
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE

Corso di Laurea in Informatica

An Updated Emulated Architecture

to Support the Study

of Operating Systems

Relatore:

Prof. Renzo Davoli

Correlatore:

Prof. Michael Goldweber

Presentata da:

Mattia Biondi

Sessione Straordinaria

Anno Accademico 2018/2019

Agli amici di sempre,

alla mia famiglia,

che non mi ha mai impedito nulla,

e a Jas,

senza la quale non sarei qui oggi.

Abstract

One of the most effective ways to learn something new is by actively

practising it, and there is—maybe—no better way to study an Operating

Systems course than by building your own OS.

However, it is important to emphasize how the realization of an operating

system capable of running on a real hardware machine could be an overly

complex and unsuitable task for an undergraduate student. Nonetheless, it

is possible to use a simplified computer system simulator to achieve the goal

of teaching Computer Science foundations in the University environment,

thus allowing students to experience a quite realistic representation of an

operating system.

µMPS has been created for this purpose, a pedagogically appropriate

machine emulator, based around the MIPS R2/3000 microprocessor, which

features an accessible architecture that includes a rich set of easily pro-

grammable devices. µMPS has an almost two decades old historical de-

velopment and the outcome of this following thesis is the third version of the

software, dubbed µMPS3. This second major revision aims to simplify, even

more, the complexity of the emulator in order to lighten the load of work

required by the students during the OS design and implementation. Two

of these simplifications are the removal of the virtual memory bit, which al-

lowed address translation to be turned on and off, and the replacement of the

tape device, used as storage devices, with a new flash drive device—certainly

something more familiar to the new generation of students.

Thanks to the employment of this software and the feedback received over

the last decade, it has been possible to realize not just this following thesis,

but also to develop some major improvements, which concern everything

from the project building tools to the front-end, making µMPS a modern

and reliable educational software.

Sommario

Uno dei metodi più efficaci per imparare qualcosa di nuovo è facendo pra-

tica, e probabilmente, non esiste modo migliore di studiare un corso di Siste-

mi Operativi, se non scrivendo il proprio SO. È tuttavia necessario prendere

atto di quanto la realizzazione di un sistema operativo, in grado di girare

su una vera macchina hardware, sia un compito eccessivamente complesso

e quasi inadeguato per uno studente universitario. Ciò non toglie che sia

però possibile far uso di simulatori di sistemi semplificati rispetto alla realtà,

al fine di riuscire nell’insegnamento dei fondamenti dell’Informatica in con-

testi universitari, permettendo cos̀ı agli studenti di sperimentare con una

rappresentazione di un sistema operativo abbastanza realistica.

µMPS è stato sviluppato proprio a questo scopo, un emulatore di sistemi

pedagogicamente appropriato, basato sul microprocessore MIPS R2/3000,

e dotato di un’architettura accessibile e di una ricca lista di dispositivi fa-

cilmente programmabili. µMPS conta quasi vent’anni di sviluppo, ora ag-

giornato tramite la seguente tesi alla sua terza versione, chiamata µMPS3.

Quest’ultimo aggiornamento mira a semplificare, ancor di più, la complessità

dell’emulatore, al fine di alleggerire il carico di lavoro richiesto agli studenti

durante lo sviluppo e l’implementazione del sistema operativo. Due di queste

semplificazioni sono la rimozione del bit di memoria virtuale, che permetteva

l’attivazione e la disattivazione della traduzione di indirizzi, e la sostituzione

dei nastri, utilizzati come dispositivi di archiviazione, con delle nuove unità di

memoria flash—certamente più familiari alla nuova generazione di studenti.

Grazie all’utilizzo di questo software e dei feedback ricevuti, nel corso

degli ultimi dieci anni, è stato possibile non solo realizzare la seguente tesi,

ma anche apportare alcune importanti migliorie che riguardano tutti i campi,

dagli strumenti di compilazione del progetto alla parte front-end, rendendo

cos̀ı µMPS un software pedagogico moderno e affidabile.

Contents

1 Introduction 1

1.1 Background . 1

1.2 History of µMPS . 2

1.3 µMPS3 . 3

1.4 Structure of the Document . 5

2 Memory Management 7

2.1 Physical Memory . 7

2.1.1 BIOS Reserved Space 8

2.1.2 RAM Space . 10

2.2 Virtual Memory . 10

2.2.1 TLB Floor Address . 12

2.3 Previous Implementation . 13

2.4 VM Bit Removal . 14

3 Exception Handling 17

3.1 Processor Actions on Exception 19

3.2 BIOS Data Page . 20

3.2.1 BIOS Exception Handlers 21

3.3 Previous Implementation . 21

3.3.1 ROM Reserved Frame 22

3.4 Differences from µMPS2 . 23

CONTENTS CONTENTS

4 Multiprocessor Support 25

4.1 Processors Initialization . 25

4.1.1 Processor 0 . 26

4.1.2 Processors 1-15 . 26

5 Device Interfaces 29

5.1 Tape drives . 29

5.2 Flash Drives . 30

5.2.1 Creation . 32

5.2.2 Usage . 33

6 Project Structure Update 37

6.1 Build System . 37

6.1.1 CMake . 38

6.2 Graphical User Interface . 39

6.2.1 Qt5 . 40

6.2.2 Logo and Icon Theme 40

6.2.3 Other Improvements 41

7 Conclusions 45

7.1 Future Work . 46

7.1.1 Software Packaging . 46

7.1.2 Persistent Debugging Settings 47

7.1.3 Better Block Devices Creation 48

Bibliography 49

List of Figures

2.1 Physical Memory . 8

2.2 Structure of the BIOS Reserved Space 9

2.3 Virtual Memory Structure . 11

2.4 TLB Floor Address . 12

2.5 Old Virtual Memory Structure 13

3.1 BIOS Data Page . 20

3.2 ROM Reserved Frame . 22

5.1 Flash Device COMMAND Field 35

5.2 Flash Device DATA1 Field . 36

6.1 µMPS3 Logo . 41

6.2 Edit Configuration Menu Entry 42

6.3 Clear Recent Menu Entry . 42

6.4 Reset Shortcut . 43

6.5 RAMTOP value . 43

vii

List of Tables

2.1 Bus Register Area . 15

4.1 Processor Interface Registers 25

5.1 Device Register Layout . 34

5.2 Flash Device Status Codes . 34

5.3 Flash Device Command Codes 35

6.1 Start and Halt icons . 40

ix

Listings

2.1 TLB Floor Address . 16

xi

Notational Conventions

• Words being defined are italicized ;

• A typewriter-like typeface is used for memory addresses, machine

registers, instructions, file names, identifiers, and code fragments;

• Memory addresses and operation codes are given in hexadecimal and

displayed in big-endian format;

• Bits of storage are numbered right-to-left, starting with 0;

• All diagrams illustrating memory are going from low addresses to high

addresses, using a left to right, bottom to top orientation.

xiii

Chapter 1

Introduction

1.1 Background

The study and the consequent implementation of how an operating sys-

tem works is, by now, a long-established and consolidated practice in many

Computer Science curriculum. It is, actually, one of the crucial components

of a computer and it is responsible for ensuring its basic operations, by coor-

dinating and managing the system resources like processor, memory, devices

and processes, thus allowing hardware and software to interface each other.

This is probably the first real example of “big project” which students

should experience, thanks to the complex intercommunication system that

has to exist between the different components of the machine, and the study

of it allows to comprehend the most common software engineering practices.

The approach on practical contexts is essential to fully understand how a

machine works behind the theoretical notions studied in the early stages of

the course of study, and it is usually followed by the debate of which is the

best teaching choice concerning processor architectures.

Obviously, there is not only one way of how a central processor unit can

be implemented, and while older realizations—although applicable for educa-

tional purposes—are now obsolete and incompatible with current platforms,

modern ones are designed to achieve high speed and quality, which makes

1

2 1. Introduction

them overly complex and unsuitable for the pedagogic experience.

Over the years, the MIPS architecture has become one of the landmarks in

this teaching choice due to its clean and elegant instruction set, despite being

excessively convoluted to student’s perception, because of the high level of

details obscuring the basic underlying features of it. A potential solution to

this problem is the adoption of a simplified computer system simulator, like

µMPS, to bring together an adequate level of understanding and a realistic

representation of a real operating system.

1.2 History of µMPS

µMPS is based on the machine emulator MPS [4], designed and realized

by Professor Renzo Davoli and one of his graduate students Mauro Morsiani,

in the late 1990s at the University of Bologna.

MPS, in turn, was created with the intention of recreating the same asset

that a previous, fell out of use, machine emulator provided. CHIP [1, 2]

(Cornell Hypothetical Instruction Processor) was its name, developed at the

Cornell University and based on a made-up architecture that was a cross

between a PDP-11 and an IBM S/370. The operating system designated

to run on it was named HOCA [3], a three phase/layer project, named after

the Turkish word hoca (“schoolmaster” or “giver of good advice”) which was

proposed by one of its author, Özalp Babaoğlu, who is currently teaching at

the University of Bologna.

The initial purpose of MPS was to bring back to life the layout and

implementation experience of an operating system through an educational

emulator, which could be run on real hardware. This practice was already

possible in the past years when the architecture of the processor studied was

the same available on real machines, but it has gone lost through the years

because of the high-speed development of new and more complex technologies

used on physical implementations.

MPS was able to emulate the MIPS R3000 processor along with five

1.3 µMPS3 3

other different device categories: disks, tapes, network adapters, printers

and terminals. In addition, the Hoca project was updated and adapted to

the new MPS architecture.

The concerned CPU was genuinely emulated together with its complex

virtual memory management system, which was the main subject of the

feedback received during class testing of MPS as a pedagogical tool at the

University of Bologna and Xavier University, in an undergraduate operating

systems courses, taught respectively by Renzo Davoli and Michael Goldwe-

ber.

It was tested through the implementation of a direct descendant of HOCA,

Kaya [5], one of the variety of graduate-level projects that the emulator can

support.

The urge of simplification led to the creation of µMPS, virtually identical

to MPS but with the addition of a virtual memory management subsystem

which had to resemble as much as possible to the conceptual one found

in popular introductory OS texts. The only other difference was the new

novice-friendly graphical user interface, significantly improved again in 2011

by Tomislav Jonjic during the development of the first major revision of the

emulator, µMPS2 [6], which also implemented the support to up to sixteen

MIPS R3000-style processors.

1.3 µMPS3

More than ten years have passed since the first release of µMPS and as

many have passed from the moment it has been developed into a consolidated

educational tool. At its peak, it was adopted by more than 50 institutions,

proving that its initial purpose had been achieved.

Over time, this number has decreased, showing that a refresh of the tool

was needed to regain the attention of new generations of OS instructors. The

students’ observations during this period of use were essential to understand

which of these further changes were required to give µMPS a new life as an

4 1. Introduction

useful pedagogical tool.

Some examples of these modifications would be the structure and man-

agement system of both physical and virtual memory, a nuance probably still

too complex and confusing, which could feel like a regression, since the at-

tempt to simplify it has led to the removal of the VM bit. This was originally

introduced in the first version of µMPS, as a distinctive feature from its pre-

decessor MPS. Virtual memory segmentation has been eliminated too, since

it is considered as legacy in current architectures, making its implementation

an unnecessary complication for the students.

There are also other changes related to the passage of the years, such

as the replacement of memory tapes with flash drive devices, also known

as “USB sticks”, “SD Cards” or even “SSDs”. Tapes are probably still

studied in their operation nowadays, but they cannot be found in today’s

practical contexts, and therefore it could be difficult to understand for the

new generation of students, who cannot find a match in current technological

implementations.

Another consequence of the update of µMPS has been the shift from the

historical and well established Autotools to a more current building tool,

CMake, that speeds up the compilation process in addition to simplifying

the structure of the project. It also fits best with the current graphical user

interface of the emulator, originally built upon Qt4, which also undergoes to

the migration to the new version, Qt5.

These and more changes are collected together in a major release of the

project, µMPS3, consequently bringing even more reliability in terms of ped-

agogical tool.

Due to implementation aspects—unlike its predecessor µMPS2—this new

version is not backward compatible with older versions.

1.4 Structure of the Document 5

1.4 Structure of the Document

This thesis will primarily focus on the modifications made on the previous

version of the emulator, their implementation and the reasons to do it. This

document is not intended to be used as a substitute of the manual µMPS3

Principles of Operation [7], but only as an accompanying guide to understand

how the two versions differ from each other.

This first chapter aims to give a brief overview of why tools like µMPS

are needed, its history to date and the considerations on why an update was

necessary.

Chapter 2 and 3 will respectively describe the new memory management,

as both physical and virtual ones have been updated, and the new exception

handling mechanism. Both current and previous implementations will be

compared in every aspect.

Chapter 4 will explain the advanced feature of the multiprocessor support.

The CPUs initialization has been updated to comply with the new exception

handling.

Chapter 5 is an introduction of the new flash device, which takes over

tapes. The reasons why this replacement was necessary are described in the

first part of the chapter, while the rest of the chapter illustrates its creation

and its usage.

Chapter 6 is the less technical one, since it describes the migration from

the old project building tool to the new one, and the renewal of the graphical

user interface.

Finally, chapter 7 will provide a brief summary of the topics covered by

this thesis and the reasons for the changes made. A shortlist of possible

future implementation is also given.

6 1. Introduction

Chapter 2

Memory Management

Like for the two prior versions, the memory subsystem of µMPS3 is di-

vided into two views: physical and virtual. Both parts have undergone sig-

nificant modifications in this major revision, and they will be described in

detail in this chapter, alongside their old versions and respective changes.

The main reasons for the modifications made are the further simplification

of the work required by the user for the kernel implementation and the better

clarification of the internal view of the emulator memory, which, in the past,

have caused some difficulties to the students.

2.1 Physical Memory

The physical address space is divided into two big areas [Figure 2.1]: a

BIOS reserved space, from address 0x0000.0000 to 0x2000.0000, and the

installed RAM, from address 0x2000.0000 (RAMBASE) to RAMTOP.

This last value is calculated upon the one retrieved from the configuration

file, settable from the configuration dialog of the machine in the front-end

emulator, which goes from a minimum of 8 to a maximum of 512 memory

frames. Being the size of each frame 4 kilobyte, µMPS3 can have from

32KB up to 2MB of installed RAM. Hence, the value of RAMTOP range from

0x2000.8000 to 0x2020.0000.

7

8 2. Memory Management

0xFFFF.FFFF

RAMTOP

installed RAM

0x2000.0000

BIOS reserved space
0x0000.0000

Figure 2.1: Physical Memory

2.1.1 BIOS Reserved Space

The first big area of the memory [Figure 2.2] is reserved for:

• the Execution BIOS Services [7], which lay in a read-only segment from

address 0x0000.0000 to EXECTOP. This latter value is calculated upon

the size of the Execution BIOS Services code;

• the BIOS Data Page, from address 0x0FFF.F000 (BIOSDATABASE) to

0x1000.0000. This is the same 4KB area that was used to be called

“ROM Reserved Frame” [subsection 3.3.1] in µMPS2, which has been

renamed and moved. However, it still serves as an interface between

the BIOS handlers [subsection 3.2.1] and the user-implemented kernel.

See section 3.2 for more information regarding how this read/writable

area segment has been updated;

• the Bus Register Area, from address 0x1000.0000 to 0x1000.002C:

a 11 word area containing various fields used in the lifetime cycle of

µMPS3 to properly work. Some of them are read-only and calculated

at boot/reset time, while others are read/writable. See [7] for more

information regarding this area;

• the Installed Devices Bit Map, from address 0x1000.002C to

0x1000.0040: a read-only five word area indicating which devices are

actually installed and where [7];

2.1 Physical Memory 9

• the Interrupting Devices Bit Map, from address 0x1000.0040 to

0x1000.0054: a read-only five word area indicating which devices have

an interrupt pending [7];

• the Devices Registers Area, from address 0x1000.0054 to 0x1000.02D4

(DEVTOP): a 160 word area (number of interrupt lines (8) × devices per

interrupt line (5) × words per register (4)). See [7] for more informa-

tion, or Table 5.1 for an example of one device register;

• the Bootstrap BIOS Services [7], which lay in a read-only segment from

address 0x1FC0.0000 to BOOTTOP. This latter value is calculated upon

the size of the Bootstrap BIOS Services code.

0x2000.0000

BOOTTOP

Bootstrap BIOS Services
0x1FC0.0000

DEVTOP

Devices Registers Area
0x1000.0054

Interrupting Devices Bit Map
0x1000.0040

Installed Devices Bit Map
0x1000.002C

Bus Register Area
0x1000.0000

BIOS Data Page
0x0FFF.F000

EXECTOP

Execution BIOS Services
0x0000.0000

Figure 2.2: Structure of the BIOS Reserved Space

10 2. Memory Management

Any attempt to access an undefined memory area (EXECTOP...0x0FFF.F000,

DEVTOP...0x1FC0.0000, BOOTTOP...0x2000.0000) will generate a Bus Er-

ror exception [chapter 3].

Note: the memory area between address 0x1000.02D4 (DEVTOP) and

0x1FC0.0000 is not completely undefined [section 7.3 of the old manual [8]].

2.1.2 RAM Space

The maximum RAMTOP value actually settable is 0x2020.0000. However,

since µMPS3 uses 32-bit addresses, it could support up to [232 - RAMBASE]

' 3.5GB of RAM. The 2MB graphical user interface limitation is imposed

because, while it seems a ridiculously small amount of memory in today’s

ordinary systems, it is, actually, a lot more than has ever been required in

all these years of µMPS use.

This area will hold:

• the code (text), global variables/structures (data), and stack(s) of the

operating system;

• enough space for the “frame pool” to be used for the text, data and

stacks of the user processes during virtual memory management.

As for the previous big area, any attempt to access the undefined memory

area laying from RAMTOP up to 0xFFFF.FFFF will generate a Bus Error ex-

ception.

2.2 Virtual Memory

While the physical one is divided into two big areas, the virtual memory

subsystem is logically split into four units [Figure 2.3]:

• kseg0, from address 0x0000.0000 to 0x2000.0000: a 0.5GB address

space dedicated to the BIOS Reserved Space [subsection 2.1.1];

2.2 Virtual Memory 11

• kseg1, from address 0x2000.0000 to 0x4000.0000: a 0.5GB address

space dedicated to the text, data and stacks of the OS;

• kseg2, from address 0x4000.0000 to 0x8000.0000: a 1GB address

space dedicated to the text, data and stacks of the OS;

• kuseg, from address 0x8000.0000 to 0xFFFF.FFFF: a 2GB address space

dedicated to the text, data and stacks of the user processes;

Since the TLB Floor Address [subsection 2.2.1] minimum value is 0x4000.0000,

kseg0 and kseg1 are always referring to physical memory space.

0xFFFF.FFFF

kuseg

0x8000.0000

kseg2

0x4000.0000
kseg1

0x2000.0000
kseg0

0x0000.0000

Figure 2.3: Virtual Memory Structure

Despite their name, these four sections are not real segments, since virtual

memory segmentation has been removed in µMPS3. However, they are called

like this for traditional reasons, as their size and their label are the same as

the areas from the original MIPS address space.

The first 2GB of the address space, corresponding to all the addresses

below 0x8000.0000, are reserved only to kernel-mode access, therefore, any

attempt to access them while the processor is in user-mode will cause the

raising of an Address Error [chapter 3].

The other half of the address space is dedicated to user processes, and

each one “sees” its own logical version. The kuseg of one process is separated

from the one of another process by a unique number called ASID (Address

Space Identifier) [7].

12 2. Memory Management

2.2.1 TLB Floor Address

The TLB Floor Address is a new parameter implemented in µMPS3,

responsible for indicating which addresses from a certain value on are con-

sidered logical, and therefore subject to address translation—the process of

mapping logical addresses to physical ones. By doing this, the processes per-

ceive more physical memory than the one actually available, recreating an

abstract view of the address space.

This parameter can be chosen directly from the configuration dialog in

the emulator front-end, as Figure 2.4 shows:

Figure 2.4: TLB Floor Address

The last option, VM OFF, is internally declared as 0xFFFF.FFFF: since it

is not possible to access to an address above this value, the entire physical

memory is necessarily below it, and therefore, an address translation could

never happen.

2.3 Previous Implementation 13

2.3 Previous Implementation

The physical address space was substantially equal to the new one, except

for the moving and renaming of the new “BIOS Data Page”.

On the other hand, the virtual memory was implemented through a

segmented-paged scheme. Hence, a new abstraction layer was laid on the

whole physical memory structure, subdividing it into three big segments

[Figure 2.5]:

• ksegOS, from address 0x0000.0000 to 0x8000.0000: a 2GB segment

reserved for the text, data and stacks of the OS, along with all the struc-

tures sitting in the BIOS reserved space up to address 0x2000.0000;

• kUseg2, from address 0x8000.0000 to 0xC000.0000: a 1GB logical ad-

dress space reserved for the text, data and stacks of the user processes;

• kUseg3, from address 0xC000.0000 to 0xFFFF.FFFF: another 1GB log-

ical address space reserved for the use of user-mode processes.

0xFFFF.FFFF

kUseg3

0xC000.0000

kUseg2

0x8000.0000

ksegOS

0x0000.0000

Figure 2.5: Old Virtual Memory Structure

As for the new version, all the addresses below 0x8000.0000 were reserved

to kernel-mode access only.

14 2. Memory Management

Whether this subdivision was active or not was controlled by the VM

bit. With the VM bit off, no particular actions were required when access-

ing the memory space. Instead, when the VM bit was on, all the address

above 0x2000.0000 were considered logical and sent to the MMU for address

translation.

The VM bit was originally introduced in the first version of µMPS, with

the intent of simplifying the complex virtual memory management system of

the MIPS R3000 microprocessor. The activation and deactivation of it was

accomplished through the system control coprocessor CP0.

It provides a 32-bit Status register that controls various aspects of the

emulator, described in details in [7]. Along with the current options set of

the register, it also provided the possibility, by using bitwise operations, to

control the status of the VM bit: it was implemented as a 3-slot deep bit

stack (current, previous, previous of previous) which was pushed or popped

depending on whether an exception was raised or an interrupted execution

stream was restarted [section 3.2 and subsection 6.2.1 of [8]].

The virtual address translation process went through a significant change

in this major revision: the formal segment table [subsections 4.3.1 of [8]],

introduced in the first implementation of µMPS, have been removed. Conse-

quently, only TLB table formats remain implemented, resulting in a simpler

procedure for the users [7].

During the implementation of a new feature of the emulator, the VM bit

has been completely removed too.

2.4 VM Bit Removal

The VM bit removal is one of the main features of µMPS3: the push/pop

system has been removed, and the three bits previously reserved for it are now

completely ignored. Hence, from now on, the virtual memory is conceptually

always on. This means that all the addresses above a certain value are

considered logical and therefore, subject to address translation. This specific

2.4 VM Bit Removal 15

value, while in previous version was fixed at 0x2000.0000, is now contained

in a variable called TLB Floor Address [subsection 2.2.1].

The TLB Floor Address value is stored in the Bus Register Area, thereby

adding one word to the ten word area of the previous version [Table 2.1]:

Physical Address Field Name

0x1000.0028 TLB Floor Address

0x1000.0024 Time Scale

0x1000.0020 Interval Timer

0x1000.001C Time of Day Clock - Low

0x1000.0018 Time of Day Clock - High

0x1000.0014 Installed Bootstrap BIOS Services Size

0x1000.0010 Bootstrap BIOS Services Base Physical Address

0x1000.000C Installed Exec. BIOS Services Size

0x1000.0008 Exec. BIOS Services Base Physical Address

0x1000.0004 Installed RAM Size

0x1000.0000 RAM Base Physical Address

Table 2.1: Bus Register Area

One of the consequences of the implementation of this value at the end

of the Bus Register Area has been the shifting up of one word of the two

successive areas, Installed Devices Bit Map and Interrupting Devices Bit

Map.

The TLB Floor Address field cannot be changed while the emulator is

running, but only from the front-end dialog.

After saving the machine configuration from the GUI, the TLB Floor Ad-

dress value will be placed inside the JSON-based configuration file, described

in detail in subsection 4.2.1 of Jonjic’s Thesis [11].

16 2. Memory Management

An example of the final portion of a simple machine configuration is

represented in Listing 2.1:

19 ...

20 },

21 "tlb -floor -address ": "0 x40000000",

22 "tlb -size": 16

23 }

Listing 2.1: TLB Floor Address

On line 21 is shown the value saved as string : this decision was taken to

preserve the human-readable notational convention.

Chapter 3

Exception Handling

Exceptions are particular events interrupting the normal execution flow

of a machine. Different categories of them exist, each one raised in corre-

spondence of a certain occurrence. Depending on their type, the exceptions

require to be handled in a distinct special way rather than the ordinary

workflow of the system.

From a hardware perspective, µMPS3 supports two major types of ex-

ceptions: TLB-Refill exceptions, and all the other ones. However, from the

software viewpoint, thanks to a high-level abstraction, they could be subdi-

vided in four different categories:

• Program Traps : these exceptions are usually raised when the user-

defined workflow commits an error, like: Address Error, Bus Error,

Reserved Instruction, Coprocessor Unusable or Arithmetic Overflow ;

• System Calls and Breakpoints : these two occur whenever a process

requests an OS service through the SYSCALL or the BREAK instruction;

• Interrupts : I/O devices that complete their previously started opera-

tion must notify it to the processor, and they do it by raising this type

of exception. There are a total of 8 interrupt lines: 3 of them are ded-

icated to internally generated interrupts, while the other 5 to external

devices. Each of these last five ones support up to 8 devices attached

17

18 3. Exception Handling

to them;

• TLB-related exceptions : exceptions linked to the Translation Lookaside

Buffer : TLB-Modification, TLB-Invalid and TLB-Refill.

Going more in details on Program Traps, from [7]:

• Address Error is raised when:

– a load/store/instruction fetch of a word is not aligned

with a word boundary;

– a load/store of a half-word is not aligned with a halfword

boundary;

– a user-mode access is made to an address below 0x8000.0000;

• Bus Error is raised whenever an access is attempted on a

non-existent physical memory location or when an attempt

is made to write onto the BIOS device;

• Reserved Instruction is raised whenever an instruction is ill-

formed, not recognizable, or it is privileged and executed

while in user-mode;

• Coprocessor Unusable is raised whenever an instruction re-

quiring the use of (or access to) an uninstalled or currently

unavailable coprocessor is executed;

• Arithmetic Overflow is raised whenever an ADD or SUB in-

struction execution results in a two’s complement overflow;

The TLB (Translation Lookaside Buffer) is a component of the Virtual

Memory management system whose functioning has not changed. However,

its exception handling did, and, therefore, a little background is needed to

explain the modifications made. From [7]:

The TLB is a theoretical associative cache, that can hold from 4

to 64 TLB entries. Each TLB entry describes the mapping be-

tween one ASID-logical page number pairing and a physical frame

3.1 Processor Actions on Exception 19

number/location in RAM. By utilizing a cache of recently used

TLB entries, the virtual address translation mechanism of µMPS3

can avoid making multiple memory accesses for each translation.

Since it is impossible to realistically emulate this kind of imple-

mentation, the TLB is therefore linearly searched.

Hence, regarding TLB-related exceptions, from [7]:

• TLB-Modification is raised when on a write request a “match-

ing” entry is found, the entry is marked valid, but not dirty/writable;

• TLB-Invalid is raised whenever a “matching” entry is found

but the entry is marked invalid;

• TLB-Refill is raised when no “matching” entry is found.

3.1 Processor Actions on Exception

When an exception is raised, the processor state (what it was “doing”)

must be saved in order to restart from that point after the exception has been

handled. Before doing this, the processor has to take a number of atomic

steps (non-interruptible, without any visible intermediary state), which are

possible by:

• disabling all interrupts, to make sure nothing could disturb the entire

handling process;

• activating the kernel-mode, since the access to the memory area in-

tended for saving (and retrieving) the processor state is denied to user-

mode processes.

Other essential processor actions are taken, some of them based on the

type of the exception. They remain unchanged from µMPS2, and explained

in detail in [7].

20 3. Exception Handling

3.2 BIOS Data Page

0x1000.0000

0x0FFF.FA00
16× Pass Up
Vectors Area

0x0FFF.F900

0x0FFF.F8C0

16× Processors
States Area

0x0FFF.F000

(a) Overview

0x0FFF.F910
General Exception

Stack Pointer
0x0FFF.F90C

General Exception

Handler Address
0x0FFF.F908

TLB-Refill

Stack Pointer
0x0FFF.F904

TLB-Refill

Handler Address
0x0FFF.F900

(b) Pass Up Vector Area

Figure 3.1: BIOS Data Page

The BIOS Data Page is the new 4KB area of µMPS3 reserved for the

exception handling. As Figure 3.1a shows, it contains:

• a Processors States Area, from address 0x0FFF.F000 to 0x0FFF.F8C0:

a 35 (state size) × 16 (maximum number of active CPUs) word area

dedicated to store the state loaded onto one processor at the moment

an exception occurred. Since µMPS2 implemented the multiprocessor

support, one area for each active CPU is needed. The area of processor

0 is at address 0x0FFF.F000, the one of processor 1 at 0x0FFF.F08C

(+35 words) and so on;

• a Pass Up Vectors Area, from address 0x0FFF.F900 to 0x0FFF.FA00:

a 4 × 16 word area containing, for each active CPU:

– the address of its TLB-Refill handler, to which the workflow will

jump after saving the processor state;

3.3 Previous Implementation 21

– the stack pointer of the TLB-Refill handler;

– the address of its general exceptions handler ;

– the stack pointer of the general exceptions handler;

Figure 3.1b shows this four-word area for the first processor. As for the

previously reserved space, these areas are ordered one after the other,

from low to high processors numbers. The processor 1 Pass Up Vector

will be at address 0x0FFF.F910, the processor 2 Pass Up Vector at

0x0FFF.F920 (+4 words) and so on.

This area is used as an interface between the two kernel handlers and the

BIOS Exception Handlers.

3.2.1 BIOS Exception Handlers

The BIOS Exception Handlers are routines whose job is to prepare the

environment on which the kernel exception handlers will work. This means

that, after an exception has been raised, before the user-defined functions

take place, a series of different actions are made by the BIOS, depending on

the type of the exception.

Apart from some error checking, their essential task is to store off the

processor state in the exact moment the execution flow has been interrupted

in a “safe place” located in memory (the Processors States Area). Further-

more, the Program Counter will jump to the address of the appropriate kernel

handler, thus ending the BIOS handlers job.

This “passing” set of instructions was internally distinguished into two

main categories of events: TLB-Refill exceptions and all the other ones. The

entire new exception handling system of µMPS3 is based on this distinction.

3.3 Previous Implementation

The exception handling of µMPS2 was managed by distinguishing them

by their type: Program Traps, System Calls and Breakpoints, Interrupts and

22 3. Exception Handling

TLB-related exceptions.

Since this subdivision existed, four different areas were needed to save the

processor state (called old areas). The functions to subsequently call were

treated as new states to load onto the processor, hence, four other areas were

needed (called new areas), which contained the addresses of the exception

handlers.

These four pair of areas, each one linked to its specific type of exception,

were stored in a 35 (state size) × 8 word area [Figure 3.2a] at the beginning

of the so-called ROM Reserved Frame [Figure 3.2].

3.3.1 ROM Reserved Frame

0x2000.0460
Syscalls and Breakpoints

(new area)
0x2000.03D4

Syscalls and Breakpoints

(old area)
0x2000.0348

Program Traps

(new area)
0x2000.02BC

Program Traps

(old area)
0x2000.0230

TLB-related

exceptions (new area)
0x2000.01A4

TLB-related

exceptions (old area)
0x2000.0118

Interrupt

(new area)
0x2000.008C

Interrupt

(old area)
0x2000.0000

(a) Old and New State Areas

0x2000.1000
Reserved space for

the ROM Routines
0x2000.0FF0

0x2000.0800

64 Segment Tables

0x2000.0500

0x2000.0460

Old/new areas

0x2000.0000

(b) Overview

Figure 3.2: ROM Reserved Frame

3.4 Differences from µMPS2 23

The ROM Reserved Frame was a 4KB (frame size) area at the beginning

of the installed RAM. It was used, apart from storing the old/new states of

the processor, also to contain other structures, as Figure 3.2b shows:

• a Segment Table, from address 0x2000.0500 to 0x2000.0800: a 64

(number of maximum concurrent processes) × 3 (number of µMPS2

segments) word area containing page table pointers [subsection 4.3.1 of

[8]];

• a Reserved Space, from address 0x2000.0FF0 to 0x2000.1000, dedi-

cated to storing pointers to each old/new areas of the processors needed

for the execution of the ROM (now called BIOS) exception handlers.

3.4 Differences from µMPS2

In addition to the two atomic actions described in section 3.1, another step

to disable the virtual memory was taken in µMPS2, since the area reserved

for the processor states was above the address 0x2000.0000 [Figure 3.2].

With the virtual memory bit enabled, those addresses were considered logical,

leading to possible raises of TLB-management exceptions, which would have

meant entering in an infinite loop. However, as explained in section 2.4,

this complexity has been completely removed along with the virtual memory

disabling process performed by the processor.

The 192 word Segment Table area [Figure 3.2b] has been eliminated too

in µMPS3, since it is no longer used in the new address translation process.

Since all the internal exception handling was already dealt upon the sep-

aration of the “TLB-Refill/all the others” exceptions by the Execution BIOS

Services, the current implementation elucidates this split to the users, who

previously had to distinguish between four categories of events. While TLB-

Refill events were previously handled by the BIOS, it is now a kernel respon-

sibility; for this reason, two exception types, raised only during TLB-Refill

events, have been removed.

24 3. Exception Handling

In addition, the kernel handlers to which the control is passed are no

more treated as new states to load onto the processor, but just as functions

to which let the Program Counter jump to. This means that the four “new”

processor state areas are no longer needed too, and has been reduced to only

two one-word areas.

Two more one-word areas are needed for the two stack pointers of the

handlers, something analogue to what was previously stored at the end of

the first frame of RAM.

The ROM Reserved Frame, previously sat in the first frame of RAM, has

been moved to the last frame of memory below the address 0x1000.0000

(where the Bus Register Area starts) and renamed into BIOS Data Page

[Figure 3.1].

Finally, the BIOS exception handlers have been updated as well, simpli-

fying the code which sometimes was redundant and in order to comply with

the changes of the exception handling system. They have also been renamed

from “ROM exception handlers” for a better overall analogy, since they be-

long to a reprogrammable BIOS and do not reside in a Read-Only Memory

space.

How µMPS3 knows where to find the right area to save the state of each

processor and where to retrieve the handlers is described along with the

updated multiprocessor support in chapter 4.

Chapter 4

Multiprocessor Support

The first major revision, µMPS2, has implemented the multiprocessor

support: the emulator is currently capable of supporting up to 16 simulta-

neously active CPUs. Their functioning has not been changed in this new

version of the emulator, described in detail at chapter 7 of [8]. However, it is

important to understand how their initialization has been modified in order

to comply with the new exception handling [chapter 3].

4.1 Processors Initialization

As subsection 7.2.2 of [8] explains, each processor has a private set of five

Processor Interface Registers [Table 4.1], and each one sees only its own pri-

vate instance. While the first three fields have not changed in their working,

the other two have.

Address Register Type

0x1000.0400 Inbox Read/Write

0x1000.0404 Outbox Write Only

0x1000.0408 TPR Read/Write

0x1000.040c BIOS Reserved 1 Read/Write

0x1000.0410 BIOS Reserved 2 Read/Write

Table 4.1: Processor Interface Registers

25

26 4. Multiprocessor Support

4.1.1 Processor 0

The first things loaded right after the machine has been turned on (or

restarted), are the Bootstrap BIOS Services [7]. They are responsible for

setting up the correct handling areas [section 3.2] for the default processor,

the first one. BIOS Reserved 1 and BIOS Reserved 2 are used for this

purpose.

In µMPS2, for the first processor, the BIOS Reserved 1 register was set,

by the Bootstrap BIOS Services, to point the beginning of the Old/New State

Area [Figure 3.2a], at address 0x2000.0000. The BIOS Reserved 2 register

was set to point the reserved space at the end of the first frame of RAM, at

address 0x2000.1000.

In µMPS3, at boot/reset time, the Bootstrap BIOS Services set up the

BIOS Reserved 1 register to point the bottom of the BIOS Data Page [Fig-

ure 3.1], at address 0x0FFF.F000, where the reserved exception state space

for processor 0 starts. On the other hand, BIOS Reserved 2 now points to

the Pass Up Vector of processor 0, at address 0x0FFF.F900.

After that, the Bootstrap BIOS Services load the OS code.

4.1.2 Processors 1-15

How all the other processors were previously initialized is described in

subsection 7.1.2 of [8].

To sum up, the libumps library provides a BIOS service designed to sim-

plify the initialization of the processors. Libumps is a C library supplied with

µMPS installation to provide access to CP0 instructions, the CP0 registers,

and the extended BIOS-based services/instructions avoiding to program in

MIPS assembler.

This specific BIOS service is called initCPU, and the original syntax was:

void INITCPU (uint32_t cpuid,

state_t *start_state,

state_t *state_areas);

4.1 Processors Initialization 27

In µMPS2, initCPU initiated the processor specified by cpuid, loading

the processor state from the supplied start state parameter onto it. The

address of BIOS Reserved 2 was calculated by multiplying the processor

number × the size of the reserved space the BIOS needed for the handlers

of each CPU (32 bytes). Since a separate space was needed for Old/New

Processor State Areas too, the third parameter, state areas, was used to

indicate the address for BIOS Reserved 1 [subsection 7.5.2 of [8]].

In µMPS3, the implementation of initCPU keeps only the first two pa-

rameters, calculating internally the correct areas where to save the processor

state without needing the user:

void INITCPU (uint32_t cpuid,

state_t *start_state);

The start state parameter is used to initialize the cpuid processor as

in µMPS2. The cpuid parameter is now multiplied × the size of a processor

state (35 words) to get an offset to be summed to the bottom of the BIOS

Data Page [section 3.2]: this value indicates the address of the processor

exception state area, the same one BIOS Reserved 1 has to point to (e.g.

0x0FFF.F08C for processor 1, 0x0FFF.F118 for processor 2 and so on). The

other Processor Interface Register is set up similarly, multiplying the pro-

cessor ID × the size of the Pass Up Vector area (4 words): this value is the

offset from address 0x0FFF.F900 to which BIOS Reserved 2 has to point to

(e.g. 0x0FFF.F910 for processor 1, 0x0FFF.F920 for processor 2 and so on).

Now, the BIOS routines only have to use BIOS Reserved 1 and BIOS

Reserved 2 of a processor to retrieve the correct exception state area and the

required Pass Up Vector.

28 4. Multiprocessor Support

Chapter 5

Device Interfaces

Since its first implementation, besides the MIPS R3000 microprocessor,

µMPS has always been able to emulate five different device categories: disks,

tapes, network adapters, printers and terminals. Furthermore, it can support

up to eight instances of each device type.

This chapter will provide the reasons why, along with this major revision,

one of the devices has been replaced with a new one.

As for the functioning and implementation of the remaining devices, the

reader may refer to the manual [7].

5.1 Tape drives

MPS has been conceived and developed in the late ’90s, and many updates

and improvements have followed to make it as it is nowadays.

It is simple to imagine how much can technology achieve in over 20 years,

and µMPS devices are not exempt from this process. Therefore, it may not be

a surprise how hard disk drives are, nowadays, less and less used, outclassed

by new solid-state drives, despite their still being common knowledge.

Network adapters are still present and properly taught in every IT class,

although changed in their appearance, from physical to wireless, and certainly

much faster, but the speed of the devices is not what concerns µMPS, on the

29

30 5. Device Interfaces

contrary, the goal is to teach their functioning.

Whereas there is not a real reason to think about the replacement of

printers and terminals, there is one last device category about which the

same cannot be said: tape drives.

In modern ages, tape drives are only studied in History of computer

science classes, and are no longer found in real implementations if not in rare

cases. As a result, only older users still know what tapes are, their functioning

and their use, therefore new generations are slowly losing consciousness of

what they are or, admittedly, never heard of them.

Given all of this, it would have been a misstep not to use them, as when

µMPS2 was released in 2011, technology was going through a transaction,

and those who were still students knew of them. However, after almost ten

years, the situation has changed, and tapes are no longer used in common

systems.

Tapes, in µMPS2, were implemented as read-only DMA (Direct Memory

Access) devices, capable of transferring 4KB blocks of data per time, concur-

rently for each installed device of this category. Internally, they were divided

into equal sized frames of 4KB each, through the use of four marked codes:

EOT (end-of-tape), EOF (end-of-file), EOB (end-of-block), TS (tape-start), to

scan the reading process and simulating the movement of a head on a tape.

In order to let the students work with a storage device slower than disks,

but still familiar to them, µMPS3 had to completely remove tapes to imple-

ment a new category of devices: flash drive devices.

5.2 Flash Drives

A flash drive device, also know as “USB sticks” or “SD cards”, is a stor-

age device using flash memory, which is a solid-state memory, therefore not

implemented through physical disks or tapes, that can be electrically erased

and reprogrammed. Unlike disks or tapes, a “seek” operation—that moves

a head assembly over a physical surface—is not needed before reading from

5.2 Flash Drives 31

or writing to a specific block or sector.

In order to reproduce the same experience in µMPS3, the easiest way is

to take a similar implemented device, the disk, remove the “seek” operation

from it and simplify the coordinates system (cylinder, head, sector) to a

single contiguous block addressable space [0...MAXBLOCKS-1].

Hence, a flash drive device is a read/writable DMA device, divided into

equal-sized frames of the same dimension of µMPS3 framesize, 4KB, each

one accessible via specific block number.

µMPS3 uses a 3 byte (24 bit) address space for flash device, consequently,

each device in this category can have up to 224 (0xFFFFFF) blocks of memory,

which is equivalent to a maximum size of 64GB.

As already said, a flash drive device is usually slower than a disk device.

However, the umps3-mkdev utility, which comes with µMPS3 installation

and allows the user to create a disk or a flash device image, accepts a speed

argument for both of them: “seek time” for disks and “write time” for flash

devices. Therefore, this does not prevent anyone to voluntarily create a flash

device significantly faster than a disk device. Theoretically, thanks to the

implementation of this device, it would represent an SSD in every aspects.

The speed-related argument is optional, and, if not given, umps3-mkdev

will use default values:

#define DFLSEEKTIME 100

#define DFLWTIME DFLSEEKTIME * 10

Like intuitively understandable from the constants name, the first one is for

the default disks seek time, while the latter is for the default flash devices

write time. This means that, if not voluntarily indicated by the user who

creates a device, the write time will always be ten times slower than the seek

time for a default disk device.

The read time for a flash device cannot be directly defined, but it will be

calculated ad-hoc when needed by multiplying the device set write time by:

#define READRATIO 3/4

32 5. Device Interfaces

This way, the read speed will always be 25% faster than write speed, since it

will take 3/4 of time, almost as in real-world implementation.

5.2.1 Creation

As umps2-mkdev allowed to create image files of tape devices, umps3-mkdev

permits to create flash device ones via the following syntax (also visible by

running the utility with no arguments):

$ umps3-mkdev -f <flashfile>.umps <file> [blocks [wt]]

where:

• -f : specify the creation of a flash device image instead of a disk one

(-d);

• <flashfile> : the name of the flash device image file that will be

created;

• <file> : file to be written into the new flash device image;

• blocks : number of blocks [1...0xFFFFFF] (default = 512);

• wt : average write time (in microseconds) [1...100000] (default = 1000);

It is also possible to create an empty flash device image file by passing

“/dev/null” as <file> argument.

Going more in detail, after correctly running the previous command, the

utility will decode command-line arguments, if existing.

Then, it will attempt to open the flash device image file in write-mode.

If the operation is successful, a FLASHFILEID (0x0153504D) will be written

into the first word of memory of the file. This file recognition tag is used

to distinguish this type of file from all the other types of files generated or

recognized by µMPS3.

Number of blocks and write speed are also subsequently written, which,

along with the FLASHFILEID, compose the header of the flash device. These

5.2 Flash Drives 33

three parameters will be needed by µMPS3, when interacting with the device,

to correctly simulate it.

Lastly, after opening it in read-mode, the existing file will be written

inside the image file block-by-block.

Once the end-of-file indicator is reached, the remaining space will be filled

with empty blocks. In case no errors occurred, the flash device image file will

be successfully created.

5.2.2 Usage

The use of a flash device, in µMPS3, is not significantly different from

the use of any other device. As reported in the manual µMPS3 Principles of

Operation [7]:

Every single device is operated by a controller. Controllers ex-

change information with the processor via device registers; special

memory locations. A device register is a consecutive 4-word block

of memory. By writing and reading specific fields in a given de-

vice register, the processor may both issue commands and test de-

vice status and responses. µMPS3 implements the full-handshake

interrupt-driven protocol. Specifically:

1. Communication with device i is initiated by the writing of

a command code into device i ’s device register.

2. Device i ’s controller responds by both starting the indicated

operation and setting a status field in i ’s device register.

3. When the indicated operation completes, device i ’s con-

troller will again set some fields in i ’s device register; in-

cluding the status field. Furthermore, device i ’s controller

will generate an interrupt exception by asserting the ap-

propriate interrupt line. The generated interrupt exception

informs the processor that the requested operation has con-

cluded and that the device requires its attention.

34 5. Device Interfaces

4. The interrupt is acknowledged by writing the acknowledge

command code in device i ’s device register.

5. Device i ’s controller will de-assert the interrupt line and

the protocol can restart. For performance purposes, writing

a new command after the interrupt is generated will both

acknowledge the interrupt and start a new operation imme-

diately.

The flash device registers are located in low-memory, starting at 0x100000D4

for flash0 up to 0x10000144 for flash7. Each register consists of 4 fields:

Field # Address Field Name

0 (base) + 0x0 STATUS

1 (base) + 0x4 COMMAND

2 (base) + 0x8 DATA0

3 (base) + 0xc DATA1

Table 5.1: Device Register Layout

The STATUS field of a flash device register is read-only and will contain

one of the following status codes:

Code Status Possible Reason for Code

0 Device Not Installed Device not installed

1 Device Ready Device waiting for a command

2 Illegal Operation Device presented unknown command

3 Device Busy Device executing a command

4 Read Error Illegal parameter/hardware failure

5 Write Error Illegal parameter/hardware failure

6 DMA Transfer Error Illegal physical address/hardware failure

Table 5.2: Flash Device Status Codes

5.2 Flash Drives 35

From [7]:

Status codes 1, 2, and 4-6 are completion codes. An illegal pa-

rameter may be an out of bounds value (e.g. a block number

outside of [0..MAXBLOCK-1]), or a non-existent physical address

for DMA transfers.

The COMMAND field of a flash device register is read/writable and

is used to issue commands to the device:

Code Command Operation

0 RESET Reset the device interface

1 ACK Acknowledge a pending interrupt

2 READBLK
Read the block located at BLOCKNUMBER and

copy it into RAM starting at the address in DATA0

3 WRITEBLK
Copy the 4KB of RAM starting at the address in

DATA0 into the block located at BLOCKNUMBER

Table 5.3: Flash Device Command Codes

The format of the COMMAND field is illustrated in Figure 5.1:

31 8 7 0

BLOCKNUMBER CODE

Figure 5.1: Flash Device COMMAND Field

An operation on a flash device is started by loading the appro-

priate value into the COMMAND field. For the duration of the op-

eration, the device status is “Device Busy”. Upon completion

of the operation, an interrupt is raised and an appropriate status

code is set: “Device Ready” for successful completion or one of

the error codes. The interrupt is then acknowledged by issuing

an ACK or RESET command.

36 5. Device Interfaces

The DATA0 field of a flash device register is read/writable and is

used to specify the starting physical address for a read or write

DMA operation. Since memory is addressed from low addresses

to high ones, this address is the lowest word-aligned physical ad-

dress of the 4KB block about to be transferred.

The DATA1 field of each device register is read-only and describes

the physical characteristics of the device geometry [Figure 5.2].

31 24 23 0

NUMBER OF BLOCKS

Figure 5.2: Flash Device DATA1 Field

Chapter 6

Project Structure Update

Many years have passed since the initial release of µMPS, and some as-

pects of it have become inevitably outdated. Along with all the changes

described in the previous chapters, the software went through a refresh at-

tempt which tried to update it to current standards and common procedures.

Each modification made will be described in this chapter, together with the

reasons to implement them, crucial to the aim of using the software for many

years to come.

6.1 Build System

Developing software to use as a pedagogical tool requires being aware of

some aspects. It will need to be spread among the students, hopefully, one

copy per person. Schools and Universities usually dispose of computer labs,

but the possibility of working on it from home is always appreciated. This

will be particularly convenient when the software concerned will be used as a

study aid in a computer class—and it is well-known that programmers work

at any time of day (or night).

Given this premise, the tool should be installable on the students’ personal

computers, and one problem that does not usually show up on laboratories

machines is the system diversity. The software developers could surely give

37

38 6. Project Structure Update

requirements and instructions on how to install it on different computers de-

pending, for example, on the hardware, but when it comes to larger projects

with lots of dependencies and steps to be able to run it, it is always prefer-

able to use an automatic process. µMPS represents a classical example of this

kind of big project, with a not so simple building and installing procedure.

In the late 1990s, when its development started, there was principally

one solution: the GNU Autotools [9]. GNU Autotools were, de facto, the

reference toolchain of programs helping developers to distribute their software

fulfilling the users of complex procedures.

These tools are known as the Build System of a project, and they allow to

define a series of instructions spread over files within the source code direc-

tory. The initial configuration phase will follow these instructions, generating

a specific file depending on the operating environment on which it will run.

From the programming view, they avoid distributing different procedures or

source code for every system implementation, because, after setting every-

thing up as needed, they will take care of it. From the user perspective, after

obtaining the source code, the building phase will be possible in just a couple

of predefined steps. It is also important to note that the building tools of a

project are the first thing a user needs to interface to. In addition, for those

not skilled students, the installation of the software could be their first-ever

experience with them.

The Autools are still a very popular choice during the design stage of a

software, but, with time, many other valid alternatives arose. For this reason,

µMPS3 tries to simplify its installation phase by moving to a new building

suite, which has been one of the most popular choices over the last few years:

CMake.

6.1.1 CMake

Migrating µMPS3 to CMake has brought some benefits. First of all,

whoever experienced the installation of the previous version can now notice

a significant increase speed of this phase. CMake has a faster building time

6.2 Graphical User Interface 39

due to the avoidance of numerous system checks that the other building

tools do. More verifications mean more reliability, but most of Autotools

checks were on system features which have been integrated by default in

every distribution or in the Linux kernel [10] itself, making them useless.

CMake is also far less wordy, requiring a minor number of files in the

source code directory and far fewer lines of code. Hence, from a programming

perspective, the whole codebase is now “lighter”.

Since a lot of relatively recent projects are based on this building tool, it

should be easier to learn too, and this could encourage development contri-

butions by novice programmers.

Lastly, µMPS2 have gone through a graphical user interface upgrade,

discarding the original one and re-designing everything in Qt. This important

process was necessary to keep up with current standards, but, unfortunately,

the Autotools don’t combine well with the new GUI of choice. It is surely

possible to make them work together, as it has been until now, but this

requires a heavy configuration, not recommended most of the time given the

alternatives. µMPS3 could have just used the already implemented Autotools

structure, but another update, almost completely incompatible with the old

building tools, had to be done: the transition from Qt4 to Qt5.

6.2 Graphical User Interface

The µMPS front-end is one of its most important aspects, since it is the

first thing a student sees after launching it. Being a pedagogical tool, one

would expect it to be used by any level of experience in the area, hence, it

should be the most intuitive possible. Nevertheless, this must not prevent

the possibility to access every advanced feature directly from the GUI. Jonjic

has perfectly succeeded in this goal implementing the current one, described

in detail in the 3rd chapter of his thesis [11], and this third version of the

software brings only an update of the one built by him.

40 6. Project Structure Update

6.2.1 Qt5

Qt is a toolkit for creating graphical user interfaces, and the currently

available version is the fifth one. It has been originally released just a couple

of years later than µMPS2, which is built upon the fourth one. The time

to migrate to this new version has certainly come, and thanks to their high

compatibility all the process went significantly smooth. The rule applied

during the transition was the classical “if it is not broke, do not fix it”,

maintaining the same interface already implemented and upgrading just the

essential.

From the user perspective view, µMPS3 tries to make a couple of aspects

even more intuitive than before, thanks to the students feedback acquired

during the past 10 years.

6.2.2 Logo and Icon Theme

The very first visible characteristic is the new icon theme. The decision

to update has been made because the old ones were not much intuitive for

some common actions, like the two dedicated for switching on and off the

machine, compared along with the new ones in Table 6.1.

Old New

Power ON

Power OFF

Table 6.1: Start and Halt icons

These two icons were available as shortcuts in the top bar of the GUI.

Since they were alternating each other (the one for turning on the machine

was disabled once pressed, the other one was available only with the machine

powered on), they have been merged in a single shortcut displaying only the

action currently available.

6.2 Graphical User Interface 41

Similarly, the same procedure has been done for the two “start” and

“stop” icons.

Another reason for changing the icon theme was the replacement of tapes

with flash devices, whose icon was not available in the previous one.

All the new images are in the SVG format, which is an advantage in years

like these, where the resolution and DPI of computers screens are increasing

quickly. With the drop of all the other PNG icons, these new ones could be

easily scaled up in the future if needed, without losing quality.

The chosen theme is Papirus by Papirus Development Team [12], licensed

under GPL-3.0 [13]. Following the license terms, the one of µMPS3 has been

upgraded from the original GPL-2.0 to the new GPL-3.0 too.

All the other non-available icons were obtained from similar existing ones

with the Inkscape [14] software, following the same graphic style for the best

eye pleasure possible. With the same procedure, the new µMPS logo has

been created [Figure 6.1]. The font used for the central letter “µ” is Ubuntu

Monospace from Canonical [15].

µ
Figure 6.1: µMPS3 Logo

6.2.3 Other Improvements

There have been other small changes in the emulator front-end, intending

to improve the user experience as much as possible.

The “Edit configuration” menu entry has been moved from the “Machine”

menu voice to the “Simulator” one, in a more intuitive position [Figure 6.2].

42 6. Project Structure Update

(a) µMPS2

(b) µMPS3

Figure 6.2: Edit Configuration Menu Entry

A “Clear recent” option has been added, an underestimated, yet still

useful, function offering the possibility to remove all the used machine con-

figurations from the “Recent menu” [Figure 6.3]. Previously, the only way

to do it was by manually editing ∼/.config/umps3/umps.conf, not a very

practical method to clear the emulator overview.

Figure 6.3: Clear Recent Menu Entry

6.2 Graphical User Interface 43

The “Reset” shortcut has been made available in the processor view as

well. This is a convenient option when debugging using only the keyboard,

thus allowing the restart of the machine without the need to move between

front-end windows [Figure 6.4].

Figure 6.4: Reset Shortcut

The RAMTOP value of the machine is now available from the configuration

overview [Figure 6.5], increasing the transparency for the user on how the

physical memory of µMPS works [section 2.1].

Figure 6.5: RAMTOP value

44 6. Project Structure Update

Chapter 7

Conclusions

The µMPS project was created almost twenty years ago as a didactic sup-

port for operating system courses. Over time, many instructors have chosen

it as an aid in their classes, allowing it to reach its initial goal. However,

from the day the last version has been released, educational and technolog-

ical standards have changed in many ways, and the consideration of it has

been dropping to these days. A refresh of the emulator was needed, in order

to renovate the outdated features and reintroduce it to new OS instructors.

Thus, µMPS3 has been designed and implemented, and describing how this

update differs from the previous version is the work of this thesis.

The most changed aspect is, probably, the whole memory system, which

has been simplified compared to the original design, aligned to modern man-

agement techniques, and, ironically, unintentionally brought back to the orig-

inal MIPS architecture in various facets.

The internal exception handling system (BIOS routines) has been com-

pletely redesigned, facilitating its operation and requiring less work from

the students. By moving some responsibilities from the kernel to the BIOS,

the users kernel designing job is simpler and less sophisticated. This new

implementation led also to the modification of the processors initialization

process.

From the set of five previously supported devices, the tape is the one

45

46 7. Conclusions

which suffered the most the passage of time. Very few µMPS users from the

current generation of students are aware of how it works or what it even is.

Current hardware like USB sticks or SD cards is surely more appropriate for

educational purpose, since a familiar match of what one is working on helps

to understand better. For these reasons, the new class of flash devices has

been introduced, filling the need for substituting another outdated view of

the project.

Last but not least, the project building process had to be simplified. It

was probably the very first (underestimated) obstacle that students encoun-

tered while trying to install µMPS, and it was based on the GNU Autotools.

The migration to a new, current, building tool like CMake made the whole

procedure more linear and pretty straightforward. The graphical user inter-

face has not been revolutionized, but it has been updated anyway from Qt4

to Qt5 with the addition of a few adjustments.

With this second major revision, the µMPS project is once again in line

with how a proper current operating systems study aid should be structured.

7.1 Future Work

µMPS is one of those projects where the work to be done is potentially

endless. Uncountable changes are possible, both big or small, in order to

enhance the quality of the software. The most important, obvious or already

planned proposal, will be explained in this final part of the thesis, but it is

important to remember that no matter how many examples will be given, it

will always be a non-exhaustive list.

7.1.1 Software Packaging

Once a software has been released, it has to be distributed to future

users. µMPS is an open-source project, and its code will be always available

in public Git [16] repositories like GitHub [17]. This allows it to be always

built from source and installed in almost every system. However, it is always

7.1 Future Work 47

preferable to install software from official repositories when available, since

it permits an integrated tracking of installed files and an automatic updates

system. Therefore, the first task after µMPS3 release is packaging it for

Linux distros, to simplify even more its installation process, which will also

permit a solid future updates distribution.

Debian [18] is the main distribution for which the software must be pack-

aged, since along with all its derivates it covers the majority of the most

popular distros used. The guidelines of its packaging process are the most

stringent, but once the package is complete the porting to other derivates

repositories should be straightforward.

The second major distribution that is taking hold in these days is Arch

Linux [19], along with a long list of derivates as well. The packaging process

for this distribution is a lot more simpler than for Debian, and users-produced

packages can be uploaded in the dedicated repository at any time in a few

steps. The second version of the software, µMPS2, has been available in the

AUR (Arch User Repository) for over a year.

There are obviously a large number of other Linux distributions not based

on Debian or Arch, for which the two packaging processes listed before are,

then, useless. Satisfying all the possible Linux “flavours” is an almost infinite

work, and it is hoped that others will contribute to this cause by creating

the package for the distribution they use.

Other possible solutions are distro agnostic packages, like Flatpak [20],

AppImage [21], and Snapcraft [22]. They provide a way to distribute software

that could run on every system regardless of the distribution used.

7.1.2 Persistent Debugging Settings

Thanks to the advanced debugging support, µMPS is unique in its kind.

All the related features allow a high-level dismantling of the machine work-

flow, that enables the user to exactly understand what the emulator is doing

or where the code is failing. Sadly, the settings environment related to a

machine that can be created at runtime cannot be saved on the disk, and it

48 7. Conclusions

is lost when closing the program.

A nice new feature to develop could be linked to this aspect, since storing

off all the breakpoints, suspects, targets or all the traced regions set during

an hour of debugging could be convenient. Later in time, one could load the

setup previously saved and start debugging from where left off. Undoubtedly,

a cycle of compatibility checks is necessary to avoid loading incompatible

debugging settings on a machine.

7.1.3 Better Block Devices Creation

A block device is a type of file which represents a device of some kind

internally block-structured. This means that its data is read or written in it in

blocks. µMPS supports two types of block devices: disks and flash devices.

During their creation, a certain amount of space is always left blank, not

loaded with any information given. This space is currently filled with empty

blocks, all set to the 0 value. Consequently, a certain amount of memory

is occupied on the real disk, without any useful information to maintain.

By re-designing the creation process, for example by using the truncate

function, it would be possible to achieve the same result without filling the

actual file on the disk with unnecessary information. A new implementation

has already been proposed, and it should be integrated in a future minor

release of µMPS3.

Furthermore, at the moment, it is possible to write only one file into a

newly created flash device. An update to the creation process of the device

should implement also the ability to load multiple files, as it was possible

with tapes.

Similarly, disks creation does not allow to load any files into them, but

only to generate blank devices. Along with the suggestions above, the

umps3-mkdev utility should be altered to also permit the creation of non-

empty disks images. Due to the physical characteristics of their geometry,

this will be a nontrivial task compared to the filling process of flash devices

contiguous space.

Bibliography

[1] O. Babaoglu, M. Bussan, R. Drummond, F. Schneider, Documentation

for the CHIP computer system, Department of Computer Science, Cor-

nell University, (Ithaca, NY, USA), Technical Report TR 83-584, De-

cember 1983.

[2] L. Alvisi, F. Schneider, A graphical interface for CHIP Department of

Computer Science, Cornell University, (Ithaca, NY, USA), Technical

Report TR 96-1591, June 1996.

[3] O. Babaoglu, F. Schneider, The HOCA Operating System Specifica-

tions, Department of Computer Science, Cornell University, (Ithaca,

NY, USA), Technical Report TR 83-585, December 1983.

[4] M. Morsiani, R. Davoli, Learning Operating Systems Structure and Im-

plementation through the MPS Computer System Simulator, in The Pro-

ceedings of the Thirtieth SIGCSE Technical Symposium on Computer

Science Education, SIGCSE ’99, (New York, NY, USA), pp. 63-67,

ACM, March 1999.

[5] M. Goldweber, R. Davoli, and M. Morsiani, The Kaya OS Project

and the µMPS Hardware Emulator, in Proceedings of the 10th Annual

SIGCSE Conference on Innovation and Technology in Computer Sci-

ence Education, ITiCSE ’05, (New York, NY, USA), pp. 49–53, ACM,

June 2005.

49

50 BIBLIOGRAPHY

[6] M. Goldweber, R. Davoli, and T. Jonjic, Supporting Operating Systems

Projects Using the µMPS2 Hardware Simulator, in Proceedings of the

17th ACM Annual Conference on Innovation and Technology in Com-

puter Science Education, ITiCSE ’12, (New York, NY, USA), pp. 63–68,

ACM, July 2012.

[7] M. Goldweber, R. Davoli, µMPS3 Principles of Operation, Lulu Books,

2020.

[8] M. Goldweber, R. Davoli, µMPS2 Principles of Operation, Lulu Books,

August 2011.

[9] GNU Project, Autotools, https://www.gnu.org/.

[10] Linux’s Contributors, Linux Kernel, https://www.kernel.org/.

[11] T. Jonjic, Design and Implementation of the µMPS2 Educational Emu-

lator, University of Bologna, 2012.

[12] Papirus Development Team, Papirus Icon Theme for Linux, https:

//github.com/PapirusDevelopmentTeam/papirus-icon-theme.

[13] Free Software Foundation, Inc., GNU General Public License Version 3,

https://www.gnu.org/licenses/gpl-3.0.en.html.

[14] Inkscape’s Contributors, The Inkscape Project, https://inkscape.

org/.

[15] Canonical Ltd., Ubuntu font, https://design.ubuntu.com/font/.

[16] Git’s Contributors, Git, https://git-scm.com/.

[17] Microsoft Corporation, GitHub, https://github.com/.

[18] Debian Project, Debian, https://www.debian.org/.

[19] Arch Linux’s Contributors, Arch Linux, https://www.archlinux.org/.

https://www.gnu.org/
https://www.kernel.org/
https://github.com/PapirusDevelopmentTeam/papirus-icon-theme
https://github.com/PapirusDevelopmentTeam/papirus-icon-theme
https://www.gnu.org/licenses/gpl-3.0.en.html
https://inkscape.org/
https://inkscape.org/
https://design.ubuntu.com/font/
https://git-scm.com/
https://github.com/
https://www.debian.org/
https://www.archlinux.org/

BIBLIOGRAPHY 51

[20] Flatpak’s Contributors, Flatpak, https://www.flatpak.org/.

[21] Simon Peter, AppImage, https://appimage.org/.

[22] Canonical Ltd., Snapcraft, https://snapcraft.io/.

https://www.flatpak.org/
https://appimage.org/
https://snapcraft.io/

52 BIBLIOGRAPHY

Acknowledgements

Thanks to my mentors, Prof. Renzo Davoli and Prof. Michael Goldweber,

who patiently guided me through the development of the project and the

drafting of this document with invaluable advice. Their contagious passion

in Operating Systems and everything related to it made the final part of my

course of study the most enjoyable one.

Special thanks to Jasmine, who is, de facto, the third supervisor of the

thesis.

53

	Introduction
	Background
	History of MPS
	MPS3
	Structure of the Document

	Memory Management
	Physical Memory
	BIOS Reserved Space
	RAM Space

	Virtual Memory
	TLB Floor Address

	Previous Implementation
	VM Bit Removal

	Exception Handling
	Processor Actions on Exception
	BIOS Data Page
	BIOS Exception Handlers

	Previous Implementation
	ROM Reserved Frame

	Differences from MPS2

	Multiprocessor Support
	Processors Initialization
	Processor 0
	Processors 1-15

	Device Interfaces
	Tape drives
	Flash Drives
	Creation
	Usage

	Project Structure Update
	Build System
	CMake

	Graphical User Interface
	Qt5
	Logo and Icon Theme
	Other Improvements

	Conclusions
	Future Work
	Software Packaging
	Persistent Debugging Settings
	Better Block Devices Creation

	Bibliography

