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Sommario

In the last decade there has been a thriving development of quantitative methods in the
field of biomedical physics, both in the modeling of biological complex systems and in
the statistical analysis of experimental results. In this thesis we examine the effect of
a variety of stimuli on the NF-kB activity’s oscillation in metastatic colorectal cancer
cells using probabilistic models such as the Chemical Master Equation and the Bayesian
statistics. After a brief introduction (Chapter 1) we explain the theoretical foundations
of the Master Equation approach (Chapter 2) and of the Bayesian inference, together
with a brief dip in the subject of Hamiltonian Monte Carlo methods (Chapter 3). In the
continuation we create a solvable model using the Master Equation approach (Chapter
4) and we gain insights concerning its eigenvalues distribution in the complex plane. We
therefore build a Bayesian regression model (Chapter 5) and we use it to analyze the
oscillating autocorrelation function of the previous stochastic model in order to test the
capabilities of the statistical model. Finally (Chapter 6) we analyze the biological data
using the previously created and tested statistical model, exploring and commenting the
results (Capitolo 7) and outlining further research directions.

Stochastic processes Bayesian statistic Biological oscillations Citokines Colorectal
cancer Chemical master equation



Sommario

Nell’ultimo decennio è avvenuto un fiorente sviluppo di metodi quantitativi applicati
al campo della fisica biomedica, sia per quanto riguarda la modellizzazione di sistemi
complessi di carattere biologico sia nell’analisi statistica dei risultati sperimentali. In
questa tesi si esamina l’effetto di vari stimoli sull’oscillazione dell’attività di NF-kB nel-
le cellule tumorali metastatiche del cancro al colon-retto usando modelli probabilistici
quali la Chemical Master Equation e la statistica Bayesiana. A seguito dell’esposizio-
ne delle premesse (Capitolo 1) si sviluppano i fondamenti teorici della Master Equation
(Capitolo 2) e dell’inferenza Bayesiana, insieme a un’introduzione ai metodi Monte Carlo
Hamiltoniani (Capitolo 3). Successivamente si sviluppa un modello risolubile con l’ap-
proccio della Master Equation (Capitolo 4) ottenendo risultati per quanto riguarda la
distribuzione degli autovalori nel piano complesso. Conseguentemente si costruisce un
modello Bayesiano di regressione (Capitolo 5) e lo si utilizza per analizzare le oscillazioni
della funzione di autocorrelazione del precedentemente introdotto processo stocastico al
fine di testare le capacità di tale modello statistico. Infine (Capitolo 6) si analizzano i
dati biologici usando il modello statistico precedentemente creato e testato, esplorando
e commentando i risultati (Capitolo 7) delineando successive direzioni di ricerca.
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Chapter 1

Introduction

In this thesis we analyze the fluctuations of the NF-kB activity in colorectal cancer
cells using the fluorescence data derived by the experiments performed in the AlmaIdea
Junior 2017 research activity. In the first part of the thesis we introduce the theoretical
framework we use, namely the Master Equation methods and the Bayesian inference
methods. In the latter part of the thesis we show how we apply these methods in order
to get insights of the fluctuations of NF-kB activity in colorectal cancer cells, when
treated with different stimuli as anticancer drugs and interleukin. In this context we
show and comment the result of our analysis.

1.1 Quantitative modelling of biological complex sys-
tems

During the last decade there has been an increasing interest concerning the application
of stochastic methods to biochemical systems and biological phenomena. It is observed
that almost every biological process possesses intrinsical noise1, hence their description
by means of deterministic methods such as the modeling and resolution of ordinary
differential equations (ODE) usually leads to different solutions than those obtained from
stochastic methods. Again, for nonlinear systems the stochastic solution is in general
different from the noisy linear one.

Moreover, the majority of biological phenomena like cellular growth, gene expression,
complex signaling systems and more generally biochemical pathways can’t be described
by continuous models, therefore even continuous stochastic models like the Fokker-Planck
equation approach or the analogous Langevin equation approach don’t fit well the anal-
ysis of those biochemical systems. The combination of these two properties (discreteness

1Actually the intrinsical noise of these systems can be also be described as a consequence of their
deterministic chaos given by the presence of multiple variables with nonlinear interactions.
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and noisiness) is leading to an increasing exploitation of the Master Equation formalism
in order to model biological systems, due to its capability of describing processes that
are both discrete and stochastic.

Quantitative modelling of chemical systems has been based on the Law of Mass
Action. The applications of this theory to biochemical kinetics leads to the standard
kinetic modelling of biochemical reactions for enzymatic reaction systems. However the
theory based on the Law of Mass Action doesn’t consider fluctuations; namely, it is a
deterministic theory. Anyway it is a fully dynamical theory, hence it can be used for
systems far outside the equilibrium.

In order to extend the Law of Mass Action to fluctuating systems outside the equi-
librium state it is introduced the Chemical Master Equation (CME) approach. It is in
fact true that the chemical master equation is the stochastic counterpart of the chemical
kinetic equation based on the Law of Mass Action [1], [5].

1.2 Probabilistic analysis of biological data
Statistics is the theoretical framework for rigorous data analysis. It provides all the
mathematical tools required to set up probabilistic models and to explain how data are
produced by experiments, taking into account the intrinsic uncertainty associated with
these processes.

While there isn’t an universal statistical framework, one interpretation that has
gained strength in the last thirty years is the Bayesian statistical approach, mostly
because of the growth of the number of computational resources available. Bayesian
statistics offers some capabilities that enable it to solve a variety of complex problems.
Moreover, where some conditions are met the bayesian methods’ results coincide with
those of the more standard Maximum Likelihood methods. However the main appeal of
the bayesian methods is their capability to model a variety of complex systems by means
of multilevel (hierarchical) models, following a set of simple principles. Moreover, the
bayesian analysis leads to more intelligible results with a more intuitive meaning.

In the bayesian framework the model parameters are random variables too, hence we
are interested in inference of the overall unknown parameter’s distribution, instead of a
point estimate or an interval estimate typical of the standard methods. This is useful in
order to get insights and predict new data given the model.

Due to its power in the analysis of complex models and due to the fact that it makes
the introduction of prior domain information easier, Bayesian approaches are widely used
in a variety of scientific applications, including biological research.

2



Chapter 2

The Master Equation approach

2.1 Markov Processes
The Master Equation is defined in the framework of Markov processes. A stochastic
process is defined as Markovian if it satisfies the Markov property as follow:

Definition 1. Given a set of n ordered times {ti} a process satisfies the Markov property
if

P (xn, tn|xn−1, tn−1, . . . , x1, t1) = P (xn, tn|xn−1, tn−1) (2.1)

Stated differently, the conditional probability density at tn given the value at tn−1
isn’t affected by any information about earlier times. Thus a Markov process is defined
uniquely by the two following density functions

P (x1, t1) (2.2)
P (x2, t2|x1, t1) (2.3)

Usually the (2.3) is called transition probability. Using those two functions a generic
joint probability density function can be constructed as

P (x1, t1, . . . , xn, tn) = P (x1, t1)
i=2∏
i=n

P (xi, ti|xi−1, ti−1) (2.4)

Using this property for n = 3 and therefore integrating over the middle variable x2
one obtains

P (x3, t3, x1, t1) = P (x1, t1)

∫
dx2P (x3, t3|x2, t2)P (x2, t2|x1, t1) (2.5)

Finally dividing both sides by P (x1, t1) one finds the famous Chapman-Kolmogorov
equation for the transition probabilities

P (x3, t3|x1, t1) =

∫
dx2P (x3, t3|x2, t2)P (x2, t2|x1, t1) (2.6)
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For a stationary process the transition probability only depends on the lag time
τ = ti − ti−1 1, therefore adopting the standard notation

P (xi, ti|xi−1, ti−1) = Tτ (xi|xi−1) (2.7)

Inserting this definition in the (2.6) one finds

Tτ1+τ2(x3|x1) =

∫
dx2Tτ2(x3|x2)Tτ1(x2|x1) (2.8)

Using this notation the Chapman-Kolmogorov is nothing else than a product of integral
kernels (or matrices).

2.2 Master Equation approach to Markov processes
The Master Equation follows from the (2.6) in the small lag times limit. Although the
Chapman-Kolmogorov Equation is a functional equation in the transition probability
Tτ (x2|x1) the Master Equation is a differential equation, at least ideally easier to tackle.

Let’s begin defining the transition probability per unit time W as

Tτ (x2|x1) ≈ τW (x2|x1) x2 6= x1 (2.9)

and using this definition one can define the probability that no transition occurs during
a lag τ as

Q(x1) = 1− τ
∫
dx2W (x2|x1) (2.10)

Putting these equations together one finds

Tτ (x2|x1) = τW (x2|x1) +Q(x1)δ(x2 − x1) (2.11)

Moreover putting it in the (2.6), dividing by τ and letting τ → 0 one finds

∂

∂τ
Tτ ′(x3|x1) =

∫
dx2

{
W (x3|x2)Tτ ′(x2|x1)−W (x2|x3)Tτ ′(x3|x1)

}
(2.12)

Finally recalling the definition (2.3) and considering {xi} as a set over discrete states
one obtains the most common notation for the Master Equation as a balance equation
for probabilities of different states

dPn(t)

dt
=
∑
m

{
WnmPm(t)−WmnPn(t)

}
(2.13)

1This is basically the definition of a stochastic stationary process.
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2.3 Expansion in eigenfunctions of the Master Equa-
tion solution

The Master Equation (2.13) can be written in a more compact way defining theWmatrix
as

Wnm = Wnm − δnm
∑
l

Wnl (2.14)

Thus the (2.13) can be written as

~̇P (t) = W~P (t) (2.15)

This kind of differential equation has a formal solution

~P (t) = etW ~P (0) (2.16)

The explicit solution for ~P is usually found expanding it as a sum of eigenvectors. If
one allows W to be only real valued due to the physical meaning of the matrix elements,
three cases arise

• W is symmetric, therefore diagonalizable

• W isn’t symmetric, but still diagonalizable

• W isn’t symmetric and not diagonalizable (it can still be put in Jordan form)

Now the case of an isolated system and diagonalizable W will be considered. Assum-
ing that W is indecomposable (it can’t be divided in two non-interacting subsystems)
then the eigenvalue problem is stated as usual

W~Φλ = λ~Φλ (2.17)

Therefore the solution of (2.13) is merely

~P (t) =
∑
λ

Cλ~Φλe
λt (2.18)

with the constants Cλ defined by the initial probability state ~P (0).
Studying the long time limit one can demonstrate [1] that

λ0 = 0 (2.19)
Re(λi) < 0 for i > 0 (2.20)

Finally we want to use the (2.18) to find the autocorrelation of some observable O
(in our case it will be the number of particles for each chemical species). For simplicity
we consider the 〈O(t)〉eq = 0 case. We can rephrase the (2.18) as

5



Pn(t) =
∑
k

Φ(l)
n e

λlt
[∑

m

Φ(l)
m

Pm(0)

P eq
m

]
(2.21)

where n and m span the state space enumeration while l indexes the eigenvalues and
the eigenvectors, and ~P eq is the equilibrium probability distribution. As can be seen the
term in the square brackets depends on the initial conditions. Using the 2.21 one can
find the joint probability distribution

P (n, 0;m, t) = Pn(0)
∑
l

eλltΦ(l)
m

Φ
(l)
n

P eq
i

(2.22)

Moreover, using the definition of equilibrium autocorrelation we find for our observable
O

k(τ) = lim
t→∞
〈O(t)O(t+ τ)〉 (2.23)

combining it with the previous equations we find

k(τ) =
∑
n,m

OnOmP (n, 0;m, τ) =

=
∑
n,m

OnOmPn(0)
∑
l

eλlτΦ(l)
m

Φ
(l)
n

P eq
i

=

=
∑
l

eλlτ
∑
n

OnΦ(l)
n

∑
m

OmΦ(l)
m =

∑
l=0

eλlτ
[∑

n

OnΦ(l)
n

]2
where we exploit the stationary of our stochastic process and the fact that at the equilib-
rium Pi(0) = P eq

i . Finally using the fact that our observable has zero equilibrium mean
we find the desired autocorrelation function formula

k(τ) =
∑
λ 6=0

eλτ
[
~n · ~Φλ

]2
(2.24)

Notably, as can be seen it doesn’t depend on the initial system configuration.
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2.4 The Chemical Master Equation
A common approach to modeling biological systems is to find the Master Equation
describing the chemical system and then solving the latter. Since the size of the Chemical
Master Equation’s matrix grows exponentially with the number of species, even if one
applies a bound to the total number of particles solving the Master Equation is usually
numerically very expensive, therefore this task is often accomplished by mean of Gillespie
stochastic simulation algorithms (SSA) or other kinds of approximations [2].

Before choosing the right numerical approach to the current problem one needs to
translate the chain of chemical equations in a Master Equation written as a W matrix.
Let’s start considering a set of M chemical equations concerning N chemical species

a1kS1 + · · ·+ aNkSN
βk−→ b1kS1 + · · ·+ bNkSN for k = 1, . . . ,M (2.25)

where a and b are the stechiometric coefficients2 and the βk are the reaction rates.
Therefore one can define the state space in the number of particle basis, as

~n = (n1, . . . , nN) (2.26)

Of course it will be a set of N time dependent functions.
To build the W matrix one need to define the propensity function αk(~n(t)) of the k

reaction so that αk(~n(t))dt is the probability of the reaction to occur in the time interval
[t, t+ dt]. Therefore applying the (2.13) one finds

dP (~n, t)

dt
=
∑
k

[
αk(~n

′
k)P (~n′k, t)− αk(~n)P (~n, t)

]
(2.27)

where ~n′k = (n1 + b1k − a1k, . . . , nN + bNk − aNk) is the updated state.
The last step needed is to enumerate the state space. Considering a finite state space

one can order all the states by an arbitrary index such as {~ni} is the state space. This
procedure leads to the probability function for the state i as Pi(t) = P (~ni, t). Recalling
the meaning of the W matrix elements one finds

Wij =

{
−
∑

k αk(~nj) for i = j

αk(~nj) for ~nj = ~n′i
(2.28)

2For reactions with chemical species degradation or creation some of the stechiometric coefficients
can be zero.
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As a final recap we describe the operative steps to be performed when modeling a
complex chemical (biological) system via the Master Equation approach:

• Statement of the physical problem:
Identification of the physical variables (often chemical species).

• Enumeration of the state space:
The state spaces can be classified as finite / infinite and discrete / continuous.
Often in the framework of the Chemical Master Equation one approximates the
state space as finite and discrete for the sake of computational manageability.

• Construction of the W matrix elements using the (2.28).

• Resolution of the Master Equation via analytical or approximate algorithms.
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Chapter 3

A brief introduction to Bayesian
inference

3.1 Bayesian workflow
Bayesian methods involve inference using probability models for quantities we observe
(data) and quantities we want to know (parameters). In this framework both observable
variables and parameters are random variables, therefore the main goal is to find the
correct probability distribution for each of the parameters rather than finding a point
estimate of them. Every bayesian data analysis process involves three main steps:

• Modeling:
The first step concerns the detection of a joint probability distribution for all the
observable and unobservable variables. It is n this phase that usually both the
likelihood and the priors are defined.

• Conditioning:
The second step is to condition the above model on the observed data. More
explicitly, it involves finding the correct posterior density distribution defined as
the conditional probability distribution of the unobserved variables (our parameters
of interest) given the observed variables (the data).
The main drawback of using these methods is that for real world problems one can’t
gain access to the posterior analytically, however it can be done approximately us-
ing Markov Chain Monte Carlo methods such Metropolis algorithm, Gibbs sampler
or Hamiltonian Monte Carlo methods.

• Testing:
After fitting the model one needs to evaluate it and see if the conclusions are
reasonable. It is done usually using testing techniques and judgement of the results
given the experimental context.
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We use a bayesian probabilistic approach mainly because it helps an intuitive in-
terpretation of the results. In fact in contrast with a frequentist confidence interval, a
bayesian probability interval (usually called Highest Density Interval (HDI) or Highest
Posterior Density (HPD)) for an unknown parameter can be directly thinked as having
an high probability of containing the actual parameter value. In fact the Highest Den-
sity Interval is defined as the interval that covers the most of the distribution (usually
95% or 50%) with the property that the points inside the HDI are more credible than
those outside. As a further motivation, the bayesian approach allows great flexibility in
building the probabilistic model.

3.2 Building of the probabilistic model
In order to make statements on the unknown parameters one need to provide a joint
probability distribution for both the parameters (generally indicated as ~θ) and the data
~y. The joint probability density can be divided as

p(~θ, ~y) = p(~y|~θ)p(~θ) (3.1)

where the first factor is the likelihood and the second one is the prior distribution . Thus
using the Bayes rule one finds

p(~θ|~y) =
p(~y, ~θ)p(~θ)

p(~y)
(3.2)

where the denominator in the above equation is often called prior predictive distribution.
Therefore choosing the prior distribution encoding the prior knowledge for our pa-

rameters and the likelihood one can find the posterior distribution simply applying the
Bayes rule. As stated before it is mostly done with computational algorithms as various
implementations of the MCMC methods.

There are several computational enviroments to build a bayesian inference model.
The most famous are Stan, Jags and PyMC3. In the present the latter is used. Aside
from differences between them, they all work in two steps: the model definition described
above and the sampling.

3.3 Regression in a bayesian framework
In this section we describe a toy model of a simple linear regression model in a bayesian
framework in order to lead the way to the actual model described in the next chapters.

Often the data are divided in covariates ~x and variates ~y. The covariates are usually
known very well, while the variates aren’t. The goal is hence figuring out the function
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that models our variates as a function of the covariates. We usually assume that our ~x
doesn’t depend on any parameter. Therefore

p(~x, ~y|~θ) = p(~y|~θ)p(~x) (3.3)

where the last term p(~x) is just a normalization constant. Now we introduce a determin-
istic relationship f as

p(~x, ~y|~θ) = p(~y|f(x, ~θ1), ~θ2)p(~x) (3.4)

so that some subset ~θ1 of the parameters depends on the covariates, but some other ~θ2
doesn’t. In the case of a simple linear regression model

p(x, y|α, β, σ) = N (y|αx+ β, σ)p(x) (3.5)

Here α and β depend on the covariates but σ doesn’t (homoscedastic noise).
Hence if we assume the data as normally distributed with f deterministic (and para-

metric) function as mean and σ as standard deviation, we can compute the posterior
density function using the (3.2) (of course after defining the prior distribution for each
parameter) and eventually find the posterior marginal density for the parameters of the
function f .

3.4 MCMC algorithms for high dimensional parame-
ter spaces and continuous random variables: the
Hamiltonian Monte Carlo Methods

3.4.1 Computation of expectations

The ultimate goal of computational statistics is to evaluate expectation values with re-
spect to some probability distribution. Let’s considering ~x εS where S is the sample
space and ~x a vector of real numbers. Therefore knowing the probability density distri-
bution p(~x) one can find the expectation value of some f as an integral

Ep[f ] =

∫
d~xp(~x)f(~x) (3.6)

Since almost never it is possible to solve this integral analytically one must approxi-
mate it with numerical methods. Since their accuracy is limited we need to find a way
to avoid the region of the space with negligible contribution. The simplest answer is to
reduce our summation over a set where the integrand is big. Therefore one can choose
the so called "typical set" as the region where the product of the probability density
function and our function f is big enough. It will be so in the region around the mode
of our probability density p.

11



However this argument fails where the dimension of the space grows enough. The
reason is that each actual infinitesimal contribution of the integral is

d~xp(~x)f(~x) (3.7)

therefore one need to take into account the region of the space d~x over that contribution
is computed. In fact it can easily proven that for high dimensional spaces the volume
inside any neighbourhood is far lesser than the volume around it, hence the typical set
won’t be centered anymore near the mode, but it will be spreaded along the tails of the
probability density function.

3.4.2 Markov Chain Monte Carlo methods

One of the most generic and useful methods to find the typical set is the Markov Chain
Monte Carlo method. It exploits the properties of Markov chains in order to explore the
typical set [7]. Given the condition that the Markov transition probability preserves the
target distribution p, then at any point in the space the Markov transition will be greater
towards the typical set. Therefore if we sample a sufficient large amount of points of the
Markov chain, they will become a quantification of the typical set.

Given the sampled set
{
x1, . . . , xN

}
one can estimate expectations averaging the

function f

f̂N =
1

N

N∑
i

f(xi) (3.8)

with the asymptotic behaviour
lim
N→∞

f̂N = Ep[f ] (3.9)

Of course there isn’t any way to exploit this asymptotic behaviour directly, so one need to
understand how the Markov Chain acts after a finite exploration time. There are many
ways to check how well a Markov Chain Monte Carlo is behaving, such as computing
the Markov Chain Monte Carlo Standard Error (MCMCSE) or the Effective Sample Size
(ESS) [7].

In the ideal behaviour the Markov chain reaches the typical set after a warmup time
and after that it remains there exploring better and better that region. The warmup
time is particularly important since it it is needed to remove the effects related to the
Markov Chain starting point. However if the typical set isn’t compatible with the Markov
transition, which happens when the typical set has some geometrical patologies, then the
Markov chain fails to explore properly the typical set leading to biased estimations.

Now we briefly discuss the Metropolis algorithm. It is basically a random walk with an
acceptance-rejection rule ensuring convergence to the target distribution. The algorithm
proceeds with the following steps:
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• Initialization:
Draw a starting point θ0 with p(θ0|x) > 0.

• Proposal:
Sample a proposal θ∗ from a proposal distribution Jt(θ ∗ |θt−1). For the Metropolis
algorithm it must be symmetric in θ, while for the Metropolis-Hastings algorithm
this requirement is no longer mandatory.

• Calculation:
Calculate the ratio r. For the Metropolis algorithm it is defined as

r =
p(θ∗|x)

p(θt−1|x)
(3.10)

while for the Metropolis-Hastings algorithm, in order to correct for the asymmetry
of J , it is defined as

r =

p(θ∗|x)
Jt(θ∗|θt−1)

p(θt−1|x)
Jt(θt−1|θ∗)

(3.11)

• Jump:
Set the new point of the chain to

θt =

{
θ∗ with probabilitymin(r, 1)

θt−1 otherwise
(3.12)

Note that even if the jump is not accepted it counts as an iteration of the algorithm.
After the jump return to the first step with θ0 = θt or stop the algorithm.

3.4.3 Hamiltonian Monte Carlo

The usual Random Walk MCMC methods such as the Metropolis-Hastings algorithm
don’t work very well in high dimensional spaces. In fact tipically in these situations the
exploration will be extremely slow since for a lot of directions in the space the proposal
will lead the chain far outside the typical set and will hence be rejected. This effect
is even stronger where there are correlations in the likelihood’s variables, as it often
happens in hierarchical models.

In order to solve this issue information about the geometry of the typical set need to
be exploited. With a continuous sample space one way to access the information about
the geometry is to find a vector field aligned with the typical set. Using this vector field
the algorithm can therefore follow the directions and sample the typical set much faster.

To build the vector field the gradient of the target probability can be used, but this
leads the chain towards the mode of the distribution and away from the typical set. In
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order to constrain the chain in the typical set one need to find a way to twist the vector
field. To do so the notion of conservative dynamics comes in handy. The main idea is
to expand the sample space in a phase space, introducing a set of conjugate momentum
parameters ~v.

Hence one defines a canonical distribution

p(~x,~v) = p(~v|~x)p(~x) (3.13)

Since the momentum ~v are built to be conjugate to the ~x therefore the dynamics induced
by the invariant Hamiltonian

H(~x,~v) = − ln p(~x,~v) (3.14)

will conserve the volumes in the phase space. It means that the even if the gradient of
the probability density leads the dynamics towards the mode, the Hamiltonian structure
will constrain the motion inside the typical set.

Using the analogy with physical systems

H(xi, vi) = − ln p(vi|xi)− ln p(xi) (3.15)
= K(vi, xi) + V (xi) (3.16)

where the first term is analogous to a kinetic energy and the latter is a potential energy.
Writing the Hamilton Equations{

dxi
dt

= ∂H
∂vi

= ∂K
∂vi

dvi
dt

= − ∂H
∂xi

= −∂K
∂xi
− ∂V

∂xi

(3.17)

one finds exactly the vector field needed to build Markov chains that can explore
efficiently the typical set. Of course the trajectories generated by the vector fields need
to be projected back to the coordinate space, namely the parameter space.
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Chapter 4

The Master Equation toy model

4.1 Statement of the problem
Our purpose is to analyze an analytical solvable model using the Chemical Master Equa-
tion approach. Since our final purpose is to analyze the oscillations in fluctuations in
the biological system described above, we need to build a model whose W matrix ex-
hibits complex eigenvalues. We know that a system with only two chemical species will
have only real eigenvalues. In fact in this case the related Master Equation satisfies the
Detailed Balance Condition, namely

P eq
n Wnm = P eq

mWmn (4.1)

Moreover if this condition is met it can be proven [1] that the W matrix can be put in a
symmetric form with same eigenvalues spectrum. Since a real symmetric matrix has all
real eigenvalues, the W matrix shall also have only real eigenvalues. Hence the simplest
toy model with complex eigenvalues one can think of is a closed and isolated system with
three chemical species and one particle as in Figure 4.1a.

In this model we consider only single particle one step1 transformations of the kind
of A↔ B. As a further simplification we consider all the clockwise reaction rates (as in
the graph of Figure 4.1) as equal to β and all the anti-clockwise reaction rates as equal
to 1.

Once defined the structure of the state space this model is extended to a M species
and N particles model. Furthermore we expect the intensity of the oscillations to be
function of the rate β, therefore we perform the diagonalization of the W matrix via
symbolic algebra, accomplished using the Python package Sympy.

The final task is to simulate the system using the Gillespie SSA algorithm and to
use the output data to feed the bayesian model in order to recover the eigenvalue’s

1We forbid simultaneous transformations of two or more particles. With this approximation our
model become a one step process.
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distribution and to analyze the matching of the analytical eigenvalues with the inferred
ones.

A

B

C

β β

β

1

1

1

(a) Three species

X1

X2

Xi

XM

β

β

1

1

(b) M species

Figure 4.1: Reaction graphs

4.2 Identification and enumeration of the state space
Let’s start with the case of three species A, B and C as seen in Figure 4.1a analyzing
the number of particle vector written as

~n(t) =
(
nA(t), nB(t), nC(t)

)
(4.2)

Since our system is closed then ~n must satisfy the constraint on the total number of
particles ∀t, explicitly ∑

i={A,B,C}

ni(t) = N ∀t (4.3)

In our tridimensional space (it is N3) this is nothing else than a 2-simplex. Hence from
this constrain and the discreteness of state space each point in it is connected at most
with six other points. This imply that in the W matrix, no matter how big are N and
M , each row shall have at most 7 non zero components.

Now if we let be M > 3 the space become NM and our hypersurface where all the
accessible states lie become a (M-1)-simplex defined by

M∑
i=1

ni(t) = N ∀t (4.4)

The next step concerns the identification of the probability space. As outlined in
Chapter 1 if the state space is a finite set of Y elements then the probability space is a
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Y -dimensional Hilbert space and W is a Y xY matrix. With a procedure that resembles
that used in the Quantum Mechanics to build the Fock space we write

(n1, . . . , nM) −→ |n1, . . . , nM〉 (4.5)
|n1, . . . , nM〉 −→ (0, . . . , 1, . . . , 0) (4.6)

with the position of the 1 depends on the enumeration of the state space, where the
actual ordering of the enumeration isn’t crucial.

Note that the right side of (4.6) is a Y-dimensional vector and resembles the proba-
bility of the sure event of being in the state (n1, . . . , nM).

In order to make this step clearer let’s set up the procedure for the N = 2, M = 3
case. We have an N3 state space with the 2-simplex defined by the constrain

nA + nB + nC = 2

Thus the total number of elements in the state set is 6. Using the correspondence (4.6)
with the probability space one finds

P (2, 0, 0) −→ (1, 0, 0, 0, 0, 0)

P (0, 2, 0) −→ (0, 1, 0, 0, 0, 0)

P (0, 0, 2) −→ (0, 0, 1, 0, 0, 0)

P (1, 1, 0) −→ (0, 0, 0, 1, 0, 0)

P (0, 1, 1) −→ (0, 0, 0, 0, 1, 0)

P (1, 0, 1) −→ (0, 0, 0, 0, 0, 1)

Keeping this correspondence in mind one can easily build the W matrix translating
the reaction graph 4.1a and recalling the (2.28), obtaining

Once obtained the W matrix elements, the next step is to diagonalize it and to find
the eigenvalue spectrum.
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4.3 Diagonalization of the W matrix and its eigenval-
ues spectrum

As said in the section 5.1 we expect that the intensity of the oscillation modes in (2.18)
is dependent on the reaction rate β, therefore we would try to find an analytical form of
the solution explicitly dependent to this parameter. In order to accomplish it we need
to diagonalize the W matrix via symbolic algebra.

Since due to the Abel-Ruffini Theorem there isn’t a way to solve analytically a general
equation of order N > 4 we need to find a walkaround for this problem. We first calculate
the eigenvectors of the W for different values of the parameter β via numerical methods.
We show in Fig. 4.2 the eigenvector matrices for two different values of β for the case of
one particle and three species (although the following consideration has been validated
for each value of N and M considered).

At first glance they seem to be different, but they are actually related by a set of row
permutations. Since each element in the group of permutations is a similarity transfor-
mation, therefore the Eq. 4.7 is invariant under such a transformation. Thus as expected,
the eigenvector’s set doesn’t depend on the parameter β. Hence we can compute it nu-
merically and then using the basis change matrix built with those eigenvectors we can
diagonalize the W matrix directly using the formula

D = O−1WO (4.7)

where the columns of O are the eigenvector’s basis elements and D is the diagonal matrix
with the eigenvalues of W on the main diagonal.

Finally using the (2.24) we find the analytical form of the autocorrelation function.

Eigenvector matrices for one particle and three species

(a) Eigenvector matrix for β = 10 (b) Eigenvector matrix for β = 25

Figure 4.2: Eigenvector matrices for different values of β. They differ for a set of rows’
permutations.

4.4 Analysis of the analytical results

4.4.1 Eigenvalue spectrum

The distribution of the eigenvalues over the complex plane exhibits some interesting
properties:
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Distribution of the eigenvalue spectrum over the complex plane
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(a) Case with 3 particles and 3 species.
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(b) Case with 1 particle and 15 species.
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(d) Case with 1 particle and 15 species.

Figure 4.3: Distribution of the eigenvalue spectrum over the complex plane for different
configurations of the system.

• Stability of the geometric configuration under change of β:
In the 1 particle case the eigenvalues distribute over the vertices of a polygon with
M edges (Figure 4.3a and 4.3b). Increasing the value of β the modulus of the
eigenvalues increases yet leaving unaltered the polygonal structure.

• Stability of the geometric configuration under change of the number of particles:
Adding particles multiply the range of the eigenvalue spectrum by N , still leav-
ing the same geometric configuration, but increasing the number of particles the
eigenvalues start filling the area inside the polygon (Figure 4.3c and 4.3d).

In theN � 1 andM >> 1 limits we expect then to find all the eigenvalues distributed
in an approximate circular disc. This congecture first leads to the notion of Geršgorin
circle.
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Eigenvalue spectrum inside the Geršgorin circle.
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(b) Case with 3 particle and 5 states.

Figure 4.4: Distribution of the eigenvalue spectrum inside the Geršgorin circle.

Definition 2. The curve in the complex plane defined by{
z εC : |z −Wii| ≤ ri(W)

}
(4.8)

ri(W) =
∑
j

Wij for i 6= j (4.9)

is called Geršgorin circle, where i is the row index of the matrix and ri is called ith

Geršgorin radius.

By the Geršgorin Theorems [3] one knows that all the eigenvalue spectrum lies inside
the union of all the Geršgorin circles.

The properties on the rows of theW matrix make all the circles collapse onto one with
radius r = −W00 and center c = (W00, 0) on the real line, as in Figure 4.4. Note that
even in the case of multiple particles (Fig. 4.4b) the eigenvalues with greater imaginary
part lie near the Geršgorin circle.

Studying the one particle configuration and dividing the Geršgorin circle in M sec-
tions, therefore approximating the actual eigenvalues, we find that the relative differences
between the real parts of the analytical and approximate eigenvalues are zeros, while the
relative differences between the imaginary parts are all equal (and dependent on β). This
is an hint of a distribution of the eigenvalues on an ellipse rather than on a circle.

Finally we find that the correct ellipse equation is

E =
{
z εC, z = x+ iy

∣∣(x−W00)
2

W2
00

+
y2

τ 2
= 1
}

(4.10)

τ = W01W10 −N (4.11)
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Eigenvalue spectrum onto the elliptical curve.
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Figure 4.5: Distribution of the eigenvalue spectrum inside the ellipse.

where N is as usual the total number of particles and τ is related to the autocorrelation
coefficient in the Girko Elliptic Law [4]. Since this theorem holds for an ensemble of ran-
dom matrices, we find this experimental elliptical law considering our matrix as element
of an ensemble of identical W matrices. In this manner the correlation needed to find
the ellipse 〈W01W10〉 becomes trivially the product of the elements W01 and W10.

Using this ellipse equation we find (Fig. 4.5) that the eigenvalue distribution matches
the ellipse for each configuration of number of speciesM for N = 1 (Fig. 4.5a). As stated
above in the N > 1 case it is still true that the eigenvalues on the vertices of the bigger
polygon follow the same elliptical equation (Fig. 4.5b).
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Figure 4.6: Ratio of imaginary and real part of each eigenvalue as a function of beta.

4.4.2 Autocorrelation oscillations

We know that since each term of the Master Equation solution (2.18) and therefore of
the autocorrelation is of the form

eRe(λi)t cos(Im(λi)t) (4.12)

we need the imaginary part of the ith eigenvalue (the angular velocity) to be greater2 of
the real part of it (the decay rate) for the oscillations to be visible before getting sup-
pressed by the exponential term. In Figure 4.6 we show the ratio between the imaginary
part and the real part of eigenvalues as a function of the parameter β.

In the first case of 3 particles and 3 species (Figure 4.6a) the ratio is always lesser
than one even if growing with β, while in the case of 1 particle and 15 species most of
the eigenvalues stay below the ratio of one, but there are few of them that go well above
the ratio of one.

Both of the situations graphed in Figure 4.6 share the fact that the ratio is saturated
around the value of β = 20, thus we shall use that value in order to obtain the most visible
oscillations in the autocorrelation. Furthermore, analyzing cases with same number of
species and different number of particles we find that the maximal ratios are common to
all these cases (they don’t depend on the number of particles).

Using the (2.24) with the eigenvalues and eigenvectors found solving the Master
Equation we build the autocorrelation function as a parametric function of β. Exploiting
the eigenvalue distribution we expect the eigenvalues on the ellipse to be responsible for
the major oscillating modes, hence we can restrict ourself to the one particle case.

As seen in Figure 4.7 and stated above the autocorrelation function is oscillating
when β is large enough, therefore we use a value of β = 20 in the SSA simulations.

2Since the real part of the eigenvalues is negative and the imaginary part will come in conjugate pairs
due to the reality of the W matrix both terms shall be taken in absolute value.
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Figure 4.7: Autocorrelation of the analytical solution of the system with 1 particle and
15 species.

4.5 Simulation of the system
We simulate our system using the simplest SSA algorithm: the Gillespie algorithm [6].
The Gillespie algorithm, as each SSA, doesn’t solve numerically the Chemical Master
Equation, since this would mean finding the conditional probability P ( ~X| ~X0). Con-
versely, it generates directly single trajectories ~X(t) (they are realizations of the stochas-
tic process defined by ~X).

To accomplish that one defines a new probability function p(τ, j|~x, t) as the proba-
bility (given ~x = ~X(t)) that a reaction occurs in the time interval

[
t+ τ, t+ τ + dτ

]
and

that it is the jth reaction.
Given the definition of propensities as for the CME (2.27) one finds that

p(τ, j|~x, t) = αj(~x)e−α0(~x)τ (4.13)

α0(~x) =
∑
i

αi(~x) (4.14)

where the summation is over all the propensities. This implies that τ is a random
variable exponentially distributed, while j is an integer independent random variable
with probability αj(~x)

α0(~x)
.

In the present we use the so called direct method; explicitly:

τ =
1

α0(~x)
ln
( 1

r1

)
(4.15)

j = min
{
j′|

j′∑
i=1

αi(~x) > r2α0(~x)
}

(4.16)
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Figure 4.8: Autocorrelation of the SSA iterations of the system with 1 particle and 15
species. The 50 blue solid lines are the autocorrelation functions for each SSA simulation.
The orange solid line represents their mean.

with r1 and r2 drawed from an uniform distribution.
The SSA algorithm steps are thus:

• Initialization
Set t = t0 and ~x = ~x0.

• Evaluation
Evaluate all the possible αj(~x).

• Generation
Generate r1 and r2 and therefore τ and j.

• Reaction
Simulate the occurred reaction updating t and ~x.

• Storage
Record (~x, t) and return to the Initialization step (or end the algorithm with the
desired condition3)

We end the present chapter showing the results of the Gillespie algorithm used to
find the right regression Bayesian model for time series’ autocorrelations of stochastic
processes.

In Figure 4.8 there are the autocorrelations from each iteration of the SSA, that
are the input data of the bayesian model. Note that the mean of those autocorrelation
resembles the analytical solution. Since there isn’t any way to perform the Gillespie
algorithm without choosing a value for the parameter β we put it to β = 20.

3Usually a time limit or some other conditions on the reaching of an absorbing state.
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Chapter 5

Analysis of the oscillations in
autocorrelation with a Bayesian
regression model

We first start analyzing our regression problem. We have prior information on the form
of the regression function here called f ; explicitly, we know that it should have the form
of a finite superposition of complex exponentials:

fi = wie
(Re(λi)+i Im(λi))t

W can therefore exploit the information about the reality of the W. Since every real
valued non symmetric matrix has its eigenvalues in complex conjugate pairs, we can
rewrite the complex exponential functions as

fi(t) = wie
Re(λi)t cos(Im(λi)t)

Furthermore we assume that our data is distributed as a Normal distribution

y(t) ∼ N
(
µ =

∑
i

fi(t), σ = s
)

(5.1)

Now we need to define prior distribution over all the parameter in the model. Since we
know that both s and wi are positive and possibly below the value of 1 we set for them
the following prior distributions:

wi ∼ InverseGamma(µ = 0.5, σ = 3) (5.2)
s ∼ InverseGamma(µ = 0.5, σ = 3) (5.3)

where we assume homoscedastic noise. We choose in the present an Inverse Gamma
distribution (Fig. 5.2) following the considerations in [8] because we don’t want the
weights and the noise s to tend toward zero.
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Figure 5.1: Graph of the model used to fit the autocorrelation of the toy model with 1
particle and 15 species.

Moreover, watching Fig. 4.8 we expect the decay rates in the range
[
0, 50

]
and

the oscillation angular velocities to be in the range
[
0, 20

]
. Hence we put as prior

distributions

Re(λi) ≡ l_expi ∼ N (µ = 20, σ = 10) (5.4)
Im(λi) ≡ l_cosi ∼ N (µ = 10, σ = 5) (5.5)

In order to complete our model we need to get rid of the multimodality induced by
the fact that all the components fi are modeled in the same way. In fact our posterior

Prior distribution for the weights wi and for s

0 5 10 15 20 25

0.051 1.2

94% HPD

mean=0.51

w

Figure 5.2: Inverse gamma distribution with µ = 0.5 and σ = 3. It is shown the mean
value and the 94% Highest Density Interval.
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Figure 5.3: Plot of the autocorrelation samples drawn from the posterior distribution in
the N = 1, M = 15, β = 20 configuration.

shall be the same under the exchange of a pair (l_cosi, l_expi) ↔ (l_cosj, l_expj). A
solution to this problem is using an ordering technique to break this symmetry. The
quicker way to do it in PyMC3 is using a Potential, that allows to add an arbitrary term
to the log probability function. For our purposes we build it in a way that penalizes any
kind of different order of the parameters from the proper one. Let’s note that in order
to avoid bad initializations of the Markov Chain we need to inform our model that it
should begin the chain with some ordered initial values.

The last information the model needs is the number of components fi. Unfortunately
there isn’t any easy way to deal with this kind of problem, even if a set of different solu-
tions has been proposed in [10], [11], [12] . Anyway, in our model something remarkable
happens when the number of components isn’t right. When the algorithm runs if there
are too many components two different things can happen. In a first scenario, two com-
ponents pick the same values for the parameters, with half weight, but we dealt with this
possibility through the ordering potential. Another thing that can happen is that the
weight of a component tends towards zero. In this case the variance of the distribution
of such a weight tends to zero too, causing a bad fit by the NUTS algorithm, signaled
by a max_treedepth warning by PyMC3. Therefore in the present we run the Markov
chain with a different number of components fi, starting with ten and hence reducing
the components until the right model is found.

In Figure 5.4 there are the results of a NUTS sampling with four different chains
that converge quite fast. In Table 5.1 there are the results of the fit for the relevant
parameters, with the analytical values attached for comparison. It can be seen that
our model fits quite good the smallest angular velocities (the largest periods) and the
related decay rates, that is exactly what we are looking for in order to fit the biological
data. The distribution of the largest pair of parameters (l_exp, l_cos) is more spreaded
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mean analytical sd hpd_3% hpd_97% r_hat
l_exp[0] 1.9 1.82 0.17 1.57 2.23 1.0
l_exp[1] 8.14 6.95 1.72 5.12 11.42 1.0
l_exp[2] 30.7 31.5 3.41 24.98 37.2 1.0

l_cos[0] 7.83 7.73 0.1 7.65 8.01 1.0
l_cos[1] 14.33 14.12 0.84 12.74 15.91 1.0
l_cos[2] 14.61 16.45 2.1 10.34 18.13 1.0

Table 5.1: Results of the NUTS run with 3 exponential components for the relevant vari-
ables. It is shown the posterior distribution mean and the standard deviation, together
with 94% Highest Posterior Density intervals. As can be seen the real (analytical) values
are included in those intervals. The r̂ statistics [9] is near 1 when the chains converged.

because it tries to incorporate different components at small lag time of the analytical
autocorrelation. To probe the flexibility of our model it has been checked for a variety
of configurations (M = (10, 15, 20) and β = (10, 20)).
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Traceplot of the NUTS run
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Figure 5.4: Traceplot of the relevant parameters from a NUTS run with 4 independent
chains and three exponential components.
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Chapter 6

Analysis of the fluctuations in NF-kB
activity in colorectal cancer cells

6.1 Introduction

6.1.1 NF-kB signaling system

Aim of the project is the analysis of the oscillations of NF-kB activity in metastatic
colorectal cancer cells. The NF-kB protein complex is a genes regulator that controls cell
proliferation, cell survival and protection from apoptosis. Therefore this protein complex
can be considered as a pleiotropic mediator of gene expression control. The NF-kB is
composed at a molecular level by two subunits. The former (p50) is responsible for DNA
binding, while the latter (p65) lacks DNA binding activity and affects the susceptibility
of the protein complex to his inhibitory proteins, namely IkBα and IkBβ.

In absence of stimuli the NF-kB is retained in the cytoplasm by IkB inhibitor proteins
that bound the complex and inactivate his transcription factor. As can be seen in Fig.
6.1 it is a cytokine activated protein kinase complex, namely IKK, that is responsible
for the dissociation of NF-kB and IkB by phosphorylation of the latter, thus leading
to degradation of the inhibitor protein via the proteasome by an ubiquination process.
Once the inhibitor is detatched from the NF-kB it can subsequently enter the nucleus
where it can change the expression of specific genes, thus leading to some physiological
response.

There are two NF-kB signaling pathways regulated by two multiprotein IKK com-
plexes. In the so called canonical NF-kB signaling pathway IKKβ alone is sufficient for
the phosphorylation of the protein inhibitor IkBα. This pathway is mainly associated
with inflammatory response. Conversely, in the non canonical pathway it is the IKKα
complex that activates the NF-kB. An important factor in the analysis of the NF-kB reg-
ulatory system is that one of the earliest NF-kB responsive promoters is its own inhibitor
protein, namely the IkBα. This induces a negative feedback producing a propensity for
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Figure 6.1: Molecular pathway of activation of NF-kB by EGF.
(Shostak et al. "EGFR and NF-kB : partners in cancer", 2015)

oscillations in the NF-kB activity [13].
NF-kB activity enhances angiogenesis, cell proliferation and promotes metastasis and

cell invasion. Moreover, there is evidence that shows correlation between EGFR signal-
ing and NF-kB activity in solid tumours like colorectal cancer. Indeed, the Epidermal
Growth Factor protein binds to his receptor EGFR (Fig. 6.1) whose signal leads to
NF-kB activation through the proteasome mediated degradation of the IkB inhibitor.

6.1.2 Cell cultures configuration and luciferase assay

There have been studied two colorectal cancer cell lines, one sensitive and one resistant
to the Cetuximab treatment. Notably, the resistant cells were derived from the sensitive
ones, by continuous exposure to an anticancer drug (Cetuximab). For the experimental
design, cell were treated with a combination of stimuli, including Cetuximab, IL1A, IL1B
alone and in combination. Thus, these two model systems share the same genetic back-
ground. The IL1A and IL1B interleukins are important mediators of the inflammatory
response and are involved in a variety of cell activities. Moreover, they are the most
important pro-inflammatory cytokines in tumoral cells’ environment, thus they have a
role in the enhancement of the NF-kB activity.

In order to quantify the oscillations in the NF-kB activity the luciferase assay has
been used. Every 20 minutes fluorescent signal values of luciferase have been recorded
for each cell colony, for a total of 216 measurements for well, in a time interval of 72
hours. Moreover the luciferase values have been preprocessed by subtracting the median
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Figure 6.2: Luciferasi amplitude in the Full Medium experiment for each of the 6 wells
(cell colonies)

value of the background signal for each luciferasi detection cycle.
There are six different treatments for each cell line (Parental cells and Cetuximab

resistant cells (CXR)):

• Full medium with no treatment (FM)

• Treatment with IL1α (FM + IL1A)

• Treatment with IL1β (FM + IL1B)

• Treatment with Cetuximab (FM + CTX)

• Treatment with Cetuximab and IL1α (FM + CTX + IL1A)

• Treatment with Cetuximab and IL1β (FM + CTX + IL1B)

For each treatment there are 6 wells, which are completely pooled in the analysis, per-
formed separately for each of the 12 different treatments.

6.2 Preprocessing operations on the raw data
During the experiment time the luciferasi amplitude for each well increases constantly
due to cell proliferation, as shown in Fig. 6.2. Since for this analysis we are only
interested in the fluctuations of NF-kB activity, the first step is a detrending operation
in order to extract the fluctuating component of the signal. The technique chosen to
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Figure 6.3: Luciferasi amplitude after the subtraction of the LOWESS smoothing curve
for the Full Medium experiment for each of the 6 cell colonies

accomplish this is the LOWESS, a kind of nonlinear regression technique particularly
useful for our purposes.

In parametric nonlinear regression models one defines

y = f(~x, ~θ) + ε (6.1)

where f is a parametric function of the parameters ~θ specified a priori and ε is usually
specified as distributed according to a Normal distribution

ε ∼ N (0, σ2) (6.2)

The general nonparametric regression model in defined in the same way, the only differ-
ence being that the function f isn’t dependent on any parameter and it is left unspecified1.

Let’s consider now the LOcally WEighted Scatterplot Smoothing (LOWESS) for the
simple regression case (one predictor)

y = f(x) + ε (6.3)

Be x0 some x value; let’s first start performing a kth order polynomial regression

y = a0 + a1(x− x0) + · · ·+ bk(x− x0)k + e (6.4)

1In most of the nonparametric regression models f is assumed to be a smooth function.
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Moreover a weight function W is introduced in order to weight the cases according
to the distance x− x0. A commonly used W function is the tricubic weight function

W (z) =

{(
1− |z|3

)3 for |z| < 1

0 for |z| ≥ 1
(6.5)

with z = x−x0
h

, where h is the window width called smoothing parameter. Since the
predictor is conveniently centered in x0 the predicted value of y is nothing more than
ŷ0 = a0. Repeating the procedure for all the x values one finally finds the desired
smoothing regression curve. As a final remark on the robustness of this technique, one
disadvantage of this procedure is that it is quite prone to the effect of outliers. To cut
out the relevance of the outliers a robust iterative version [14] of the algorithm has been
used.

For our purposes the window width is set to h = 72/10, which means using 21 points
for each local weighted regression, and the polynomial order is set to k = 1 (linear
regression). Finally, subtracting the result of the LOWESS regression from each of the
luciferasi amplitudes we find (Example in Fig. 6.3) the oscillating component of the
luciferasi amplitude.

The last step before implementing the bayesian regression model concerns finding the
signals’ autocorrelations. The force brute computation method defines the autocorrela-
tion for the discrete time stationary signal as

kx(τ) =
∑
t

xtx
∗
t−τ (6.6)

Since this brute force algorithm has computational cost of order N2 where N is the num-
ber of data points, we exploit the Wiener-Khinchin theorem to perform the calculation.
Let’s define for a continuous time stochastic process X(t) the power spectral density as

SX(ω) =
∣∣∣Fω[X(t)

]∣∣∣2 (6.7)

and the autocorrelation function for a stationary process as

KX(τ) = E
[
X(0)X∗(τ)

]
− µ(0)µ∗(τ) (6.8)

In its simplest form, the Wiener-Khinchin theorem states that if both the power spec-
tral density of the signal and the autocorrelation function are continuous and absolutely
integrable in the Lebesgue sense, hence

SX(ω) =

∫ ∞
−∞

dτKX(τ)e−iωτ (6.9)
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Figure 6.4: Luciferasi fluctuations’ autocorrelations for the Full Medium experiment for
each of the 6 cell colonies.

Using this property of the power spectral density and the autocorrelation of being
Fourier-transform pairs one can therefore compute the autocorrelation in a more efficient
manner (computational cost of order N lnN) using two Fourier transforms2

FK(ω) = Fω
[
X(t)

]
(6.10)

S(ω) = FK(ω)F ∗K(ω) (6.11)
K(τ) = F−1τ

[
S(ω)

]
(6.12)

Using this algorithm we compute the autocorrelation for each set of different treatments
(Example in Fig. 6.4) that are the input data of our regression model.

6.3 Bayesian regression model for the luciferase auto-
correlations’ oscillations

While at first glance (Fig. 6.4) there aren’t visible oscillations in the signal’s autocorrela-
tion, we expect them to be present underneath the noise anyway, due to our information
on the biological system to which the data refer.

Therefore we build the bayesian regression model as in Chapter 5. First we run a
control version of the model without any constrain on the parameters in order to obtain
an overview of the distribution of our parameters. As opposed to the toy model analyzed
in Chapter 5, here (Fig. 6.5) there isn’t any order for the exponential rates, but rather

2We use the fast Fourier transform approximation in the actual computation.
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it happens to be on the oscillation angular velocities. Given this preliminary analysis
we modify our model to allow the decay rates to be the same and ordering the angular
velocities, moreover constraining them on an interval

[
0, 110

]
to avoid faster and faster

oscillating modes.
With these modifications we build the probabilistic model, recalling the usual consid-

erations on the number of exponential components. Since we are more interested in the
decay time and the oscillation period, the decay rate and the oscillation angular velocity
are inverted with a deterministic transformation in the model, in order to gain access to
the posteriors of the biological relevant variables directly.

6.4 Analysis of the results
The bayesian model has been used separately for each experiment to infer the parameters’
distributions. In particular, we are interested in the oscillation periods and decay times.
Moreover, in order to obtain a good quality fit of the autocorrelation data we needed
to equip our model with both large and small oscillation periods, but we are mainly
interested in the bigger ones, therefore in the following Tables 6.1 and 6.2 we show the
largest oscillation period mode for each experiment. However the interested reader can
find the complete information (Posterior plots and some other informative plots) in the
Appendix.

As can be seen the oscillation periods’ range is roughly of six hours at most. Con-
versely, the decay time interval is not as well constrained as for the oscillation periods.
This isn’t surprising, since we already knew our model worked better with the periods
than the decay parameters. About the weight parameters, it can be seen in Fig. 6.6 that
for the largest oscillation period components they don’t differ sensibly, while the weights
of the components with smaller oscillation periods depend strongly on the total number
of oscillation components, where a lower number of components leads to higher weight
values. With these considerations, we assume that the weight parameters don’t contain
quantifiables biological information in this setup.

From Fig. 6.6 it results that the oscillation periods can be divided in three classes
with different values for the oscillation periods. To the first class belong the cell colonies
with the largest oscillation period roughly between five and six hours. Furthermore for
these experiments the decay times are well defined around the value of five hours. For
the second class the largest oscillation is roughly between the values of three and four
hours. In this class the decay times for some components have distributions with longer
tails, but still the highest probability is around five hours. Finally, in the third class not
only the largest period is located between two and three hours, but the other oscillation
periods are also far closer. Moreover, for this class the decay rates are greater than those
of the other two classes mentioned before.
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Traceplot of the NUTS run for the FM cell colonies
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Figure 6.5: Traceplot results for the decay rates and the oscillation angular velocities of
the analysis of Full Medium cell colonies.
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Graphical results of the statistical analysis for the three longest oscillation
periods’ components
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Figure 6.6: Boxplots for the oscillation periods, the decay times and the components’
weights of the three modes with the largest oscillation periods.
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Analysis results for the major oscillation mode in Parental cell colonies

mean sd hpd_3% hpd_97% hpd_25% hpd_75%

FM
cos_t[0] 3.639 0.201 3.296 3.986 3.51 3.731
exp_t[0] 2.724 0.633 1.698 3.885 2.108 2.838
w[0] 0.153 0.037 0.086 0.222 0.122 0.17

FM + CTX
cos_t[0] 5.514 0.444 4.781 6.252 5.378 5.812
exp_t[0] 4.685 1.618 2.096 7.526 3.081 4.897
w[0] 0.081 0.02 0.046 0.119 0.064 0.089

FM + IL1A
cos_t[0] 4.103 0.484 3.394 5.073 3.603 4.133
exp_t[0] 2.967 0.954 1.606 4.603 2.132 3.034
w[0] 0.141 0.042 0.069 0.222 0.101 0.153

FM + CTX
+ IL1A

cos_t[0] 5.595 0.262 5.147 6.108 5.398 5.687
exp_t[0] 6.201 2.593 2.515 10.75 3.842 6.429
w[0] 0.098 0.025 0.054 0.144 0.075 0.106

FM + IL1B
cos_t[0] 3.263 0.183 2.905 3.593 3.128 3.354
exp_t[0] 3.872 1.161 1.953 5.878 2.81 4.068
w[0] 0.12 0.03 0.067 0.177 0.093 0.132

FM + CTX
+ IL1B

cos_t[0] 3.301 0.274 2.835 3.672 3.281 3.599
exp_t[0] 5.527 4.72 0.526 14.057 1.71 4.447
w[0] 0.101 0.045 0.036 0.176 0.057 0.102

Table 6.1: Results of the bayesian analysis for the major oscillation period component
for each experiment of cell colonies not resistant to Cetuximab treatment.
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Analysis results for the major oscillation mode in Cetuximab resistant cell
colonies (CXR)

mean sd hpd_3% hpd_97% hpd_25% hpd_75%

FM
cos_t[0] 3.09 1.234 2.674 3.59 2.995 3.258
exp_t[0] 2.363 1.131 0.65 4.488 1.341 2.533
w[0] 0.137 0.074 0.049 0.244 0.078 0.137

FM + CTX
cos_t[0] 4.298 0.308 3.752 4.87 4.075 4.463
exp_t[0] 2.791 0.954 1.236 4.569 1.955 3.026
w[0] 0.137 0.053 0.06 0.232 0.095 0.15

FM + IL1A
cos_t[0] 3.405 0.508 2.701 3.856 3.427 3.612
exp_t[0] 10.494 24.032 0.034 28.429 1.2 4.971
w[0] 0.105 0.064 0.031 0.208 0.046 0.097

FM + CTX
+ IL1A

cos_t[0] 1.819 0.031 1.789 1.842 1.807 1.823
exp_t[0] 33.968 43.859 0.316 104.57 7.367 22.471
w[0] 0.064 0.027 0.032 0.096 0.044 0.065

FM + IL1B
cos_t[0] 2.618 0.192 2.406 2.764 2.58 2.69
exp_t[0] 7.27 2.204 3.805 11.327 5.026 7.358
w[0] 0.078 0.018 0.045 0.113 0.061 0.085

FM + CTX
+ IL1B

cos_t[0] 2.385 0.259 2.211 2.699 2.283 2.349
exp_t[0] 9.19 5.612 3.779 16.04 5.323 8.825
w[0] 0.083 0.023 0.043 0.124 0.062 0.09

Table 6.2: Results of the bayesian analysis for the major oscillation period component
for each experiment of cell colonies resistant to Cetuximab treatment (CXR).
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Graphical results of the statistical analysis for the three longest oscillation
periods
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Figure 6.7: Boxplots for the three largest oscillation periods of each experiment. In the
left plot there are the ones with Parental cell colonies, while in the right plot there are

the Cetuximab resistant cell colonies (CXR).

We want now to further refine our analysis of the results by focusing on the oscillation
periods. We divide the results in the Cetuximab resistant group and in the Parental
group. Looking at Fig. 6.7 we notice at first that the first class (highest periods) belongs
to the Parental group, while the third class (lowest periods) belongs to the Cetuximab
resistant group. Moreover, the second class appears to be distributed between these two
groups.

First of all, the Cetuximab resistant group has lower oscillation periods for each ex-
periment respect to the Parental one. Moreover, the presence of IL1B largely reduces
the oscillation periods, both for the Parental and the Cetuximab resistant cells (green
and brown boxplots), compared to the respective without that kind of interleukin. Con-
versely, the insertion of IL1A alone (orange boxplots) doesn’t have such an evident effect,
either in the Parental group and in the CXR one.

Let’s look now at the experiment with the addition of Cetuximab. Focusing on the
Parental cells, It is rather clear that with this treatment the periods increase, except
for the case with IL1B (right plot, brown boxplot), where the effect of the Cetuximab
treatment seems to be inhibited by the Interleukin. Shifting our attention to the Ce-
tuximab resistant group, we notice that the effect of the anticancer drug is partially
suppressed, especially when combined with both kinds of Interleukine. Remarkably, the
only experiment with a visible response to the IL1A is the Full Medium of Cetuximab
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Figure 6.8: Major oscillation mode for the Parental cells autocorrelation with different
treatments.

resistant cells with Cetuximab treatment and IL1A (left plot, violet boxplot). In this
case the oscillation periods are the lowest among all the experiments.

We can further consolidate our considerations looking at Figure 6.8 and 6.9.
Figure 6.8a shows the autocorrelation component with largest oscillation period for

Parental cells without Cetuximab treatment. As it can be seen adding IL1A and IL1B
interleukin lead to a moderate increase in decay time, while as said before in the IL1B
treated colony the oscillation period decreases, while in the IL1A treated colony it in-
creases by a moderate amount.

Moreover, in Figure 6.8b there is the autocorrelation component with largest oscilla-
tion period for Parental cells with Cetuximab treatment. In this case while the FM cell
colony and the IL1A treated colony share a similar oscillation period, treating the cell
colony with IL1B leads to a significantly smaller period.

Looking at Figure 6.9 we can notice that the decay times for experiments with IL1A
and IL1B possess decay times far greater than in the Parental cell colonies. Moreover, for
the Cetuximab resistant cells without treatment with the anticancer drug (Fig. 6.9a) the
same considerations as for the analogous Parental cells can be done. Finally, although
we see an increasing oscillation period for cell colonies treated with Cetuximab, the
combination of the latter with IL1A or IL1B produces the opposite effect, namely a
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decrease in the oscillation period.
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Figure 6.9: Major oscillation mode for the Cetuximab resistant cells autocorrelation with
different treatments.
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Chapter 7

Conclusions

In the first part of this thesis we presented a singular property of the eigenvalue distri-
bution of our toy model, namely that all the eigenvalues for the one particle case (Fig.
4.5a) distribute on the ellipse defined in Equation 4.11. For the N particles’ case it is
conjectured that all the eigenvalues lie on ellipses with same center as the one defined
above with major and minor axes as some fractions of the ones in Eq. 4.11.

The results of the analysis performed on the biological data show that different stimuli
lead to different kinds of oscillations in the NF-kB activity’s autocorrelation. Moreover,
performing some other analysis of the cell colonies growth like the colony-forming assay
(Fig. ??) one can merge the insights in order to find the stimulus reaction that inhibits

Colony-forming assay assay results for Parental and Cetuximab cell colonies

Figure 7.1: Colony-forming assay of the Parental cells (left) and Cetuximab resistant
cells (right) following Cetuximab treatment. Cell were grown with or without
Cetuximab for eight days before being fixed, stained with Crystal Violet and
photographed. Quantification of the covered areas by ImageJ is provided.
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the anomalous growth. Knowing which types of oscillations of the NF-kB activity are
correlated to slower growth we can alter the biochemical pathway by other means, namely
modifying the gene expression of the IkB (the NF-kB inhibitors) proteins, hence obtaining
an oscillating cycle with the right properties.

Since it is obviously too expensive to run actual experiments for each different bi-
ological configuration of the system, some simulation techniques need to be employed
to optimize the selection of the experiments, in order to choose those with biologically
relevant outcomes. In fact, using the information of the biochemical pathway, we can
build and solve a Chemical Master Equation of the actual system. Following the same
route of the one in Chapters 4 and 5 we can possibly extract the oscillating modes to
be compared to those found with the present analysis. This could lead to new ways
to exploit the knowledge of the biological pathway in order to control the population
growth of colorectal cancer cells.
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Appendix A

Posterior distribution plots
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A.1 Full Medium experiment
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A.2 Full Medium + IL1A experiment
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A.3 Full Medium + IL1B experiment
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A.4 Full Medium + Cetuximab experiment
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A.5 Full Medium + Cetuximab + IL1A experiment
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A.6 Full Medium + Cetuximab + IL1B experiment
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A.7 Cetuximab resistant Full Medium experiment
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A.8 Cetuximab resistant Full Medium + IL1A exper-
iment
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A.9 Cetuximab resistant Full Medium + IL1B exper-
iment

5 10 15 20 25 30

3.8 11

94% HPD

mean=7.3

exp_t
0

10 20 30 40 50

4.6 21

94% HPD

mean=12

exp_t
1

10 20 30 40

4.3 18

94% HPD

mean=10

exp_t
2

10 20 30 40 50 60

3.7 12

94% HPD

mean=7.4

exp_t
3

5 10 15 20 25 30 35 40

3.3 11

94% HPD

mean=6.8

exp_t
4

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5

3.2 8.7

94% HPD

mean=5.8

exp_t
5

5 10 15 20 25 30

4.2 12

94% HPD

mean=7.8

exp_t
6

2 4 6 8 10 12 14

3.3 8.1

94% HPD

mean=5.5

exp_t
7

2 3 4 5 6 7 8 9 10

2.42.8

94% HPD

mean=2.6

cos_t
0

2.0 2.2 2.4 2.6

2 2.4

94% HPD

mean=2.1

cos_t
1

1.6 1.7 1.8 1.9 2.0 2.1

1.8 2.1

94% HPD

mean=1.8

cos_t
2

1.2 1.3 1.4 1.5 1.6 1.7 1.8

1.4 1.8

94% HPD

mean=1.6

cos_t
3

1.0 1.1 1.2 1.3 1.4

1.2 1.3

94% HPD

mean=1.3

cos_t
4

0.85 0.90 0.95 1.00 1.05 1.10

0.98 1

94% HPD

mean=1

cos_t
5

0.835 0.840 0.845 0.850 0.855 0.860

0.84 0.85

94% HPD

mean=0.85

cos_t
6

0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77

0.7 0.73

94% HPD

mean=0.72

cos_t
7

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

0.045 0.11

94% HPD

mean=0.078

w
0

0.04 0.06 0.08 0.10 0.12 0.14 0.16

0.039 0.096

94% HPD

mean=0.068

w
1

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

0.043 0.1

94% HPD

mean=0.071

w
2

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

0.04 0.1

94% HPD

mean=0.071

w
3

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

0.046 0.12

94% HPD

mean=0.085

w
4

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225

0.06 0.15

94% HPD

mean=0.1

w
5

0.05 0.10 0.15 0.20 0.25

0.09 0.19

94% HPD

mean=0.14

w
6

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225

0.063 0.15

94% HPD

mean=0.1

w
7

56



A.10 Cetuximab resistant Full Medium + Cetuximab
experiment
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A.11 Cetuximab resistant Full Medium + Cetuximab
+ IL1A
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A.12 Cetuximab resistant Full Medium + Cetuximab
+ IL1B
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Appendix B

Samples of the parameters from the
posterior distributions
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B.1 Full Medium experiment
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B.2 Full Medium + IL1A experiment
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B.3 Full Medium + IL1B experiment
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B.4 Full Medium + Cetuximab experiment
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B.5 Full Medium + Cetuximab + IL1A experiment
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B.6 Full Medium + Cetuximab + IL1B experiment
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B.7 Cetuximab resistant Full Medium experiment
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B.8 Cetuximab resistant Full Medium + IL1A exper-
iment
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B.9 Cetuximab resistant Full Medium + IL1B exper-
iment
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B.10 Cetuximab resistant Full Medium + Cetuximab
experiment
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B.11 Cetuximab resistant Full Medium + Cetuximab
+ IL1A
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B.12 Cetuximab resistant Full Medium + Cetuximab
+ IL1B
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