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Two is company, three is complexity.
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Abstract

In questa tesi si affronta il tema delle proprietà spettrali dei network. La teo-
ria dei grafi ha sviluppato metodi per studiare le proprietà spettrali di matrici
stocastiche e di adiacenza dei network basandosi su tecniche algebriche, men-
tre le applicazioni alla teoria dei sistemi complessi si basano essenzialmente
su metodi di fisica statistica. Adottiamo un approccio al problema sfruttando
i risultati della Random Matrix Theory, collegandoli ad alcune tecniche di
meccanica statistica. La RMT permette di chiarire il significato fisico della
legge di Wigner nel caso di random network nel limite termodinamico e di
calcolarne alcune correzioni. In seguito si propone un collegamento tra i risul-
tati della RMT e le tecniche del Gruppo di Rinormalizzazione per analizzare
le proprietà spettrali delle classi di network Scale-Free e Small-World. In
particolare si propone un meccanismo che potrebbe contribuire a compren-
dere il comportamento di strutture di network autosimili a basso diametro.

In this thesis we tackle the issue of spectral properties of networks intro-
duced by Complex Systems Physics. Graph theory has developed methods
to study the spectral properties of adjacency or stochastic matrices asso-
ciated to networks based on algebraic techniques, whereas the applications
to Complex Systems Theory have been essentially based on the methods of
Statistical Mechanics. We use an approach to the problem using the re-
sults of the RMT in connection with some statistical mechanics techniques.
RMT is of use in clarifying the physical meaning of Wigner law for large,
random networks, and to compute its corrections. Then, we try to build a
bridge between the sound results of RMT and Renormalisation Group meth-
ods in order to investigate the spectral properties of the Scale Free and Small
World class of networks. In particular, we propose a mechanism who could
help understanding the behaviour of self similar network structures with low
diameter.
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Introduction

Complex systems are not complicated ones. There must be more to them
than that1. In complicated systems the overall behaviour is the all-embracing
demeanor of individual agents. Complexity is a different thing [24]. A com-
plex system requires an approach that focuses on the interactions among the
agents that compose it; an interwoven nexus rather than a folded map. Find-
ing a description, if not a proper definition, for alike yet vastly heterogeneous
systems of this kind is not trivial. Wide and yet to be refined definitions are
those that refer to complex systems as “those that display emergent fea-
tures”, or “non-trivially regular systems” or even philosophically as “those
where the reductionist paradigm fails”. However none of these definitions
are complete nor, in fact, actually distinct from one another. Emergence,
strong (nonlinear) interactions and the failure of reductionist approaches are
all features that require a different approach from the ones customarily used
in almost all fields of science. In the present work we tackle some of the
issues of Complex Systems Physics by the approach of Network Science.
Complex networks have been revealed to be powerful tools to understand
and portray some of the emergence and non linear phenomena that char-
acterise complexity [38], [37]. Classic graph theory has been a cradle for
the study of networks, nonetheless the usual approach of exactly solving for
specific graph attributes lacks some of the universality features we look for
when speaking about complexity. The approach based on spectra of net-
works may reveal to be of greater generality. The need to seek for spectral
properties of network classes leads to the study of Random Matrix Theory
[3][27], which reveals to be a powerful tool to understand some key features
of the issue. Random Matrices Theory is an edge-cutting topic in contem-

1According to its etymology, complicated means “repeated folding” (cum + plecare) of
diverse parts in a single item. Conversely, complex comes from cum + plectere, meaning
the repeated weaving of the parts.
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porary mathematical research as it finds applications in data analytics [43],
financial markets modeling [2], control theory and so on. These fields are
closely related to Complex Systems Science, as they share common points
like long range dependence between agents, extreme events appearance, and
the overall need to use statistical methods. Moreover the usage of Stochastic
matrices - describing random walk dynamics over a graph - make the study
of properties of random matrices even more relevant. We will show how spec-
tral densities reflect prominent general features of graph ensembles, namely
symmetry in the spectrum, indicating a tree-like underlying structure and bi-
partiteness; bounds for the eigenvalues, setting the scales for the relaxation
time of the random walk; self-similarity, conveying the fractal structure of
certain classes of networks and so on. This analysis is complemented by the
implementation of the renormalisation group technique to the field of net-
works, showing the presence of different “phases” of networks which we try
to identify. Finally, in the framework of renormalisation group, we try to ex-
plain how some self-similar structures may also display small world features.
This last issue is of interest because it is commonly thought [40] [5] that
Complex Networks found in nature should display self similarity structures
with navigability properties that purely scale-free models seldom replicate.

A more detailed outline of the thesis is the following:

• In the first chapter we outline the issue of the dynamics of a Ran-
dom Walk on a network, which is equivalent to a Markov process. We
give examples of applications trying to emphasise the natural link with
network science;

• In the second chapter we give some methods of work in the field of
spectral distribution of random matrices, introducing random matrix
theory. Some relevant results are obtained, among them the correction
to the finite size and non zero average distribution of entries;

• In the third chapter we expose the basics of Network Science. Then
we present a section where spectra of some known graphs are given.
We also try to model the behaviour of the spectra for the ensemble of
Scale-Free networks. Finally a physical interpretation for the results of
the spectra of a random walk on a network is proposed;

• In the fourth chapter the analysis over the classes of different network
is performed with Renormalisation Group techniques. The result are
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commented highlighting the relation with the previous results and giv-
ing way to an overall picture which is finalized in the last chapter. We
also propose a way of classification of network “phases” or ensembles
according to spectral properties defining some distinctive dynamical
traits.

To speak the truth, this thesis should start with the analysis performed
in the last chapter, because it was the question “What if we applied renor-
malisation to networks?” that gave the spark that ignited everything up.
However, trying to explain the different phases behaviour needed a sound
background of both network science concepts and random matrix spectral
properties. Hence, the topics were rearranged in this order to provide for a
more linear flow of thought.
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Chapter 1

Physical Motivations

The physics of complex systems is a vast and heterogeneous topic [24]. In
this introductory chapter we give the gist of the issue in a twofold way.
First we analyse the prominent features of a random walk performed on a
network, focusing on the spectral decomposition of the stochastic matrix
that describes the walk. Then we present two (among many others) simple
applications in which we focus on how the network features are relevant to
the issue of complexity and why they are a suitable instrument to models
such systems. The first example is the spread of epidemics [20] on network
structures. We put the emphasis on the structural properties of the network
and how different topologies give rise to a different outbreak probabilities.
The second example is to show how networks are ubiquitous and how they
are an inherent feature of society [19]. We make the case of the “networking”
issue when it comes to employment.

1.1 Elements of random walk dynamics

A random walk on a network may be easily understood as a particle, or
a set of non interacting1 particles, moving from a node of the network to
another one, the probability of the transition depending on how the network
is connected. Needless to say that this portrays a Markov process, viz. a
so-called “process with no memory”. If we indicate with the probability of
being in the state i at time t with pi(t), then the evolution equation reads

1By non interacting we mean also that the presence of a particle on a certain node does
not alter the chances of the others to fall in that very node.
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pi(t+ 1) =
∑
j

πijpj(t)

where πij were introduced, that is the probability of passing from node j
to node i. There are some constraints for πij, namely∑

i

πij = 1 and 0 ≤ πij ≤ 1

to make sure that probability (flow of particles) is conserved. We arrange
those coefficients in a matrix Π and we call it the transition probability ma-
trix, or stochastic matrix. Indeed, the stochastic matrix wholly represents
the process, as it describes every possible shift from one state to another.

It has the following properties:

• It always has the maximal eigenvalue λ = 1, following from Perron-
Frobenius theorem (see [17], pag 53.).

• Since the possible physical states are in the first quadrant, which is
invariant, there exists an eigenvector with eigenvalue λ = 1 in the first
quadrant psi ≥ 0. We call this the “stationary distribution”.

• If the multiplicity of the eigenvalue λ = 1 is one, the stationary state is
unique and attractive. If the multiplicity is greater than one, the net-
work is disconnected and each component has a stationary distribution,
the multiplicity being the number of separate components.

• The relaxation time towards the stationary distribution depends on
the “Spectral Gap”, that is the difference between the two greatest
eigenvalues |1− λ2| of the network.

If we interpret the Markov chain as a random walk on a network, then the
stochastic matrix stems from the adjacency matrix of the underlying network
as Π = ∆−1A, where A is the adjacency matrix and ∆ the diagonal degree
matrix (∆ij = δijd(i)). They are related in the following way. We perform
the similarity operation

∆
1
2 Π∆−

1
2 = ∆−

1
2A∆−

1
2 = Σ

being Σ a symmetric matrix, we know that it has real eigenvalues, and
so does Π as similarity transformations do not alter the spectrum. Still, the
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relation among the stochastic matrix, the adjacency one and the diagonal
degree one is deeper. Indeed, we may define the scalar product between
states as 〈φ, ψ〉 = φ · ∆−1ψ. Then we get that the stochastic matrix Π is
symmetric with respect to this product

〈φ,Πψ〉 = φ ·∆−1A∆−1ψ = A∆−1φ ·∆−1ψ = 〈Πφ, ψ〉

which means that the degree matrix induces a metrics to whom the
stochastic matrix is symmetric. In this metrics, we also see that the eigen-
value problem of the stochastic matrix reduces to the eigenvalue problem of
the adjacency matrix with respect to this newly defined metrics, i.e.

det(Π− λI) = det
(
∆−1

)
det(A− λ∆) =

N∏
i=1

1

d(i)
det(A− λ∆)

This means that the distribution of the degree of the network play a
key role in understanding the dynamics which is taking place on the graph.
Indeed, as we will see in the followings, one of the most used classifications
of networks is the one based on degree distributions.

Finally, we show how the dynamics depends on the spectrum of the
stochastic transition matrix. As Σ is symmetric, it may be decomposed
in terms of orthogonal matrices O as

Σ = OΛOT =
N∑
i=1

λiviv
T
i

where the representation in terms of the orthonormal eigenvectors that
compose the matrix O was made explicit. Then the stochastic matrix may
be decomposed as

Π =
N∑
j=1

λj∆
− 1

2vjv
T
j ∆

1
2

Taking into consideration the so-called “basic law of the degree”

d

2L
· uT = 1
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where d is the degree vector, u the unitary one, L the total number of
edges in the network2, we may write the stationary distribution p∗ = d

2L
or,

equivalently, as

p∗j =
dj
2L

Moreover, the similarity transform ∆
1
2 maps the stationary state onto

vi = ∆−
1
2p∗ so we may write the first of the eigenvectors of Σ as

v1j =

√
dj

2L√∑N
j=1

(√
dj

2L

)2
=

√
dj
2L

=
√
p∗j

and using this expression in the decomposition of Π we have

Π = up∗ +
N∑
i=2

λj∆
− 1

2vjv
T
j ∆

1
2

and for the lth step transition probability from state i to j

Πl
ij =

dj
2L

+

√
dj
di

N∑
k=2

λlk(vkv
T
k )ij

This expression allow to express the convergence rate of any state to
the stationary one. We may estimate the distance between a state and the
stationary one as

|Πl
ij − p∗j | ≤

√
dj
di

N∑
k=2

|λlk||(vkvTk )ij| ≤
√
dj
di

N∑
k=2

|λlk|

In particular, if we take the largest of the eigenvalues apart from λ1 = 1,
which is the one coupled with the stationary state and call it λM , we may
estimate the distance from stationary state as

|Πl
ij − p∗j | <

√
dj
di
λlM +O(λk 6=1,2)

hence, the definition of the spectral gap.

2This is immediate from the fact that the sum of all the degrees in a graph must be
twice the number of links.
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1.2 Some examples

The vastness of the applications of network science has already been men-
tioned, however, some examples may be useful in order to get deeper into
the topic. We show here two cases in which modelling of particular systems
requires the knowledge of the network structure on which it is based. In the
first, we focus on the relevance of how different structural properties may
give rise to quite different thresholds for the same transition phenomenon.
In the second we highlight how the network features inherently modify the
long-term state characteristics.

1.2.1 Disease spread

Epidemic models have been among the first cases of application of network
science. In some cases, they even date back the topic [21], given the im-
portance of the issue. Indeed, outbreaks of epidemics seem to be classic
threshold phenomena often encountered in complex systems. The vast ma-
jority of epidemic models derive from the SIS model or its refinement, the
SIR model. The SIS (Susceptible - Infectious - Susceptible) model is based
on the division of the population in two states: Susceptible to the infection
and infected, (S/I) and the fraction of the population at time t that are
respectively sane (but susceptible) and ill are s(t) and i(t). The model reads{

ds(t)
dt

= gi(t)− vs(t)
di(t)
dt

= vs(t)− gi(t)
which is nothing more than a revisited Lotka-Volterra population dy-

namic model in which g is the rate of healing, and v is the expansion rate
of the infection. This kind of model may describe well sexually transmitted
diseases for two reasons: the latency of the disease, which causes the infected
individual not to know about his situation, thus causing repeated infections
to occur; and the fact that in most cases immunity or healing cannot be
reached. Moreover the latency of the disease may let us neglect the death
rate of the disease. The SIR model is suitable to portray diseases, like flu,
which confer instead life-long immunity through healing. Its acronym stands
for Susceptible - Infected - Removed3, which are the states that the individual

3The term may refer to the removal of the disease, through healing, but also to the
removal of the individual because of death.



10 Physical Motivations

can be in. In this case we get Lotka-Volterra like equations
ds(t)
dt

= −αi(t)s(t)
di(t)
dt

= αi(t)s(t)− γi(t)
di(t)
dt

= γi(t)

in which we set α to be the rate at which the infected individuals spread
the disease, while γ is the removal rate, that is the healing and dying rate
of the disease. We remark that in this case “removed” individuals do not
partake to the spread of the disease because they are either dead or they have
acquired immunity through healing. When solving such system, the relation
network is fundamental. Let us take two connected nodes, i, and j, each
representing an individual. We take i to be ill, and j to be susceptible. The
rate that sets the probability that i infects j is rij, and is a random variable
depending on how frequently these people meet, how close their bond is, and
so on. We also have the infectious time τi which is the time for which i
remains infectious. The probability of non transmission between i and j is
1 − Tij = (1 − rij∆t)

τi
∆t where ∆t is the interaction time. If we make the

continuous limit we readily have that the probability of disease transmission
between i and j is

Tij = 1− e−rijτi

and

Tij = 1− (1− rij)τi

in the discrete time step dt = 1. A reasonable assumption is that the vari-
ables rij, τi are drawn form a random distribution and are independent and
identically distributed variables. If so, the mean transmission T probability
is simply the average of Tij over the two distributions P (τ) and P (r)

T = 1−
∫
drdτP (r)P (τ)e−rτ

This allows us to greatly simplify the problem, because in the overall
population the disease propagates as if the transmission probabilites were all
T . The problem thus reduces to a Percolation problem. Percolation is one
of the most studied and analysed problems in network theory, and statistical
physics as a whole. It may be synthesised as the answer to the question:
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“Given a source on a network, how does the flux flow on the grid?”. Few
analytical results are available in this field, as they often depends on the
network structure4.

Here we list some of the available results and thresholds for percolation
theory to happen.

• Random Networks. The mixing that defines the individual who com-
pose the populations is randomly performed. This means each node
has on average pN neighbours, randomly chosen among the network
population. In this case, the threshold for which the outbreak of the
disease becomes epidemic is

T =
1

d

where d is the average degree of the network.

• Scale Free networks. These self-similar networks follow a power law
distribution for the degree. In this case the “hub” phenomenon occurs,
leading to a supposedly more rapid disease spread. If we take the degree
distribution to be of the form

p(k) = Ck−ae−
k
κ

then the result in [31] states that the transition rate of the disease T
leads to a critical epidemic behaviour when

T =
Lia−1(e−

1
κ )

Lia−2(e−
1
κ )− Lia−1(e−

1
κ )

where Lin(x) is the nth polylogarithm of x.

• Small world [30]. In this case, the scale free behaviour is kept but
shortcuts between random, possibly even distant nodes are added. If
we set the average number of shortcuts to be φ, then we have a threshold
for the transition probability

T =

√
4φ2 + 12φ+ 1− 2φ− 1

4φ
' 1− 4φ+O(φ2)

4A sound definition of the different kind of structures a network possesses has not been
reached yet. We may refer to concepts like “scale free”, “random”, “small world”, which
are better explained in chapters 3 and 4.
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• Regular networks. In square regular lattices, the percolation threshold,
i.e. the critical transmission rate is t = 1

2
[6]. In k-regular trees, the

percolation threshold is T = 1
1−k .

The diversity of behaviours when taking into account for different struc-
tures is one of the crucial features of complex systems. Hence the need to
better formalize the categories networks populate emerges.

1.2.2 Finding a job with NetSci

Networks seem to be naturally suited to model markets. The behaviour of
individuals who exchange goods and services over a net of relations should be
easily transposed over a graph with an overlying dynamics. Here we introduce
some of the ideas used when modelling a seminal sector of economics: the
job market. It is well known that finding a job is often an issue of being
offered or knowing about the vacancy of a position5. Let us try to sketch
the prominent feature of this complex market along with [7]. We begin by
an undirected network in which nodes are workers, which have two statuses:
employed, or jobless. There is a random chance that a worker may loose
his position, becoming unemployed. Then, there is an information about a
vacant position travelling over the nodes. If a node is employed, it passes
the information over one neighbour with uniform probability. If the node is
unemployed, it takes the vacant position6. It is immediately clear that the
model favours the workers with more connections7, which can find a job with
more ease than a colleague who has fewer access to information. The matrix
A is the adjacency matrix of such network, and the vector O(t) is the vector
that the describe the employment situation at time t, taking value Oi(t) = 1
if i is employed at time t and zero otherwise. At time t + 1 the following
things happen:

• With probability a each node independently get to know about a job
opportunity.

• If unemployed, a node takes the position, if already employed passes
the information to an unemployed neighbour of his. The choice of the
unemployed neighbours is random.

5Hence the very definition “networking” in the Merriam Webster dictionary: “the
cultivation of productive relationships for employment or business”.

6No choosy workers in this model.
7In socio-economical sciences, this is called “social capital”.
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• If an employed node knows about a position but has no unemployed
neighbours, the position information is lost.

• At the end of the step, each node randomly looses hos job with proba-
bility b.

The probability that i get to know about a vacant job and this job is
taken by j is

pij(O(t)) =


a if Oi(t) = 0 and i = j,
a∑

k:Ok(t)=0 Aik
if Oi(t) = 1, Oj(t) = 0 and Aij = 1,

0 otherwise.

The focus is over the long run expectation value of the employment vector,
which we call µ and it is nothing but the stationary distribution of the Markov
chain described by this model.

We begin by solving this model in the trivial case: a single worker. The
stationary distribution is nothing but a number which must satisfy

µ =
1− b

µ+ a(1− µ)

which is solved for µ to give the long term occupation chance of the worker

µ =
1

1 + b
(1−b)a

If we take the case for a two worker network, then the result for the chance
of one of them to be employed is

µ =
a

a+ b− ab
2a+b

which is greater than in the case of the single worker, showing that “net-
working” works. Another analytically solvable model is the one of the com-
plete graph of N nodes. When the chance of being fired/offered a job is
respectively b

T
and a

T
, as T grows the probability of having k employed work-

ers is

µk =
1∑N

j=0
k!
j!

(
b
Na

)k−j
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The thing to point out is that as the network grows in size, the correlation
among workers shrinks. Nonetheless the “network effect” does not. An
interesting feature is that quite the contrary happens. As pointed out in
[19] we may compute the variance of the probability of total employment of
the stationary distribution in the network case and then normalize it by the
variance of total employment in the case of a population of the same size
who does not adopt networking as a way to get a job. We can see that it
increases as the population grows in size, as shown in [19], figure 10.2.2, page
442. Even in a simple case like this one, we clearly see that networks play a
prominent role in shaping the emerging behaviour of the systems.



Chapter 2

Elements of Random Matrix
Theory

2.1 Introduction

This chapter is devoted to the exposure of the main results that Random
Matrix Theory (RMT) develops which are relevant to the main goal of the
present work. RMT is is a very active research field with numerous appli-
cations in Theoretical and Statistical Physics, Number Theory and Combi-
natorics. The recent development of Complex Systems Physics has offered
the possibility of new applications of RMT. In the followings we present the
main techniques that are relevant to provide insights in the study of complex
networks. Besides, RMT is a field of knowledge worth studying per se, not
only for the wide range of applications, but also as a generalization of many
classic results from probability theory. The focus will be twofold, concerning
about both the methods that allow to prove the cornerstone and birth act
of RMT, viz. Wigner Semicircular Law, and their actual meaning in terms
of network theory, trying to build a sound bridge between the fields. Indeed,
the different approaches used to tackle the problem of determining the Spec-
tral distribution of a certain random matrix will be of great utility in order
to understand the development of the following chapters. However I have no
presumption of exhaustiveness or to display such branches of mathematics
thoroughly. A classic reference for those who are interested to be introduced
to the field of RMT is [27], while for a more modern approach I recommend
[3] and the very useful and updated site [35].
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The study of the spectral properties of a random matrix is one of the main
problems of RMT, the word “random” meaning that the entries of such a
matrix are drawn from a distribution. This field of studies originated from
the investigation of heavy nuclei Hamiltonian eigenvalue problem, which was
brilliantly solved by E.P. Wigner in his seminal papers [41], [42], replacing
the true Hamiltonian with a random one and calculating its spectral distri-
bution. Wigner law for the distribution of eigenvalues of a random matrix
has been generalised and expanded since, focusing about its domain of va-
lidity and its universality. In this chapter a four-fold view of such theorem
will be presented, beginning with the classic moments method, showing that
the ESD moments of a random matrix and those of the semicircular law co-
incide in the limit of large N ; then by the Stieltjes transform it is shown how
the semicircular law is the most probable distribution, again in the large N
limit; then a brief excursus in the free probability theory is taken to show
how Wigner law is recovered in the central limit theorem for non-commuting
variables: finally the Replica approach is introduced, employed to get Wigner
law and its first corrections.

2.2 RMT basic framework

The first and foremost task to comply with in order to tackle the problem
of calculating the eigenvalues and the spectra of a random matrix is the
definition of a framework in which usual probabilistic concepts are translated
to. This section is devoted to introducing the basic tools and their meaning.
A thorough exposure of such techniques lies beyond the purpose of this work.
However, for a sound and comprehensive introduction to methods of RMT,
we recommend the reference [3].

2.2.1 Empirical Spectral Distribution

The Empirical Spectral Distribution (ESD) of a random matrix is defined as
follows

Definition 2.2.1 (Empirical Spectral Distribution). The ESD of a N × N
matrix A with real eigenvalues λi is

ρA(x) =
1

N

∑
i

δ(x− λi) (2.1)
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2.2.2 Moments

We define the moments of a distribution in the conventional way as

Definition 2.2.2 (Moments of distribution). The k-moment of a ESD ρA is

mk =

∫
xkρA(x)dx

Moments are of use since they are the first method by which the central
result of RMT is proven. Indeed, a canon result in classic probability theory
is the following

Theorem 2.2.1 (Carleman, [3] page 509). Let mk be the moments of a
distribution ρ, if the Carleman Condition∑

k

m
− 1

2k
2k =∞

holds, then ρ is uniquely determined by the sequence of moments mk.

A weaker condition is given by a corollary due to Riesz

Theorem 2.2.2 (Riesz, [3] page 508). Let mk be the moments of a distri-
bution ρ, if

lim inf
k→∞

1

k
m

1
2k
2k <∞

then ρ is uniquely determined by the sequence of moments mk.

For the purposes and the scope of this work, the aforementioned condi-
tions are more than sufficient. When dealing with the continuous type of
ESD (Wigner, McKay, etc.), they reduce to the condition of the moments to
be finite.

2.2.3 Stieltjes Transform

Another tool of great use in RMT is the resolvent of the matrix, which also
develops a whole new theory to treat more handily ESDs.

Definition 2.2.3 (Stieltjes Transform). The Stieltjes transform, or Green
function, or Resolvent of a distribution ρ is

G(z) =

∫
dx

ρ(x)

z − x
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The usefulness of such transform is twofold. First we may readily recover
the moments of the distribution

G(z) =

∫
dx

ρ(x)

z − x =
1

z

∫
dx

ρ(x)

1− x
z

=
1

z

∞∑
k=0

∫
dxρ(x)

(x
z

)k
=
∞∑
k=0

mk

zk+1

and secondly, computing the transform at z = y − iε

G(y − iε) =

∫
dx

ρ(x)

y − iε− x =

∫
dx

ρ(x)(y − x)

(y − x)2 + ε2
+ i

∫
dx

ρ(x)ε

(y − x)2 + ε2

and taking into account the representation of the delta function

δ(x) =
1

π
lim
ε→0

ε

x2 + ε2

we have that the knowledge of the resolvent leads to the distribution

ρ(y) =
1

π
lim
ε→0

ImG(y − iε)

2.3 Moments Method

2.3.1 Wigner Law by moments method

The moments method was the first and most brute-force way to prove Wigner
law, but it is worth to sum up its proof as it is of interest for purposes
that will be clear in the following chapters. The core of the theorem is to
show that the moments of the Semicircular distribution and those of the
ESD of a symmetric matrix whose random elements are (to a certain extent)
independent coincide, thus also the distributions do.

Theorem 2.3.1 (Semicircle Law). Let AN be a symmetric N x N ma-
trix whose non-diagonal elements are independent and identically distributed
variables drawn from a Gaussian distribution with unitary variance, letWN =

1√
N
AN , then as N →∞, ρW (x) converges to ρsc(x), where

ρsc(x) =

{
1

2π

√
4− x2, if x ∈ [−2, 2]

0, otherwise
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Proof. We first calculate the moments of the semicircular distribution

m2k =
1

2π

∫ 2

−2

x2k
√

4− x2dx =
1

π

∫ 2

0

x2k
√

4− x2dx.

and by substituting x = 2
√
y

m2k =
1

π

∫ 1

0

22k+1yk−
1
2

√
1− ydy =

22k+1

π

Γ(k + 1
2
)Γ(3

2
)

Γ(k + 2)
=

1

k + 1

(
2k

k

)
= Ck

we get that the moments of the semicircular law are equivalent to the
so-called Catalan numbers Ck. These numbers are of importance in the field
of combinatorics [22]. Among many useful properties, we cite the recurrence
relation they satisfy which will be also used later

C0 = 1 Cn =
n∑
i=0

CiCn−1

The second step of the proof is to compute the averaged quantities

〈mk(WN)〉 =
1

N
〈Tr

(
AN√
N

)k
〉 =

1

N1+ k
2

N∑
i1···ik=1

〈Ai1i2Ai2i3 · · ·Aik−1ikAiki1〉

It is immediate to gather that, since the variables taken into account are
independent with null mean, the summands in the series are non-zero only
if a factor Ajl appears only twice in it. Hence k must be even, and so up to
k
2

+ 1 different indeces are allowed to appear.
The computation of the remaining terms is best performed using graph

theory. Each summand in the RHS of the previous equation represents a
path on the multigraph built upon the set of indices i = {i1, i2, · · · ik}, where
each of the iν is a node, and two nodes i, j are linked by l edges where l
is the number of times that the term Aij appears in the computation. Let
r = |{i1 · · · ik}| be the size of the walk from i1 to ik.

Rearranging the summatory as

N∑
i1···ik=1

〈Ai1i2Ai2i3 · · ·Aik−1ikAiki1〉 =
N∑
r=1

∑
|{i1···ik}|=r

〈Ai1i2Ai2i3 · · ·Aik−1ikAiki1〉
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An estimation of the order of such quantity may be done counting the
possible realization of i. We have an upper bound for choosing the r possi-
ble different numbers in {1, · · ·N} of N r, and an upper bound for choosing
among the k position of each of the r elements that is rk, hence an up-
per bound for the term in the summatory is rkN r. Accordingly, the term∑
{i1···ik}=r〈Ai1i2Ai2i3 · · ·Aik−1ikAiki1〉 may be neglected, as it is of order N r

and we have a prefactor of 1

N1+ k
2

, when the length of i r < k
2

+ 1. Then we

are left with the computation of∑
|{i1···ik}|=1+ k

2

〈Ai1i2Ai2i3 · · ·Aik−1ikAiki1〉

For the sake of notation we call

I
(N)
k = {i such that |{i1 · · · ik}| = 1 +

k

2
and each edge appears only twice}

When k is even, as the variance is unitary by hypothesis, the previous
term reduces to

〈Ai1i2Ai2i3 · · ·Aik−1ikAiki1〉 = 1

hence the sum to be computed is simply

〈mk(WN)〉 =
1

N1+ k
2

|I(N)
k |

Then the graphs that have exactly 2 edges for each node, have k edges
and 1 + k

2
nodes are equivalent to the simple connected graphs that have k

2

edges and 1+ k
2

node, i.e. trees. The number of trees with h edges is precisely
1

h+1

(
2h
h

)
, viz. the Catalan numbers. All the possible Eulerian paths on a tree

are readily computed by assigning 1 + k
2

indices to the 1, · · ·N vertices of the

tree, i.e. N !
(N−(1+ k

2
))!
≈ N1+ k

2 ways. Hence the averaged moments of W are

lim
N→∞

〈mk(WN)〉 = Ck

Wigner theorem is one of the classic results in RMT and in the theory of
spectral properties of random matrices. However, I reckon the impact it has
on network theory has not been stressed enough when taking into account
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the actual meaning of this method of proof. Indeed when the moments are
computed through the representative multigraph we should be aware that,
if the matrix A is an adjacency matrix of a network, the counting of such
moments is equivalent to counting the loops that the network possesses.
Then, thanks to the hypothesis of independence of the adjacency matrix
elements we may discard the odd moments1, and thanks to the normalizing
term in the front we get rid of the short cycles that are negligible in the limit of
large N . So we are left with counting the tree cycles, which from a dynamical
perspective are the most inefficient way of moving on the network. What is
crucial in such proof is not only the independence of nodes of the underlying
graph but the fact that the cycles of finite length are few with respect to
trees of the same length when the thermodynamic limit is taken. However
a remark can be made about the fact that the rate by which the number of
non-tree cycles becomes negligible may be a good estimate of the true rate
of convergence to the limiting case of Wigner law. Therefore, this quantity
could be a viable candidate to be the order parameter of the phase transition
that will be presented in the followings. Another remark to be kept in mind
is that a network which does not show any odd cycle is completely bipartite,
i.e. its vertices may be split into two sets where there are no internal edges.
Also, bipartiteness of a network implies that its spectral density is an even
function. These considerations may suggest that the number of odd cycles
and the independence of the nodes should somehow be deeply related to the
behaviour of the spectral density function, showing more than a feature that
may lead to think to a phase transition phenomenon.

2.4 Stieltjes transform

We now consider a different approach to the whole problem of determining
the limiting ESD of a certain ensemble of matrices. The Wigner law proven
by the moments method is quite intuitive in its development, although being
rather tedious in some calculation. However, besides giving hints about the

1Odd moments correspond to odd tours. Even in the most simple case, that is a tour of
length 3 from a node i to j, k and back to i, it is immediate to see that the independence
request, viz. the vanishing of odd cycles, is equivalent to imposing that structure of the
network should display no immediate way of going back to the starting point. Hence, the
network should be expected to have a diameter that grows according to a power law of
the number of nodes. Such topic will be resumed in chapter 4.
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reason by which the convergence to such a limit can be performed, the mo-
tives by which the limit is precisely Wigner law are not so explicit. A clearer
way to answer this question is the derivation of Wigner law with the method
of the resolvent, or Stieltjes transform, as introduced before. Such method is
also handy for trying to set bounds to the convergence rate to the limit (see
for instance [1]).

The framework in which we set such discussion is focused on the eigenval-
ues from the beginning. We may wonder how do the eigenvalue of a certain
matrix distributes according to the pdf of the entries. What is needed is a
transformation for the joint PDF of the entries into the joint PDF of the
eigenvalues for a real symmetric matrix.

It is known that the jPDF of Gaussian variables2 is the product of each
singular PDF, thanks to the very definition of independence. For a N × N
matrix H with iid Gaussian entries the probability density reads

p(H)dH =
N∏

i,j=1

1√
2π
e−

H2
ij
2 dH

where the element of the matrix H means dH =
∏N

ij=1 dHij.
Now, the symmetry of the matrix H entails two facts: the former is that

there are at most N(N+1)
2

distinct entries and the latter that such matrix is
diagonalizable via an orthogonal transformation O of the kind H = OΛO−1.
Hence the element dH may be written as

dH =
∏
i≤j

dHij = J(H→Λ)dλ1dλ2 · · · dλNdα1dα2 · · · dαN(N−1)/2

where the αi are the angular-like parameters of the orthogonal transfor-
mation O, λi are the eigenvalues and JH→Λ is the Jacobian of the transfor-
mation

JH→Λ = det

∣∣∣∣∣∣∣∣
∂H11

∂λ1

∂H11

∂λ2
· · · ∂H11

∂λN

∂H11

∂α1

∂H11

∂α2
· · · ∂H11

∂αN(N−1)/2

· · · · · · · ·
· · · · · · · ·
· · · · · · · ·

∣∣∣∣∣∣∣∣
2it is easy to generalize to the case in which the variance is non unitary.
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We may make some crucial consideration about this Jacobian. As the
transformation is linear in the λi, the first N columns of the Jacobian matrix
will be independent in the eigenvalues, while the remaining ones will be
linear in the λi as well. Hence in the determinant each factor will contain
N(N − 1)/2 terms, each linear in the λi so that the Jacobian is a polynomial
of degree N(N − 1)/2 in the eigenvalues. Now, for the transformation to
be invertible the Jacobian must be non-zero and this implies it must be a
function of the eigenvalues differences |λi − λj|. Hence

JH→Λ ∝
[

N∏
i<j=1

|λi − λj|
]s

and the requirement for the polynomial to be at most of grade N(N−1)/2
in the eigenvalues sets the exponent s = 13.

Equating marginals and integrating over the αi distributions in which we
are not interested we get

p(λ1 · · ·λN) =
1

ZN

N∏
i,j=1

e−
λ2
i
2

N∏
i<j=1

|λi − λj|

where ZN is an appropriate normalizing constant.

If we rescale the eigenvalues λi → λi/
√
N = xi, in order to have control

over the distribution, we have the final result

p(λ1 · · ·λN) =
1

ZN
eN( 1

2

∑
i x

2
i−

1
2N

∑
i 6=j ln |xi−xj |)

2.4.1 An heuristic derivation

Having the jPDF of the eigenvalues it is natural to wonder which is their most
probable eigenvalue distribution for i.i.d. entries of a symmetric matrix. We

3The value of the exponent of this determinant identifies various classes of matrices
whose jPDF is known. When s = 1 it is the case of Gaussian Orthogonal Ensembles,
(GOE). The other two main ensembles are the Gaussian Unitary Ensemble (GUE) and
the Gaussian Simplectic Ensemble (GSE). These terms refers to the requirement of the
matrices to have real eigenvalues, i.e. symmetricity for real entries, unitarity for complex
entries (s = 2) and self-duality for quaternionic entries (s = 4).
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introduce a potential

U(x) =
1

2

∑
i

x2
i −

1

2N

∑
i 6=j

ln |xi − xj| (2.2)

and we impose an equilibrium condition ∂U(x)
∂xj

= 0, getting

xj =
1

2N

∑
i 6=j

1

xj − xi

then we multiply both sides by 1
N(z−xi) and sum over j, yielding

1

N

∑
j

xj
z − xi

=
1

2N2

∑
j

∑
i 6=j

1

xj − xi
1

z − xi

The LHS of the equation can be written in terms of discrete resolvents as

1

N

∑
j

xj − z + z

z − xj
= −1 +

z

N

∑
j

1

z − xj
= −1 + zGN(z)

While the RHS term may be recast as

1

N2

∑
j

∑
i 6=j

1

z − xi

(
1

z − xj
+

1

xj − xi

)
=
G2
N(z)

2
+
G′N(z)

2N

thus obtaining the relation

G2
N(z) + 2zGN(z) +

G′N(z)

N
+ 2 = 0

This is a differential relation for the discrete counterpart of the resolvent.
When going into the continuum limit over large N we simply replace the
sum with an averaging integral over the distribution, having the Stieltjes
transform as its natural outcome

〈GN(z)〉 = 〈 1

N

∑
j

1

z − xj
〉 =

∫
dx

ρ(x)

z − x = G(z)

If we perform such limit, we immediately see that the derivative term
disappears, as it is of the same order of the others but divided by N . Hence
we have to solve the equation
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G(z)2 − 2zG(z) + 2 = 0

which has the solutions

G(z) = z ±
√
z2 − 2

Then we may employ the inversion formula for the transform to find the
distribution.

G(x− iε) = (x− iε)±
√

(x2 − ε2 − 2)− 2ixε

and as we are interested only in the imaginary part of G(z) we have4

ImG(z) = −ε± sgn(−2xε)√
2

√√
(x2 − ε2 − 2)2 + 4x2ε2 − x2 + ε2 + 2

taking the limit of ε→ 0 and dividing by π we recover the distribution

ρ(x) = ±sgn(−x)√
2π

√
|x2 − 2| − x2 + 2

which is exactly the semicircular distribution when the right sign is chosen

ρsc(x) =

{
1
π

√
2− x2, if x ∈ [−

√
2,+
√

2]

0, otherwise

This heuristic derivation for the semicircular law gives immediate hints to
its physical meaning. Indeed, it is the distribution that maximizes the jPDF
of the eigenvalues. Also, working with resolvents points out the physical
meaning of the problem. Indeed, the reader may have noticed the analogies
with an electrostatic problem, having to find the equilibrium solution for
charges on a line with a logarithmic repulsive potential. To conclude this
section we highlight that this is rescaled semicircular law with respect to
the previous result. Substituting x →

√
2x gives immediately the “usual”

Wigner law, for which we compute the canonical resolvent Stieltjes transform

G(z) =
1

2π

∫
dx

√
4− x2

z − x =
−z +

√
z2 − 4

2

which will be the form henceforth used when referring to the resolvent of
the semicircular distribution.

4Following from
√
x+ iy = 1√

2

√√
x2 + y2 + x+ i sgn(y)√

2

√√
x2 + y2 − x
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2.5 Free Central Limit Theorem

In the previous section we have seen that the “most probable” distribution of
eigenvalues is the one described by the semicircular law. One may speculate
if this is somehow related to a central limit theorem. The answer is yes. In
this section I give the gist of this result and then introduce the framework in
which it can be proven soundly, that is Free Probability Theory.

2.5.1 Free Central Limit Theorem

When performing the limit we cannot pass through the characteristic function
of the distribution as in the classic case since the requirement for them to
work is the commutativity of the variables when computing the exponent.
We need to find a transformation of the distribution laws that takes into
account the non commutativity properties of random matrices. As pointed
out in [44], the right candidate is the functional inverse of the resolvent, also
known as “Blue function”, that is

B(G(z)) = z

This function however may display a singular behaviour for small z, so we
subtract z−1 to regularize, defining the so-called R-transform of the resolvent
of the matrix X

RX(G) = BX(z)− 1

z
The R-transform is the fondamental tool to perform the CLT procedure

as we see that it is additive

RX+Y (G) = RX(G) +RY (G)

and may be expanded in terms as

RX(G) =
k∑
i=1

Ci(X)Gi−1

where the Ci coefficients are given by

Ci(X) = τ(X i)−
i−1∑
j=1

Cj(X)
∑

ai+aj+···ah=i−j

τ(Xai) · · · τ(Xah)
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where, following [16], we introduced the expected trace operator of the
matrix τ(X) = 1

N
〈TrX〉.

Now, using the additivity of the R-transform we may compute it for a
normalized sequence of random matrices Sn = X1+X2+···Xn

n
, that is

RSn(G) = nRX/
√
n(G)

The coefficients in the expansion of the R-transform are given by

Ci

(
X√
n

)
= τ

(
X i

ni/2

)
−

i−1∑
j=1

Cj

(
X√
n

) ∑
ai+aj+···ah=i−j

τ

(
Xai

nai/2

)
· · · τ

(
Xah

nah/2

)
and as n→∞ we see that only the terms with k ≤ 3 do not vanish. To

proceed further, we assume that the matrices Xi have null mean and unitary
average. Then the computation of the coefficient reduces to

C1

(
X√
n

)
= τ

(
X

n1/2

)
= 0

C2

(
X√
n

)
= τ

(
X2

n

)
=

1

n

C3

(
X√
n

)
= τ

(
X3

n3/2

)
which means

RSn(G) = nRX/
√
n(G) = G+

τ(X3)√
n
G2 (2.3)

which reduces to G in the limit of n → ∞. Now, if we compute the
R-transform of the resolvent of the semicircular law we have

R (Gσ(z)) = Gσ(z)

This proves that the distribution of sequence of random matricesXi whose
mean is null and variance is unitary converges in the limit of large n to the
semicircular law, establishing a free counterpart of the Central limit theorem
for non-commuting variables, in which the role of the Gaussian distribution
is played by Wigner law for the spectral density.
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2.5.2 Elements of Free Probability Theory

Free Probability Theory develops a framework in which non-commutative
random variables - as the matrices we deal with are - may be studied. The
core of FPT is to replace the notion of statistical independence with that of
“Freeness”5. Why so? When trying to find the PDF of a sum of independent
variables the standard technique is via the cumulant generating function,
which under the assumption of Independence is additive. Then we use the
characteristic function and eventually to the PDF of the sum with Fourier in-
verse transform. When dealing with matrices this for the spectral density, as
matrix properties (orthogonality, symmetry, row/column sum) may impose
weak correlations among entries that impede to treat them as independent.
It is required the notion of Freeness, described as follows

Definition 2.5.1 (Freeness of matrices). Let X1, X2 be two N×N matrices
and τ be the expected trace operator τ = 1

N
〈X〉, then the two matrices are

said free if

τ((P1(X1)− τ(P1(X1)))(P1(X2)− τ(P1(X2)))(P2(X1)− τ(P2(X1)))×
(P2(X2)− τ(P2(X2)))(P3(X1)− τ(P3(X1))) · · · ) = 0

where Pi(X) is a ith grade polynomial of X.

Also, this definition generalises to that of asymptotic freedom as follows.

Definition 2.5.2 (Asymptotic freeness of matrices). Let X1, X2 be two
N × N matrices and τ be the expected trace operator τ = 1

N
〈X〉, then the

two matrices are said asymptotically free if

lim
N→∞

τ((P1(X1)− τ(P1(X1)))(P1(X2)− τ(P1(X2)))(P2(X1)− τ(P2(X1)))×
(P2(X2)− τ(P2(X2)))(P3(X1)− τ(P3(X1))) · · · ) = 0

To give the gist of these definitions let us compute via the freeness formula

τ(X2
1X

2
2 ) = τ(X2

1 )τ(X2
2 )

5I am aware that English word formation rules would require the property of being free
to be called “Freedom”, however this is the standard nomenclature in the literature.
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which is analogous to the classical case, but when the non commutativity
takes place we have

τ(X1X2X1X2) = τ 2(X1)τ(X2
2 ) + τ(X2

1 )τ 2(X2)− τ(X2
1 )τ(X2

2 )

which has no counterpart in the classical case.

2.6 Replica Trick

We now introduce a new formalism in which to study the problem of deter-
mining the limiting spectral densities of a random matrix. This approach
was developed in close analogy with statistical mechanics, thus being ad-
dressed to the problems of statistical mechanics. Besides, the main method
of solution, viz. Replica Trick, is not rigorous nor mathematically sound. A
great deal of debate has been spent about the validity of this trick6 to solve
many models in statistical mechanics. A review of the achievements of this
trick and a good try to soundly formalize it may be found in [29], while for
a critical approach one may refer to [39] and [45]. However, almost all the
results that will be proven in this section are may be proven in some other
way. The purpose of this section is therefore to provide a framework which
may be related with ease to a statistical mechanics one, and to give physical
interpretation hints about the results. Moreover, replica trick will be useful
to compute some of the corrections we must add to Wigner law in certain
cases, namely when the average of the entries distribution does not vanish
and the finite size corrections.

2.6.1 Derivation of general formula

We take advantage from the representation of the Dirac δ function to rewrite
the density function for the eigenvalues as

ρ(x) =
1

N

∑
i

δ(z − λi) =
1

Nπ
lim
ε→0+

Im
∑
i

1

(z − iε− λi)
where the parameter ε is needed to regularize the function later on. As

the determinant is the product of eigenvalues of the matrix A, we have

6Also, the very fact that it is still called a “trick” shows the recalcitrance to fully accept
it.
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det(Ix− A) =
∏
i

(x− λi)

hence we get the general formula

ρε(x) =
1

Nπ
Im

∂

∂x
ln(det(I(x− iε)− A))

Now the core of the replica trick is introduced. The idea is to make use
of the identity of the logarithm7

lnx = lim
n→0

(
xn − 1

n

)
to create n copies (replicas) of the determinant to calculate, which is

expressed in terms of a Fresnel integral

1√
det(Ix− A)

=

(
ei
π
4√
π

)N ∫ N∏
i=1

dwie
−i
∑
ij wi(δijx−Aij)wj (2.4)

so that we may rewrite the distribution as

ρ(x,Aij) =
−2

Nπ
Im

∂

∂x
lim
n→0

1

n

((
ei
π
4√
π

)Nn ∫ Nn∏
i=1

dwie
−i
∑
ijα w

α
i (δijx−Aij)wαj

)

The integration being Nn-fold as i runs from 1 to N and the auxiliary
index α from 1 to n, the limit of ε → 0 being implicit. The handiness of
the replica trick is that when we need to calculate the ESD we just have to
average the formula with the distribution of the entries p(Aij), so that we
have a general formula

〈ρ(x)〉 =

∫
dAijρ(x,Aij)

∏
ij

p(Aij)

to evaluate, in principle, the eigenvalue distribution of any ensemble of
matrices. Of course, some assumptions are taken into account about the fact
that replicas are to be treated as independent variables, i.e. their coupling
is negligible.

7This comes from the expansion limn→0

(
xn−1

n

)
= limn→0

(
en ln x−1

n

)
=

limn→0

(
n ln x+ 1

2 (n ln x)2+···
n

)
= lnx.
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2.6.2 ESD for complete graph

The first and most näıve application of the replica trick formula is the case
in which all the entries are equal. At first glance this may look of little use
in the context of RMT for network theory, however, the result which will be
found will be a basic block of some of the further developments. Indeed, the
case in which the matrix elements are all the same is (almost) the case of a
wholly connected graph, also called a complete graph. Namely, each node
will have the same degree, which is also the dimension of the network N , and
the stochastic matrix Π will have only πij = 1

N
entries for all possible i, j.

Introducing the auxiliary identity

ei
1
N (
∑
i w

α
i )

2

=
e−i

π
4√

2π

∫
dqe

iq2

2 e−
√

2
N
q
∑
i w

α
i

the integral in 2.6.1 may be recast as

I =
∏
α

e−
iπ
4√

2π

∫
dq
∏

dwαi e
−ix

∑
i(w

α
i )2−
√

2
N
q
∑
i w

α
i + iq2

2

by completing the square and computing the integrals in wi we have

I =
∏
α

e−
iπ
4√

2π
e−

iNπ
4

(π
x

)N
2

∫
dqe

iq2

2
− iq

2

2x

i.e.

I =
∏
α

e−
iNπ

4 π
N
2

1

x
N−1

2

1√
x− 1

Inserting it back into the general formula 2.6.1 (there is no need of aver-
aging over a constant distribution) we get

ρ(x) =
−2

Nπ
Im

∂

∂x
ln

1

x
N−1

2

1√
x− 1

=

=
2

Nπ
Im

(
N − 1

2x
+

1

2(x− 1)

)
=

=
N − 1

N
δ(x) +

1

N
δ(x− 1)



32 Elements of Random Matrix Theory

where we used again the representation of the delta function. This result
is indeed quite intuitive when we think of it. The distribution is a peak
centered in 0, viz. all the eigenvalues are null, except from a peak of order
1
N

in 1 that represents the stationarity, its eigenvector being the stationary
state of the random walk.

We may readily see that this is the correct result by taking into account
the adjacency matrix for a complete graph, AN = 1N×N − I, where 1N×N is
the all-one matrix made by 1N×N = u · uT and u is the all-one vector. Then
a direct computation shows

det(1N×N − I − xI) = det
(
u · uT − (x+ 1)I

)
=

= (−(x+ 1))N det

(
I − u · uT

x+ 1

)
= (−(x+ 1))N

(
1− N

x+ 1

)
=

= (−1)N(x+ 1)N−1(x+ 1−N)

Then, in the limit of large N by rescaling the eigenvalues by their degree
N − 1 ' N we immediately glean that they all concentrate in 0 but one
localized in 18.

A few remark may arise as this simple result is proven. The first is that in
terms of network dynamics the relaxation time τ is maximal for this kind of
graph, as all the eigenvalues have the maximal possible spectral gap. Another
observation is that a sizeable peak in the eigenvalue distribution corresponds
to a certain extent to the fact that the matrix entries have no variability.
This latter fact will be insightful later on.

2.6.3 ESD for random graph

Replica trick may be as well used to prove Wigner law. We begin by postu-
lating the same Gaussian distribution for the elements Aij

p(Aij) =
1√
2πσ

e−
A2
ij

2σ2

and rescale the variance J2 = Nσ2. Inserting it in the averaging equation
we previously obtained we have

8Such rescaling corresponds, en passant, to the Stochastic matrix of such network.
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〈ρ(x)〉 =

∫
ρ(x,Aij)

∏
p(Aij)dAij =

= − 2

Nπ

∫
Im

∂

∂x
lim
n→0

1

n

[(
ei
π
4√
π

)Nn ∫ N∏
i=1

dwie
−i
∑
ijα w

α
i (δijx−Aij)wαj

]
×

×
∏ 1√

2πσ
e−

A2
ij

2σ2 dAij

Such computation is best performed in some steps. We start by solving
the Gaussian integrations, yielding

〈ρ(x)〉 = − 2

Nπ
Im

∂

∂x
lim
n→0

1

n

[(
ei
π
4√
π

)Nn ∫ Nn∏
i=1

dwie
t(x,wi)

]
where

t(x,wi) = −ix
∑
i,α

(wαi )2 − J2

N

∑
i,j

(
∑
α

wαi w
α
j )2 +

J2

N

∑
i

(
∑
α

(wαi )2)2

Let us take into consideration the second term in the t expression.

J2

N

∑
i,j

(
∑
α

wαi w
α
j )2 =

J2

N

∑
i,j,α,β

wαi w
α
j w

β
i wj

β =

=
J2

N

∑
α

(
∑
i

(wαi )2)2 +
J2

N

∑
i,j,α6=β

wαi w
α
j w

β
i w

β
j

We make the following considerations about the terms in the RHS of such
equation. The former is of order Nn, and must be retained, while the latter
has null mean and its square is of order n. The remaining term is of order
n2, so we retain only the terms where α = β, as we did before. In the limit
of large N thus

〈ρ(x)〉 = − 2

Nπ
Im

∂

∂x
lim
n→0

1

n

[(
ei
π
4√
π

)Nn ∫ Nn∏
i=1

dwie
−ix

∑
i w

2
i−

J2

N
(
∑
i w

2
i )2

]
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Introducing the identity to parametrize the exponential in terms of an
auxiliary variable s

e−
J2

N
(
∑
i w

2
i )2

=

(
N

2π

) 1
2 x√

2J2

∫
dse−

x2

4J2Ns
2−ixs

∑
i(wi)

2

we may recast the integral as

∫ Nn∏
i=1

dwie
−ix

∑
i w

2
i−

J2

N
(
∑
i w

2
i )2

=

=

[∫
ds
∏
i

dwi

(
N

2π

) 1
2 x√

2J2
e−ix(1+s)

∑
i(wi)

2−Nx
2s2

4J2

]n
=

=

[(
N

2π

) 1
2
(
πN

2J2

) 1
2

xe−
N
2
lnx

∫
dse−Ng(s)

]n
(2.5)

where in the last step we computed Fresnel integrals over the wis. We
introduced the auxiliary function g(s) as

g(s) =
x2s2

4J2
+

ln(i(1 + s))

2

Then we take the integral to be very peaked in the limit on large N , so
that we may evaluate it using the saddle point method. Such approximation
is consistent as we see that having x a small imaginary part x − iε let us
locate the branching point of the integral in s = −1. Then the cut on the
complex plane is a line from −1 to −∞, lying just above the real axis, that
defines the right integration domain. The equation for the saddle point is
g′(s) = 0, which gives 4 solutions, 2 for each case of x.s

±
0 = −1

2
± i

2

(
4J2

x2 − 1
) 1

2
per |x| < 2J

s± = −1
2
± 1

2

(
1− 4J2

x2

) 1
2

per |x| > 2J

We start by taking into account the case in which |x| < 2J . Following
[13] we choose the contour passing trough s−0 , and the saddle point evaluation
yields
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∫
dse−Ng(s) '

√
2π√

|Ng′′(s−0 )|
e−Ng(s

−
0 )eiφ

−

where φ− is given by

φ− = −1

2
arctan

− 1√
4J2

x2 − 1


By substituting this result in 2.6.3 for the replica ensemble, it is easy to

see that the semicircular law is recovered

ρ(z) = − 2

Nπ
Im

∂

∂x

(
Ng(s−0 )− N

2
lnx

)
= =

1

2πJ2

√
4J2 − x2

When |x| > 2J it is immediate to see that g(s−0 ) is real, hence the density
is identically zero.

Two observations may now arise, focusing about the validity of the result
and its applicability to the purposes of the present work. For what concerns
the effective domain of validity we discarded the terms that did not grow as
Nn. The n-replica limit is fine with this, as long as the replica symmetry is
not violated the limit is soundly performable. However the limit for N large is
not so straightforward, and we may wonder what are the effect of a finite size
matrix on the eigenvalue distribution. The second main remark is that if we
are to investigate the spectra of graph, the assumption that the stochastic
matrix elements are drawn from a zero-mean Gaussian distribution is not
correct, as the entries will surely have a finite mean. This latter question is
the one which will be addressed in the next subsection.

2.6.4 A first correction to Wigner Law

Let us now take into consideration the case where the distribution by which
the matrix entries are drawn is a Gaussian with non-zero mean. Such problem
is not unavailing, as for our aims it is precisely the case in which the ESD that
will be found will be that of the actual adjacency matrix of the underlying
graph. Indeed, we shall take into account a real symmetric matrix AN whose
elements are drawn from the PDF with mean A0/N

9

9We note that A0 = 〈Aij〉 is the connectivity of the network.
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p(Aij) =
1√

2πσ2
e−

(Aij−A0
N )

2

2σ2

rescaling as before the variance J2 = Nσ2. By computing the Gaussian
integrations and discarding the negligible terms in Nn we have

〈ρ(x)〉 = − 2

Nπ
Im

∂

∂x
lim
n→0

1

n

( e iπ4√
π

)Nn ∫ Nn∏
dwαi e

t(x,wi)


where now the t(x,wi) function is

t(x,wi)− ix
∑
iα

(wαi )2 − J2

N

∑
α

(∑
i

(wαi )2

)2

+
iA0

N

∑
α

∑
i

(wαi )2

Then we make use of the Hubbard-Stratonovich transform and parametrize
the integral as before introducing the auxiliary fields s and q

I1 =

∫ Nn∏
dwαi e

t(x,wi) =

=

[
e
−iπ

4

2π

xN√
4A0J2

]n ∫
dsdq

Nn∏
i

dwαi e
−ix(1+s)

∑
i(w

α
i )2−q

∑
i w

α
i −

x2s2N
4J2 + iq2N

4A0

then by completing the square integration over the wαi is possible

I1 =

[
e
−iπ

4

2π

xNπ
N
2√

4A0J2
e−

N
2

lnx

∫
dsdqe

−Ng(s)− iNq
2

4

(
1

x(1+s)
− 1
A0

)]n
and by integrating over q

I1 =

[
e
−iπ

4

2π

xNπ N
2

J
e−

N
2

lnx

√
π

N

∫
ds
√

1 + s
e−Ng(s)√
i(s− s1)

]n
where

s1 = −1 +
A0

x
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Now, to analyse this integral we make some considerations. If we are
far from the pole s1 we may perform the same saddle point evaluation that
previously gave the semicircular law. However, when near s1 we may expand
in Taylor series

g(s) = g(s1) +
x

2J2
(xm − x)(s− s1) +

x2

4

(
1

J2
− 1

A2
0

)
(s− s1)

2
+ · · ·

where xm = A0 + J2

A0
. We observe that when x = xm g(s) has an extremal

point in s1. If A0 < J the point is a maximum, whilst being a minimum for
A0 > J .

In the former case we may discard the contribution, as it implies a min-
imum in the integrand. On the other side, when A0 > J the mean value
of the matrix entries lies outside the semicircle bounds, so a correction is
mandatory. We may evaluate the integral by introducing a dummy vari-
able ih2 = s − s1 and taking into account the first two terms of the Taylor
expansion, yielding a Gaussian integral that gives

I1 =

[√
2A0πN

J2
e−

N
2

lnxe−Ng(s1)− 1
2

ln(xm−x)

]n
where

g(s1) = − x2

4J2

(
A0

x
− 1

)2

+
lnx

2
− lnA0

2
− iπ

4

By substituting in the espression for I1 we have

I1 =

[√
2A0πN

J2
e−

iπ
4 e−

N
2

lnA0e−
x2N
4J2 (A0

x
−1)

2
− 1

2
ln(xm−x)

]n
Making use of the formula for the averaged density, we have a contribution

〈ρ(x)1〉 =
1

Nπ
Im

∂

∂x
ln(xm − x) =

1

N
δ(x− xm)

with no counterpart in the case of the variance J being larger than the
average A0. Hence, the general result for a real symmetric random matrix
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with a positive mean value of the entries is

〈ρ(x)〉 =

{
1

2π

√
4− x2 + 1

N
δ
(
x−

(
A0 + J2

A0

))
, if A0 > J

1
2π

√
4− x2 if A0 < J

(2.6)

From this result it is immediate to see that, if the variance of the matrix
distribution falls below the threshold set by the mean value A0, the semi-
circular law gains a peaked contribution due to an extensive population of
eigenvalues no more following the semicircular law and due to the fact that
the variance of the elements distribution shrinks. The possible implications
of such fact, i.e. the variance of the entries distribution having a threshold
which reflects on spectral properties, will be discussed more extensively in a
following chapter.

2.6.5 Finite size effects

Replica trick is also handy for answering the following question: what are
the effect of finite N on the spectral distribution?

We rewrite the ESD for Gaussian distribution in the replica form

〈ρ(x)〉 = − 2

Nπ
Im

∂

∂x
lim
n→0

1

n

[(
ei
π
4√
π

)Nn
×

×
∫ Nn∏

i,α=1

dwαi e
−ix

∑
i,α(wαi )2−J

2

N

∑
i,j(
∑
α w

α
i w

α
j )2

and express the exponentiated term as

∑
i,j

(
∑
α

wαi w
α
j )2 =

∑
α

(∑
i

(wαi )2

)2

+
∑

α 6=β,i,j

wαi w
α
j w

β
i w

β
j

so that the previous formula yields
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〈ρ(x)〉 = − 2

Nπ
Im

∂

∂x
lim
n→0

1

n

[(
ei
π
4√
π

)Nn
×

×
∫ Nn∏

i,α=1

dwαi e
−ix

∑
i,α(wαi )2−J

2

N

∑
α(
∑
i(w

α
i )2)

2
−J

2

N

∑
α6=β,i,j w

α
i w

α
j w

β
i w

β
j

]

Now, if the term
∑

α 6=β,i,j w
α
i w

α
j w

β
i w

β
j is to be neglected, as it is the case for

the replica symmetry when N →∞ and n→ 0, the semicircular law is read-
ily recovered. However, we want to compute the first correction (O(1/N)) to
that limit. In order to do so we perform a Hubbard Stratonovich transfor-
mation of the kind

e−
J2

N (
∑
i(w

α
i )2)

2

=

√
N

2π

x√
2J2

∫
dsαe−

x2

4J2N(sα)2−ixsα
∑
i(w

α
i )2

so that the density may be expressed in terms of the auxiliary variable
sα (under the assumption of replica symmetry) mediated over the ensemble
at the desired order

〈ρ(x)〉 = − 2

Nπ
Im

∂

∂x
lim
n→0

1

n

[(
ei
π
4√
π

)Nn√
N

2π

x√
2J2
×

×
∫
dsαe−

Nx2

4J2
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(sα)2

∫ Nn∏
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dwαi e
−ix

∑
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2

N

∑
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α
i w

α
j w

β
i w

β
j

]

and the integral over the ws may be written perturbatively as

I =

∫ Nn∏
i,α=1

dwαi e
−ix

∑
i,α(1+sα)(xαi )2×

×
[

1− J2

N

∑
α 6=β,i,j

wαi w
α
j w

β
i w

β
j +

1

2

J4

N2

∑
α 6=β,δ 6=γ,i,j

· · ·
]

Then, expanding this integral in a sum for each contribution we may
have a perturbative result for the desired order I =

∑
k I

(k), I(k) being the
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contribution of order
(
−J2

N

)k
. A diagrammatic approach may be followed

henceforth, nonetheless the method by which the result is obtained will be
discussed from another point of view in the following chapter, so we refer to
the paper [10] for the rather tedious calculations and give only the result for
the O(1/N) correction to Wigner law, that is

ρ1(x) =
1

N

[
1

2
(δ(x+ 2J) + δ(x− 2J))− 1

2π
√

4J2 − x2

]
so that the final result is

〈ρ(x)〉 =
1

2πJ2

√
4J2 − x2

[
1 +

J2

N(x2 − 4J2)

]
+

+
1

4N
(δ(x+ 2J) + δ(x− 2J)) (2.7)

Equation 2.6.5 shows that the correction is made up of two terms: a
border effect one (the peaks) and a more interesting “line-graph” effect. The
spectrum of the line graph indeed, as it will be shown in the following chapter,
is of the form 1

π
√

4−x2 . The effect on the semicircular distribution is that of
fattening a bit the tails. From a dynamical point of view, this could lead
to a change in the relaxation time. Being a consequence of the finiteness of
the number of sites, it might be related to the fact that the structure of the
network is not only tree-like (which give rise to the Semicircular law), and a
contribution of closed path to the moments counting is not negligible at the
order O(N−1).



Chapter 3

Network Theory and Spectral
Density

This chapter is dedicated to the exposure of some results in the Spectral
Analysis of networks [38]. First, some basic nomenclature and definitions
are given to clarify the relevance of the analysis performed on the spectra
and their “physical” meaning. Then we briefly expose the main classes of
networks which are commonly considered in the literature [4] [40] [15]. The
core of this chapter is the section about the spectral properties, in which
we make clear their relevance and expose some results about the emerging
properties that should be related to dynamical one. Both exact and limiting
results are shown, as well as non analytical results of simulations. Finally, we
perform an analogy between the spectral theory of networks and Quantum
Field Theories via the representation of the ESD which we discuss. This
latter section introduces the renormalization issue which is addressed in the
fourth chapter.

3.1 Basic definitions

We introduce the basic tools to perform and understand the analysis we are
going to develop in the followings. All the results and the definitions are
restricted to the case of undirected networks.

Definition 3.1.1 (degree). The degree di of a node i is the number of links
(edges) the node has.
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Definition 3.1.2 (Size). The size of a network N is the number of nodes
(even disconnected) in the network.

Definition 3.1.3 (Adjacency matrix). The adjacency matrix A, also known
as connectivity matrix, is the matrix whose elements Aij are null if there is
no connection between node i and node j, while taking the value 1 if they
are connected.

The following properties hold for the adjacency matrix

• TrA = 0;

•
∑

j Aij = di;

• It is symmetric, hence it has real eigenvalues;

• The maximal eigenvalue is λ ≤ N − 11.

From the adjacency matrix it is possible to define stochastic matrix that
represents the random walk performed on the network. If we introduce the
degree matrix ∆ whose entries are defined as ∆ij = δij/dj, we are able to
define the stochastic matrix

Π = ∆−1A

that is the one which characterizes the random walk on the network.

Definition 3.1.4 (Walk). A walk is a sequence of connected nodes, which
may contain a single node multiple times.

A specific term is devised for walk with no repetitions.

Definition 3.1.5 (Path). A path is sequence of connected nodes, in which
each node can appear only once.

The number of walks of a network is encoded in the adjacency matrix,
indeed

Theorem 3.1.1. The number of walks of k hops between node i and node
j is (Ak)ij.

1A tighter bound is the maximal degree, reached only in the case of a regular graph.
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Proof. If k = 1 is obvious, as it is the single link (if present) between the
two nodes. Let us assume it works for k − 1, so that the number of walks
between node i and node l is (Ak−1)il. Then the number of walks of length
1 between node l and node j is simply Alj. Hence the total number of walks

between node i and j is
∑N

l=1(Ak−1)ilAlj = (Ak)ij.

Definition 3.1.6 (Tour in a network). A tour is circular sequence of con-
nected nodes, i.e. the starting node is also the ending node, which may
contain a single vertex multiple times.

Again, tours with no vertex repetition have a specific name

Definition 3.1.7 (Cycle). A cycle, or loop, is a tour in which the only
repeated vertex is the starting and ending one.

Definition 3.1.8 (Diameter). The diameter D of a network is the longest
of the shortest path between two nodes in the network.

Mathematically speaking, it is the lowest k for which (Ak)ij 6= 0 for every
i, j nodes.

Definition 3.1.9 (Bipartite network). A network is said bipartite if the set
of nodes can be divided into two sets of nodes A and B such that there are
no links among the nodes in set A and among those in set B.

3.2 Classes of Networks

Networks are complex objects. A plethora of metrics, parameters, and mea-
sures may be extracted from a graph, still not describing it uniquely. There-
fore the need of categorization, as regrouping them into classes describing a
shared average demeanour allows to be much more general when speaking
about the properties of certain graphs. This categorisation is mainly done ac-
cording to the generative models that build the network, hence their growth.
However when talking about general properties these networks are display-
ing, such as “Randomness”, “Structure”, “Regularity”, and so on we must
be aware that we refer to their intuitive meaning, as there is no commonly
agreed or precise definition for them.
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3.2.1 Random networks

The model for the generation of a random network by Paul Erdös and Alfred
Renyi is widely known [15]. It was the act of birth of Network science, for
which still nowadays the most of the results is achieved. It is the most
intuitive model for building a graph and its spectrum is known to a certain
extent. However complex networks often show rather different behaviours
and features, hence it is not the most suited to mimic real-world counterparts.
This model prescribes two nodes i , j to be linked (or not) according to
a given probability p (or 1 − p). Indeed, having N nodes, we expect to

have pN(N−1)
2

links in the whole graph. The average link number N̄l will

be N̄l = p
(
N
2

)
, and its variance can be computed according to a binomial

distribution V ar(Nl) = p(1 − p)
(
N
2

)
. Moreover when studying properties

of random graphs, the limit of large N is performed, as it provides a nice
expression for the probability of having a certain average degree:

p(d) =

(
N − 1

d

)
pd(1− p)N−1−d ' d̄de−d̄

Nl!

where d̄ = 2
N

(
N
2

)
= p(N − 1) is the average degree. According to various

values p, graphs may look rather different one to another. As a matter of
facts, if p < 1

N
the whole graph will not be connected, but various detached

components will be present, increasing p to be of order ∼ 1
N

(d̄ = 1) a phase
transition-like phenomenon occurs, and a maximal connected component of
order O(N) appears.

3.2.2 Scale-free networks

Scale-free (SF) networks are sometimes called also “fractals” or “self-similar”,
although such properties are not really equivalent. The idea behind this kind
of networks is that when varying the scale at which the network is observed
the structure should not change drastically. Their most prominent feature is
the rising of hubs, that is nodes whose degree is significantly larger than the
others. This leads to a power-law distribution of the kind

p(d) = Cd−α

in the large N limit. It is a widespread conjecture that this kind of
network should imitate more “natural” network models, for which a degree
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distribution of the power law kind was observed e.g. World-Wide-Web, aerial
transportation, scientific paper citations, etc. The most widespread and
simple generative method for SF networks is the one proposed by Albert
Barabasi and Rèka Albert in [4] (BA model), in which the proposal for a
preferential attachment type of growth rather than a random one appeared
to explain the SF behaviour. The power law distribution, or at least the fat
tailed appearance, is related to long-range dependence, that is correlations
over distant sites.

3.2.3 Small-World networks

Scale-Free networks are a step towards modeling of real world networks, but
they are not the final one. Indeed, when it comes to portray the behaviour
of graphs generated by natural processes, some issues arise. The first is the
robustness, as purely SF networks are not robust with respect to perturbation
performed on hubs: secondly the question of the diameter that grows with
a power law in the case of BA model, while it has been observed that the
emergence of shortcuts in real world networks is a prominent feature. Then
the need to explain such overall (although not exact) self similarity also
displaying small scale properties when it comes to navigability. This is what
lead to the “Small-World” (SW) class of network, which are defined mainly
by the fact that their diameter grows logarithmically with respect to the
size of the network. The most prominent model for their generation is the
one proposed by Duncan Watts and Steven Strogatz [40], in which a regular
graph undergoes a random “rewiring” process that, in the case of low rewiring
probability, achieves the small world properties. This compromise between
the regular structure offered by the regular network (in which all the degrees
are equal) and a random, though small, perturbation, might be the key to
explain the mixed behaviour of this ensemble.

3.3 Spectra

Before going deeper into the problem of graph spectra, it is to be remarked
that the question whether a network is uniquely determined by its spectrum
is not a lazy one. Indeed, there are co-spectral graphs that are different up
to relabelling nodes when their size is N ≥ 52 so the question should be

2the so-called “Saltire pair in [37]”.
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rephrased to investigate if classes of networks are uniquely determined by
their spectrum, and how. In the words of Piet van Miegheim [38]: “I believe
that we still do not understand networks sufficiently. For example, if the data
(e.g., the adjacency matrix) of a large graph is given, and you are not allowed
to visualize the network, it seems quite complex to tell, by computing graph
metrics only, what the properties of the network are. [...] We as humans
see a pile of numbers, but often miss the overall picture and understanding.
I believe that the spectrum, that is for a sufficiently large graph a unique
fingerprint [...], may reveal much more.”

As a matter of facts, all the metrics of a network may be derived from its
spectrum, which often also gives immediate information such as bipartite-
ness3, local resemblance to known network patterns4, dynamical properties
of the walk that may be performed, etc.

Keeping these considerations in mind, we begin to expose some of the
results that involve spectra of certain classes of networks, highlighting the
physical reasons that underlie those patterns.

3.3.1 The spectral-structural relation

In order to build a sound bridge between some of the RMT results and
structural properties of networks, we give the following theorem.

Theorem 3.3.1 (Equivalence of tours and moments). Let G(N) be a graph
with N nodes, AN its adjacency matrix with spectral distribution ρA. Then
the number Ck of tours of length k in the graph is equivalent to the k-th
moment of the distribution.

Proof. It is a straightforward generalization of what has been done in the
proof of the Wigner law by the moment method. We know that the moments
of the distribution ρA are

mA
k =

∫
xkρA(x)dx = Tr(Ak) =

N∑
i1,···ik=1

Ai1i2Ai2i3 · · ·Aik−1ikAiki1

Now, being A the adjacency matrix of the network, each term Aij is non-
zero only if the two nodes i and j are linked, otherwise the term is unitary.

3When the spectrum is symmetric a graph is bipartite, if it is symmetric over a certain
value it is “locally bipartite”.

4See [38], section 7.1
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We may represent the resulting graph as a multigraph (i.e. a graph where
more than one edge between two nodes is allowed), where for each term Aij
an edge between node i and node j is added. The sum is therefore the number
of walks that start from the node i1, goes into the node i2 and so on until
it jumps back from the node ik to the starting node. This is precisely the
number of possible tours of length k of the network.

A remark that may be necessary is that tours are directional, that is
the tour that start from node i1 and steps to i2, all the way to ik before
jumping back to i1 and the tour that proceeds backwards are counted as 2
distinct tours. Hence, the multigraph representing the moments is not only
distinct from the underlying network as it has multiple edges between nodes,
but these edges are also directional if we are to make the identification of
moments and tours.

Also, for the first moments it is quite easy to count the number of tours
of length k that a network possesses, indeed

C2 = 2e

C3 = 6t

C4 = 8s+ 4c+ 2e

· · ·

where e is the number of edges of the network (the 2 is for the directional-
ity issue), t is the number of triangles (which may be travelled in 3 ·2 possible
ways), s is the number of squares (which may be travelled in 4 · 2 possible
ways), c is the number of cherries (which may be travelled in 2 · 2 possible
ways), and so on. Devising a method to generalise this kind of approach to
real-world graphs is not an easy task. However, this line of thought may be
useful to resolve perturbatively the spectra of a given network. A reference
where this approach is more thoroughly treated is [9].

3.3.2 Symmetries

Before analysing some of the known spectra of networks, we expose some
results about general spectral properties and their structural meaning. The
first and most important is that a network has a symmetric spectrum if it is
(almost) bipartite.
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Theorem 3.3.2 (Bipartiteness of a network). If the spectrum of a network
is symmetric over λ = 0 then the network is bipartite.

Proof. For a block matrix, we have the formal relation[
A B
C D

]
=

[
I 0

CA−1 I

]
×
[
A B
0 D − CA−1B

]
given that A is invertible. Then for determinants it is

det

[
A B
C D

]
= det(A) det

(
D − CA−1B

)
Now we take the adjacency matrix AN of a network GN

AN =

[
O K
KT H

]
where O is a m ×m zero matrix, K is a m × n matrix and H is n × n.

From the previous relation, the characteristic polynomial is

det(AN − λI) = (−λ)m−n det
(
λH − λ2In×n −KTK

)
which is symmetric only if also H is a zero-matrix. Then, the matrix

A(N) =

[
O K
KT O

]
is that of a bipartite network.

The vice versa may be easily proven, as it is done in [38], pages 131−134.
From this result, it is also immediate that a bipartite graph must show a
symmetric ESD, hence the odd moments vanish.

We should remark however that bipartiteness is a feature of networks that
have a thorough regularity in their structure. This is not the case for many
of the cases will be analyzing.

3.3.3 Random networks: Wigner law

The first result about limiting ESD of networks is that of the random graphs
built according to the Erdös Renyi model. It is known that the empirical
spectral density of such network converges to the semicircular law [8]. The
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reason for which this holds is clear in the very proof of the Wigner law
for random matrices. Indeed, when building the “multigraph” to count the
moments of the matrix A, we simply take A to be the adjacency matrix of
the ER network and thanks to the equivalence of moments and tours we may
readily recover the Wigner Law with rescaled variance J

〈ρ(x)〉 =

{
1

2πJ2

√
4J2 − x2, if x ∈ [−2J, 2J ]

0, otherwise

The results of simulations are in accordance with this result, as shown
in figure 3.1. The corrections developed for this law in the previous chapter
are now relevant as they allow us to see some of them with the eyes of the
spectral analysis of networks. In particular, the line graph effect emerging
in 2.6.5 will be computed in 3.3.5; while the correction for a positive mean
value 2.6.4 may be now linked to variance shrinking and peak appearance, a
feature common to scale-free networks as shown in 3.6 and 3.5.

Figure 3.1: Semicircular law for a Erdös Renyi random graph for a network
10000 nodes and probability of linkage p = 0.01. The normalised histogram
density is shown in blue while the Wigner law is plotted in orange.
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3.3.4 Regular graphs: McKay law

The McKay law is the limiting spectral distribution for random regular
graphs. It was developed independently from proper RMT and achieved
in the context of random regular graphs. A regular graph is a graph whose
nodes all have the same degree d. The theorem proven by McKay in [26] is
the following

Theorem 3.3.3. Let GN be a random regular graph with degree d ≥ 2.
Then, when N → ∞ the ESD of AN , that is the adjacency matrix of GN ,
tends to

〈ρ(x)〉 =

{
d

2π

√
4(d−1)−x2

d2−x2 , if x ∈ [−2
√
d− 1, 2

√
d− 1]

0, otherwise

Proof. A sketch of the proof is the following. Firstly, in the limit of N →∞
the structure is a pure d-tree for each node. Counting the moments is then
counting the possible walks on such trees. As such, we may readily discard
the odd moments, as closed paths on trees are always even. Then, we need
to count the number of paths of length 2k. Starting from the “root” node we
have d−1 possible “down”-steps and, after one of those, 1 “up”-step. Let us
suppose the walk returns to the root after 2(i+ 1) steps, with 0 ≥ i ≥ k− 1.
For each down-step these walks are equivalent to the so-called “Dyck” paths5,
whose number is precisely the ith Catalan number. Then the number of
possible walks between the first step and the 2(i + 1) one is Ci(d − 1)i. We
may write then a recursion relation for the m2k number of paths as

m2k = d
k−1∑
i=0

Ci(d− 1)im2(k−i−1)

and by multiplying by the variable yk and summing over it we have

M(y) =
∞∑
k=0

m2ky
k = 1 + d

∞∑
k=1

k−1∑
i=0

Ci(d− 1)im2(k−i−1)y
k =

= 1 + dy

(
∞∑
k=0

Ck(d− 1)kyk

)(
∞∑
k=0

m2ky
k

)
5Dyck paths are those staircase walks that, in a square n× n go from the origin to the

opposite vertex without going above the diagonal.
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in which we have a kind-of generating function of the moments. Now, the
following relation holds for the Catalan numbers

∞∑
k=0

Ck(d− 1)kyk =
1−

√
1− 4(d− 1)y

2(d− 1)y

so that we may get to an equation for the generating function

M(y) = 1 +
d(1−

√
1− 4(d− 1)y

2(d− 1)
M(y)

which means

M(y) =

(
1− d(1−

√
1− 4(d− 1)y)

2(d− 1)

)−1

Now, we compute the moments for McKay law, which are

mk =

∫ 2
√
d−1

−2
√
d−1

dx
d

2π

√
4(d− 1)− x2

d2 − x2
xk

in which only even moments (2k) are non-vanishing. Their generating
function is

∞∑
k=0

∫ 2
√
d−1

−2
√
d−1

dx
d

2π

√
4(d− 1)− x2

d2 − x2
x2kyk =

=

∫ 2
√
d−1

−2
√
d−1

dx
d

2π

√
4(d− 1)− x2

d2 − x2

1

1− x2y
=

= −
∫ π

−π
dα

d

2π

4(d− 1)
√

1− cos2 α

d2 − 4(d− 1) cos2 α

sinα

1− 4(d− 1) cos2 αy

where the substitution x = 2
√
d− 1 cosα was made. Passing to a complex

variable
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d

2πi

∮
|z|=1

dz

z

(d− 1)
(
z − 1

z

)2

d2 − (d− 1)
(
z + 1

z

)2

1

1− (d− 1)
(
z + 1

z

)2
y

=

=
d

2πi

∮
|z|=1

dz

z

(d− 1)(z4 − 2z2 + 1)

dz4 − (d− 1)(dyz2 − z2 + y)(z4 + 2z2 + 1)
=

=
1

1− d(1−
√

1−4(d−1)y)

2(d−1)

= M(y)

solving through residues. The moment generating functions coincide, so
do the moments and we may conclude that the distributions also do.

Figure 3.2: McKay law for a regular graph of 10000 nodes with degree d = 3.
The normalised histogram distribution is shown in blue, while McKay law is
plotted in orange.

This result may be interpreted as a constrained thermodynamical limit
in the case of random regular graphs, where the unconstrained limit is the
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semicircular law. Indeed, if the independence of matrix entries was seminal
in the proof of that general result, in this case the entries, i.e. the nodes, are
strongly correlated by the regularity condition imposition. As such this law
behaves in a mixed way: the ESD is continuous as in the semicircular case,
but a repulsion effect for the eigenvalues appear6, “fattening” the tails of the
distribution. Nonetheless, a startling result is that when the connectivity
grows, the limiting spectral distribution is the semicircular law [36], showing
that Wigner distribution has quite universal features. The transition is shown
in figure 3.3, by which we see that already in the case of d = 8 the semicircular
law holds quite well.

(a) d = 2 (b) d = 3 (c) d = 4

(d) d = 6 (e) d = 8 (f) d = 10

Figure 3.3: 6 realisations of d-regular networks with 5000 nodes. The degree
is specified in the subcaptions. The normalised histogram distributions are
shown in blue, while the respective McKay laws are plotted in orange.

6The so-called repulsion effect of eigenvalues may be understood from the electro-like
potential 2.4.1. Ça va sans dire, in this case the potential is not logarithmic and should
be determined.
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3.3.5 Some exact spectra

In rare occasions exact spectra are known. In these cases, it is easy to recon-
struct the ESD. Let us suppose to have the spectrum λk. Then, expressing
the ESD as in 2.2.1, we make use of the delta representation

δ(x) =
1

2πi

∫ c+i∞

c−i∞
dzezx

so that the ESD may be recast as

ρ(x) =
1

2πi

∫ c+i∞

c−i∞
dzezxhλ(z)

where the function hλ(z) is

hλ(z) =
1

N

N∑
k=1

e−zλk (3.1)

Then, it is sufficient to insert the exact spectrum in this expression, which
plays the role of a generating function for the ESD.

The line graph

The first fully known spectrum is one of the simplest network possible, that
is the line. Each node is linked to other two except two nodes, the start one
and the end one. The adjacency matrix of such a network is of the form7

A =


0 1 0 · · ·
1 0 1 0 · · ·
0 1 0 1 · · ·
· · · · · · · · ·

· · · 1 0 1
· · · 0 1 0


for which we know all the eigenvalues, as it is a special case for a Toepliz

tridiagonal matrix [18] whose spectrum specializes to

λk = −2cos

(
πk

N + 1

)
7With a suitable labelling of indices, an operation that is always possible.
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Then the ESD is simply given through the hλ(z) function

hλ(z) =
1

N

N∑
k=1

e2zcos πk
N+1

whose limit when N →∞ is taken making k continuous so that

hλ(z) =
1

N

∫ N

0

dke2zcos πk
N+1 =

N + 1

Nπ

∫ Nπ
N+1

0

dte2z cos t → 1

π

∫ π

0

dte2z cos t = I0(2z)

I0(2z) is the first modified Bessel function of the first kind. If we put it
in the ESD formula we have

ρ(x) =
1

2πi

∫ c+i∞

c−i∞
dzezxI0(2z) =

1

π

1√
4− x2

(3.2)

A worthwhile remark is that this term is of the same kind of the one
which appears in the finite size correction to the semicircular law. Then, the
natural interpretation of that result may be that of the fact that for finite
size there are paths which are simply lines, i.e. path that starts and do not
come back “tree-like”, simply ending the possible hops performable (N − 1).
Note also that McKay law reduces to this result when the degree is 2.

Regular graph

Regular graphs have a known spectrum too. It can be found as follows. Being
the degree d constant for every node, the graph may be visualized on a circle,
which is invariant with respect to rotations. Travelling on this circle we have
that each node has precisely k previous and k subsequent neighbours, where
of course 2k = d. Then we introduce the rotating operator P n, that rotates
the network by n vertices (anticlockwise). Being a symmetry operation, P n

commutes with the adjacency matrix, so they may be used to create a basis
of common eigenvectors, that are ~ei with

(ei)j = e2πi jl
N

where l = 0, 2, ...N − 1. The eigenvalues of P n will hence be

s
(n)
l = e2πinl

N
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Figure 3.4: Line graph spectrum for a network of 10000 nodes. In blue the
normalised histogram distribution, while in orange the analytic ESD.

which are then summed pairwise to find the eigenvalues of the adjacency
matrix

λl = 2
k∑
j=1

cos
2πjl

N
=

sin[(2k + 1)lπ/N ]

sin(lπ/N)
− 1

which in the continuum limit for N →∞ reads

λ(x) =
[sin(2k + 1)x]

sinx
− 1 = U2k(cosx)− 1

where U2k(cosx) are the Chebyshev polynomials of the second kind. Then
the h function is

hλ(z) =
1

π

∫ π

0

dxe−2z
∑k
j=1 cos(2jx)
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which for k = 1 is equivalent (again) to the line graph8.
It is quite hard to find an exact form to express the ESD of regular graphs,

beside from the cycle one. However, when k ≥ 2 we may find a recursion law
for the hλ functions, namely

h
(k)
λ (z) = h

(k−1)
λ (z)

∫ π

0

dxe−2z cos(kx) =

= h
(k−1)
λ (z)

[
I0(2z) +

∞∑
j=1

Ij(2z) cos(2kjx)

]

from the generating function of the Ij. Knowing an exact form for the
ESD for a regular graph would be of great use. Indeed of the three great
classes of networks, that is Random, Scale Free and Small World, we have
insights of the general ESDs of the former two, but not a real hint about the
ESD of a Small World network. However the most widely used generative
process for a SW network is that due to Watts and Strogatz [40], and it
starts from considering a regular graph whose links are rewired according to
a probability parameter. A regular graph ESD then should be close to the
one that a Small world network possesses when the rewiring is small. We
will deal with this more extensively in the last chapter.

3.3.6 Scale-free spectra

A conjecture about the SF type of networks is that they should display a
scale-freeness in the spectrum as a consequence of the scale invariance of
the structure itself. Indeed, the BA model gives a peaked spectrum, in
which each peak seems to be somehow related to the scale at which the
dynamics described by the eigenvalue happens. It is shown in figure 3.5. In
the followings we try to give a hint of a proof by a generative algorithm for
a scale-free network.

The cone of a network

Let GN be a network of N nodes, with adjacency matrix AN . The operation
of “cone” of GN is the addition of one node which is linked to every other

8The line graph is actually disconnected at the extrema, whilst the regular graph is
always closed for k ≥ 1 so they are not the same graph unless in the large N limit.
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Figure 3.5: The spectrum of a Barabasi-Albert SF network [4] of 10000 nodes
with parameter k = 1.

node. The resulting adjacency matrix is AN+1 and is built as

AN+1 =

[
AN u
uT 0

]

from the relation about the determinant of a block matrix

det

[
A B
C D

]
= det(A) det

(
D − CA−1B

)
we have that the spectrum of the cone may be expressed in terms of the

spectrum of the graph GN with the upcoming of a new eigenvalue. Applying
it to this case, where B = u and C = uT , and D = λ, and A = AN − λI
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det(AN+1 − λI) = det(AN − λI) det
(
−λ− uT (AN − λI)−1u

)
=

= −(λ+ uT (AN − λI)−1u) det(AN − λI) =

= −
[
λ− 1

λ

∞∑
k=0

uTAku

λk

]
det(AN − λI)

where the relation for the resolvent of a matrix was used

(A− λI)−1 = −1

λ
(I − λ−1A)−1 = −1

λ

∞∑
k=0

Ak

λk

Starring the network

Now, perform a slightly different operation: take a network GN with adja-
cency matrix AN and make l copies of the network, resulting in the matrix
AN l . Then perform a cone on that ensemble of disconnected copies. This
operation is called the “star” of the network GN . Applying the previous
formula for the characteristic polynomial yields

det(AN l+1 − λI) = −
[
λ− 1

λ

∞∑
k=0

uTAk
N lu

λk

]
det(AN − λI)l

where the relation det(AN l − λI) = det(AN − λI)l comes readily from
the fact that AN l is a block matrix.

The scheme

The core of the idea is to make stars of stars to implement a kind of renor-
malization transformation. Let GN be the “seed” network, with adjacency
matrix AN = A0. Let l1 be the number of copies that are made of GN .
Let AN l1 = A1 be the adjacency matrix of the yet-to-be-starred network
and AN l1+1 = A1∗ be the adjacency matrix for the starred one, so that it is
immediate from the previous formula that

det(A1∗ − λI) = −
[
λ− 1

λ

∞∑
k=0

uTAk1u

λk

]
det(A0 − λI)l1
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Then make l2 copies of the starred network G1∗ . The resulting adjacency
matrix A2 will be a block matrix formed blocks of A1∗ . Then cone the copies
of G1∗ . By the previous relation this starring gives

det(A2∗ − λI) = −
[
λ− 1

λ

∞∑
k=0

uTAk2u

λk

]
det(A1∗ − λI)l2 =

= (−1)l2+1

[
λ− 1

λ

∞∑
k=0

uTAk2u

λk

]
·
[
λ− 1

λ

∞∑
k=0

uTAk1u

λk

]l2
det(A0 − λI)l1l2

For the third starring step, that is making l3 disconnected copies of G2∗

and connecting them, the same relation yields

det(A3∗ − λI) = −
[
λ− 1

λ

∞∑
k=0

uTAk3u

λk

]
· det(A2∗ − λI)l3 =

= (−1)(l2+1)l3+1

[
λ− 1

λ

∞∑
k=0

uTAk3u

λk

]
·
[
λ− 1

λ

∞∑
k=0

uTAk2u

λk

]l3
·

·
[
λ− 1

λ

∞∑
k=0

uTAk1u

λk

]l2l3
det(A0 − λI)l1l2l3

The scheme is now clear, for a sequence of h starring operations, each
involving a number li of copies at each step i, the spectrum will be given by
the characteristic polynomial

det(Ah∗ − λI) = (−1)(((l2+1)l3+1)
···
···+1) · det(A0 − λI)

∏h
i=1 li·

·
[
λ− 1

λ

∞∑
k=0

uTAkhu

λk

]
·
h−1∏
i=1

[
λ− 1

λ

∞∑
k=0

uTAki u

λk

]∏h
j=i+1 lj

A clarification should be made about the vectors u. They are the unity
vectors of the dimension required by the scale li, that is the unity vector of
the dimension required by the step i, so we indicate also them by ui. This
may look a pedantry but it may be useful later on.



Spectra 61

Comments on the result

If the vector ui is in fact the unity vector the quadratic form in ui reduces to

uTi A
k
i ui = W

(i)
k

that is the number of walk of length k in the network described by the
matrix Ai. Then we may discard the seed graph (collapse the copies of the
seed in a single node) to see what happens to the spectrum when this purely
fractal structure is created. Ignoring the (−1) prefactor, the spectrum is
given by the solution of the equation

h∏
i=1

[
λ− 1

λ

∞∑
k=0

uTi A
k
i ui

λk

]∏h
j=i+1 lj

= 0

so that for a process involving always the same number of copies l at each
step, the equation reduces to

h∏
i=1

[
λ− 1

λ

∞∑
k=0

W
(i)
k

λk

]l(h−i)
= 0

so that for each scale we have with multiplicity l(h− i)9 the solutions of

λ2 =
∞∑
k=0

W
(i)
k

λk

Solving this equation is not easy. It should be solvable however for special
classes of network. Indeed, the number of walks W

(i)
k of the network Gi may

be expressed, in terms of of the angle αj between eigenvector vj and the unity
vector u as

W
(i)
k = NGi

NGi∑
j=1

λkj cosαj

so that the equation for the eigenvalues becomes

λ2 = NGi

∞∑
k=0

∑NGi
j=1 λ

k
j cosαj

λk

9Only 1 for the h last step.
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For instance, in the case of a first step of the algorithm applied to single
nodes we have

W
(1)
k =

{
2lk1 , if k odd

l
k/2
1 (l1 + 1), if k even

Finally, when the vector ui is not all-ones and drawn from a distribution,
the peaks centered in the eigenvalues that solve the self-similar equations
are smoothed. Instead of having a λi characteristic of the ith scale with
multiplicity li we will have a distribution over 〈λi〉, whose weight in the total
distribution is linked with the exponent li.

Properties of the generated network

A simulation was run for the network generated by this algorithm, whose
spectrum is shown in figure 3.6.

Figure 3.6: A network generated by the starrification algorithm of 5460
nodes, which corresponds to a six iterations procedure with parameter
li = l = 4.
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We see the self replicating peaks behaviour to appear. The fractal struc-
ture in the adjacency matrix for this network is evident from figure 3.7.

(a) N = 1365 (b) N = 341

(c) N = 85 (d) N = 21

Figure 3.7: Adjacency matrices for the starred network, the purple pixels
are zero value cells while the yellow ones take the value one. In the top
left corner, the adjacency matrix of the network generated by the starring
algorithm with 5 iterations of 4 copies at each step, the size being 1365.
In the top right, bottom left and bottom right corners, we zoomed for the
structure of the subnetworks of respectively 341, 85, 21 nodes.
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Moreover, the peaks representing the eigenvalues multiplicity are in the
same proportion as the copies parameter l, as expected. However, an unex-
pected feature emerges as some noise seems to appear as the third iteration
is taken into account. We see that the eigenvalues having the third greater
“weight” are not symmetric, and the noise seems to have the same weight.
If we zoom in, we see that the self replicating structure is in fact shared by
this noise, as in figure 3.9. Then, we may think that this is not a true noise,
but rather a feature of the network we generated.

(a) (b)

Figure 3.8: Zoom of the perturbation in figure 3.6. We see that the self-
similarity structure is kept by the noise, as the ratio of eigenvalues multiplic-
ity is in both cases 1 : 4.

This breaking of symmetry should be understood as strong non-bipartiteness.
As a matter of fact, it can be linked to the very algorithm by which we build
the network. Why then this breaking of symmetry appears only at the third
iteration? The reason may be due to the fact that three is the minimal
number of edges for minimal loops (triangles) to appear. And as triangles
appear, the starrification algorithm replicates that structure over and over,
preserving their relative “weight” in the moment counting.

Let us try to compute the moments for a the case in which li = l.

m1 = Tr(A) =
N∑
i=1

λi = 0

by definition of adjacency matrix.
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m2 = Tr(A2) =
N∑
i=1

λ2
i = J2

which defines the variance of the distribution. Then for the third moment
we have

m3 = Tr(A3) =
N∑
i=1

λ3
i 6= 0

If we expand this sum we have

N∑
i=1

λ3
i =

∑
i0

λ3
i0

+
∑
i1

λ3
i1

+
∑
i2

λ3
i2

+ · · · =
h∑
j

∑
ij

λ3
ij

where we rearranged the sum according to each eigenvalue scale multi-
plicity. An estimate (large) for each term

∑
ij
λ3
ij

is (λMj )3 by which we mean

the largest (in absolute value) eigenvalue relative to the scale j, multiplied
by its multiplicity l(h−j).

Then let us go into the thermodynamic limit N → ∞ and rescale this
moment. N grows as lh. The scaled third moment is

m3

N
∼

h∑
j=0

(λMj )3

lj
(3.3)

If the thermodynamic limit is performed by a fixed cloning parameter
and an infinite number of iterations then the third moment does not vanish.
This implies that the number of triangles grows as the number of nodes.
If, however, the limit is performed by taking a very large number of copies
and fixed steps, the third moments, hence the number of triangles vanishes.
As a matter of fact, the part of the algorithm that generate connections
are the starring steps (parameter h), while the cloning ones are devoted to
making the structure scale-free. If this reasoning is correct, the symmetry
should break only when starrification has been performed at least three times,
because three is the minimal number of link addition steps that requires for
a ensemble of disconnected nodes to form triangles among them. Indeed,
from the figure we see that the symmetry breaking appears for the third
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Figure 3.9: SB versus cloning parameter l. The networks were realised by
fixing the iteration number to 3 but varying the number of copies l performed
at each iteration. The power law decay fits the points almost perfectly.

most abundant eigenvalue, which is the one relative to the third step of the
process.

In order to verify this conjecture, we may measure the magnitude of this
symmetry breaking in two ways: we could count all the eigenvalues which
do not have a symmetrical partner, however this method may overestimate
the noise by taking into account also the eigenvalues from the third scale
on that are only “perturbed” by the noise presence. Another method comes
from the fact that we expect each eigenvalue at the scale j to be greater in
magnitude with respect to the ones of the scale j−1. Then the noise estimate
is performed by counting all the λj which are smaller than λj−1. In figure
3.9 we plot the estimate of the symmetry breaking (SB) versus the cloning
parameter l according to this method. The simulation seems to confirm the
conjecture about the third moment vanishing.
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Figure 3.10: A Watts-Strogatz network with 10000 nodes, initial degree d = 4
and rewiring probability p = 0.01

3.3.7 The Small World network

There are no analytical results about the spectra of SW networks which are
not empirical or results of simulations. In figure 3.10 we show the result of
the spectrum of a Small World network obtained via the Watts-Strogatz algo-
rithm. The most prominent feature is the lack of symmetry in the spectrum,
meaning that the network is not bipartite. This breaking of symmetry may
be explained by the non vanishing of the odd moments in the large limit. We
will talk more extensively about this in the final remarks. Another feature is
the mixed behaviour between a peaked and continuous distribution, which is
linked both to hub structure (peaks meaning less variability of degree) and to
navigability (continuous transition between states rather than discrete hops).
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3.4 An analogy with QFT

We have seen in section 2.6 how the replica trick may be of use to give cor-
rection to the ESD of ideal infinite random networks. The reader may have
noticed that those correction were actually perturbative expansions, accord-
ing to the modified PDF in the case of finite mean value and a higher order
one in the case of finite size effects. In this subsection we try to formalize
that scheme of thought prior to the use of replica variables. The first thing
that we notice is that when we have to compute the non-averaged SD we
may recast the expression as

ρ(x) = − 2

Nπ
Im

∂

∂x
lnZN(x)

where we introduced the expression for a “partition-like” function for the
adjacency matrix entries’ ensemble, being

ZN(x) =

∫ N∏
i=1

dφie
− i

2

∑
i,j φiHij(x)φj = Z0

N(x)

∫ N∏
i=1

dφie
− i

2

∑
i,j φiAijφj

where Hij(x) = δijx−Aij and Z0
N(x) =

∫ ∏N
i=1 dφie

− ix
2

∑
i φ

2
i and we may

see that a potential term appears

〈ZN(x)〉 =

∫ N∏
i

dφie
− ix

2

∑
i φ

2
i

〈
e−

i
2

∑
ij φiAijφj

〉
=

=

∫ N∏
i

dφie
− ix

2

∑
i φ

2
i

∫ ∏
ij

dAijp(Aij)

∫ N∏
i

dφie
− i

2

∑
ij φiAijφj =

=

∫ N∏
i

dφi
∏
ij

dAije
− i

2
x
∑
i φ

2
i−

i
2

∑
ij φiAijφj+

∑
ij ln p(Aij)

Now, we see that a meaning arises from this formula. Let us assume to
run a single-particle random walk on the network described by the adjacency
matrix A. A vector φi represents a possible state of the particle on the graph,
i.e. the particle being in the ith node, and the product Aijφi is the one-step
evolution from node i to node j. Then, the product φiAijφj represents the
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one-step evolution from node i to node j, if possible. Let us pass to the
Einstein convention for summation over repeated indices. Then, if we expand
the exponential, we have the series

e−
i
2
φiAijφj = 1− i

2
φiAijφj −

1

8
(φiAijφj)(φiAijφj)−

− i

48
(φiAijφj)(φiAijφj)(φiAijφj) + · · ·

Now, let us take the second order term and rearrange it

φiAijφjφiAijφj = φiAijφjφjAjiφi = φiAijAjiφj

as of course φjφj = 1. This is the evolution of a state from node i to node
j and back to i.

i j

Figure 3.11: A one-loop correction to the state φi.

Then the third order term, recalling that Aij = Aji and expanding Aij =
δikAkj and φi = δikφk, is readily

φiAijφjφiAijφjφiAijφj = δ2
ikδ

2
kjφiAijφjφjAjkφkφkAkiφi = δijkφiAijAjkAkiφi

We introduced the δijk to resume the deltas in a single one having the
same effect.

The meaning of this is more clear when we consider the fourth order term

φiAijφjφiAijφjφiAijφjφiAijφj =

=
1

2

(
(φiAijφjφiAijφj)

2 + φiAijφjφiAijφjφiAijφjφiAijφj
)

=

=
1

2

(
(φiAijAjiφi)

2 + δ2
ikδ

2
jlφiAijφjφjAjkφkφkAklφlφlAliφi

)
=

=
1

2

(
(φiAijAjiφi)

2 + δijklφiAijAjkAklAliφi
)
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i j

k

Figure 3.12: A two-loop correction to the state φi.

i j

k l

Figure 3.13: A three-loop correction to the state φi.

A clear path emerges. The expansion of the exponential is precisely count-
ing all the possible loops that a state may perform on the network, the nth

term corresponding to a n-length path to follow. A weight δi1···ik is intro-
duced to see that for every term, the more a loop is “further-reaching”, the
less its contribution to the overall term. For more than three steps paths we
also see that they are possible by summing prior blocks and adding a new
“species” of paths when increasing the order, i.e. the length.

According to this interpretation the formula for the partition function
becomes
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〈ZN(x)〉 =

∫ N∏
i

dφi
∏
ij

dAij
∏
ij

e−
i
2
xφiδijφj− i

2
φiAijφj+ln p(Aij) =

=

∫ N∏
i

dφi
∏
ij

dAij
∏
ij

e−
i
2
xφiφi

[
1− i

2
φiAijφj−

− 1

8
φiAijAjiφi −

i

48

∑
k

δijkφiAijAjkAkiφi−

− 1

768

[
(φiAijAjiφi)

2 +
∑
kl

δijklφiAijAjkAklAliφi

]
− · · ·

]
p(Aij)

Now we may try giving a meaning to this formula. The Z0
N part of the

function is a soliton wave10. Then, when averaging over the ensemble of the
adjacency matrix entries what we are doing is propagating such soliton wave
for each possible (weighted) self-loop of each state φi, the term p(Aij) telling
if such expansion is possible. This represents a random walk from the state
φi that ends in the same state, taking into considerations all the possible
ways of exploring the states network. It is to be remarked that we are taking
into consideration tours, hence directional paths, so that the RW performed
may be reversible as well as it may be not. Finally, the integration over the
states represents a mean of the random walk, which is a random walk of N
particles, each starting from one of the N different states. The loop expansion
here performed is, to the best of my knowledge, new in the field of spectral
analysis of network. However, it looks like the paper [28] is implicitly taking
this framework to develop a continuous and more QFT-like theory. Still,
I believe the continuum limit under the replica assumptions, while helping
greatly in the actual computation of the spectral density, may lead astray
from the interpretation just given. Before moving to the next subsection, I
believe it is worthwhile to highlight that what we just found could be a nice
candidate to give an interpretation to the partition function formalism for
networks spectra in a dynamic context. Also, if such interpretation were to
be expanded alongside field theory lines of thought, we may wonder what an
interaction term would represent to our eyes.

10We can see that by solving for ρ when only that term appears.
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3.4.1 Renormalization equation

A proper QFT analogy would not be complete without an insight over renor-
malization. Indeed the next chapter will be entirely dedicated to the im-
plementation of the Renormalization Group over classes of networks, so I
deem trying to establish a connection to be useful. We had highligths in
the previous section that contemporary theoretical physics methods are of
use in the field of RMT, and on the same level of QFT perturbative ap-
proaches there should be mentioned the supersymmetric approach of [12].
The bridge between the QFT analogy and RG tecniques may come from the
work [23]. They redefine an effective potential from the one that emerges
from the averaging of the partition function

V (t, φ) = ln

∫
Dψe

1
t

∑
i ψ

2
i+V0(φ+ψ) −N ln t

where V0(φ) is the potential that appears in the non-free equation

V0(φ) = ln〈e− i
2

∑
i φiAijφj〉

And t = 1/z was introduced for convenience. Now, such potential obeys
a Gaussian convolution rule

V (t+ s, φ) = ln

∫
Dψe−

∑
i

ψ2
i
s

+V0(t,φ+ψ) −N ln s

and for a small s = dt we have this kind of equation

∂V (t, φ)

∂t
=
∑
i

∂2V (t, φ)

∂φ2
i

+
∂V (t, φ)

∂φi

∂V (t, φ)

∂φi
(3.4)

or, in the equivalent integral form,

V (t, φ) = V0(t, φ) +

∫ t

0

ds
∑
i

∂2V (t, φ)

∂2φi
+
∂V (t, φ)

∂φi

∂V (t, φ)

∂φi

As it is said in the article, these equations correspond to a Renormali-
sation equation for a quantum field theory in 0 dimensions. On the LHS of
equation 3.4.1 we recognise a term describing how the potential that gener-
ates the new theory, i.e. a “renormalised” network, scales according to the
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dimension parameter t11.
Let us take a closer look to the terms in the right hand side. The action

of the first term, the second derivative one, on the loop expansion in the
potential is the following

φiAijφj −→ 0

φiAijAjiφi −→ AijAji

φiAijAjkAkiφi −→ AijAjkAki

that is to truly count the loops which are present in the network generated
by the potential V . The double derivative term instead acts as

φiAijφj −→ φjAjiAijφj

φiAijAjiφi −→ φiAijAjiAijAjiφi

φiAijAjkAkiφi −→ φiAijAjkAkiAikAkjAjiφi

that is a “counting trees” term. Indeed, the second derivative term “de-
taches” the possible loop expansions of a state and the summation in the
equation 3.4.1 is precisely the counting of such loops, i.e. tours of the net-
work; while the double derivative one has the effect of opening two loops
and attaching them, making them to be travelled like trees from roots to
leaves and back on. Then the invariance with respect to scaling for a net-
work whose potential has Gaussian cumulants12 requires that a loop-counting
term equates a tree-counting term. I believe this is related to the proof we
gave for the semicircular law with the moments method; as a matter of facts
we showed that in the case of Wigner matrices the only moments (loops)
that do not vanish in the large dimension limit are those tours performed on
trees.

11When computing the eigenvalues z of an adjacency matrix they scale linearly with the
dimension of the matrix, viz. the dimension of the network.

12This request is made in order to achieve the convolution formula.
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Chapter 4

Renormalization Group
Approach

4.1 Introduction

A fractal framework such as the one provided by the scale-free class of net-
work should be ideal for the application of Renormalization Group (RG)
techniques. Indeed, the machinery provided by such method will be insight-
ful to discover the “phases” networks may show. First, we need to define
the environment in which the RG is employed. A fractal (scale-free) network
is a network that shows the properties of self-similarity at different scales.
The first problem one may encounter is that real world networks are not self
similar at all scales, being self similar only when changing certain scopes, this
fact due to finiteness of real world examples. To overcome this fact we may
assume to work with an infinitely extended network, whose number of nodes
and edges diverges, ensuring that the scope-changing (yet to be properly
defined) may be performed indefinitely. The first issue arising in the devel-
opment of such framework is to properly define the method by which the RG
may be implemented. Some works [34], [33] suggest that the “box-covering”
algorithm is the one suited to perform such task. Indeed, the procedure is
to regroup nodes in the underlying network in boxes whose capacity b means
that nodes in each box may be at most at distance b. Then, each box col-
lapses into a “supernode”, and the edges between such nodes exist if any
of the “undernodes” in two different boxes were connected. Such procedure
allows also to define quite naturally a fractal dimension of the network, i.e.
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a measure of the scaling feature of the graph. Indeed, letting N0 to be the
number of nodes of the starting network and Nb the number of nodes in the
b-renormalized network, the ratio between them shall be

N0

Nb

∼ bdF

where dF is the now defined fractal dimension. We also remark that for
a thoroughly scale-free (SF) network the above relation is exact. The action
of such renormalization that maps a network G0 into Gb is shown in figure
4.1

G0

Gb

Figure 4.1: Visualization of the action of the renormalization transformation
via the box-covering implementation.

4.2 Implementation of perturbations

In the framework of thermodynamic limit of ideally SF networks one has
that the action of the RG transformation Rb is to left unchanged the starting
network G0 so that

Gb = Rb[G0] = G0

We may wonder then what happens when small perturbations W oc-
cur to interfere with the purely SF structure in the renormalized case. A
perturbation to the self-similar graph G0 is performed through the random
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addition of edges between nodes, that act as shortcuts when they link two
distant nodes. We introduce those shortcuts with probability depending on
the distance between two nodes r

p(r) = Ar−α

where A is an appropriate renormalizing constant, thus the perturbed
graph G′0 is obtained. Then, we may wonder what is the effect of the renor-
malization on the perturbation, i.e. how to realize the Wb that correctly
gives the perturbed and renormalized graph G′b. The scheme is the following

G0 G′0

Gb G′b

W

Rb

Wb

and the visualization is shown in figure 4.2.
We do so by computing the probability of not having shortcuts between

two nodes at distance br in the renormalized network G′b. This is

PNS = [1− p(br)]b2dF

Then the probability that there are shortcuts at distance r in G′b is 1−PNS

p(r) = 1− [1− p(br)]b2dF = 1− [1− A(br)−α]b
2dF

The addition of shortcuts obviously increase the connectivity of the net-
work, but we may wonder if there are any fixed points when the renormal-
ization is applied indefinitely. Indeed, one may take the limit for b → ∞
in order to represent the infinite repetition of Rb. With the substitutions

x = (br)α

A
and B(r) = A

2dF
α r−2dF the limit is performed

p∗(r) = lim
b→∞

pb(r) = 1− lim
x→∞

(
1− 1

x

)B(r)x(
2dF
α )

= 1− lim
x→∞

e−B(r)e−x
( 2dF

α −1)

Now, according to the value of the exponent s = α
dF

we may divide the
space of configurations in phases that corresponds to the fixed points of the
flow. Indeed, the transformation is self-similar in three cases. The first one
is when s < 2, viz. p∗(r) = 1, so that there is always a shortcut between two
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G′0

G′b

Figure 4.2: The renormalization action on the perturbed network when short-
cuts are added.

nodes at any distance. This is the case of a totally connected network, i.e.
a complete graph. It is not surprising that a complete graph is self-similar,
indeed, the wholly connected network is nothing but a single node to the
eyes of the RG transformation. Then, the case in which s > 2 is the one of a
purely fractal network, as the probability of finding any shortcut between two
nodes shrinks quite rapidly to p∗(r) = 0. This too does not come unexpected,
as the addition of shortcuts is insufficient to give a significant contribution to
the renormalized network. To visualize it, it would be as if the shortcut are
added so scarcely that they are only inside the boxes, so they have no effect
when widening the scope. However there is also a third fixed point, which
may seem startling at a first glance. Indeed, when the critical exponent s = 2
there is a fixed numbers of shortcuts at any scale of length. This is quite
remarkable, as it identifies a phase in which the self-similarity features does
not hinder the navigability properties like in the pure SF case. The analysis
of this latter fixed points will be best performed in the next section.

4.3 Analysis of the phase space

The first thing to point out about the fixed points is their stability. With
respect to the perturbation, it is clear that the fixed point of the complete
graph, which we call Gc, is attractive and stable. The purely SF graph G0

shows a mixed behaviour; any G′ is thrown apart from it by the RG flow
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when s ≤ 2, while being attractive only in the case s > 2, however it is
clearly not stable. The third and most intriguing fixed point, which we call
Gm, is attractive, but only for a unique value of the critical exponent.

Nonetheless complete and SF graphs are not the only network models we
know, hence it is worthwhile trying to locate in the space of configuration
random and regular graphs too, as they are the models we know the most
about. Indeed, the random network model should locate in a region between
G0 and Gc. The reason for this fact, which should be anyway intuitive, will
be clearer in the followings when trying to link the RG analysis with network
SD. Also, the fact that when randomized regular graphs tend to the Erdos-
Renyi type allows us to say that the RG flow thrusts Gr in the same region
of “randomness transition”. In figure 4.3 the action of the RG is represented
in the space of configurations.

4.3.1 Identification of Gm

The third fixed point that was found is not immediately identifiable. In order
to further investigate it we may look closer at its structural properties. When
the perturbation maps G0 into G′ we should be careful of what happens to the
average degree. Indeed, let d0 and d′ be the average degree of the unperturbed
and perturbed network respectively. Then, their difference is

d′ − d0 =
2M(D)

N0

where M(l) is the number of shortcuts at distance l, D is the diameter
of the network and the factor 2 is due to each edge increasing the degree of
2 nodes. Now, the number of shortcuts is given by

M(l) '
∫ l

1

p(r)dF r
dF−1dr = dB

∫ l

1

Ar−αrdF−1dr =
A

1− s [ldF (1−s) − 1]

hence the average degree difference is

d′ − d0 =
2A

1− s

[
DdF (1−s) − 1

N0

]
when we apply the RG the total number of shortcuts is simply the number

of shortcuts linking different boxes, that is
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Gm

Gr

Gc

G0s > 2 s > 2

s = 2

s < 2

Figure 4.3: A representation of the RG flow on the space of configurations.
The three fixed points are G0, Gc and Gm. The flow lines are drawn and the
value of the critical exponent for which they have such direction is specified.
The grey region between G0 and Gc is the one where we locate the random
network model. The line describing the behaviour of Gr is only indicative
that the flow should push it into the random grey region.

db − d0 =
2(M(D)−M(b))

Nb

= (d′ − d0)fN(b)

where the function fN(b) is given by
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fN(b) =
DdF (1−s) − bdF (1−s)

DdF (1−s) − 1
bdF

To perform the limit of infinite renormalization we define xb = N0

Nb
= bdF ,

and we have the scaling

fN(xb) ∼ xλb

where λ is a new critical exponent given by

λ =

{
1, if s ≤ 1

2− s, if s > 1

This exponent allows us to better understand the fixed point Gm. When
the critical exponent s = 2 we see that λ introduces a new separation of
phases. There is phase where λ < 0 and s > 2, where the SF structure is
conserved, as previously stated, and wee see that this is consistent with the
self similarity requirement that nullifies the difference between the degrees of
the renormalized and starting networks. Conversely in the case when λ > 0
and s < 2 the result is a growth of the degree difference, which is consistent
with the fact that the flow thrusts toward the complete graph point. Then,
in the very condition of s = 2 we have λ = 0, meaning there is no change
in the degree difference, which implies that the effect of the RG flow on the
average degree is the same as that of the perturbation. We are in a transition
region where the diameter of the graph grows logarithmically, whilst in the
SF region the diameter growth is a power law. This fact may encourage us to
think to the phase s = 2 as a region where “small-world” phenomena occur.

4.3.2 Space partition

According to the three possible values of the critical exponent s we may
part the configuration space into three main regions. Although being a pre-
liminary analysis, we may identify each region with one of the main classes
of networks, trying to link these phase partition to the results we had in
previous chapters.
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Scale-Free region

This region is the easiest to identify. The intuitive reason was made clear
before when explaining that in this case the addition of shortcuts is over-
whelmed by the boxing of nodes. Also, SF networks are classical cases of rich-
get-richer processes, also called in a fancier way “Indian buffet processes1”
or “Matthew effects2”. These kind of processes are based on preferential
attachment strategies, that is nodes that have a higher degree tend to be
chosen to be linked with more than others when new nodes are added. The
preferential attachment scheme leads to the shrinking of the variance of the
adjacency matrix entries distribution, which results in peaks in the ESD
outcome. Quite intuitively too, less variability implies the accumulation of
entries on certain sites rather than a smoother and more sparse distribution.

Small World region

The identification of the Gm point with a Small World network was estab-
lished before. Here we remark that the region is in fact just a line, for
which the critical exponent s has the precise value of 2. In this case the
growth process is peculiar, as it must show fractality, hence some form of
preferential attachment, and some “intelligent randomness” that breaks the
pure scale-free structure but not thrusting towards the randomness region.
Such balance between preferential attachment and “guided” or “intelligent”
choices of linking nodes is precarious, and should be investigated further.

Random region

This region is the most populated and explored as far as we know by now.
Networks that are Random in the proper sense lie in the grey region of figure
4.3, but it is easy to see that many models (regular, non purely SF, etc.) have
the RG flow to thrust them into this area. According to the interpretation
and analogy with QFT in section 3.4.1, this is the region where “loops are
trees”, in the sense that all the self-states are mainly performed by tree paths
on the network. It is the same result of the classic Wigner law, that is the

1The name is due to the fact that, when having to choose among many different un-
known possibilities (a table full of different Indian plates), choices often fall on already
sampled items (already tasted plates).

2‘For everyone who has will be given more, and he will have an abundance’, Matthew,
25:29.
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one saying that in the large limit the only contributions to the spectra are
the path performed on trees (the Catalan numbers).

4.4 Phase transitions

Having established the three main phases, it is natural to ask which are
their prominent feature and how the transition from one phase to another is
achieved. In other words, are there any order parameters that describe these
phase transitions? According to some of the results we found in the previous
sections, we may try to answer to this question.

4.4.1 Scale Free to Wigner

When we analysed the behaviour of the Wigner law for non-zero average
Random Matrices we noticed that there was a threshold in equation 2.6.4.
When taking into consideration random networks, we have to take into con-
sideration this ESD, as the average entry of the adjacency matrix is surely
positive. The threshold was determined by the ratio between the average of
the entries and their variance

ω =
〈Aij〉
J

=

{
> 1 peak behaviour

< 1 Wigner behaviour

Following the conjecture that the peak behaviour in the spectrum is to
be linked with the emergence of scale free properties, then this parameter
sets the threshold for a first fractal scale to emerge. In other words, there is
not a scale free overall behaviour, but there is a scale at which the behaviour
of nodes is really similar. The emergence of other scales of fractality is more
complicated, as it needs the separation of the spectrum to take place. This
change between continuity of the support and discretisation may be another
candidate to set the threshold for a more proper fractal transition, however
it is quite hard to understand how to describe it.

4.4.2 Scale Free to Small World

This transition, as we have hinted at in the course of the previous chapters, is
linked to the breaking of the spectral symmetry. Such hypothesis is corrob-
orated by the empirical spectral densities we have shown before. Also, there



84 Renormalization Group Approach

is a physical meaning to that. As we know by now the spectral symmetry
breaks if the odd moments of the adjacency matrix do not vanish. Such odd
moments are the number of odd tours in the network, in particular triangles
for the third moment. Then this breaking of symmetry corresponds to the
presence of “faster ways” to travel the network than by even tours, leading
to the shrinkage of the diameter, hence a Small World behaviour.

The model we introduced in section 3.3.6 to portray the behaviour of Scale
Free network is of use to better understand this transition. The Scale Free
behaviour is implementing quite naturally the action of the Renormalisation
Group, but it has two different ways of reaching the termodynamical limit.
The first is by fixing the number of iterations steps h (starring operations)
but making a large amount of copies l. The second one is by fixing the
number of copies and performing a very large number of iterations. As we
have seen in figure 3.9, if we measure the symmetry breaking magnitude it
vanishes when the former way of implementing the termodynamic limit is
chosen. This would lead to a perfect Scale Free network, very close to G0 in
terms of the phase it represents.

If we take a finite number of copies however the situation changes. At
the third iteration the symmetry breaking appears, and this is due to the
fact that we must certainly have created at least a triangle in the second
step, this triangle being replicated and scaling as the number of copies itself.
So after the second step if the number of copies is not large, the number of
triangles ∆ begins to grow as the number of copies ∆ ∼ lh−2 and their ratio
to the size of the network N is non vanishing and almost constant

∆

N
∼ 1

l2

We remark that is consistent with the estimate we did for the third mo-
ment in 3.3.6, as for the first term in that sum j = 0 the value is null while
for the second term j = 1 they are symmetric and their sums vanish pairwise.

This behaviour for the relative presence of triangles in a network and the
fact that it is the first odd moment which does not always vanish may lead
us to think that it is a suitable order parameter for the phase transition from
a purely Scale Free network to another that exhibits Small World features.

Another hint that the parameter ∆ is the right one to describe the tran-
sition between the two phases is given by the Free Central Limit Theorem.
In particular in equation 2.5.1 we see that the vanishing of the normalised
third moment is the requirement for the sequence of matrices to follow the
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semicircular law. In that very equation if the matrix X is not renormalised
by the factor

√
n and we choose it to be an adjacency matrix A, then the

quantity to vanish in order for the semicircular law to hold is precisely the
number of triangles in the network described by A.
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Chapter 5

Final Remarks

Complex systems physics is still a developing field of knowledge. Its soundest
results are the ones that rely on the study of complex networks, still in
most cases there are no exact results other than those on toy models. In
this thesis we explore a new approach that focuses on perturbed, non ideal
networks rather than exact graphs. To do so, statistical mechanics and other
physics-inspired methods are borrowed to investigate the effect of finite size,
fluctuations and correlations effects on ideal random networks. We chose to
focus on spectra of networks, mainly because eigenvalue distributions encode
many features both about dynamical and structural properties.

Algebraic graph theory is the most powerful tool for obtaining exact re-
sult for the spectra of a precise network (a line, a wheel, a complete one, etc).
However, most of these graphs show regular features which fails to suit the
so-called real world networks. Thus the need to provide with models that
mimic the traits of certain “classes” or “ensembles” of networks emerges.
When facing such task, the exact results of algebraic graph theory are no
longer holding, and we should go for new methods to solve the issue.

In this thesis we adopted two different approaches: Random Matrix The-
ory and Renormalisation techniques. When dealing with the former we tried
to see how the rigorous results of this field may be transposed over networks.

In sections 2.3, 3.3.1 we managed to show that the Wigner law for mo-
ments for a semicircular distribution, when computed with the moments
method is giving the physical insight about a structure that the network
displays, i.e. the tree skeleton.

Moreover, in section 2.4.1 we saw that the semicircular distribution for
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the spectrum is the “most probable” one when we consider a random process
of distribution of links. This was complemented by showing that Wigner
law is also the counterpart of the Central Limit Theorem in the case of non
commuting random variables 2.5.1.

Replica theory 2.6 allowed us to compute the corrections to the limiting
spectral distribution we had found, to better fit the problem we were study-
ing and giving a possible insight to a dynamical interpretation of random
walk performed on a network which was sketched in section 3.4.

In the successive chapter we tried to set a framework in which algebraic
graph theory, Random Matrix Theory and other physics-inspired techniques
could work together in order to investigate properties of the main ensembles
of networks that literature is interested in.

Some exact law about spectra of regular graphs 3.3.4 and line ones 3.3.5
were obtained to better interpret the results of the first chapter. This gave
way to the analysis of a new generative model for a Scale Free network which
could describe the behaviour of the spectrum of this class of graphs in section
3.3.6. The unexpected result about the symmetry breaking of this model,
while preserving the fractal structure, led us to conjecture that it might be
a phase transition phenomenon to the class of so called Small World net-
works. We also introduced a possible dynamical interpretation of what is a
structural feature, viz. the spectrum of the adjacency matrix. This analogy,
if properly expanded, may lead to the understanding of different processes
other than simple random walks on networks in which agents may interact
among them.

Eventually we introduced the Renormalisation group technique to anal-
yse the configuration space of the different ensembles of networks. In this
language, the classes we previously established became the phases in which
the space was partitoned.

We point out that three are the fixed points, i.e. the ensembles which are
stable with respect to the flux of the RG. The purely scalefree one, which was
attributed to the Scale Free ensemble of Barabasi-Albert-like networks, was
easy to identify. The complete network, a trivial point in terms of interest,
was still helpful because it allowed to identify in which region the Random
network ensemble should be located, being the complete graph the limiting
case for a Erdös graph with connection probability p = 1. The third fixed
point was the most startling feature of the analysis. If the case we made along
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with [32] holds, then this point is a special case of fractality that hinders the
growth of the diameter, making it a good candidate to portray the behaviour
of Small World networks.

In order to analyse this kind of transition, the model we developed to
mimic the Scale Free behaviour in section 3.3.6 could be suitable. Indeed,
one of the few information we have about the spectrum of SW networks is
that it is not symmetric, making the contribution of third moments, viz. tri-
angles loops, extensive even in the thermodynamic limit.

The breaking of symmetry in the model we propose show some promising
features that may make it suitable to represent the behaviour of self-similar
networks when near to undergo a phase transition mechanism of the kind
SF → SW. This could help understanding how the typical self-replicating
structure of many systems encountered in nature is balanced by the small
world phenomenon in order to achieve better control of processes.
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