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Abstract
In questa tesi studiamo un’estensione con un termine di interazione cubica, (gµν∂µσ∂νσ)2σ,
della lagrangiana dei più semplici modelli scalari-tensoriali, come gravitá indotta (IG)
e il modello Jordan-Brans-Dicke esteso con un potenziale(eJBD). Ne analizziamo gli ef-
fetti cosmologici sia a livello di background che di perturbazioni lineari. Il lavoro si
suddivide in una parte analitica ed una numerica: nella parte analitica vengono rica-
vate le equazioni del moto del modello sia a livello omogeneo che per le perturbazioni
lineari e si ottiene una classe di soluzioni analitiche in assenza di materia. La parte
numerica, che ha richiesto l’implementazione delle equazioni della teoria in un codice
Einstein-Boltzmann dedicato, ci ha permesso di studiare più nel dettaglio l’evoluzione
della cosmologia omogenea e fare predizioni sulle anisotropie dello spettro di potenza an-
golare della radiazione cosmica di fondo (CMB) e dello spettro di potenza della materia,
confrontando tali risultati con quelli ottenuti in IG e nel modello cosmologico standard
ΛCDM.
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Introduction

The cosmological concordance model is the so called ΛCDM model. This model has
established itself in the last thirty years or so, and provides a good fit to many cosmo-
logical observations [1]. It assumes the cosmological principle (homogeneity and isotropy
on large scales) and its basic ingredients are: Einstein’s theory of General Relativity as
theory of gravity, standard particles as photons, baryons and neutrinos, a cosmological
constant to explain the recent acceleration of the expansion of the Universe and a cold
dark matter (CDM) component. The nature of Dark Energy and Dark Matter is still un-
known and must lie outside the standard model of particle physics. The study of different
possibilities and alternatives for these dark components is one of the most active field of
cosmology and particle physics. Dark matter does not interact (or does it very weakly)
electromagnetically and its existence had been postulated on the basis of observational
evidences [2] and is still supported by both astrophysical probes, as galaxy rotational
curves and cluster mergers, and cosmological probes such as the cosmic microwave back-
ground. The prefix “cold” means that such matter was non-relativistic when, in the early
Universe, it decoupled from radiation (as opposed to the “hot” dark matter) and current
observations of structure formation suggest that the great majority of dark matter has
to be “cold”. The cosmological constant, as already anticipated, provides an explanation
to the recent acceleration of the expansion of the Universe in the ΛCDM model and it
is described as a perfect fluid with negative pressure; this new component is called Dark
Energy. Beyond this simple model, also on the basis of a discrepancy between obser-
vations and theoretical predictions for the vacuum energy, many alternatives have been
proposed, for instance quintessence, in which a scalar field drives the expansion solving
some of the cosmological constant fine tuning problems.

Another interesting alternative to explain the recent acceleration of the Universe
is modified gravity: in many scenarios of modified gravity, the the acceleration of the
expansion is the result of a modification of the the gravitational sector of the theory
and not the addition of a new fluid to the budget content of the Universe. This path is
particularly alluring since it would result in a unification of two of the ingredients of the

3



Introduction

standard cosmological model: the theory of gravity with dark energy. The repercussions
of modified gravity on cosmology, which were merely speculations until few years ago, are
already constrained by current cosmological observations such as CMB [3] and recently
the detection of neutron star merger GW170817 [4, 5] and thanks to upcoming surveys
which will lead us further on in the era of precision cosmology. Therefore, these models
represent a valid class of alternatives to ΛCDM.

A subclass of these theories is that of scalar tensor theories, in which, beside the metric
tensor field, a scalar degree of freedom, that modulates the strength of the gravitational
interaction of matter with the metric, is present. In short, the scalar field changes the
way in which matter generates the gravitational potentials.

The simplest scalar-tensor models of gravity are constrained by various cosmological
and astrophysical observations as well as by ground laboratory experiments. For exam-
ple, in the case of extended Jordan-Brans-Dicke (eJBD) the most recent cosmological
constraints from Planck 2018 data and a combination of Baryonic Acoustic Oscillation
(BAO) data from different galaxy surveys is γ < 5.5 × 10−4 at 95 %CL [6]. These cos-
mological constraints depend weakly on the potential, but could be relaxed when the
coupling to the Ricci scalar is extended from the quadratic form of the eJBD case to
more complicated forms which also turn on the second post-Newtonian parameter βPN.
When screening mechanism are absent, the tightest constraints come however within the
Solar System: γPN−1 = (2.1±2.3)×10−5 at 68% CL [7] and βPN−1 = (4.1±7.8)×10−5

at 68% CL [8].
Considering this observational scenario, in this thesis we plan to study an extension

of these models that includes a Galileon-like cubic interaction term, (gµν∂µσ∂νσ)2σ,
in the lagrangian of Induced Gravity and eJBD. This term is particularly interesting
because it can give rise to the so called Vainsthein screening [9, 10], which allows to
recover General Relativity nearby localized sources of matter and could therefore help
relax the solar system constraints for the other parameters of the theory. Since, in
order to have cosmological constraints at the level of those from the Solar System, it is
sufficient to consider models with a non minimal coupling to the Ricci scalar of the form
F (σ) = N2

pl + ξσ2 [11, 12], we restrict ourselves to the eJBD case F (σ) = γσ2, for which,
instead, the Solar System limits are the tightest.

Thus, after implementing the Galileon interaction we study the model both analyt-
ically and numerically, at the level of background and linear perturbations theory. To
perform the numerical analysis we extend Einstein-Boltzmann code CLASSig [13, 14].

The thesis is structured as follows:
(i) In the first chapter we introduce the basic concepts of Einstein’s General Relativity

4



and the current cosmological concordance model. We also introduce an alternative
to the cosmological constant: quintessence, in which the accelerated expansion of
the Universe is driven by a scalar field and dark energy varies with time.

(ii) In chapter two we describe the relativistic theory of cosmological perturbations
and CMB anisotropies. We present in this chapter the perturbed Einstein and the
Boltzmann equations in the synchronous gauge.

(iii) Chapter three is a general overview of Horndeski theories: the most general scalar
tensor theories with second order equations of motion. Particular emphasis is given
to the models which predicts a propagation of the tensor degrees of freedom at the
speed of light. Within this class of models there are the extended Jordan-Brans-
Dicke theory (eJBD) and Induced Gravity (IGG), which are the models we will
extend with a cubic interaction term. We conclude the chapter with a review of
the screening mechanism in scalar tensor theories.

(iv) In the fourth chapter we present the extension with a Galileon-like interaction term
of the type G̃3(σ)X2σ for both the eJBD theory and Induced gravity, we show that,
due to the non-equivalence of the cubic interaction term under field redefinition,
the two theories are not equivalent anymore after this extension. We derive the
equations of motion for both models and we then present some special, analytical
solutions obtained in absence of matter. Finally, we show the numerical evolution
of the background cosmology, comparing it with the evolution in IG and ΛCDM.

(v) In the fifth chapter we present the results, obtained from the extended CLASSig
code, for the CMB anisotropies, linear matter power spectrum, metric and scalar
field perturbations. As for the background all these results are shown compared to
IG and the ΛCDM concordance model.

In this thesis we will use the signature (−,+,+,+) and natural units: c = ~ = 1

unless otherwise specified. An overdot denotes a derivative with respect to cosmic time
while a prime stands for derivative with respect to conformal time. The convention for
tensor indices is the following: greek letters for space-time indices (µ, ν, ... = 0, 1, 2, 3),
and latin letters for spatial indices (i, j, ... = 1, 2, 3).
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Chapter 1

The standard cosmological model

Recent cosmological observations show a nearly isotropic Universe, at least on large
scales, scales larger than 300 Mpc. Assuming that we are not in a special place in
the universe, we can infer that the Universe appears homogeneous and isotropic for all
comoving observers, i.e. a family of “typical” freely falling observers which move with the
average velocity of galaxies in their respective neighborhoods. This is the starting point
of modern cosmology, the so called “cosmological principle”. The cosmological principle
reflects the assumption that we aren’t special observers, that is known as “Copernican
principle”.

Beside homogeneity, isotropy and the Copernican principle, the other pillar of modern
cosmology is the theory of general Relativity. With these assumptions, Friedmann in
1922 [15], Lemaître in 1927 [16], and Robertson [17][18] and Walker [19] more than
a decade later, derived the so called Friedmann-Lemaître-Robertson-Walker (FLRW)
metric, that describes an homogenous and isotropic Universe and is used in the standard
cosmological model. Other facts of key importance for cosmology that confirmed the
Big Bang theory are: the discovery of the expansion of the universe by Hubble [20]
at the beginning of the past century, the theory of Big Bang Nucleosynthesis (BBN)
[21], the discovery of the Cosmic Microwave Background radiation (CMB) by Penzias
and Wilson in 1964 [22], whose existence was theoretically predicted by Gamow and his
collaborators in a series of articles in the late forties [23–30]1. In 1998 two independent
teams discovered that the Universe is accelerating by studying distant SNIa [31, 32].

1Working on primordial Nucleosynthesis they needed radiation permeating the universe in order to
have a consistent theory. Now we know that their ideas on nucleosynthesis were not correct, but still
the prediction was confirmed.
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1. The standard cosmological model

1.1 General Relativity
In the standard cosmological model gravity is the dominant force on the cosmological

scales, therefore, the theory of gravity represents the starting point of every cosmological
model.

The best candidate we have so far is the Theory of General Relativity, proposed by
Einstein in the beginning of the XX century [33] and corroborated by many experiments
and observations since then [8], among which the recent observations of gravitational
waves [5, 34]. General Relativity is based on the Principle of the Equivalence of Gravita-
tion and Inertia. The Equivalence Principle says that in a sufficiently small neighborhood
of any space-time point in an arbitrary gravitational field there always exists a “locally
inertial” coordinate system in which the effects of gravity are absent.

To describe any physical process we need to specify its spatial and temporal coor-
dinates. It is useful to combine these four real numbers – one to denote the time of
occurrence of the event and the other three for its location in space – into a single entity
xµ = (x0, x1, x2, x3). We can think of an event as a point in a four-dimensional space
with coordinates xµ. The collection of all the events is called space-time. In Special
Relativity, the invariant interval between two events at coordinates xµ and xµ + dxµ is

ds2 = ηµνdx
µdxν , (1.1)

where η is the metric of flat or Minkowskian space-time, in cartesian coordinates ηµν =

diag(1,−1,−1,−1) and the invariant interval is

ds2 = −dt2 + dx2 + dy2 + dz2 . (1.2)

The essence of General Relativity is to transform gravity from a simple force into a
property of space-time; in Einstein’s theory, the space-time is not necessarily flat like
in Minkowski but it is influenced, curved, by the matter living in it, whose motion in
turn is described in the curved space-time. In General Relativity test particles move
along geodesics that describe the analogous of flat-geometry straight lines in the curved
space-time. The geodesic is defined as such that the integral

∫
ds is stationary under

infinitesimal variations of the path that leave the endpoint fixed. For massless particles
as photons the path is simply given by ds2 = 0. In a general space-time the invariant
interval is

ds2 = gµνdx
µdxν , (1.3)

where gµν = gµν(t,x) is the metric of curved space-time, and differently from Minkowski’s
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1.1. General Relativity

metric, it depends on time and space; indeed it is this dependence that incorporates the
effects of gravity. As mentioned above, a particle moves in such a way that the integral
along its path is stationary:

δ

∫
path

ds = 0, (1.4)

where the gravitational effects are contained in the metric gµν . Performing the variation
(1.4) we obtain the so called geodesic equation for the path xµ(λ) [35]:

d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0 (1.5)

where the Γµρσ are the Christoffel symbols:

Γρµν =
1

2
gρσ

(
∂gνσ
∂xµ

+
∂gµσ
∂xν

− ∂gµν
∂xσ

)
, (1.6)

and λ is a parameter which increases monotonically with time. In the following, in order
to lighten the notation, standard derivatives will be written using a comma: for example,
gµν,ρ ≡ ∂ρgµν . It is useful to introduce the the energy-momentum vector P µ = (E,P):

P µ =
dxµ

dλ
; (1.7)

in this way the geodesic equation (1.5) becomes

dP µ

dλ
+ ΓµρσP

ρP σ = 0. (1.8)

As we emphasized earlier, in General Relativity gravity is not anymore an external
force acting on matter but it becomes a property of space-time, to say it in the words
of John Archibald Wheeler [36]: “space-time tells matter how to move; matter tells
space-time how to curve”. This is encoded in Einstein’s field equations which relate the
geometry of space-time with its matter content:2

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν . (1.9)

Gµν is called the Einstein tensor, Rµν is the Ricci tensor which depends on the metric
and its derivatives, R = gµνRµν is the Ricci scalar, G is Newton’s Constant and Tµν is the
energy-momentum tensor. As anticipated this equation puts in relation the geometry of

2With matter content of the universe we usually refer to its total energy content.
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1. The standard cosmological model

space-time with the matter content of the universe: on the left hand side we have the
the first, the space-time geometry of the Universe and on the right hand side we have
the second, its total energy-momentum tensor.

The energy-momentum tensor of a perfect fluid with energy density ρ, pressure p and
4−velocity uµ is

Tµν = p gµν + (ρ+ p)uµuν , (1.10)

this is the form of the energy momentum tensor used in the standard cosmological model
to describe matter at the cosmological scales. We shall describe the reasons for this choice
and its consequences in the next sections.

The Riemann Tensor is defined as follows

Rλ
µρν = Γλµν,ρ − Γλµρ,ν + ΓλαρΓ

α
µν − ΓλανΓ

α
µρ ; (1.11)

and since the Ricci tensor is a contraction of the Riemann tensor: Rµν = Rλ
µλν , we can

express it in terms of the Christoffel symbols:

Rµν = Γλµν,λ − Γλµλ,ν + ΓλαλΓ
α
µν − ΓλανΓ

α
µλ . (1.12)

By construction the Riemann tensor satisfies the Bianchi identity:

∇σRµνλρ +∇ρRµνσλ +∇λRµνρσ = 0 , (1.13)

where the covariant derivative has been introduced. It is common to write the covariant
derivative as a semicolon, for example ∇ρ gµν ≡ gµν; ρ . An important consequence of the
Bianchi identity is that the covariant derivative of the Einstein tensor is null

∇νG
µν = 0 , (1.14)

from this and the Einstein field equation (1.9) we obtain the conservation law for the
energy momentum tensor

∇ν T
µν = 0. (1.15)

1.1.1 Einstein gravitational Action
We will now briefly introduce the Lagrangian for General Relativity and then show

in the following chapters some of its major extensions.
If we have a physical system described by an action functional in flat space-time, the

effect of gravity on such a system can be incorporated directly in the action by changing
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1.2. Friedmann-Lemaître-Robertson-Walker metric

the volume element d4x to
√−g d4x, where g = det[gµν ], replacing partial derivatives

with covariant derivatives and ηµν with gµν . Therefore if the action of the system in
Minkowski space has the form

Smatter =

∫
d4xLmatter , (1.16)

then, in presence of gravity, i.e. in curved spacetime it will be

Smatter =

∫
d4x
√−gLmatter . (1.17)

This is known as principle of minimal gravitational coupling [37] [38].
The Lagrangian that describes the dynamics of the gravitational field itself is

Sg =

∫
d4x
√−gLg =

1

16πG

∫ √−g d4xR ; (1.18)

and to obtain the total action we have to add Lg to the matter Lagrangian:

S =

∫
d4x
√−g

[
R

16πG
+ Lmatter

]
. (1.19)

In (1.19) matter is minimally coupled to gravity, we will show some examples of how
this assumption is relaxed in many theories of modified gravity.

1.2 Friedmann-Lemaître-Robertson-Walker metric
Solving (1.9) is not an easy task, and one has to take advantage of the symmetries

of the system in order to do it, especially in our case where we have to solve it for the
entire matter distribution of the universe. The cosmological principle states the isotropy
and homogeneity of the universe, providing rotational and translational invariances that
greatly simplify the task of solving Einstein’s equation and finding a metric describing
the Universe. As we already mentioned the assumption of homogeneity and isotropy
of the 3-space selects a preferred class of observers, the comoving ones, namely those
observers for whom the universe appears isotropic. Then, we use a comoving coordinate
system (t, xi) associated with these observers.

ds2 = g00 dt
2 + 2 g0i dtdx

i + γijdx
idxj, (1.20)

where γij is the purely spatial metric. Now, we choose as time coordinate the proper time
of the comoving observers, which implies g00 = −1; moreover, stationarity constrains the
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1. The standard cosmological model

components g0i to be zero, giving us

ds2 = −dt2 + γijdx
idxj ≡ −dt2 + d` 2. (1.21)

By writing the space interval d` 2 in spherical coordinates we have

d` 2 = a2(t)

[
λ2(r)dr2 + r2

(
dθ2 + sin2θdϕ2

) ]
, (1.22)

the scalar curvature is then

3R =
3

2a2r3

d

dr

[
r2

(
1− 1

λ2(r)

)]
. (1.23)

Thanks to the assumed homogeneity, geometrical properties are independent on r, this
means that 3R is a constant, therefore, integrating, one obtains [37]

λ2(r) =
1

1− kr2
. (1.24)

We can always rescale r to make k = ±1, obtaining the usual form of the space-time met-
ric of a homogeneous and isotropic universe, called the Friedmann-Lemaître-Robertson-
Walker (FLRW) metric:

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2θdϕ2)

]
. (1.25)

The possible values for k are k = 0,+1,−1 which correspond respectively to flat, spher-
ical and hyperbolic spatial hypersurfaces. Once k is fixed, the evolution of the metric
is uniquely determined by the so called scale factor a(t). It is worth noticing that the
metric (1.25) has been obtained by just using symmetry arguments, i.e. without any ref-
erence to the source of gravity Tµν . To go further and determine the value of k and the
functional form of a(t) we have to specify the matter distribution and use the Einstein’s
equation.

It is useful to introduce the concept of conformal time dτ = a−1(t)dt which allows,
by writing the differential solid angle as dΩ, to express the FLRW metric as:

ds2 = a2(τ)

[
− dτ 2 +

dr2

1− kr2
+ r2dΩ2

]
. (1.26)

In this thesis an overdot will denote derivatives with respect to cosmic time while a prime
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1.3. Kinematics of the Friedmann models

will denote a derivative with respect to conformal time.
Another useful representation of the FLRW metric (1.25) uses the coordinate redefi-

nition dχ ≡ dr/(1− kr2):

ds2 = −dt2 + a2(t)

[
dχ2 + S2

k(χ)dΩ2

]
, (1.27)

where

S2
k(χ) ≡ 1√

|k|


sinh(

√
|k|χ) k < 0

√
kχ k = 0

sin(
√
|k χ) k > 0.

(1.28)

Expressed in conformal time it is

ds2 = ds2 = a2(τ)

[
− dτ 2dχ2 + S2

k(χ)dΩ2

]
. (1.29)

1.3 Kinematics of the Friedmann models

1.3.1 Redshift and Hubble law
Due to the expansion of the Universe, the wavelength of light gets stretched out in its

journey before reaching our detectors: light emitted at a certain time t1 with wavelength
λ1 will be observed today at t03 with wavelength

λ0 =
a(t0)

a(t1)
λ1 . (1.30)

The discovery of the expansion of the Universe by Hubble in 1929 [20] implies a(t0) >

a(t1) which means that the wavelength of light will increase, i.e. it will be redshifted.
We can actually define the redshift z as

1 + z =
λ0

λ1

=
a(t0)

a(t1)
, (1.31)

For nearby sources we can expand a(t1) around t0

a(t1) = a(t0)[ 1 + (t1 − t0)H0 + ... ] , (1.32)

3The subscript 0 means today unless otherwise specified
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1. The standard cosmological model

where H0 is the Hubble parameter today, often called the Hubble constant:

H0 ≡
ȧ(t0)

a(t0)
. (1.33)

For close objects, t0− t1 is the physical distance d (c = 1). Therefore, from the above
equations we find that the redshift increases linearly with distance

z ' H0d. (1.34)

This is the so called Hubble law, first introduced by Hubble [20], together with the
constant that takes his name, in the form

vgal = Hd , (1.35)

where vgal is the recessional velocity of a galaxy at a physical distance d. The Hubble
constant H0 measures the expansion rate of the Universe and it’s usually written in the
following way

H0 = 100h km s−1Mpc−1. (1.36)

Nowadays the Hubble constant is measured through a variety of both local and cos-
mological probes, from supernovae to the CMB and gravitational waves, with precision
increasing with time. The two main probes are within complementary frameworks: the
CMB, that provides an indirect measurement, the most precise to date but also de-
pendent on the cosmology assumed, and the direct distance ladder constructed with
Supernovae Ia dependent on short scale calibration with cefeids. Currently, the latest
measurements of the two probes are the ΛCDM value inferred from Planck 2018 data
which is h = 0.674 ± 0.005 [3], whereas, at the moment of the writing, the direct mea-
surement gives h = 0.735± 0.014 resulting in a 4.4σ tension [39]

1.3.2 Distances
There are various way of defining the distance concept in cosmology. Consider the

metric (1.27)

ds2 = −dt2 + a2(t)

[
dχ2 + S2

k(χ)dΩ2

]
, (1.37)

the distance multiplying the solid angle dΩ2 is called metric distance:

dm ≡ Sk(χ). (1.38)
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1.3. Kinematics of the Friedmann models

The comoving distance between us and a galaxy at redshift z is

χ(z) =

∫ t0

t1

dt

a(t)
=

∫ z

0

dz

H(z)
, (1.39)

it coincides with the metric distance in the case of a flat universe (k = 0). The physical
distance, also called proper distance is obtained multiplying the comoving distance by the
scale factor: dpr = a(t)χ and as we expected the physical distance increases (decreases)
with the expansion (compression) of the universe. There are other distances of interest in
cosmology: the angular diameter distance dA and the luminosity distance dL. The first
measures the distance between us and an object of known physical size D with observed
angular size δθ on the sky:

dA =
D

δθ
, (1.40)

and its relation with the metric distance is

dA =
dm

1 + z
; (1.41)

for a flat Unverse
dA =

χ

1 + z
. (1.42)

The luminosity distance dL of an object located at a fixed comoving distance χ and
redshift z is given by the ratio between the observed flux F and the intrinsic luminosity
L of the object:

F =
L

4πd 2
m(1 + z)2

≡ L

4πd 2
L

, (1.43)

which gives
dL = dm (1 + z) . (1.44)

Therefore, the relation between the luminosity distance and the angular distance is:

dA =
dL

(1 + z)2
. (1.45)

1.3.3 Horizons
The definition of horizon in cosmology is not unique, in particular we can identify

two different point of view at its base: an horizon can either define the size at which past
events can be observed or the one at which future events will be observed. In particular,
the particle horizon χp (also known as comoving horizon or cosmological horizon) is the
maximum comoving distance travelled by a photon since the Big Bang, i.e. it represents
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1. The standard cosmological model

the comoving size of the visible universe:

χp ≡ τi − τ0 =

∫ t0

ti

dt

a(t)
=

∫ ln a

ln ai

(aH)−1d ln a, (1.46)

where (aH)−1 is called Hubble radius. In standard cosmologies χp ∼ (aH)−1, therefore,
the Hubble radius is often called the horizon even though it is conceptually different from
the particle horizon. In fact, the particle horizon is the maximum distance a photon can
travel since the Big Bang, whereas the Hubble radius is the distance over which photons
can travel in an Hubble time H−1.

The event horizon is is the largest comoving distance from which light emitted now
can ever reach the observer in the future.

χe ≡
∫ tf

t0

dt

a(t)
=

∫ af

a0

da

H(a)a2
(1.47)

where tf is the the last moment of the universe, if the expansion goes on forever or if it
reaches a steady state it will be tf →∞.

1.4 Dynamics of the Friedmann models
As anticipated in section 1.2, in order to obtain the functional form of the scale

factor a(t) we need to specify an energy-momentum tensor and solve Einsein’s equations
(1.9) where the left hand side is uniquely specified by the FLRW metric. On large scales,
matter can be approximated as a perfect fluid characterized by energy density ρ, pressure
p and 4-velocity uµ, its energy–momentum tensor is then

Tµν = p gµν + (ρ+ p)uµuν . (1.48)

The equation of state p = p(ρ) has the form p = ωρ, where ω is a constant. Simplifying
the Einstein equations for the FLRW metric (1.25) and perfect fluid matter source we
obtain that the only non null components of the Einstein tensor are the 0 − 0 and the
i− i. These components give the Friedmann Equations that describe the evolution and
acceleration of the scale factor:(

ȧ

a

)2

≡ H2 =
8π G

3
ρ− k

a

2

(1.49)

ä = −4π G

3
(ρ+ 3p)a. (1.50)

For ordinary forms of matter and radiation we have ρ + 3p ≥ 0, that implies ä ≤ 0.
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1.4. Dynamics of the Friedmann models

A decelerated expansion is in contrast with cosmological observations pointing towards
an accelerated expansion of the Universe. Accelerated expansion can be obtained from
(1.50) only if the dominant component of the universe satisfies ρ+3p < 0. The standard
cosmological model ΛCDM assume the existence of a dark energy component in the form
of a cosmological constant to solve this issue.

The Hubble law tells us that ȧ0 > 0 and equation (1.49) shows that ȧ > 0 at all
times, unless the right-hand side vanishes. Therefore going towards decreasing times,
a(t) decreases until it reaches a(t) = 0, a moment in which density and a pressure
are infinite: a singularity, called the Big-Bang. This simple argument illustrates the
inevitability of the Big-Bang in the Friedmann models.

We can define the critical density today as the current density of the Universe in
order for it to be flat:

ρcrit,0 ≡
3H2

0

8πG
, (1.51)

and it is useful to define dimensionless density parameters:

Ωi,0 ≡
ρi,0
ρcrit,0

; (1.52)

here i identifies different component of the universe: i = r,m,Λ, which stand, respec-
tively, for radiation, non-relativistic matter and vacuum energy. Non-relativistic matter
is usually divided in two species: cold dark matter which takes the subscript c and or-
dinary matter which takes the subscript b. The sum of the density parameters of each
component Ωtot =

∑
i Ωii can either be larger than unity, leading to a closed universe,

smaller than 1, leading to an open universe, or exactly 1, which corresponds to a flat
one.

With these definitions, equation (1.49) can be rewritten in the following way:

H2 = H2
0

[
Ωr,0

(
a0

a

)4

+ Ωm,0

(
a0

a

)3

+ Ωk,0

(
a0

a

)2

+ ΩΛ,0

]
, (1.53)

where Ωk,0 ≡ −k/(a0H0)2 is the spatial curvature density parameter. For simplicity we
drop the subscript 0 in the density parameters and we follow the convention a0 = 1. We
can simplify equation (1.53):

H2

H2
0

= Ωra
−4 + Ωma

−3 + Ωka
−2 + ΩΛ . (1.54)
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1. The standard cosmological model

It’s also useful to rewrite the Friedmann equations using the conformal time τ :

H2 =
8πG

3
a2ρ− k , (1.55)

H′ = −4πG

3
(ρ+ 3p)a2 , (1.56)

where
H =

a′

a
= aH , (1.57)

is the Hubble parameter in conformal time.
The two Friedmann equations are not independent if we take into account the 0−th

component of the conservation law of the energy-momentum tensor (1.15), which gives
the continuity equation [40]:

ρ̇+ 3H(ρ+ p) = 0 , (1.58)

or, in conformal time
ρ′ + 3H(ρ+ p) = 0. (1.59)

As anticipated earlier the equation of state for the various components of the Universe
is

pi = ωiρi (1.60)

where ωi is usually a constant and takes the values ω = 0 for non-relativistic matter,
ω = 1/3 for radiation and ω = −1 for the cosmological constant. Integrating (1.59)
making use of (1.60) we obtain a relation between the density and the scale factor:

ρi(t) = ρ0,i(t)

(
a

a0

)−3(1+ωi)

. (1.61)

If the Universe is dominated by matter (ω = 0) ρm ∝ a−3, whereas for radiation (ω = 1/3)
we have ρr = a−4. We deduce that going back in time radiation was dominating up to
a point called equivalence when matter overcame radiation. For the cosmological con-
stant (ω = −1) the density ρΛ ∝ a0, which means that its energy density is constant,
this component is often interpreted as the energy of vacuum but the disagreement be-
tween theoretical predictions and the observed value has lead to the quest for alternative
models.

1.4.1 ΛCDM Model
Observations show that the density parameters Ωi of the different constituents of the

Universe sum up to Ωtot ' 1, i.e. spatial curvature is consistent with a flat universe:
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1.5. Thermal evolution

Ωk = 0.001± 0.002 [3] and

Ωm = Ωc + Ωb = 0.3153± 0.0073, ΩΛ = 0.6847± 0.0073. (1.62)

The matter density parameter can be split in the cold dark matter contribution Ωc ' 0.26

and the contribution coming from ordinary baryonic matter Ωb ' 0.0049. If ordinary
matter is well know, we have only indirect information on the dark matter component,
whose nature and properties can be studied only through its cosmological and astro-
physical effects. The search for its constituents is one of the most active field in both
astrophysics and particle physics. The radiation contribution is Ωr ' 9.4 × 10−5 and
comes from CMB and the cosmic neutrinos background. The observed value ΩΛ ' 0.68

implies that the energy density of the Universe is dominated by a component with equa-
tion of state ω ' −1, which makes it very similar to a cosmological constant. Indeed,
the cosmological constant is the simplest and most effective way we have to parametrize
this component, called dark energy. Dark energy is responsible for the recent acceler-
ated expansion of the Universe. The Universe described in terms of these components is
known as the ΛCDM model, when the cosmic inflation is added in the game we obtain
an amazing fit to a variety of cosmological data of the so-called “concordance" model”.

1.5 Thermal evolution
We have already seen that the early Universe was dominated by relativistic degrees

of freedom until the matter-radiation equivalence z ' 3.4 × 103 [3] where matter starts
dominating, until recent times where dark energy took over z ' 0.3. During the radia-
tion era we can identify different stages:

• Quark era: T > TQH ' 200 − 300 MeV, in this phase we have free quarks in a
quark gluon plasma. Temperature is too high to allow hadronization. At the end
of this epoch, quarks and antiquarks bind together forming hadrons.

• Hadron era: TQH > T > Tπ ' 130 MeV, hadrons dominate until pions and antipi-
ons annihilate at T = Tπ.

• Lepton era: Tπ > T > Te ' 0.5 MeV, leptons dominate Universe until we reach
Te, temperature at which positrons and electrons annihilate. In this era primordial
nucleosynthesis occurs. Towards the end of this epoch neutrino decouples from the
cosmological fluid at T ∼ 1 Mev.
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1. The standard cosmological model

• Plasma era: Te > T > Teq ' 1eV, the Universe is composed by photons, matter
(protons, electrons and helium nuclei) and neutrino which are decoupled from the
photon-baryon fluid since the beginning of the lepton epoch.

At around 1 eV it starts the process of recombination when neutral hydrogen is formed,
around z ' 1400−1100. Recombination leads to a drop in free electrons either increasing
the Thompson scattering rate beyond the Hubble time and decoupling baryons and
photons. The ideal surface of the last photon interaction is called the last scattering
surface and it happens at z ' 1100. The photons propagating since then constitute the
cosmic microwave background (CMB).

1.6 Successes and problems of the hot Big-Bang model
Among the greatest successes of the hot Big Bang model we find three key predictions:

• the expansion of the Universe,

• the abundances of light elements produced in the Big-Bang Nucleosynthesis (BBN)
during the initial phases of the Universe [41],

• the existence of the Cosmic Microwave Background (CMB),

that have all been verified by observations. Nonetheless the original hot Big Bang theory
is unable to address some conceptual problems which we will discuss in the following. The
most elegant solution to the problem is cosmic inflation, which postulates an accelerated
stage in a cold and quantum era which occurred before the thermal one of the standard
Big Bang cosmology.

Flatness problem
Observations are consistent with a flat universe: Ωk = −0.011+0.013

−0.012 [42].
The evolution of the spatial curvature parameter is Ωk = −k/(aH)2 = −k/ȧ2. On
considering an evolution for the scale factor as a ∝ t2/3 ∝ T−1, this leads to an increase
Ωk ∼ T−1 during the matter era, at the time of the equivalence the curvature parameter
had to necessarily be less than 10−4. If we extend the same logic further in the past into
the radiation epoch, in which Ωk ∝ T−2, we obtain that at the time of electron-positron
annihilation, which happened at T ' 1010K, the curvature parameter was at most of
the order of 10−16. Using the same logic we expect it to be of the order ∼ 10−60 at initial
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1.6. Successes and problems of the hot Big-Bang model

times. This means that, in order to justify what we observe today, the Universe had to
be close to flatness to a very high level initially, giving rise to a fine tuning problem. A
period of exponential expansion, called cosmic inflation, before the radiation dominated
era would solve this problem. In fact, during inflation, the Hubble parameter H would
have been more or less constant, in such a way that |Ωk| ∝ a−2 and the extremely small
curvature at the beginning of the radiation dominated era would be justified.

More quantitatively, during inflation the scale factor increased by a factor eN . If,
when inflation begins |Ωtextsck| = O(1), then at the end it would be of order e−2N .
Therefore if inflation lasts long enough, which means N is large enough, we have solved
the flatness problem. One obtains that the number of e-foldings of N necessary to solve
the flatness problem is [43]

N > 62. (1.63)

Horizon problem:

The observed high degree of isotropy of the CMB poses a problem: the angular
dimension of 1/H regions at the time of decoupling is approximately θhor ' 1.6◦ [43],
which is only a small fraction of the sky. The CMB monopole is instead homogeneous
on all the sky, i.e. scales much larger than the Hubble radius at the time when the CMB
was formed; indeed, without inflation, the CMB pattern should be composed of about
106 causally disconnected patches [44]. If there were not enough time for these regions
to communicate, no physical influence could have smoothed out initial inhomogeneities
and brought regions separated by several degrees in the sky to the same temperature.
This is known as the Horizon problem.

A period of exponential expansion would solve this problem as well: inflation would
have stretched tiny causally connected patches to cosmic sizes, providing enough time to
homogeneize our observable Universe. More quantitatively, the proper horizon, which is
the scale factor times the particle horizon, at the time of last scattering tL is

dH(tL) ≡ a(tL)

∫ tL

t∗

dt

a(t)
(1.64)

where t∗ is the time of the beginning of inflation. Now suppose that, being tI the time
of the end of inflation, the scale factor increases exponentially at a rate HI :

a(t) = a(t∗)e
HI(t−t∗) = aIe

−HI(tI−t). (1.65)
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The number of e-foldings is then N = HI(tI − t) and the above equations give

dH(tL) =
a(tL)

aIHI

(
eN − 1

)
. (1.66)

We can drop the −1 in (1.66) because to solve the horizon problem we need eN � 1.
Imposing now the proper horizon at the time of last scattering to be larger than the
angular-diameter distance of the surface of last scattering: dI(tL) > dA(tL) we obtain

N > 62, (1.67)

which is the same condition required to solve the flatness problem.

Monopole problem
In grand unified theories (GUT) the local symmetry group is spontaneously broken

at an energy of the order ∼ 1016 GeV to the gauge symmetry of the Standard Model. All
these theories predict the production of magnetic monopoles and their densities today
should be much higher than that of matter [45], but so far we have not found any trace
of magnetic monopoles.

To solve this problem, one needs inflation to dilute the magnetic monopoles, its du-
ration, given in number of e-foldings, should be N > 23 [43]. We see that the number of
e-foldings necessary to solve the flatness and horizon problem automatically solves the
monopoles problem.

The most serious of the three problems presented above is the flatness problem,
because there are possible alternative solutions to the monopole and horizon problems
that do not rely on inflation. A solution to the monopole problem may be that GUT
theories are not the correct physical theories to describe the early stage of the universe
and therefore the prediction of magnetic monopoles would be meaningless. As far as
regards the horizon problem, early Universe models which have a suitable contraction
rather than a nearly exponential expansion can offer a solution to the horizon problem
which is alternative to inflation.

1.6.1 Slow-roll inflation
Inflation has been proposed first by Starobinski [46] [47], Kazanas [48] and Sato [49]

and then developed by Guth [50], Linde [51] [52], and Albrecht and Steinhardt [53].
The simplest way to achieve inflation is by considering a fluid with negative pressure

and we do this by means of a scalar field φ(t) called the inflaton. All we need to assume
is that the inflaton at some early time takes a value such that the potential V (φ) is very
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1.6. Successes and problems of the hot Big-Bang model

large but quite flat. At first the scalar field rolls very slowly down this potential, in
this way the Hubble parameter decreases slowly, and the universe experiences a nearly
exponential inflation before the field configuration changes very much. The action of a
scalar field in curved spacetime is

S =

∫
d4x
√−g

(
− 1

2
gµν∂µφ ∂νφ− V (φ)

)
, (1.68)

and its energy momentum tensor is [54]

T φµν = ∂µφ ∂νφ− gµν
[

1

2
gρλ ∂ρφ ∂λφ− V (φ)

]
; (1.69)

from which, comparing it with (1.48) we can define the density and the pressure of the
scalar field as follows:

ρφ =
1

2
φ̇2 + V (φ); (1.70)

pφ =
1

2
φ̇2 − V (φ) . (1.71)

The Klein-Gordon equation, obtained from the variation of the action (1.68) with respect
to φ, or alternatively from the conservation of T µνφ , is

φ̈+ 3Hφ̇+ V,φ = 0 , (1.72)

while the first Friedmann equation (1.49) becomes

H2 =
8πG

3

(
ρφ + ρ

)
− k

a2
, (1.73)

the expansion rapidly causes ρ and k/a2 to become negligible with respect to the density
of the inflaton field, which is varying slowly. Equation (1.73) is then

H =

√
8πG

3
ρφ =

√
8πG

3

(
1

2
φ̇2 + V (φ)

)
. (1.74)

Taking the derivative of the square of equation (1.74) and combining it with (1.72)
we obtain:

Ḣ = −4πGφ̇2 . (1.75)
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For a nearly exponential expansion we require

|Ḣ| � H2, (1.76)

which, thanks to (1.74) (1.75), it’s equivalent

φ̇2 � |V (φ)|, (1.77)

i.e. the kinetic term is negligible with respect to the potential and (1.74) becomes

H '
√

8πGV (φ)

3
. (1.78)

Another usual assumption which allows us to drop the inertial term from equation
(1.72) is

|φ̈| � H|φ̇|, (1.79)

therefore we have
φ̇ = − V,φ

3H
= − V,φ√

24πGV
. (1.80)

This means that

ε ≡ |Ḣ|
H2

=
1

16πG

(
V,φ
V

)2

, (1.81)

then inflation will last long enough if ε � 1. Moreover, deriving equation (1.80) with
respect to φ leads us to the condition for |φ̈| to be much less than |V,φ|:∣∣∣∣V,φ,φV

∣∣∣∣� 24πG. (1.82)

To summarize, the slow-roll conditions necessary to obtain inflation are:

ε ≡ |Ḣ|
H2

=
1

16πG

(
V,φ
V

)2

� 1 , (1.83)

η ≡ 1

8πG

∣∣∣∣V,φ,φV
∣∣∣∣� 1. (1.84)

Using these parameters we can determine, just from the shape of the potential, if inflation
occurs.

At the end of inflation there is a period which goes under the name of preheating
in which the inflaton is oscillating in the minimum of the potential and decays in other
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particles. Preheating is the first stage of reheating which connects the cold and quantum
inflation phase to the thermal hot Big Bang cosmology.

1.7 Dark matter
Studies of individual galaxies and clusters of galaxies led to the surprising outcome

that these celestial objects contain way more mass than what is visible and would be
estimated from the amount of stars and gas. In particular, only 10− 20% of their mass
consists of visible matter, while most of the mass is invisible, i.e. it interacts only via
gravitational effects. For this reason it is called dark matter. We only know of its presence
through its gravitational effects: rotation curves in spiral galaxies, velocity dispersions
in elliptic ones and in galaxy clusters, and gravitational lensing are the most known
evidences of its existence. The first observation of dark matter was done in 1933 by
Zwicky [55], who, studying the Coma cluster found that the velocity dispersion of the
galaxies was so high that, to keep the system stable, the average mass density of the Coma
system would have to be much more than that deduced from visible matter. Many other
observations later proved without any doubt the existence of dark matter (for a detailed
history of dark matter see the reviews [2] [56]). There are also cosmological evidences for
the existence of dark matter and its greater abundance with respect to ordinary matter:
from CMB anisotropies the Planck data lead to an estimate of Ωch

2 = 0.1200 ± 0.0012

[3]. A comparison with the baryonic fraction Ωbh
2 = 0.02237 ± 0.00015 [3] shows that

there is about five times more dark matter than ordinary matter.

Types of dark matter: Hot (HDM) and cold (CDM)
Many possibilities to classify different models of dark matter exist, for example ther-

mal vs non-termal, or hot vs cold, etc. In particular, the HDM vs CDM categorization is
especially relevant in cosmology and is related to the typical kinetic energy of the dark
matter particles when they decouples from radiation. If dark matter was relativistic at
the time of decoupling it’s called hot dark matter (HDM), if it wasn’t relativistic it takes
the name of cold dark matter (CDM). This discrimination between HDM and CDM is
of great importance in cosmology because they give rise to two different scenarios of
structures formation: if the prevalent form of dark matter was the hot one this would
lead to a top-down structure formation in which the most massive structures are formed
first and through fragmentation smaller substructures like galaxies and stars are formed.
CDM privileges instead a bottom up scenario, in which globular clusters are the first
objects to collapse. In this situation larger structures are formed by subsequent merging
of smaller ones. Galaxies has been observed to be present less than a billion years after
the Big-Bang [57] and therefore the bottom-up scenario, and consequently the fact that
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dark matter is mostly composed by CDM is favoured by observations.

Dark matter candidates
The first candidates for dark matter were baryonic, since in astrophysics there are

various types of objects that are not visible, they are called Massive Astrophysical Com-
pact Objects (MACHOs). With MACHOs we then refer to a variety of objects, the
most important ones are red and brown dwarfs, neutron stars and stellar black holes.
Unfortunately statistical analysis shows that there are not enough MACHOS to explain
all the dark matter mass. Another class of MACHOS are primordial black holes whose
existance has been proposed by Hawking in 1971 [58]. The possibility for primordial
black holes to represent a significative fraction of the DM observed is a very interesting
issue largery explored. Unfortunately currently results seem to point to a maximum of
10% of DM in the form of primordial black holes

The most promising candidates for dark matter, though, are non-baryonic and come
from extension of the Standard model of Particle Physics, which per se does not contain
any particle compatible with dark matter. The first candidate were massive neutrinos
that represent one of the basic extension to the standard model whose existence has been
verified experimentally. However, since massive neutrinos are HDM they can only mini-
mally contribute to the DM amount, although the possibility of sterile neutrinos is still
under investigation. Going beyond the standard model, new candidates have to satisfy a
couple of criteria: being cold enough and not to interact much with the standard model
particles. The two main hypotesis for the particle nature of dark matter which respect
these conditions are:

• WIMPs (Weakly Interacting Massive Particles): these are very massive particles
with masses of the order mwimp ∼ 10 − 103 GeV. Thanks to this large mass they
are non-relativistic and since their mediator bosons have very large masses as well,
their interactions are very short range causing interactions with standard model
particles to be extremely rare. However a large mass causes some problems, as
it makes WIMPs susceptible to decaying into standard model particles, therefore
this instability on cosmological time scales would not help explaining the observed
abudances of dark matter. One then needs to come up with some clever ideas to
ensure the stability of WIMPs, such as symmetries that preserves their numbers
[59].

• Axions: They are very light and stable particles. In quantum field theory language
axions are pseudo Nambu-Goldstone bosons arising from the spontaeous breaking
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of global chiral symmetries. They were first introduced to solve the charge-parity
(CP) problem in 1977 [60]. Even if they have a small mass, axions can account for
dark matter thanks to their high density. It is remarkable that axions produce a
rich phenomenology in astroparticle physics and cosmology.

1.8 Dark energy
As already mentioned, the way to achieve accelerated expansion is to have a fluid

with negative pressure that dominates the energy content of the Universe. To describe
dark energy and the current accelerated expansion of the universe we need therefore
such a fluid, the simplest way in which we can achieve this is by means of the cosmo-
logical constant. There’s also alternatives to the cosmological constant which is called
quintessence and which we will describe briefly.

1.8.1 Cosmological constant
The cosmological constant was first introduced by Einstein [61] in his field equation

Gµν = 8πGTµν + Λgµν , (1.85)

to satisfy a personal philosophical taste: the staticity of the Universe. After Hubble’s
discovery of the expansion of the Universe, the cosmological constant was abandoned, but
in the early nineties it was proposed again as ΛCDM in alternative to the CDM model.
Following the discovery that the expansion of the Universe is actually accelerated it
became the the simplest candidate to describe dark energy.

The most common interpretation for the nature of the cosmological constant is the
vacuum energy density of quantum fields [62] [63] [64]. Although we measure only differ-
ences of energy, since gravity couples with the total amount of energy density, the vacuum
energy should enter the Einstein field equation giving a nonzero contribution. The strong
disagreement between the theoretical prediction and the value from observational data
has sparkled the search for alternative solutions to Λ.

1.8.2 Quintessence
An interesting alternative to a cosmological constant is an evolving dark energy com-

ponent with a time dependent ωde = pde/ρde, as in quintessence models [43] [65] [66]
[67]. In quintessence models, just like in inflation, the expansion is driven by a scalar
field ϕ. However we should assume a slow evolution of ρϕ, in a way to obtain a cosmo-
logical constant behaviour at low redshift z ' 0.3 and have a small impact in the past
epochs, already constrained by data. The field theory of the scalar field is exactly the
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same we’ve seen in the case of inflation in section 1.6.1. In order to avoid fine tunings,
the potential should allow for a wide range of initial values to produce the same scalar
field behaviour today. The simplest example of such a potential is [65] [68]:

V (ϕ) = M4+αϕ−α (1.86)

with α > 0 and arbitrary, andM is a constant having the dimension of a mass in natural
units (~ = c = 1). The Klein-Gordon equation (1.72) can be rewritten as follows

ϕ̈+
2

(1 + ω)t
ϕ̇− αM4+αϕ−α−1 = 0. (1.87)

In order to not spoil the Big Bang Nucleosynthesis we require ρϕ � ρR at the BBN
epoch, leading to H = 1/(2t). Therefore, a solution of Eq. (1.87) in the radiation era
(ω = 1/3) is

ϕ =

[
α(2 + α)2M4+αt2

6 + α

] 1
2+α

, (1.88)

from which we can see that both ϕ̇ and V (ϕ) go as t−2α/(2+α), providing a ρϕ subdominant
at early times with respect to the radiation density, ρr ∝ t−2. This solution is an
attractor, meaning that any solution coming close will approach it as t increases in a
given cosmological era. To see this, one can perturb the Klein-Gordon equation:

δϕ̈+
3

2t
δϕ̇+

(6 + α)(1 + α)

(2 + α)2t2
δϕ , (1.89)

whose solutions are:

δϕ ∝ tγ , γ = −1

4
±
√

1

16
− (6 + α)(1 + α)

(2 + α)2
. (1.90)

Both solutions decay with time. This proves that the solution (1.88) is an attractor, or
tracker solution.

When non-relativistic matter starts to dominate (ω = 0), nothing changes: the
tracker solution still grows as t2/(2+α) and the density still goes as t−2α/(2+α), while matter
and radiation densities decrease faster, in particular ρm ∝ t−2 and ρr ∝ t−8/3, which
ensures that ρϕ will eventually dominate. The time tc when this happens is the time at
wich ρϕ = ρm and it is of order

tc ∼M−(4+α)/2G−(2+α)/4, (1.91)
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which gives
ϕ(tc) ∼ G−1/2. (1.92)

After this “quintessence-matter equivalence”, the Klein-Gordon equation becomes

ϕ̈+
√

24πGρϕϕ̇− αM4+αϕ−α−1 = 0. (1.93)

The damping term proportional to ϕ̇ will slow the growth of ϕ in such a way that ϕ̇2

will be less than V (ϕ), also the the inertial term ϕ̈ will become negligible with respect
to damping and potential terms (these are the same slow roll conditions we applied in
sec. 1.6.1 on inflation). The equation of motion then becomes

√
24πGρϕϕ̇ = αM4+αϕ−α−1, (1.94)

whose solution is

ϕ = M

(
α(2 + α/2)t√

24πG

)1/(2+α/2)

. (1.95)

With the help of (1.95) one can perform a sanity check showing that the slowroll ap-
proximation was justified. Numerical calculations show that this solution is the asymp-
totic form approached for t → ∞ by the tracker solution, we have then, at late time
when ρϕ dominates

ln a ∝ t2/(2+α/2). (1.96)

This behaviour is very similar to the evolution of the scale factor a(t) that a cosmological
constant would produce, which is ln a ∝ t, and they are exactly the same for α = 0,
as expected. In general the scale factor grows less rapidly in quintessence models with
respect to the cosmological constant model.
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Chapter 2

Theory of cosmological perturbations
and CMB anisotropies

The cosmological principle, stating isotropy and homogeneity of the Universe, may hold
only on very large scales (of the order of hundreds of Mpc) as is evidenced by the
presence of gravitational bound structures as galaxies and clusters that are clearly local
deviations from homogeneity and isotropy. The key idea is that small fluctuations in the
energy density generated in the early Universe are amplified by gravitational instability
leading to the formation of such structures. Observations of the CMB show temperature
anisotropies of the order of ∆T/T ∼ 10−5 that reflect the primordial fluctuations at the
last scattering (z ' 103). The small amplitude of the fluctuations allows to use the linear
perturbation theory to make predictions about the state of the Universe at that redshift
and to study the CMB anisotropies.

For this reason, in this chapter we will introduce first order perturbation theory.
Density perturbations are treated as a random Gaussian field in such a way that their
Fourier modes are decoupled. The notation for the Fourier transform is:

A(τ,x) =

∫
dk

(2π)3
A(τ,k)eik ·x . (2.1)

Then, the power spectrum of a function A is

〈A(k)A(k′)〉 = (2π)3P(k)δ(3)(k − k′) . (2.2)

In this chapter we will mainly follow the notation and conventions of [69] and use the
flat (k = 0) FLRW metric (1.26) in conformal time.
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2. Theory of cosmological perturbations and CMB anisotropies

2.1 Metric perturbations

We start by perturbing at first order the FLRW metric:

gµν(τ,x) = ḡµν(τ) + δgµν(τ,x), (2.3)

where ḡµν(τ) is the unperturbed background metric. We write the general perturbed
space-time interval in the following way [40]

ds2 = a2(τ)
[
− (1 + 2A)dτ 2 + 2Bi dx

idτ + (δij + hij)
]
, (2.4)

where A, Bi and hij are functions of space-time and spatial indices are raised and low-
ered with the Kronecker delta. The metric perturbations can be decomposed into 3
categories according to their spin with respect to a local rotation of the spatial coordi-
nates on hypersurfaces of constant time:

• scalar perturbations which have spin 0 and are induced by energy density in-
homogeneities. They exhibit gravitational instability and lead to the formation of
structure in the Universe;
• vector perturbations are spin 1 modes called also vorticity modes because they

arise from the rotational motion of the fluid. In standard cosmology they decay
very quickly;
• tensor perturbations are spin 2 modes, gravitational waves, and are supported

also in vacuum.

This characterization is called scalar-vector-tensor (SVT) decomposition. We can pro-
cede further: thanks to Helmoltz decomposition theorem any 3-vector can be splitted
into the gradient of a scalar field and a vector field with zero divergence:

Bi = ∂iB + B̂i , (2.5)

with ∂iB̂i = 0. In a similar way we can decompose the perturbation δgij as follows:

hij = 2Cδij + 2∂〈i∂j〉E + 2∂(iÊj) + 2Êij ; (2.6)

with
∂〈i∂j〉E ≡

(
∂i∂j −

1

3
δij∇2

)
E, (2.7)
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2.1. Metric perturbations

∂(iÊj) ≡
1

2

(
∂iÊj + ∂jÊi

)
. (2.8)

The objects with an hat are divergenceless: ∂iÊi = 0 = ∂iÊij; moreover Êij is also trace-
less. In (2.6) we decomposed hij in a scalar part which correspond to the first two terms
on the right hand side, a vector part which is the third term, and a tensor part corre-
sponding to the fourth term. We have basically separated the 10 degrees of freedom of
the metric in 4+4+2 SVT degrees of freedom, 4 of which are scalar ones.

At linear order, the scalar, vector and tensor perturbations are decoupled, i.e. they
evolve independently [70]. Considering the subject of this work from now on we will
focus only on scalar perturbations.

2.1.1 Gauge transformation
Consider a coordinate transformation from a coordinate system xµ to another x̃µ

xµ → x̃µ = xµ + dµ(xν) , (2.9)

with
d0 = α(τ,x) , (2.10)

di = ∂iβ(τ,x) + εi(τ,x) ; (2.11)

where the spatial part di has been decomposed into a longitudinal component ∂iβ
(εijk∂i∂jβ = 0) and a transverse component εi (∂iεi = 0).
Under a coordinate transformation the metric transform as:

g̃µν(x̃) =
∂xα

∂x̃µ
∂xβ

∂x̃ν
gαβ(x) , (2.12)

assuming dµ to be of the same order of the metric perturbation, keeping only first order
terms in the right hand side of eq. (2.12) and writing g̃µν as

g̃µν(x̃) = ḡµν(x̃) + δg̃µν(x̃) ; (2.13)

we can infer the following gauge transformation law

δgµν → δg̃µν = δgµν − dρ ∂ρ ḡµν − ḡµρ ∂νdρ − ḡρν ∂µdρ ; (2.14)

33



2. Theory of cosmological perturbations and CMB anisotropies

with the right and left hand side considered at the same coordinate value. Thanks to
this we can now write the gauge transformation law of the scalar degrees of freedom:

A→ Ã = A− α′ −Hα , (2.15)

B → B̃ = B + α− β′ , (2.16)

C → C̃ = C −Hα− 1

3
∇2β , (2.17)

E → Ẽ = E − β . (2.18)

One way to deal with gauge problems is to define combinations of the metric perturba-
tions that are invariant under the change of coordinates (2.9). The simplest variables
of this kind have been introduced by Bardeen [71] and are therefore called Bardeen
variables, they are

ΨB ≡ A+H(B − E ′) + (B − E ′)′ , (2.19)

ΦB ≡ −C −H(B − E ′) +
1

3
∇2E . (2.20)

Using these variables is then straightforward to see whether a perturbation is physical or
not: if ΨB and ΦB vanish in a coordinate system, then they are null in every chart, this
means that the metric perturbations are fictitious and can be removed by a coordinate
transformation. For this reason the Bardeen variables can be thought as the “real”
space-time perturbations.

2.1.2 Gauge fixing
Different topics may take advantage from different gauge choices, fixing the gauge

corresponds to fixing the coordinate system. There are different possible gauge choices,
hereafter we will work in the so called synchronous gauge. This gauge is widely used for
the simple form of the equations and the stability for numerical implementation, i.e. in
the Einstein-Boltzmann codes. The synchronous gauge is defined by

A = Bi = 0 . (2.21)

Under such a condition the metric (2.4) becomes

ds2 = a2(τ)
[
− dτ 2 + (δij + hij)

]
. (2.22)

To connect the notation presented so far with the one in [69] one simply needs to define
2C ≡ h/3, 2E ≡ µ, Êi ≡ Ai and 2Êij ≡ hTij. Following [69] it is useful write the
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2.2. Linearized Einstein equations

scalar mode of of hij as a Fourier intgral

hij(τ,x) =

∫
dk

(2π)3
eik·x

[
k̂ik̂j h(τ,k) +

(
k̂ik̂j −

1

3
δij

)
6η(τ,k)

]
, k = kk̂. (2.23)

It is important to note that the synchronous gauge conditions do not fix all the gauge
degrees of freedom since the choice of the initial hypersurface and its coordinate assign-
ments are arbitrary. Such residual gauge freedom is manifested in the fictitious gauge
modes in the solutions of the Einstein equations. To avoid the disturbance of the gauge
modes it is customary to work in the CDM rest frame.

2.2 Linearized Einstein equations
We now study the Einstein equations at linear order in Fourier space. Within our

conventions we substitute spatial derivatives ∂i with iki. Splitting the energy-momentum
tensor and the Einstein tensor into a background and a perturbed part we can write the
perturbed Einstein equations as

δGµ
ν = 8πGδT µν . (2.24)

The first step is to obtain the perturbations to the energy-momentum tensor of a perfect
fluid (1.48). Calling δρ and δp the density and pressure perturbations and considering
the coordinate velocity vi = dxi/dτ of the same order of δρ and δp, the components of
the perturbed energy-momentum tensor are

T 0
0 = −(ρ̄+ δρ) , (2.25)

T 0
i = (ρ̄+ p̄)vi = −T i0 , (2.26)

T ij = (p̄+ δp)δij + Σi
j , (2.27)

with Σi
j = T ij − δij T kk/3. We define new useful variables θ and σ related to the pertu-

bations of the energy-momentum tensor:

θ ≡ ikjvj , (2.28)

(ρ̄+ p̄)σ ≡−
(
k̂ik̂j −

1

3
δij

)
Σi
j . (2.29)

The left hand side of eq. (2.24), the perturbed Einstein tensor, is derived computing
the perturbed Christoffel symbols that provide the perturbed Ricci tensor and the per-
turbed Ricci scalar. In particular, in the synchronous gauge, the time-time, longitudinal
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2. Theory of cosmological perturbations and CMB anisotropies

time-space, trace space-space and traceless space-space parts of the Einstein equations
are, at linear order [69]

k2η − 1

2
Hh′ = −4πGa2

∑
i

δρi , (2.30)

k2η′ = 4πGa2
∑
i

(ρ̄+ p̄)θi , (2.31)

h′′ + 2Hh′ − 2k2η = −24πGa2
∑
i

δpi , (2.32)

h′′ + 6η′′ + 2H(h′ + 6η′)− 2k2η = −24πGa2
∑
i

(p̄+ p̄i)σi , (2.33)

where, as usual, the index i runs over all the species contributing to the content of the
Universe. At this point the only thing left to derive is the conservation equation of the
perturbed energy-momentum tensor. The conservation equation (1.15) is still valid at
linear level for single fluids, and for a fluid with equation of state p = ωρ it leads to

δ′ = −(1 + ω)

(
θ +

h′

2

)
− 3H

(
δp

δρ
− ω

)
δ , (2.34)

θ′ = −H(1− 3ω)θ − ω′

1 + ω
θ +

δp

δρ

k2δ

1 + ω
− k2σ , (2.35)

where δ = δρ/ρ is the density contrast.
When two or more fluids are in interactions additional terms appears, we will go

through the single components specific equations in the next section.

2.3 Boltzmann equations
We derive in this section the perturbed Boltzmann equations for photons, massless

neutrinos, CDM and baryons. These equations coupled with the Einstein’s ones com-
pletely describe the evolution of cosmological perturbations. We use the synchronous
gauge as for the Einstein equations.

We work in the phase space described by three positions xi and their conjugate
momenta Pi. The conjugate momentum is simply the spatial part of the 4-momentum
with lower indices and in the synchronous gauge it is related with the proper momentum
pi = pi ( measured by an observer at a fixed spatial coordinate) by

Pi = a(δij +
1

2
hij)p

j. (2.36)
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The phase space distribution f = f(xi, Pj, τ) gives the number of particles in a differential
volume dx1dx2dx3dP1dP2dP3 of the phase space:

dN = f(xi, Pj, τ)dx1dx2dx3dP1dP2dP3 . (2.37)

It evolves according to the Boltzmann equation:

df

dt
= C[f ] , (2.38)

where the term on the right hand side is the collision term which accounts for all possible
interactions. The zeroth-order phase space distribution is the Fermi-Dirac distribution
for fermions (− sign) and the Bose-Einstein distribution for bosons (+ sign):

f0 = f0(ε) =
gs

e ε/(aT ) ± 1
, (2.39)

where gs is the number of spin degrees of freedom and ε = a(p2 +m2)1/2 = (P 2 + a2m2)1/2

is related to the zeroth component of the 4-momentum by P0 = −ε. We have used units
such that the Planck and the Boltzmann constant are equal to one.

Following [72], it is convenient to replace Pj with qj ≡ apj in order to eliminate the
metric perturbations from the definition of the momenta. We write it as a function of
its magnitude q and direction nj as qj = qnj, with nin

i = 1. In this way we change
our phase space variables replacing f(xi, Pj, τ) with f(xi, q, nj, τ), and also ε becomes
ε = (q2 + a2m2)1/2.

Now, writing the perturbed phase-space distribution as an expansion around its
zeroth-order

f(xi, Pj, τ) = f0(q)
[
1 + Ψ(xi, q, nj, τ)

]
, (2.40)

we can express, in terms of the perturbation Ψ the components of the energy-momentum
tensor, whose general form is

Tµν =

∫ √−g dP1dP2dP3
PµPν
P 0

f(xi, Pj, τ) , (2.41)
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finding

T 0
0 = −a−4

∫
q2 dq dΩ

√
q2 + a2m2 f0(q)(1 + Ψ) , (2.42)

T 0
i = a−4

∫
q2 dq dΩ q ni f0(q) Ψ , (2.43)

T ij = a−4

∫
q2 dq dΩ

q2ninj√
q2 + a2m2

f0(q)(1 + Ψ) , (2.44)

where dΩ is the solid angle. Now, we can expand the Boltzmann equation (2.38) as

df

dτ
=
∂f

∂τ
+
dxi

dτ

∂f

∂xi
+
dq

dτ

∂f

∂q
+
dni
dτ

∂f

∂ni
= C[f ] =

(
∂f

∂τ

)
C

, (2.45)

and, using of the geodesic equation (1.8) to obtain an expression for dq/dτ we can write
the Boltzmann equation in k-space in the following way

∂Ψ

∂τ
+ i

q

ε
(k · n̂)Ψ +

d ln f0

d ln q

[
η′ − h′ + 6η′

2
(k̂ · n̂)2

]
=

1

f0

(
∂f

∂τ

)
C

. (2.46)

where n̂ = q/|q|. We will now detail the Boltzmann equation for each species in the
cosmological fluid.

Cold dark matter

CDM interacts with other species only through gravity and can be treated as a
pressure-less perfect fluid, ω = ω′ = 0 and zero anisotropic pressure σc = 0. The
collisional term is zero and we remind that in the synchronous gauge we set in the rest
frame of CDM θc = 0. Therefore, from eq. (2.34) and (2.35) we just get

δ′c = −1

2
h′ . (2.47)

Neutrinos

In general for massless particles we have q = ε. In addition, for massless neutrinos
we can neglect the collisional term. In order to reduce the number of variables we
integrate out the q-dependence in the neutrino distribution function and expand the
angular dependence of the perturbation Ψ in a series of Legendre polynomials Pl(k̂ · n̂):

Fν(k, n̂, τ) ≡
∫
q2 dq q f0(q)Ψ∫
q2 dq q f0(q)

≡
∞∑
l=0

(−i)l(2l + 1)Fν l(k, τ)Pl(k̂ · n̂) . (2.48)
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In terms of the new variable Fν , the perturbations δν , θν and σν take the form

δν =
1

4π

∫
dΩFν(k, n̂, τ) = Fν 0 , (2.49)

θν =
3i

16π

∫
dΩ (k̂ · n̂)Fν(k, n̂, τ) =

3

4
k Fν1 , (2.50)

σν = − −3

16π

∫
dΩ

[
(k̂ · n̂)2 − 1

3

]
Fν(k, n̂, τ) =

1

2
Fν2 . (2.51)

Then, integrating equation (2.46) over q2 dq q f0(q) and dividing it by
∫
q2 dq q f0(q), the

Boltzmann equation becomes

∂Fν
∂τ

+ ikµFν = −2

3
h′ − 4

3
(h′ + 6η′)P2(µ) , (2.52)

where µ = k̂ · n̂. Thus, making use of the Legendre expansion (2.48), we obtain:

δ′ν = −4

3
θν −

2

3
h′ , (2.53)

θν = k2

(
1

4
δν − σν

)
, (2.54)

F ′ν 2 = 2σ′ν =
8

15
θν −

3

5
kFν 3 +

4

15
(h′ + 6η′) , (2.55)

F ′ν l =
k

2l + 1

[
lFν (l−1) − (l + 1)Fν (l+1)

]
, l ≥ 3 . (2.56)

From the Boltzmann equation we have then obtained an infinite hierarchy of equations.
The hierarchy is truncated at some maximum multipole order lmax, in the standard case
the terms higher than Fν 3 are negligible, therefore, it is used to truncate the hierarchy
at l = 3.

Photons
Photons can be treated similarly to massless neutrinos, with the difference that we

cannot neglect the collisional terms.
Before recombination photons interact via Thomson scattering with baryons, in the

so-called tight coupling; after recombination photons start to free-stream with some
residual energy and momentum transfer due to residuals Thomson interactions. In ad-
dition, photons are linearly polarized in the plane perpendicular to their propagation
direction n̂ due to scattering of electron density perturbations with wavevector k. We
denote the sum (total intensity) of phase space densities in the the two polarization
states for each k and n̂ by Fγ(k, n̂, τ), defined as in equation (2.48), and the difference
by Gγ(k, n̂, τ). Their explicit expressions and the collision factor can be found in [69],
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while the Boltzmann equations are:

δ′γ = −4

3
θγ −

2

3
h′ , (2.57)

θ′γ = k2

(
1

4
δγ − σγ

)
+ a ne σT (θb − θγ) , (2.58)

σ′γ =
4

15
θγ −

3k

10
Fγ 3 +

2

15
(h′ + 6η′)− a ne

20
σT (18σγ −Gγ 0 −Gγ 2) , (2.59)

F ′γ l =
k

2l + 1

[
lFγ (l−1) − (l + 1)Fγ (l+1)

]
− a ne σTFγ l, l ≥ 3 , (2.60)

where σT = 0.6652×10−24 cm−2 is the Thomson cross-section and ne is the proper mean
density of the electrons.

Baryons

Baryons behave like a perfect pressureless non-relativistic fluid. Anyway, differently
from CDM, for baryons we need to account for the interaction with photons that pro-
duces a transfer of momentum and energy between the two components, represented by
the term a ne σT (θb − θγ). Moreover we need also to consider the evolution of the mo-
mentum. In particular, the momentum density is related to θ by ikjδT j0 = (ρ̄+ p̄)θ. The
conservation of momentum then implies that we add a term 4ρ̄γ/(3ρ̄b) a ne σT (θγ − θb)
to the equation for θ′b; thus, the Boltzman equations for Baryons are

δ′b = −θb −
1

2
h′ , (2.61)

θ′b = −Hθb + c2
sk

2δb +
4ρ̄γ
3ρ̄b

a ne σT (θγ − θb) , (2.62)

in which c2
s = δp/δρ is the squared baryon sound speed.

2.3.1 Tight coupling approximation
At early times, the characteristic time scale for the photon-baryon interaction tb γ '

(ne σT )−1 is smaller than the the Hubble time tH ' a τ , therefore any deviations from
zero of θγ − θb rapidly decays. This can be seen subtracting eq. (2.58) and (2.62) and
considering Hθb + 1

3
k2δγ as a forcing term. In the limit σT →∞ one obtains θb = θγ, i.e.

a tight coupling between baryons and photons. Therefore, at early times we can assume
θb = θγ = θγb and combining (2.58) and (2.62) in such a way that the scattering terms
cancel we get [73]: (

4

3
Ωγ − Ωb

)
θ′γb = −ΩbHθγb +

1

3
Ωγk

2δγ , (2.63)
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while the baryons and photons density contrasts evolve as

δ′b = −θγb −
1

2
h′ , (2.64)

δ′γ = −4

3
θγb −

2

3
h′ . (2.65)

2.4 Initial conditions for the cosmological perturba-

tions
In order to solve the Einstein-Boltzmann system of differential equations we have to

set the initial conditions. These initial values for the perturbative quantities are usually
set deep in the radiation era but after the decoupling of neutrinos. This simplifies the
computation since the density is dominated by photons and neutrinos, i.e. ρtot ' ργ+ρν .
In the radiation era a ∼ τ and H ∼ τ−1 and we consider scales which are outside the
horizon kτ � 1.1

A natural mechanism for the origin of the initial perturbations is provided by inflation.
The simplest inflationary models predict the initial perturbations to be adiabatic [74],
an hypothesis supported also by the limited amount of isocurvatures allowed by CMB
data [42], we will therefore focus on them.

2.4.1 Adiabatic fluctuations
Consider a matter and radiation plasma before the equivalence: the entropy per

matter particle is given by Γ = T 3/nm with nm the number density of matter particles.
Thus, defining the entropy perturbation S as S = δΓ/Γ we have, since ρr ∝ T 4,

S = 3
δT

T
− δm =

3

4
δr − δm . (2.66)

Then, if we impose a vanishing entropy perturbations we obtain the following conditions:

δγ ' δν '
4

3
δc '

4

3
δb . (2.67)

Perturbations satisfying the above equations are said to be adiabatic or iso-entropic.
Alternatively one could define the entropy perturbation in a gauge invariant way:

S = H
(
δp

p′
− δρ

ρ′

)
, (2.68)

1k is a superhorzon scale if kτ < 1 while it is a subhorizon mode when kτ > 1.
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and obtain that, for two barotropic fluids with constant ωi = pi/ρi, the relative entropy
perturbation is given by

Sij =
δi

1 + ωi
− δj

1 + ωj
, (2.69)

from which it is evident that iso-entropic perturbations satisfy (2.67).
Adiabatic perturbations are characterized by the fact that there are equal fractional

perturbations in number density for both radiation and non-relativistic matter, this leads
to a global perturbation to the total energy density and, through the Einstein equations,
to a perturbation to the local geometry of the Universe. It is however possible to perturb
the matter components without perturbing the geometry: this is the case of isocurvature
perturbations, which give a non-vanishing entropy perturbation but do not contribute
to the curvature perturbation at the leading order.

Following [69] we derive now the initial conditions for adiabatic perturbations. From
(2.30) and (2.32), remembering that deep in the radiation era ρtot = ργ+ρν and H ∼ τ−1

we obtain:
τ 2h′′ + τh′ + 6

[
(1−Rν)δγ +Rνδν

]
= 0 (2.70)

where Rν = ρν/(ρν+ργ). Due to the tight coupling with baryons, photons do not develop
anisotropic pressure, leading to negligible multipoles l ≥ 2 in the hierarchy. Then, from
the Boltzmann equations for the various components we have:

δ′γ +
4

3
θγ +

2

3
h′ = 0 , θ′γ −

1

4
k2δγ = 0 ,

δ′ν +
4

3
θν +

2

3
h′ = 0 , θ′ν −

1

4
k2(δγ − 4σν) = 0 ,

σ′ν −
2

15
(2θν + h′ + 6η′) = 0 .

(2.71)

Now, expanding the perturbations in power series of kτ and considering the growing
mode, the initial conditions at leading order are [69][73]:

h = C(kτ)2 , η = 2C − 5 + 4Rν

6(15 + 4Rν)
C(kτ)2 , (2.72)

δγ = −2

3
C(kτ)2 , δc = δb =

3

4
δν =

3

4
δγ , (2.73)
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θc = 0 , θγ = θb = − 1

18
C(k4τ 3) , θν =

23 + 4Rν

15 + 4Rν

θγ , (2.74)

σν =
4C

3(15 + 4Rν)
(kτ)2 , (2.75)

where C represents the primordial power spectrum of fluctuations.

2.4.2 The curvature perturbation
We now define the curvature perturbation in terms of the metric perturbations in-

troduced in section 2.1 as

R ≡ −C +
∇2E

3
−H

(
B − θ

k2

)
. (2.76)

This quantity is also gauge invariant, in fact, it is related to the Bardeen potentials by
[75]:

R = −ΨB −
2

3(1 + ω)H(Ψ′B +HΦB). (2.77)

Furthermore, it obeys the following evolution equation [75]:

R′ = 2

3(1 + ω)H k2

[
c2
sΨB +

1

3
(ΨB − ΦB)

]
+ 3H c2

s S , (2.78)

from which we see that for adiabatic fluctuations and on large scales (neglecting there-
fore terms proportional to k) the curvature perturbation remains constant outside the
horizon. For this reason adiabatic perturbations are often called curvature perturbations
and in fact they can be characterized by R.

2.5 Anisotropies of CMB
At sufficiently early times the frequent collisions between free electrons and photons

maintained the thermal equilibrium between matter and radiation. The radiation then
follows a black-body spectrum:

nT (ν)dν =
8πν2dν

ehν/(kBT ) − 1
. (2.79)

As time passed, the universe expanded and cooled down to the temperature allowing
neutral atoms to form, the so-called recombination, at zrec ' 1100. The recombination
decouples matter and radiation and the latter becomes free to propagate. This radiation
is called the Cosmic Microwave Background (CMB) and today has a temperature of
Tcmb = 2.72548 ± 0.00057 [76]. It is also isotropic on the sky, in fact we only observe
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2. Theory of cosmological perturbations and CMB anisotropies

small temperature anisotropies of the order Θ ≡ δT/T ∼ 10−5. These anisotropies
are the imprints of primordial fluctuations generated by inflation and can be divided in
two groups: primary and secondary anisotropies. The primary anisotropies are those
already present at the time of the decoupling while the secondary ones originated after
recombination, during the journey of the photons from the last scattering surface to us.

Primary anisotropies are the result of different processes at different scales. We can
identify three main categories: superhorizon, subhorizon and very small scales. On su-
perhorizon scales the photons are only subject to the gravitational interaction. Inhomo-
geneities in the gravitational potential cause photons that originate in regions of higher
density to climb out of a potential well, loosing energy for gravitational redshift. For the
same reason a photon rolling down a potential hill will gain energy being blueshifted.
This mechanism causes a variation in the Temperature contrast Θ = Φ, where Φ is the
gravitational potential. This effect is partly compensated by a gravitational time delay:
a photon originating in an overdense region will be scattered at a slightly earlier time
and thus at an higher temperature compared to a photon from a region of average or
below average density. This gives a contribution Θ = −2Φ/3. The resulting net effect is
then Θ = Φ/3, which is known as Sachs-Wolfe effect [77]. Since on large scales 2Φ = −δ,
the hot spots in the CMB corresponds to underdense regions while overdense regions will
be identified by cold spots. On subhorizon scales we have the acoustic oscillations due to
the density and velocity fluctuations of the coupled photon-baryon fluid. Qualitatively
these oscillations are due to the fact that the baryon-photon fluid falls in the potential
wells created by the dark matter perturbations and gets compressed in the process, this
leads to an increase in the radiation pressure which counteracts the compression, result-
ing in an oscillating behaviour of the fluid. In the density peaks of these sound waves,
the baryon-photon fluid is adiabatically compressed and thus hotter than the average,
viceversa for the bottoms. Both contribute to the CMB power spectrum because it is
quadratic in the perturbations and therefore we expect peaks corresponding to the scales
that were in the extrema of their oscillations at zdec, even peaks for rarefaction and odd
peaks for compression.

At even smaller scales the dominating process is the so called Silk damping. Owing
to the finite mean free path of photons, the perfect fluid approximation for the photon-
baryon fluid is not valid at the smallest scales, and the two components are effectively
decoupled. This implies that under a certain characteristic size λS called the Silk scale,
the temperature fluctuations can be washed out by the diffusion of photons. Because
of this process, primary CMB anisotropies are strongly damped on the smallest angular
scales (less than few arcmins).
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Secondary anisotropies, being generated during the propagation from the last scat-
tering surface, provide important information about structure formations. They consists
of different effects, the most relevant are:

• Integrated Sachs-Wolfe effect (ISW): Photons propagating towards us are travers-
ing a Universe in which structure formation takes place, i.e. the gravitational
potential is varying with time. If it was time-independent, photons would enter
and leave a potential well with their frequency being unaffected: the blueshift of
the fall being balanced by the redshift of the climb; this is no longer true if the po-
tential changes over time. This process can be divided in early ISW that happens
right after decoupling when the radiation density has still important gravitational
effects, and late ISW arising in the dark energy dominated era due to the decay of
gravitational potentials in accelerated expansion.

• Gravitational lensing: photons that reach us encounter in their journey various
gravitational fields which deflect them, for this reason we observe them coming
from a slightly different direction with respect to the original one. This effect af-
fects the primary anisotropies by smoothing out the acoustic peaks and generating
a non-zero B-mode polarization on small angular scales. At the same time the
lensing presence induces a non-zero four point correlation function which is used
to reconstruct the lensing potential and the underlying dark matter distribution.

• The Thermal Sunyaev–Zeldovich effect: CMB photons passing through clusters of
galaxies or other regions of dense and hot gas are Inverse Compton scattered by
the hot electrons causing a localized spectral distortion of the black body with an
analytical frequency shape. The TSZ effect can be clearly identified in detected
galaxy clusters thanks to the current multifrequency observations covering both
frequencies below and over 217 GHz which represents the zero point. Undetected
SZ together with the Kynetic Sunyaev Zeldovich effect, caused by peculiar motions,
are considered an additional source of noise in CMB dedicated experiments.

2.5.1 Angular power spectrum
In order to perform a statistical analysis of the CMB anisotropies we compress

the data from maps to the angular power spectrum. The spherical harmonics are
the eigenfunctions of the Laplace operator on the sphere and form a complete basis
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for scalar functions on the sky, therefore we can expand the temperature anisotropy
Θ(θ, ϕ) = δT (θ, ϕ)/T in terms of spherical harmonics:

Θ(θ, ϕ) =
∞∑
`=1

∑̀
m=−`

a`mY`m(θ, ϕ) , (2.80)

where the index ` represents the multipole and is related to a characteristic angular scale
θ ∼ 2π/`, while the index m describes the angular orientation. For statistically isotropic
fluctuations, the ensemble average of the temperature fluctuations is described by the
power spectrum

〈a∗`′m′a`m〉 = δ``′δmm′C` , (2.81)

furthermore, for Gaussian fluctuations all the statistical information are encoded in the
power spectrum. Of course, we cannot average over an ensemble of different realizations
of the sky: we are limited to only one sky and what is actually observed is a quantity
averaged over m:

Cobs
` =

1

2`+ 1

m=∑̀
m=−`

|a`m|2 . (2.82)

This gives rise to a limitation on how accurately the CMB angular power spectrum can
be known. This uncertainty is known as cosmic variance and it’s due to the fact that
for each mode ` we can only average over a finite number (2`+ 1) of independent modes.
The error on the C`’s is given by

∆C` =

√
2

2`+ 1
C`. (2.83)

We briefly describe the observed temperature power spectrum: figure 2.1 shows the
temperature anisotropies power spectrum and the best-fit obtained by Planck 2018 [3],
the quantity D` in the y-axis is related to our notation by D` = T 2

cmb
`(`+1)

2π
C`. On large

angular scales (small `) the spectrum is dominated by the Sachs wolfe effect which leads
to a plateau in that region of the graph. Dark energy, which dominates the matter
content of the Universe at recent times, enhances the spectrum on very small ` (` < 10)
through ISW effects. At smaller scales we observe the characteristic acoustic peaks, the
first peak at ` ' 220 correspond to the angular scale of the horizon at recombination
(θ ∼ 1◦), and it can give us an estimate of the total density parameter. Then we have a
sequence of acoustic peaks which is damped for large values of ` (` > 1000) by the Silk
damping.

The cosmological parameters constrained with the angular temperature power spec-
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Figure 2.1: Temperature anisotropies power spectrum and best fit measured by Planck.
DTT
` = T 2

cmb `(`+ 1)C`/(2π) in our notation. Figure taken from [3]

trum may be degenerate which means that for different choices of the parameters one
may obtain the same power spectrum. To break the degeneracy it is convenient to take
advantage of the polarization of the CMB.

2.5.2 CMB polarization anisotropies
The CMB is linearly polarized, in fact if a radiation field possesses a quadrupole, then

Thomson scattering induces a linear polarization of the scattered radiation. Polarization
anisotropies are much weaker than the ones in temperature: they are only 1% of the
total temperature fluctuations on large angular scales and about 10% at small angular
scales. A radiation fields is usually measured with the Stokes parameters I, Q and U ,
where the latter two are referred to polarization and the first to the total intensity.
The parameter Q measures the difference in brightness between two orthogonal linear
polarizations, while the U parameter measures the difference in brightness between two
linear polarizations at 45◦ to those used to define Q. For CMB polarization is usual
to combine the Q and U parameters into E (electric) and B (magnetic) modes. The
advantage offered by E and B modes is that they are invariant under rotations. The
electric modes are scalar functions describing the component of the polarization with
even parity, they correlate with temperature fluctuations, which are also even. The B
modes are odd under parity (hence the name magnetic) and represent the odd component
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of the polarization; due to parity there is no correlation between the B modes and either
Θ or E modes. Another important distinction is that E modes are related with density
perturbations whereas primordial B modes are generated by tensor perturbations and
are therefore signature of primordial gravitational waves generated during inflation.

Analogously to what has been done above for the temperature field we can expand
the E and B modes in spherical harmonics and define the C`’s for these quantities as

〈E∗`′m′E`m〉 = δ`′m′δ`mC
EE
` , (2.84)

〈a∗`′m′E`m〉 = δ`′m′δ`mC
TE
` , (2.85)

〈B∗`′m′B`m〉 = δ`′m′δ`mC
BB
` . (2.86)

In figure 2.2 and 2.3 are shown, respectively, the EE and TE spectrum and best fit
obtained by Planck [3]. The peaks in the EE spectrum is π out of phase with respect
to those in the temperature spectrum, because the polarization is the result of Thomson
scattering and its effect is therefore maximum when the fluid velocity is maximal. The
polarization anisotropies are also affected by lensing, in particular lensing generates B
modes from the E, with the consequence that it is possible to measure non-vanishing B
signals even in absence of tensor perturbations. This is one of the main sources of noise
in the detection of primordial B modes.
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Chapter 3

Scalar tensor gravity: Horndeski
theories

Einstein’s theory of General Relativity is a geometrical theory of space-time, based on the
equivalence principle and whose fundamental building block is the metric tensor. For this
reason it can be called a “tensor” theory of gravity. Historically this theory was not the
only attempt to generalize Newtonian gravity, in fact the most nautral path to do so was
by building a so called “scalar theory”: an example of such a theory is Nordstrom gravity
[78] in which he promoted the Newtonian potential to be a Lorentz scalar. This theory
though, could not predict the deflection of light caused by gravity and the prediction of
Mercury’s perihelion shift had the wrong sign with respect to observations. Therefore
general relativity has since been accepted as the standard theory of gravitation. In spite
of this fact many new proposal have advanced through the years, both for theoretical
and experimental purposes and scalar tensor theories (STT) of gravity are one of these
many proposals.

Even if they were first proposed in the 50s, scalar-tensor theories became more ap-
pealing, from the observational point of view, after the discovery of the accelerated
expansion of the Universe, which posed an issue to the Standard Cosmological Model.
In the framework of GR this has led to the introduction of an extra energy fluid: dark
energy. This dark energy, as we’ve seen in Ch.1, might be described as a constant en-
ergy density (cosmological constant), or might be due to a varying component, such as
a scalar field (quintessence). Scalar tensor theories, on the contrary, included automati-
cally a candidate for dark energy, allowing for an alternative approach: instead of keeping
general relativity and add new fluids to explain the observations, one can implement new
theories of gravity that lead naturally to the observed acceleration and whose behaviour
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3. Scalar tensor gravity: Horndeski theories

is similar to that of GR on scales comparable to those of the solar system, while deviates
from GR on large scales. So we briefly introduce scalar-tensor theories as an example of
this alternative approach.

In scalar tensor models a scalar field is present and it is non minimally coupled to the
Ricci scalar R, while it does not couple with matter at the lagrangian level. Consequently
only the distribution of matter in the Universe determines the local value of the gravi-
tational field. In this way scalar tensor theories naturally incorporate Mach’s principle,
which states that the global distribution of matter should determine local gravitation.
This is a distinguishing feature of the theory: the cosmological distribution of matter af-
fects local gravitational experiments and therefore the strong equivalence principle does
not hold anymore [79]. The first scalar–tensor theory was originally conceived by Jordan
[80] and later by Brans and Dicke [81], such theories incorporate the Dirac’s argument
that the gravitational constant should be time dependent [82]. This Jordan-Brans-Dicke
model is the archetype of all the different scalar tensor theories developed in the later
years. Today there is a plethora of scalar-tensor models, and within this framework
there are Horndeski theories [83] which are the most general scalar-tensor theories with
second-order equation of motion. In this thesis we will focus mainly on a particular sub-
class of Horndeski theories: the models that, consistently with observations [4], predict
that gravitational waves travel at the speed of light.

In the present chapter we first present the entire Horndeski lagrangian and some of its
special cases, with particular emphasis on the Jordan-Brans-Dicke theory and Induced
gravity, which are the models that we are going to extend. Then we will briefly describe
the conformal frame issue of Scalar-Tensor Theories and finally we will adrress the im-
portant topic of the recovery of general relativity at small scales, like the solar system.
This is a necessary feature of a STT and one has to come up with some mechanisms that
naturally do that, these mechanisms are called screening mechanisms and will deserve
their own section.

3.1 Horndeski Action and its special cases
Theories containing a scalar field φ coupled to gravity are, in general, called scalar-

tensor theories [79]. Horndeski theories [83] are the most general scalar-tensor theo-
ries with second-order equations of motion. This property implies the absence of the
Ostrogradski instability [84] associated with an Hamiltonian unbounded from below.
Horndeski theories are given by the action [85]

SH =

∫
d4x
√−g

(
LH + Lm

)
, (3.1)
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where g is the determinant of the metric tensor and

LH =G2(φ,X) +G3(φ,X)2φ+G4(φ,X)R +G4,X(φ,X)
[
(2φ)2 − (∇µ∇νφ)(∇µ∇νφ)

]
−1

6
G5,X(φ,X)

[
(2φ)3 − 3(2φ) (∇µ∇νφ)(∇µ∇νφ) + 2(∇µ∇αφ)(∇α∇βφ)(∇β∇µφ)

]
+G5(φ,X)Gµν∇µ∇νφ .

(3.2)

Here, � ≡ ∇µ∇µ is the covariant d’Alembert operator, R is the Ricci scalar, Gµν is the
Einstein tensor, and

X ≡ −1

2
∇µφ∇µφ = −1

2
∂µφ ∂µφ = −1

2
(∂φ)2. (3.3)

The functions G2,3,4,5 depend on the field φ and on the kinetic term X, with Gi,φ ≡
∂Gi/∂φ and Gi,X ≡ ∂Gi/∂X. Originally, in Ref. [83], Horndeski presented the La-
grangian of scalar-tensor theories with second-order equations of motion in a form differ-
ent from the one we presented in Eq. (3.2), but their equivalence was explicitly demon-
strated in Ref. [85].

The action (3.1) encompasses many model, we list some of them below:

Quintessence and k-essence

K-essence [86–89] is characterized by the functions

G2 = G2(φ,X) , G3 = 0 , G4 =
M2

Pl

2
, G5 = 0 , (3.4)

where MPl = 1/
√

8πG is the reduced Planck mass. Quintessence [65, 66] corresponds to
the choice:

G2 = X − V (φ) , (3.5)

where V (φ) is the potential of φ.

Jordan-Brans-Dicke (JBD), Extended JBD (eJDB) theory and Induced Grav-
ity

Jordan-Brans-Dicke theory [80, 81] is defined by

G2 = 2
ωbd

φ
X , G3 = 0 , G4 = φ , G5 = 0 , (3.6)
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or equivalently, by the following action:

SBD =

∫
d4x
√−g

(
φR− ωbd

φ
(∂φ)2 + Lm

)
. (3.7)

General-Relativity is recovered in the limit ωbd → ∞ and the value of this parameter
has been has been strongly constrained by the Cassini probe in 2003 to be ωbd > 40000

[7]. Therefore Brans-Dicke theory with a free or light scalar field is viable in the limit of
large ωbd, but the large value required to satisfy the experimental bounds is fine-tuned
and makes the model unappealing. However, this fine-tuning becomes unnecessary if
the scalar has a sufficiently large mass and, therefore, a short range. This means that a
self-interaction potential V (φ) has to be considered when discussing the possible value
of ωbd. The JBD theory with a potential is called extended Jordan-Brans-Dicke model
(eJBD) and is given by the functions

G2 = 2
ωbd

φ
X − V (φ) , G3 = 0 , G4 = φ , G5 = 0 . (3.8)

Thus, the action is

SBD =

∫
d4x
√−g

(
φR− ωbd

φ
(∂φ)2 − V (φ) + Lm

)
. (3.9)

We note that there are also more general non-minimally coupled theories given by the
couplings G2 = ω(φ)X − V (φ), G3 = 0, G4 = F (φ), G5 = 0, they’ve been studied for
example in [90–96].

The extended Jordan-Brans-Dicke Theory is equivalent to Induced Gravity [97–99]:
after a redefinition of the field φ = γσ2/2, with γ = (4ωbd)−1, we have that the action
(3.9) becomes

SIG =

∫
d4x
√−g

( 1

2
γσ2R− 1

2
(∂σ)2 − V (σ) + Lm

)
. (3.10)

In this model one recovers general relativity for γ → 0 and the actual constraint on its
value is γ < 0.0017 [100]. The cosmological implications of Induced gravity have been
extensively studied in [14, 100–103].

Covariant Galileons gravity

In original Galileons [104], the field equations of motion are invariant under the
shift ∂µφ → ∂µφ + bµ in Minkowski spacetime. In curved spacetime, the Lagrangian of
covariant Galileons [105] keeps the equations of motion to second order by construction,
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and the Galilean shift symmetry is recovered in the Minkowski limit. Covariant Galileons
are given by the following G functions

G2 = β1X −m3φ , G3 = β3X , G4 =
M2

pl

2
+ β4X

2 , G5 = β5X
2 , (3.11)

where β1,3,4,5 and m are constants. In absence of the linear potential V (φ) = m3φ, there
exists a self-accelerating de Sitter solution satisfying X = constant [106, 107].

Kinetic braidings and its extensions: BDG and IGG

We will see later that the theories given by the lagrangian

L = G2(φ,X) +G3(φ,X)�φ+G4(φ)R , (3.12)

are the most general Horndeski theories with the tensor propagation speed ct equivalent
to 1. The kinetic braiding scenario [108, 109] corresponds to the minimally coupled case,
i.e., G4 = M2

pl/2. The cubic Galileon given by L = β1X −m3φ + β3X�φ + (M2
pl/2)R

belongs to a subclass of kinetic braidings.
The Cubic Galileon model L = β1X −m3φ + β3X�φ + (M2

pl/2)R can be extended
to a more general model of the form

G2 = 2
ωBD
φ

X + cφ , G3 = −2f(φ)X = f(φ)(∂σ)2 , G4 = φ , (3.13)

where a coupling of the field to the curvature R together with a function f(φ) modulating
the intensity of cubic self-interaction X�φ have been added to the model. This theory
and its cosmological effects has been first studied in [110] where it was shown that it
admitted a self accelerating solution with X = constant for c = ρ = p = 0.

This model can be further extended with the introduction of a generic potential V (σ),
and this extension, which, following [111], we call Brans-Dicke Galileon (BDG) will be
one of the two models we will analyse in the thesis.

Another possibility is to also extend the Induced gravity model (3.10) with a cubic
Galileon-like self interaction of the form −2g(σ)χ�σ, where χ ≡ −(∂σ)2/2. The exten-
sion of Induced gravity to Induced Gravity Galileon (IGG) is the main model we wish
to study in the following chapters.

Horndeski theories contain many other models like f(R) gravity, Gauss-Bonnet cou-
plings, f(G) gravity and others, for a complete review see [111] and [112].
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3.2 Background Equations
Considering a flat FLRW spacetime:

ds2 = −dt2 + a2(t)δijdx
i dxj , (3.14)

and matter described by a perfect fluid like in (1.48), from (3.1) and (3.2) the equations
of motion are obtained using a variational principle [112]:

6G4H
2 +G2 − φ̇2G2,X + φ̇2

(
3Hφ̇G3,X −G3,φ

)
+ 6Hφ̇

(
G4,φ + φ̇2G4,Xφ − 2Hφ̇G4,X −Hφ̇3G4,XX

)
+H2φ̇2

(
9G5,φ + 3φ̇2G5,Xφ − 5Hφ̇G5,X −Hφ̇3G5,XX

)
= ρm , (3.15)

2qtḢ −D6φ̈+D7φ̇ = −ρm − Pm , (3.16)

3D6Ḣ + 2D1φ̈+ 3D7H −D5 = 0 , (3.17)

where the quantity qt is defined by

qt = 2G4 − 2φ̇2G4,X + φ̇2G5,φ −Hφ̇3G5,X , (3.18)

and the quantities D1,5,6,7 are

D1 = H3φ̇

(
3G5,X +

7

2
φ̇2G5,XX +

1

2
φ̇4G5,XXX

)
+ 3H2

[
G4,X −G5,φ + φ̇2

(
4G4,XX −

5

2
G5,Xφ

)

+φ̇4

(
G4,XXX −

1

2
G5,XXφ

)]
− 3Hφ̇

[
G3,X + 3G4,Xφ + φ̇2

(
1

2
G3,XX +G4,XXφ

)]
+

1

2

[
G2,X + 2G3,φ + φ̇2

(
G2,XX +G3,Xφ

)]
,

D5 = −H3φ̇3(5G5,Xφ + φ̇2G5,XXφ) + 3H2
[
2G4,φ − φ̇2(4G4,Xφ − 3G5,φφ)

− φ̇4(2G4,XXφ −G5,Xφφ)
]

+ 3Hφ̇
[
2G4,φφ + φ̇2(G3,Xφ + 2G4,Xφφ)

]
− φ̇2(G2,Xφ +G3,φφ) +G2,φ ,

D6 = H2φ̇2(3G5,X + φ̇2G5,XX) + 2Hφ̇
[
2(G4,X −G5,φ) + φ̇2(2G4,XX −G5,Xφ)

]
− φ̇2(G3,X + 2G4,Xφ)− 2G4,φ ,
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D7 = H3φ̇2(3G5,X + φ̇2G5,XX) + 2H2φ̇
[
3(G4,X −G5,φ) + φ̇2(3G4,XX − 2G5,Xφ)

]
−H

[
2G4,φ + φ̇2(3G3,X + 10G4,Xφ − 2G5,φφ)

]
+ φ̇(G2,X + 2G3,φ + 2G4,φφ) .

The conservation of the energy momentum tensor still holds, and we have the conti-
nuity equation

ρ̇m + 3H (ρm + Pm) = 0 . (3.19)

We can express Eqs. (3.15) and (3.16) in the forms

3M2
PlH

2 = ρde + ρm , (3.20)

2M2
PlḢ = −ρde − Pde − ρm − Pm , (3.21)

where the density ρde and pressure Pde of the “dark” component are

ρde = 3H2
(
M2

Pl − 2G4

)
−G2 + φ̇2G2,X − φ̇2

(
3Hφ̇G3,X −G3,φ

)
− 6Hφ̇

(
G4,φ + φ̇2G4,Xφ

− 2Hφ̇G4,X −Hφ̇3G4,XX

)
−H2φ̇2

(
9G5,φ + 3φ̇2G5,Xφ − 5Hφ̇G5,X −Hφ̇3G5,XX

)
,

(3.22)

Pde = 2
(
qt −M2

Pl

)
Ḣ −D6φ̈+D7φ̇− ρde . (3.23)

We define the dark energy equation of state, as

wde ≡
Pde

ρde
= −1 +

2(qt −M2
pl)Ḣ −D6φ̈+D7φ̇

ρde
, (3.24)

The necessary condition for the late time cosmic acceleration is wde < −1/3. Observing
equation (3.24) we see that even in models where we have qt = M2

Pl, like quintessence and
k-essence, the time variation of φ leads to a deviation of wde from −1. In other theories
presented in the previous section, the quantity qt is, in general, different from M2

Pl, so
the term 2(qt−M2

Pl)Ḣ in (3.24) also contributes to the additional deviation of wde from
−1. Therefore, the evolution of wde is different depending on dark energy models, and it
is then possible to distinguish between them from the observations of SNIa, CMB, and
BAO.

3.3 Speed of tensor perturbations in Horndeski theo-

ries
The detection of gravitational waves from the neutron star-neutron star merger

GW170817 [4] and the simultaneous measurement of the gamma-ray burst GRB170817A
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[113] has costrained the propagation speed of gravitational waves, ct, to be [5]

− 3× 10−15 ≤ ct − 1 ≤ 7× 10−16 , (3.25)

for redshifts z < 0.009. Here we discuss the speed of propagation of tensor degrees of
freedom in Horndeski theories. Following the approach of [114] it can be shown that
such speed is given by [85, 111, 112]

c2
t =

1

qt

(
2G4 − φ̇2G5,φ − φ̇2φ̈G5,X

)
=

G4 −X
(
φ̈G5,X +G5,φ

)
G4 − 2XG4,X −X

(
Hφ̇G5,X −G5,φ

) , (3.26)

if we now request that c2
t = 1 we arrive at the conditon

2G4,X − 2G5,φ +
(
Hφ̇− φ̈

)
G5,X = 0 . (3.27)

Then, unless we allow for some fine tuning of the functions, the dependence of G4 on
X is forbidden, as well as the dependence of G5 on φ and X. Thus, as anticipated, the
general Horndeski lagrangian (3.2) is constrained to be of the form (3.12):

L = G2(φ,X) +G3(φ,X)�φ+G4(φ)R . (3.28)

Therefore, models like the covariant Galileon can be discarded while the Galileon la-
grangian up to the cubic interaction is allowed, as well as all the models that fall under
the subclass of Extended Kinetic Braidings: notable examples of such models are the
Jordan-Brans-Dicke (3.9) theory, the Brans-Dicke cubic Galileon and the Induced gravity
theory with cubic interaction which are presented in the next chapter.

3.4 Conformal transformations

We shall now briefly describe one of the most longstanding issues in Scalar-Tensor
theories: the conformal frame issue. A conformal transformation takes a metric gµν and
transforms it into another metric g̃µν through:

g̃µν = Ω2(x)gµν , (3.29)
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where Ω is an arbitrary function of the coordinates. This transformation affects the
quantities related to the metric in the following way [79]:

gµν = Ω2g̃µν

√−g = Ω−4
√
−g̃

Γµνρ = Γ̃µνρ − (f,νδ
µ
ρ − f,ρδµν − g̃µλf,λg̃νρ)

R = Ω2(R̃− 6�̃f − 6g̃µνf,µf,ν) ,

(3.30)

where f ≡ ln Ω. The application of a conformal transformation is commonly referred to
as moving from a conformal frame to another. Under such transformations of the metric
a given Scalar-Tensor theory may be re-formulated in an infinite set of mathematically
equivalent theories, each of them in a different conformal frame. The two most interesting
ones are the Jordan and the Einstein frame. The former is the frame where the scalar
field, while non-minimally coupled to gravity, is minimally coupled to matter at the
lagrangian level; the latter is the frame where the theory has been recasted as an Einstein
theory plus a scalar field non minimally coupled to the matter Lagrangian. We show
how this works in one of the simplest of these theories: the Jordan-Brans-Dicke theory,
whose action is given, in the Jordan frame, by (3.7)

S =

∫
d4x
√−g

(
φR− ω

φ
(∇φ)2 + Lm

)
. (3.31)

This action can be recast, through a conformal transformation gµν → Ω2gµν , and with
the choice φ = Ω2 = e−α, into

S =

∫ √−g[R− (ω +
3

2

)
(∇α)2 + e−2αLmatter

]
, (3.32)

which is its Einstein frame form. This frame is very useful because the field equations
have the the familiar form they have in General Relativity and thus one can obtain
exact solutions of scalar tensor theories starting from the ones already known in GR.
However, the issue of which of these two frames is the physical one and of the conditions
under which they are physically equivalent is still open [115, 116]. We will consider the
equations in the Jordan frame, because in this frame we can use the usual Boltzmann
equations described in Sec. 2.3.

3.5 Screening mechanisms
A scalar-tensor theory as an alternative to GR is supposed to give rise to modification

of gravity on cosmological scales, but the extra force mediated by the scalar degree of
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freedom is strongly constrained on scales of the size of the Solar System where general
relativity is very precisely tested. The two most popular screening mechanisms are the
chameleon effect [117, 118] and the Vainshtein mechanism [9]. For this reason, in this
section we will illustrate the basics of the Chameleon and the Vainshtein mechanism, the
latter being relevant to Galileon theories and Galileon-like cubic interactions in general.

In the chameleon mechanism the scalar field is effectively massive in the vicinity of
a source, the effective mass is so large that the contribution of the scalar field to gravity
is short-ranged, leading to an effective screening within the Solar System.

The Vainshtein mechanism, instead, acts around local sources in the presence of non-
linear scalar derivative interactions, these nonlinear interactions lead to the decoupling
of the field from matter within a radius rV commonly called the Vainshtein radius.

Other screening mechanisms worth mentioning, but are beyond the scopes of this the-
sis, are the symmetron [119, 120] and k-Mouflage models [121]; both effectively suppress
the coupling to matter.

3.5.1 Chameleon mechanism
In the literature the chameleon effect is almost exclusively described in the Einstein

frame [117, 118, 122], where the chameleon is minimally coupled to the Ricci curvature
and non-minimally coupled to the matter sector. This means, as explained in the previ-
ous section, that, due to a fifth-force, particles paths deviate from the geodesics of the
gravitational metric and the weak equivalence principle does not hold anymore. This
leads to the non conservation of the matter energy-momentum tensor in this conformal
frame. In the Jordan frame instead, matter interacts with the scalar field only gravita-
tionally, this may lead to the idea that there is no need to look for a screening effect
like the chameleon mechanism in this frame. This is not true, since the need to find
a screening mechanism in this frame arises when trying to weaken the very stringent
constraint on the free parameter of the JBD theory: The Cassini probe constrained the
first post-Newtonian parameter γppn, related to ωbd by γppn = (1 +ωbd)/(2 +ωbd), to be
γppn = 1 + (2.1± 2.3)× 10−5 [7]. This implies that the Brans-Dicke parameter has to be
ωbd > 4× 104, or, more relevant for this the thesis, the parameter γ in induced gravity
(3.10) has to satisfy the costraint: γ < 6.25× 10−6.

Here we will focus on the description of the chameleon effect in the Jordan frame
of the Jordan-Brans-Dicke theory extended with a potential. Before working out the
details, we describe the key concepts and the key features of how the mechanism works:
considering for example the Brans-Dicke theory with a potential mentioned above, due to
the chameleon effect, the effective mass of the scalar fieldmφ, depends on the background
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energy density of the environment: at large cosmological scales where the average energy
density is approximately of the same order of the critical density ρcrit ∼ 10−31 g cm−3,
the effective mass can then be very small, depending on the form of the potential it
can even be of the order of H0 ∼ 10−33 eV, in such a way that the scalar field affects
the cosmological dynamics. However, at small scales like in the solar system, where the
energy density of the environment is much larger than ρcrit, the effective mass becomes
large (meff

φ > 10−3 eV), and in such a scenario the Yukawa–like contribution of the scalar
field to gravity ∝ exp(mφr)/r, is short-ranged, thus leading to an effective screening of
the scalar field in the solar system.

We describe how this works using the paradigmatic example of the extended Jordan-
Brans-Dicke theory: we consider therefore the following action

SBD =

∫
d4x
√−g

(
φR− ωbd

φ
(∂φ)2 − 2V (φ) + 2Lm

)
, (3.33)

the equations of motion are obtained from a variational principle: the variation of the
action with respect to the metric and the scalar field yields, respectively

Gµν =
1

φ
T (m)
µν +

ωbd

φ2

[
∂µφ∂νφ−

1

2
gµν (∂φ)2

]
− gµν

V

φ
+

1

φ

(
∇µ∂νφ− gµν2φ

)
, (3.34)

2φ =
2

3 + 2ωbd

(
φ∂φV − 2V +

1

2
T (m)

)
, (3.35)

where

T (m)
µν = − 2√−g

∂
(√−gLm)
∂gµν

, (3.36)

is the conserved energy-momentum tensor of the matter, and T (m) is its trace.

Effective mass of the field

The key concept when discussing the chameleon effect is the mass of the field, and
to give a proper, meaningful definition of this concept is not a trivial task, for a through
analysis see [123]. We will follow that reference to define the mass here, highlighting the
rationale behind the result without addressing all the subtleties presented there. First,
we observe that the Klein-Gordon equation can be rewritten in the form

2φ = ∂φVeff +
1

3 + 2ωbd
T (m) , (3.37)

with
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∂φVeff =
2

3 + 2ωbd

[
φ ∂φV (φ)− 2V (φ)

]
, (3.38)

which, integrated, gives

Veff =
2

3 + 2ωbd

(
φV (φ)− 3

∫
dφV (φ)

)
. (3.39)

Note that V and Veff have different dimensions: while V has the dimensions of an energy
density, Veff has the dimensions of an energy density times a mass squared. Moreover,
Eq. (3.39) shows that for a quadratic potential, which correspond to a quartic potential
in the σ field in Induced Gravity, we have Veff = 0.

Now, with the example of the conventional Klein-Gordon equation in mind, it is
natural to define the mass of the scalar field in the following way [123]:

m2
φ ≡ ∂2

φVeff =
2

3 + 2ωbd

[
φ ∂2

φV (φ)− ∂φV (φ)
]
. (3.40)

This mass is associated with a Yukawa-like term φ ∼ exp (−mφr)/r in the weak field,
slow-motion regime, under the assumption of spherical symmetry φ = φ(r). We first
show this in the vacuum Tµν = 0, for simplicity. Under all these assumptions the Klein-
Gordon equation (3.35) becomes

1

r2

d

dr

(
r2dφ

dr

)
− dVeff

dφ
= 0 . (3.41)

What is usually referred to as an effective mass, is a concept linked with the oscillations
of the field around the minimum of the effective potential, which propagate in spacetime,
assuming then that Veff has a minimum at some φ∗, the effective mass is determined by
expanding ∂φVeff around the φ∗

∂φVeff (φ) ' ∂φVeff

∣∣∣
φ∗

+ ∂2
φ Veff

∣∣∣
φ∗
δφ+ ... = m2

∗δφ , (3.42)

where m2
∗ ≡ ∂2

φVeff

∣∣∣
φ∗

is the effective mass of the scalar field perturbations. Then,

equation (3.41) admits the usual Yukawa solution φ = φ∗ + δφ ∝ e−m∗r/r with range
m∗ determined by the definition (3.40), and, since as we will show, the effective mass
depends on the density, that is the parameter that decides the effective screening of the
field, in different densities configurations

If the effective potential has no minimum, the meaning of effective mass is not clear:
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the Yukawa-like solution, which is the manifestation of a massive propagator, might not
arise. In this case the corresponding mass in Eq. (3.40) would just just be a useful field
theoretical construction with the dimensions of mass. Nonetheless, following the most
common point of view [111], here we will consider the parameter mφ given by Eq. (3.40)
to represent the mass of the field even away from the minimum of Veff .

The presented argument was in the vacuum but in general the scalar field satisfies a
Klein-Gordon equation with a source term S independent of φ:

2φ = ∂φVeff + S, (3.43)

in such a scenario we define the chameleon potential as

Vch = Veff + φS , (3.44)

which allows us to write the general coupled Klein-Gordon equation as

2φ = ∂φVch . (3.45)

Now, focusing on Eq. (3.35) and using the definition (3.44) of the chameleon potential
we have

Vch(φ) = Veff (φ) +
T (m)

3 + 2ωbd
φ =

2φV (φ)− 6
∫
dφV (φ) + φT (m)

3 + 2ωbd
, (3.46)

in such a way that

2φ = ∂φVch =
2

3 + 2ωbd

(
φ ∂φV − V +

1

2
T (m)

)
. (3.47)

Now, following the procedure explained above we assume spherical symmetry and that
the chameleon potential Vch has a minimum at some φ∗, then in the weak-field and
low-velocity limit we obtain

d2 δφ

dr2
+

2

r

d δφ

dr
= m2

φ∗ δφ (3.48)

where m2
φ∗

= ∂2
φVch

∣∣∣
φ∗

is the effective mass of the perturbations around the minimum of

the chameleon potential Vch.
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Solving Eq. (3.48) we have for φ(r) = φ∗ + δφ(r).

φ(r) = φ∗ + C1
e−mφ∗r

r
+ C2

emφ∗r

r
, (3.49)

in which C1 and C2 are integration constants to be determined using the boundary
conditions. For example if we assume that φ(r) −−−→

r→∞
φ∞ = constant then

φ(r) = φ∞ + C1
e−mφ∗r

r
. (3.50)

Once again, the effective mass mφ∗ determines the range of this Yukawa-like solution.
The most important thing here, which is the key fact of this section, is that the

effective chameleon mass is a function of the surrounding density ρ, through the trace
of the energy momentum tensor that enters the definition of the chameleon potential in
Eq. (3.46). This property of the effective mass is what is called the chameleon effect.

Quartic potential example and estimates

Choosing a quartic potential V (φ) = λφ4 with λ ≥ 0, we can see from Eq. (3.39)
that Veff ∝ φ5 and therefore the effective potential does not admit a minimum. By con-
trast, assuming a pressureless dust background T (m) = −ρ, the corresponding chameleon
potential (3.46)

Vch(φ) =
4

3 + 2ωbd

(
λ

5
φ5 +

T (m)

4
φ

)
=

4

3 + 2ωbd

(
λ

5
φ5 +

ρ

4
φ

)
, (3.51)

admits a minimum at φ∗ =
[
ρ/(4λ)

]1/4 if ωbd ≥ −3/2. We can then identify the effective
mass of the field, as usual as, the second derivative of the chameleon potential:

m2
φ∗ = ∂2

φVch

∣∣∣
φ∗

=
16λ

3 + 2ωbd

(
ρ

4λ

)3/4

. (3.52)

The density distribution ρ could be in principle arbitrarily complicated; let’s choose, for
simplicity, the following distribution: a spherical region of radius R, filled with a static
fluid with isotropic and homogeneous density ρ0 surrounded by a fluid with different
homogeneous constant density ρ∞:

ρ(r) =

ρ0 for r ≤ R;

ρ∞ for r � R.
(3.53)
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In this case the effective mass would have two values: one, mφ0 =
√
∂2
φVch

∣∣
φ0
, for the

modes propagating inside the spherical region, and another, mφ∞ =
√
∂2
φVch

∣∣
φ∞

, for the
ones that propagate far from it. For the quartic potential, they are,

mφ0 =
2(4λ)1/8ρ

3/8
0√

3 + 2ωbd
, (3.54)

mφ∞ =
2(4λ)1/8ρ

3/8
∞√

3 + 2ωbd
. (3.55)

Therefore, the mass the determines the range of the Yukawa-like correction depends on
the density as mφ∗ ∝ ρ3/8. Now, in order to make some estimates, following [124], we
can rewrite the effective mass in units particularly useful to this scope [125]1:

mφ∗ [mm
−1] ' 10−3λ1/8

√
3 + 2ωbd

(
ρ[g/cm3]

)3/8

. (3.56)

To plug in some numbers, we consider the scalar field immersed in the earth’s atmo-
sphere, which has an average density ρatm ' 10−3 g/cm3; then, if we assume a millimiter
range screening [124], mφ∗atm ∼ mm−1, and λ ∼ O(1) it follows that ωbd ∼ −3/2, i.e.,
very close to the singular value of the Brans-Dicke coupling parameter. This entails
that the JBD theory may describe the gravitational phenomena with a small, even neg-
ative coupling constant of order unity and, the chameleon potential (3.46) could screen
the field from experiments that look for violation of the Newton’s law, for distances
above the millimeter. In the Solar System where the relevant matter background is the
nearly homogeneous baryonic gas and dark matter, with density ρSS ∼ 10−24 g cm−3 the
interaction range is of the order of m−1

φ∗, SS ∼ 100 km.
In the literature, the discussion of the screening usually stops here, once has been

proven that such an effect arises naturally and it is effective. But the next step, often
overlooked, is as important as the previous one and it has the aim of answering the
following question: can the above model be a good candidate for cosmology as well?
To answer this let us compute the ratio of the mass of the field measured at large
cosmological scales, to the one estimated in earth’s atmosphere:

mcosm
φ∗

matm
φ∗

=

(
ρcrit

ρatm

)3/8

≈ 3× 10−11, (3.57)

1The corresponding formula in [125] contains a typo, which we corrected here. Kindly confirmed by
I. Quiros, author of Ref. [125], private communication.
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where we have used the critical energy density of the Universe ρcrit ' 10−31 g cm−3. If
we take as given the millimeter-range screening described above, (matm

φ∗
)−1 ' 1 mm,

equivalent to matm
φ∗
' 10−4 eV, then the estimated mass of the cosmological BD scalar

field is
mcosm
φ∗ ' 3× 10−11matm

φ∗ ' 3× 10−15 eV, (3.58)

which is 18 orders of magnitude larger than the expected value mcosm
φ ∼ H0 ∼ 10−33 eV.

Hence, if assuming that the JBD field with a quartic potential is effectively screened
from solar system experiments, the field would not have cosmological effects.

To reconcile cosmological and terrestrial constraints all at once, one needs power-law
potentials which lead to a chameleon mass, mφ∗ ∝ (ρ)k/2, with k ≈ 29/14 ' 2.071, or
higher [125]. Clearly, the reconciliation would be more natural if, for example, mφ∗ ∝
exp(ρ).

As a final note we want to point out that for some kind of potentials, like V (φ) ∝ φ2

there is no chameleon screening at all.

3.5.2 Vainshtein mechanism
We start highlighting the need for a screening mechanism in a simple model with-

out cubic interaction, and then introduce the Vainshtein mechanism adding the cubic
interaction to the simple model.

Consider a theory of the form

S =

∫
d4x
√−g

[
f(φ)R +X

]
+ Sm, (3.59)

We examine perturbations around a Minkowski background with a constant scalar field
φ,

gµν = ηµν +M−1
Pl hµν(t, ~x), φ = φ0 + ϕ(t, ~x), (3.60)

caused by the energy-momentum tensor of matter Tµν (the theory admits the background
solution gµν = ηµν and φ = φ0 = const). We have defined the metric perturbations in
such a way that hµν has the dimension of mass. We also take f(φ0) = M2

pl/2. In order
to obtain the effective Lagrangian for the description of weak gravitational fields we
Expand (3.59) to second order in perturbations, this yields

Leff = −1

4
hµν Êαβµν hαβ −

1

2
∂µϕ∂

µϕ− ξhµνX(1)
µν +

1

2MPl

hµνTµν , (3.61)
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where ξ := M−1
Pl df/dφ|φ=φ0 ,

X(1)
µν ≡ ηµν2ϕ− ϕµν ; ϕµν ≡ ∇µ∇νϕ (3.62)

and

Êαβµν hαβ := −1

2
2hµν + ∂λ∂(µhν)λ +

1

2
ηµν2h−

1

2
ηµν∂λ∂ρh

λρ − 1

2
∂µ∂νh (3.63)

is the linearized Einstein tensor divided by MPl. Indices are raised and lowered making
use of the Minkowski metric ηµν .

The third term in (3.61) reveals the mixing of the scalar degree of freedom with the
metric perturbations. It can be disentangled thanks the following field redefinition

hµν = h̃µν − 2ξϕηµν , (3.64)

which gives us

Leff = −1

4
h̃µν Êαβµν h̃αβ −

1 + 6ξ2

2
∂µϕ∂

µϕ+
1

2MPl

h̃µνTµν −
ξ

MPl

ϕT . (3.65)

The transformation (3.64) is equivalent to the linear part of the conformal transformation
to the Einstein frame, g̃µν = C(φ)gµν with C = f(φ)/f(φ0). In this new frame we a
nonminimal coupling of the field with matter of the form ϕT , where T is the trace of
the energy momentum tensor. The equations of motion in this frame are:

Êαβµν h̃αβ = M−1
Pl Tµν , (3.66)

(1 + 6ξ2)2ϕ = M−1
Pl ξT . (3.67)

Thus, if the parameter ξ is of the order of unity, we expect a modification of gravity of
the same order.

Considering now a spherical distribution of nonrelativistic matter, Tµν = ρ(r)δ0
µδ

0
ν ,

with h̃00 = −2Φ̃(r) and h̃ij = −2Ψ̃(r)δij, the equations of motion become

1

r2
∂r

(
r2∂rΨ̃

)
=

ρ

2MPl

, (3.68)

Ψ̃− Φ̃ = 0, (3.69)
1

r2
∂r
(
r2∂rϕ

)
= − ξ

1 + 6ξ2

ρ

MPl

. (3.70)
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Integrating these equations we obtain

1

MPl

∂rΦ̃ = M−1
Pl ∂̃rΨ =

1

8πM2
Pl

M(r)

r2
;

1

MPl

∂rϕ = − 2ξ

1 + 6ξ2
· 1

8πM2
Pl

M(r)

r2
, (3.71)

where M(r) is the mass enclosed up to a radius r: M(r) := 4π
∫ r
ρ(s)s2ds. From

Eq. (3.64) it follows that metric perturbations in the original frame are Φ = Φ̃− ξϕ and
Ψ = Ψ̃ + ξϕ. Then, outside the matter distribution, the metric potentials are

Φ = −GNM
r

, Ψ = γΦ, (3.72)

with

8πGN :=
1 + 8ξ2

1 + 6ξ2

1

M2
Pl

, γ − 1 = − 4ξ2

1 + 8ξ2
. (3.73)

For ξ of the order of unity we have that γ − 1 = O(1), which contradicts solar-system
constraints [8].

Now, adding a Galileon-like cubic interaction to (3.65) we have

Leff = −1

4
h̃µν Êαβµν h̃αβ −

1 + 6ξ2

2
(∂ϕ)2 − 1

2Π3
(∂ϕ)22ϕ+

1

2MPl

h̃µνTµν −
ξ

MPl

ϕT. (3.74)

In this case, the scalar-field equation of motion is given by

(1 + 6ξ2)2ϕ+
1

Π3

[
(2ϕ)2 − ϕµνϕµν

]
=

ξ

MPl

T, (3.75)

which, for a spherical matter distribution, yields

(1 + 6ξ2)r2∂rϕ+
2

Π3
r(∂rϕ)2 = −ξM(r)

4πMPl

, (3.76)

whose algebraic solution is

∂rϕ = cΠ3r

−1 +

√
1− ξ

c2

(
rV
r

)3
 , (3.77)

where c := (1 + 6ξ2)/4 is an constant of the order of unity and we defined the so called
Vainshtein radius as

rV :=

( M
8πMPlΠ3

)1/3

. (3.78)
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We also considered the exterior of the source, such thatM, now a constant is the mass
of the star.

For r � rV , we have

∂rϕ ' (−ξ)1/2

(
r

rV

)3/2

∂rΦ̃� ∂rΦ̃ , (3.79)

which leads to
Φ

MPl

' Ψ

MPl

' −GNM
r

, (3.80)

with 8πGN ≡ 1
M2

Pl
. Therefore the nonlinear interaction introduced in (3.74) helps to

naturally recover standard gravity. The solar-system constraints can then be evaded if
the Vainshtein raidus rV , the radius within which general relativity is recovered, is large
enough.

If the scalar degree of freedom is responsible for the present acceleration in the ex-
pansion of the Universe, Π is expected to be of the order [126]

Π ∼ (MPlH
2
0 )1/3, . (3.81)

If we consider a celestial body of a solar mass, M ∼M�, from Eq. (3.78) with (3.81) we
get

rV ∼ 100 pc, (3.82)

which is much larger than the size of the solar system.
While this was a simple example to show how the Vainshtein mechanism works, one

can apply the same philosophy to the entire Horndeski action and obtain a similar result
[127–129]. If we consider the lagrangian (3.28), which is the most general scalar-tensor
theory with a propagation speed of gravitational waves equal to 1, we obtain that for
a celestial body of mass M, an estimate for the Vainsthein radius in a cosmological
background is [129]

rV =

(
BCµ
H2

)1/3

, (3.83)

where the massM enters (3.83) through µ =M/(16πG4) and B and C are complicated
functions of the Gi’s. Their complete expression can be found in [129]. If the product
BC if of the order of unity, the estimate for the Vainsthein radius according to Ref. [129],
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3. Scalar tensor gravity: Horndeski theories

using G4 = 1/(8πGN), gives

rV '
(
µ

H2

)1/3

' 120

(
H0

H

)2/3(M
M�

)1/3

pc , (3.84)

if H0 = 70kms−1Mpc−1. Thus for a star of the mass of the sun we have a rV ∼ 120 pc,
while for a cluster of, say, 1015M� the estimate of the Vainsthein radius is 12 Mpc, large
enough to encompass a cluster of said mass. Therefore the screening is effective when
BC = O(1).
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Chapter 4

Induced Gravity Galileon and
Brans-Dicke Galileon

As discussed in previous chapters, the most general Horndeski theories with the tensor
propagation speed ct equivalent to 1 are given by the action [112]

S =

∫
d4x
√−g

[
G4(φ,X)R +G2(φ,X) +G3(φ,X)2φ+ Lmatter

]
. (4.1)

Since the term G32φ is in general not invariant under field redefinition we restrict our-
selves to two relevant cases that fall among the class of theories (4.1). The first one,
following the nomenclature of [111], is the Brans-Dicke Galileon (BDG), described by:

S
(φ)
BDG =

∫
d4x
√−g

[
φR +

ωbd

φ
X − V (φ) + f(φ) (gµν∂µφ ∂νφ)2φ+ Lmatter

]
, (4.2)

this lagrangian, after the field redefinition φ = γσ2/2 with γ = (4ωbd)−1, becomes

S
(σ)
BDG =

∫
d4x
√−g

[1

2
γσ2R − 1

2
(∂σ)2 − V (σ) + ζ(σ) (∂σ)4 + g(σ) (∂σ)2 2σ + Lmatter

]
,

(4.3)
with ζ = ζ(σ) = σ2γ3f(σ) and g = g(σ) = σ3γ3f(σ).

The other theory we consider is what we call Induced Gravity Galileon (IGG), whose
action is formally equivalent to (4.3) with ζ = 0:

S
(σ)
IGG =

∫
d4x
√−g

[1

2
γσ2R − 1

2
(∂σ)2 − V (σ) + g(σ) (∂σ)2 2σ + Lmatter

]
. (4.4)

It can be rewritten, using the Brans-Dicke field φ and the relation between f(σ) and
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4. Induced Gravity Galileon and Brans-Dicke Galileon

g(σ) given above, in the following way

S
(φ)
IGG =

∫
d4x
√−g

[
φR−ωbd

φ
(∂φ)2 − V (φ) + f(φ) (∂φ)22φ− 1

2φ
f(φ) (∂φ)4 + Lmatter

]
.

(4.5)
In the next sections we will study the equations of motion of these theories and some

special solutions of cosmological relevance. We will also present the results of numerical
study of the background cosmology in these models.

4.1 Background equations

We start from an Action of the form

S =

∫
d4x
√−g

[
1

2
F (σ)R − 1

2
(∂σ)2 − V (σ) + ζ(σ) (∂σ)4 + g(σ) (∂σ)2 2σ + Lmatter

]
,

(4.6)

where, even though for most of the thesis we will stick to a coupling of the form F (σ) =

γσ2, for more generality we keep an arbitrary non-minimal coupling term F (σ), in such
a way that any different choice of this term can be easily implemented directly in the
equations of motion derived below. Moreover it’s useful to keep this form to check that
the equations derived here, reduce to the ones in [11], in the limit of f(σ) = 0

The action (4.6) encapsulates both the Jordan-Brans-Dicke and the Induced-Gravity
Galileon. In fact for F (σ) = γσ2 it reduces to the model (4.3), while it reduces to (4.4)
for F (σ) = γσ2 and ζ = 0. To not give the wrong idea that the IGG model is just a
special case of the BDG model when ζ = 0, we stress their non equivalence: as described
above, in the BDG model the functions ζ and g are not independent, therefore setting
ζ = 0 would mean setting g = 0 as well. Thus, the IGG theory should not be considered
as a particular case of the BDG one but rather as a different, unequivalent model, whose
equation can be formally obtained from the BDG ones by setting only ζ = 0.

Below, the equations of motion for the general lagrangian (4.6) are derived and one
can specialize them to a specific model using the choices just described.

Einstein’s Equations

Variation of (4.6) with respect to the metric yields the Einstein equations:

Gµν =
1

F (σ)

[
T (m)
µν + T (g)

µν + ∂µσ∂νσ −
1

2
gµν∂

ρσ∂ρσ − gµνV (σ) + (∇µ∇ν − gµν2)F (σ)

]
,

(4.7)
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where

T (g)
µν = −2

{
g(σ)∇µσ∇νσ2σ −∇(µ σ∇ν)

[
g(σ)(∂σ)2

]
+

1

2
gµν∇α σ∇α

[
g(σ)(∂σ)2

]
− ζ

2
gµν(∂σ)4 + 2ζ∇µσ∇νσ (∂σ)2

}
;

(4.8)

with ∇(µ σ∇ν) = 1
2

(
∇µ σ∇ν +∇ν σ∇µ

)
. The explicit form of T (g)

µν , using f(σ) defined

in the previous section is

T (g)
µν = −2

{
γ3σ3f(σ)∇µσ∇νσ2σ − γ3σ∇(µ σ∇ν)

[
σ2f(σ)(∂σ)2

]
+

1

2
gµν γ

3σ∇ασ∇α
[
σ2f(σ)(∂σ)2

]
+ γ3σ2f(σ)∇µσ∇νσ (∂σ)2

}
,

(4.9)

from which we can see that Eq. (4.7) reduces to equation (3) of [11] for f(σ) = 0,
as expected. For later convenience it’s useful to write down the trace of the Einstein
equation (4.7), which is

R =
1

F

[
− T (m) − T (g) + (∂σ)2 + 4V + 3�F (σ)

]
; (4.10)

with T (g) being the trace of the term coming from the cubic interaction:

T (g) = −2

{
g(σ) (∂σ)22σ +∇µσ∇µ

[
g(σ) (∂σ)2

]}
. (4.11)

Note that the trace of this “Galileon Energy momentum tensor” does not contains ζ(σ).
Like before, for f(σ) = 0, equation (4.10) reduces to equation (4) of [11].

Klein-Gordon Equation
The variation of (4.6) with respect to the Galileon field σ yields the Klein-Gordon

equation:

2σ
[
1− 4ζ (∂σ)2

]
− 2g

{
(2σ)2 −∇µ∇νσ∇µ∇νσ −∇µσ∇νσ

[
Rµν + 2

g,σ
g
∇µ∇νσ

]}
+

1

2
F,σR + g,σ,σ(∂σ)4 − 3ζ,σ(∂σ)4 − 4ζ(σ)∇µ

[
(∂σ)2

]
∇µσ − V,σ = 0.

(4.12)

As a sanity check one can obtain (4.7) and (4.12) varying directly the action in the
form (4.2) (coupling a general F (φ) instead of φ to the Ricci scalar), and then applying
the field redefinition at the very end. The variations of an action identical to (4.2) are
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carried out almost step by step in the very pedagogical article [130] and the equations
derived here are consistent with it.

4.1.1 Friedmann and Klein-Gordon equations in a flat FLRW

Universe
We consider now a flat FLRW metric in cosmic time

ds2 = −dt2 + a(t)2dxi dx
i , (4.13)

using this metric the Friedmann equations are

3H2F = ρ+
σ̇2

2
+ V (σ)− 3HḞ + σ̇2

[
(6 g H − ġ) σ̇ + 3ζ σ̇2

]
, (4.14)

− 2ḢF = ρ+ p+ σ̇2 + F̈ −HḞ + σ̇2

[
2(3 g H − ġ) σ̇ + 4 ζ σ̇2 − 2 g σ̈

]
. (4.15)

They reduce to the equations (8) and (9) of [11] when f(σ) = 0, as expected.
Alternatively, we can express the Friedmann equations using the conformal time τ ,

as a function of which, the spacetime metric is ds2 = a2(τ)(−dτ 2 +dxidx
i). As usual the

prime will stand for derivative with respect to conformal time and H = a′/a. We then
have

3H2F = a2(ρ+ V ) +
1

2
σ′

2 − 3HF ′ + σ′2

a2

[(
6gH− g′

)
σ′ + 3ζσ′

2

]
, (4.16)

−2H′F+2H2F = a2(p+ρ)+σ′
2
+F ′′−2HF ′+σ′2

a2

[
2
(
4gH−g′

)
σ′+4ζσ′

2−2g σ′′

]
. (4.17)

Using (4.16) we can rewrite (4.17) in the following form

−2H′F = a2
(1

3
ρ+p− 2

3
V
)

+
2σ′2

3
+F ′′+

σ′2

a2

[
4
(
gH− 1

3
g′
)
σ′+2ζ σ′

2−2g σ′′

]
. (4.18)
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4.2. Special solutions of the background equations

Using cosmic time, the Klein Gordon equation is:

σ̈
(
1 + 12ζσ̇2 + 12g Hσ̇− 4g,σσ̇

2
)

+ 3Hσ̇ + σ̇2

(
18g H2 + 6g Ḣ

)
+12Hζσ̇3 + σ̇4(3ζ,σ − g,σ,σ)− 1

2
F,σR + V,σ = 0;

(4.19)

which, expressed in conformal time takes the form

σ′′

a2

(
1 +

12ζ

a2
σ′

2
+

12gH
a2

σ′ − 4g,σ
a2

σ′
2

)
+

2H
a2
σ′ +

6gH′
a4

σ′
2

+
4g,σH
a4

σ′
3

+
1

a4
(3ζ,σ − g,σ,σ)σ′

4 − 1

2
F,σR + V,σ = 0 .

(4.20)

The explicit form of the Ricci scalar which enters the Klein-Gordon equation is obtained
from the Einstein trace equation (4.10):

R = 6(Ḣ + 2H2) =
1

F

[
ρ− 3p− σ̇2 + 4V + 3F,σ

(
− σ̈ − 3Hσ̇

)
− 3F,σ,σσ̇

2 + 2η̇σ̇3 + 6ησ̇2
(
σ̈ +Hσ̇

)] (4.21)

or, as a function of conformal time

R =
6

a2
(H′ +H2) =

1

F

[
ρ− 3p− σ′2

a2
+ 4V − 3F,σ

a2

(
σ′′ + 2Hσ′

)
− 3

F,σ,σ
a2

σ′
2

+
2η′σ′3

a4
+

6ησ′2

a4
σ′′
]
.

(4.22)

4.2 Special solutions of the background equations

Every model of dark energy has to be able to describe the accelerating expansion
of the Universe at late times. In order to solve for the full theory is necessary to use
numerical tools but, under some specific assumptions is it possible to find analytical
solutions: e.g. it has been shown that the BDG model (4.2) with a null potential admits
de Sitter solutions in absence of matter for f(φ) ∝ φ−2 [110]. Self accelerating solutions
have later been obtained in [131] and [132], where they considered more general forms
of f(φ) and recovered the solution found in [110] as a particular case.

We now consider the Induced Gravity Galileon (4.4) to see if it admits analytical
solutions of the same kind. In this section we work using cosmic time and specialize the
Friedmann and the Klein-Gordon equations of the previous section to the IGG model,
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setting as usual F = γσ2 and ζ = 0. The background equations then read

H2 + 2H
σ̇

σ
=
ρ+ V (σ)

3γσ2
+

σ̇2

6γσ2
+

σ̇

3γ

σ̇2

σ2

(
6Hg(σ)− ġ(σ)

)
; (4.23)

σ̈ + 3Hσ̇ +
σ̇2

σ
+

1

1 + 6γ

[
−
∑

i ρi − 3pi
σ

+

(
V,σ −

4V

σ

)
− 2ġ

σ̇3

σ
− σ̇4g,σ,σ

+ σ̈

(
12Hgσ̇ − 4g,σ σ̇

2 − 6g
σ̇2

σ

)
+ 6 gσ̇2

(
3H2 + Ḣ −H σ̇

σ

)]
= 0 .

(4.24)

In order to mimic the late time cosmology where matter and radiation are far sub-
dominant with respect to dark energy we assume: Tµν = 0.

We also choose a potential of the form V (σ) = λnσ
n and a common choice of g(σ)

will be
g(σ) = α̃γ3σk+3 = ασk+3 . (4.25)

4.2.1 deSitter solutions
We found solutions where the scale factor a(t) grows exponentially for two particular

potentials: quartic and quadratic. For the quartic case it’s exactly the same solution
obtained in [133] since the g(σ) does not contribute in this case. The solution derived
for the quadratic potential instead reduces in a continuous way to the one found in IG
for the same potential, when g(σ) → 0, as we should expect. In the following we will
describe these solutions in more detail.

n = 4 As anticipated, the model admits a de Sitter solution: a(t) ∝ eHt with H > 0 and
constant, in fact the solution found in [100]: σ = constant = ±H

√
3γ/λn, is still valid

in our case, for every possible form of g(σ), which does not contribute under the ansatz
σ = constant.

n = 2 For the quadratic potential things are more complicated. For g(σ) = α̃γ3σ−1,
i.e. k = −4 in equation (4.25), there are solutions of the form σ ∝ exp{Htδ1}, with
δ1 = δ1(α, γ,H). Its explicit form is

δ1 = −1 or δ1 =
−1− 4γ ±

√
(1 + 4γ)2 + 48 α̃ γ4H2

12 α̃ γ3H2
. (4.26)

For α→ 0 these solution reduces to the ones discussed in [133]:

δ1 = −1 or δ1 =
2γ

1 + 4γ
. (4.27)
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4.2.2 Scaling solutions
With the choice of g(σ) = α̃ γ3σk+3 the system has power law solutions of the form

a(t) ∝ tp and σ(t) = c0 t
q when k = (2− 4q)/q and q = −2/(n− 2). This means that n

and k are related by
k = −(n+ 2) , (4.28)

which implies that for a potential of the form V (σ) = λnσ
n there are scaling solutions if

g(σ) = α̃ γ3 σ1−n , and vice versa. Note that also the de Sitter solution for n = 2 satisfies
the relation (4.28). This seems to suggest a natural relationship between the form of the
potential, the g(σ) and accelerating late-time solutions, which led to us to implement
numerically models satisfying (4.28).

Coming back to the power law solutions, the integration constant c0 and the exponent
p = p(γ, n, λ, α̃) have very complicated forms and they are hard to handle, but we want
to recover the values found in [100] and [133], when α̃ → 0. To do this we perform the
following: from the Klein-Gordon equation (or equivalently from the Friedmann one or
the Lagrangian) we have that dimensionally, for n 6= 2

[
α̃
]

=
[
cn−2

0

]
; (4.29)

therefore we can reparameterize α̃ = β̃cn−2
0 , where β̃ is a dimensionless parameter; this

simplifies the form of p = p(n, γ, β̃), which is:

p± =
4 + n(n− 4)− 8γ + 2γn(8 + n(n− 5)) + 24β̃γ3 ±

√
f̃(γ, n, β̃)

γ(n− 4)(n− 2)3 + 24β̃γ3(n− 2)
, (4.30)

with

f̃(γ, n, β̃) = 192(7−2n)β̃2γ6+(n−2)4(1+6γ)2−(n−2)2 16β̃γ3[3+γ(26+(n−6)n)]. (4.31)

Now, one can easily see that for β̃ = 0, p± from equation (4.30) reduce to the value
obtained for the corresponding cosmological model studied in [100] and [133]:
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p−

∣∣∣
β̃=0

=
2

n− 2
(4.32)

and

p+

∣∣∣
β̃=0

= 2
1 + (n− 2)γ

(n− 2)(n− 4)γ
(4.33)

4.2.3 Curved Space
In case of curved space the first Friedmann equation simply becomes

H2 + 2H
σ̇

σ
+
κ

a2
=
ρ+ V (σ)

3γσ2
+

σ̇2

6γσ2
+

σ̇

3γ

σ̇2

σ2

(
6Hg(σ)− ġ(σ)

)
; (4.34)

while the Klein-Gordon one keeps the same form.

Scaling solutions

The presence of the term
κ

a2
in (4.34) restricts the space of possible scaling solutions,

in fact if we want a(t) ∝ tp, the piece proportional to a−2 forces p = 1. Therefore the

only scaling solution is

a(t) ∝ t,

σ(t) ∝ tq, with q = − 2
n−2

(4.35)

de Sitter solutions

With the ansatz a(t) ∝ eHt and H = H0 = constant the term
κ

a2
, which corresponds

to κe−2Ht, does not allow for analytical de Sitter solutions for n = 2 and n = 4.

4.3 Numerical evolution for the Background
In this section we give a description of the numerical evolution for the background in

IGG for some particular choices of the potential and the function g(σ). We implemented
an extension of the Einstein-Boltzmann code CLASSig developed in [13, 14] and validated
against other codes in [134]; CLASSig is itself an extension for IG and JBD, which
solves for both the perturbations and the background, of the CLASS code [135]. We
implemented the modified Einstein and Klein-Gordon equations, both at the level of
background and linear perturbation theory, for the IGG and the BDG models. In this
section we focus our discussion mostly on the comparison of IGG and BDG with IG in
their background evolution, while we study the perturbation theory of the two Galileon
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Initialization parameters

H0 [km s−1Mpc−1] 67.31

Tcmb [K] 2.7255

Ωb,0 0.049

Ωcdm,0 0.264

ns 0.9655
As 2.195× 10−9

τreio 0.078

Table 4.1: Set of the cosmological parameters used to initialize to code: the Hubble
parameter today H0, the CMB temperature Tcmb, baryon density parameter today Ωb,0,
cold dark matter density parameter today Ωcdm,0, the spectral index nS, the amplitude of
the matter power spectrum As referred to curvature perturbations, and the reionization
optical depth τreio

models together with their consequences on cosmological observables in the next chapter.
In table (4.1) we show the set of cosmological parameters used to initialize the ex-

tended code.

4.3.1 Choice of the potential and the function g(σ)

The evolution of the scalar field depends on the form of the potential and its choice is
therefore of great importance; in the literature, there are various examples of potentials
studied in the context of Induced Gravity (or equivalently extended Jordan-Brans-Dicke)
theory [14, 95, 100, 136]. We consider quartic and quadratic power law potentials:

V (σ) =
λ4

4
σ4 , (4.36)

V (σ) =
λ2

4
σ2 , (4.37)

where λ4 is a dimensionless parameter and λ2 has the dimensions of a squared mass. We
also consider and show some results for a constant potential. With the choice V (σ) ∝ σ4,
all the terms containing the potential and its derivatives cancel out both in the Klein-
Gordon and perturbed Klein-Gordon equations for the field and its fluctuations.

The function g(σ) is, in principle, arbitrary, but the analytical study of the equations

79



4. Induced Gravity Galileon and Brans-Dicke Galileon

of motion carried out in the previous section suggests as natural choice: a power law of
the type

g(σ) = ασk+3 (4.38)

with k = −(n+ 2), and where n is the exponent of the field in the potential V ∝ σn, to
guarantee the presence of accelerating solutions at late times.1 Notice that with respect
to the expression given in Sec. (4.2) we incorporated the factor γ3 into the parameter α.
The g(σ) is the only function that needs to be fixed since it automatically fixes the ζ(σ) in
the BDG model. Therefore, with the choice of a quartic potential we have g(σ) = ασ−3;
in such a scenario the parameter α is dimensionless, just like λ. A quadratic potential,
corresponds instead, to g(σ) = ασ−1; in this case α has the dimensions of a squared
length.

4.3.2 Evolution of the scalar field and the density parameters
We first show in figure 4.1, 4.2 and 4.3 the evolution of the scalar field, σ, and its

derivative with respect to conformal time, σ′, in IGG and compare it with IG, for the
quartic, quadratic and constant potential respectively. The behaviour is qualitatively
the same in all the cases: it can be seen in figure (4.1) that for values of α of the order of
10111−10109 the IGG field evolution is substantially different from the IG field especially
at early times during the radiation era when we note a stronger dynamics. For smaller
values of α the differences with IG are hard to notice since the lines are superimposed,
but appreciable differences remain in the evolution of the field derivative σ′ (right panel).
As expected reducing α brings IGG towards IG. A similar behaviour is reported in fig.
4.2 for the quadratic potential and in fig. 4.3 for a constant potential. We note that
switching the sign of the g(σ) we obtain an instability much larger than the one displayed
in these plots.

The different evolution of the scalar field and its derivative in IGG and BDG is shown
in figure 4.4 and 4.5, respectively, for the quartic and quadratic potentials. As it can be
seen, the difference between the BDG and IGG models is negligible for all the values of
α analyzed. For this reason we will only compare the IGG model to ΛCDM in the rest
of the section.

1We remind anyway that for n = 4 the de Sitter solution was always present regardless of the form
of g(σ)
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Figure 4.1: Evolution of the scalar field σ and its derivative σ′ as a function of redshift
z for IG and IGG with quartic potential with different choices of α and γ = 5× 10−4.
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Figure 4.2: Evolution of the scalar field σ and its derivative σ′ as a function of redshift
z for IG and IGG with quadratic potential for different choices of α and γ = 5× 10−4.
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Figure 4.5: Evolution of the scalar field σ and its derivative σ′ as a function of redshift z
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In order to study the evolution of the density parameters we define them as

Ωrad =
ρrad

3 γ σ2H
, (4.39)

Ωm =
ρm

3 γ σ2H
, (4.40)

Ωσ =
ρσ

3 γ σ2H
, (4.41)

with
ρσ =

σ̇2

2
+ V (σ)− 6H γ σ σ̇ + σ̇3

[
6 g(σ)H − g,σσ̇ + 3 ζ(σ)σ̇

]
. (4.42)

Where, for g = ζ = 0 we have IG, for ζ = 0 IGG and for ζ = gσ−1 BDG.
In figure 4.6 the density parameters for IGG are compared with IG for γ = 5× 10−4:

on the left the case of a quartic potential it’s displayed, while on the right we show
the quadratic potential. Both on the left and on the right panel we can see that for
the largest value of α plotted there’s a different evolution of Ωrad and Ωσ in the early
Universe. In fact while the Universe is still in the radiation era, there’s a non negligible
scalar field density that can become larger than the matter one. For smaller values
of α the differences between IG and IGG are not visible from the plots in the quartic
case, while a slight difference can still be observed in the instance of the quadratic
potential. Since IG with γ = 5× 10−4 has an evolution of the density parameters almost
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Figure 4.6: On the left it’s displayed the evolution of the density parameters in IG and
IGG, for γ = 5× 10−4 and different choices of α. The quartic potential case is shown on
the left while on the right the results for the quadratic potentials are displayed

indistinguishable from ΛCDM, we expect to obtain similar results when comparing IGG
to ΛCDM. This is confirmed by the plots in figure 4.7.
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4.3.3 Effective equation of state for dark energy
A key quantity describing dark energy is the equation of state (EOS) wde = Pde/ρde,

where ρde and Pde are, respectively, the dark energy density and pressure. The simplest
model accounting for non constant EOS assumes the parametrization wde = w0 − (1− a)wa,
where a is the scale factor, normalized to 1 today, and w0 , wa are constants; the data
analysis of Planck 2018 combined with the SN Ia and BAO data constrained these pa-
rameters to w0 = −0.961± 0.077 and wa = −0.28+0.31

−0.27 at 68% confidence level [3]. The
data constraints are compatible with a cosmological constant but do not exclude possible
time variation. We must note that the constraints from CMB data to the dark energy
EOS are affected by parameter degeneracy and require the combination, and for the
future missions also cross-correlation, with LSS data to break this degeneracies.

In order to define properly the equation of state for the IGG and BDG model we
use a procedure similar to the one carried out in chapter 3 for the EOS of the entire
Horndeski theory: we rewrite the Friedmann equations (4.14) and (4.15) as

3F0H
2 = ρm + ρde (4.43)

2F0Ḣ = −ρm − Pm − ρde − Pde (4.44)
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where the density and pressure of dark energy are given by

ρde = 3H2
(
F0 − F

)
+
σ̇2

2
+ V (σ)− 3HḞ + σ̇3

(
6 g H − g,σ σ̇ + 3ζ σ̇

)
, (4.45)

Pde = 2Ḣ
(
F − F0

)
+ σ̇2 + F̈ −H Ḟ + σ̇2

[
2
(
3 g H − g,σ σ̇

)
σ̇ + 4ζ σ̇2 − 2 g σ̈

]
− ρde .

(4.46)

If we now specialize it to the BDG/IGG models: F (σ) = γσ2 we have

ρde = 3γH2
(
σ2

0 − σ2
)

+
σ̇2

2
+ V (σ)− 6H σσ̇ + σ̇3

(
6 g H − g,σ σ̇ + 3ζ σ̇

)
, (4.47)

Pde = 2γḢ
(
σ2 − σ2

0

)
+ 2γ

(
σ̇2 + σσ̈

)
+ σ̇2

[
2
(
3 g H − g,σ σ̇

)
σ̇ + 4ζ σ̇2 − 2 g σ̈

]
− ρde .

(4.48)

As usual, for g = ζ = 0 we have IG, for ζ = 0 IGG and for ζ = gσ−1 BDG. The effective
parameter of state for dark energy can then be defined, as it is customary, as

wde ≡
Pde

ρde
; (4.49)

its evolution for IG and IGG with quartic potential and for different values of α is
shown In Fig. 4.9: we can see how the parameter wde follows the dominant component:
during the radiation epoch it has a value of ∼ 1/3 , then in the matter era it decreases
towards zero; finally, at present epoch, it becomes negative, wde = −1, mimicking a
dominant cosmological constant. We can see from the figure that the evolution of the
effective parameter of state has an anomalous behaviour for larger values of alpha with
a bump in the radiation era, while it tends to IG as α gets smaller, becoming almost
indistinguishable from the IG evolution already at α = 5× 10−6. Similar considerations
can be applied to figure 4.10 where the evolution of the EOS in the case of quadratic
potential is presented.

To discuss the bump in the EOS, we refer to figure 4.8, where the second derivative
of the scalar field is plotted. As we can see, from eq. (4.48) the pressure is dependent
by this quantity, and since it multiplies −g(σ) we can conclude that the effect of this
term is more important the larger the parameter α. We can see from the aforementioned
equation and figure, that as the second derivative of the field decreases the pressure
increases and we observe the bumps in the EOS in correspondence of the minima of
σ′′. We can see how this minima are deeper and shifted towards earlier times as α gets
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Figure 4.8: Evolution of the second derivative of the scalar field in IGG with a quar-
tic potential (left) and with a quadratic one (right), for various value of the Galileon
parameter α.

smaller, for this reason the bump in the EOS is shifted towards earlier times for smaller
values of α. This effect is more prominent for larger value of α, in spite of the fact
that the decline of the second derivative of σ is less steep and the minima less deep in
these cases. As time passes σ′′ → 0 and the effects of this term become negligible, thus
allowing the IGG equation of state to approach the IG behaviour.
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Chapter 5

Cosmological effects of the
Galileon-like interaction term

In this chapter we present the equations for the linear cosmological perturbations in
the synchronous gauge for the Induced Gravity Galileon and the Brans-Dicke Galileon.
Then, we discuss the effects of the Galileon term on CMB anisotropies and matter power
spectrum. We derive the predictions for CMB anisotropies and the matter power spec-
trum by further extending the CLASSig code [13, 14, 135] with the modified perturbed
Einstein and scalar field equations for both IGG and BDG models, in a similar manner
of what we already did for the background in the previous chapter. With the tool we
developed we follow the Galileon term impact jointly in the background and cosmological
perturbations.

5.1 Equations for cosmological perturbations in the

IGG and BDG models
In this section we derive the expressions for the perturbed field equations in both the

Induced Gravity Galileon (IGG) (4.4) and Brans-Dicke Galileon (BDG) (4.3) models.
For convenience we write them in the synchronous gauge which is the one used in the
numerical implementation. Just like in the case of the background equations of motion,
we will give the equation for the BDG, which already contain the equations for the IGG
model and they can be formally recovered by setting ζ = 0.

The procedure to derive the equations is the same that we outlined in Section (2.2).
In the Jordan frame the energy-momentum tensors of all the species in the Universe
are separately conserved, this implies that the equations for the density contrasts, the
velocities and the anisotropic stresses of baryonic matter, CDM, radiation and neutrinos
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are the same as in general relativity and we can use the Boltzmann equations of Sec. (2.3)
and the tight-coupling approximation (2.63). This means we only need to derive the
modified perturbed field equations for the metric and for the scalar field σ. We split the
scalar field into the sum of a background space-independent part and a perturbation

σ(τ,x) = σ̄(τ) + δσ(τ,x). (5.1)

In the following, to lighten the notation we will use just σ in place of σ̄. We work as
usual in the Fourier space where the scalar field perturbation reads:

δσ =

∫
d3k δσ(τ,k) eik·x . (5.2)

We recast the equations for the metric perturbations in a similar way to their counter-
parts in Einstein Gravity (2.30)-(2.33):

k2η − 1

2
Hh′ = −a

2

2

(
δρ̃− δρ̃(g)

)
, (5.3)

k2η′ =
a2

2

[(
ρ̃+ P̃

)
θ̃ +

(
ρ̃(g) + P̃ (g)

)
θ̃(g)
]
, (5.4)

h′′ + 2Hh′ − 2k2η = −3a2
(
δP̃ + δP̃ (g)

)
, (5.5)

h′′ + 6η′′ + 2H(h′ + 6η′)− 2k2η = −3a2
(
ρ̃+ P̃

)
σ̃ . (5.6)

Where a tilde denotes the effective perturbations defined as:

δρ̃ ≡ δρm
γσ2

+
h′σ′

a2σ
− 2

a2

{
δσ

σ

[
a2ρm
γσ2

+
σ′ 2

2γσ2
+
a2

γσ

(
V

σ
− V,σ

2

)
− 3Hσ′

σ
+ k2

]

+
δσ′

σ

(
H− σ′

2γσ

)}
,

(5.7)

δρ̃(g) ≡ 2

γa4

σ′ 2

σ2

{
δσ

σ

[
3Hσ′

(
σg,σ − 2 g

)
− σ′ 2

2

(
σg,σ,σ − 2g,σ

)
+ k2σg +

3σ′ 2

2

(
ζ,σσ − 2ζ

)]

+ δσ′
(

9Hg − 2g,σσ
′ − 6ζσ′

)
+

1

2
h′σ′g

}
,

(5.8)
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(
ρ̃+ P̃

)
θ̃ ≡ (ρm + Pm)

γσ2
+

2k2

a2

{
δσ

σ

[
σ′

2γσ
(1 + 2γ)−H

]
+
δσ′

σ

}
, (5.9)

(
ρ̃(g) + P̃ (g)

)
θ̃(g) ≡ 2k2

γa4

σ′ 2

σ2

[
δσ( 4Hg − g,σσ′ + 2ζσ′ )− δσ′g

]
, (5.10)

δP̃ ≡ δPm
γσ2

+
1

a2

{
− δσ

σ

[
a2

γσ

(
V,σ −

2V

σ

)
+

2a2Pm
γσ2

+
σ′ 2

γσ2
+

4σ′ 2

σ2
+

2σ′′

σ
+

2Hσ′
σ
− 4k2

3

]

+ δσ′
(
σ′

γσ2
(1 + 4γ) +

2H
σ

)
+

2 δσ′′

σ
+

2σ′

3σ
h′

}
,

(5.11)

δP̃ (g) ≡ 1

γa4

σ′ 2

σ2

{
δσ

σ

[
4 g σ′′ − 4H g σ′ + σ′ 2

(
2 g,σ − g,σ,σ σ

)
+ σ′ 2

(
2ζ − ζ,σ σ

)]
− δσ′

(
2g,σσ

′ − 4H g + 2 g
σ′′

σ′
+ 4 ζ σ′

)
− 2 g δσ′′

}
,

(5.12)

(ρ̃+ P̃ )σ̃ ≡ (ρm + Pm)σu
γσ2

+
1

3a2

[
4k2δσ

σ
+ 2(h′ + 6η′)

σ′

σ

]
. (5.13)

The quantities σ̃ and σu should not be confused with the scalar field, in fact they are
respectively the modified and the usual general relativistic anisotropic shear perturbation
defined in (2.29).

We distinguish explicitly between the quantities coming from IG and the ones arising
from the Galileon term to make as manifest as possible the reduction of IGG and BDG
models to IG when g(σ) = ζ(σ) = 0.

Perturbing the Klein-Gordon equation (4.12) we obtain the equation for the evolution
of the fluctuations of the scalar field:

δσ′′ =

{
1− 2σ′ 2

a2

[
3 g

(
1

σ
− 2H

σ′
+ 2 g,σ

)
− 6 ζ

]}−1
2

a2
δG̃ , (5.14)
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where δG̃ is defined as

δG̃ ≡ δσ

{
− a2

2

[
a2

(1 + 6 γ)

(
ρm + Pm

σ2
+

4V

σ2
− 4V,σ

σ
+ V,σ,σ

)
+ k2 − σ′ 2

σ2

]
+ g

[
2k2

(
σ′ 2

2σ
− σ′′ −H σ′

)
− 3σ′ 2

σ2
σ′′
]
− 2 ζ σ′ 2k2

+ g,σ σ
′ 2
(

3σ′′

σ
− σ′ 2

σ2
− 3H′ − 6H σ′′

σ′

)
+ 2 ζ,σ

(
4H σ′ − 3σ′′

)
+ g,σ,σσ

′ 2
(
σ′ 2

σ
+ 2σ′′ − 2H σ′

)
− 3 ζ,σ,σσ

′ 2

2
+
g,σ,σ,σ σ

′ 4

2

}

+δσ′

{
− a2

(
σ′

σ
+H

)
+ 6 g

[
σ′′
(
σ′

σ
−H

)
−H′ σ′

]
+ ζ
(
10H σ′ 2 − 9σ′ σ′′

)
+ 2g,σ σ

′ 2
(

2σ′

σ
− 3H +

2σ′′

σ′

)
− 6 ζ,σ σ

′ 3 + 2 g,σ,σσ
′3

}

+
h′

2

[
− a2 σ′

2
+ g σ′ 2

(
σ′

σ
− 3H− 2σ′′

σ′

)
− 8 ζσ′ 3

]
− 1

2
h′′ g σ′ 2

+
a2

2

a2(δρm − 3 δPm)

(1 + 6γ)σ
.

(5.15)

While it’s not as manifest as in the Einstein equations, the perturbed Klein-Gordon
equation reduces to the one obtained in [137] for IG when g(σ) = ζ(σ) = 0. To solve
this system of equations coupled with the Boltzmann equations introduced in section
2.3, we need to set initial conditions. If radiation remains dominant, the introduction
of the Horndeski field doesn’t change the initial conditions for the metric and energy-
momentum tensor perturbations presented in section 2.4 [138]. For the scalar field, as
a minimal starting case, we set the initial conditions δσ = 0 and δσ′ = 0, reserving to
increase the complexity in a future work.

5.2 Evolution of perturbed quantities
In this section we present the evolution of gauge invariant perturbations: the metric

perturbation, the density contrast and the scalar field fluctuation. We then show their
evolution in IGG for the case of the quartic potential.

5.2.1 Gauge invariant formalism

Metric perturbations
We first write the expressions for the the Bardeen potentials Ψb and Φb defined in

(2.19) and (2.20), which are gauge invariant. These are related to the synchronous metric
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perturbations by:

Ψb =
1

2k2

[
h′′ + 6η′′ +H

(
h′ + 6η′

)]
, (5.16)

Φb = −η +
1

2k2
H
(
h′ + 6η′

)
. (5.17)

Using these, the off-diagonal perturbed Einstein equation (5.6) becomes

(
Ψb + Φb

)
= −3a2

2k2

(
ρ̃+ P̃

)
σ̃ , (5.18)

from which we can see that Ψb + Φb is a measure of the anisotropic stress.

Scalar field perturbation

The gauge-invariant scalar field perturbation δσ is related to its correspondent in the
synchronous gauge by [139, 140]:

δσ = δσs +
σ̇

H
η = δσs +

σ′

Hη , (5.19)

where η is the metric perturbation introduced in section 2.1, and the subscript s denotes
that variable is considered in the synchronous gauge.

Density perturbations

The gauge invariant density perturbation is given by [141]:

δ → δ̃ + 3(1 + w)(θ̃ − B̃)
aH

k2
, (5.20)

where, a tilde denotes a generic gauge, θ̃ is the divergence of the peculiar velocity of
the considered component, w is the equation of state parameter and B̃ is the metric
perturbation defined in section 2.1. Since in the synchronous gauge Bs = 0, the gauge
invariant density contrast δ is related to the synchronous one δs by

δ = δs + 3(1 + w)
aH

k2
θs . (5.21)

5.2.2 Perturbations evolution in IGG with a quartic potential
The evolution of the gauge invariant density contrasts for baryons photons and cold

dark matter, shows negligible differences between IGG, IG and ΛCDM.
Figure 5.1 shows the relative gravitational slip (Ψb +Φb)/Ψb. Once again we see that

the differences between the models are very minimal. It’s worth noticing, though, an en-
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Figure 5.1: Relative gravitational slip at the scales k = 0.1hMpc−1 (left) and k =
0.001hMpc−1 (right). The red solid line is the ΛCDM while the other lines represent
IG and IGG models, both with a quartic potential and γ = 5 × 10−4. Two values of α
are plotted: 7.5× 10111 and 7.5× 10109.

hancement of the anisotropic stress at early times at the largest scale (k = 0.001hMpc−1)
for the IGG model with α = 7.5× 10111.

The evolution of the relative fluctuations of the scalar field δσ/σ are shown in figure
5.2, for the IG and the IGG models. It’s clearly visible how such fluctuations oscillates
more in IGG than IG, especially in the radiation era.

5.3 CMB anisotropies and matter power spectrum
In this section we present the results on the CMB power spectra and the matter

power spectrum obtained from our extension of the CLASSig code to accomodate the
IGG and BDG models. We start by comparing the various CMB spectra in the Galileon
models and IG theory with the same potential, considering here only the case of the
quartic and quadratic potentials. Then, we proceed with the analysis of the differences
between IGG and BDG before comparing them with the ΛCDM predictions. Finally we
consider the impact of Galileon terms on the matter power spectrum, showing how these
scalar-tensor theories enhance it, producing also a larger peak with respect to the one
predicted by ΛCDM.
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represent IG and IGG models, both with a quartic potential and γ = 5 × 10−4. Two
values of α are plotted: 7.5× 10111 and 7.5× 10109.

CMB power spectra
In the left panels of figure 5.3 are shown the power spectra of the CMB temperature,

E-mode polarization and their cross-correlation for the Induced gravity case with γ =

5× 10−4 and the IGG model for the same value of γ and several values of the parameter
α; in both theories we considered a quartic potential. On the right panels their relative
differences are shown. In all cases, an enhancement of the peaks and the minima can
be seen, and it’s mostly visible for α = 7.5 × 10111 where the relative difference with
respect to IG reaches, at high multipoles, almost 10% for the CTT

` and the CEE
` spectra;

in the latter a sensible difference (up to 7%) also arises at low multipoles. The relative
differences in TE Cross correlations are more contained, around a maximum of 3% at
high `’s. For smaller values of α, as we expected, the difference between the IG and the
IGG model diminishes as a consequence that IGG converges to IG as α gets smaller.

In figure 5.5 we present, on the left, the power spectrum of the lensing potential φ
and the lensing-temperature cross-correlation for IG and IGG for different values of α,
while on the right the relative differences are shown. In the Cφφ

` power spectrum the
differences with respect to IG are very small, reaching one part in a thousand across the
entire spectrum only for α ∼ 10109, and at high multipoles for α ∼ 10107.
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The lensing-temperature cross correlation in the same figure is more interesting since
the differences between the models are already noticeable from the left panel, where it
can be seen that the galileon term enhances and shifts the first peak at higher values of
`. While this is mostly visible for α = 7.5 × 10109 a small effect is also noticeable for
α = 7.5× 10107.

Figure 5.4 and 5.6 shows the TT, EE, TE, φφ and φT power spectra for IG and IGG
with a quadratic potential. Qualitatively the analysis is similar to the quartic potential
case but in this situation the relative differences between IG and IGG are less contained,
especially for the largest value of the parameter α = 1.22×1072 GeV−2, where they reach
35% and 50% in the TT and EE power spectrum, respectively.

At this point we compare the two models extended with the Galileon-like interaction
term, IGG and BDG. The result is that for all the values of α, BDG and IGG are almost
equivalent in their predictions of the CMB power spectra and this is visible from figure
(5.7) where the relative difference between the two models with a quartic potential is
shown. Each BDG model is compared to a baseline IGG theory with the same value
of α. The graph shows little to no difference in the TT , EE and TE spectra, in fact
the most remarkable departure from the baseline is a relative difference in the CEE

` ’s of
around 0.001%, for α = 7.5 × 10111. Also, the difference between the two models tends
to zero as α gets smaller, that is to be expected because they both approach Induced
Gravity in that limit.

Since BDG and IGG would be indistinguishable, in the next figures we only show
IGG against a reference ΛCDM model.

In figure (5.8) the TT, EE and TE cross correlation spectra are shown for ΛCDM
and IGG with a quartic potential, together with their relative differences. In the TT
spectrum it can be seen that the power spectrum from the IGG model tends to stay above
the ΛCDM one, especially for α = 7.5 × 10111 where we observe relative differences up
to 15% at high multipoles. While for smaller values of α these differences are reduced,
we can still observe an enhancement of the TT spectrum in the IGG model at large `’s.
In the EE power spectrum we see relative differences up to 20% for α = 7.5 × 10111

and up to 10% for α = 7.5 × 10109 − 7.5 × 10107 at high multipoles. In the TE cross
correlation spectrum differences are more contained reaching 10% for the largest value
of α considered and 7% for the other two values of the parameter.

Figures 5.9 shows a comparison of the same power spectra between ΛCDM and IGG
with a quadratic potential. Here, the analysis is qualitatively the same as the case of
quartic potential: the spectra are overall enhanced and this is already visible from the left
panels, especially for the case α = 1.22× 1072[GeV]−2 where the peaks are clearly more
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pronounced than ΛCDM. Also, the relative differences are more significant compared to
the quartic case, reaching 40% and 70% for this value of α, in the TT and EE spectrum,
respectively.
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Figure 5.10: On the left the matter power spectra of ΛCDM (solid pink line), IG and
IGG with γ = 5 × 10−4 and a quartic potential are plotted. On the right we show the
relative differences between the modified gravity models and ΛCDM.

Matter power spectrum
The matter power spectrum is an important probe for cosmological parameters; its

shape depends on the evolution of the perturbations, which in turn depend on gravity.
We then expect some differences with respect to the ΛCDM model in theories of modified
gravity, such as IG and IGG. Figure 5.10 and 5.11 show the linear matter power spectrum
at z = 0 and the relative differences between the scalar-tensor models and ΛCDM. In
fig. 5.10 IG and IGG models with a quartic potentials are plotted, while in fig.5.11 the
same theories with a quadratic potential are shown against ΛCDM. We can see in both
cases an enhancement of the peak in the modified gravity models, this enhancement is
strongly dependent on the model, being the largest in the IGG models which depart more
significantly from IG. The power spectrum at the smaller scales (higher values of k) is
also enhanced in these models. The position of the peak is ∼ 1.65 × 10−2 hMpc−1 for
all considered cases. The Induced Gravity model produces a weak shift towards smaller
scales while the IGG models with the same potential this shift is reduced.
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Figure 5.11: On the left the matter power spectra of ΛCDM (solid pink line), IG and
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Conclusions

The cosmic concordance ΛCDM model, which explains the accelerated expansion of our
Universe by the cosmological constant, is a good fit to a host of cosmological observations.
Nonetheless, the study of alternative cosmological models is blooming, driven also by
some discordances arisen between different cosmological probes after the first Planck
data release. Thanks to the increased precision of data in the coming years, these
discordances might either be reconciled or confirm a cosmological model beyond ΛCDM.

Modified gravity, among which scalar tensor theories of gravity are one of the simplest
examples, is an alternative to ΛCDM that has received a lot of attention. In these models
the scalar field which mediates the gravitational interaction between matter and the
metric can also be responsible for the late-time accelerated expansion of the Universe.
The simplest scalar-tensor models of gravity are constrained by a host of cosmological and
astrophysical measurements as well as by ground laboratory experiments. For example,
for the extended Jordan-Brans-Dicke theory, the most recent cosmological constraints
from Planck 2018 and a combination of baryonic Acoustic Oscillation (BAO) data from
different galaxy surveys are γ < 5.5 × 10−4 [6] at 95 % confidence level (CL). These
cosmological constraints depend weakly on the potential, but could be relaxed when the
coupling to the Ricci scalar is extended from the quadratic form of the eJBD case to
more complicated forms which also turn on the second post-Newtonian parameter βPN.
When screening mechanism are absent, the tightest constraints come however within the
Solar System: γPN−1 = (2.1±2.3)×10−5 at 68% CL [7] and βPN−1 = (4.1±7.8)×10−5

at 68% CL [8].
Therefore, we studied an extension of these models that includes a cubic interaction

term (∂σ)22σ in the Lagrangian of Induced Gravity or eJBD. This term is particularly
interesting because it can give rise to the so called Vainsthein screening [9, 10], which,
thanks to the presence of nonlinear second derivative terms in the equation of motion for
the scalar field, allows to recover general relativity in the surrounding of local sources of
matter. In fact these terms lead to the decoupling of the field from matter within a radius
rV commonly called the Vainshtein radius. Thus, this mechanism could help relaxing
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the Solar System constraints and allow measurable deviations from GR at cosmological
scales. Since it is sufficient to consider scalar fields with a non minimal coupling to
the Ricci scalar by F (σ) = N2

pl + ξσ2 in order to have cosmological constraints at the
level of those from the Solar System [11, 12], we restricted ourselves to the eJBD case
F (σ) = γσ2 in an attempt to unlock cosmology from the Solar System.

We have implemented the cubic interaction term in both Induced gravity and eJBD
because this term is not invariant under field redefinition. We have performed a full
treatment of the model, from analytic derivation of the equations at the level of back-
ground and perturbations, an original derivation of a class of scaling solution in absence
of matter (which should approximately describe the accelerated stage) and finally to
the numerical implementation of the above equations in a dedicated Einstein Boltzmann
code. This has required a dedicated extension of the Einstein-Boltzmann code CLASSig
[13, 14].

We performed the numerical studies for various monomial forms of the potential V (σ)

and g(σ), the function modulating the strenght of the Galileon-like cubic interaction,
whose exponents are related as analitically found for the class of scaling solution. In
particular we restricted ourselves to a quartic, quadratic and constant potential V (σ)

and to an initial zero velocity for the scalar field.
We used the extended Einstein-Boltzmann code to study the background cosmology

and derive the predictions for the CMB anisotropies angular power spectra, both in
temperature and in polarization and for the matter power spectrum. We also presented
the evolution of the field’s fluctuations as well as the evolution of the Bardeen potentials.

The main results in the study of the background cosmology are:
• An original derivation of a class of scaling solution in absence of matter that should

approximately describe the accelerated stage of the Universe at late times.
• Numerical evolution of important background quantities such as the density pa-

rameters, where we show how the contribution of the field to the energy density
becomes important at recent times although in some cases a non-negligible contri-
bution was observed in the radiation era.
• The study of the behaviour of the effective parameter of state for dark energy,

which, varying in time and following the dominant component during the evolution
of the Universe, becomes negative in the recent epoch, approaching wde = −1 and
mimicking a dominant cosmological constant.

We shall now briefly describe the results obtained for the CMB anisotropies angular
power spectra, and for the matter power spectrum. We compare these results with the
corresponding ones in Induced Gravity without the Galileon term and ΛCDM.
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The comparison with IG in the CMB power spectra showed some interesting features:
an amplification of the peaks, both for the quartic and quadratic potential, in the TT,
EE and TE power spectra. The TT and EE spectra were overall enhanced in the IGG
model with respect to IG, especially at small scales, and alterations to these spectra were
of the same order of magnitude.

We have also shown how the presence of the cubic interaction enhances the matter
power spectrum, especially at the largest scales (small values of k). In IGG the peak of
the matter power spectrum was more prominent with respect to IG.

The comparison between our Galileon models and ΛCDM showed an enhancement
of the TT and EE power spectra in all the considered cases. We observe that the largest
value of α analysed (α ' 7.25× 10111 andα ∼ 1072 GeV−2 for the quartic and quadratic
case respectively) can produce deviations in C`’s larger than 5% from ΛCDM bestfit,
which are tipically larger than Planck 2018 errors. Better quantitative results will be
obtained by a more complete MCMC exploration which allows to vary all the parameters
of the model. The relative differences in the matter power spectrum were of ∼ 2% at
the smallest scales and in general the spectrum in the IGG model remained above the
ΛCDM one. The peak of the spectrum, like in IG, was more prominent and slightly
shifted towards higher values of k.

In general, the relative differences between IGG and ΛCDM tended to be larger than
the ones between IG and ΛCDM across the entire spectrum.

Let us now discuss some future perspectives for this thesis, which already contains
several original results leading at least to one publication.

The computation of the Vainsthein radius for the models we considered has not been
carried out in this work, therefore it’s still unclear whether or not the constraints given
by cosmology on the parameters of the models are consistent with the ones necessary to
obtain screening on the scales of the solar system. Thus we plan to compare the two in
order to see if cosmologically allowed parameters guarantees effective screening around
local sources. Moreover, it would be interesting to derive analytical initial conditions
in the radiation era and an approximate analytic solution in the matter era for the
background scalar field which can be verified against the numerical results found here.
As a last remark, general and conservative constraints on the magnitude of the Galileon
term, and the other parameters, could be obtained with the most recent data by a
Markov chain Monte Carlo exploration as in [6, 14, 100] This methodology would allow
to explore possible degeneracy of the additional Galileon term with other parameters
and working assumptions of this thesis.
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Riassunto in italiano

La costante cosmologica Λ non rappresenta l’unica possibilità per descrivere l’attuale
espansione accelerata dell’Universo. Infatti, un’importante alternativa ad essa sono i
modelli di gravità modificata: in molti di questi modelli l’energia oscura viene descritta
modificando il settore gravitazionale della teoria. Una sottoclasse di queste teorie sono i
modelli scalari tensoriali in cui, oltre alla metrica, è presente un campo scalare che modula
l’interazione gravitazionale. I modelli scalari tensoriali più semplici, come per esempio
la teoria di gravità indotta (IG), o equivalentemente un modello Jordan-Brans-Dicke
esteso con un potenziale (eJBD), sono fortemente vincolati da osservazioni cosmologiche
ed astrofisiche. Pertanto in questa tesi studiamo un’ estensione di tali teorie con un
termine di tipo Galileone g(σ)( gµν∂µσ∂νσ)2σ nella Lagrangiana. Questo termine è
particolarmente interessante perché può dar luogo al cosidetto meccanismo di Vainsthein
che permetterebbe alla teoria di ridursi alla Relatività Generale nelle vicinanze di sorgenti
di materia, per distanze minori del cosiddetto raggio di Vainshtein, rV . Le deviazioni
dalla Relatività Generale rimarrebbero per distanze maggiori di rV . Ci restringiamo a
un termine di accoppiamento con lo scalare di Ricci del tipo F (σ) = γσ2, per il quale i
vincoli derivanti dal Sistema Solare sono più stringenti di quelli cosmologici. Abbiamo
dunque implementato il termine di interazione cubica sia in IG e nel modello eJBD,
dato che tale termine non è invariante per ridefinizione del campo. Abbiamo studiato il
modello sia dal punto di vista analitico che numerico, derivando le equazioni del moto
omogenee e quelle per le perturbazioni lineari; per la cosmologia omogenea abbiamo
ottenuto una classe di soluzioni analitiche in assenza di materia, ed infine implementato
tutte le equazioni in un codice Einstein-Boltzmann dedicato. A tale scopo abbiamo
esteso il codice Einstein-Boltzmann CLASSig [13, 14]. Lo studio numerico è stato svolto
per le forme monomiali del potenziale V (σ) e di g(σ), l’ampiezza del termine di tipo
Galileone, usate nello studio delle soluzioni analitiche del modello. In particolare ci siamo
ristretti ad uno studio di un potenziale quartico, quadratico e costante. Nei capitoli 4 e
5 sono presentati i risultati ottenuti che qui riassumiamo brevemente. Abbiamo studiato
il modello esteso col termine di Galileone sia a livello di cosmologia omogenea che di
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perturbazioni lineari. Per quanto riguarda la cosmologia omogenea, oltre alla derivazione
delle soluzioni analitiche sopracitate utili per l’espansione accelerata, abbiamo ottenuto
l’evoluzione numerica del modello in cui si è visto come il contributo del campo alla
densità di energia totale dell’Universo diventa importante solo in epoca recente, anche se
in alcuni casi un contributo non trascurabile si osserva già nell’era della radiazione ed in
prossimità dell’equivalenza tra materia e radiazione. In particolare abbiamo analizzato
il parametro di stato wde che è definito come il rapporto tra pressione e densità effettive
dell’energia oscura. L’evoluzione di tale parametro fa sì che questo approcci il valore di
−1 in tempi recenti, mimando quindi una costante cosmologica.

L’implementazione del codice numerico per studiare la teoria a livello di perturbazioni
lineari ha permesso di ottenere le previsioni del modello per quanto riguarda gli spettri
di potenza angolare delle anisotropie del fondo cosmico a microonde (CMB), in tem-
peratura, polarizzazione e lensing, e lo spettro di potenza tridimensionale della materia
P (k). Questo ci ha consentito di confrontare tali risultati con le analoghe predizioni in
IG e nel modello cosmologico standard ΛCDM.

In generale, per quanto riguarda le anisotropie della CMB, il modello esteso col ter-
mine di Galileone (IGG) ha mostrato delle differenze rispetto sia ad IG che ΛCDM,
soprattutto per quanto riguarda l’ampiezza dei picchi degli spettri di potenza angolare
TT ed EE, che è maggiore nel modello esteso in tutti i casi considerati. Lo stesso dis-
corso vale anche per lo spettro di potenza della materia il cui picco è più prominente in
IGG rispetto a IG e ΛCDM, e la differenza relativa in tale spettro tra IGG e ΛCDM
è, a piccole scale (grandi valori di k), simile a quella osservata tra IG e ΛCDM, mentre
alle scale più grandi è maggior, soprattuto per valori di α che fanno discostare IGG
maggiormente da IG. Tali valori del parametro (α ' 7.25 × 10111 e α ∼ 1072 GeV−2

rispettivamente per il potenziale quartico e quadratico) possono produrre deviazioni nei
C` maggiori del 5% rispetto al ΛCDM e quindi tipicamente maggiori degli errori speri-
mentali di Planck 2018[3]. Risultati più quantitativi a riguardo potrebbero essere ottenuti
attraverso un’ esplorazione MCMC che permette di variare i parametri del modello e che,
insieme ai risultati originali ottenuti in questo lavoro dovrebbe portare ad almeno una
pubblicazione.

112



Bibliography

Bibliography

[1] Planck Collaboration et al. “Planck 2018 results. I. Overview and the cosmological
legacy of Planck”. In: arXiv e-prints, arXiv:1807.06205 (July 2018), arXiv:1807.06205.
arXiv: 1807.06205 [astro-ph.CO].

[2] J. G. de Swart, G. Bertone, and J. van Dongen. “How dark matter came to
matter”. In: Nature Astronomy 1, 0059 (Mar. 2017), p. 0059. doi: 10.1038/
s41550-017-0059. arXiv: 1703.00013 [astro-ph.CO].

[3] Planck Collaboration. “Planck 2018 results. VI. Cosmological parameters”. In:
arXiv e-prints, arXiv:1807.06209 (July 2018), arXiv:1807.06209. arXiv: 1807.
06209 [astro-ph.CO].

[4] B. P. Abbott et al. “GW170817: Observation of Gravitational Waves from a Bi-
nary Neutron Star Inspiral”. In: Phys. Rev. Lett. 119.16 (2017), p. 161101. doi:
10.1103/PhysRevLett.119.161101. arXiv: 1710.05832 [gr-qc].

[5] B. P. Abbott et al. “Gravitational Waves and Gamma-rays from a Binary Neu-
tron Star Merger: GW170817 and GRB 170817A”. In: Astrophys. J. 848.2 (2017),
p. L13. doi: 10.3847/2041-8213/aa920c. arXiv: 1710.05834 [astro-ph.HE].

[6] M. Ballardini et al. “Scalar-tensor theories of gravity, neutrino physics, and the
H0 tension”. In: arXiv e-prints, arXiv:2004.14349 (Apr. 2020), arXiv:2004.14349.
arXiv: 2004.14349 [astro-ph.CO].

[7] B. Bertotti, L. Iess, and P. Tortora. “A test of general relativity using radio links
with the Cassini spacecraft”. In: Nature 425.6956 (Sept. 2003), pp. 374–376. doi:
10.1038/nature01997.

[8] C. M. Will. “The Confrontation between General Relativity and Experiment”. In:
Living Reviews in Relativity 17.1 (June 2014). issn: 1433-8351. doi: 10.12942/
lrr-2014-4. url: http://dx.doi.org/10.12942/lrr-2014-4.

[9] A. Vainshtein. “To the problem of nonvanishing gravitation mass”. In: Phys. Lett.
B 39 (1972), pp. 393–394. doi: 10.1016/0370-2693(72)90147-5.

113

https://arxiv.org/abs/1807.06205
https://doi.org/10.1038/s41550-017-0059
https://doi.org/10.1038/s41550-017-0059
https://arxiv.org/abs/1703.00013
https://arxiv.org/abs/1807.06209
https://arxiv.org/abs/1807.06209
https://doi.org/10.1103/PhysRevLett.119.161101
https://arxiv.org/abs/1710.05832
https://doi.org/10.3847/2041-8213/aa920c
https://arxiv.org/abs/1710.05834
https://arxiv.org/abs/2004.14349
https://doi.org/10.1038/nature01997
https://doi.org/10.12942/lrr-2014-4
https://doi.org/10.12942/lrr-2014-4
http://dx.doi.org/10.12942/lrr-2014-4
https://doi.org/10.1016/0370-2693(72)90147-5


Bibliography

[10] N. Chow and J. Khoury. “Galileon cosmology”. In: Phys. Rev. D 80.2, 024037
(July 2009), p. 024037. doi: 10.1103/PhysRevD.80.024037. arXiv: 0905.1325
[hep-th].

[11] M. Rossi et al. “Cosmological constraints on post-Newtonian parameters in effec-
tively massless scalar-tensor theories of gravity”. In: arXiv e-prints, arXiv:1906.10218
(June 2019), arXiv:1906.10218. arXiv: 1906.10218 [astro-ph.CO].

[12] M. Braglia et al. “A larger value for H0 by an evolving gravitational constant”.
In: arXiv e-prints, arXiv:2004.11161 (Apr. 2020), arXiv:2004.11161. arXiv: 2004.
11161 [astro-ph.CO].

[13] C. Umiltà. “Cosmological predictions for a scalar tensor dark energy model by
a dedicated Einstein-Boltzmann code”. MA thesis. url: http://amslaurea.
unibo.it/6580/.

[14] C. Umiltà et al. “CMB and BAO constraints for an induced gravity dark energy
model with a quartic potential”. In: J. Cosmology Astropart. Phys. 2015.8, 017
(Aug. 2015), p. 017. doi: 10.1088/1475-7516/2015/08/017. arXiv: 1507.00718
[astro-ph.CO].

[15] A. Friedmann. “Über die Krümmung des Raumes”. In: Zeitschrift für Physik A
10 (1922), pp. 377–386.

[16] G. Lemaître. “Un Univers homogène de masse constante et de rayon croissant
rendant compte de la vitesse radiale des nébuleuses extra-galactiques”. In: Annales
de la Société; Scientifique de Bruxelles 47 (Jan. 1927), pp. 49–59.

[17] H. P. Robertson. “Kinematics and World-Structure”. In: ApJ 82 (Nov. 1935),
p. 284. doi: 10.1086/143681.

[18] H. P. Robertson. “Kinematics and World-Structure II.” In: ApJ 83 (Apr. 1936),
p. 187. doi: 10.1086/143716.

[19] A. G. Walker. “On Milne’s Theory of World-Structure”. In: Proceedings of the
London Mathematical Society 42 (Jan. 1937), pp. 90–127. doi: 10.1112/plms/s2-
42.1.90.

[20] E. Hubble. “A relation between distance and radial velocity among extra-galactic
nebulae”. In: Proceedings of the National Academy of Sciences 15.3 (1929), pp. 168–
173. issn: 0027-8424. doi: 10.1073/pnas.15.3.168. eprint: https://www.pnas.
org/content/15/3/168.full.pdf. url: https://www.pnas.org/content/15/
3/168.

[21] R. H. Cyburt et al. “Big bang nucleosynthesis: Present status”. In: Rev. Mod.
Phys. 88 (1 2016), p. 015004. doi: 10 . 1103 / RevModPhys . 88 . 015004. url:
https://link.aps.org/doi/10.1103/RevModPhys.88.015004.

114

https://doi.org/10.1103/PhysRevD.80.024037
https://arxiv.org/abs/0905.1325
https://arxiv.org/abs/0905.1325
https://arxiv.org/abs/1906.10218
https://arxiv.org/abs/2004.11161
https://arxiv.org/abs/2004.11161
http://amslaurea.unibo.it/6580/
http://amslaurea.unibo.it/6580/
https://doi.org/10.1088/1475-7516/2015/08/017
https://arxiv.org/abs/1507.00718
https://arxiv.org/abs/1507.00718
https://doi.org/10.1086/143681
https://doi.org/10.1086/143716
https://doi.org/10.1112/plms/s2-42.1.90
https://doi.org/10.1112/plms/s2-42.1.90
https://doi.org/10.1073/pnas.15.3.168
https://www.pnas.org/content/15/3/168.full.pdf
https://www.pnas.org/content/15/3/168.full.pdf
https://www.pnas.org/content/15/3/168
https://www.pnas.org/content/15/3/168
https://doi.org/10.1103/RevModPhys.88.015004
https://link.aps.org/doi/10.1103/RevModPhys.88.015004


Bibliography

[22] A. A. Penzias and R. W. Wilson. “A Measurement of Excess Antenna Tempera-
ture at 4080 Mc/s.” In: ApJ 142 (July 1965), pp. 419–421. doi: 10.1086/148307.

[23] G. Gamow. “Expanding Universe and the Origin of Elements”. In: Phys. Rev. 70
(7-8 Oct. 1946), pp. 572–573. doi: 10.1103/PhysRev.70.572.2. url: https:
//link.aps.org/doi/10.1103/PhysRev.70.572.2.

[24] R. A. Alpher, H. Bethe, and G. Gamow. “The Origin of Chemical Elements”. In:
Physical Review 73.7 (Apr. 1948), pp. 803–804. doi: 10.1103/PhysRev.73.803.

[25] G. Gamow. “The Origin of Elements and the Separation of Galaxies”. In: Physical
Review 74.4 (Aug. 1948), pp. 505–506. doi: 10.1103/PhysRev.74.505.2.

[26] R. A. Alpher and R. Herman. “Evolution of the Universe”. In: Nature 162.4124
(1948), pp. 774–775. issn: 14764687. doi: 10 . 1038 / 162774b0. url: https :
//doi.org/10.1038/162774b0.

[27] R. A. Alpher, R. Herman, and G. A. Gamow. “Thermonuclear Reactions in the
Expanding Universe”. In: Phys. Rev. 74 (9 Nov. 1948), pp. 1198–1199. doi: 10.
1103/PhysRev.74.1198.2. url: https://link.aps.org/doi/10.1103/
PhysRev.74.1198.2.

[28] G. Gamow. “On Relativistic Cosmogony”. In: Rev. Mod. Phys. 21 (3 July 1949),
pp. 367–373. doi: 10.1103/RevModPhys.21.367. url: https://link.aps.org/
doi/10.1103/RevModPhys.21.367.

[29] R. A. Alpher. “A Neutron-Capture Theory of the Formation and Relative Abun-
dance of the Elements”. In: Phys. Rev. 74 (11 Dec. 1948), pp. 1577–1589. doi:
10.1103/PhysRev.74.1577. url: https://link.aps.org/doi/10.1103/
PhysRev.74.1577.

[30] R. A. Alpher and R. C. Herman. “Remarks on the Evolution of the Expand-
ing Universe”. In: Phys. Rev. 75 (7 Apr. 1949), pp. 1089–1095. doi: 10.1103/
PhysRev.75.1089. url: https://link.aps.org/doi/10.1103/PhysRev.75.
1089.

[31] S. Perlmutter et al. “Measurements of Ω and Λ from 42 High-Redshift Super-
novae”. In: ApJ 517.2 (June 1999), pp. 565–586. doi: 10.1086/307221. arXiv:
astro-ph/9812133 [astro-ph].

[32] A. G. Riess et al. “Observational Evidence from Supernovae for an Accelerat-
ing Universe and a Cosmological Constant”. In: The Astronomical Journal 116.3
(Sept. 1998), pp. 1009–1038. doi: 10.1086/300499. url: https://doi.org/10.
1086%2F300499.

115

https://doi.org/10.1086/148307
https://doi.org/10.1103/PhysRev.70.572.2
https://link.aps.org/doi/10.1103/PhysRev.70.572.2
https://link.aps.org/doi/10.1103/PhysRev.70.572.2
https://doi.org/10.1103/PhysRev.73.803
https://doi.org/10.1103/PhysRev.74.505.2
https://doi.org/10.1038/162774b0
https://doi.org/10.1038/162774b0
https://doi.org/10.1038/162774b0
https://doi.org/10.1103/PhysRev.74.1198.2
https://doi.org/10.1103/PhysRev.74.1198.2
https://link.aps.org/doi/10.1103/PhysRev.74.1198.2
https://link.aps.org/doi/10.1103/PhysRev.74.1198.2
https://doi.org/10.1103/RevModPhys.21.367
https://link.aps.org/doi/10.1103/RevModPhys.21.367
https://link.aps.org/doi/10.1103/RevModPhys.21.367
https://doi.org/10.1103/PhysRev.74.1577
https://link.aps.org/doi/10.1103/PhysRev.74.1577
https://link.aps.org/doi/10.1103/PhysRev.74.1577
https://doi.org/10.1103/PhysRev.75.1089
https://doi.org/10.1103/PhysRev.75.1089
https://link.aps.org/doi/10.1103/PhysRev.75.1089
https://link.aps.org/doi/10.1103/PhysRev.75.1089
https://doi.org/10.1086/307221
https://arxiv.org/abs/astro-ph/9812133
https://doi.org/10.1086/300499
https://doi.org/10.1086%2F300499
https://doi.org/10.1086%2F300499


Bibliography

[33] A. Einstein. “The Foundation of the General Theory of Relativity”. In: An-
nalen Phys. 49.7 (1916). [Annalen Phys.354,no.7,769(1916)], pp. 769–822. doi:
10.1002/andp.200590044,10.1002/andp.19163540702.

[34] R. H. Cyburt et al. “Big bang nucleosynthesis: Present status”. In: Rev. Mod.
Phys. 88 (1 2016), p. 015004. doi: 10 . 1103 / RevModPhys . 88 . 015004. url:
https://link.aps.org/doi/10.1103/RevModPhys.88.015004.

[35] S. Weinberg. Gravitation and cosmology: principles and applications of the general
theory of relativity. Wiley, 1972. isbn: 9780471925675. url: https://books.
google.fr/books?id=XLbvAAAAMAAJ.

[36] J. A. Wheeler and K. Ford. “Geons, Black Holes and Quantum Foam: A Life in
Physics”. In: American Journal of Physics 68.6 (2000), pp. 584–585. doi: 10.
1119/1.19497. eprint: https://doi.org/10.1119/1.19497. url: https:
//doi.org/10.1119/1.19497.

[37] T. Padmanabhan. Gravitation: Foundations and Frontiers. Cambridge University
Press, 2010. doi: 10.1017/CBO9780511807787.

[38] R. D’Inverno and L. D’Inverno. Introducing Einstein’s Relativity. Comparative
Pathobiology - Studies in the Postmodern Theory of Education. Clarendon Press,
1992. isbn: 9780198596868. url: https : / / books . google . it / books ? id =

isdsCAAAQBAJ.
[39] A. G. Riess et al. “Large Magellanic Cloud Cepheid Standards Provide a 1%

Foundation for the Determination of the Hubble Constant and Stronger Evidence
for Physics beyond ΛCDM”. In: Astrophys. J. 876.1 (2019), p. 85. doi: 10.3847/
1538-4357/ab1422. arXiv: 1903.07603 [astro-ph.CO].

[40] D. Baumann. Cosmology. 2012. url: http://physics.bu.edu/~schmaltz/
PY555/baumann_notes.pdf.

[41] A. M. Boesgaard and G. Steigman. “Big Bang Nucleosynthesis: Theories and
Observations”. In: Annual Review of Astronomy and Astrophysics 23.1 (1985),
pp. 319–378. doi: 10.1146/annurev.aa.23.090185.001535. eprint: https:
//doi.org/10.1146/annurev.aa.23.090185.001535. url: https://doi.org/
10.1146/annurev.aa.23.090185.001535.

[42] Planck Collaboration et al. “Planck 2018 results. X. Constraints on inflation”.
In: arXiv e-prints, arXiv:1807.06211 (July 2018), arXiv:1807.06211. arXiv: 1807.
06211 [astro-ph.CO].

[43] S. Weinberg. Cosmology. Cosmology. OUP Oxford, 2008. isbn: 9780191523601.
url: https://books.google.it/books?id=nqQZdg020fsC.

116

https://doi.org/10.1002/andp.200590044, 10.1002/andp.19163540702
https://doi.org/10.1103/RevModPhys.88.015004
https://link.aps.org/doi/10.1103/RevModPhys.88.015004
https://books.google.fr/books?id=XLbvAAAAMAAJ
https://books.google.fr/books?id=XLbvAAAAMAAJ
https://doi.org/10.1119/1.19497
https://doi.org/10.1119/1.19497
https://doi.org/10.1119/1.19497
https://doi.org/10.1119/1.19497
https://doi.org/10.1119/1.19497
https://doi.org/10.1017/CBO9780511807787
https://books.google.it/books?id=isdsCAAAQBAJ
https://books.google.it/books?id=isdsCAAAQBAJ
https://doi.org/10.3847/1538-4357/ab1422
https://doi.org/10.3847/1538-4357/ab1422
https://arxiv.org/abs/1903.07603
http://physics. bu. edu/~ schmaltz/PY555/baumann_notes. pdf
http://physics. bu. edu/~ schmaltz/PY555/baumann_notes. pdf
https://doi.org/10.1146/annurev.aa.23.090185.001535
https://doi.org/10.1146/annurev.aa.23.090185.001535
https://doi.org/10.1146/annurev.aa.23.090185.001535
https://doi.org/10.1146/annurev.aa.23.090185.001535
https://doi.org/10.1146/annurev.aa.23.090185.001535
https://arxiv.org/abs/1807.06211
https://arxiv.org/abs/1807.06211
https://books.google.it/books?id=nqQZdg020fsC


Bibliography

[44] A. Riotto. “Inflation and the Theory of Cosmological Perturbations”. In: 2018.
url: https://inspirehep.net/record/1658978/files/riotto.pdf.

[45] V. Mukhanov. Physical Foundations of Cosmology. 2005. doi: 10.2277/0521563984.
[46] A. A. Starobinsky. “Spectrum of relict gravitational radiation and the early state

of the universe”. In: JETP Lett. 30 (1979). [,767(1979)], pp. 682–685.
[47] A. A. Starobinsky. “A New Type of Isotropic Cosmological Models Without Singu-

larity”. In: Phys. Lett. 91B (1980). [,771(1980)], pp. 99–102. doi: 10.1016/0370-
2693(80)90670-X.

[48] D. Kazanas. “Dynamics of the universe and spontaneous symmetry breaking”. In:
ApJ 241 (Oct. 1980), pp. L59–L63. doi: 10.1086/183361.

[49] K. Sato. “First-order phase transition of a vacuum and the expansion of the
Universe”. In: MNRAS 195 (May 1981), pp. 467–479. doi: 10.1093/mnras/195.
3.467.

[50] A. H. Guth. “Inflationary universe: A possible solution to the horizon and flat-
ness problems”. In: Phys. Rev. D 23.2 (Jan. 1981), pp. 347–356. doi: 10.1103/
PhysRevD.23.347.

[51] A. D. Linde. “A new inflationary universe scenario: A possible solution of the
horizon, flatness, homogeneity, isotropy and primordial monopole problems”. In:
Physics Letters B 108.6 (Feb. 1982), pp. 389–393. doi: 10.1016/0370-2693(82)
91219-9.

[52] A. Linde. “Coleman-Weinberg theory and the new inflationary universe scenario”.
In: Physics Letters B 114.6 (1982), pp. 431 –435. issn: 0370-2693. doi: https://
doi.org/10.1016/0370-2693(82)90086-7. url: http://www.sciencedirect.
com/science/article/pii/0370269382900867.

[53] A. Albrecht and P. J. Steinhardt. “Cosmology for Grand Unified Theories with
Radiatively Induced Symmetry Breaking”. In: Phys. Rev. Lett. 48 (17 Apr. 1982),
pp. 1220–1223. doi: 10.1103/PhysRevLett.48.1220. url: https://link.aps.
org/doi/10.1103/PhysRevLett.48.1220.

[54] V. Mukhanov and S. Winitzki. Introduction to Quantum Effects in Gravity. Cam-
bridge University Press, 2007. doi: 10.1017/CBO9780511809149.

[55] F. Zwicky. “Die Rotverschiebung von extragalaktischen Nebeln”. In: Helvetica
Physica Acta 6 (Jan. 1933), pp. 110–127.

[56] G. Bertone and D. Hooper. “History of dark matter”. In: Rev. Mod. Phys. 90.4
(2018), p. 045002. doi: 10.1103/RevModPhys.90.045002. arXiv: 1605.04909
[astro-ph.CO].

117

https://inspirehep.net/record/1658978/files/riotto.pdf
https://doi.org/10.2277/0521563984
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1086/183361
https://doi.org/10.1093/mnras/195.3.467
https://doi.org/10.1093/mnras/195.3.467
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/https://doi.org/10.1016/0370-2693(82)90086-7
https://doi.org/https://doi.org/10.1016/0370-2693(82)90086-7
http://www.sciencedirect.com/science/article/pii/0370269382900867
http://www.sciencedirect.com/science/article/pii/0370269382900867
https://doi.org/10.1103/PhysRevLett.48.1220
https://link.aps.org/doi/10.1103/PhysRevLett.48.1220
https://link.aps.org/doi/10.1103/PhysRevLett.48.1220
https://doi.org/10.1017/CBO9780511809149
https://doi.org/10.1103/RevModPhys.90.045002
https://arxiv.org/abs/1605.04909
https://arxiv.org/abs/1605.04909


Bibliography

[57] P. A. Oesch et al. “A Remarkably Luminous Galaxy at z=11.1 Measured with
Hubble Space Telescope Grism Spectroscopy”. In: ApJ 819.2, 129 (Mar. 2016),
p. 129. doi: 10.3847/0004-637X/819/2/129. arXiv: 1603.00461 [astro-ph.GA].

[58] S. Hawking. “Gravitationally collapsed objects of very low mass”. In: MNRAS 152
(Jan. 1971), p. 75. doi: 10.1093/mnras/152.1.75.

[59] P. Schneider. Extragalactic Astronomy and Cosmology. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006. isbn: 978-3-540-33174-2. doi: 10.1007/978-3-540-
33175-9. url: http://dx.doi.org/10.1007/978-3-540-33175-9.

[60] R. D. Peccei and H. R. Quinn. “CP Conservation in the Presence of Pseu-
doparticles”. In: Phys. Rev. Lett. 38 (25 June 1977), pp. 1440–1443. doi: 10.
1103/PhysRevLett.38.1440. url: https://link.aps.org/doi/10.1103/
PhysRevLett.38.1440.

[61] A. Einstein. “Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie”.
In: Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin
(Jan. 1917), pp. 142–152.

[62] G. Lemaitre. “Evolution of the Expanding Universe”. In: Proceedings of the Na-
tional Academy of Sciences 20.1 (1934), pp. 12–17. issn: 0027-8424. doi: 10.
1073/pnas.20.1.12. eprint: https://www.pnas.org/content/20/1/12.full.
pdf. url: https://www.pnas.org/content/20/1/12.

[63] E. A. S. “The cosmological controversy”. In: Science Progress 34 (1939), pp. 225–
236.

[64] Y. B. Zeldovich. “Cosmological Constant and Elementary Particles”. In: JETP
Lett. 6 (1967). [Pisma Zh. Eksp. Teor. Fiz.6,883(1967)], p. 316.

[65] P. J. E. Peebles and B. Ratra. “Cosmology with a Time-Variable Cosmological
“Constant””. In: ApJ 325 (Feb. 1988), p. L17. doi: 10.1086/185100.

[66] P. J. Peebles and B. Ratra. “The cosmological constant and dark energy”. In: Re-
views of Modern Physics 75.2 (Apr. 2003), pp. 559–606. doi: 10.1103/RevModPhys.
75.559. arXiv: astro-ph/0207347 [astro-ph].

[67] S. Tsujikawa. “Quintessence: a review”. In: Classical and Quantum Gravity 30.21
(Oct. 2013), p. 214003. doi: 10.1088/0264-9381/30/21/214003. url: https:
//doi.org/10.1088%2F0264-9381%2F30%2F21%2F214003.

[68] I. Zlatev, L. Wang, and P. J. Steinhardt. “Quintessence, Cosmic Coincidence, and
the Cosmological Constant”. In: Phys. Rev. Lett. 82 (5 Feb. 1999), pp. 896–899.
doi: 10.1103/PhysRevLett.82.896. url: https://link.aps.org/doi/10.
1103/PhysRevLett.82.896.

118

https://doi.org/10.3847/0004-637X/819/2/129
https://arxiv.org/abs/1603.00461
https://doi.org/10.1093/mnras/152.1.75
https://doi.org/10.1007/978-3-540-33175-9
https://doi.org/10.1007/978-3-540-33175-9
http://dx.doi.org/10.1007/978-3-540-33175-9
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://link.aps.org/doi/10.1103/PhysRevLett.38.1440
https://link.aps.org/doi/10.1103/PhysRevLett.38.1440
https://doi.org/10.1073/pnas.20.1.12
https://doi.org/10.1073/pnas.20.1.12
https://www.pnas.org/content/20/1/12.full.pdf
https://www.pnas.org/content/20/1/12.full.pdf
https://www.pnas.org/content/20/1/12
https://doi.org/10.1086/185100
https://doi.org/10.1103/RevModPhys.75.559
https://doi.org/10.1103/RevModPhys.75.559
https://arxiv.org/abs/astro-ph/0207347
https://doi.org/10.1088/0264-9381/30/21/214003
https://doi.org/10.1088%2F0264-9381%2F30%2F21%2F214003
https://doi.org/10.1088%2F0264-9381%2F30%2F21%2F214003
https://doi.org/10.1103/PhysRevLett.82.896
https://link.aps.org/doi/10.1103/PhysRevLett.82.896
https://link.aps.org/doi/10.1103/PhysRevLett.82.896


Bibliography

[69] C.-P. Ma and E. Bertschinger. “Cosmological Perturbation Theory in the Syn-
chronous and Conformal Newtonian Gauges”. In: ApJ 455 (Dec. 1995), p. 7. doi:
10.1086/176550. arXiv: astro-ph/9506072 [astro-ph].

[70] S. Dodelson.Modern Cosmology. Amsterdam: Academic Press, 2003. isbn: 9780122191411.
url: http://www.slac.stanford.edu/spires/find/books/www?cl=QB981:
D62:2003.

[71] J. M. Bardeen. “Gauge-invariant cosmological perturbations”. In: Phys. Rev. D
22.8 (Oct. 1980), pp. 1882–1905. doi: 10.1103/PhysRevD.22.1882.

[72] J. R. Bond and A. S. Szalay. “The collisionless damping of density fluctuations
in an expanding universe”. In: ApJ 274 (Nov. 1983), pp. 443–468. doi: 10.1086/
161460.

[73] M. Bucher, K. Moodley, and N. Turok. “General primordial cosmic perturbation”.
In: Phys. Rev. D 62.8, 083508 (Oct. 2000), p. 083508. doi: 10.1103/PhysRevD.
62.083508. arXiv: astro-ph/9904231 [astro-ph].

[74] A. R. Liddle and D. H. Lyth. Cosmological Inflation and Large-Scale Structure.
Cambridge University Press, 2000. doi: 10.1017/CBO9781139175180.

[75] H. Kurki-Suonio. Cosmological Perturbation Theory, part 1. Lecture notes for a
course on cosmological perturbation theory given at the University of Helsinki.
2015.

[76] D. J. Fixsen. “The Temperature of the Cosmic Microwave Background”. In: ApJ
707.2 (Dec. 2009), pp. 916–920. doi: 10.1088/0004-637X/707/2/916. arXiv:
0911.1955 [astro-ph.CO].

[77] R. K. Sachs and A. M. Wolfe. “Perturbations of a Cosmological Model and An-
gular Variations of the Microwave Background”. In: ApJ 147 (Jan. 1967), p. 73.
doi: 10.1086/148982.

[78] G. Nordström. “Zur Theorie der Gravitation vom Standpunkt des Relativität-
sprinzips”. In: Annalen der Physik 347.13 (1913), pp. 533–554. doi: 10.1002/
andp.19133471303. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1002/andp.19133471303. url: https://onlinelibrary.wiley.com/doi/abs/
10.1002/andp.19133471303.

[79] Y. Fujii and K. Maeda. The scalar-tensor theory of gravitation. Cambridge Mono-
graphs on Mathematical Physics. Cambridge University Press, 2007. isbn: 9780521037525,
9780521811590, 9780511029882. doi: 10.1017/CBO9780511535093. url: http:
//www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521811597.

[80] P. Jordan. “Schwerkraft und Weltall: Grundlagen der theoretischen Kos- mologie”.
In: Die Wissenschaft. F. Vieweg (1955).

119

https://doi.org/10.1086/176550
https://arxiv.org/abs/astro-ph/9506072
http://www.slac.stanford.edu/spires/find/books/www?cl=QB981:D62:2003
http://www.slac.stanford.edu/spires/find/books/www?cl=QB981:D62:2003
https://doi.org/10.1103/PhysRevD.22.1882
https://doi.org/10.1086/161460
https://doi.org/10.1086/161460
https://doi.org/10.1103/PhysRevD.62.083508
https://doi.org/10.1103/PhysRevD.62.083508
https://arxiv.org/abs/astro-ph/9904231
https://doi.org/10.1017/CBO9781139175180
https://doi.org/10.1088/0004-637X/707/2/916
https://arxiv.org/abs/0911.1955
https://doi.org/10.1086/148982
https://doi.org/10.1002/andp.19133471303
https://doi.org/10.1002/andp.19133471303
https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.19133471303
https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.19133471303
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19133471303
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19133471303
https://doi.org/10.1017/CBO9780511535093
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521811597
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521811597


Bibliography

[81] C. Brans and R. H. Dicke. “Mach’s Principle and a Relativistic Theory of Gravi-
tation”. In: Phys. Rev. 124 (3 Nov. 1961), pp. 925–935. doi: 10.1103/PhysRev.
124.925. url: https://link.aps.org/doi/10.1103/PhysRev.124.925.

[82] P. A. M. Dirac. “A New Basis for Cosmology”. In: Proceedings of the Royal Society
of London Series A 165.921 (Apr. 1938), pp. 199–208. doi: 10.1098/rspa.1938.
0053.

[83] G. W. Horndeski. “Second-order scalar-tensor field equations in a four-dimensional
space”. In: Int. J. Theor. Phys. 10 (1974), pp. 363–384. doi: 10.1007/BF01807638.

[84] R. P. Woodard. “The Theorem of Ostrogradsky”. In: arXiv e-prints, arXiv:1506.02210
(June 2015), arXiv:1506.02210. arXiv: 1506.02210 [hep-th].

[85] T. Kobayashi, M. Yamaguchi, and J. Yokoyama. “Generalized G-Inflation — In-
flation with the Most General Second-Order Field Equations —”. In: Progress of
Theoretical Physics 126.3 (Sept. 2011), pp. 511–529. doi: 10.1143/PTP.126.511.
arXiv: 1105.5723 [hep-th].

[86] C. Armendáriz-Picón, T. Damour, and V. Mukhanov. “k-Inflation”. In: Physics
Letters B 458.2-3 (July 1999), 209–218. issn: 0370-2693. doi: 10.1016/s0370-
2693(99)00603-6. url: http://dx.doi.org/10.1016/S0370-2693(99)00603-
6.

[87] T. Chiba, T. Okabe, and M. Yamaguchi. “Kinetically driven quintessence”. In:
Physical Review D 62.2 (June 2000). issn: 1089-4918. doi: 10.1103/physrevd.
62.023511. url: http://dx.doi.org/10.1103/PhysRevD.62.023511.

[88] C. Armendariz-Picon, V. Mukhanov, and P. J. Steinhardt. “Dynamical Solution
to the Problem of a Small Cosmological Constant and Late-Time Cosmic Accel-
eration”. In: Phys. Rev. Lett. 85.21 (Nov. 2000), pp. 4438–4441. doi: 10.1103/
PhysRevLett.85.4438. arXiv: astro-ph/0004134 [astro-ph].

[89] C. Armendariz-Picon, V. Mukhanov, and P. J. Steinhardt. “Essentials of k-essence”.
In: Phys. Rev. D 63.10, 103510 (May 2001), p. 103510. doi: 10.1103/PhysRevD.
63.103510. arXiv: astro-ph/0006373 [astro-ph].

[90] M. Gasperini and G. Veneziano. “Pre-big-bang in string cosmology”. In: Astropar-
ticle Physics 1.3 (July 1993), pp. 317–339. doi: 10.1016/0927-6505(93)90017-
8. arXiv: hep-th/9211021 [hep-th].

[91] T. Damour and K. Nordtvedt. “Tensor - scalar cosmological models and their
relaxation toward general relativity”. In: Phys. Rev. D 48 (1993), pp. 3436–3450.
doi: 10.1103/PhysRevD.48.3436.

120

https://doi.org/10.1103/PhysRev.124.925
https://doi.org/10.1103/PhysRev.124.925
https://link.aps.org/doi/10.1103/PhysRev.124.925
https://doi.org/10.1098/rspa.1938.0053
https://doi.org/10.1098/rspa.1938.0053
https://doi.org/10.1007/BF01807638
https://arxiv.org/abs/1506.02210
https://doi.org/10.1143/PTP.126.511
https://arxiv.org/abs/1105.5723
https://doi.org/10.1016/s0370-2693(99)00603-6
https://doi.org/10.1016/s0370-2693(99)00603-6
http://dx.doi.org/10.1016/S0370-2693(99)00603-6
http://dx.doi.org/10.1016/S0370-2693(99)00603-6
https://doi.org/10.1103/physrevd.62.023511
https://doi.org/10.1103/physrevd.62.023511
http://dx.doi.org/10.1103/PhysRevD.62.023511
https://doi.org/10.1103/PhysRevLett.85.4438
https://doi.org/10.1103/PhysRevLett.85.4438
https://arxiv.org/abs/astro-ph/0004134
https://doi.org/10.1103/PhysRevD.63.103510
https://doi.org/10.1103/PhysRevD.63.103510
https://arxiv.org/abs/astro-ph/0006373
https://doi.org/10.1016/0927-6505(93)90017-8
https://doi.org/10.1016/0927-6505(93)90017-8
https://arxiv.org/abs/hep-th/9211021
https://doi.org/10.1103/PhysRevD.48.3436


Bibliography

[92] T. Damour and A. M. Polyakov. “The string dilation and a least coupling princi-
ple”. In: Nuclear Physics B 423.2-3 (July 1994), pp. 532–558. doi: 10.1016/0550-
3213(94)90143-0. arXiv: hep-th/9401069 [hep-th].

[93] L. Amendola. “Scaling solutions in general nonminimal coupling theories”. In:
Phys. Rev. D 60.4, 043501 (Aug. 1999), p. 043501. doi: 10.1103/PhysRevD.60.
043501. arXiv: astro-ph/9904120 [astro-ph].

[94] T. Chiba. “Quintessence, the gravitational constant, and gravity”. In: Phys. Rev. D
60.8, 083508 (Oct. 1999), p. 083508. doi: 10.1103/PhysRevD.60.083508. arXiv:
gr-qc/9903094 [gr-qc].

[95] F. Perrotta, C. Baccigalupi, and S. Matarrese. “Extended quintessence”. In: Phys. Rev. D
61.2, 023507 (Jan. 2000), p. 023507. doi: 10.1103/PhysRevD.61.023507. arXiv:
astro-ph/9906066 [astro-ph].

[96] B. Boisseau et al. “Reconstruction of a Scalar-Tensor Theory of Gravity in an
Accelerating Universe”. In: Phys. Rev. Lett. 85.11 (Sept. 2000), pp. 2236–2239.
doi: 10.1103/PhysRevLett.85.2236. arXiv: gr-qc/0001066 [gr-qc].

[97] A. D. Sakharov. “Vacuum quantum fluctuations in curved space and the theory of
gravitation”. In: Sov. Phys. Dokl. 12 (1968). [Dokl. Akad. Nauk Ser. Fiz.177,70(1967);
Sov. Phys. Usp.34,no.5,394(1991); Gen. Rel. Grav.32,365(2000); Usp. Fiz. Nauk161,no.5,64(1991);
,51(1967)], pp. 1040–1041.

[98] A. Zee. “Broken-Symmetric Theory of Gravity”. In: Phys. Rev. Lett. 42 (7 Feb.
1979), pp. 417–421. doi: 10.1103/PhysRevLett.42.417. url: https://link.
aps.org/doi/10.1103/PhysRevLett.42.417.

[99] S. L. Adler. “Einstein gravity as a symmetry-breaking effect in quantum field
theory”. In: Rev. Mod. Phys. 54 (3 July 1982), pp. 729–766. doi: 10 . 1103 /
RevModPhys.54.729. url: https://link.aps.org/doi/10.1103/RevModPhys.
54.729.

[100] M. Ballardini et al. “Cosmological constraints on induced gravity dark energy
models”. In: Journal of Cosmology and Astroparticle Physics 2016.5, 067 (May
2016), p. 067. doi: 10.1088/1475- 7516/2016/05/067. arXiv: 1601.03387
[astro-ph.CO].

[101] F. Finelli, A. Tronconi, and G. Venturi. “Dark energy, induced gravity and broken
scale invariance”. In: Physics Letters B 659.3 (Jan. 2008), pp. 466–470. doi: 10.
1016/j.physletb.2007.11.053. arXiv: 0710.2741 [astro-ph].

[102] A. Cerioni et al. “Inflation and reheating in induced gravity”. In: Physics Letters
B 681.5 (Nov. 2009), pp. 383–386. doi: 10.1016/j.physletb.2009.10.066.
arXiv: 0906.1902 [astro-ph.CO].

121

https://doi.org/10.1016/0550-3213(94)90143-0
https://doi.org/10.1016/0550-3213(94)90143-0
https://arxiv.org/abs/hep-th/9401069
https://doi.org/10.1103/PhysRevD.60.043501
https://doi.org/10.1103/PhysRevD.60.043501
https://arxiv.org/abs/astro-ph/9904120
https://doi.org/10.1103/PhysRevD.60.083508
https://arxiv.org/abs/gr-qc/9903094
https://doi.org/10.1103/PhysRevD.61.023507
https://arxiv.org/abs/astro-ph/9906066
https://doi.org/10.1103/PhysRevLett.85.2236
https://arxiv.org/abs/gr-qc/0001066
https://doi.org/10.1103/PhysRevLett.42.417
https://link.aps.org/doi/10.1103/PhysRevLett.42.417
https://link.aps.org/doi/10.1103/PhysRevLett.42.417
https://doi.org/10.1103/RevModPhys.54.729
https://doi.org/10.1103/RevModPhys.54.729
https://link.aps.org/doi/10.1103/RevModPhys.54.729
https://link.aps.org/doi/10.1103/RevModPhys.54.729
https://doi.org/10.1088/1475-7516/2016/05/067
https://arxiv.org/abs/1601.03387
https://arxiv.org/abs/1601.03387
https://doi.org/10.1016/j.physletb.2007.11.053
https://doi.org/10.1016/j.physletb.2007.11.053
https://arxiv.org/abs/0710.2741
https://doi.org/10.1016/j.physletb.2009.10.066
https://arxiv.org/abs/0906.1902


Bibliography

[103] D. Paoletti et al. “Isocurvature fluctuations in the effective Newton’s constant”.
In: Physics of the Dark Universe 25, 100307 (Sept. 2019), p. 100307. doi: 10.
1016/j.dark.2019.100307. arXiv: 1809.03201 [astro-ph.CO].

[104] A. Nicolis, R. Rattazzi, and E. Trincherini. “Galileon as a local modification of
gravity”. In: Physical Review D 79.6 (Mar. 2009). issn: 1550-2368. doi: 10.1103/
physrevd.79.064036. url: http://dx.doi.org/10.1103/PhysRevD.79.
064036.

[105] C. Deffayet, G. Esposito-Farèse, and A. Vikman. “Covariant Galileon”. In: Phys. Rev. D
79.8, 084003 (Apr. 2009), p. 084003. doi: 10.1103/PhysRevD.79.084003. arXiv:
0901.1314 [hep-th].

[106] A. de Felice and S. Tsujikawa. “Cosmology of a Covariant Galileon Field”. In:
Phys. Rev. Lett. 105.11, 111301 (Sept. 2010), p. 111301. doi: 10.1103/PhysRevLett.
105.111301. arXiv: 1007.2700 [astro-ph.CO].

[107] A. de Felice and S. Tsujikawa. “Generalized Galileon cosmology”. In: Phys. Rev. D
84.12, 124029 (Dec. 2011), p. 124029. doi: 10.1103/PhysRevD.84.124029. arXiv:
1008.4236 [hep-th].

[108] C. Deffayet et al. “Imperfect dark energy from kinetic gravity braiding”. In: Jour-
nal of Cosmology and Astroparticle Physics 2010.10 (Oct. 2010), 026–026. issn:
1475-7516. doi: 10.1088/1475-7516/2010/10/026. url: http://dx.doi.org/
10.1088/1475-7516/2010/10/026.

[109] O. Pujolàs, I. Sawicki, and A. Vikman. “The imperfect fluid behind kinetic gravity
braiding”. In: Journal of High Energy Physics 2011.11 (Nov. 2011). issn: 1029-
8479. doi: 10.1007/jhep11(2011)156. url: http://dx.doi.org/10.1007/
JHEP11(2011)156.

[110] F. P. Silva and K. Koyama. “Self-accelerating universe in Galileon cosmology”. In:
Phys. Rev. D 80.12, 121301 (Dec. 2009), p. 121301. doi: 10.1103/PhysRevD.80.
121301. arXiv: 0909.4538 [astro-ph.CO].

[111] I. Quiros. “Selected topics in scalar-tensor theories and beyond”. In: International
Journal of Modern Physics D 28.7, 1930012-156 (Jan. 2019), pp. 1930012–156.
doi: 10.1142/S021827181930012X. arXiv: 1901.08690 [gr-qc].

[112] R. Kase and S. Tsujikawa. “Dark energy in Horndeski theories after GW170817: A
review”. In: International Journal of Modern Physics D 28.5, 1942005 (Jan. 2019),
p. 1942005. doi: 10.1142/S0218271819420057. arXiv: 1809.08735 [gr-qc].

[113] A. Goldstein et al. “An Ordinary Short Gamma-Ray Burst with Extraordinary
Implications: Fermi-GBM Detection of GRB 170817A”. In: Astrophys. J. 848.2
(2017), p. L14. doi: 10.3847/2041-8213/aa8f41. arXiv: 1710.05446 [astro-ph.HE].

122

https://doi.org/10.1016/j.dark.2019.100307
https://doi.org/10.1016/j.dark.2019.100307
https://arxiv.org/abs/1809.03201
https://doi.org/10.1103/physrevd.79.064036
https://doi.org/10.1103/physrevd.79.064036
http://dx.doi.org/10.1103/PhysRevD.79.064036
http://dx.doi.org/10.1103/PhysRevD.79.064036
https://doi.org/10.1103/PhysRevD.79.084003
https://arxiv.org/abs/0901.1314
https://doi.org/10.1103/PhysRevLett.105.111301
https://doi.org/10.1103/PhysRevLett.105.111301
https://arxiv.org/abs/1007.2700
https://doi.org/10.1103/PhysRevD.84.124029
https://arxiv.org/abs/1008.4236
https://doi.org/10.1088/1475-7516/2010/10/026
http://dx.doi.org/10.1088/1475-7516/2010/10/026
http://dx.doi.org/10.1088/1475-7516/2010/10/026
https://doi.org/10.1007/jhep11(2011)156
http://dx.doi.org/10.1007/JHEP11(2011)156
http://dx.doi.org/10.1007/JHEP11(2011)156
https://doi.org/10.1103/PhysRevD.80.121301
https://doi.org/10.1103/PhysRevD.80.121301
https://arxiv.org/abs/0909.4538
https://doi.org/10.1142/S021827181930012X
https://arxiv.org/abs/1901.08690
https://doi.org/10.1142/S0218271819420057
https://arxiv.org/abs/1809.08735
https://doi.org/10.3847/2041-8213/aa8f41
https://arxiv.org/abs/1710.05446


Bibliography

[114] T. Kobayashi, M. Yamaguchi, and J. Yokoyama. “Inflation Driven by the Galileon
Field”. In: Phys. Rev. Lett. 105.23, 231302 (Dec. 2010), p. 231302. doi: 10.1103/
PhysRevLett.105.231302. arXiv: 1008.0603 [hep-th].

[115] S. Capozziello, R. de Ritis, and A. A. Marino. “Some aspects of the cosmological
conformal equivalence between the ‘Jordan frame’ and the ‘Einstein frame’”. In:
Classical and Quantum Gravity 14.12 (Dec. 1997), pp. 3243–3258. doi: 10.1088/
0264-9381/14/12/010. arXiv: gr-qc/9612053 [gr-qc].

[116] V. Faraoni and E. Gunzig. “Einstein frame or Jordan frame ?” In: arXiv e-prints,
astro-ph/9910176 (Oct. 1999), astro–ph/9910176. arXiv: astro - ph / 9910176

[astro-ph].
[117] J. Khoury and A. Weltman. “Chameleon Fields: Awaiting Surprises for Tests of

Gravity in Space”. In: Phys. Rev. Lett. 93.17, 171104 (Oct. 2004), p. 171104. doi:
10.1103/PhysRevLett.93.171104. arXiv: astro-ph/0309300 [astro-ph].

[118] J. Khoury and A. Weltman. “Chameleon cosmology”. In: Phys. Rev. D 69.4,
044026 (Feb. 2004), p. 044026. doi: 10.1103/PhysRevD.69.044026. arXiv:
astro-ph/0309411 [astro-ph].

[119] K. Hinterbichler and J. Khoury. “Screening Long-Range Forces through Local
Symmetry Restoration”. In: Phys. Rev. Lett. 104.23, 231301 (June 2010), p. 231301.
doi: 10.1103/PhysRevLett.104.231301. arXiv: 1001.4525 [hep-th].

[120] K. Hinterbichler et al. “Symmetron cosmology”. In: Phys. Rev. D 84.10, 103521
(Nov. 2011), p. 103521. doi: 10.1103/PhysRevD.84.103521. arXiv: 1107.2112
[astro-ph.CO].

[121] E. Babichev, C. Deffayet, and R. Ziour. “k-MOUFLAGE Gravity”. In: Inter-
national Journal of Modern Physics D 18.14 (Jan. 2009), pp. 2147–2154. doi:
10.1142/S0218271809016107. arXiv: 0905.2943 [hep-th].

[122] H. Wei and R.-G. Cai. “K-chameleon and the coincidence problem”. In: Phys.
Rev. D 71 (2005), p. 043504. doi: 10.1103/PhysRevD.71.043504. arXiv: hep-
th/0412045.

[123] V. Faraoni. “Scalar field mass in generalized gravity”. In: Classical and Quantum
Gravity 26.14, 145014 (July 2009), p. 145014. doi: 10.1088/0264-9381/26/14/
145014. arXiv: 0906.1901 [gr-qc].

[124] S. S. Gubser and J. Khoury. “Scalar self-interactions loosen constraints from fifth
force searches”. In: Phys. Rev. D 70 (2004), p. 104001. doi: 10.1103/PhysRevD.
70.104001. arXiv: hep-ph/0405231.

123

https://doi.org/10.1103/PhysRevLett.105.231302
https://doi.org/10.1103/PhysRevLett.105.231302
https://arxiv.org/abs/1008.0603
https://doi.org/10.1088/0264-9381/14/12/010
https://doi.org/10.1088/0264-9381/14/12/010
https://arxiv.org/abs/gr-qc/9612053
https://arxiv.org/abs/astro-ph/9910176
https://arxiv.org/abs/astro-ph/9910176
https://doi.org/10.1103/PhysRevLett.93.171104
https://arxiv.org/abs/astro-ph/0309300
https://doi.org/10.1103/PhysRevD.69.044026
https://arxiv.org/abs/astro-ph/0309411
https://doi.org/10.1103/PhysRevLett.104.231301
https://arxiv.org/abs/1001.4525
https://doi.org/10.1103/PhysRevD.84.103521
https://arxiv.org/abs/1107.2112
https://arxiv.org/abs/1107.2112
https://doi.org/10.1142/S0218271809016107
https://arxiv.org/abs/0905.2943
https://doi.org/10.1103/PhysRevD.71.043504
https://arxiv.org/abs/hep-th/0412045
https://arxiv.org/abs/hep-th/0412045
https://doi.org/10.1088/0264-9381/26/14/145014
https://doi.org/10.1088/0264-9381/26/14/145014
https://arxiv.org/abs/0906.1901
https://doi.org/10.1103/PhysRevD.70.104001
https://doi.org/10.1103/PhysRevD.70.104001
https://arxiv.org/abs/hep-ph/0405231


Bibliography

[125] I. Quiros et al. “Chameleon effect in the Jordan frame of the Brans-Dicke theory”.
In: Phys. Rev. D 92.4, 044055 (Aug. 2015), p. 044055. doi: 10.1103/PhysRevD.
92.044055. arXiv: 1506.05420 [gr-qc].

[126] T. Kobayashi. “Horndeski theory and beyond: a review”. In: Reports on Progress in
Physics 82.8, 086901 (Aug. 2019), p. 086901. doi: 10.1088/1361-6633/ab2429.
arXiv: 1901.07183 [gr-qc].

[127] K. Koyama, G. Niz, and G. Tasinato. “Effective theory for the Vainshtein mech-
anism from the Horndeski action”. In: Phys. Rev. D 88.2, 021502 (July 2013),
p. 021502. doi: 10.1103/PhysRevD.88.021502. arXiv: 1305.0279 [hep-th].

[128] A. Dima and F. Vernizzi. “Vainshtein screening in scalar-tensor theories before
and after GW170817: Constraints on theories beyond Horndeski”. In: Phys. Rev. D
97.10, 101302 (May 2018), p. 101302. doi: 10.1103/PhysRevD.97.101302. arXiv:
1712.04731 [gr-qc].

[129] R. Kimura, T. Kobayashi, and K. Yamamoto. “Vainshtein screening in a cos-
mological background in the most general second-order scalar-tensor theory”. In:
Phys. Rev. D 85.2, 024023 (Jan. 2012), p. 024023. doi: 10.1103/PhysRevD.85.
024023. arXiv: 1111.6749 [astro-ph.CO].

[130] I. Quiros et al. “Brans-Dicke Galileon and the variational principle”. In: European
Journal of Physics 37.5 (Sept. 2016), p. 055605. doi: 10.1088/0143-0807/37/
5/055605. arXiv: 1605.00326 [gr-qc].

[131] A. De Felice and S. Tsujikawa. “Generalized Brans-Dicke theories”. In: J. Cos-
mology Astropart. Phys. 2010.7, 024 (July 2010), p. 024. doi: 10.1088/1475-
7516/2010/07/024. arXiv: 1005.0868 [astro-ph.CO].

[132] T. Kobayashi. “Cosmic expansion and growth histories in Galileon scalar-tensor
models of dark energy”. In: Phys. Rev. D 81.10, 103533 (May 2010), p. 103533.
doi: 10.1103/PhysRevD.81.103533. arXiv: 1003.3281 [astro-ph.CO].

[133] A. Cerioni. “Cosmological perturbations in generalized theories of gravity”. PhD
thesis. alma, Apr. 2011. url: http://amsdottorato.unibo.it/3562/.

[134] E. Bellini et al. “Comparison of Einstein-Boltzmann solvers for testing general
relativity”. In: Phys. Rev. D 97.2, 023520 (Jan. 2018), p. 023520. doi: 10.1103/
PhysRevD.97.023520. arXiv: 1709.09135 [astro-ph.CO].

[135] J. Lesgourgues. “The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview”.
In: arXiv e-prints, arXiv:1104.2932 (Apr. 2011), arXiv:1104.2932. arXiv: 1104.
2932 [astro-ph.IM].

124

https://doi.org/10.1103/PhysRevD.92.044055
https://doi.org/10.1103/PhysRevD.92.044055
https://arxiv.org/abs/1506.05420
https://doi.org/10.1088/1361-6633/ab2429
https://arxiv.org/abs/1901.07183
https://doi.org/10.1103/PhysRevD.88.021502
https://arxiv.org/abs/1305.0279
https://doi.org/10.1103/PhysRevD.97.101302
https://arxiv.org/abs/1712.04731
https://doi.org/10.1103/PhysRevD.85.024023
https://doi.org/10.1103/PhysRevD.85.024023
https://arxiv.org/abs/1111.6749
https://doi.org/10.1088/0143-0807/37/5/055605
https://doi.org/10.1088/0143-0807/37/5/055605
https://arxiv.org/abs/1605.00326
https://doi.org/10.1088/1475-7516/2010/07/024
https://doi.org/10.1088/1475-7516/2010/07/024
https://arxiv.org/abs/1005.0868
https://doi.org/10.1103/PhysRevD.81.103533
https://arxiv.org/abs/1003.3281
http://amsdottorato.unibo.it/3562/
https://doi.org/10.1103/PhysRevD.97.023520
https://doi.org/10.1103/PhysRevD.97.023520
https://arxiv.org/abs/1709.09135
https://arxiv.org/abs/1104.2932
https://arxiv.org/abs/1104.2932


Bibliography

[136] J. Bueno Sanchez and L. Perivolaropoulos. “Dark energy and matter perturba-
tions in scalar-tensor theories of gravity”. In: J. Phys. Conf. Ser. 283 (2011),
p. 012006. doi: 10.1088/1742-6596/283/1/012006.

[137] M. Braglia. “Initial conditions for cosmological perturbations in scalar-tensor
dark-energy models”. PhD thesis. url: http://amslaurea.unibo.it/13860/.

[138] E. Bellini, I. Sawicki, and M. Zumalacárregui. “hi_class background evolution,
initial conditions and approximation schemes”. In: J. Cosmology Astropart. Phys.
2020.2, 008 (Feb. 2020), p. 008. doi: 10.1088/1475-7516/2020/02/008. arXiv:
1909.01828 [astro-ph.CO].

[139] J.-C. Hwang and H. Noh. “Gauge-ready formulation of the cosmological kinetic
theory in generalized gravity theories”. In: Phys. Rev. D 65.2, 023512 (Jan. 2002),
p. 023512. doi: 10.1103/PhysRevD.65.023512. arXiv: astro- ph/0102005
[astro-ph].

[140] J.-C. Hwang and H. Noh. “Classical evolution and quantum generation in general-
ized gravity theories including string corrections and tachyons: Unified analyses”.
In: Phys. Rev. D 71.6, 063536 (Mar. 2005), p. 063536. doi: 10.1103/PhysRevD.
71.063536. arXiv: gr-qc/0412126 [gr-qc].

[141] H. Kodama and M. Sasaki. “Cosmological Perturbation Theory”. In: Prog. Theor.
Phys. Suppl. 78 (1984), pp. 1–166. doi: 10.1143/PTPS.78.1.

125

https://doi.org/10.1088/1742-6596/283/1/012006
http://amslaurea.unibo.it/13860/
https://doi.org/10.1088/1475-7516/2020/02/008
https://arxiv.org/abs/1909.01828
https://doi.org/10.1103/PhysRevD.65.023512
https://arxiv.org/abs/astro-ph/0102005
https://arxiv.org/abs/astro-ph/0102005
https://doi.org/10.1103/PhysRevD.71.063536
https://doi.org/10.1103/PhysRevD.71.063536
https://arxiv.org/abs/gr-qc/0412126
https://doi.org/10.1143/PTPS.78.1

	Introduction
	The standard cosmological model
	General Relativity
	Einstein gravitational Action

	Friedmann-Lemaître-Robertson-Walker metric
	Kinematics of the Friedmann models
	Redshift and Hubble law
	Distances
	Horizons

	Dynamics of the Friedmann models
	,CDM Model

	Thermal evolution
	Successes and problems of the hot Big-Bang model
	Slow-roll inflation

	Dark matter
	Dark energy
	Cosmological constant
	Quintessence


	Theory of cosmological perturbations and CMB anisotropies
	Metric perturbations
	Gauge transformation
	Gauge fixing

	Linearized Einstein equations
	Boltzmann equations
	Tight coupling approximation

	Initial conditions for the cosmological perturbations
	Adiabatic fluctuations
	The curvature perturbation

	Anisotropies of CMB
	Angular power spectrum
	CMB polarization anisotropies


	Scalar tensor gravity: Horndeski theories
	Horndeski Action and its special cases
	Background Equations
	Speed of tensor perturbations in Horndeski theories
	Conformal transformations
	Screening mechanisms
	Chameleon mechanism
	Vainshtein mechanism


	Induced Gravity Galileon and Brans-Dicke Galileon
	Background equations
	Friedmann and Klein-Gordon equations in a flat FLRW Universe

	Special solutions of the background equations
	deSitter solutions
	Scaling solutions
	Curved Space

	Numerical evolution for the Background
	Choice of the potential and the function g() 
	Evolution of the scalar field and the density parameters
	Effective equation of state for dark energy


	Cosmological effects of the Galileon-like interaction term
	Equations for cosmological perturbations in the IGG and BDG models
	Evolution of perturbed quantities
	Gauge invariant formalism
	Perturbations evolution in IGG with a quartic potential

	CMB anisotropies and matter power spectrum

	Conclusions
	Riassunto in italiano
	Bibliography

