Documenti full-text disponibili:
Abstract
Climate change is affecting pelagic ecosystems with repercussions on fish production. In particular, global change is increasing oceanic temperature and stratification with decrease in nutrient input in euphotic layer leading to a decline in primary production. The mesocosm-based project Ocean Art-Up, conducted in Gran Canaria, is aimed to increase fish production and to enhance carbon sequestration through an artificial upwelling system. Diatoms dominate the phytoplankton community in upwelling systems and they need to take up silicates to grow. The abundance and nutritional value of diatoms determine the fate of phytoplankton biomass with transport to the upper level of the pelagic food web or to the deeper layer of the ocean with potential carbon sequestration. Here, data about experiments performed in 2018 and 2019 are reported. The first mesocosm experiment investigated the differences between pulsed and continuous upwelling mode, while the second experiment was conducted with a gradient in Si:N ratio along the mesocosms. The phytoplankton community takes up and incorporate silica about at the same rate in continuous mode, while in pulsed mode its peak occurred only after the deep-water addition. The diatom silica content is not affected by mode and amount of water added but by the Si:N ratio. Diatoms grown in an environment with high Si:N ratio values show higher abundance, biogenic silica production, silica uptake and silica content than the ones that experienced low Si:N values. In addition from literature, euphotic zone rich in silicate may produce high silica containing-diatoms who will produce repercussions on copepods community regarding feeding, hatching and growth, thus continuous upwelling with high Si:N ratio favours diatoms who will tend to sink and to be converted by copepods into fecal pellet rich in silica with increasing in potential carbon sequestration. Fish production may increase with continuous artificial upwelling showing low Si:N values.
Abstract
Climate change is affecting pelagic ecosystems with repercussions on fish production. In particular, global change is increasing oceanic temperature and stratification with decrease in nutrient input in euphotic layer leading to a decline in primary production. The mesocosm-based project Ocean Art-Up, conducted in Gran Canaria, is aimed to increase fish production and to enhance carbon sequestration through an artificial upwelling system. Diatoms dominate the phytoplankton community in upwelling systems and they need to take up silicates to grow. The abundance and nutritional value of diatoms determine the fate of phytoplankton biomass with transport to the upper level of the pelagic food web or to the deeper layer of the ocean with potential carbon sequestration. Here, data about experiments performed in 2018 and 2019 are reported. The first mesocosm experiment investigated the differences between pulsed and continuous upwelling mode, while the second experiment was conducted with a gradient in Si:N ratio along the mesocosms. The phytoplankton community takes up and incorporate silica about at the same rate in continuous mode, while in pulsed mode its peak occurred only after the deep-water addition. The diatom silica content is not affected by mode and amount of water added but by the Si:N ratio. Diatoms grown in an environment with high Si:N ratio values show higher abundance, biogenic silica production, silica uptake and silica content than the ones that experienced low Si:N values. In addition from literature, euphotic zone rich in silicate may produce high silica containing-diatoms who will produce repercussions on copepods community regarding feeding, hatching and growth, thus continuous upwelling with high Si:N ratio favours diatoms who will tend to sink and to be converted by copepods into fecal pellet rich in silica with increasing in potential carbon sequestration. Fish production may increase with continuous artificial upwelling showing low Si:N values.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Timoncini, Andrea
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM CLIMATE-KIC
Ordinamento Cds
DM270
Parole chiave
artificial upwelling,climate change,primary pruductivity,carbon sequestration,food web,mesocosm experiment
Data di discussione della Tesi
24 Marzo 2020
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Timoncini, Andrea
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM CLIMATE-KIC
Ordinamento Cds
DM270
Parole chiave
artificial upwelling,climate change,primary pruductivity,carbon sequestration,food web,mesocosm experiment
Data di discussione della Tesi
24 Marzo 2020
URI
Statistica sui download
Gestione del documento: