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Introduction

Nowadays the challenging problem of handling huge amounts of digital

data has become a major issue, therefore many new research fields are being

explored in order to develop appropriate instruments, capable of processing

the data and extrapolating meaningful information.

A significant contribution to this end is given by topological data analysis,

whose approach is based on the fact that topology is concerned with studying

qualitative geometric features of a space and provides significant dimension-

ality reduction. In particular, a fundamental tool when trying to detect

structures in the datasets overlooking the presence of noise is represented by

persistent homology. This theory studies the evolution of the k-dimentional

holes when going through a filtration of sub-level sets of a space X, induced

by a given continuous function ϕ : X → R. The distance that elapses between

the time of birth and the time of death of a hole is called its persistence, and

denotes its relevance in shape comparison. In fact, the topological properties

that mainly characterize a space X should keep on being detected over a

wide range of sub-level sets, while the ones that do not persist are supposed

to be noise. Making the evidence of those main features available plays a key

role in successful shape comparison. For more detailed information about

the deployment of topology in data analysis we refer the reader to [4].

What enables us to apply topological data analysis’ techniques to real-world

situations, and thus makes them so appealing to us, is the idea that often

collected data are the result of measurements, hence they can be represented
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by continuous Rm-valued functions defined on a topological space X.

For example any grayscale image can be thought of as a map from R2 to

[0, 1], where the values taken in this interval indicate the grayscale levels.

In this view, it is clear that we are interested in comparing those functions,

providing a quantitative measure of their similarity. Nevertheless, we have to

do so while taking into account that in some cases different functions should

be considered equivalent, since according to the context they are essentially

the same, that is they are linked to each other through a homeomorphism

that we consider irrelevant. For instance, referring to the previous example,

when comparing images by means of the corresponding functions, we clearly

should be able to recognize a picture even if it is transformed through an

isometry of the plane. On the other hand, when dealing with images depict-

ing hand-written numbers, rotated pictures can not be considered the same

since we want to distinguish 6 from 9, and hence the equivalences between

the functions can be assimilated to homotheties.

There is a mathematical tool that perfectly complies with our requirements,

indeed the natural pseudo-distance is a pseudo-metric whose definition is

grounded on the purpose of finding the actual best correspondence between

two functions, with respect to a group of homeomorphisms. Named Φ the

set of functions to be compared and G the group of self-homeomorphisms of

X that express the equivalences between data, assuming that G acts on Φ

by composition on the right, we define the natural pseudo-distance dG on Φ

by setting dG (ϕ, ϕ′) = infg∈G ‖ϕ− ϕ′ ◦ g ‖∞ for any ϕ, ϕ′ ∈ Φ.

Since in general the computation of dG is quite difficult, it is necessary to

approximate its value, and this is made possible, at least when working with

real-valued functions, by an approach that exploits persistent homology.

In this context, in fact, the filtering functions can be compared through a

particular metric dmatch, called bottleneck distance, between the associated

persistence diagrams, which has been proved to be a lower bound for the
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natural pseudo-distance. Nevertheless, this instrument does not allow us to

distinguish ϕ from ϕ ◦ f , when f is a homeomorphism of X, meaning that

the filtrations respectively defined turn out to have exactly the same topo-

logical properties. For this reason persistent homology has to be employed

in a restricted setting, where we can accept the invariance expressed by G,

but not a more extended invariance.

Since, as previously said, we want to consider ϕ ◦ g equivalent to ϕ only for

g belonging to a specific subgroup G of Homeo(X), in our model we need to

treat G as a variable to have control on it, and this leads us to refer to the

theory of group equivariant non-expansive operators (GENEOs).

A GENEO for the pair (Φ,G) is basically a function on Φ that is equivariant

with respect to the action of the homeomorphisms in G. We can think of any

of these operators as an observer that manipulates the data in order to bet-

ter analyze them, according to the equivalence she/he considers reasonable

for comparisons, and in this perspective the non-expansivity reflects the at-

tempt of simplifying the information we have to work with. The importance

of introducing this kind of operators lies in the fact that they allow us to

approximate the natural pseudo-distance dG with arbitrarily high accuracy.

Precisely, it has been proved that under suitable hypothesis dG(ϕ, ϕ′) coin-

cides with the supremum of the bottleneck distances between the persistence

diagrams of F (ϕ) and F (ϕ′), when F varies in the space of all G-equivariant

non-expansive operators [1]. From this result we immediately understand

how fundamental is the ability of finding methods to build these operators

for the computation of the natural pseudo-distance. Some practical examples

of the employment of this theory in shape comparison can be found in [3].

This thesis focuses on further exploring the concept of permutant, on

which a constructional method for defining new GENEOs is based.

The work is organized as follows: the first chapter is devoted to describe the
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mathematical setting where our study takes place, the second one concerns

an extension of the notion of permutant and the construction of associated

operators, while the third one examines their structure as a whole.

In particular, we will prove that the set of all permutants ordered by inclusion

is a bounded lattice, whose maximum is a group.



Chapter 1

GENEOs

In our mathematical model the dataset X is thought as the space where

measurements are made through a set Φ of admissible functions, that are the

real-valued functions that represent the output of measuring instruments. X

is equipped with an extended pseudo-metric DX that reflects our inability to

know data if not by looking at them using the functions we have in place.

And besides, the topology induced by DX allows us to assess data stability.

We assume that data can be transformed through a certain group G of home-

omorphisms of X, each of which clearly needs to preserve Φ, since, as said

before, we are working with a functional viewpoint based on that specific

set of admissible functions. These transformations are the ones we consider

allowed for agents, in other words we require agents to be equivariant with

respect to the homeomorphisms of G while acting on the data. In addition to

this, we want our agents to be able to compress the data, in order to simplify

the information we are interested in. Our aim is to define operators that

simulate the transformation operated by agents, namely group equivariant

non-expansive operators (GENEOs).

What makes these operators so worthy of interest to us is the fact that the

space of GENEOs formalizes the space of the agents acting on a dataset in

a topological framework, where a rigorous study of its properties is possible.

9
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It has already been proved that the topological space of G-equivariant non-

expansive operators benefits from characteristics that make its employment

particularly convenient in deep learning context. A more exhaustive discus-

sion about these topics is provided in [1].

1.1 Mathematical setting

Let X be a non-empty set and let Φ be a topological subspace of RX
b ,

which denotes the space of all bounded functions ϕ : X → R endowed with

the topology induced by the sup-norm. Thus on Φ we have the metric:

DΦ (ϕ, ϕ′) := ‖ϕ− ϕ′ ‖∞ = sup
x∈X
|ϕ(x)− ϕ′(x) | ∀ϕ, ϕ′ ∈ Φ.

In this work we assume that Φ is convex as a subspace of RX
b .

We define the following extended pseudo-metric DX on X:

DX (x, x′) := sup
ϕ∈Φ
|ϕ(x)− ϕ(x′) | ∀x, x′ ∈ X.

This definition basically remarks the fact that we compare the values taken

by the admissible functions ϕ ∈ Φ to quantify the distance between points

in X.

If Φ is bounded, then DX is a pseudo-metric on X. We consider the pseudo-

metric space (X,DX) as a topological space by fixing as a base for the topol-

ogy τDX the collection of all the sets BX(x, ε) = {x′ ∈ X |DX(x, x′) < ε}
where x ∈ X and ε > 0.

Theorem 1.1.1. [1]. The topology τDX on X induced by the pseudo-metric

DX is finer than the initial topology with respect to Φ τin on X.

The importance of the previous result lies in its usefulness for applications,

in fact, since τin is the coarsest topology on X that makes each function of Φ

continuous, it guarantees that each ϕ ∈ Φ is automatically continuous with

respect to the topology τDX .
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Remark 1. All functions in Φ are 1-Lipschitz functions with respect to the

topology τDX , since trivially ∀ϕ ∈ Φ the following inequality holds:

|ϕ(x)− ϕ(x′) | ≤ sup
ϕ∈Φ
|ϕ(x)− ϕ(x′) | = DX(x, x′) ∀x, x′ ∈ X.

Theorem 1.1.2. [1]. If Φ is compact and X is complete, then X is also

compact.

In this work we assume that Φ is compact with respect to the topology

induced by DΦ, and that X is complete and hence compact with respect to

the topology induced by DX .

Let Homeo(X) be the group of the homeomorphisms of X with respect to

DX , and let HomeoΦ(X) denote the subgroup of the Φ-preserving homeo-

morphisms of X with respect to DX , that is the elements g ∈ Homeo(X)

such that ϕ ◦ g ∈ Φ and ϕ ◦ g−1 ∈ Φ ∀ϕ ∈ Φ.

The next proposition shows that HomeoΦ(X) actually coincides with the set

of all the bijections from X to X that preserve Φ.

Proposition 1.1.3. [1]. If g is a bijection from X to X such that ϕ ◦ g ∈ Φ
and ϕ ◦ g−1 ∈ Φ ∀ϕ ∈ Φ, then g is an isometry with respect to DX , and

hence g is a homeomorphism with respect to DX .

Remark 2. The previous proposition implies that HomeoΦ(X) is a subgroup

of the isometry group of X with respect to DX .

Let G be a subgroup of HomeoΦ(X), where it can be G = HomeoΦ(X).

We define the following pseudo-distance DG on G:

DG (g, g′) := sup
ϕ∈Φ

DΦ (ϕ ◦ g, ϕ ◦ g′) = sup
ϕ∈Φ
‖ϕ ◦ g − ϕ ◦ g′ ‖∞ ∀ g, g′ ∈ G.

This definition is motivated by our will to lead back the comparisons between

the elements of G to the comparisons between the corresponding measure-

ments carried out by the admissible functions of Φ.
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Remark 3. The following equality holds:

DG (g, g′) = sup
ϕ∈Φ
‖ϕ ◦ g − ϕ ◦ g′ ‖∞ = sup

ϕ∈Φ
sup
x∈X
|ϕ(g(x))− ϕ(g′(x)) | =

= sup
x∈X

sup
ϕ∈Φ
|ϕ(g(x))− ϕ(g′(x)) | = sup

x∈X
DX(g(x), g′(x)) ∀ g, g′ ∈ G.

Theorem 1.1.4. [1]. G is a topological group with respect to the topology

induced by DG, and besides, the action of G on Φ through right composition

is continuous.

The homeomorphisms in G are the transformations on data for which we

require invariance of the natural pseudo-distance to be respected.

The pair (Φ,G) is called a perception pair.

Definition 1.1. A Group Equivariant Non-Expansive Operator (GENEO)

for the pair (Φ,G) is a function F : Φ→ Φ such that:

- F (ϕ ◦ g) = F (ϕ) ◦ g ∀ϕ ∈ Φ, ∀ g ∈ G

- DΦ(F (ϕ1), F (ϕ2)) = ‖F (ϕ1)− F (ϕ2)‖∞ ≤ ‖ϕ1 − ϕ2‖∞ = DΦ(ϕ1, ϕ2)

∀ϕ1, ϕ2 ∈ Φ.

The first requirement expresses our wish to work with operators that

commute with the action of a selected group G of homeomorphisms, while

the condition on the norm describes the claim for non-expansivity on Φ.

Note that the definition of GENEO can be broaden to the case of two distinct

perception pairs, nevertheless in this work we will just consider the case of

them coinciding.

We must point out that, as proven in [1], having available a sufficiently large

set of GENEOs, which describes with reasonable accuracy the topological

space of all G-equivariant non-expansive operators, allows us to approximate
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the natural pseudo-distance dG with arbitrary precision. Since this is exactly

our final goal we aim to find procedures to build this kind of operators.

The next chapter is concerned with the description of one effective method

to build GENEOs.



14



Chapter 2

Permutants

In this chapter we will focus on the description of a method that allows us

to built new GENEOs. Specifically this construction exploits the existence

of structures in HomeoΦ(X), namely permutants, that naturally commute

with the elements of G, in view of ensuring the equivariance of the operator

with respect to the group. Although the method presents no difficulty when

working with finite permutants, its generalization to non-finite permutants

is not trivial, indeed it requires several assumptions in order for the operator

to be possibly defined.

2.1 A method to build GENEOs

Let G be a subgroup of HomeoΦ(X).

For any g ∈ G, let αg be the conjugacy action of g on HomeoΦ(X), that is

αg : HomeoΦ(X)→ HomeoΦ(X) , αg(h) := g ◦ h ◦ g−1 ∀h ∈ HomeoΦ(X).

For now, let us just stick to see how it is possible to build a GENEO when

given a finite subset of HomeoΦ(X) that is stable under the conjugacy action

of all g ∈ G.

15
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Proposition 2.1.1. [2] Let H ⊆ HomeoΦ(X), H = {h1, . . . , hn}, such that

αg(H) = H ∀g ∈ G, that is αg(hi) = g ◦ hi ◦ g−1 ∈ H ∀hi ∈ H, ∀g ∈ G.

Then FH : Φ −→ Φ , FH(ϕ) :=
1

n

n∑
i=1

(ϕ◦hi) is a GENEO for (Φ,G).

Proof. First of all, let us notice that the convexity of the function space Φ

together with the fact that the elements of H are Φ-preserving homeomor-

phisms of X ensures that FH(Φ) ⊆ Φ.

Let us verify that the operator FH defined above is G-equivariant. In fact,

∀g ∈ G named σg the permutation on the set of index I = {1, . . . , n} such

that g ◦ hi ◦ g−1 = hσg(i) hence g ◦ hi = hσg(i) ◦ g ∀i ∈ I, we have that:

FH(ϕ ◦ g) =
1

n

n∑
i=1

(ϕ ◦ g ◦ hi) =
1

n

n∑
i=1

(ϕ ◦ hσg(i) ◦ g) =
1

n

n∑
i=1

(ϕ ◦ hi ◦ g)

=
1

n

n∑
i=1

(ϕ ◦ hi) ◦ g = FH(ϕ) ◦ g ∀ϕ ∈ Φ, ∀ g ∈ G.

Finally, it is not difficult to check the non-expansivity of FH :

‖FH(ϕ)− FH(ϕ′) ‖∞ =
∥∥∥ 1

n

n∑
i=1

(ϕ ◦ hi) −
1

n

n∑
i=1

(ϕ′ ◦ hi)
∥∥∥
∞

=

=
∥∥∥ 1

n

n∑
i=1

(ϕ ◦ hi − ϕ′ ◦ hi)
∥∥∥
∞
≤ 1

n

n∑
i=1

‖ϕ ◦ hi − ϕ′ ◦ hi ‖∞ =

=
1

n

n∑
i=1

‖ϕ− ϕ′ ‖∞ = ‖ϕ− ϕ′ ‖∞ ∀ϕ, ϕ′ ∈ Φ.

And hence we can conclude that FH is a GENEO for the pair (Φ,G).

What we are actually interested in at this point is to extend the con-

struction described above to the case of non-finite subsets of HomeoΦ(X)

that are stable under the conjugacy action of G. In practice, our long-term

aim is to be able to produce operators, which under proper conditions are

still GENEOs for (Φ,G), in the following way:

FH : Φ −→ Φ , FH(ϕ) :=
1

µ(H)

∫
H

(ϕ ◦ h) dµ , for a suitable measure µ.



17

Furthermore, we want to give a structure to the space of these operators,

in order to be able to relate them to each other and possibly generate more of

them. In this perspective we need to provide a general theoretical framework

that allows us to deal with operators similar to FH , where though the sum is

replaced by an integral, and this means firstly that we need to come up with

a suitable definition of permutants, that on one hand takes into account our

need to equip them with a measure, and on the other hand is global enough

to allow us to consider them as a whole.

Remark 4. Let K be a subgroup of HomeoΦ(X). Since HomeoΦ(X) is a

topological group, K is a topological group with respect to the subspace

topology.

Let K 6= ∅ be a compact Hausdorff topological subgroup of HomeoΦ(X),

equipped with a finite Borel measure µ which is invariant under the conjugacy

action of all g ∈ G, that is for any A ⊆ K measurable with respect to µ, we

require µ(αg(A)) = µ(A) ∀g ∈ G.

Remark 5. For any g ∈ G the conjugacy action αg is a self-homeomorphism

of HomeoΦ(X), and therefore it maps Borel sets to Borel sets.

Let us prove this statement.

First of all we can observe that ∀g ∈ G αg : HomeoΦ(X)→ HomeoΦ(X) is

a bijection, in fact it is sufficient to notice that αg is clearly invertible, since

∀g ∈ G αg ◦ αg−1 = αg−1 ◦ αg = idHomeoΦ(X).

Furthermore we have to prove that ∀g ∈ G αg and its inverse are continuous.

In order to do that we can point out that ∀g ∈ G and ∀h, h′ ∈ HomeoΦ(X):

DHomeoΦ(X)(αg(h), αg(h
′)) = sup

ϕ∈Φ
‖ϕ ◦ g ◦ h ◦ g−1 − ϕ ◦ g ◦ h′ ◦ g−1 ‖∞ =

sup
ϕ∈Φ
‖ϕ ◦ g ◦ h− ϕ ◦ g ◦ h′ ‖∞ = sup

ϕ′∈Φ
‖ϕ′ ◦ h− ϕ′ ◦ h′ ‖∞ = DHomeoΦ(X)(h, h

′).

Therefore we can conclude that ∀g ∈ G αg : HomeoΦ(X)→ HomeoΦ(X) is

an isometry, and hence a homeomorphism, with respect to DHomeoΦ(X).
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We can now introduce the main new concept in this thesis.

Definition 2.1. We say that a closed subset H ⊆ K is a permutant for G

in K if αg(H) ⊆ H ∀g ∈ G, that is g ◦ h ◦ g−1 ∈ H ∀h ∈ H, ∀g ∈ G.

Remark 6. If H is a permutant for G , then it turns out αg(H) = H ∀g ∈ G,

since αg is a bijection.

Remark 7. H = ∅ is a permutant for G in K.

Remark 8. H = {idX} is always a permutant for G in K.

2.2 Examples of permutants

In this section we present some examples of permutants in various set-

tings, in order to describe a range of different cases for what concerns the

measure µ defined on K and the action of the homeomorphisms αg on the

elements of a permutant.

Example 2.1. Let X = S2 = {(x, y, z) ∈ R3 : x2 +y2 +z2 = 1}, let Φ be the

set of the functions ϕv : S2 → [0, 1] with v ∈ S2, so defined: ϕv(p) := 〈p, v〉
for every p ∈ S2, where 〈·, ·〉 denotes the standard inner product in R3.

Let K be the cyclic group generated by the rotation ρθ of angle θ = π
n
,

where n ∈ N+, with respect to the z axis. The pseudo-metric DK induces

the discrete topology on K, and we consider the Borel measure µ on K such

that µ({ρ kθ}) = 1
n
∀ k = 1, . . . , 2n. Let us consider the group G = {r, idS2},

where r is the reflection with respect to the xy plane, that is r : S2 → S2,

r(x, y, z) = (x, y,−z). Since ϕv ◦ r = ϕr(v) the action of G takes Φ to Φ.

Moreover any subset H of K is a permutant for G. In fact, it is sufficient to

notice that the conjugacy action of all g ∈ G on the elements of K is trivial.
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Example 2.2. Let X = {1, 2, 3, 4} and let Φ be the set of all functions

ϕ : X → [0, 1]. Let K = S4 be the symmetric group over X, which is

equipped with the discrete topology. We can consider the Borel measure µ

on S4 such that µ({σ}) = 1
4!
∀σ ∈ S4.

Let G = {(1, 2, 3, 4), (1, 3, 2, 4), (2, 1, 3, 4), (2, 3, 1, 4), (3, 1, 2, 4), (3, 2, 1, 4)} be

the subgroup of S4 made of the permutations of X that fix the last element.

Then the set H = {(4, 2, 3, 1), (1, 4, 3, 2), (1, 2, 4, 3)}, which consists of the

permutations that only switch the fourth element with one of the others, is

a permutant for G in K.

In particular we can notice that even in this case clearly αg(H) = H ∀ g ∈ G,

but here the action of αg is not trivial, unless g = idS4 .

Example 2.3. Let X = {1, 2, 3, 4, 5, 6, 7} and let Φ be the set of all functions

ϕ : X → [0, 1]. Let K = S7 be the symmetric group over X, with the discrete

topology. Now let K1,2,3 be the subset of S7 made of the non trivial permu-

tations that fix the last four elements, namely K1,2,3 = {(2, 1, 3, 4, 5, 6, 7),

(3, 2, 1, 4, 5, 6, 7), (1, 3, 2, 4, 5, 6, 7), (2, 3, 1, 4, 5, 6, 7), (3, 1, 2, 4, 5, 6, 7)} and let

K4,5,6 be the subset of S7 made of the non trivial permutations that fix

the first three elements and the last one, that is K4,5,6 = {(1, 2, 3, 4, 6, 5, 7),

(1, 2, 3, 6, 5, 4, 7), (1, 2, 3, 5, 4, 6, 7), (1, 2, 3, 5, 6, 4, 7), (1, 2, 3, 6, 4, 5, 7)}.
Finally let G = K1,2,3∪K4,5,6∪{idS7}. Since K1,2,3 and K4,5,6 are stable under

the conjugacy action of all σ ∈ G, the measure µ on S7 defined by setting

µ({σ}) = 1 for σ ∈ K1,2,3 , µ({σ}) = 1
2

for σ ∈ K4,5,6 and µ({σ}) = 0

otherwise, is invariant under the conjugacy action of G.

Then the set H = { (7, 2, 3, 4, 5, 6, 1), (1, 7, 3, 4, 5, 6, 2), (1, 2, 7, 4, 5, 6, 3),

(1, 2, 3, 7, 5, 6, 4), (1, 2, 3, 4, 7, 6, 5), (1, 2, 3, 4, 5, 7, 6) } , which consists of the

permutations that only switch the last element with one of the others, is a

permutant for G in K.
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2.3 Permutants and versatile groups

In this section we raise the point that for groups G that fulfil a particular

property, namely weakly versatility, we are able to state a priori that no

interesting operator can be produced by means of the procedure described

in Proposition 2.1.1, since the only non-empty finite permutant available for

G is the trivial one, that only consists of the identity function.

Definition 2.2. [2]. We say that G is versatile if for any triple (x, y, z) ∈ X3,

where x 6= z, and for any finite S ⊆ X at least one homeomorphism g ∈ G
exists such that g(x) = y, g(z) /∈ S.

Example 2.4. Let X = P2 = S2/∼ , where ∼ is the equivalence relation

that identifies the antipodal points on the sphere, and let Φ be the set of

the functions ϕ[v] : P2 → [0, 1] with [v] = [−v] = {v,−v} ∈ P2, so defined:

ϕ[v]([p]) := |〈p, v〉| for every [p] ∈ P2, where 〈·, ·〉 denotes the standard inner

product in R3. We observe that the definition of ϕ[v]([p]) does not depend

on the representatives of the equivalence classes [v], [p]. Now, let us consider

the group G of the maps that can be obtained by taking an isometry f of

S2 with respect to the Euclidean distance and considering the induced map

[f ] : P2 → P2 defined by setting [f ]([p]) := [f(p)] for every [p] ∈ P2 (this

definition does not depend on the representative of the equivalence class [p],

since f takes antipodal points to antipodal points). It is easy to check that

if [f1], [f2] ∈ G, then [f1]◦ [f2] = [f1 ◦f2]. Since ϕ[v]([f(p)]) = ϕ[f−1(v)]([p]) for

every v, p ∈ S2 and every [f ] ∈ G, the maps in G are Φ-preserving bijections.

The definition of G easily implies that G is versatile.

Definition 2.3. We say that G is weakly versatile if for any pair (x, z) ∈ X2,

where x 6= z, and for any finite S ⊆ X at least one homeomorphism g ∈ G
exists such that g(x) = x, g(z) /∈ S.
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Remark 9. If G is versatile then G is weakly versatile.

In fact it is sufficient to choose y = x to obtain the weakly versatility condi-

tion from the versatility one.

Remark 10. If G is weakly versatile then G is not necessarily versatile.

Example 2.5. Let us define P2, [v], 〈·, ·〉 and G as in Example 2.4.

Let Φ̂ be the set of the functions ϕ̂[v] : P2 × [0, 1] → [0, 2] so defined:

ϕ̂[v](([p], t)) := |〈p, v〉| + t for every [p] ∈ P2 and every t ∈ [0, 1]. We ob-

serve that the definition of ϕ̂[v](([p], t)) does not depend on the represen-

tatives of the equivalence classes [v], [p]. Let Ĝ be the group of the maps

ĝ : P2× [0, 1]→ P2× [0, 1] such that ĝ([p], t) = (g([p]), t) for a suitable g ∈ G
independent of t. The action of the group Ĝ takes Φ̂ to Φ̂. Moreover, Ĝ is

weakly versatile, but not versatile, since no point ([p], t) ∈ P2 × [0, 1] can be

taken to a point ([q], t′) ∈ P2 × [0, 1] by a map ĝ ∈ Ĝ, for t′ 6= t.

Proposition 2.3.1. Let H 6= ∅ be a finite permutant for G in K. If G is

weakly versatile, then H = {idX}.

Proof. Let us suppose that H 6= {idX}, this means that an element h ∈ H
exists such that h 6= idX . Let H = {h1, . . . , hn}, we can suppose without loss

of generality that h1 6= idX , hence there exists x̄ ∈ X such that h1(x̄) 6= x̄.

Since H is a finite permutant for G we have that ∀g ∈ G g ◦ h1 ◦ g−1 = hi,

hence g◦h1 = hi◦g for some i ∈ {1, . . . , n}. If we consider the pair of distinct

points (x̄, h1(x̄)) and the finite set S = {h1(x̄), . . . , hn(x̄)}, we obtain that

∀g ∈ G such that g(x̄) = x̄ g(h1(x̄)) = hi(g(x̄)) = hi(x̄) ∈ S, but this is not

possible since we supposed the group G was weakly versatile.
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Chapter 3

The lattice of permutants

In this last chapter we investigate the relationships that exist among the

permutants for a given group G in K. In particular we show that the set of

all permutants for G in K is a bounded lattice, and then we prove that the

top element of this lattice, that is called the maximal permutant for G in K,

turns out to be a group.

Proposition 3.0.2. The set of all permutants for G in K is a lattice.

Proof. It is sufficient to prove that if H, H ′ are permutants for G in K then

H ∩ H ′ and H ∪ H ′ are too. Let H, H ′ be permutants for G in K, then

H ∩ H ′ and H ∪ H ′ clearly are closed subsets of K, thus we only have to

verify that they are invariant under the conjugacy action of all g ∈ G.

If H ∩H ′ = ∅ the result is trivial, hence suppose H ∩H ′ 6= ∅. Let us consider

h ∈ H ∩H ′, in particular h ∈ H and h ∈ H ′, but now, since H and H ′ are

permutants for G we have that ∀g ∈ G g ◦ h ◦ g−1 ∈ H and g ◦ h ◦ g−1 ∈ H ′,
and thus g ◦ h ◦ g−1 ∈ H ∩H ′. Hence H ∩H ′ is a permutant for G in K.

In the same way, let h ∈ H∪H ′, if h ∈ H then ∀g ∈ G we have g◦h◦g−1 ∈ H,

and hence g◦h◦g−1 ∈ H∪H ′; on the other hand if h /∈ H necessarily h ∈ H ′,
and so we have g ◦ h ◦ g−1 ∈ H ′, from which we get g ◦ h ◦ g−1 ∈ H ∪ H ′.
This proves that H ∪H ′ is a permutant for G in K.
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Proposition 3.0.3. Let H ⊆ K, and let H denote the topological closure of

H in K. If αg(H) ⊆ H ∀g ∈ G, then αg(H) ⊆ H ∀g ∈ G.

Proof. We need to verify that ∀h̄ ∈ H αg(h̄) ∈ H, ∀g ∈ G. Since H is the

topological closure of H, ∀h̄ ∈ H we have that ∀ε > 0 there exists hε ∈ H
such that supϕ∈Φ ‖ϕ ◦ h̄− ϕ ◦ hε‖∞ < ε. This implies that ∀g ∈ G, ∀ε > 0

sup
ϕ∈Φ
‖ϕ ◦ (αg(h̄))− ϕ ◦ (αg(hε))‖∞ = sup

ϕ∈Φ
‖ϕ ◦ g ◦ h̄ ◦ g−1 − ϕ ◦ g ◦ hε ◦ g−1‖∞

= sup
ϕ∈Φ
‖ϕ ◦ g ◦ h̄− ϕ ◦ g ◦ hε‖∞ = sup

ϕ′∈Φ
‖ϕ′ ◦ h̄− ϕ′ ◦ hε‖∞ < ε.

But now, since we were assuming that for hε ∈ H αg(hε) ∈ H, ∀g ∈ G,

the previous inequality implies that αg(h̄) ∈ H , for any h̄ ∈ H, ∀g ∈ G.

Corollary 3.0.4. Let H ⊆ K such that αg(H) ⊆ H ∀g ∈ G, then H is a

permutant for G in K.

Proof. It is sufficient to notice that H ⊆ K, since K is closed, then the

statement immediately follows from Proposition 3.0.3.

Proposition 3.0.5. Let {Hi}i∈I be the lattice of all permutants for G in K

with respect to the inclusion, then H =
⋃
i∈I Hi is a permutant for G in K.

Proof. It is sufficient to observe that H ⊆ K is invariant under the conjugacy

action of all g ∈ G, hence Corollary 3.0.4 claims that its topological closure

H is a permutant for G in K, but then from the maximality of H follows

that H ≡ H.

Definition 3.1. We say that H is the maximal permutant for G in K.

Remark 11. We can notice that the lattice of all permutants for G in K is a

bounded lattice, since it has a top element, represented by H, and a bottom

element which is the empty-set.
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Proposition 3.0.6. Let H = {hi}i∈I and denote H−1 := {h−1i }i∈I . If H is

a permutant for G in K then H−1 is too.

Proof. First of all let us notice that H ⊆ K implies H−1 ⊆ K, since K is a

group. Moreover, thanks to the fact that K is a topological group we have

that the inversion operation is continuous and hence is a homeomorphism on

K, thus it maps closed sets to closed sets, and from this we get that H−1

is a closed set. Hence we only have to verify that H−1 is invariant under

the conjugacy action of all g ∈ G. Now, assuming that H is a permutant

for G in K means that ∀g ∈ G a permutation σ of the index set I exists

such that g ◦ hi ◦ g−1 = hσ(i) ∀i ∈ I. It follows that ∀g ∈ G we have

g◦h−1i ◦g−1 = (g◦hi◦g−1)−1 = h−1σ(i) ∀i ∈ I, that is overall αg(H
−1) ⊆ H−1.

Therefore we can conclude that H−1 is a permutant for G in K.

Proposition 3.0.7. Let H = {hi}i∈I and denote H2 := {(hi ◦ hj)}i,j∈I . If

H is a permutant for G in K then H2 is too.

Proof. First of all let us notice as before that H ⊆ K implies H2 ⊆ K, since

K is a group. In addition, H is closed and hence compact in K, thus H ×H
is compact with respect to the product topology, and since K is a topological

group we have that the composition map f : H×H → H2, f(hi, hj) = hi◦hj
is continuous, thus it maps compact sets to compact sets, and from this we

get that H2 is a compact set. Now the only thing left to prove is that H2

is invariant under the conjugacy action of all g ∈ G. Since we assume that

H is a permutant for G in K, we have that ∀g ∈ G a permutation σ of

the index set I exists such that g ◦ hi ◦ g−1 = hσ(i) ∀i ∈ I. It follows that

∀g ∈ G g◦(hi◦hj)◦g−1 = (g◦hi◦g−1)◦(g◦hj◦g−1) = hσ(i)◦hσ(j) ∀i, j ∈ I that

is overall αg(H
2) ⊆ H2. Therefore we can conclude that H2 is a permutant

for G in K.
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Proposition 3.0.8. Let H be the maximal permutant for G in K, then H
is a group.

Proof. Trivially {idX} is a permutant for G in K, hence idX ∈ H.

Let us prove that ∀h ∈ H also h−1 ∈ H. Since h ∈ H there will be a

permutant H such that h ∈ H, but then thanks to Proposition 3.0.6 we can

assure that there exists a permutant for G in K that contains h−1, and so

thanks to the maximality of H it must be h−1 ∈ H.

Finally let us show that ∀h, h′ ∈ H also h ◦ h′ ∈ H. Since the set of all

permutants for G in K is closed under union, there will be a permutant H

such that h, h′ ∈ H, but now Proposition 3.0.7 guarantees the existence of a

permutant for G in K that contains h ◦ h′, and hence for the maximality of

H we get h ◦ h′ ∈ H.

Therefore we can conclude that H is a group.



Conclusions

In order to motivate our work it is important to recall that the real

goal of this study is to extend our knowledge about the space of all the

G-equivariant non-expansive operators defined on a given set of functions

Φ, and hence reach an approximation of the natural pseudo-distance dG as

accurate as possible, since this would give us a powerful and effective instru-

ment for shape comparison. We can say that this corresponds to the ability

of simulating the performance of an observer who is trying to analyze some

data, acting on them according to reasonable criteria, with the purpose of

bringing useful information out of them.

In particular, this thesis revolves around a deeper examination of the con-

cept of permutant, since it appears to be a key element in the construction

of new GENEOs, especially because it seems to be suitable for generalization

in several directions and this is precisely what we are interested in.

For instance, we have started exploring the way of non-finite permutants,

since we perceive this extension as necessary in order to make things work

well other than a natural evolution, and we have provided a general definition

that includes the non-finite case and that allows us to structure the collection

of permutants, but still a lot of work has to be done in order to develop a

general method to define new operators starting from non-finite permutants.

Another natural extension goes in the direction of applying the permutant-

procedure in a slightly different context, that is to construct GENEOs be-

tween two different perception pairs.
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Another attempt that perhaps can lead to some interesting results is changing

our approach towards the conjugacy action, since it is possible that looking

at it globally as a topological group action can help us identify useful alge-

braic features regarding the group G or permutants.

Finally there are some metric aspects we did not go into, which are worthy

of investigation and concern the metric properties of the space of homeomor-

phisms HomeoΦ(X) where we work.
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