of the emulation, or the OS

environment.

• A way to save the results obtained through the sample emulation inside

the Qiling object, as a real framework must do, removing the necessity

to the final user to parse the log file.

2.5 Results

Qiling has been tested only in an academic environment, meaning that

the binaries where not complicated, very linear and the majority were made

by the same people that developed Qiling. A real malware was partially

emulated, the famous ransomware WannaCry4 , but only the first section,

since it is not possible to use Qiling to make post and get requests.

When Qiling was tested with real word Windows malwares, the results were

not satisfying enough: almost 99% of the tested sample crashed, and the

number of APIs called is very low. The main cause of crashes is simply that

not every Windows APIs have been implemented inside Qiling, making it

impossible to continue the emulation of the binary target. There are some

cases where Qiling does not correctly behave like it is supposed to, since

most of APIs have many side effects that were not considered during the

implementation.

4https://blog.kartone.ninja/2019/05/23/malware-analysis-a-wannacry-sample-found-in-the-wild/

(visited on 26/06/20)

https://blog.kartone.ninja/2019/05/23/malware-analysis-a-wannacry-sample-found-in-the-wild/

Chapter 3

Dragonfly

Dragonfly is a tool that merges together the concepts of sandbox and em-

ulation. Built over Qiling, its goal is to detect if a particular sample is a

malware or is safe to execute.

Inspired by YARA, the detection is done through rules that encode a ma-

licious behaviour into a signature. Thanks to the emulation, it’s possible,

for example, to verify the goodness of a Portable Executable file from a Unix

machine, a Macho executable from a Windows computer, and so on. With

Qiling’s power, the rules can be deep and precise as one wishes: it’s possible

to create signatures using strings, systemcalls or Windows API. It is possible

to set watch points at any address, check if a Dll has been loaded or not, or

if a Windows registry has been accessed.

Moreover, Dragonfly rules are matched during the emulation: signatures

have the possibility to execute custom made functions, actions, when a match

is found, empowering the rules to the next level.

Qiling, before this project, was designed to be only an emulation frame-

work and the malware analysis was out of its scope. For this reason, a good

part of the project was to design and implement the necessary changes inside

Qiling to have enough expressive power, allowing the creation of Dragonfly.

25

26 3. Dragonfly

3.1 Architecture

Figure 3.1: Dragonfly’s class diagram

The architecture of Dragonfly is quite simple: everything was designed

and built around Qiling. Figure 3.1 describes how each class is connected

to the others. It’s understandable that the fulcrum of Dragonfly is the Core

class: its main task is to run the emulation of the sample, using Qiling as a

library.

It’s possible to split the diagram in two parts: the left side, composed of

3.1 Architecture 27

Report Manager, Report and Function Report have the task to retrieve

and store information about what happened during the emulation: which

systemcall or Windows API has been called, which registry has been ac-

cessed, strings used and so on. In this way it is possible to standardize the

information that Qiling has split inside many classes.

28 3. Dragonfly

Figure 3.2: Dragonfly’s rule implementation

3.2 Qiling for malware analysis 29

The right part instead has, as its fulcrum, the Rule class. This object is

made of many Module. The module is an abstract class that is implemented

in seven different way, as figure 3.2 shows. Each module has to implement

the function check(Report report, int clock), where it is tasked to com-

pute if the module matches with the report in input. All the other checks

are done by the abstract class, removing complexity in each implementation,

and allowing the project to scale in case that new modules are created.

A deeper description of how the rules work is presented in section 3.3.

3.2 Qiling for malware analysis

Qiling was not ready to emulate any kind of malwares when Dragonfly

was designed, as already described in section 2.4. But Qiling was not alone

in this issue: there was not any emulator that was able to manage a real

malware and, at the same time, provide enough API and hooks to retrieve

enough information allowing the creation of a tool on top of it.

For this reason, it was decided to help the Qiling community with the devel-

opment of this framework, keeping in mind that the goal was to allow the

emulation of complicated malwares. Since Dragonfly is designed to mainly

work with Windows samples, since the majority of malwares are designed

to work in a Windows environment, it has been decided to focus especially

on the Windows section of Qiling. Three are the main concepts that Qiling

did not have, as already described in 2.4, and each following section tries to

describe how each issue was solved.

3.2.1 API

There was an enormous lack of Windows API implemented inside Qiling.

This absence was justified by the small developers team: they had to focus

their energies in others, more important, issues, like manage multithreading

and make every different OS work, having the same foundations.

30 3. Dragonfly

For that reason, at the beginning, the work done on Qiling was focused on

implementing enough API to be able to execute malwares, and on learn-

ing how Qiling is designed and how it was possible to contribute in more

meaningful ways. Moreover, since malwares are infamously known for using

deprecated functions, with strong side effects, and even undocumented ones,

this development took more time than anticipated.

At the time of writing, it is possible to claim that 40%-45% of kernel32.dll is

implemented, and many other Dlls are partially reproduced inside Qiling.

3.2.2 Profiles

The first profile created was made for Windows in the early stage of the

Qiling upgrade.

Now, profiles are one of the many features that the framework is proud to

offer to its users. The concept is nothing more than a configuration file. It

stores every information that the emulation may use, for example, the start-

ing address of the stack, the address of where sample is loaded in memory or

where each Dll should be loaded and so on.

But the profile can store much more than emulation variables: the config-

uration of each entire operating system is saved in this way. It is possible

to describe which version of Windows should be emulated, its username and

computer name, the machine IP address, and with which permission the sam-

ple should be executed. Every hardware specification that Qiling currently

supports, like the number of processors or the drives and disks connected to

the host, are set through the profile.

Every single of these variables can be easily replaced, added or removed, mak-

ing possible to emulate the same sample in many, different, environments, as

the situation requires.

From this configuration file, it is even possible to replace or add new Win-

dows registry entries: the main goal was to give to the users an easy, quick

and powerful way to manipulate the host environment as they please.

3.2 Qiling for malware analysis 31

This upgrade solves the most important issue of the sandbox: it is now

easy to change the environment and it is not needed to install and configure

an entire OS.

The following snippet is an example of Windows profile that was made.

1 [OS64]

2 heap_address = 0x500000000

3 heap_size = 0x5000000

4 stack_address = 0x7ffffffde000

5 stack_size = 0x40000

6 image_address = 0x400000

7 dll_address = 0x7ffff0000000

8 entry_point = 0x140000000

9 [OS32]

10 heap_address = 0x5000000

11 heap_size = 0x5000000

12 stack_address = 0xfffdd000

13 stack_size = 0x21000

14 image_address = 0x400000

15 dll_address = 0x10000000

16 entry_point = 0x40000

17 [SHELLCODER]

18 # ram_size 0xa00000 is 10MB

19 ram_size = 0xa00000

20 entry_point = 0x1000000

21 [KERNEL]

22 pid = 1996

23 parent_pid = 0

24 shell_pid = 10

25 [LOG]

26 # log directory output

27 # usage: dir = qlog

28 dir =

29 # split log file, use with multithread

30 split = False

31 [MISC]

32 # append string into different logs

32 3. Dragonfly

33 # maily for multiple times Ql run with one file

34 # usage: append = test1

35 append =

36 automatize_input = False

37 [SYSTEM]

38 # Major Minor ProductType

39 majorVersion = 10

40 minorVersion = 0

41 productType = 1

42 language = 1093

43 VER_SERVICEPACKMAJOR = 0

44 computername = qilingpc

45 permission = root

46 [PROCESSES]

47 # process active in our env -> pid

48 csrss . exe = 1239

49 [USER]

50 username = Qiling

51 language = 1093

52 [PATH]

53 systemdrive = C :\
54 windir = Windows\
55 [REGISTRY]

56 registry_diff = registry_diff . json

57 [HARDWARE]

58 number_processors = 5

59 [VOLUME]

60 name = Volume1

61 serial_number = 3224010732

62 type = NTFS

63 sectors_per_cluster = 10

64 bytes_per_sector = 512

65 number_of_free_clusters = 12345

66 number_of_clusters = 65536

67 [NETWORK]

68 dns_response_ip = 10 . 2 0 . 3 0 . 4 0

3.2 Qiling for malware analysis 33

3.2.3 Storing information

Qiling is a framework, but to learn about what happened during the emu-

lation, API called, registries accessed, files created, it was necessary to parse

its output file. This was a big issue: a framework must provide every infor-

mation about its internal state to its users, using the object itself.

For this reason, it was developed a way to store every information that can

be useful to an analyst inside the Qiling class: every string that has been

used, read, or written in any part of the the memory; each systemcall called

with its own parameters, address, and return value; the name of every Dll

loaded and every registry that has been accessed.

3.2.4 Results

After these upgrades, it was possible to carry out a batch emulation with

Qiling : 100 malwares have been emulated, unfortunately all Portable Ex-

ecutable files and all retrieved from a unclassified data set, demonstrating

how Qiling behaviour improved from what was described in section 2.5.

34 3. Dragonfly

Figure 3.3: Number of Win-

dows API called

Figure 3.4: Number of unique

Windows API called

Figure 3.3 represents the total number of Windows API that a sample

called during the emulation. The numbers sometimes are really high, even

after having considered the low number of unique API that figure 3.4 shows.

This happens because Qiling has to emulate the memory management too,

done through API and normally transparent to the programmer. Every time

the sample creates a variable, for Qiling and the operating system, is in

reality just allocating memory. In reality is calling a kernel API that will

manage the heap allocation, increasing exponentially the total numbers of

calls

Figure 3.4 shows the numbers of unique Windows API that each sample

calls: the values are statistically too low to had an entire execution of a mal-

ware, since a real binary normally ends its execution after an average of 100

unique systemcall, while the mean value of the samples analysed is 25. More-

over, a high number of samples does not even start their emulation, and this is

3.3 Rules 35

caused mainly by the fact that Qiling does not support .NET executables yet.

Figure 3.5: Number of samples that crashed during the emulation

For last, figure 3.5 describes how many samples crashed during the em-

ulation. The numbers seems not very satisfying, but it is important to re-

member that it is not necessary to emulate everything. If the emulation can

last enough to understand the sample behaviour, Qiling has correctly done

its work, even if the emulation crashes.

.

3.3 Rules

The rules are the only way to use Dragonfly to identify if the sample

analysed is a malware . This idea was used for the first time with the YARA

project, that provides a rule-based approach to create descriptions of mal-

ware families, based on textual or binary patterns.

36 3. Dragonfly

Why Dragonfly doesn’t support YARA? Why was necessary to create another

way to create rules? These are probably the questions that comes through

the reader mind. The answer is, quite simple to grasp: YARA is not powerful

enough.

Thanks to the emulation, people can create deeper and more precise rules:

it is possible to check if a sample tries to access, in reading or writing

mode, an interesting structure saved somewhere in memory, for example

the ProcessEnvironmentBlock (PEB)1 or the ThreadEnvironmentBlock

(TEB)2 inside a Windows environment. What YARA does, is just match the

regex expressions that the user defines with the static sample, and checks

if are present inside the binary. What Dragonfly tries to accomplish is to

categorize every type of information that can be used to identify a malware.

Moreover, Dragonfly can be used to call user defined functions, or actions,

as they are called inside this project: to have an unique and consistent syn-

tax, it was decided to create another way to write and use rules, distancing

Dragonfly from YARA.

An action is an user defined function that is called when a rule matches.

This concept is very powerful: it is possible to create an action that dumps

the entire sample memory, an action that can retrieve values from the reg-

istries or memory structures, an action for anything that the user may be

interested in. The user defined action has two parameters, the Qiling object,

allowing the full control of the emulation from inside the function, and a dic-

tionary, containing the variables and their respective values that were found

during the emulation.

Inside a Dragonfly rule there are keywords that the user must use. Those

that have the symbol * after the keywords means that are mandatory and

must have an assigned value.

1https://en.wikipedia.org/wiki/Process_Environment_Block (visited on

27/05/20)
2https://en.wikipedia.org/wiki/Win32_Thread_Information_Block (visited on

27/06/20)

https://en.wikipedia.org/wiki/Process_Environment_Block
https://en.wikipedia.org/wiki/Win32_Thread_Information_Block

3.3 Rules 37

• Name* unique identifier of the rule.

• Meta a dictionary containing information about the author, the de-

scription of the rule, and every information that may be interesting.

• Modules* a list of modules, each one represented as a dictionary. More

information about every module available inside Dragonfly in section

3.3.1.

• Weight* every rule has a weight indicating how much the signature

reflects a malware behaviour.

• Condition* it can be Any or All, indicating if the rule should trigger

when just one of the module matches, or if every module matches.

• Order a Boolean value that describes if the modules should match in

order or not.

• Actions a list of functions names that will be called when the rule is

matched.

• Variables a list of variables that are possible to use inside the modules.

Inside appendix A.0.1 it is possible to retrieve the rules that were made as

examples, to better understand these concepts.

3.3.1 Modules

Every rule is made by at least one module, each one is independent from

the other and the functionalities that it exports are provided via keywords.

When writing a rule, the module is nothing more than a dictionary, where

the value of the key module describes which type of module made inside

Dragonfly the user wants to use.

The following sections describe the functionality of the modules present in

Dragonfly, their keywords and their use.

38 3. Dragonfly

Module - WatchPoint

A watch point is a specific address that needs to be monitored. A use case

is malwares that try to retrieve the value of the parameter DebuggingFlags

inside the PEB to understand if they are debugged or not.

Since the address of these types of structures can not be known before start-

ing the emulation, the WatchPoint module provides the feature of directly

inserting the name of the structure that should be monitored and, if neces-

sary, an offset from its base address. Another example of structure that can

be interesting to monitor is the TEB.

The following keys, and consequently, the following features are provided:

• Address* the address that, when accessed, triggers the module.

• Structure* the structure that should be checked. It is used to retrieve

dynamically the address, since it is not possible to know its address

statically.

• Offset an integer indicating the distance from the address of the se-

lected structure.

• Size an integer indicating the range of address to monitor from the

base address.

• Type* it can be Write or Read, indicating if the module should match

when the address (or range of addresses) is accessed in write or read

mode.

The key offset can be used only if the key structure has been used too, while

it is not possible to have both the keys structure and address.

Module - Registry

It is possible to use this module only if the binary analysed is a Portable

Executable for an obvious reason: only Windows implements the concept of

3.3 Rules 39

a system registry. A Macho or Unix file will not check these values because

their operating system does not support it.

The Registry module matches when a specific registry key has been accessed

and, if the user desires more precision, when the value specified has been

queried.

A use case is malwares that try to use registries to identify if they are ex-

ecuted in a controlled environment, like a sandbox: for example the key

SOFTWARE\VMware, Inc.\VMware Tools is present only if Vmware is in-

stalled.

Another example are malwares that will add themselves in the key

HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnce
to execute their malicious payload at every boot of the host.

The following keys, and consequently, the following features are provided:

• Key* the registry key that, if accessed, matches with the module.

• Value Name a string describes which of the many values contained

inside a key must be queried to match with the module.

Module - Api

The common way to understand the behaviour of a sample, is through

its APIs calls: they can give powerful insights to the analyst that is able to

correctly read them and understand what is going on.

A simple use case: if the sample is calling the Windows API CreateToolhelp32Snapshot

with parameter dwFlags the value TH32CS SNAPPROCESS, it means that it is

trying to enumerate every process in the entire system. There are very few

legit motivation for doing so.

For this reason the module Api was created, leaving to its users the power

of specifying with high granularity and precision when the module should

match, allowing even to check the parameters and the return value of the

API called.

40 3. Dragonfly

• Syscall* which API should be matched against.

• Return Value an array containing the possible return values that

make the module match.

• Params parameters of the API as a dictionary. Each key is the name

of the parameter and each value is an array containing one or more

possible values that will make the module match.

Module - Dll

Another module that was designed to work against a Portable Executable

file, since only Windows use the concept of Dll.

A use case are malwares that tries to learn more about the environment,

checking if a specific Dll was loaded or not: this happens because some

debugger, virtual machine and sandboxes will require the installation of par-

ticular Dlls. If the sample will try to load these, it means that is trying to

understand if some debug tools are present in the host machine.

• Dll* name of the Dll that must be loaded to match the module

Module - SubRule

This module has, as its goal, the increase of expressive power of rules.

Creating a rule that, has as one of its module, the SubRule module, allows

to concatenate rules together and rule reusability.

• Rule* name of rule that must have matched.

Module - String

Another technique that can be used to identify and categorize malwares is

through hard-coded and unique strings that are present in the file or, during

the execution, in their memory.

The module String has the goal to match when a particular string, or even

raw bytes, are found. It is possible to search the entire memory, or the static

3.3 Rules 41

file, or to use the strings that are used as parameters during the calls of APIs

or systemcalls.

• Input* the string, or an array of bytes, that must be present in the

sample.

• Case Boolean value, if true the case is relevant, otherwise it is not.

• Memory Boolean value, if true the entire memory is relevant, other-

wise it is not.

Module - Mnemonic

This module is a surplus, meaning that its scope is covered by the String

module: a mnemonic in fact is the human way to represent opcodes, that are

nothing more than simply bytes.

The module Mnemonic was made to find specific opcodes inside the sample,

with a focus on the possibility that malware will use shellcodes to obfuscate

their behaviour.

The mnemonics can be given in whatever instruction set the maker prefers:

thanks to keystone-engine3 they will be translated to the instruction set

that the target was made for.

• Instructions* an array of mnemonic instructions that if executed, will

make the module match.

• Static Boolean value, if true the module matches if the instructions

are present, if false only if are executed.

3.3.2 Variables

How to use variables inside the rules, and why this feature even exists can

not be very immediate: the usage is made of two parts, firstly it is necessary

to declare the variables that are going to be used inside the rule, then it is

3https://www.keystone-engine.org/ (visited on 29/06/20)

https://www.keystone-engine.org/

42 3. Dragonfly

possible to use them inside every module that the rule is made of.

When a module has a variable as one of its parameter, the module matches

if all other constraints are respected. Once a match is found, the value of

the parameter is assigned to the variable, and the emulation continues. The

rule in its entirety matches if, every module that it is made of, that shares

the same variables, has at least one value in common.

3.3.3 Json-schema

The reader can understand that it will be easy to insert a wrong type in

one of the many parameters that the modules support. A wrong type will

possibly make Dragonfly crash or, even worse, have an unexpected behaviour.

To limit this issue it has been decided to use json-schema4, allowing to specify

the type of each parameter in each module. The typing must be done by the

module maker, defining a schema if new modules are added to Dragonfly,

and two are the main benefits of this library:

• The module must behave consistently only with the types defined in

its schema.

• Dragonfly will not have an unexpected behaviour in case of a wrong

type.

• A Dragonfly user will have a clear exception, where the motivations of

the typing error is reported.

Each schema that has been made for each module is provided in appendix

B.

3.4 Usage

Dragonfly was born to be used as a Python package. This means that

its users can simply import Dragonfly inside its own project, instantiate the

4https://python-jsonschema.readthedocs.io/en/stable/ (visited on 29/06/20)

https://python-jsonschema.readthedocs.io/en/stable/

3.4 Usage 43

object, and run the analysis with the method run(). It is necessary to discuss

how it is possible to configure the Dragonfly object and how many types of

analysis exists and how they work.

Three are the possible levels that can be set when the run() function is

called:

• Level 0 will emulate the sample and a single analysis is done at the

end of the emulation. It is the faster analysis and it does not support

the use of actions.

• Level 1 will create a report at every step and each module is matched

with the new section. When an entire rule matches, its actions are

called sequentially. A step is made every time a Windows API, or

systemcalls, is called. It is possible to not increase the step, black

listing specific functions.

• Level 2 will make a level 1 analysis, plus it will try to defeat anti-debug

techniques that a sample can adopt. This level is still in development,

and more information are provided in section 4.2.3.

The run() method will return a JSON object, if the parameter json is set

to True. The user can even retrieve every bit of information about the rules

that matched, setting the parameter verbose to True, otherwise a Boolean

value, describing if Dragonfly thinks that the sample is a malware or not, is

returned.

The Dragonfly object is customizable in many ways:

• Every parameter that Qiling requires during the object creation, is set

at the creation of Dragonfly

• Hooks and Patches, to modify directly the sample behaviour

• ignore syscalls a list of systemcalls, or Windows API that, when

called, will not produce a partial report to analyse.

44 3. Dragonfly

• max malice an integer describing the threshold after which the sample

is considered a malware. Each rule matched will increase the malice of

the sample.

• rules path the path of the rules directory.

3.4.1 Flow

Figure 3.6: Dragonfly’s analysis flow

3.4 Usage 45

Figure 3.7: Dragonfly’s analysis flow

Figure 3.6 and figure 3.7 show how the analysis of a Windows sample

inside Dragonfly is really done, which components are made and how they

communicate with each other. The figures describe an analysis of level 1:

the difference with a level 0 analysis is that the lower level does not support

actions and rules are matched at the end of the entire emulation, not at every

step.

46 3. Dragonfly

Before starting the emulation, the rules are loaded inside Dragonfly and the

Qiling setup is started, applying hooks and patches that the user could have

set and loading the libraries that the sample and the Dlls that it requires,

into in its own memory.

After that Dragonfly will hook every Windows API on exit, meaning that a

custom function will be called after the execution of a Windows API. The

custom function will create the report and find rules that matches. It is

possible to ignore some API using the parameter ignore syscalls. The

partial report, contains every bit of information that Dragonfly will use to

find modules that match. When every module of a rule is matched, the rule

itself matches, and their actions are executed, handing over the execution to

the user.

At the end end, an output is generated, containing the analysis results.

Chapter 4

Results and Future Work

4.1 Testing

Dragonfly percentage to be able to correctly detect if the sample analysed

is a malware, requires the maximum number of information at its disposal.

An issue appears when its core, Qiling, is not able to emulate the sample.

The problems present in the framework were explained in section 2.4.

Having said that, two samples have been deeply analysed, using before

a manual approach, and then with Dragonfly: Gandcrab1 and Al-Khaser2.

The former is a famous ransomware, the latter is a proof of concept malware

that aims to stress an anti-malware system, checking if the sandbox is forti-

fied and stealthy enough to bypass the checks that it makes.

These two samples are interesting because, Al-Khaser can be used to trans-

late its checks in Dragonfly rules, while Gandcrab can be used to create new

rules, to understand if the rules implemented are enough to detect a malware,

and which artifacts it is possible to be extracted.

1https://www.vmray.com/cyber-security-blog/gandcrab-ransomware-evolution-analysis

(visited on 29/06/20)
2https://github.com/LordNoteworthy/al-khaser (visited on 29/06/20)

47

https://www.vmray.com/cyber-security-blog/gandcrab-ransomware-evolution-analysis
https://github.com/LordNoteworthy/al-khaser

48 4. Results and Future Work

4.1.1 Al-Khaser

Al-Khaser is a proof of concept malware application with good intentions

that aims to stress an anti-malware system. It performs many common

malware tricks with the goal of seeing if the system stays under the radar.

It offers many different features:

• Anti-debugging attacks

• Anti-Dumping

• Timing Attacks

• Human Interaction

• Anti-VM

• Anti-Disassembly

Only the anti-debugging attacks have been encoded as rules, of the many

possible tricks that Al-Khaser implements: since these checks can be very pre-

cise, utilizing not common Windows structures and API with uncommon side

effects, Qiling still has issues to emulate the entirety of Al-Khaser. Among

these checks, half are simply done through Windows APIs, and thanks to the

module Api, the encoding in rules is trivial.

The PEB tricks are more interesting: these can be hard to be detected

with a naive sandbox, or with a manual analysis. The WatchPoint module

comes to help in this scenario, allowing to watch the entire structure and

learn which of the many information contained in the PEB, the sample tries

to query.

Inside the appendix A.0.3, some of the rules, that were made thanks to the

study of Al-Khaser, are described.

4.1 Testing 49

4.1.2 Gandcrab

Gandcrab has been studied a lot for this project and many rules have been

made thanks to the knowledge obtained through this ransomware: appendix

A.0.2 contains rules, that were made to recognize if a sample belongs to the

Gandcrab family, and also more general ones, that can be used to detect

malware behaviours.

Three are the main paths of the Gandcrab execution:

• Encrypt the file system if it was run with administrator privileges.

• Launch itself again with more privilege if it was run with user privileges.

• Stop the execution and cancel itself from the system if some system

constraints are not satisfied.

In any case, the first check that Gandcrab does is using the Windows API

CreateToolhelp32Snapshot to enumerate every process inside the host and

strcmpiW to compare the name of the process with an hard-coded list. If a

match is found, it will try to kill the process. This technique can be easily

detected thanks to Dragonfly, using, as a rule, two API modules, checking

first if CreateToolhelp32Snapshot is called, then strcmpiW adding, as pos-

sible values of the comparisons, common processes that are present inside

an host. Moreover, it is necessary to set the keywords condition to All and

order to True.

Gandcrab at this point will try to gain more knowledge about the system,

using VerifyVersionInfoW and GetTokenInformation to understand which

Windows version is the user using, and with which privilege Gandcrab has

been executed. The first Windows API has, as one of its parameter, the ad-

dress of a OsVersionInfoW3 structure. This object contains the information

about the operating system asked by the sample, and that must be compared

3https://docs.microsoft.com/en-us/windows/win32/api/winnt/

ns-winnt-osversioninfoexa (visited on 30/06/20)

https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-osversioninfoexa
https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-osversioninfoexa

50 4. Results and Future Work

with what the host has installed. Thanks to a simple action, as shown in the

third rule in the appendix, it is possible to retrieve the entire structure from

the memory.

If the permissions are not sufficient to execute its real payload, meaning it

does not have administrator privileges, Gandcrab will call the Windows API

ShellExecute, with the parameter verb having value runas, and file to

run "C:\Windows\System32\wmic.exe", to which it passes the parameter

"process call create ’cmd /c start <GandcrabPath>’". This trick is

used to execute itself again, earning the administrator privilege. Obviously

the API ShellExecute should be monitored very closely.

Another operation that Gandcrab does is checking if the keyboard layout

or the user language in the host, is Russian. If this is the case, the ransomware

will deactivate itself using the API ShellExecute. It is possible to create a

rule that matches this behaviour, as showed in the second rule of the appendix

A.0.2, using the module Registry with key HKEY CURRENT USER\Keyboard
Layout\Preload. It is possible to try different keyboard layout modifying

the input profile, as section 3.2.2 described.

4.2 Future Developments

Both Dragonfly, and its core, Qiling, should keep improving their be-

haviour, the first to detect malwares, the latter to emulate them. Three are

the main points that have been identified that need to be polished, and the

following sections will try to explain and give a solution to each issue.

4.2.1 Rules

An aspect that in this work that was not considered enough, is the cre-

ation of new rules. Gandcrab and Al-Khaser have been used, yes, but it is

not enough to have a product that will correctly identify every malware that

4.2 Future Developments 51

analyse.

The bare minimum is the translation of YARA rules to Dragonfly rules,

adding, where it is necessary, actions to use Dragonfly as the best of its ca-

pabilities.

A reminder that make rules is a business, and companies sell and distribute

them, making it a job that needs experience, a deep knowledge of malware

behaviours and reverse engineering abilities.

4.2.2 Modules

Dragonfly architecture was designed to support the creation of new mod-

ules, without having to learn the entire project. If it is found that a new

module is necessary to better describe a malware behaviour, its implemen-

tation should be easy.

The modules that Dragonfly has, are enough to describe the majority of be-

haviours, but they still need to be polished, or modified, as the knowledge of

how malware works increase.

An example of a module that is not implemented, because Qiling can’t sup-

port it yet, is the Connectivity module, that will identify the connections

with the command center.

4.2.3 Anti anti-evasion

The main concept that Dragonfly was not able implement is the analy-

sis level 2, or the anti anti-evasion level. This was though as an advanced

feature that should be used to try to defeat evasion techniques implemented

by malwares. When a malware detects that is in a controlled environment,

it will change its behaviour, or simply will stop its execution, making its

analysis quite useless. To detect when this happens, the idea was to use

Symbolic execution4, understanding the check that the sample implements,

and allowing to bypassing it changing the correct variable in the operating

4https://en.wikipedia.org/wiki/Symbolic_execution (visited on 30/06/20)

https://en.wikipedia.org/wiki/Symbolic_execution

52 4. Results and Future Work

system environment.

Conclusion

Dragonfly is a tool that merges together the concepts of dynamic analysis,

emulation and sandbox, increasing the knowledge of the sample behaviour.

Thanks to the emulation it is possible to have control of the emulation and

the entire operating system environment, making easy to customize and mod-

ify it.

Dragonfly is able to recognize and distinguish malwares through rules.

Rules, in turn, are made by modules. Differently from YARA, that simply

matches the user regex with the file selected, Dragonfly modules are designed

to have a limited scope and are matched against a precise type of information.

The module Registry is used to verify the accesses of the system registry, Api

with systemcalls and Windows API, Strings with the strings that are present

inside or used by the sample.

The emulation core is Qiling, and upgrades were necessary to allow the

emulation of malwares: the first profile was made in this work, allowing to

easily customize the operating system environment and even variables used

during the emulation itself. More Windows API have been implemented to

a considerable extent, and moreover it is not necessary to parse the log file

anymore to retrieve information about the emulation.

Two samples in particular have been used to build and test Dragonfly

rules: Gandcrab, and Al-Khaser. Thanks to them, it was possible to see how

53

54 CONCLUSION

Dragonfly’s core, Qiling, behaves against real world examples, and it was

possible to create rules that synthesize the behaviour of the ransomware and

the checks of Al-Khaser.

Having said that, Dragonfly still requires some polish, many more signa-

tures must be made, and more modules should be made. Its core, Qiling, has

to improve its performance against complicated samples, allowing Dragonfly

to learn more about the target analysed.

Appendix A

Rules

A.0.1 Examples� �
1 {”name” : ”Example − Use o f modules ” ,

2 ”meta” : {
3 ” autho r ” : ”Oss igeno ” ,

4 ” d e s c r i p t i o n ” : ” D i f f e r e n t modules can be used t o g e t h e r ”

5 }
6 ”modules ” : [

7 {” s y s c a l l ” : ” V i r t u a l A l l o c ” ,

8 ”params : {
9 ” l pAdd r e s s ” : [” add r e s s]

10 }
11 } ,
12 {” s t r u c t u r e ” : ”PEB” ,

13 ” o f f s e t ” : 2

14 } ,
15 {” r e g i s t r y ” : ”HKEY CURRENT USER\\Keyboard Layout \\ Pre l oad ”

,

16 ” va lue name ” : ”1”

17 }
18] ,

19 ”we ight ” : 5}� �

55

56 CONCLUSION

� �
1 {”name” : ”Example − Order can be impor tan t ” ,

2 ”meta” : {
3 ” autho r ” : ”Oss igeno ” ,

4 ” d e s c r i p t i o n ” : ”Sometimes the o r d e r o f when the modules i s

matched i s impo r tan t ”

5 }
6 ”modules ” : [

7 {” s y s c a l l ” : ” V i r t u a l A l l o c ” ,

8 ”params : {
9 ” l pAdd r e s s ” : [” add r e s s]

10 }
11 } ,
12 {” s t r u c t u r e ” : ”PEB” ,

13 ” o f f s e t ” : 2

14 } ,
15 {” r e g i s t r y ” : ”HKEY CURRENT USER\\Keyboard Layout \\ Pre l oad ”

,

16 ” va lue name ” : ”1”

17 }
18] ,

19 ”we ight ” : 5 ,

20 ” c o n d i t i o n ” : ” A l l ” ,

21 ” o r d e r ” : ”True”

22 }� �� �
1 {”name” : ”Example − Va r i a b l e s ” ,

2 ”meta” : {
3 ” autho r ” : ”Oss igeno ” ,

4 ” d e s c r i p t i o n ” : ”Here you can unde r s tand how to use

v a r i a b l e s f o r your own r u l e s ”

5 } ,
6 ” v a r i a b l e s : [” add r e s s ”]

7 ”modules ” : [

8 {” s y s c a l l ” : ” V i r t u a l A l l o c ” ,

9 ”params : {
10 ” l pAdd r e s s ” : [” add r e s s]

11 }

A Rules 57

12 } ,
13 {” s y s c a l l ” : ”memcpy” ,

14 ”params : {
15 ” de s t ” : [” add r e s s]

16 }
17 } ,
18 {” s y s c a l l ” : ” V i r t u a l P r o t e c t ” ,

19 ”params : {
20 ” l pAdd r e s s ” : [” add r e s s]

21 }
22 }
23] ,

24 ”we ight ” : 10}� �
A.0.2 Gandcrab

Keyboard Layout and User Language� �
1 {”name” : ”Gandgrab − keyboard l a y o u t and u s e r l anguage ” ,

2 ”meta” : {
3 ” autho r ” : ”Oss igeno ” ,

4 ” d e s c r i p t i o n ” : ”The sample t r i e d to check the keyboard

l a y o u t ”

5 } , ,
6 ”modules ” : [

7 {
8 ”module” : ” R e g i s t r y ” ,

9 ” key ” : ”HKEY CURRENT USER\\Keyboard Layout \\ Pre l oad ” ,

10 ” va lue name ” : ”1”

11 } ,
12 {
13 ”module” : ”Api ” ,

14 ” s y s c a l l ” : ” GetUse rDe fau l tU ILanguage ”

15 } ,
16 {
17 ”module” : ”Api ” ,

18 ” s y s c a l l ” : ” GetSystemDefau l tUILanguage ”

58 CONCLUSION

19 }
20] ,

21 ”we ight ” : 3 ,

22 ” c o n d i t i o n ” : ”Any”}� �
Antivirus Process� �

1 {
2 ”name” : ”Gandgrab − p r o c e s s e s ” ,

3 ”meta” : {
4 ” autho r ” : ”Oss igeno ” ,

5 ” d e s c r i p t i o n ” : ”The malware t r i e d to ga i n knowledge about

o t h e r p r o c e s s e s , i n p a r t i c u l a r i s check i ng i f a n t i v i r u s

a r e p r e s e n t ”

6 } ,
7 ”modules ” : [

8 {
9 ”module” : ”Api ” ,

10 ” s y s c a l l ” : ” C r ea t eToo l h e l p 32 Snapshot ” ,

11 ”params” : {
12 ” dwFlags ” : [2]

13 }
14 } ,
15 {
16 ”module” : ”Api ” ,

17 ” s y s c a l l ” : ” l s t rcmpiW” ,

18 ”params” : {
19 ” l p S t r i n g 1” : [” s q l b r ow s e r . exe ”]

20 }
21 }
22] ,

23 ”we ight ” : 8 ,

24 ” c o n d i t i o n ” : ” A l l ” ,

25 ” o r d e r ” : t r u e

26 }� �

A Rules 59

Dump Os Version� �
1 {”name” : ”Gandgrab − OS” ,

2 ”meta” : {
3 ” autho r ” : ”Oss igeno ” ,

4 ” d e s c r i p t i o n ” : ”The malware t r i e d to use V e r i f y V e r s i o n to

check which Windows v e r s i o n i s r unn ing ”

5 } ,
6 ” v a r i a b l e s ” : [” addr ”] ,

7 ”modules ” : [

8 {
9 ”module” : ”Api ” ,

10 ” s y s c a l l ” : ” Ve r i f yVe r s i o n I n f oW ” ,

11 ”params” : {
12 ” l pV e r s i o n I n f o rma t i o n ” : [” addr ”]

13 }
14 } ,
15 {
16 ”module” : ”Api ” ,

17 ” s y s c a l l ” : ” GetToken In fo rmat ion ” ,

18 ”params” : {
19 ” Token I n f o rma t i onC l a s s ” : [25]

20 }
21 }
22] ,

23 ”we ight ” : 5 ,

24 ” c o n d i t i o n ” : ”Any” ,

25 ” a c t i o n s ” : [”dumpOs”] }� �� �
1 def old_dumpOs (ql , variables) :

2 syscall = ql . os . syscalls ["VerifyVersionInfoW"] [- 1]

3 addr = syscall ["params"] ["lpVersionInformation"]

4 print (hex (addr))

5 osVersion = OsVersionInfoExA (ql)

6 osVersion . read (addr)

7 maj = osVersion . major [0]

8 minv = osVersion . minor [0]

9 prod = osVersion . product [0]

10 print (SYSTEMS_VERSION . get (str (maj) + str (minv) + str (prod)))� �

60 CONCLUSION

59

A.0.3 Al-khaser

Peb Checks� �
1 {
2 ”name” : ”Peb checks ” ,

3 ”meta” : {
4 ” autho r ” : ”Oss igeno ” ,

5 ” d e s c r i p t i o n ” : ” I n s i d e the PEB th e r e a r e some s p e c i f i c

a d d r e s s e s t ha t c o n t a i n s i n f o rma t i o n about the debugg ing

env i ronment ”

6 }
7 ”modules ” : [

8 {
9 ”module” : ”WatchPoint ” ,

10 ” s t r u c t u r e ” : ”PEB” ,

11 ” o f f s e t ” : 2 ,

12 ” type ” : ”Read”

13 } ,
14 {
15 ”module” : ”WatchPoint ” ,

16 ” s t r u c t u r e ” : ”PEB” ,

17 ” o f f s e t ” : 24 ,

18 ” type ” : ”Read”

19 }
20] ,

21 ”we ight ” : 6 ,

22 ” c o n d i t i o n ” : ”Any”

23 }� �

A Rules 61

Debugging API� �
1 { ”name” : ”Debugging API” ,

2 ”meta” : {
3 ” autho r ” : ”Oss igeno ” ,

4 ” d e s c r i p t i o n ” : ”The sample t r i e d to ga i n i n f o rma t i o n the

env i ronment , qu e r y i n g one debugger API”

5 } ,
6 ”modules ” : [

7 {” s y s c a l l ” : ” I sDebugge rP r e s en t ”} ,
8 {” s y s c a l l ” : ”CheckRemoteDebuggerPresent ”} ,
9 {” s y s c a l l ” : ”Wudf I sUserDebuggerPresent ”} ,

10 {” s y s c a l l ” : ”Wudf IsAnyDebuggerPresent ”} ,
11 {” s y s c a l l ” : ”Wudf I sKerne lDebugge rPresent ”} ,
12 {” s y s c a l l ” : ” DebugAct i veProces s ”}
13] ,

14 ”we ight ” : 4}� �

62 A Rules

Appendix B

Json-Schema

Rule� �
1 { ” type ” : ” o b j e c t ” ,

2 ” p r o p e r t i e s ” : {
3 ”name” : {” type ” : ” s t r i n g ”} ,
4 ”meta” : {” type ” : ” o b j e c t ”} ,
5 ” c o n d i t i o n ” : {” type ” : ” s t r i n g ” , ”enum” : [”Any” , ” A l l ”] } ,
6 ” o r d e r ” : {” type ” : ” boo l ean ”} ,
7 ”we ight ” : {” type ” : ” i n t e g e r ” , ” exc lus iveMin imum” : 0} ,
8 ” v a r i a b l e s ” : {” type ” : ” a r r a y ”} ,
9 ”modules ” : {

10 ” type ” : ” a r r a y ” ,

11 ” i t ems ” : {
12 ” type ” : ” o b j e c t ” ,

13 ” p r o p e r t i e s ” : {”module” : {” type ” : ” s t r i n g ” , ”

enum” : modules names }} ,
14 ” r e q u i r e d ” : [”module”] ,

15 } ,
16 ” un ique I t ems ” : True ,

17 ”minItems ” : 1 ,

18 } ,
19 ” a c t i o n s ” : {
20 ” type ” : ” a r r a y ” ,

21 ” i t ems ” : {” type ” : ” s t r i n g ”} ,
22 ” un ique I t ems ” : True ,

63

64 B Rules

23 } ,
24 } ,
25 ” r e q u i r e d ” : [”name” , ” c o n d i t i o n ” , ” we ight ” , ”modules ”] ,

26 ” a d d i t i o n a l P r o p e r t i e s ” : F a l s e ,

27 }� �
Api� �

1 {” type ” : ” o b j e c t ” ,

2 ” p r o p e r t i e s ” : {
3 ”module” : {” type ” : ” s t r i n g ”} ,
4 ”params” : {” type ” : ” o b j e c t ” ,

5 ” p a t t e r n P r o p r i e t i e s ” : {
6 ”∗” : {
7 ” type ” : ” a r r a y ” ,

8 ” i t ems ” : {
9 ” type ” : [” i n t e g e r ” , ” s t r i n g ”]

} ,
10 ” un ique I t ems ” : True

11 }
12 }
13 } ,
14 ” r e t u r n v a l u e ” : {
15 ” type ” : ” a r r a y ” ,

16 ” i t ems ” : {
17 ” type ” : ” i n t e g e r ”

18 } ,
19 ” un ique I t ems ” : True

20 } ,
21 ” s y s c a l l ” : {” type ” : ” s t r i n g ”}
22 } ,
23 ” r e q u i r e d ” : [” s y s c a l l ”] ,

24 ” a d d i t i o n a l P r o p e r t i e s ” : F a l s e }� �

B Json-Schema 65

Dll� �
1 {” type ” : ” o b j e c t ” ,

2 ” p r o p e r t i e s ” : {
3 ”module” : {” type ” : ” s t r i n g ”} ,
4 ” d l l ” : {” type ” : ” s t r i n g ”}
5 } ,
6 ” r e q u i r e d ” : [” d l l ”] ,

7 ” a d d i t i o n a l P r o p e r t i e s ” : F a l s e }� �
String� �

1 {” type ” : ” o b j e c t ” ,

2 ” p r o p e r t i e s ” : {
3 ”module” : {” type ” : ” s t r i n g ”} ,
4 ” s t r i n g ” : {” type ” : ” s t r i n g ”} ,
5 ” ca se ” : {” type ” : ” boo l ean ”}
6 } ,
7 ” r e q u i r e d ” : [” s t r i n g ”] ,

8 ” a d d i t i o n a l P r o p e r t i e s ” : F a l s e }� �
WatchPoint� �

1 {” type ” : ” o b j e c t ” ,

2 ” p r o p e r t i e s ” : {
3 ”module” : {” type ” : ” s t r i n g ”} ,
4 ” s t r u c t u r e ” : {” type ” : ” s t r i n g ” ,

5 ”enum” : [”PEB”] } ,
6 ” o f f s e t ” : {” type ” : ” i n t e g e r ” ,

7 ” exc lus iveMin imum” : 0} ,
8 ” add r e s s ” : {” type ” : ” i n t e g e r ”}
9 } ,

10 ” a d d i t i o n a l P r o p e r t i e s ” : F a l s e ,

11 ”oneOf” : [

12 {” r e q u i r e d ” : [” s t r u c t u r e ”] } ,
13 {” r e q u i r e d ” : [” add r e s s ”] }] }� �

66 B Json-Schema

Registry� �
1 {” type ” : ” o b j e c t ” ,

2 ” p r o p e r t i e s ” : {
3 ”module” : {” type ” : ” s t r i n g ”} ,
4 ” key ” : {” type ” : ” s t r i n g ”} ,
5 ” va lue name ” : {” type ” : ” s t r i n g ”} ,
6 ” s e t ” : {” type ” : ” s t r i n g ”}
7 } ,
8 ” r e q u i r e d ” : [” key ”] ,

9 ” a d d i t i o n a l P r o p e r t i e s ” : F a l s e }� �
SubRule� �

1 {” type ” : ” o b j e c t ” ,

2 ” p r o p e r t i e s ” : {
3 ”module” : {” type ” : ” s t r i n g ”} ,
4 ” s u b r u l e ” : {” type ” : ” s t r i n g ”}
5 } ,
6 ” r e q u i r e d ” : [” s u b r u l e ”] ,

7 ” a d d i t i o n a l P r o p e r t i e s ” : F a l s e }� �

Bibliography

[1] O. P. Samantray, S. N. Tripathy and S. K. Das, ”A study to Under-

stand Malware Behavior through Malware Analysis,” 2019 IEEE In-

ternational Conference on System, Computation, Automation and Net-

working (ICSCAN), Pondicherry, India, 2019, pp. 1-5, doi: 10.1109/IC-

SCAN.2019.8878680.

[2] D. A. Mundie and D. M. Mcintire, ”An Ontology for Malware Analysis,”

2013 International Conference on Availability, Reliability and Security,

Regensburg, 2013, pp. 556-558, doi: 10.1109/ARES.2013.73.

[3] P. Black and J. Opacki, ”Anti-analysis trends in banking malware,”

2016 11th International Conference on Malicious and Unwanted Soft-

ware (MALWARE), Fajardo, 2016, pp. 1-7, doi: 10.1109/MAL-

WARE.2016.7888738.

[4] C. A. B. d. Andrade, C. G. d. Mello and J. C. Duarte, ”Malware Auto-

matic Analysis,” 2013 BRICS Congress on Computational Intelligence

and 11th Brazilian Congress on Computational Intelligence, Ipojuca,

2013, pp. 681-686, doi: 10.1109/BRICS-CCI-CBIC.2013.119.

[5] A. Case, M. Jalalzai, M. Firoz-Ul-Amin, R. Maggio, A. Ali-Gombe, M.

Sun, G. Richard, ”HookTracer: A System for Automated and Accessible

API Hooks Analysis”, Digital Investigation 2019, vol: 29 pp: S104-S112

[6] S. Jamalpur, Y. S. Navya, P. Raja, G. Tagore and G. R. K. Rao,

”Dynamic Malware Analysis Using Cuckoo Sandbox,” 2018 Second

67

68 BIBLIOGRAPHY

International Conference on Inventive Communication and Computa-

tional Technologies (ICICCT), Coimbatore, 2018, pp. 1056-1060, doi:

10.1109/ICICCT.2018.8473346.

[7] C. Greamo and A. Ghosh, ”Sandboxing and Virtualization: Modern

Tools for Combating Malware,” in IEEE Security & Privacy, vol. 9, no.

2, pp. 79-82, March-April 2011, doi: 10.1109/MSP.2011.36.

[8] F. Al Ameiri and K. Salah, ”Evaluation of popular application sandbox-

ing,” 2011 International Conference for Internet Technology and Secured

Transactions, Abu Dhabi, 2011, pp. 358-362.

[9] Lengyel, Tamas & Maresca, Steve & Payne, Bryan & Webster, George

& Vogl, Sebastian & Kiayias, Aggelos, (2014), ”Scalability, Fidelity

and Stealth in the DRAKVUF Dynamic Malware Analysis System”,

10.1145/2664243.2664252.

[10] Cohen, Michael, (2017), ”Scanning memory with Yara”. Digital Inves-

tigation, 10.1016/j.diin.2017.02.005.

[11] Lau Kai Jern & Simone Berni, Building Next-Gen Security Analysis

Tools With Qiling Framework, HITBSecConf, 25 April 2020

Acknowledgements

The first person that I want to thank from the bottom of my heart, is

my girlfriend and thesis reviewer, Teresa. This work would not be possible

if she didn’t waste her time to review and correct every section. Moreover,

she put up with me for three, long, years, supporting my ideas and projects

in this entire time. I can’t really thank her enough.

I want to thank the entire Ulisse team, the Unibo cybersecurity group,

to have welcomed me, two years ago, when I had less than zero knowledge

about this field, and taught me everything that they knew. They made me

passionate about this new world, and I will have a debt forever. A special

thank to Dave and Melis, for having reviewed my thesis with zeal and having

engaged me in interesting discussions on the choices that I made for creat-

ing Dragonfly, pointing to flaws and problems that I would have never found.

A special thank to the Certego team, especially to Matteo e Pietro: the

creation of Dragonfly was done during my internship at Certego, and they

are the minds behind the Dragonfly’s idea in the first place. I have to thank

them to have make me passionate about malware analysis, and I can’t wait

to join officially their team.

At last, thanks to Massimo and Cristina, my parents, to have supported

me in these five years. I would not have been the person that I am now, and

I probably should have appreciate more the work that you have done for me.

70 BIBLIOGRAPHY

Thank you all.

	Introduction
	Overview
	Emulation
	QEMU
	Unicorn Engine
	WSL

	Malware Analysis
	Dynamic Analysis
	Static analysis

	Sandbox
	Cuckoo
	Drakvuf

	Qiling
	Comparisons
	Cuckoo
	Unicorn Engine
	QEMU
	Usercorn
	Binee

	Architecture
	Usage
	Issues
	Results

	Dragonfly
	Architecture
	Qiling for malware analysis
	API
	Profiles
	Storing information
	Results

	Rules
	Modules
	Variables
	Json-schema

	Usage
	Flow

	Results and Future Work
	Testing
	Al-Khaser
	Gandcrab

	Future Developments
	Rules
	Modules
	Anti anti-evasion

	Conclusioni
	Rules
	Examples
	Gandcrab
	Al-khaser

	Json-Schema
	Bibiography

