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Sommario

La Cromodinamica Quantistica (QCD) è la teoria di campo che descrive le interazioni
forti nel contesto del Modello Standard (SM). La QCD è una teoria di gauge non abeliana
basata sul gruppo di simmetria SU(N) con N = 3, caratterizzata da un’unica costante di
accoppiamento gS che varia con la scala di energia. Le ampiezze di scattering nel regime
perturbativo a grandi scale possono essere ottenute via una espansione in potenze di
gS. A basse scale di energia, dove la teoria perturbativa non è utilizzabile, si rivela
utile cercare un parametro di espansione alternativo. Una possibilità suggerita da ’t
Hooft negli anni 80 e risultata poi estramente potente, è di considerare il limite della
teoria a grandi N , ossia espandere rispetto l’inverso del numero di colori della teoria.
L’obiettivo principale di questo lavoro è quello di esplorare l’efficacia dell’espansione a
grandi N anche nel regime perturbativo, in concomitanza con l’usuale espansione in gS,
per semplificare il calcolo di ampiezze di scattering gluoniche con molte particelle esterne.
Utilizzando tecniche moderne, come diverse decomposizioni di colore e approcci ricorsivi,
calcoliamo e classifichiamo prima la complessità poi l’accuratezza della espansione fino a
10 gluoni esterni a tree-level, e fino ad 8 al loop-level. I risultati numerici per ampiezze
al tree-level mostrano come l’espansione nel numero di colori all’ordine più basso sia
sempre meno efficace per un alto numero di gluoni esterni, mentre all’ordine successivo
sia estremamente accurata (rispetto all’espansione in gS). Inoltre, la classificazione dei
fattori di colore fino a dieci gluoni permette di fare ipotesi sulla loro struttura e sul valore
numerico massimo dei vari ordini per un numero di gluoni più alto. Infine, dimostriamo
che il numero di fattori di colore di ordine più basso per la decomposizione di colore
nota come color-flow è dato da un opportuno coefficiente binomiale che cresce molto
lentamente all’aumentare dei gluoni esterni. In conclusione, i risultati ottenuti aprono
la strada ad un approccio più efficiente per il calcolo di ampiezze di scattering in QCD.



Abstract

Quantum Chromodynamics (QCD) is the quantum theory describing strong interactions
in the framework of the Standard Model (SM). It is a non-abelian gauge theory based
upon the symmetry group SU(N), with N = 3, characterized by a single coupling
constant gS running with respect to the energy scale. In the perturbative regime and
high energy scales, scattering amplitudes are expanded perturbatively in powers of gS.
However, at low energy scales, where perturbation theory breaks down, it is useful to
find another expansion parameter. A possibility suggested by ’t Hooft that turned out to
be very powerful consisted in considering the large N limit of the theory, expanding with
respect to the inverse of the number of colors of the theory itself. The main goal of this
thesis is to explore the efficacy of the large N expansion even in the perturbative regime,
in conjunction with the usual expansion in gS, in order to simplify the computation of
gluon scattering amplitudes with many external particles. Using modern techniques,
like different color decompositions and recursive approaches, we compute and classify
first the complexity then the accuracy of the expansion up to 10 external gluons at
tree-level, and up to 8 at loop-level. Numerical results for tree-level amplitudes show
how the expansion at lowest order in the number of colors becomes less and less accurate
increasing the number of external gluons, while at the next order it is extremely accurate
(compared to the expansion in gS). In addition, the classification of color factors up to
10 gluons allows us to make guesses about their structure and their maximum values for
each order for an higher number of external gluons. Finally, we prove that the number
of lowest order color factors for another color decomposition known as color-flow is given
by a suitable binomial coefficient growing very slowly for an increasing the number of
external gluons. In conclusion, the results we obtained pave the way to a more efficient
approach to the computation of scattering amplitudes in QCD.
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A premise
One morning, the Commander of a ship found the First Mate completely drunk during
his guard duty; he immediately reported on what he had found on the log book (it was
not properly difficult to found, as matter of fact he stank like a distillery). Once the
hangover was ended, the First Mate, realizing himself being caught red handed, rushed
to the Commander begging him to remove the note. Unfortunately, the Commander was
uncorruptible and strongly devoted to duty, so he categorically refused to remove the
note reprimanding harshly his subordinate. Longing for revenge, the next day the First
Mate wrote the following note on the log book:

Today the Commander is not drunk.

This note was certainly true but, being written in a context in which one always finds
news or reports of exceptional events, the reader can easily misunderstand that the Com-
mander was drunk everytime but that day.1

The context can turn black to white and viceversa.
It must be taken into account, always.

1Partially reworked version of an anecdote told by Dr. Piercamillo Davigo, italian magistrate and
member of the CSM.
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Chapter 1

Quantum chromodynamics

Quantum Chromodynamics (QCD from now on) is a non-abelian gauge theory with
symmetry group SU(3) that describes strong interactions and nuclear forces in terms of
elementary particles called quarks and gluons. There are six different flavors of quarks
with different masses: up (u), down (d), strange (s), charm (c), beauty (b) and top (t),
interacting with each other through the exchange of gluons, corresponding to the gauge
boson mediators of the strong interaction. All hadrons are made up of five flavors of
quarks, since the top quark is not a constituent of any hadron. Quarks carry a non-
abelian charge quantum number called color, taking three possible hues conventionally
chosen to be green, red and blue, while gluons carry a pair of anti-color-color charges.
Thus, color turns out to be the charge of the strong interactions.
By definition, QCD is a particular theory belonging the a larger set of theories called
SU(N) non-abelian gauge theories. As a matter of fact, these theories are the natural
generalization of Quantum Electrodynamics (QED) to systems describing the dynamics
of N different fields. Therefore, to keep the discussion more general, in the following we
will describe these theories leaving N ≥ 2 unspecified.

1.1 Generalities on the SU(N) group
To start with, it is mandatory to briefly discuss some of the most important features
of the underlying symmetry group of these theories. SU(N) is the Lie group of generic
N ×N unitary matrices U with unit determinant:

U † = U−1, detU = +1. (1.1)

Any element of the group can be written in an exponential form in the following way:

U = eiωaTa

, a = 1, 2, .., N2 − 1, (1.2)
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where ωa are real numbers parametrizing a specific element of the group and T a are
called group generators. It is easy to see that these generators are hermitian since, from
the first equation in (1.1), we find:

U † = e−iωa(Ta)† = e−iωaTa = U−1, ⇐⇒ (T a)† = T a. (1.3)

In addition they are traceless. To prove it, we consider a group element infinitely close
to the identity, namely:

U = I + iεaT
a +O(ε2), (1.4)

where εa � 1. Since the determinant of an arbitrary SU(N) element must be equal to
one, we obtain:

det
(
I + iεaT

a +O(ε2)
)

= 1 + iεaTr(T a) +O(ε2) = 1. (1.5)

Hence, for εa → 0, we get:

Tr(T a) = 0, ∀a = 1, 2, ..., N2 − 1. (1.6)

The generators also form a Lie algebra defined by the following commutation relations:

[T a, T b] = ifabcT c, (1.7)

where the fabc are called structure constants of the algebra and the mapping [ , ] is
called Lie bracket. Obviously, the structure constants do not identically vanish, hence
the group is non-abelian. The Lie brackets satisfy the Jacobi identity, given by:

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0. (1.8)

This identity can be rewritten in terms of the structure constants as follows:

fabdfdce + f bcdfdae + f cadfdbe = 0. (1.9)

Until now, we have given a definition of the SU(N) group in terms of matrices, but one
should always keep in mind that a group is always defined as a purely abstract math-
ematical object. Hence, when we think about it in terms of matrices, we are implicitly
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selecting a specific representation of this group.
In a nutshell, a representation R of a group G is a map that associates every element g
of the group itself with a linear operator

g ∈ G −−→ R(g) ∈ GL(V ) (1.10)

that acts on a certain vector (or linear) space V and preserves the group structure1.
The dimension of a representation is defined as the dimension of the vector space on
which the linear operators act; if we identify an element of SU(N) with an N × N
unitary matrix with unit determinant, we are dealing with the so called fundamental
representation of the group. It acts on N -dimensional column vectors and is the
non-trivial representation with the minimum dimension. Therefore, the generators T a
mentioned above are in fact the generators of the fundamental representation of the
group T afund (we will omit the subscript to lighten the notation). For the group SU(3)
the fundamental representation is indicated as 3 and the generators are given in terms
of the Gell-Mann matrices λa defined as:

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 , λ4 =

0 0 1
0 0 0
1 0 0

 ,

λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 = 1√
3

1 0 0
0 1 0
1 0 −2

 .
and then normalized as T a = 1

2λ
a. Their normalization for unspecified N is given by:

Tr(T aT b) = TF δ
ab = 1

2δ
ab. (1.11)

In addition, there is another important representation acting on a vector space of di-
mension N , that is called antifundamental representation and indicated as 3̄. Its
generators are defined as T a = −(T a)T = −(T a)∗ in order to make them satisfy the same
Lie algebra the fundamental generators do. Indeed:

[
T
a
, T

b
]

=
[
−(T a)T ,−(T b)T

]
= −

([
T a, T b

])T
= −ifabc(T c)T = ifabcT

c
, (1.12)

thus the Lie algebra is perfectly satisfied. As a matter of fact, every representation has
1In mathematical words, R is a group homomorphism.
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its peculiar set of generators T aR, where the subscript R labels the representation itself.
To construct a generic element of a representation, all we have to do is to take its gener-
ators and exponentiate them as it is done in (1.23) for the fundamental representation.
We incidentally remark that the normalization given in (3.6) can be generalized to the
generators of any representation:

Tr(T aRT bR) = T (R)δab, (1.13)

where T (R) is defined as the index of the representation.
Another physically relevant representation of SU(N) is the adjoint representation.
Its generators are given by the structure constants:

(T aadj)bc = i(fa)bc, (1.14)

and it acts on a vector space of dimension N2 − 1 equal to the number of generators.
The structure constants are real numbers, hence the adjoint representation is real by
definition.
If we now take the following composition of generators of a generic representation:

C(R) = T aRT
a
R =

N2−1∑
a=1

T aRT
a
R, (1.15)

it can be easily demonstrated that it commutes with all the generators themselves. In-
deed:

[T aRT aR, T bR] = ifabc {T cR, T aR} = 0, (1.16)

because of the antisimmetry of fabc. Hence, by definition, C(R) is a Casimir operator
of the group. Moreover, Schur’s lemma forces this operator to be proportional to the
identity:

C(R) = T aRT
a
R = C2(R)I. (1.17)

Combining equations (1.17) and (1.13) we obtain:

T (R)d(G) = d(R)C2(R). (1.18)

Here d(G) is the dimension of the SU(N) group and d(R) is the dimensionality of the
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representation R. It is now straightforward to calculate C2(R) for the fundamental and
the adjoint representation:

CF = C2(fund) = N2 − 1
2N ,

CA = C2(adj) = N.

Furthermore, manipulating equation (3.1) in a suitable way, one can obtain another
useful relation for the structure constants, namely:

fabc = − i

TF
Tr
{
[T a, T b], T c

}
. (1.19)

Finally, another important relation is given by the Fierz identity:

∑
a

T aijT
a
kl = 1

2

(
δilδkj −

1
N
δijδkl

)
. (1.20)

All the relations we have listed above for SU(N) are used in almost every cross section
calculation in QCD, where obviously N = 3. We can also contextually underline that
the second term on the right hand side of equation (1.20) is suppressed by a factor 1/N .
This feature will turn out to be very useful in the following.

1.2 Construction of the theory
In order to construct QCD as a non-abelian gauge theory with SU(3) color symmetry,
the right path is to generalize the abelian U(1) gauge field theory of electromagnetic
interaction, known as QED, to the non-abelian framework. For the sake of clarity,
we focus on a single flavor quark, which can assume 3 different color charges. This
generalization proceeds as follows:

• First, we require that the fermion fields transform under the fundamental repres-
entation of SU(3), namely:

ψ(x)→ ψ(x)′ = Uω(x)ψ(x), (1.21)

where Uω(x) = eiωa(x)Ta and T a is a generic generator of the fundamental rep-
resentation. In other words, the fermionic matter fields live in the fundamental
representation of the gauge group and their indices transform under this specific
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N -dimensional representation. Expressing the color indices and performing infin-
itesimal transformations, we have:

ψi(x)′ = [δij + iωa(x)T aij +O(ω2
a)]ψj(x), (1.22)

or alternatively at first order:

δψi(x) = iωa(x)T aijψj(x). (1.23)

Furthermore, the Dirac-adjoint spinor field transforms as:

ψ(x)→ ψ(x)′ = ψ(x)Uω(x)†, (1.24)

where Uω(x)† = e−iωa(x)Ta . Expressing again the color indices and neglecting spinor
degrees of freedom, we obtain:

ψ∗
i (x)′ = ψ∗

j (x)[δji − iωa(x)T aji +O(ω2
a)]

= [δij + iωa(x)T aij +O(ω2
a)]ψ∗

j (x),

where in the last step we used the definition of the complex generators T aij = −T aji.
Hence infinitesimally we get:

δψi(x)∗ = iωa(x)T aijψ∗
j (x). (1.25)

As a consequence, the complex conjugate field transforms under the antifunda-
mental representation 3̄, that is not equivalent to the fundamental one 3. It is
worthwhile to stress that the transformations we listed act only on the color indices
of the quark fields and not on spinor indices.

• Then we impose that the non-abelian strength tensor Fµν(x) transforms homogen-
eously under the gauge group, exactly as its abelian electromagnetic counterpart
does in QED. To this end, we define the covariant derivative generalizing it to
non-abelian gauge fields as:

Dµ = ∂µ − igAµ(x) = ∂µ − igAaµ(x)T a. (1.26)
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Now we require that under the gauge group the covariant derivative Dµψ of a
fermion field transforms as follows:

D′
µψ

′(x) = D′
µUω(x)ψ(x) = Uω(x)Dµψ(x), (1.27)

so that it can be easily demonstrated that:

D′
µ = Uω(x)DµU

†
ω(x). (1.28)

Therefore, it is straightforward to see that, if we define the strength tensor in the
same way we do in QED, namely:

Fµν(x) = i

g
[Dµ, Dν ] = ∂µAν − ∂νAµ − ig [Aµ, Aν ] , (1.29)

it will transform in an homogeneous way under the gauge group, as required:

F ′
µν(x) = i

g

[
D′
µ, D

′
ν

]
= Uω(x)Fµν(x)U †

ω(x), (1.30)

To fulfill all these conditions, the non-abelian gauge fields necessarily transform in
a non-homogeneous way as:

A′
µ(x) = Uω(x)Aµ(x)U †

ω(x)− i

g
[∂µUω(x)]U †

ω(x), (1.31)

where Aµ(x) = Aaµ(x)T a.

At this point it is not so difficult to obtain the infinitesimal transformation laws of matter
and gauge fields, in order to see what is the representation under which they transform:

δψ(x) = igωa(x)T aψ(x),
δAaµ(x) = ∂µω

a(x)− gfabcAcµ(x)ωb(x),
δF a

µν(x) = gfabcF b
µν(x)ωc(x).

(1.32)

Hence, it is evident by direct inspection that the strength tensor F a
µν transforms according

to the adjoint representation of SU(N) gauge group.
As a final remark, we stress that from its definition (1.29) this tensor is not linear in the
gauge fields Aµ(x), because of the presence of the commutator [Aµ, Aν ].
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1.3 QCD lagrangian and Feynman rules
The SU(3) invariant lagrangian for QCD is then given by:

LQCD = −1
4(F a

µν)2 − 1
2ξ (∂µAaµ)2 +

NF∑
k

ψ
(k)
i (i /Dij + δijm

(k))ψ(k)
j +

+ (∂µca)(δac∂µ + gfabcAbµ)cc, (1.33)

where:

Fµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν , (1.34)

(k) labels the flavor of quarks and ca and ca are the Faddeev-Popov ghost and anti-ghost
fields. We only expressed the sum over the flavor indices and used the first letters of latin
alphabet to label adjoint indices and mid-alphabet latin letters to label the fundamental
ones. As already mentioned, it describes the interactions between matter spinor fields
called quarks and the non-abelian gauge fields called gluons. As a matter of fact, the
lagrangian (1.34) can be split into a free quadratic and a higher order interaction part.
The free part reads:

L0 = −1
4(∂µAaν − ∂νAaµ)2 − 1

2ξ (∂µAaµ)2 +
NF∑
k

ψ
(k)
i (i/∂ −m(k))ψ(k)

i − ca2ca, (1.35)

while the interaction part reads:

Lint =− gfabc(∂µAaν)AbµAcν −
g2

4 (f eabAaµAbν)(f ecdAcµAdν)+

+ gfabc(∂µca)Abµcc + gAaµ

NF∑
k

ψ
(k)
i γµT aijψ

(k)
j .

(1.36)

Therefore, deriving the Feynman rules for the theory is now straightforward and we can
focus only on color indices without loss of generality. Inverting the free quadratic part
of (1.35) we can derive the expressions for the propagators of quarks, gluons and ghosts.

• The quark propagator is given by:

p
j i = iδij

/p−m+ iε
. (1.37)
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• The gluon propagator is instead:

p
a;µ b; ν = − iδab

p2 + iε

[
ηµν + (ξ − 1)pµpν

p2

]
. (1.38)

• Finally, the ghost propagator is given by:

pb a = iδab

p2 + iε
. (1.39)

The presence of factors δij and δab clearly encodes the conservation of color charge along
the lines. We remark again that (i, j) are indices transforming under the fundamental
representation of SU(3), while (a, b) transform under the adjoint representation. In
other words, they are both color indices but living in different representations of the
same gauge group. Similarly, from the higher order term (1.36), we can easily derive the
interaction vertices.
• The quark-gluon interaction term reads:

j

i

µ; a = igγµT aij. (1.40)

• We also have a ghost-antighost-gluon vertex:

cc

ca

µ; b = −gfabcpµ. (1.41)

• For the three gluon vertex we have:

k

p

q
µ; a

ν; b

ρ; c

= gfabc [ηµν(k − p)ρ + ηνρ(p− q)µ + ηρµ(q − k)ν ] . (1.42)
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• Finally, the four gluon vertex gives:

µ; a

ρ; c

σ; d

ν; b = −ig2
[
fabef cde(ηµρηνσ − ηµσηνρ) + non cyclic perm.

]
.

(1.43)

From the last two interaction vertices, it is evident that the gluon gauge fields inter-
act with each other. This feature of non-abelian gauge theories is completely in con-
trast to the behaviour of QED, in which photons do not interfere. This is due to the
non-linearity of the non-abelian equations of motion caused by the presence of the com-
mutators [Aµ, Aν ] in the definition of the strength tensor (1.29). Thus gluons carry a
non-abelian color charge and do not interact only with quarks but also self-interact.

1.4 Asymptotic freedom
To proceed further, we discuss one of the most astonishing features provided by QCD:
asymptotic freedom. This property displayed by strong interactions was independently
discovered in 1973 by D. J. Gross and F. A. Wilczek in [1] and by H. D. Politzer in [2].
The detailed discussion of this topic is beyond the scope of this work, nevertheless we
can sketch the most important points. Because of the self-interaction between gluons,
if we want to compute loop corrections to the quark propagator in QCD, we have to
consider not only quark loops, like in QED, but also gluon loops, as shown in figure 1.1:

Figure 1.1: Two examples of one loop corrections to the quark propagator in QCD.

Unfortunately, these two diagrams and almost all the other possible Feynman diagrams
give rise to divergent integrals that must be suitably regularized. It is very well known
that this renormalization procedure makes the coupling constant of the theory to run
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with respect to the energy scale of a given process. For example, in QED the presence of
fermion loops screens the electron charge, making the fine structure constant α to become
larger as the energy of the process2 grows up. As a matter of fact, in QCD things are not
so easy. It can be shown by direct calculations that the first diagram in 1.1 screens the
color charge of the quark, while the second anti-screens it. Suppose we can experimentally
measure the value of the coupling constant at an arbitrary renormalization scale µ2 and
define Q2 as the the energy scale at which we run a certain process. As a result, it turns
out that at leading order the strong coupling constant runs in the following way:

g(Q2) = g(µ2)
1 + β0g(µ2) ln

(
Q2

µ2

) . (1.44)

The β0 coefficient is nothing but the leading order term in the expansion of the β-function
of the theory, defined as the rate of variation of the strong coupling constant as a function
of the logarithm of Q2:

β(g) = dg(Q2)
d ln(Q2) = −

[
β0g

2(Q2) + β1g
3(Q2) + ...

]
, (1.45)

and its value is given by:

β0 = 1
4π

(11
3 CA −

4
3TFNf

)
= 7

4π , (1.46)

where Nf = 6 is number of quark flavors. This coefficient encodes the contributions of
loop diagrams of the form depicted in figure 1.1 sewed together side by side and to all
orders in perturbation theory. We give two examples of such diagrams in figure 1.2.

Figure 1.2: Two examples of two-loop corrections contributing to the β0 coefficient.

As we anticipated, the equation (1.44) for the running coupling constant is obtained by
solving the differential equation for the β-function truncated at leading order, indeed:

dg(Q2)
d ln(Q2) = −β0g

2(Q2). (1.47)

2For example the momentum transfer, or the energy in the center of mass frame Ecm =
√

s.
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We may wonder when we can trust the solution of this equation. To answer this ques-
tion, first we note that the truncated equation (1.47) makes sense only if the coupling
constant g(Q2) is sufficiently small, allowing us to neglect all the higher order terms.
Then it is sufficient to notice that β0 is positive; as a consequence, from (1.47) we see
that increasing the energy scale of the process, the coupling constant gets smaller and
smaller, thus enforcing the efficacy of the approximation. In more detail, if we truncate
the expansion of the β-function up to a certain order, we are including in the correction a
certain set of many-loop Feynman diagrams that produces the screening or anti-screening
of the bare strong charge of quarks. If we stop the expansion at leading order retaining
only the β0-term, as the energy scale gets higher, the contribution given by the diagrams
we neglected becomes smaller compared to the leading order diagrams, like those shown
in figure 1.2. Therefore all the discarded diagrams give only tiny subleading corrections
in the high energy range, making the approximated solution satisfying. This property of
the QCD coupling constant is called asymptotic freedom: the higher is the energy scale
of our probe of hadronic matter, the lower is the strength of interaction between quarks.
Hence, quarks behave like free particles in high energy processes.
If at the contrary the energy scale gets lower, the coupling gets larger, the leading order
approximation we made breaks down and we must include higher order terms (account-
ing for more complicated diagrams like multi-gluon exchange between loops, see figure
1.3) until the coupling becomes approximately equal to one. At this point, perturbation
theory cannot be employed anymore. This mechanism is called confinement or infrared
slavery and its mathematical proof is not yet known, since we cannot rely on the per-
turbative approach. However, it is very well described in lattice QCD simulations.

Figure 1.3: An example of two-loop diagram to be included at next-to-leading order for
the calculation of the β-function.

The discovery of asymptotic freedom allows us to employ perturbative calculations for
processes involving strong interactions, at least at high energy. Furthermore it success-
fully explained the results of an experiment performed in 1968 at SLAC on deep-inelastic
scattering between electrons and nucleons indicating that the strong interaction becomes
weaker at high energy. In fact the diffusion of the electron was not compatible with a
pointlike structure of the nucleon: the electron interacts only with a single quark and
not with the entire nucleon. Thus the other two quarks do not participate to the inter-
action and are called spectators. In other words, the three quarks weakly interact with
each other and this is perfectly explained by asymptotic freedom. Another important
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fundamental process in QCD is given by the annihilation of an electron and a positron
into a quark-antiquark pair through the emission of a virtual photon, namely:

e+e− → γ∗ → qq̄. (1.48)

Since the effects of strong interaction in quark-antiquark pair production can be neglected
at high energy, asymptotically we expect the process to be almost entirely electromag-
netic, so that it can be efficiently described by QED. We can compare this total cross
section with the one of a well known QED process, the annihilation into muon-antimuon
pair. Hence we expect the ratio of these two cross sections to give:

lim
β→1

[
σ(e+e− → qq̄)

σ(e+e− → µ+µ−)

]
∼ 3 ·

(∑
flav

Q2
flav

)
, (1.49)

at a given high energy scale Ecm =
√
s. Here Qflav is the electric charge of the quark and

the overall factor 3 encodes the existence of color: every pair can be produced in three
different configurations, red-antired, blue-antiblue and green-antigreen. For example, if
the energy scale is fixed to be 45GeV, the effective number of flavors is Nf = 5 (the top
quark cannot be produced since the energy scale is not high enough), hence:

lim
β→1

[
σ(e+e− → qq̄)

σ(e+e− → µ+µ−)

]
∼ 3 ·

[
2
(2

3

)2
+ 3

(
−1

3

)2]
= 11

3 . (1.50)

This theoretical result is in good agreement with experimental measurements between
2.5GeV and 45GeV, see figure 1.4 and [10] for details and an up-to-date review.

Figure 1.4: The ratio R of σ(e+e− → qq̄) and σ(e+e− → µ+µ−) as a function of Ecm =
√
s

[10]. Large deviations from (1.49) are due to resonances like J/ψ (cc̄).
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Chapter 2

The large N limit

2.1 Introduction: the large N expansion
When dealing with interacting quantum field theories in (1 + 3)-dimensional Minkowski
space-time, no exact solutions of the equations of motion are known, even in the simplest
case. To circumvent this problem, it is then necessary to develop a perturbative approach
to calculate probability amplitudes:

• First we define the generating functional for the free theory and solve it (whenever
possible) using the functional integral approach.

• Then we define the generating functional for the interacting theory in terms
of generating functional of the free theory, writing the probability amplitudes as
perturbative series in the coupling constant, treated as a small parameter.

However, this perturbative technique cannot be applied at energy scales in which the
coupling constant of the theory is not sufficiently small. Unfortunately, as we exposed in
the previous chapter, QCD is not perturbative at low energy scales, when the coup-
ling constant runs becoming larger and larger. As a consequence, we should try to find
a different way to perform the perturbative expansion for QCD in order to avoid this
problem. For this purpose, the large N expansion can be useful to us. This particu-
lar perturbative method is used to study quantum field theories endowed with gauge
symmetries like SU(N) or SO(N) that otherwise would not be studied using standard
perturbative techniques. It consists in expanding the probabilitiy amplitudes in powers
of 1/N , in the limit in which N → +∞. We also define the large N limit as the descrip-
tion of a theory carried up at leading order in the 1/N expansion. One could think that
enlarging the number of colors of the theory (and correspondingly the number of degrees
of freedom of the fields) would make the theory much more complicated. However, if the
expansion is performed in a suitable way, it turns out that this procedure vastly simplifies

18



our task and allows us to catch some key features of the theory at an energy scale that
could otherwise be inaccessible. In particular, retaining only the leading order terms
in the expansion, computations become surprisingly simple and powerful. The idea of
letting the dimensionality of a gauge symmetry group become large was first developed
in statistical mechanics by Stanley [3]. A few years later, Wilson applied this method to
quantum field theory, noticing the occurring simplification of the φ4 theory to leading
order in the expansion. Finally, the first who applied this method to QCD was ’t Hooft
in [5] and [6].

The procedure runs as follows: we first solve the theory to leading order in the large
N expansion and to all orders in the coupling constant, then we include subleading or-
ders to improve our predictions, even if this last step is usually not straightforward and
requires much more efforts.

In this chapter we illustrate how the large N limit works applying it to the Gross-
Neveu model and to QCD. Furthermore, we will solve the so called ’t Hooft model, that
is nothing but (1 + 1)-dimensional QCD studied to leading order in the 1/N expansion.

2.2 The Gross-Neveu model in the large N limit
The Gross-Neveu model [9] is a (1 + 1)-dimensional field theory that shares some
features with QCD. In fact we can anticipate that this theory is asymptotically free and
manifests a spontaneous chiral symmetry breaking. As a consequence, it can be con-
sidered a good toy-model for QCD. We will follow the developments of the topic given
in [7] and [8].

The Gross-Neveu lagrangian is given by:

L = ψaiγµ∂µψ
a + λ

2 (ψaψa)2. (2.1)

The ψa, a = 1, ..., N , are N Dirac fields and the Einstein summation convention is
understood. In (1 + 1) dimensions, the lagrangian has mass dimension [M ]2, then the
Dirac fields have mass dimension [M ]1/2. As a consequence, the coupling constant λ
is dimensionless. The lagrangian of the model is invariant under the internal global
symmetry group U(N) acting on the fermion fields:

ψa(x)→ Ua
b ψ

b(x). (2.2)

Furthermore, it is also manifestly invariant under the discrete chiral symmetry given by:
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ψ → γ5ψ, ψ → −ψγ5, ψψ → −ψψ. (2.3)

The minus sign appearing in (2.3) for the transformation of the fermion bilinear ψψ
is responsible for the absence of a mass term in the lagrangian, thus all fermions are
massless. Therefore, it turns out that (2.1) is the most general lagrangian describing a
(1+1)-dimensional renormalizable field theory of N interacting fermion fields endowed
with the symmetries mentioned above.

b

a

a

b

Figure 2.1: The four-fermion vertex of the Gross-Neveu model. Here a and b are flavor
indices.

To start with, we study the process a + ā→ b + b̄ (a 6= b) in wich a fermion-antifermion
pair annihilates into another pair of different flavors. The low-order diagrams contrib-
uting to this process in ordinary perturbation theory are shown in figure 2.2. The first
diagram is the Born contact term, that is of order λ. The other two diagrams are
both one-loop corrections to the amplitude; in the first one the internal indices are fixed,
so it is of order λ2, while in the second one the color index c is arbitrary and we must
some over all its possible values, producing a factor N . Hence this last diagram is of
order Nλ2. Therefore it is evident from the above analysis that the radiative corrections
to the process grow with powers of N and do not possess a well-defined large N limit.
In order to circumvent this problem, we rescale the coupling constant λ as

λ = g2

N
(2.4)

and perform the limit N → +∞ keeping g2 fixed. This procedure is known as the ’t
Hooft limit and allows us to obtain a well defined 1/N expansion.
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b

a

a

b

b

a

b

a a

b c

c

a

a

b

b

Figure 2.2: Low-order diagrams for the process a + ā→ b + b̄. In the third graph the c
flavor index is summed over producing a factor N .

The Gross-Neveu lagrangian written in terms of g2 then becomes:

L = ψaiγµ∂µψ
a + g2

2N (ψaψa)2. (2.5)

After this rescaling, the diagrams in figure 2.2 become of order g2/N , g4/N2 and g4/N
respectively. Only vertices and flavor-index loops contribute to the power counting.
However, we still have a problem: if we look at the last two diagrams from a topological
point of view, we easily see that they have the same number of vertices, momentum
loops, internal and external lines. Nonetheless, they have different behaviours at large
N . The underlying reason for this is that in the first diagram the momentum loop in the
middle carries two uncontracted flavor indices, while in the second one the contracted
index c produces a factor of N . This difference can be easily checked following the arrows
associated to each fermion line. As a consequence, from the point of view of the 1/N
expansion, these two diagrams are completely different and we should find a way to
make this difference manifest without keeping track of flavor indices at all. For this
purpose, we introduce an auxiliary flavor-singlet field σ, modifying the lagrangian as
follows:

L → L+ N

2g

(
σ − g

2Nψaψa
)2
. (2.6)

The auxiliary field does not affect the dynamics, since using the approach of functional
integration the term we added is gaussian and therefore can be easily integrated. The
integration produces an irrelevant overall constant that multiplies the generating func-
tional of the theory. Through a little bit of algebra we find that:

Lσ = ψaiγµ∂µψ
a + σψaψa − N

2g2σ
2. (2.7)

Although the dynamics is the same, the Feynman rules are different and listed below:
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= i

/p+ iε
(2.8)

= −ig
2

N
(2.9)

a

a

= 1 (2.10)

Counting powers of 1/N is now easier than before, since the only vertex is now given
by σψψ, where one of the fermions is incoming and the other is outgoing. Factors of
1/N come only from the internal σ lines. Furthermore, by the inspection of the new
Feynman rules given above, it is evident that every closed fermion line carries the same
flavor index1, and this index must be summed over producing a factor of N . Hence, the
N -dependence from fermions is only included in their loops (see figure 2.3).

Figure 2.3: The three diagrams in figure 2.2 drawn in terms of the new lagrangian 2.7.
Closed fermion loops like the one in the third diagram are now clearly distinguished from
loops like the one in the second diagram, that involves both fermion and auxiliary fields
and thus does not carry the same flavor index.

However, we can further simplify the counting: as we just mentioned, the only powers
of N are carried by σ-propagators and fermion loops. As a consequence, we choose to
describe the theory using an effective action2 Seff(σ,N) obtained integrating out the
fermion fields. In fact, the theory encoded by the lagrangian (2.7) is described in terms
of a generating functional given by:

Z =
∫
DσDψDψeiS[σ,ψ,ψ]. (2.11)

1It is evident by inspecting the flow of the arrows.
2A short review of its definition is given in appendix D.
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Hence, we integrate over all the configurations of the fields defining the theory, and each
of them is weighted by the complex exponential of the classical action. The key feature
of the effective action is that it includes quantum corrections to the classical solutions
of the equations of motion. It is computed integrating over all the configurations of the
fermion fields only:

eiSeff(N,σ) =
∫
DψDψeiS[σ,ψ,ψ]. (2.12)

The functional integral can be performed exactly, since the lagrangian (2.7) is quadratic
in the fermion fields: the effective action we are computing is exact, thus no information
encoded in the original lagrangian has been thrown out, we are only describing the same
theory in terms of the auxiliary field and new vertices. These new vertices are given by
the sum of all 1PI3 diagrams given by the lagrangian (2.7) connected to an arbitrary
number of external σ lines. Since we are mainly interested in the leading order diagrams
in powers of 1/N , we realize that these new vertices collapse into the sum of only those
1PI diagrams shown in figure 2.4. We can prove this performing the integral. We actually
find that:

Seff(σ,N) = NS̃eff(σ), (2.13)

so the effective action is proportional to N and the power counting becomes trivial. It
is not important to give an explicit expression for S̃eff(σ), it is only sufficient to notice
that it does not depend on N anymore.

3A Feynman diagram is one particle irreducible when we cannot disconnect it cutting a single internal
line.
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Figure 2.4: Diagrammatic expansion of the effective action Seff(σ,N) at largeN . The first
diagram represents the σ propagator, while the others represent the possible interaction
vertices surviving at large N .

Inspecting (2.13), it is evident that the interaction vertices for this effective action carry
a factor of N each, no matter what their explicit mathematical expression is. As a
consequence, they can be regarded as single fermion loops, since for each of them we
sum over flavors, obtaining the desired factor of N . Furthermore, each σ propagator has
a factor of 1/N , since it is given by the inverse of the quadratic term in S̃eff(σ), thus
everything goes as expected. Consider a connected Feynman diagram in our effective
theory with E external lines, I internal lines, V vertices and L σ-loops4. It is very well
known that these numbers are not independent, but satisfy the following relation:

L = I − V + 1. (2.14)

The power of N of this diagram can be easily expressed in terms of this quantities: every
σ propagator, external or internal, gives a factor 1/N and every vertex gives a factor N .
Thus, using the relation 2.14, we have:

NV−I−E = N1−L−E. (2.15)

As a consequence, if we fix the number of external σ lines, every σ-loop reduces the
power of N by a unit. Therefore the leading order diagrams are those without loops
(tree diagrams) and the least possible number of external σ lines required to connect
the (true) external fermion lines appearing in the original diagram5. The more loops we
have, the more we are subleading in N (see figure 2.5).

4We remark that every line in this effective diagram is given by σ lines. The external lines in this
case must not be confused with the external lines for the diagram in our original theory (2.7), that are
trivially given by incoming or outgoing fermions.

5For the a + ā→ b + b̄ amplitude we have E = 2.
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Figure 2.5: To the left: two 1PI loop diagrams in the original theory. To the right: their
effective counterparts, described in terms of new vertices and σ propagators closed to
form σ loops. In the large N limit both these effective diagrams are suppressed.

In order to prove that this theory is asymptotically free, we need to compute the
Coleman-Weinberg potential, given by the effective action evaluated for incoming σ
lines carrying zero momenta6, namely:

− iV (σ) = −i N2g2σ
2 −N

+∞∑
n=1

1
2nTr

∫ d2p

(2π)2

(
−/pσ
p2 + iε

)2n
 . (2.17)

The main simplification provided by the large N limit is the fact that the diagrams of
the effective theory reduced to a subset of all 1PI ones shown in figure 2.4, allowing
us to sum them exactly to obtain the second term in (2.17). Thus we neglected two
(or more) loops corrections to the effective potential (see figure 2.5) We obviously only
have even powers of the quantity inside the trace because a trace of an odd number of
gamma matrices identically vanishes. Performing the trace and suitably regulating the
momentum integrals using the MS scheme, we obtain:

V (σ) = N

[
σ2

2g2 + σ2

4π

(
ln σ

2

µ2 − 1
)]

. (2.18)

Since more-loop corrections are suppressed at large N , this effective potential is exact
and satisfies the renormalization group equation, given by:

6This condition corresponds to a space-time constant auxiliary field, indeed:

σ(x) = σ =
∫

δ(p)eipxdp, (2.16)

thus p = 0.
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[
µ
∂

∂µ
+ β(g) ∂

∂g
− γσ(g) ∂

∂σ

]
V (σ) = 0, (2.19)

where µ is the renormalization scale. Thus we have:

β(g) = − g
3

2π . (2.20)

The theory is then asymptotically free to all orders in g2 in the large N limit. Further-
more, the Gross-Neveu model also exhibits spontaneous chiral symmetry breaking. From
(2.18) we can find the extrema of the effective potential:

σmax = 0, σmin = ±σ0 = ±µe−π/g2
, (2.21)

at which V takes the values:

V (0) = 0, V (±σ0) = −Nσ
2
0

4π . (2.22)

Therefore chiral symmetry is spontaneously broken, since:

〈σ〉 = g2

N
〈ψψ〉. (2.23)

The fermions then acquire a mass m = σ0. As a final remark, we notice that for the
theory described by the effective lagrangian Seff(σ) the large N limit is equivalent to the
semiclassical approximation, as it is evident by the following equality:∫

Dσe
i
~Seff(σ,N) =

∫
Dσe

iN
~ S̃eff(σ) . (2.24)

Thus, the expansion in ~ is equivalent to an expansion in 1/N . This is an alternative way
to see why we only considered tree-level (classical) diagrams and neglected all σ-loop
corrections in our analysis at large N . To sum up, the large N limit of the Gross-Neveu
model is equivalent to a semiclassical limit of an effective action Seff(σ,N) describing the
dynamics of a flavor-singlet field σ defined through a quark-bilinear (mesons).

2.3 Quantum chromodynamics in the large N limit
At this point we want to apply the large N limit to quantum chromodynamics. Develop-
ing this subject we mainly follow [8] and [22]. The idea of applying the large N limit to
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QCD was first developed by G. ’t Hooft in [5]. The main difficulty we are going to face
is just that now we are dealing with fields transforming according to the adjoint rep-
resentation of the SU(N) gauge group, namely the gauge fields Aaµ(x). In addition we
have the quark fields ψi(x) with the index i = 1, ..., N living in the fundamental repres-
entation of the gauge group7. Dealing with adjoint indices, it turns out (see appendix A)
that they can be thought as formed by a pair of fundamental and antifundamental
indices (i, j). In other words, an adjoint index lives in the tensor product of the fun-
damental and antifundamental representations provided that the singlet component is
subtracted, namely:

N ⊗N = (N2 − 1)︸ ︷︷ ︸
adjoint

⊕1. (2.25)

Therefore, the gauge-boson fields Aaµ(x) can be labeled using two color indices as follows:

Aaµ(x) = [Aµ(x)]ij i, j = 1, ..., N, (2.26)

where the upper index transforms under the antifundamental representation and the
lower under the fundamental one. The propagator for these fields can be easily written
using the Fierz identity:

[Dµν(p)]ikjl =
N2−1∑
a=1

(T a)ij(T a)klDµν(x− y) =
(
δilδ

k
j −

1
N
δijδ

k
l

)
Dµν(x− y). (2.27)

Furthermore, the dynamics of QCD that admits a non-trivial 1/N expansion is given by
the following lagrangian:

L = N

g2

{
−1

4[Fµν(x)]ij[F µν(x)]ji + ψi(x)[ /D(x)]jiψj(x)−mψi(x)ψi(x)
}
. (2.28)

This lagrangian is obviously incomplete: we left the gauge fixing term and all those
terms involving ghost fields. The term proportional to 1/N appears in the propagator
(2.27) because of the tracelessness of the gluon field. It would not be present if the gauge
group were U(N) rather than SU(N) but, since we are interested in the leading order in
the 1/N expansion, we can safely drop it and actually work with a U(N) gauge theory.
Collecting all these results, we obtain the so called ’t Hooft double line notation,

7For the sake of simplicity we take into account only a single quark flavor omitting the (k) flavor
indices we used in the previous chapter.
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that allows us to represent the gluon propagator as made up of two straight lines pointing
in two opposite directions (because N and N are not equivalent, but they are one the
complex conjugate representation of the other, so there is a distinction between upper
and lower indices8). Thus, a gluon propagates like a quark-antiquark pair (see figure
2.6). The propagator at large N is then given by:

[Dµν(p)]ikjl = δilδ
k
jDµν(x− y). (2.29)

Figure 2.6: The gluon propagator in double line notation [21].

We can similarly rewrite the three and four gluon vertices using the double line notation
as shown in figure 2.7 .

Figure 2.7: The three and four gluon vertices in double line notation [21].

Finally, a quark propagator is represented by a single straight line with an arrow pointing
from the lower to the upper index (it is proportional to a Kronecker’s delta δij). Using
this new notation, we can redraw any Feynman single-line diagram: given a single-line
diagram with assigned indices, there is only one double-line diagram corresponding to
it. Thus, if there are different ways of assigning indices to a single-line diagram, we will
have more than one double-line diagram associated with it.

2.3.1 N counting and surface topology
Our main purpose is to assign to every double-line diagram its power of 1/N . In the
following we will realize that this power is determined by the topological properties of
the diagram itself. For simplicity, we first focus on vacuum bubbles (diagrams with no
external lines). In this case, every line must close to make an index loop. We now have

8Nevertheless, if the gauge group were SO(N), for which the fundamental and antifundamental
representations are equivalent, we would not have arrows pointing in opposite directions.
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to imagine every closed loop as the perimeter af a polygon and interpret the double-
line notation as a prescription for sewing these polygons together. More precisely, we
identify one edge of a polygon with one edge on another if the both lie on the same
double-line (they belong to the same gluon propagator). In this way we construct
a two-dimensional surface. Furthermore, we can give to it an orientation following the
arrows running along the perimeters of each polygon. Thus we end up with an oriented
two-dimensional surface.

It is then easy to count the power of 1/N for this surface. Let it have V vertices,
E edges and F faces. Every interaction vertex corresponds to one of the V vertices of
the surface and we can see by direct inspection of (2.28) that it carries a factor of N/g2,
while every edge carries a factor g2/N , because the propagator is the inverse of the kin-
etic term in the lagrangian. Finally, every face carries a factor N because it corresponds
to an index loop, whose sum gives the number of colors. Thus, the power counting is
given by:

Nχ = NV−E+F , (2.30)

where χ is the Euler characteristic of the surface. It is a very important topological
invariant, meaning that it does not change under homeomorphisms between different
topological spaces. It also turns out that every two-dimensional oriented surface is
homeomorphic9 to a sphere with some number of holes and handles stuck onto it. If
we label with H the number of handles and with B the number of holes on this surface,
we obtain that the Euler characteristic can be expressed as:

χ = 2− 2H −B. (2.31)

Thus we end up with the following two important results:

• First result: the leading connected vacuum bubbles are of order N2. They are
planar diagrams (H = 0) in which we only have double-lines, thus they are made
up only of gluons.

The Euler characteristic in this case is that of a sphere, namely χ = 2. This
means that a planar double-line bubble diagram without holes and handles is to-
pologically equivalent to a sphere, so it can be suitably inscribed onto it. This is
easy to see: given a planar bubble diagram made up only of gluon lines, we can
transform it into a double-line one. This transformation divides the plane into
disjoint regions. At this point, we have to associate a clockwise orientation to all

9Topologically equivalent.
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these regions and give the external index line a counterclockwise direction. Finally,
we only have to identify the perimeters of these regions. Conversely, given a gluon
bubble diagram drawn onto a sphere, we can choose one of its faces and remove
it. Then we can flatten what’s left onto the plane and use the perimeter of the
removed face to envelop it, suitably defining a point at infinity (see figure 2.8). An
example of such bubble diagrams is given by:

∼
(
g2

N

)3 (
N

g2

)2

N3 = g2N2. (2.32)

We incidentally remind that in the ’t Hooft limit g2 is hold fixed. This diagram
drawn on a sphere is shown in figure 2.10(a).

Figure 2.8: Procedure of construction of a gluon double-line bubble diagram inscribed
onto a sphere [23].

• Second result: the leading connected vacuum bubbles with quark lines are of
order N . They are planar diagrams (H = 0) with a single quark loop, that rep-
resents a hole on the two-dimensional surface; it is necessary that the quark loop
runs around the boundary of the diagram, otherwise we would be in presence of
an handle and the diagram would be subleading (see figure 2.9).

The Euler characteristic is that of a sphere with a hole, namely χ = 1. This
means that the leading bubble diagrams with a single quark line are topologically
equivalent to a sphere with a hole, so it can be easily inscribed onto it. The quark
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loop index line represents the boundary of the hole. As a matter of fact, a sphere
with a hole can be easily flattened on a plane, but this time we do not have a
removed face to envelope the flattened ones. The external lines then are unpaired
and represent the boundary of the flattened diagram. An example of such diagrams
is given by:

∼
(
g2

N

)3

N2N2 = g6N. (2.33)

Figure 2.9: Two examples of bubble diagrams involving a single quark loop. Diagram (a)
is a leading order one, since the quark loop runs around the boundary and consequently
it is topologically equivalent to a sphere with one hole. Diagram (b) is subleading and
suppressed at large N , since the quark loop does not run around the boundary. Hence it
is non-planar and topologically equivalent to a sphere with a hole and an handle stuck
onto it [7].

It is now mandatory to underline that we are actually interested in scattering processes
involving only gluons. Particularly, we focus our attention on the tree-level diagrams.
Thus, for the purposes we just mentioned, the only diagrams surviving the N → +∞
limit are the planar ones, proportional to N2. For example, if we drew a pure gluon
diagram (B = 0) with one handle (H = 1), the power of N would decrease of two units;
an example is this kind of diagrams is:

∼
(
g2

N

)3 (
N

g2

)2

N = g2N0. (2.34)

A non-planar diagram like this cannot be drawn on a sphere, but we need a third dimen-
sion to succeed in this task. We can easily evaluate the order of this diagram, namely
χ = 0, hence H = 1. All the oriented surfaces with this Euler characteristic are topo-
logically equivalent to a torus. As a consequence, such a diagram can be drawn on a
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torus, as shown in figure 2.10(b). Furthermore, for tree-level pure gluon amplitudes, we
will see in the next chapter that the 1/N term in the propagator has no effect on the
computation: all the terms involving it precisely cancel one with each other. This is
not due the the large N expansion, the result is exact and prove to be very useful in
the following. In other words, the ’t Hooft double line notation for gluon propagators is
exact for tree-level diagrams, due to the photon decoupling identity, as we will see in
the next chapter. We remark that this is only a tree-level trick, it cannot be used when
loops are present.

(a) (b)

Figure 2.10: The diagrams in (2.32) and (2.34) inscribed on a sphere and on a torus
respectively [22].

2.4 The ’t Hooft model
The ’t Hooft model [6] is nothing but (1+1)-dimensional QCD studied in the large
N limit. As we will see in the following, restricting QCD to two space-time dimensions
will vastly simplify our task. First of all, the lagrangian is given by:

L = 1
4[Fµν ]ij[F µν ]ji −

Nf∑
k=1

ψ
(k)
i ( /D +m(k))ijψ(k)

j , (2.35)

where Nf is the number of quark flavors and k ∈ [1, ..., 6] is the label for these flavors,
while (i, j) label color indices10 (since we are at large N , the ’t Hooft double-line notation
is understood). Furthermore, we have that:

Fµν = ∂µAν − ∂νAµ + g[Aµ, Aν ], (2.36)

Dµ = ∂µ + gAµ. (2.37)

For reasons that will become clear in the following, we change set of coordinates using:
10We will omit color indices from now on.

32



xα = (x−, x+), (2.38)

where we suitably define:

x± = 1√
2

(x0 ± x1), (2.39)

in place of the usual minkowskian coordinates xµ = (x0, x1). These coordinates are
called light-cone coordinates. The space-time line element is expressed in the new
coordinates using the following new metric:

g =
(

0 1
1 0

)
. (2.40)

In fact we easily obtain:

gαβ = ∂xα
∂xµ

∂xβ
∂xν

ηµν → g =
(

0 1
1 0

)
, (2.41)

and consequently we get:

ds2 = gαβdx
αdxβ = 2dx+dx−. (2.42)

We clearly use the metric (2.40) to suitably rise and lower the light-cone indices:

x− = g−αx
α = x+, (2.43)

x+ = g+βx
β = x−. (2.44)

Our summation convention then becomes:

xαpα = xαgαβp
β = x+p− + x−p+ = x+p− + x−p+ = x−p

− + x+p
+. (2.45)

The vector-potential Aµ can be decomposed on the new coordinate lines, namely:

A± = 1√
2

(A0 ± A1). (2.46)

The F+− component of the strength tensor in the new coordinates is given by:
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F+− = ∂+A− − ∂−A+ + g[A+, A−]. (2.47)

Now we need to fix a gauge choosing the so called light-cone gauge:

A− = A+ = 0. (2.48)

We incidentally remark that in this gauge we fix to zero the values of the contravariant
component A+ and the covariant component A−. Furthermore it is also a Lorentz
invariant gauge choice. Thus we get:

F+− = −∂−A+ = −F−+. (2.49)

The strength tensor has only one non-vanishing component and the commutator identic-
ally vanishes. Therefore, the gauge we chose makes the theory abelian, making the
analysis much more easy: non-linear terms disappear from the lagrangian, hence we do
not have self-interacting gluons any more. This drastically diminishes the number of
diagrams that contribute at large N . Furthermore, diagrams become much more simple
because any gluon line that connects two quark lines represents an impassable barrier. No
other gluon can can cross the first interacting with it, because there is no self-interaction
between gluons. In addition, since at large N only planar diagrams survive, a gluon
cannot cross another one without interaction, because it should get under or over it, and
this would violate planarity. Writing the strength tensor as a matrix, we find:

Fαβ →
(

0 ∂−A+
−∂−A+ 0

)
. (2.50)

We can now proceed in our study of the theory. The lagrangian can be rewritten as
follows:

L = −1
2Tr(∂−A+)2 − q̄(k)(γ · ∂ +m2

(k) + gγ−A+)q(k), (2.51)

where we suitably defined a new set of gamma matrices that have to satisfy the Clifford’s
algebra for the new metric (2.40):

{γα, γβ} = 2gαβ, (2.52)

where α, β = ±. Hence we obtain:
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(γ+)2 = (γ−)2 = 0, (2.53)

γ+γ− + γ−γ+ = 2. (2.54)

The only interaction vertex appearing in the lagrangian is given by gq̄k(γ−A+)qk. It
only involves the matrix γ−. On the contrary, the quark propagator involves both the
gamma matrices γ±. However, in a Feynman diagram, every quark propagator will be
sandwiched between two γ− matrices, because it connects two different vertices.

The free quark propagator is given by:

S0(p) = m(k) − iγ−p+ − iγ+p−

m2
(k) + 2p−p+ + iε

. (2.55)

Sandwiching the propagator between two vertices, neglecting irrelevant numerical factors,
we get:

γ−

m(k) − iγ−p+ − iγ+p−

m2
(k) + 2p−p+ + iε

 γ− = −iγ−(γ+p−)γ−

m2
(k) + 2p−p+ + iε

= 2iγ+p−

m2
(k) + 2p−p+ + iε

. (2.56)

Thus, most of the matrix structure is annihilated. In the last step we used the Clifford’s
algebra for the gamma matrices. As a consequence, we can safely neglect the gamma
matrices for every vertex and rewrite the Feynman rules without them. Namely:

• The quark propagator can be rewritten only as a function of the momentum k as
follows:

m(k) − iγ−p+ − iγ+p−

m2
(k) + 2p−p+ + iε

→ S0(p) = −ip−

m2
(k) + 2p−p+ + iε

. (2.57)

• The interaction vertex can be rewritten as:

− gγ− → −2g. (2.58)

• Finally, the gluon propagator reads:

Dαβ(p) = δα+δβ+P
(

1
p2

−

)
→ P

(
1
p2

−

)
, (2.59)
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where P(...) is the principal value11 of the quantity inside the brackets.

Furthermore, the Euler-Lagrange equation for the field component A+ is actually a
constraint, namely:

∂2
−A+ = gq(k)γ−q(k). (2.60)

We can solve this equation and express A+ in terms of the quark fields, then we substitute
this expression into (2.51), obtaining a lagrangian that contains a linear interaction
between color charges located in two different spatial positions x+ and y+ given by:

V (x+, y+) ∝ |x+ − y+|. (2.61)

This linear interaction implies that the ’t Hooft model is confining. Thus only colorless
particles can freely propagate through our (1 + 1)-dimensional space-time and it would
take an infinite amount of energy to separate quarks12. Collecting all these results, we
find that the only diagrams we can have are those of ladder type, with free quark lines
replaced by dressed propagators.

2.4.1 Dressed propagator
To move further, we actually want to compute the dressed propagator for quarks. Our
task is considerably simplified by the planarity of the diagrams in the large N limit and
by the absence of interactions between gluons. As a matter of fact, the dressed propag-
ator is nothing but the quark propagator for the interacting theory, and the graphical
representation of its defining equation is given in figure 2.12.

Figure 2.11: Graphical representation of the relation between dressed propagator and
quark self-energy known as Dyson equation [23].

11It is defined as: P
( 1

x2

)
= 1

2

[
1

(x+iε)2 + 1
(x−iε)2

]
.

12This is analogous to what happens in (1 + 1)-dimensional QED, that also exhibits electric charge
confinement and thus is a good toy-model for (3 + 1)-dimensional QCD and other confining systems
[26].

36



The planarity of the surviving diagrams and the absence of gluon self-interactions im-
plies that the only diagrams contributing to the dressed propagator are the rainbow
diagrams also shown in figure 2.12. Labeling as S(p) the dressed propagator and as
−iΣ(p) the 1PI diagrams surviving at large N and with no self-interactions between
gluons, the quark self-energy is related to the dressed propagator through the Dyson
equation, shown graphically in figure 2.11.

Figure 2.12: First line: graphical representation for the geometric series equation for the
dressed quark propagator. Second line: definition of the two-point 1PI diagrams at large
N and without self-interaction between gluons; only the rainbow diagrams satisfy both
these conditions contributing to the amplitude [23].

The equation in figure 2.12 can be easily iterated to give an exact solution for the dressed
propagator, namely:

S(p) = S0(p)− iS0(p)Σ(p)S0(p) + ... (2.62)

This is a geometric series; its solution is given by:

S(p) = S0(p)
1 + iΣ(p)S0(p)

= ip−

m2
(k) + 2p−p+ − p−Σ(p) + iε

. (2.63)

To complete our calculation, we finally should compute the self-energy Σ(k). For this
purpose, we use the equation in figure 2.11, namely:

− iΣ(p) = −iΣ(p−) = −i4g2
∫ dk−dk+

(2π)2 S(p− k)P
(

1
k2

−

)
= − g2

πp−
. (2.64)

Omitting the details of the computation, it turns out that the dressed propagator has
the same form of the free propagator, namely:

S(p) =
i/p−M(k)

p2 −M2
(k) + iε

, (2.65)
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but with a renormalized quark mass M(k) given by:

M2
(k) = m2

(k) −
g2

π
. (2.66)

It is important to stress that although quarks propagate as free particles, this does not
imply that they are not confined. The presence of a pole in the propagators does not
prove that free quark (colored) states exist at all. The ’t Hooft model is confining, since
quarks are subject to a linear potential that is responsible for the binding force the pairs
them in color singlet channels. Furthermore, quarks can be tachyonic if g2 satisfies:

g2 ≥ πm2
(k). (2.67)

However, we will see in the next section that this problem has no effect on the colorless
particles that are free to propagate: mesons.

2.4.2 Bethe-Salpeter equation and mesons
We are now ready to describe meson bound states. Mesons are described using Green’s
functions of two quark bilinears. The starting point of the analysis is the Dyson equation
for these kind of Green’s functions, namely:

G = S1S2 + S1S2K12G, (2.68)

where G is the full four-point Green’s function, Si are the dressed quark propagators
and K12 encodes all possible 2PI interactions between the two dressed quark lines. By
2PI interactions we mean that the Feynman diagrams contributing to K12 cannot be
disconnected cutting any two internal quark lines. This relation is analogous to that
shown in figure 2.12 for the two-point Green’s function (dressed propagator). However,
in our model gluons cannot interact and cross each other, thus K12 collapses into a single
diagram given by the exchange of a single gluon line between the two dressed quark lines.
In this case the recursive relation (2.68) graphically reads:

= + (2.69)

The blobs represent four-point Green’s functions and each internal quark line is dressed.
The reason is that any gluon line connecting the two upper and lower quark lines forms a
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barrier that cannot be passed since all diagrams at large N are planar (furthermore gluon
self-interactions are forbidden). Therefore, the key simplifications of our model imply
that the four-point Green’s function is given by an infinite sum of ladder diagrams. If a
meson bound state actually exists, inserting the completeness relation for the Fock basis
inside G, it is possible to show that Green’s functions always have poles when on-shell
intermediate particles are produced (see [27], section 10.2). More precisely, it can be
shown that in the vicinity of this pole G is expressed as:

G ' ΨΨ
P 2 − µ2 + iε

+ regular terms as P 2 → µ2, (2.70)

where µ is the mass of the meson bound state and P is its momentum. The amplitude
Ψ is the matrix element of the time-ordered product of two quark fields between the
vacuum and the meson bound state, namely:

Ψ = 〈Ω|Tψψ|P 〉 6= 0. (2.71)

Inserting (2.70) into (2.68) and omitting the explicit computation, we obtain the Bethe-
Salpeter equation:

Ψ = S1S2K12Ψ. (2.72)

Representing Ψ as a black blob, this equation can be better written graphically as follows:

= . (2.73)

As a consequence, the structure of the Green’s function approaching the pole is repres-
ented as:

= ...+ + ...+ + ... (2.74)

This graphical representation perfectly enlightens the fact that the bound state is given
by an infinite exchange of single gluons between the two dressed quarks. Thus we inter-
pret the meson bound state as made up of a quark-antiquark pair interacting infinitely
many times with each other. As a consequence, the contribution to the full four-point
Green’s function given by the meson bound state consists in the sum of an infinite num-
ber of Feynman ladder diagrams Labeling as q the momentum of the quark and with
P − q the momentum of the antiquark, namely:
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= . (2.75)

the mathematical expression satisfied by the amplitude Ψ for the process qq̄ → meson
reads:

Ψ(P, q) = −4g2iS(P − q)S(−q)
∫ d2k

(2π)2P
(

1
(k− − q−)2

)
Ψ(P, k). (2.76)

Now we suitably define the function:

φ(p, q−) =
∫

dq+Ψ(P, q). (2.77)

Then we can make the following substitutions:

2P+P− = µ2, x = q−

P−
, y = k−

P−
, (2.78)

where the variable x represents the fractions of the total light-cone momentum carried
by the quark and µ is the meson mass . Finally, after some manipulations, we get the
Bethe-Salpeter equation in its final form:

µ2φ(x) =
(
M2

x
+ M2

1− x

)
φ(x)− g2

π

∫ 1

0
dyP

(
1

(x− y)2

)
φ(y). (2.79)

The function φ(x) is defined in the interval [0, 1] and vanishes at its end points. More
details on the Bethe-Salpeter equation can be found in [25]. However, (2.79) can be in-
terpret as a non-relativistic light-cone Schrödinger equation describing a quark-antiquark
pair interacting through a linear potential enclosed between two infinite potential wells,
located in y = 0 and y = 1. The confinement between two potential wells ensures that
the meson spectrum is purely discrete. By the way, for sufficiently high energies the
shape of the potential should be negligible and the eigenfunctions should tend towards
those of a free particle in a box, namely:

φn(x) ' sin(πnx), n = 1, 2, ... (2.80)

with eigenvalues given by:
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µ2
n = g2πn. (2.81)

It is also important to remind that the renormalized quark M2 can be tachyonic, when
g2 is sufficiently high. However this fact has no consequences on the meson mass, that
stills be a positive quantity. To prove it, from (2.79) and using the identity:

∫ 1

0
dyP

(
1

(x− y)2

)
= −

[1
x

+ 1
1− x

]
, (2.82)

we get:

µ2
∫ 1

0
|φ(x)|2 = m2

∫ 1

0

(1
x

+ 1
1− x

)
|φ(x)|2dx+ g2

2π

∫ 1

0
dx
∫ 1

0
dy |φ(x)− φ(y)|2

(x− y)2 . (2.83)

Since m2 is positive, µ2 is also positive as we claimed, no matter how large g2 is: tachyonic
quarks do not constitute tachyonic mesons. Finally, as pointed out by Coleman [8], we
enphasize again that the free dressed quark propagator we obtained in the previous
section tells us nothing about confinement: single quarks propagate as free particles
of mass M2 (sometimes negative), nevertheless the theory is confining, hence it does
not contain free quarks and tachyons. The location of the pole in our dressed quark
propagator cannot be considered an observable quantity if out theory is confining.
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Chapter 3

Color decomposition of gluon
amplitudes at tree-level

3.1 Preliminary calculations
In this section we perform some calculations that will turn out to be very useful in the
following. To start with, we want to prove the equation (1.19) we just mentioned in
the first chapter. For this purpose, we recall that the fundamental generators of SU(N)
satisfy the following commutation relation:

[T a, T b] = ifabcT c. (3.1)

We can then multiply both sides by a generator T d and take their trace, obtaining:

Tr
{
[T a, T b]T d

}
= ifabcTr

{
T cT d

}
= i

2f
abcδcd = i

2f
abd. (3.2)

Relabeling d↔ c, we can easily write:

fabc = −2iTr
{
[T a, T b]T c

}
= −2iTr

{
T a[T b, T c]

}
. (3.3)

Hence equation (1.19) holds and gives us an expression for the structure constants in
terms of fundamental generators. Furthermore, it is customary to choose a different set
of fundamental generators:

T̃ a =
√

2 · T a, (3.4)

so that they satisfy a simpler normalization condition, namely:
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Tr
{
T̃ aT̃ b

}
= 2Tr

{
T aT b

}
= δab. (3.5)

As a consequence, TF = 1. This implies a redefinition of the structure constants:

fabc = (−i)√
2

Tr
{
T̃ a[T̃ b, T̃ c]

}
. (3.6)

In order to simplify calculations we redefine the structure constants as follows:

f̃abc =
√

2fabc. (3.7)

so that from (3.6) we get:

f̃abc = (−i)Tr
{
T̃ a[T̃ b, T̃ c]

}
. (3.8)

We will omit the tilde symbol and use these new definitions henceforward. Consider now
another important relation, the Fierz identity:

N2−1∑
a=1

(T a)ij(T a)kl = δilδkj −
1
N
δijδkl. (3.9)

It just encodes the completeness relation for the fundamental matrices. Contracting this
identity with arbitrary matrices Aji and Blk we obtain the useful relation:

Tr {T aA}Tr {T aB} = Tr {AB} − 1
N

Tr {A}Tr {B} . (3.10)

If instead we contract with matrix elements Ali and Bjk we have:

Tr {AT aBT a} = Tr {A}Tr {B} − 1
N

Tr {AB} . (3.11)

These relations will vastly simplify the calculation of color factors for gluon scattering
amplitudes. For example we can calculate the color coefficient for the s-channel in the
gg → gg process:

fabxf cdx = fabxfxcd = −Tr
{
[T a, T b]T x

}
Tr
{
[T c, T d]T x

}
=

= −Tr
{
[T a, T b][T c, T d]

}
+ 1
N

Tr
{
[T a, T b]

}
Tr
{
[T c, T d]

}
=

= −Tr
{
[T a, T b][T c, T d]

}
,
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where we used equation (3.6) in the first line and equation (3.10) in the last. Finally, we
can examine the following peculiar contraction of structure constants:

fa1a2x1fx1a3x2 ...fxn−4an−2xn−3fxn−3an−1an . (3.12)

We want to express this contraction in a suitable way. Using the following property of
the trace operation:

Tr {[A,B]C} = Tr {A[B,C]} , (3.13)

where A,B,C are arbitrary square matrices, fixing n = 2 we obtain:

fabx1fx1cd = −Tr{[T a, T b]︸ ︷︷ ︸
[A,B]

[T c, T d]︸ ︷︷ ︸
C

} = (−i)2Tr
{
T a[T b, [T c, T d]]

}
. (3.14)

Therefore we conjecture the following expression for the original product of structure
constants:

fa1a2x1fx1a3x2 ..fxn−3an−1an = (−i)n−2Tr {T a1 [T a2 [..[T an−2 [T an−1 , T an ]..]]]} . (3.15)

The proof is very simple, because it is sufficient to replace all the (n−2) nested commut-
ators on the right hand side of (3.15) with the Lie algebra relation (3.1) proceeding from
right to left, attaching every (−i) factor to the appropriate commutator. In so doing,
step by step we recover the left hand side of the equation. Keeping in mind these results,
we are then ready to discuss the main topic of this chapter, the color decomposition of
gluon scattering amplitudes at tree-level.

3.2 Gluon scattering amplitudes at tree-level

3.2.1 Trace decomposition
Any tree-level scattering amplitude for the interaction of n gluons can be written as [15]:

A = gn−2 ∑
σ∈Sn−1

Tr
{
T 1T σ(2)...T σ(n−1)T σ(n)

}
A [1, σ(2), ..., σ(n)] . (3.16)

This expression is called trace decomposition and the coefficients A[1, σ(2)..., σ(n)]
are called color-ordered partial amplitudes, because they do not depend on color-
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indices but contain all the kinematics of the scattering process. The sum runs over all
the (n− 1)! permutations of the (2, 3, .., n) indices. The proof of (3.16) runs as follows:
we first select one of the Feynman diagrams that contributes to the scattering process1.
Then we replace a certain structure constant fabc associated to some vertex with the
equation (3.3):

fabc = (−i)Tr
{
T a[T b, T c]

}
. (3.17)

Every line connected to this vertex can be either an external or an internal one. In
the latter case, the line is obviously connected to another vertex and carries a certain
generator T c; the contraction of this generator with the structure constant representing
the other vertex (say f cde) can be easily evaluated as:

fdecT c = (−i)[T d, T e], (3.18)

using the fundamental commutation relations. This procedure allows us to sum over
contracted indices and must be performed V −1 times. However, it is well known that for
any tree-level diagram we have exactly I = V − 1 pairs of contracted indices (→internal
lines). Thus we finally end up with a single trace of n generators carrying uncontracted
indices (→external lines). To give an example, we can consider the following tree-level
color factor:

f 1x1x2fx123fx245 = (−i)Tr
{
T 1[T x1 , T x2 ]

}
fx123fx245 =

= (−i)Tr
{
T 1[T x1fx123, T x2fx245]

}
=

= (−i)3Tr
{
T 1[[T 2, T 3], [T 4, T 5]]

}
.

The structure constants can enter inside the trace symbol and be moved between the
generators simply because they are numbers with respect to fundamental indices, on
which the trace operation is performed. This result also implies that at tree-level the
term proportional to 1/N in the Fierz identity is completely negligible; it is important to
emphasize that this is not due to the large N limit, the computation is exact. Anyway,
we incidentally remark that this is true only for tree-level diagrams. For loop diagrams
we end up with a single trace containing pairs of contracted indices, since in this case we
trivially have more than V − 1 of these pairs. Thus some of them survive the procedure
we described above, appearing inside the final single trace. For example, for n = 4 and
one loop (I = V ), we can get terms like:

1For example the s-channel in the gg → gg process.
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Tr
{
T 1T 2T aT 3T 4T a

}
= Tr

{
T 1T 2

}
Tr
{
T 3T 4

}
− 1
N

Tr
{
T 1T 2T 3T 4

}
. (3.19)

Therefore we do not have single traces, but products of traces of the external gen-
erators. Furthermore the term proportional to 1/N does not vanish, thus at loop level
it cannot be neglected. Returning to tree level-diagrams, we can finally use the cyclic
property of traces to collect all the kinematic parts of the amplitude multiplied by traces
that differ only up to cyclic permutations of the external color indices {1, 2, .., n}. Hence
we only have to sum over non-cyclic permutations of the external indices. However,
this procedure turns out to be equivalent to fixing the position of T a1 to the left inside
the traces and summing over all the permutations of the other indices {2, 3, .., n}. At
this point, all we have to do is to repeat these steps for all the other contributing dia-
grams. The color-ordered partial amplitudes A[1, σ(2), ..., σ(n)] are computed using the
color-ordered Feynman rules listed below.

• The color-ordered three gluon vertex is given by:

V (3)
µ1µ2µ3(p1, p2, p3) =

= (−i) [ηµ1µ2(p1 − p2)µ3 + ηµ3µ1(p2 − p3)µ2 + ηµ2µ3(p3 − p1)µ1 ] .

• The color-ordered four gluon vertex is instead:

V (4)
µ1µ2µ3µ4(p1, p2, p3, p4) = i [2ηµ1µ3ηµ2µ4 − ηµ1µ2ηµ3µ4 − ηµ1µ4ηµ2µ3 ] . (3.20)

These amplitudes correspond to planar Feynman diagrams with an ordering of the ex-
ternal gluons given by the permutation σ(2, 3, ..., n). They are also gauge invariant2.
Therefore we can use the spinor representation of polarization vectors (see appendix B)
in order to calculate them efficiently, choosing different sets of reference momenta (→dif-
ferent gauge fixings) for each color-ordered diagram.

Just to give an example of how color decomposition works, let’s consider the simple
non trivial process gg → gg [13]. Using the standard Feynman rules for QCD, the
diagrams contributing to the full scattering amplitude A are:

A = As +At +Au +A4, (3.21)
2The gauge invariance of partial amplitudes is guaranteed by the exact orthogonality between the

traces in (3.16) in the large N limit.
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where A4 labels the contribution given by the four gluon interaction vertex. However, as
long as only color factors are concerned, it is easy to see that the four gluon interaction
vertex (1.43) can be considered as the sum of the s, t and u channels together. As a
consequence, without loss of generality, any tree-level amplitude can be written in terms
of diagrams containing three gluon vertices only. For example, the s-channel reads:

As =− g

s
fa1a2xfxa3a4 [(ε1 · ε2)(p1 − p2)µ + 2εµ2(p2 · ε1)− 2εµ1(p1 · ε2)]×

× [(ε3 · ε4)(p3 − p4)µ + 2εµ4(p4 · ε3)− 2εµ3(p3 · ε4)] = −gfa1a2xfxa3a4Ãs(1, 2, 3, 4).

The index i = 1, .., 4 labels momenta and polarizations of the four incoming gluons.
Labeling adjoint indices in the same way as ai = i and concentrating on the color factor,
we can alternatively obtain equation (3.14) as:

f 12xfx34 = (−i)
[
Tr
{
T 1T 2T x

}
− Tr

{
T 1T xT 2

}]
fx34 =

= (−i)
[
Tr
{
T 1T 2T xfx34

}
− Tr

{
T 1T xfx34T 2

}]
=

= (−i)2
[
Tr
{
T 1T 2[T 3, T 4]

}
− Tr

{
T 1[T 3, T 4]T 2

}]
=

= − [Tr {1234} − Tr {2134}+ Tr {2143} − Tr {1243}] .

Hence the s-channel amplitude can be written as:

As = [Tr {1234} − Tr {2134}+ Tr {2143} − Tr {1243}] Ãs(1, 2, 3, 4), (3.22)

where As(1, 2, 3, 4) includes all the kinematics of the interaction and is called color
stripped amplitude3. To proceed further, it is evident by direct inspection that the
color stripped amplitude satisfies:

Ãs(1, 2, 3, 4) = −Ãs(2, 1, 3, 4) = Ãs(2, 1, 4, 3) = −Ãs(1, 2, 4, 3). (3.23)

Hence we can rearrange the s-channel amplitude as:

As = Tr {1234} Ãs(1, 2, 3, 4) + Tr {2134} Ãs(2, 1, 3, 4)+
+ Tr {2143} Ãs(2, 1, 4, 3) + Tr {1243} Ãs(1, 2, 4, 3),

3Not to be confused with the partial amplitude.
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simply exchanging the outgoing kinematic indices of gluons. The same steps can be
repeated for the other channels and the four gluon vertex. For example, the t-channel
reads:

At = [Tr {1432} − Tr {4132}+ Tr {4123} − Tr {1423}] Ãt(1, 2, 3, 4). (3.24)

The t-channel obviously satisfies:

Ãt(1, 2, 3, 4) = Ãs(1, 4, 3, 2), (3.25)

so we can use the antisimmetry properties of As to obtain:

At = Tr {1432} Ãs(1, 4, 3, 2) + Tr {4132} Ãs(4, 1, 3, 2)+
+ Tr {4123} Ãs(4, 1, 2, 3) + Tr {1423} Ãs(1, 4, 2, 3).

Collecting all the color stripped partial amplitudes multiplied by the same trace, we find:

A =
∑
σ∈S4

Tr
{
T σ(1)T σ(2)T σ(3)T σ(4)

}
Ã [σ(1), σ(2), σ(3), σ(4)] . (3.26)

Here S4 is the group of all permutations of four indices. However, the traces appearing
in the sum are invariant under cyclic permutations, for example:

Tr {1234} = Tr {4123} . (3.27)

Therefore we can collect all the color stripped amplitudes multiplied by traces with color
orderings different up to cyclic permutations, for example:

Tr {1234}
[
Ãs(1, 2, 3, 4) + Ãs(4, 1, 2, 3)

]
=

Tr {1234}
[
Ãs(1, 2, 3, 4) + Ãt(1, 2, 3, 4)

]
= Tr {1234}A(1, 2, 3, 4).

because Ãs(4, 1, 2, 3) = Ãt(2, 1, 4, 3) = Ãt(1, 2, 3, 4). Hence, we can restrict the sum to
all non-cyclic permutations of four indices or, equivalently, we can fix the first index 1
and then sum over all the permutations of the three other indices left, namely:
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A = g2 ∑
σ∈S3

Tr
{
T 1T σ(2)T σ(3)T σ(4)

}
A [1, σ(2), σ(3), σ(4)] . (3.28)

The kinematic factors A [1, σ(2), σ(3), σ(4)] are what we call color-ordered partial amp-
litudes. We underline that, as expected, the amplitude A[1, 2, 3, 4] corresponding to the
identity permutation is only given by planar diagrams with the same ordering of external
indices. The same holds for all the other partial amplitudes.

3.2.2 Reducing the complexity
However, it is not so difficult to realize that the partial amplitudes appearing in equation
(3.16) are not independent. Besides the cyclic invariance, traces also have reflection
invariance, that implies the following relation between partial amplitudes:

A(1, n, ...3, , 2) = A(n, n− 1, .., 2, 1) = (−1)nA(1, 2, .., n). (3.29)

This allows us to reduce the number of independent partial amplitudes from (n− 1)! to
(n− 1)!/2. Furthermore, partial amplitudes also satisfy the U(1) decoupling identity
(also called dual Ward identity) [16] given by:

A(1, 2, .., n) + A(1, 3, 2, .., n) + ...+ A(1, 3, .., n, 2) = 0. (3.30)

For n = 4 we get:

A(1, 2, 3, 4) + A(1, 3, 2, 4) + A(1, 3, 4, 2) = 0. (3.31)

The vanishing of (3.30) and (3.31) is due to the fact that an amplitude involving an
interaction between (n − 1) gluons and a ’photon’ must be zero. In addition, there are
more complicated relations among partial amplitudes discovered by Kleiss and Kuijf [17],
namely:

A (1, {α}, n, {β}) = (−1)nβ
∑

σ∈OP({α}{βT })
A
(
1, σ({α}{βT}), n

)
. (3.32)

Here the set {α}∪{β} = {2, 3, ..., n−1}, nβ is the cardinality of {β} and {βT} is the set
{β} with all the numbers in reversed order. The sum is over all the ordered permutations
(OP) of the set {α}∪{βT}, where by ordered we mean that they preserve the ordering of
the αi within {α} and of βi within {βT}, while allowing for all possible relative orderings
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between them4. To make things clearer, we give two examples of how (3.32) works. First
we show that (3.32) implies the U(1) decoupling identity. To see this, it is sufficient
to choose {α} = {3, 4, ..., n− 1} and {β} = {βT} = {2}. For example, fixing n = 4, the
Kleiss-Kuijf relation reads:

A(1, 3, 4, 2) = (−1) [A(1, 2, 3, 4) + A(1, 3, 2, 4)] , (3.33)

A(1, 2, 3, 4) + A(1, 3, 2, 4) + A(1, 3, 4, 2) = 0, (3.34)

in perfect accordance with equation (3.31). We now consider A(1, {2, 3}, 5, {4}) obtain-
ing:

A(1, 2, 3, 5, 4) = (−1) [A(1, 2, 3, 4, 5) + A(1, 2, 4, 3, 5) + A(1, 4, 2, 3, 5)] . (3.35)

3.2.3 The adjoint color decomposition
At this point, we are ready to introduce another color decomposition capable of describing
the full gluon scattering amplitude at tree-level as the sum of only (n− 2)! independent
partial amplitudes, called adjoint representation decomposition [18]. It reads as
follows:

A = (ig)n−2 ∑
σ∈Sn−2

fa1aσ(2)x1fx1aσ(3)x2 ...fxn−3aσ(n−1)anA(1, σ(2), ..., σ(n− 1), n) =

= gn−2 ∑
σ∈Sn−2

(F aσ(2) ...F aσ(n−1))a1anA(1, σ(2), ..., σ(n− 1), n),

where (F a)bc = (ifa)bc = i(T aadj)bc is a generator of the adjoint representation of SU(N).
This is the reason why it is called adjoint representation decomposition. Furthermore, it
turns out to be equivalent to inserting the Kleiss-Kuijf relations inside the standard trace
decomposition (3.16). The proof runs as follows: we first use relation (3.15) to replace
the color factor of the new decomposition with a sum a single traces of n fundamental
matrices as we have in the standard decomposition,

fa1aσ(2)x1fx1aσ(3)x2 ...fxn−3aσ(n−1)an = (−i)n−2Tr {T a1 [T aσ(2) , [...[T aσ(n−1) , T an ]..]]]} . (3.36)
4These permutations are also called mergings. For example, if {α} = {2} and {βT } = {4, 3}, the

mergings are given by {2, 4, 3}, {4, 2, 3} and {4, 3, 2}. The reason why they are called mergings should
now be clear: the two sets interpenetrate themselves preserving their internal ordering.
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Now we want to identify all the partial amplitudes corresponding to a trace factor of the
form:

Tr
{
T 1Tα1 ...Tαn−2−qT nT β1 ...T βq

}
, (3.37)

because they should give rise to the amplitude A(1, {α}, n, {β}) by virtue of (??), as es-
tablished by the Kleiss-Kuijf relations. Relation (3.36) contains (n−2) commutators and
2n−2 terms, but only

(
n−2
q

)
of these terms contain exactly q fundamental matrices on the

right of T n. By direct inspection of (3.36), it is evident that all these q matrices are forced
to come in reversed order with respect to {β} = {β1, .., βq}, while the fundamental in-
dices on the left {α} = {α1, .., αn−2−q} conserve their original ordering. Anyway, the two
sets can be merged in any relative order with respect to each other. In other words, we
have that, for any ordered permutation σ({α}{βT}), the amplitude A(1, σ({α}{βT}), n)
appearing in the adjoint decomposition results to be multiplied by the trace (3.37). The
relative (−1)q sign appears because we need to exchange exactly nβ = q commutators in
order to arrange q fundamental matrices to the right of T n, and this procedure trivially
carries a product of q minus signs. Finally, collecting all these amplitudes one easily
obtains the Kleiss-Kuijf relations (3.32), successfully establishing its equivalence to the
new adjoint decomposition.

The adjoint decomposition further reduces the number of independent amplitudes to
(n − 2)!, fixing the indices of the first and the last leg. This decomposition can be ob-
tained as follows: we already mentioned that every four gluon vertex can be expressed
as the sum of the three channels s, t and u. Therefore we can consider only Feyn-
man diagrams containing three gluon vertices. The color factor appearing in the adjoint
decomposition can be represented graphically as shown in figure 3.1.

Figure 3.1: Graphical representation of the adjoint color decomposition coefficient
fa1aσ(2)x1fx1aσ(3)x2 ...fxn−3aσ(n−1)an from [18]. Continuous lines now represent gluons.

These diagrams are called multi-peripheral, meaning that every permuted external
line is directly connected to the line extending from 1 to n. In other words, all the
permuted external lines are connected to the 1-n line without passing through any other
internal line. However, it is trivial to realize that the set of all multi-peripheral tree-level
color diagrams is only a subset of all the possible ones. For example, the color factor:

51



fa1x2x1fx2a2a3fx1a4a5 (3.38)

represents a tree-level diagram, but it is not multi-peripheral. Conversely, the following
factors:

fa1x1x2fx1x2x3fx3a2a3 , fa1x1x3fx1a2x2fx2a3x3 (3.39)

even involve one loop (they contain the same number of f factors and contracted indices),
hence they do not correspond to a tree-level diagram and will not be considered. In order
to circumvent this problem, we recall the Jacobi identity:

fabxfxcd + f bcxfxad + f caxfxbd = 0, (3.40)

that we can suitably recast as:

fabxf cxd = f caxfxbd − f cbxfxad, (3.41)

shown graphically in figure 3.2. It is evident that the left hand side is the color factor for
a t-channel diagram, while the other two are color factors for s and u channel respectively.

Figure 3.2: The Jacobi identity in graphical notation [18].

This identity can be used to convert an arbitrary tree-level gluon diagram made up only
of three vertices into a multi-peripheral one. To give a graphical example of how the
Jacobi identity can be used to make tree-level color factors multi-peripheral, we can
consider the factor (3.38) (containing a Y-fork tree):

= − .
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Therefore it is evident that the two diagrams on the right hand side are both multi-
peripheral, the only difference between them being the permuted couple of indices (2, 3).
A more complicated tree-level color diagram is shown in figure 3.3. The first step of the
conversion into a sum of multi-peripheral diagrams is also shown.

Figure 3.3: First step of the conversion of a specific tree-level diagram into a sum of
multi-peripheral ones for n = 10 [18]. The two diagrams on the right hand side are of
the Y-fork type as the factor (3.38).

Therefore, we can establish that in the adjoint decomposition only those partial amp-
litudes that are not connected through the Jacobi identity are summed, each of them
being suitably weighted by the correspondent multi-peripheral color factor. However, in
the formula we have written the kinematic factors A(1, σ(2), ..., σ(n − 1), n) using the
same notation we previously used to indicate the color-ordered partial amplitudes in the
standard trace decomposition. We made this choice simply because we can easily prove
that they coincide. The proof of this statement is simple: we first consider as unknown
coefficients the kinematic terms in the adjoint decomposition, then we equate it to the
standard trace decomposition, namely:

∑
σ∈Sn−2

(F aσ(2) ...F aσ(n−1))a1anX(1, σ(2), ..., σ(n− 1), n) =

∑
σ∈Sn−1

Tr
{
T 1T σ(2)...T σ(n−1)T σ(n)

}
A (1, σ(2), ..., σ(n)) .

Notice we changed the label for the partial amplitudes in the first line. Then we can
contract both terms with the trace Tr

{
T 1T σ̃(2)...T σ̃(n−1)T n

}
for a fixed permutation σ̃

that leaves the first and the last leg unchanged. Since the kinematic factors do not
depend on the number of colors N , we take the large N limit on both sides, dropping
all the positive powers of 1/N and retaining only the leading contraction terms. It is
very well known that single traces satisfy an exact orthogonality relation at large N [19],
therefore only those color factors with legs labeled as {1, σ̃(i), n} survive the contraction.
As a consequence, the contraction selects a single term on both sides of the equation.
Thanks to the arbitrariness of the permutation σ̃, this indeed proves that the amplitudes
in the adjoint decomposition are given by:

53



X(1, σ(2), ..., σ(n− 1), n) = A(1, σ(2), ..., σ(n− 1), n), (3.42)

as we claimed. We finally remark that all the results we obtained in this section do not
rely on any kinematic properties of the color-ordered amplitudes. We only used group-
theoretic considerations such as the Jacobi identity and the properties of single traces in
the large N limit.

3.2.4 Calculating the cross-section
In order to calculate the cross-section for the process at tree-level, we have to square
the amplitude A, then sum over the final color and helicity states and average over the
initial ones [18]. Using both the standard and the adjoint decomposition of the scattering
amplitude, we can express the cross-section in two equivalent ways:

∑
col.
|Atree(1, 2, ..., n)|2 = (g2)n−2

(n−1)!∑
i,j=1

CijA
tree
i (Atree

j )∗ =

= (g2)n−2
(n−2)!∑
i,j=1

C̃ijA
tree
i (Atree

j )∗.

Obviously, the paired indices (i, j) take values from Sn−1 in the first line and from Sn−2
in the second. Employing the usual shorthand notation, the color matrix Cij is given by:

Cij =
∑
col.

Tr {1, σi(2, ..., n)} [Tr {1, σj(2, ..., n)}]∗ , (3.43)

while C̃ij reads:

C̃ij =
∑
col.

[
F σi(2) . . . F σi(n−1)

]
a1an

[
F σj(2) . . . F σj(n−1)

]∗
a1an

. (3.44)

The expressions of C̃ij for n = 4, 5, 6 are presented explicitly in appendix C. Finally, if
we wont to express the cross-section at large N - the leading color approximation
(LCA) - it is more fruitful to use the expression (3.43) together with the orthogonality
relation between single traces. When we square the full amplitude, products of traces
can be easily computed graphically. One of these products, for n = 4, is given by:

Tr(1, 2, 3, 4)Tr(1, 2, 4, 3)∗ = = N2. (3.45)
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Every factor of N is given by each single-line loop δii = N . Hence we obtain:

∑
col.
|Atree(1, 2, ..., n)|2 = (g2)n−2Cn(N)

∑
σ∈Sn−1

[
|Atree(1, σ(2), ..., σ(n))|2 +O

(
N−2

)]
,

(3.46)

where we suitably defined:

Cn(N) = Nn−2(N2 − 1). (3.47)

3.2.5 BCJ relations and color-kinematics duality at tree-level
In this section we finally introduce another set of linear relations, called BCJ relations,
introduced by Bern, Carrasco and Johansson in [20], that further reduce the number of
independent color-ordered partial amplitudes at tree-level from (n−2)! to (n−3)!. First
of all, we remind that from the point of view of color degrees of freedom the four gluon
vertex can be written as the sum of the s, t and u channel. Hence, we can write every
full color-dressed amplitude at tree-level as the sum of diagrams with only three gluon
vertices, namely:

A =
∑
i∈Γ

cini∏
βi
p2
βi

, (3.48)

where Γ is the set of all different trivalent diagrams, while ci is the color factor associated
to the i-th diagram and ni is its kinematic numerator. These numerators contain all
the kinematic information of the diagram (it depends on Lorentz invariant contractions
of polarization vectors and momenta). The denominator is simply the product of all the
internal propagators. The statement of color-kinematics duality is that any scattering
amplitude for gluons at tree-level can be expressed using numerators ni satisfying the
same algebraic properties of the corresponding color factors ci. In practice, we state
that we can find a suitable representation of the ni such that they satisfy the following
relations:

ci = −cj, ←→ ni = −nj, ∀i, j ∈ Γ, (3.49)

ci + cj + ck = 0, ←→ ni + nj + nk = 0, ∀i, j, k ∈ Γ. (3.50)

The existence of such a representation of the ni may seem highly non-trivial at first
sight. After all, the Jacobi identities encoded on the left in (3.50) are consequences of
the intrinsic properties of the underlying SU(N) color symmetry. Apparently there is no
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reason for the numerators to reflect the same structure of color factors. To start with,
it is sufficient to have a look at the above expression for the full amplitude (3.48). As a
matter of fact, the following trasformations:

ε(pi) −→ ε(pi) + αipi, (3.51)

has obviously no effect on the full amplitude A, since it is gauge invariant. However,
they clearly change the single numerators. Hence the ni are not gauge invariant. This
first result suggests us that we are allowed to manipulate the numerators ni in such a
way that the full amplitude remains unchanged. For this purpose, we choose any three
diagrams (ci, cj, ck) in Γ such that their color factors are not independent but constrained
by the Jacobi identity:

ci + cj + ck = 0. (3.52)

Why shouldn’t we take advantage of this relation to construct a transformation that
leaves A unchanged? After all, the Jacobi identity only allows us to rewrite a certain
channel in terms of the other two, thus the three diagrams differ only by a single propag-
ator defining the channel. Labeling the squared momenta flowing through the channels
by si, sj and sk, it turns out that the transformations:

ni −→ ni + si∆, nj −→ nj + sj∆, nk −→ nk + sk∆, (3.53)

leave (3.48) unchanged, since the shifting is proportional to the Jacobi identity. We
remark that the function ∆ is arbitrary and must be the same for the three numerators.
For this reason (3.53) is called generalized gauge transformation. Until now we
proved that the ni are not unique nor gauge invariant. However this is not a real problem:
what actually matters is that A is gauge invariant and unchanged by our manipulations.
To move further, from section 3.2.4, we know that there are only (n − 2)! diagrams
that are not related by the Jacobi identity. Thus we wrote a color decomposition of A in
terms of only (n−2)! color-ordered amplitudes. On the other hand, every Jacobi identity
between diagrams implies a relation between the kinematic numerators. Thus we have
(n − 2)! independent numerators as well. Furthermore, as shown in [28], we write any
independent partial amplitude in terms of the independent numerators as follows:

A(i) =
(n−2)!∑
j=1

Θijñj. (3.54)

The square (n− 2)!× (n− 2)! matrix Θij is called propagator matrix. The linear rela-
tion (3.54), if inverted, could allow us to find the color-ordered independent amplitudes
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very easily in terms of the independent numerators. If this were the case, we would only
have re-stated the adjoint color decomposition in a different fashion, and color-kinematics
duality would be in some sense trivial and useless. By the way, it is not the case. In fact
it can be shown [20] that Θij is not invertible for 4-dimensional Yang-Mills theories.
As a consequence, we do not have unique ñi. An immediate consequence of this is that
there exist a certain number of further linear relations between the color-ordered partial
amplitudes.

As a matter of fact, the number of independent partial amplitudes coincides with the
rank of Θij, given by (n− 3)!. The general BCJ relations read:

A(1, 2, {α} , 3, {β}) =
∑

σ∈POP({α,β})
A(1, 2, 3, σ)Fσ, (3.55)

where POP({α, β}) is the set of all partially ordered permutations of {α} ∪ {β}, the
ones preserving the relative order between the elements of {β}, while Fσ indicates some
dynamical factors whose definitions can be found in [20]. For n = 4 we get:

A(1, 2, {4} , 3) = s14

s24
A(1, 2, 3, 4), (3.56)

while for n = 5 we get two non-trivial relations:

A(1, 2, {4, 5} , 3) = −A(1, 2, 3, 4, 5)s34s15 − A(1, 2, 3, 5, 4)(s245 + s35)
s24s245

,

A(1, 2, {4} , 3, {5}) = A(1, 2, 3, 4, 5)(s14 + s45) + A(1, 2, 3, 5, 4)s14

s24
.

Equation (3.55) have been proven using both the BCFW recursion relations [29, 30]
and string theory [31]. When the set {α} contains only one index we obtain the funda-
mental BCJ relations, while when {α} = ∅ we get a trivial result. As a matter of fact,
it can be shown that the only relevant relations are the fundamental ones: to be more
specific, we can show that, combining the Kleiss-Kuijf and fundamental BCJ relations,
any amplitude can be written as a sum of amplitudes of the form A(1, 2, 3, σ(4, ..., n))
provided by (3.55) [30].

In fact, consider an arbitrary amplitude of the form A(1, α2, ...α|α|, 2, β1...β|β|), where
|α| and |β| are the cardinalities of the two sets respectively and where the only index
fixed in position is 1, using the cyclic invariance of traces. Then:

• We can use the Kleiss-Kuijf relation to write this arbitrary amplitude as:
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A(1, α2, ...α|α|, 2, β1...β|β|) = (−1)|β|∑
σ

A(1, σ({α} ∪ {βT}), 2), (3.57)

where σ is an arbitrary ordered permutation of the union of the two sets of indices.
We can then use the reflection property of the amplitudes to fix the index 2 on the
right of 1.

• The resulting independent amplitudes are of the form:

A(1, 2, t1, t2, ..., t|γ|, 3, l1, ..., l|δ|), (3.58)

thus exactly the amplitudes on the left hand side of (3.55). We want to prove that
these amplitudes can be expressed through amplitudes of the form A(1, 2, 3, σ(4, ...,
n)), σ ∈ POP({γ}∪{δ}), using the fundamental BCJ relations. Following [30], we
consider the amplitudes with |δ| = 0. The amplitudes are given by:

A(1, 2, t1, t2, ..., tn−3, 3). (3.59)

Considering t2 as fixed along the string, we can write (n−3)! different fundamental
BCJ equations (each for any set of {ti}). To the right hand side of each of these
equations, the index 3 can be positioned on the n-th or (n − 1)-th site along
the string of color ordered indices. Therefore, we can treat them as a system of
equations and solve all configurations with 3 at the n-th site by the ones at the
(n− 1)-th site. We consider next the configuration:

A(1, 2, t1, t2, ..., tn−4, 3, l1), (3.60)

with |δ| = 1. Repeating the above procedure, we can solve the amplitudes with 3
at the (n− 1)-th site by the ones at the (n− 2)-th site and so on, until we solved
the ones with 3 at fourth site by the ones at the third site. To sum up, we proved
that any amplitude on the left hand side of (3.55) can actually be expressed as a
sum on the partially ordered permutations of the amplitudes A(1, 2, 3, σ(4, ..., n)),
each one weighted by a suitable dynamical factors.

3.2.6 Proof of the fundamental BCJ relations
At last, we need to prove the fundamental BCJ relations. We will follow [30] using
induction on the number of external gluons n through the very powerful tool given by
the BCFW recursion relations5. In fact, they allow us to express a given amplitude as

5See the last paragraph of appendix B.
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a product of two on-shell sub-amplitudes with (n− 1) or less gluons connected to them.
We focus on n = 6 without loss of generality, since the computation for general n will
follow the same path. The idea is to consider the following combination of amplitudes:

I6 = A(2, 4, 3, 5, 6, 1)(s43 + s45 + s46 + s41)
+ A(2, 3, 4, 5, 6, 1)(s45 + s46 + s41)
+ A(2, 3, 5, 4, 6, 1)(s46 + s41) + A(2, 3, 5, 6, 4, 1)s41,

and deform it shifting the two external momenta p1 and p2. Then we expand each
amplitude through BCFW recursion, obtaining terms with different splittings6. We call
I [m]

6 the sum of all terms with m gluons connected to the sub-amplitude on the left. For
example:

I [2]
6 = A(2̂, 4,−P̂24|P̂24, 3, 5, 6, 1̂)(s43 + s45 + s46 + s41)

+ A(2̂, 3,−P̂23|P̂23, 4, 5, 6, 1̂)(s45 + s46 + s41)

+ A(2̂, 3,−P̂23|P̂23, 5, 4, 6, 1̂)(s46 + s41)

+ A(2̂, 3,−P̂23|P̂23, 5, 6, 4, 1̂)s41.

We will prove the fundamental BCJ relation for n = 6 if the combination I6 identically
vanishes. The inductive hypothesis is that the fundamental BCJ relations hold for n =
3, 4, 5. The above terms can be divided into two groups: the ones where the index 4 is on
the left and the one where it is on the right. The last three terms are of the latter type.
In order to apply the inductive step, we need the factorized amplitudes to be multiplied
by deformed dynamical factors such as s1̂3 et cetera. For this purpose, we write each
dynamical factor as:

sij = sij, for {i, j} 6= {1, 2} ,

sîj = sîj − (sij − sîj), for i = 1, 2.
6From now on we will use the same notation for the amplitude splittings employed in the last

paragraph of [30].
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The last three terms can be rearranged as:

A(2̂, 3,−P̂23|P̂23, 4, 5, 6, 1̂)(s45 + s46 + s41̂) + A(2̂, 3,−P̂23|P̂23, 5, 4, 6, 1̂)(s46 + s41̂)

+ A(2̂, 3,−P̂23|P̂23, 5, 6, 4, 1̂)s41̂ + [A(2̂, 3,−P̂23|P̂23, 4, 5, 6, 1̂) + A(2̂, 3,−P̂23|P̂23, 5, 4, 6, 1̂)

+ A(2̂, 3,−P̂23|P̂23, 5, 6, 4, 1̂)](s41 − s41̂(z23)).

Since the inductive step implies the validity of the fundamental BCJ relations for the
amplitude on the right (n = 5), we have that the first three terms are summed to zero,
thus only the term between square brackets survives. Finally, the first term can be
rewritten as:

− s24A(2̂, 4,−P̂24|P̂24, 3, 5, 6, 1̂) =
= −s2̂4A(2̂, 4,−P̂24|P̂24, 3, 5, 6, 1̂)− (s24 − s2̂4(z24))A(2̂, 4,−P̂24|P̂24, 3, 5, 6, 1̂),

using momentum conservation. The first term identically vanishes using the inductive
step on the sub-amplitudes on the left (n = 3). Repeating the same procedure for I [3]

6
and I [4]

6 , we finally get:

I6 = s41[A(2, 4, 3, 5, 6, 1) + A(2, 3, 4, 5, 6, 1) + A(2, 3, 5, 4, 6, 1) + A(2, 3, 5, 6, 4, 1)]

+
∮
z 6=0

dzs1̂4
z

[A(2̂, 4, 3, 5, 6, 1̂) + A(2̂, 3, 4, 5, 6, 1̂) + A(2̂, 3, 5, 4, 6, 1̂) + A(2̂, 3, 5, 6, 4, 1̂)].

The contour integral is the sum of all the residues corresponding to all simple poles
except z = 0. Thus the contour is large enough to contain all finite poles, namely:∮

z 6=0

dz(...) =
∑

poles 6=0
Res(...). (3.61)

We can now use the Kleiss-Kuijf relations to simplify (3.62) as:

I6 = −s41A(4, 2, 3, 5, 6, 1)−
∮
z 6=0

dzs1̂4
z

A(4, 2̂, 3, 5, 6, 1̂). (3.62)

60



Evaluating the contour integral is now straighforward. In fact, we know from complex
analysis that the sum of all the residues of an holomorphic function (including the residue
at infinity) must vanish. Thus we write:

0 =
∮
z 6=0

dzs1̂4
z

A(4, 2̂, 3, 5, 6, 1̂) + s14A(4, 2, 4, 5, 6, 1)︸ ︷︷ ︸
residue at z=0

+
∮

z=∞

dzs1̂4
z

A(4, 2̂, 3, 5, 6, 1̂). (3.63)

Since in (3.62) the shifted indices are not nearby, the integrand goes to zero faster than
1/z as |z| → +∞, and this implies that the residue at infinity vanishes. As a consequence,
we get: ∮

z 6=0

dzs1̂4
z

A(4, 2̂, 3, 5, 6, 1̂) = −s41A(4, 2, 3, 5, 6, 1). (3.64)

The insertion of this equation in (3.62) implies the vanishing of I6 and proves that the
fundamental BCJ relations hold for n = 6. The proof for general n is exactly the same.

Just to give an example of computation using BCJ relations, consider the amplitude for
n = 4 gluons at tree level. Here we have only one independent amplitude: A(1, 2, 3, 4).
Using the BCJ relation (3.56) and the adjoint decomposition, the amplitude is given by:

A4 = f 13xfx42A4(1, 3, 4, 2) + f 14yf y32A4(1, 4, 3, 2) =
= f 13xfx42A4(1, 2, 4, 3) + f 14yf y32A4(1, 2, 3, 4) =

=
[
t

u
f 13xfx42 + f 14yf y32

]
A(1, 2, 3, 4).

In the last step we used reflection invariance. Reminding that:

(f 13xfx42)2 = N2(N2 − 1),

(f 13xfx42)(f 14yf y32) = N2(N2 − 1)
2 ,

squaring this amplitude we get:

∑
colors
|A4|2 = 4N2(N2 − 1)

[
t2

u2 + 1 + t

u

]
|A4(1, 2, 3, 4)|2. (3.65)

Since for n = 4 the only non-vanishing amplitudes are the MHV ones7, considering the
7The details are shown in appendix B.
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configuration (−,−,+,+) and using the Parke-Taylor formula we obtain:

|A4(1−, 2−, 3+, 4+)|2 = (〈12〉[21])4

〈12〉〈23〉〈34〉〈41〉[21][32][43][14] = s2

t2
. (3.66)

Inserting (3.66) into (3.65), we finally get:

∑
colors
|A4|2 = 4N2(N2 − 1)s2

(
t2 + u2 + ut

t2u2

)
= 4N2(N2 − 1)

(
s4

t2u2 −
s2

tu

)
, (3.67)

in perfect accordance with [13]. Summing over all helicity configurations and averaging
over the different initial states, we easily get the well-known total cross-section:

1
256

∑
pols., col.

|A4|2 = 9
2g

4
(

3− us

t2
− ut

s2 −
st

u2

)
. (3.68)
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Chapter 4

Large N expansion at work

4.1 Tree-level partial amplitudes up to n = 7
Here we list the analytic expressions of partial amplitudes for different external helicity
configurations and n = 6, 7. For MHV amplitudes1 the Parke-Taylor formula holds:

A(1+, ..., i−, ..., j−, ..., n+) = 〈ij〉4

〈12〉〈23〉...〈(n− 1)n〉〈n1〉 , ∀n. (4.1)

For n = 4, 5, all partial amplitudes are MHV. The simplicity of this formula cannot be
generalized to NMHV helicity configurations. In fact, using the Mathematica package
GGT.m[37], for n = 6 we get:

A(1−, 2−, 3−, ..., 6+) =
(

1
〈12〉〈23〉〈34〉〈45〉〈56〉〈61〉

)
·

{ 〈21〉〈43〉
[
−〈31〉〈6|x64|x42|2〉 − 〈21〉〈32〉〈6|x64|x42|3〉

〈23〉

]4
s24〈6|x62|x24|3〉〈6|x62|x24|4〉〈6|x64|x42|1〉〈6|x64|x42|2〉

+
〈21〉〈54〉

[
−〈31〉〈6|x65|x52|2〉 − 〈21〉〈32〉〈6|x65|x52|3〉

〈23〉

]4
s25〈6|x62|x25|4〉〈6|x62|x25|5〉〈6|x65|x52|1〉〈6|x65|x52|2〉

+ 〈21〉4〈32〉5〈54〉〈6|x65|x53|3〉3
s35〈23〉4〈6|x63|x35|4〉〈6|x63|x35|5〉〈6|x65|x53|2〉

}
.

1Amplitudes with 2 negative and (n− 2) positive helicities, see appendix B.
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Here we suitably defined xij = ∑j−1
k=i pk and sij = x2

ij. For n = 7 we get the following
NMHV amplitude:

A(1−, 2−, 3−, ..., 7+) =
(

1
〈12〉〈23〉〈34〉〈45〉〈56〉〈67〉〈71〉

)
·

{ 〈21〉〈43〉
[
−〈31〉〈7|x74|x42|2〉 − 〈21〉〈32〉〈7|x74|x42|3〉

〈23〉

]4
s24〈7|x72|x24|3〉〈7|x72|x24|4〉〈7|x74|x42|1〉〈7|x74|x42|2〉

+
〈21〉〈54〉

[
−〈31〉〈7|x75|x52|2〉 − 〈21〉〈32〉〈7|x75|x52|3〉

〈23〉

]4
s25〈7|x72|x25|4〉〈7|x72|x25|5〉〈7|x75|x52|1〉〈7|x75|x52|2〉

+ 〈21〉4〈32〉5〈54〉〈7|x75|x53|3〉3
s35〈23〉4〈7|x73|x35|4〉〈7|x73|x35|5〉〈7|x75|x53|2〉

+
〈21〉〈65〉

[
−〈31〉〈7|x76|x62|2〉 − 〈21〉〈32〉〈7|x76|x62|3〉

〈23〉

]4
s26〈7|x72|x26|5〉〈7|x72|x26|6〉〈7|x76|x62|1〉〈6|x76|x62|2〉

+ 〈21〉4〈32〉5〈65〉〈7|x76|x63|3〉3
s36〈23〉4〈7|x73|x36|5〉〈7|x73|x36|6〉〈7|x76|x63|2〉

}
.

To obtain numerical values of the amplitudes, the GGT.m package uses the S@M.m
package, see [38] for further details.

4.2 Color coefficients classification
In this section we classify all color coefficients for n = 5, 6, 7, 8, 9, 10 external gluons at
tree-level. These coefficients have been computed numerically, for N = 3, using a code
written in Fortran. Then the values we obtained have been matched with their expres-
sions as functions of powers of 1/N using the Mathematica package ColorMath[39].
Starting from n = 5, the color matrix is given by:
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C̃ij = N2(N2 − 1)



8 4 4 2 2 0
4 8 2 0 4 2
4 2 8 4 0 2
2 0 4 8 2 4
2 4 0 2 8 4
0 2 2 4 4 8


, Ai =



A(1, 2, 3, 4, 5)
A(1, 2, 4, 3, 5)
A(1, 3, 2, 4, 5)
A(1, 3, 4, 2, 5)
A(1, 4, 2, 3, 5)
A(1, 4, 3, 2, 5)


, i ∈ S3. (4.2)

No NLC coefficients are present, thus the LC amplitude is exact.

4.2.1 Six gluons
For six external gluons, the classification reads:

Full coefficient LC coefficient Occurrence
16 16 1
8 8 3
4 4 5
2 2 4
2 + 24/N2 2 1
0 0 6
24/N2 0 4

We note that NLC corrections hit only 0 and 2. Retaining only LC contributions, only
14 coefficients survive. We put the coefficients in powers of 2 in descending order: terms
proportional to 1/N2 are in some sense interpreted as ‘corrections’ to the powers of 2
and 0.

4.2.2 Seven gluons
For seven gluons, we get:

Full coefficient LC coefficient Occurrence
32 32 1
16 16 4
8 8 9
4 4 12
4 + 48/N2 4 2
2 2 8
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2 + 24/N2 2 4
2 + 32/N2 2 2
0 0 27
48/N2 0 8
±32/N2 0 3, 1
24/N2 0 16
16/N2 0 7
±8/N2 0 10, 6

The number of non-vanishing coefficients is 93. In this case only 0, 2 and 4 are ‘corrected’
by NLC powers of 1/N .

4.2.3 Eight gluons
For eight external gluons, the full amplitude displays corrections proportional to 1/N4.
The classification of adjoint color coefficients and their occurrences is the following:

Full coefficient LC coefficient Occurrence
64 64 1
32 32 5
16 16 14
8 8 25
8 + 96/N2 8 3
4 4 28
4 + 48/N2 4 10
4 + 64/N2 4 4
2 2 16
2 + 24/N2 2 12
2 + 32/N2 2 8
2 + 64/N2 + 96/N4 2 2
2 + 28/N2 − 48/N4 2 4
0 0 137
96/N2 0 12
±64/N2 0 6, 2
48/N2 0 40
24/N2 0 48
±32/N2 0 26, 4
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±16/N2 0 48, 12
±8/N2 0 56, 32
64/N2 + 96/N4 0 4
28/N2 + 48/N4 0 24
32/N2 + 96/N4 0 20
±(4/N2 + 48/N4) 0 30, 8
±(12/N2 + 48/N4) 0 28, 10
±(−12/N2 + 48/N4) 0 10, 4
±(20/N2 + 48/N4) 0 12, 2
24/N2 + 96/N4 0 12
40/N2 + 96/N4 0 1

The number of non-vanishing coefficients is 583. Curiously, now only 0 and 2 are ‘cor-
rected’ by N2LC powers of 1/N , while NLC terms hit 4 and 8. As a consequence, we
guess that, increasing the number of external gluons, for even n the lowest order color
contribution hits 0 and 2, while for odd n it hits 0, 2 and 4.

4.2.4 Nine gluons
Let’s see if our guess is correct. For nine gluons we get:

Full coefficient LC Occ. Full coefficient LC Occ.
128 128 1 ±(24/N2 + 96/N4) 0 104, 20
64 64 6 ±(−8/N2 + 96/N4) 0 20, 8
32 32 20 ±(40/N2 + 96/N4) 0 28, 4
16 16 44 48/N2 + 192/N4 0 24
16 + 192/N2 16 4 80/N2 + 192/N4 0 2
8 8 66 ±(14/N2 + 8/N4) 0 22, 8
8 + 128/N2 8 6 ±(12/N2 − 80/N4) 0 8, 8
8 + 96/N2 8 18 ±(−8/N2 + 160/N4) 0 60, 14
4 4 64 64/N2 + 96/N4 0 16
4 + 64/N2 4 20 −6/N2 + 120/N4 0 6
4 + 48/N2 4 36 ±(20/N2 +176/N4)) 0 8, 4
4+128/N2 +192/N4 4 4 ±(32/N2 − 64/N4) 0 15, 10
4 + 56/N2 − 96/N4 4 8 32/N2 + 96/N4 0 80
2 2 32 ±(−4/N2 + 48/N4) 0 40, 16
2 + 32/N2 2 24 24/N2 + 288/N4 0 16
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2 + 24/N2 2 32 ±(20/N2 + 16/N4) 0 22, 14
2 + 44/N2 + 80/N4 2 6 ±(12/N2 + 80/N4) 0 9, 9
2 + 32/N2 + 32/N4 2 8 ±32/N4 0 16, 12
2 + 64/N2 + 96/N4 2 8 24/N2 + 256/N4 0 16
2 + 28/N2 − 48/N4 2 16 20/N2 + 208/N4 0 28
2 + 48/N2 + 288/N4 2 2 ±(16/N2 + 128/N4) 0 40, 14
2+128/N2 +128/N4 2 2 ±(16/N2 − 32/N4) 0 66, 38
2 + 22/N2 − 56/N4 2 2 ±(8/N2 + 128/N4) 0 128, 14
0 0 818 ±(6/N2 + 8/N4) 0 10, 6
192/N2 0 16 ±(−2/N2 + 40/N4) 0 64, 44
±128/N2 0 9, 3 ±(32/N2 − 32/N4) 0 8, 2
±64/N2 0 51, 10 ±(6/N2 + 40/N4) 0 24, 20
48/N2 0 144 ±(8/N2 − 32/N4) 0 12, 10
±32/N2 0 168, 30 ±(10/N2 − 40/N4) 0 4, 12
24/N2 0 128 24/N2 − 32/N4 0 8
±16/N2 0 216, 76 22/N2 + 8/N4 0 16
±8/N2 0 200, 120 14/N2 + 168/N4 0 22
±(12/N2 + 48/N4) 0 216, 68 ±(10/N2 + 88/N4) 0 78, 18
±(4/N2 + 48/N4) 0 120, 32 36/N2 + 176/N4 0 7
±(8/N2 + 96/N4) 0 60, 16 18/N2 + 88/N4 0 28
±(−4/N2 + 80/N4) 0 106, 44 16/N2 + 256/N4 0 6
±(4/N2 + 80/N4) 0 52, 36 6/N2 + 168/N4 0 10
±(128/N2+128/N4) 0 3, 1 12/N2 + 208/N4 0 6
±(64/N2 + 32/N4) 0 20, 6 64/N2 + 192/N4 0 40
44/N2 + 16/N4 0 26 56/N2 + 96/N4 0 48
±(20/N2 + 80/N4) 0 10, 4 128/N2 + 192/N4 0 8
±(20/N2 + 48/N4) 0 86, 8 ±(4/N2 + 208/N4) 0 44, 8
±(32/N2 + 256/N4) 0 9, 1 28/N2 + 48/N4 0 96
96/N2 0 72 T: 5040

The number of non-vanishing coefficients is 4222. We underline the presence of two
coefficients in which N2LC corrections are not paired to NLC ones, namely ±32/N4. We
call them pure N2LC coefficients. Furthermore, our guess is confirmed, N2LC corrections
hit only 0, 2 and 4. For ten gluons we expect that only 0 and 2 will be corrected by
N3LC contributions.
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4.2.5 Ten gluons
Our expectations for ten gluons are confirmed, since only 0 and 2 display corrections
involving terms proportional to 1/N6. In order to simplify the classification, we explicitly
list all coefficients giving a non-vanishing contribution at LC and their occurrences, while
we do not list all the others2 singularly:

Full coefficient LC coefficient Occurrence
256 256 1
128 128 7
64 64 27
32 32 70
32 + 192/N2 16 5
16 16 129
16 + 192/N2 16 28
16 + 256/N2 16 8
8 8 168
8 + 96/N2 8 75
8 + 128/N2 8 36
8 + 256/N2 + 384/N4 8 6
8 + 112/N2 − 192/N4 8 12
4 4 144
4 + 48/N2 4 112
4 + 64/N2 4 72
4 + 128/N2 + 192/N4 4 20
4 + 56/N2 − 96/N4 4 40
4 + 96/N2 + 576/N4 4 5
4 + 256/N2 + 256/N4 4 4
4 + 64/N2 + 64/N4 4 16
4 + 88/N2 + 160/N4 4 12
4 + 44/N2 − 112/N4 4 84
2 2 64
2 + 24/N2 2 80
2 + 32/N2 2 64
2 + 64/N2 + 96/N4 2 24
2 + 28/N2 − 48/N4 2 48
2 + 48/N2 + 288/N4 2 12
2 + 128/N2 + 128/N4 2 8

2The lowest order corrections of 0.
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2 + 32/N2 + 32/N4 2 32
2 + 44/N2 + 80/N4 2 24
2 + 22/N2 − 56/N4 2 8
2 + 56/N2 + 384/N4 2 8
2 + 256/N2 + 256/N4 + 384/N6 2 2
2 + 48/N2 + 48/N4 − 192/N6 2 12
2 + 76/N2 + 64/N4 − 192/N6 2 6
2 + 36/N2 + 216/N4 + 96/N6 2 12
2 + 30/N2 + 32/N4 − 96/N6 2 8
2 + 60/N2 + 528/N4 + 384/N6 2 3
2 + 40/N2 + 232/N4 + 96/N6 2 7
2 + 22/N2 + 112/N4 + 96/N6 2 3
2 + 24/N2 + 64/N4 2 4
0 0 5449

The remaining coefficients are of the form:

a

N2 + b

N4 + c

N6 . (4.3)

Furthermore, some of them give pure NLC and N2LC contributions, namely:

α

N2 ,
β

N4 . (4.4)

As a consequence, N3LC contributions are always mixed with at least one term of lower
order. In other words, we do not have pure 1/N6 contributions.

4.2.6 An additional comment on numerators
For all numbers of external gluons n ≤ 10, each color coefficient listed above can be
trivially expressed as:

a+ b

N2 + c

N4 + d

N6 . (4.5)

where a can be zero or a power of 2 such that a ≤ 2n−2. By direct inspection of the
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above tables3 we note that the highest coefficient appearing as numerator to all orders
in even powers of 1/N is given by:

n = 6,−→ 24 = 23 · 31, n = 7,−→ 48 = 24 · 31,

n = 8,−→ 96 = 25 · 31, n = 9,−→ 288 = 25 · 32,

n = 10,−→ 576 = 26 · 32, n = 11,−→ 1152 = 27 · 32 (?).

Obviously the question mark means that the value for n = 11 is a guess. Noticing that
the sum of the exponents is given by n − 2, we guess that, for n external gluons, the
highest numerator is:

Cmax
0 (n) = 2n−2−

⌊
n−3

3

⌋
3
⌊

n−3
3

⌋
= 2n−1−

⌊
n
3

⌋
3
⌊

n
3

⌋
−1. (4.6)

Here we checked this guess for less then 11 external gluons. This means that terms of
highest order in 1/N can at most be:

n = 6,−→ 24/N2 ' 2.6̄, n = 7,−→ 48/N2 ' 5.3̄,
n = 8,−→ 96/N4 ' 1.186, n = 9,−→ 288/N4 ' 3.5̄,
n = 10,−→ 576/N6 ' 0.79, n = 11,−→ 1152/N6 ' 1.58 (?).

If our guess is correct, the behaviour of these terms would be:

Rmax
0 (n) = 2n−2−

⌊
n−3

3

⌋
3
⌊

n−3
3

⌋
32
⌊

n−4
2

⌋ = 2n−1−
⌊

n
3

⌋
3
⌊

n
3

⌋
−1

32
(⌊

n
2

⌋
−2
) . (4.7)

These terms have to be compared to the LC coefficients, especially the highest one 2n−2.
Thus we decide to normalize them by this coefficient, so that the greatest coefficient is
one, namely:

Rmax
0,norm(n) = 21−

⌊
n
3

⌋
3
⌊

n
3

⌋
−1

32
(⌊

n
2

⌋
−2
) . (4.8)

In addition:

• The highest numerators for the next lower order power of 1/N are instead:
3Including all non-listed coefficients for n = 10.
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n = 8,−→ 96 = 25 · 31, n = 9,−→ 192 = 26 · 31,

n = 10,−→ 576 = 26 · 32, n = 11,−→ 1152 = 27 · 32 (?).

To reproduce these terms we guess another formula, similar to (4.7):

Cmax
1 (n) =

2n−2−
⌊ (n−3)−1

3

⌋
3
⌊ (n−3)−1

3

⌋
if n ≥ 8 is even,

2n−2−
⌊ (n−3)−2

3

⌋
3
⌊ (n−3)−2

3

⌋
if n ≥ 8 is odd.

(4.9)

• Finally, the highest numerators for further lower order power of 1/N are:

n = 10,−→ 384 = 27 · 31, n = 11,−→ 768 = 28 · 31 (?).

Again, to reproduce these terms we guess the following formula, namely:

Cmax
2 (n) =

2n−2−
⌊ (n−3)−3

3

⌋
3
⌊ (n−3)−3

3

⌋
if n ≥ 10 is even,

2n−2−
⌊ (n−3)−4

3

⌋
3
⌊ (n−3)−4

3

⌋
if n ≥ 10 is odd.

(4.10)

Thus, moving through all orders in powers of 1/N in descending order, we decrease
n− 3 by odd numbers when n is even and by even numbers when it is odd.

We collect our results in the following table, also providing the values we would obtain
for n = 11, 12 if our guess itself holds true:

# gluons 1/N0 1/N2 1/N4 1/N6 1/N8

n = 3 21 · 30 = 2 0 0 0 0
n = 4 22 · 30 = 4 0 0 0 0
n = 5 23 · 30 = 8 0 0 0 0
n = 6 24 · 30 = 16 23 · 31 = 24 0 0 0
n = 7 25 · 30 = 32 24 · 31 = 48 0 0 0
n = 8 26 · 30 = 64 25 · 31 = 96 25 · 31 = 96 0 0
n = 9 27 · 30 = 128 26 · 31 = 192 25 · 32 = 288 0 0
n = 10 28 · 30 = 256 27 · 31 = 384 26 · 32 = 576 26 · 32 = 576 0
n = 11(?) 29 · 30 = 512 28 · 31 = 768 27 · 32 = 1152 27 · 32 = 1152 0
n = 12(?) 210 ·30 = 1024 29 · 31 = 1536 28 · 32 = 2304 28 · 32 = 2304 27 · 33 = 3456
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Inspecting the above table, let us make two comments.

• First of all, the fact that these coefficients are given by suitable powers of only
3 (number of QCD colors) and 2 (they are all even numbers) up to ten external
gluons is at least curious.

• Furthermore, we can consider all the highest LC powers4 of 2 as trivial products
of the form:

2n−2 · 30. (4.11)

As a consequence, they are easily described by the above mentioned products of
powers of 2 and 3 anyway.

4.3 Expansion efficacy for MHV amplitudes up to
eight external gluons in the adjoint basis

In this section our purpose is to compare the squared and color-summed gluon scattering
amplitudes at tree level with their values obtained at leading, next-to-leading and next-
to-next-to leading order in powers of 1/N . From now on we will denote them as LC,
NLC and N2LC as customary. As previously stated, up to n ≤ 5 we can easily see that
no NLC and N2LC contributions to the amplitude are present, thus at leading order in
color we get exact results.

4.3.1 Six gluons
For n = 6, the color matrix has dimension 24 × 24. Instead of giving the entire mat-
rix, we can recognize that all the information is contained in the first row, given by
C̃(123456)(1σ(2345)6) = C6(N)γ(σ(2345)):

γ(2345) = 16, γ(3245) = 8, γ(4235) = 4, γ(5234) = 2,
γ(2354) = 8, γ(3254) = 4, γ(4253) = 2, γ(5243) = 0,
γ(2435) = 8, γ(3425) = 4, γ(4325) = 0, γ(5324) = 0,
γ(2453) = 4, γ(3452) = 2, γ(4352) = 0, γ(5342) = a,
γ(2534) = 4, γ(3524) = 2, γ(4523) = b, γ(5423) = a,
γ(2543) = 0, γ(3542) = 0, γ(4532) = a, γ(5432) = a,

(4.12)

4We can alternatively think of them as multiplied by the even power 1/N0 = 1.
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where a = 24/N2 and b = 2 + a. As a consequence, the first row contribution to the full
and LO tree-level amplitudes read:

Atree
FULL = N4

(
N2 − 1

)
A∗

123456

[
16A123456 + 8N2A123546 + 8A124356+

4A124536 + 4A125346 + 8A132456 + 4A132546+
4A134256 + 2A134526 + 2A135246 + 4A142356+

2A142536 + 2A145236 + 2A152346 + 24
N2A145236+

24
N2A145326 + 24

N2A153426 + 24
N2A154236 + 24

N2A154326

]
,

Atree
LC = N4

(
N2 − 1

)
A∗

123456[16A123456 + 8A123546 + 8A124356 + 4A124536+
4A125346 + 8A132456 + 4A132546 + 4A134256 + 2A134526 + 2A135246+
4A142356 + 2A142536 + 2A145236 + 2A152346].

Using Mathematica, we implemented a very simple function to sum all the different con-
tributions coming from the 24 rows of both the full and LC matrix. We then compared
the results for MHV amplitudes with fixed helicities: (−,+, ...,+,−). In order to ob-
tain numerical values for the partial amplitudes, we used the function GenMomenta[...]
included in [38] to generate a valid pseudo-random set of six external momenta, then
got numerical values through the function GGTtoSpinors[...]//N. Finally, we called Gen-
Momenta[...] 100 times to obtain a mean value of the color-summed squared amplitude
on the phase space. Here we report the first twenty values of both the full and LC
amplitudes we obtained for twenty different phase space points:
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FULL = 27230.8, LC = 26923.4, Ratio = 0.988708,
FULL = 394930.0, LC = 384992.0, Ratio = 0.974837,
FULL = 1.28108 · 107, LC = 1.28071 · 107, Ratio = 0.999708,
FULL = 2.89343 · 108, LC = 2.88893 · 108, Ratio = 0.998444,
FULL = 452909.0, LC = 452870.0, Ratio = 0.999914,
FULL = 35167.1, LC = 35026.3, Ratio = 0.995988,
FULL = 39801.7, LC = 39655.5, Ratio = 0.996327,
FULL = 333179.0, LC = 328767.0, Ratio = 0.986759,
FULL = 511.921, LC = 511.891, Ratio = 0.999942,
FULL = 2168.84, LC = 2168.03, Ratio = 0.999625,
FULL = 28883.8, LC = 28293.4, Ratio = 0.97956,
FULL = 220.89, LC = 218.824, Ratio = 0.990647,
FULL = 406540.0, LC = 403950.0, Ratio = 0.993628,
FULL = 590901, LC = 588495, Ratio = 0.995928,
FULL = 8.17026 · 106, LC = 8.14478 · 106, Ratio = 0.996881,
FULL = 54828.6, LC = 54801.3, Ratio = 0.999501,
FULL = 126783.0, LC = 121835.0, Ratio = 0.960971,
FULL = 1.20998 · 106, LC = 1.20972 · 106, Ratio = 0.999789,
FULL = 4077.38, LC = 4067.33, Ratio = 0.997534,
FULL = 2.25875 · 106, LC = 2.22828 · 106, Ratio = 0.986513.

Therefore, the LC approximation gives an average error of 1% over the pseudo-randomly
selected phase space points.
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4.3.2 Seven gluons
For n = 7 we continue to get only NLC corrections. Using a similar Mathematica code,
we obtained 100 full and LC amplitudes. We report again the first twenty values of both
the full and LC amplitudes:

FULL = 3.16578 · 109, LC = 2.98795 · 109, Ratio = 0.943827,
FULL = 8.16687 · 108, LC = 7.52012 · 108, Ratio = 0.920808,
FULL = 4.59454 · 107, LC = 4.54689 · 107, Ratio = 0.989628,
FULL = 1.26928 · 107, LC = 1.13688 · 107, Ratio = 0.895691,
FULL = 697036, LC = 667346, Ratio = 0.957405,
FULL = 1.99 · 106, LC = 1.84555 · 106, Ratio = 0.927414,
FULL = 8.12467 · 106, LC = 7.71536 · 106, Ratio = 0.949621,
FULL = 4.07664 · 107, LC = 4.05576 · 107, Ratio = 0.994878,
FULL = 6190.13, LC = 6061.45, Ratio = 0.979213,
FULL = 1.07534 · 1011, LC = 1.07031 · 1011, Ratio = 0.995321,
FULL = 1.21092 · 107, LC = 1.17029 · 107, Ratio = 0.966443,
FULL = 453893, LC = 419789, Ratio = 0.924863,
FULL = 8021.32, LC = 7285.55, Ratio = 0.908274,
FULL = 576004, LC = 573496, Ratio = 0.995647,
FULL = 1.57023 · 107, LC = 1.42651 · 107, Ratio = 0.908474,
FULL = 717694, LC = 696527, Ratio = 0.970506,
FULL = 128624, LC = 127713, Ratio = 0.992918,
FULL = 2.89073 · 107, LC = 2.87604 · 107, Ratio = 0.99492,
FULL = 1.73362 · 106, LC = 1.51124 · 106, Ratio = 0.871727,
FULL = 85806.9, LC = 80093.4, Ratio = 0.933414.

In this case the LC approximation is not satisfactory, since we get an average error of
5% over all 100 phase space points.
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4.3.3 Eight gluons
For n = 8, neglecting all 1/N4 contributions to the tree-level amplitude, we get that
our NLC approximation gives a value differing from the exact one by one part per mil
on average. We report here the first twenty values of the full amplitude and the ratios
we obtained for both the LC and NLC approximation for twenty different phase space
points, namely:

FULL = 1.58706 · 1010, RatioLC = 0.822465, RatioNLC = 0.997494,
FULL = 1.56476 · 1012, RatioLC = 0.986549, RatioNLC = 0.999929,
FULL = 4.37443 · 108, RatioLC = 0.921011, RatioNLC = 0.999614,
FULL = 2.35873 · 108, RatioLC = 0.969267, RatioNLC = 0.999964,
FULL = 1.56476 · 106, RatioLC = 0.991875, RatioNLC = 0.999977,
FULL = 4.37443 · 1010, RatioLC = 0.98727, RatioNLC = 0.999989,
FULL = 2.95491 · 107, RatioLC = 0.930747, RatioNLC = 0.999928,
FULL = 1.14142 · 109, RatioLC = 0.934263, RatioNLC = 0.999242,
FULL = 3.18545 · 107, RatioLC = 0.858419, RatioNLC = 0.998719,
FULL = 4.54754 · 108, RatioLC = 0.890643, RatioNLC = 0.999297,
FULL = 1.31524 · 106, RatioLC = 0.779917, RatioNLC = 0.996694,
FULL = 3.16123 · 1011, RatioLC = 0.92231, RatioNLC = 0.999626,
FULL = 2.77371 · 1010, RatioLC = 0.858758, RatioNLC = 0.998966,
FULL = 7.28107 · 109, RatioLC = 0.817419, RatioNLC = 0.998861,
FULL = 9.23245 · 108, RatioLC = 0.93888, RatioNLC = 0.999624,
FULL = 8.78216 · 109, RatioLC = 0.97915, RatioNLC = 0.999869,
FULL = 1.62271 · 106, RatioLC = 0.867123, RatioNLC = 0.999456,
FULL = 2.51064 · 1010, RatioLC = 0.99718, RatioNLC = 0.999996,
FULL = 8.56096 · 109, RatioLC = 0.987968, RatioNLC = 0.999991,
FULL = 5.39079 · 107, RatioLC = 0.880421, RatioNLC = 0.998863.

As a consequence, the NLC approximation turns out to be very good: over the 100 phase
space points generated we get an average error less than 0.1%. On the other hand, the
LC approximation is definitely unsatisfactory, since it gives an average error of 10%.
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Chapter 5

NLO corrections and large N
expansion

5.1 Definition
The one-loop color decomposition for n-gluon amplitudes expressed in terms of adjoint
generator matrices reads [18]:

A1-L = gn
∑
σ

[
Tr(F aσ1 ..F aσn )A[1]

n;1(σ1, .., σn) + 2NfTr(T aσ1 ..T aσn )A[1/2]
n;1 (σ1, .., σn)

]
,

(5.1)

where σ lives in the set of all non-cyclic permutations of the n external gluons up to
reflections1 andNf is the numbers of quark flavors. The superscript [s] denotes the spin of
the particle circulating in the loop. Therefore the number of independent subamplitudes
is (n − 1)!/2. One-loop amplitudes contribute to NLO QCD cross-sections interfering
with the tree-level part of the full amplitude, namely:

∑
colors
A(1, ..., n)A∗(1, ..., n)|NLO = 2

∑
colors

Re
[
Atree(A1-loop)∗

]
=

= 2(g2)n−1Re


(n−2)!∑
i=1

(n−1)!/2∑
j=1

Atree
i

[
ĉij(A[1]

j )∗ + 2Nf d̂ij(A[1/2]
j )∗

] .
The elements of the two (n− 2)!× (n− 1)!/2 color matrices appearing above read:

ĉij =
∑

colors
(Pi {F a2 ...F an−1})a1an [Tr(F a1Pj {F a2 ...F an})]∗ , (5.2)

1We denote this set as Sn−1/R.
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d̂ij =
∑

colors
(Pi {F a2 ...F an−1})a1an [Tr(T a1Pj {T a2 ...T an})]∗ , (5.3)

where i ∈ Sn−2 and j ∈ Sn−1/R. For example, when n = 4, we get:

ĉ11 =
∑

colors

(
fa1a2lf la3a4

) (
fxa1yf ya2zf za3kfka4x

)
, (5.4)

d̂11 =
∑

colors
(fa1a2xfxa3a4)

(
T a1
ij T

a2
jk T

a3
kl T

a4
li

)
. (5.5)

For n = 4, 5 these matrices are explicitly given in [18]. We report them here for com-
pleteness. For n = 4 we get:

ĉij = N3(N2 − 1)
(

2 −2 0
0 −2 2

)
, d̂ij = N2(N2 − 1)

(
1 −1 0
0 −1 1

)
, (5.6)

while for n = 5 we get:

ĉij = N4(N2 − 1)



2 −2 0 −2 0 2 0 0 a −a a a
0 −2 2 −2 2 0 a a a 0 0 a
0 0 a −2 −a 2 2 −2 0 0 a a
a a a 0 0 2 0 −2 2 2 a 0
a −2 0 0 2 −a a 0 a 2 2 0
a 0 a a 2 0 a −2 0 2 0 2


, (5.7)

d̂ij = N3(N2 − 1)



1 −1 0 −1 0 1 0 0 b −b b b
0 −1 1 −1 1 0 b b b 0 0 b
0 0 b −1 −b 1 1 −1 0 0 b b
b b b 0 0 1 0 −1 1 1 b 0
b −1 0 0 1 −b b 0 b 1 1 0
b 0 b b 1 0 b −1 0 1 0 1


, (5.8)

where we suitably set a = 24/N2 and b = 2/N2. In the following, we present the first row
of these matrices for n = 6 and only classify the coefficients for n = 7, 8. All coefficients
have been computed using the Mathematica package ColorMath[39].

5.2 Six gluons
For six gluons, the first row of the ĉij matrix, normalized by a factor N5(N2− 1), reads:

79



ĉ1j =
{

2,−2, 0,−2, 0, 2, 0, 0, 24
N2 ,−2,− 24

N2 , 2,
24
N2 ,

24
N2 ,

24
N2 , 0, 0, 2,−

24
N2 ,−

24
N2 ,−

24
N2 ,

0, 0,−2, 0, 0, 0, 0, 0, 0, 24
N2 ,−

24
N2 ,

32
N2 ,−

32
N2 ,

16
N2 ,−

8
N2 ,

8
N2 ,−

24
N2 ,−

16
N2 ,

8
N2 ,

− 8
N2 ,

24
N2 ,

24
N2 ,−

24
N2 ,

16
N2 ,−

16
N2 ,

24
N2 ,−

24
N2 ,

8
N2 ,−

8
N2 ,

16
N2 ,−

8
N2 ,−

16
N2 ,

8
N2 ,

32
N2 ,

8
N2 ,

8
N2 ,−

8
N2 ,−

8
N2 ,−

32
N2

}
.

The classification is given by:

Full coefficient LC coefficient Occurrence
±2 ±2 4, 4
0 0 14
±32/N2 0 2, 2
±24/N2 0 8, 8
±16/N2 0 3, 3
±8/N2 0 6, 6

Furthermore, the first row of d̂ij, normalized by a factor N4(N2 − 1), is:

d̂1j =
{

1,−1, 0,−1, 0, 1, 0, 0, 2
N2 ,−1,− 2

N2 , 1,
2
N2 ,

2
N2 ,

2
N2 , 0, 0, 1,−

2
N2 ,−

2
N2 ,−

2
N2 ,

0, 0,−1, 0, 0, 0, 0, 0, 0, 2
N2 ,−

2
N2 ,

1
N2 ,−

1
N2 ,

3
N2 ,

1
N2 ,−

1
N2 ,−

2
N2 ,−

3
N2 ,−

1
N2 ,

1
N2 ,

2
N2 ,

2
N2 ,−

2
N2 ,−

2
N2 ,

2
N2 ,

2
N2 ,−

2
N2 ,−

1
N2 ,

1
N2 ,

3
N2 ,

1
N2 ,−

3
N2 ,−

1
N2 ,

1
N2 ,

− 1
N2 ,−

1
N2 ,

1
N2 ,

1
N2 ,−

1
N2

}
.
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The classification is:

Full coefficient LC coefficient Occurrence
±1 ±1 4, 4
0 0 14
±3/N2 0 2, 2
±2/N2 0 9, 9
±1/N2 0 8, 8

5.3 Seven gluons
For seven external gluons, the dimension of the color matrices is 120× 360, making the
writing of their first rows cumbersome. We restrict ourselves to classify their coefficients.
Normalizing each term by N6(N2 − 1), for the first row of ĉij we get:

Full coefficient LC coefficient NLC coefficient Occurrence
±2 ±2 ±2 8, 8
0 0 0 68
±24/N2 0 ±24/N2 24, 24
±32/N2 0 ±32/N2 8, 8
±16/N2 0 ±16/N2 12, 12
±8/N2 0 ±8/N2 34, 34
±(24/N2 + 96/N4) 0 ±24/N2 7, 5
±(4/N2 + 48/N4) 0 ±4/N2 21, 11
±(12/N2 + 48/N4) 0 12/N2 14, 14
±(64/N2 + 96/N4) 0 64/N2 3, 1
±(28/N2 + 48/N4) 0 ±28/N2 8, 8
±(−4/N2 + 48/N4) 0 ∓4/N2 8, 4
±(32/N2 + 96/N4) 0 ±32/N2 11, 5

Normalizing each term by N5(N2 − 1), for the first row of d̂ij we obtain the following
classification:
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Full coefficient LC coefficient NLC coefficient Occurrence
±1 ±1 ±1 8, 8
0 0 0 72
±2/N2 0 ±2/N2 32, 32
±1/N2 0 ±1/N2 36, 36
±3/N2 0 ±3/N2 8, 8
±(1/N2 + 2/N4) 0 ±1/N2 20, 12
±(2/N2 + 2/N4) 0 ±2/N2 4, 4
±2/N4 0 0 32, 16
±(1/N2 − 2/N4) 0 ±1/N2 10, 10
±(2/N2 − 2/N4) 0 ±2/N2 4, 4
±(3/N2 − 2/N4) 0 ±3/N2 2, 2

5.4 Eight gluons
The classification confirms our guess again, since we only get ‘corrections’ of 0. For the
matrix ĉij, normalizing each coefficient by N7(N2 − 1), we obtain:

Full coefficient LC coefficient NLC coefficient Occurrence
±2 ±2 ±2 16, 16
0 0 0 396
±32/N2 0 ±32/N2 24, 24
±24/N2 0 ±24/N2 64, 64
±16/N2 0 ±16/N2 36, 36
±8/N2 0 ±8/N2 120, 120
±(64/N2 + 96/N4) 0 ±64/N2 8, 8
±(28/N2 + 48/N4) 0 ±28/N2 32, 32
±(12/N2 + 48/N4) 0 ±12/N2 116, 116
±(32/N2 + 96/N4) 0 ±32/N2 32, 32
±(4/N2 − 48/N4) 0 ±4/N2 24, 24
±(4/N2 + 48/N4) 0 ±4/N2 64, 64
±(24/N2 + 96/N4) 0 ±24/N2 26, 26
±(128/N2+128/N4) 0 ±128/N2 2, 2
±32/N4 0 0 12, 12
±288/N4 0 0 16, 16
±(64/N2 + 32/N4) 0 ±64/N2 10, 10
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±(20/N2 + 16/N4) 0 ±20/N2 16, 16
±(12/N2 + 80/N4) 0 ±12/N2 8, 8
±(20/N2 + 208/N4) 0 ±20/N2 4, 4
±(18/N2 + 88/N4) 0 ±18/N2 6, 6
±(32/N2 − 32/N4) 0 ±32/N2 2, 2
±(32/N2 + 256/N4) 0 ±32/N2 4, 4
±(8/N2 − 80/N4) 0 ±8/N2 18, 18
±(4/N2 + 208/N4) 0 ±4/N2 12, 12
±(14/N2 + 168/N4) 0 ±14/N2 8, 8
±(6/N2 + 168/N4) 0 ±6/N2 6, 6
±(10/N2 − 40/N4) 0 ±10/N2 8, 8
±(6/N2 − 120/N4) 0 ±6/N2 4, 4
±(4/N2 − 80/N4) 0 ±4/N2 36, 36
±(2/N2 − 40/N4) 0 ±2/N2 22, 22
±(6/N2 + 8/N4) 0 ±6/N2 8, 8
±(20/N2 + 48/N4) 0 ±20/N2 16, 16
±(44/N2 + 16/N4) 0 ±44/N2 8, 8
±(32/N2 − 64/N4) 0 ±32/N2 12, 12
±(16/N2 − 32/N4) 0 ±16/N2 44, 44
±(8/N2 + 128/N4) 0 ±8/N2 54, 54
±(20/N2 + 176/N4) 0 ±20/N2 6, 6
±(14/N2 + 8/N4) 0 ±14/N2 18, 18
±(8/N2 − 32/N4) 0 ±8/N2 12, 12
±(10/N2 + 88/N4) 0 ±10/N2 48, 48
±(6/N2 + 40/N4) 0 ±6/N2 24, 24
±(4/N2 + 80/N4) 0 ±4/N2 32, 32
±(20/N2 + 80/N4) 0 ±20/N2 6, 6
±(16/N2 + 128/N4) 0 ±16/N2 18, 18

Furthermore, for the matrix d̂ij, normalized by N6(N2 − 1), we get the following coeffi-
cients:

Full coefficient LC coefficient NLC coefficient Occurrence
±1 ±1 ±1 16, 16
0 0 0 416
±2/N2 0 ±2/N2 100, 100
±1/N2 0 ±1/N2 122, 122
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±3/N2 0 ±3/N2 24, 24
±(1/N2 + 2/N4) 0 ±1/N2 70, 70
±(2/N2 + 2/N4) 0 ±2/N2 18, 18
±2/N4 0 0 148, 148
±(1/N2 − 2/N4) 0 ±1/N2 40, 40
±(2/N2 − 2/N4) 0 ±2/N2 18, 18
±(3/N2 − 2/N4) 0 ±3/N2 8, 8
±4/N4 0 0 60, 60
±(1/N2 + 1/N4) 0 ±1/N2 32, 32
±(2/N2 + 3/N4) 0 ±2/N2 4, 4
±1/N4 0 0 132, 132
±3/N4 0 0 118, 118
±(1/N2 + 5/N4) 0 ±1/N2 6, 6
±(1/N2 + 3/N4) 0 ±1/N2 16, 16
±(1/N2 − 1/N4) 0 ±1/N2 22, 22
±(2/N2 − 1/N4) 0 ±2/N2 8, 8
±(2/N2 + 1/N4) 0 ±2/N2 8, 8
±(1/N2 − 3/N4) 0 ±1/N2 10, 10
±5/N4 0 0 44, 44
±7/N4 0 0 6, 6
±(1/N2 − 5/N4) 0 ±1/N2 8, 8
±(1/N2 + 4/N4) 0 ±1/N2 4, 4
±(1/N2 − 4/N4) 0 ±1/N2 4, 4
±(2/N2 − 3/N4) 0 ±2/N2 4, 4
±(3/N2 − 1/N4) 0 ±3/N2 2, 2

We give just two comments.

• By direct inspection of the above 1-loop tables for the ĉij matrices, it is evident
that the highest numerators up to n = 8 are given again by products of powers of
2 and 3, as we had for tree-level color coefficients, namely:

n = 5,−→ 24 = 23 · 31, n = 6,−→ 32 = 25 · 30,

n = 7,−→ 96 = 25 · 31, n = 8,−→ 288 = 25 · 32.

• Furthermore, the sum of the exponents of 2 and 3 is (n− 1). For tree-level coeffi-
cients the same sum gave (n− 2).
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Chapter 6

Color-flow decomposition

6.1 Definition
The color-flow decompositon [40] of an n-gluon amplitude reads:

A =
∑

σ(2,...,n)
δi1jσ2

δ
iσ2
jσ3
...δ

iσn
j1 A(1, σ2, ..., σn). (6.1)

The sum is over all (n− 1)! permutations of (2, ..., n) and the partial amplitudes are the
same as in both the trace and adjoint decompositions. It is based on treating the SU(N)
gluon field as an N ×N matrix (Aµ)ij, with (i, j) = 1, ..., N , rather than as a one-index
field Aaµ with a = 1, 2, ..., N2−1. More details can be found in Appendix A. To obtain the
cross-section, we square the amplitude and sum over colors. The leading term in 1/N is
trivially given by the square of each term. In other words, if we concentrate on the first
raw of the color-matrix, the leading color contribution in the color-flow decomposition
comes from the contraction in which external gluons are ordered in the same way, hence:(

δi1j2δ
i2
j3 ...δ

in
j1

)
·
(
δi1j2δ

i2
j3 ...δ

in
j1

)†
=
(
δi1j2δ

i2
j3 ...δ

in
j1

)
·
(
δj2i1 δ

j3
i2 ...δ

j1
in

)
= Nn. (6.2)

Terms involving the contraction a deltas associated to different color-flows will give rise
to factors Nn−2r, where r = 1, ...,

⌊
n−1

2

⌋
. This decomposition, as the name suggests, is

based on the flow of color, so it has a simple physical interpretation and furnishes a very
natural way to express an arbitrary QCD amplitude.

6.2 Number of NLC contributions
In this section we aim to prove that the number of color coefficients contributing to NLO
in powers of 1/N for tree-level gluon amplitudes is equal to:
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#NLC =
(
n+ 1

4

)
, (6.3)

for any row of the color-matrix.

6.2.1 Proof
Concentrating on the first row of the color-matrix, our reference permutation is given
by (1, 2, 3, ..., n − 1, n). We denote an arbitrary permutation of the external legs as
(1, σ2, σ3, ..., σn). All the indices having on their right side the same index they had in
the reference ordering produce contractions of the form δikjl δ

jl
ik

= δikik = N . We denote
the number of these terms as m and call them contracted. The remaining strings of
coupled Kronecker’s deltas give rise1 to a single string of (n−m) deltas of the form:

∏
{k}
δikiL(ik+1)

, (6.4)

where L(ik+1) denotes the index on the left side of ik+1 in the permuted set of indices.
Therefore, by definition, L(ik+1) 6= ik+1. For example, if we contract (123456) · (135642),
we get:

δi1i4δ
i2
i1δ

i3
i6δ

i4
i3δ

i5
i5δ

i6
i2 = N2. (6.5)

We neglect the case in which m = n, since it is associated to the only LC color coefficient.
Focusing on NLC coefficients, consider n ≥ 4 gluons. It is easy to show that we get NLC
coefficients if and only if:

n−m = 3 ∨ n−m = 4. (6.6)

To prove it, remind that the maximum power of N for an arbitrary cross term is trivially
given by:

nmax(m) = m+
⌊
n−m

2

⌋
. (6.7)

The power of N for the NLC contributions is (n−2). If we write the following inequality:

n− 2 > nmax(m) = m+
⌊
n−m

2

⌋
, (6.8)

1Once we contracted the {jk}.
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and easily rearrange it, we end up with:

n−m > 2 +
⌊
n−m

2

⌋
. (6.9)

This inequality holds for all (n − m) ≥ 5. Hence we get NLC coefficients only when
n−m ≤ 4, therefore we can have a string of at most 4 uncontracted deltas left. Since
the minimum number of uncontracted deltas for the simplest non-trivial permutations2

of the external gluons is 3, we get:

3 ≤ n−m ≤ 4. (6.10)

By the way, in order to get a power Nn−2, a string of 3 uncontracted deltas should
give a factor N , while a string of 4 deltas should give a factor N2. This is always true,
since, relabeling indices and writing the deltas with upper i’s in ascending order, the
only contractions we could have are given by:

δi1i3δ
i2
i1δ

i3
i2 = N, δi1i3δ

i2
i4δ

i3
i1δ

i4
i2 = N2. (6.11)

As a consequence, the total number of permutations of the external gluon indices giving
NLC coefficients is given by all possible ways to combine them is groups of three and
four, namely: (

n

3

)
+
(
n

4

)
=
(
n+ 1

4

)
, (6.12)

as we claimed. For example, the contraction given by (6.5) does not give NLC contribu-
tion, since (n−m) = (6−1) = 5. The same does the contraction (12345678) ·(16483752),
since m = 0:

δi1i5δ
i5
i1δ

i2
i8δ

i8
i2δ

i3
i6δ

i6
i3δ

i4
i7δ

i7
i4 = N4, (6.13)

while (12345678) · (17845623) gives the desired result, since m = 4, namely:

δi1i6δ
i6
i1δ

i2
i2δ

i4
i4δ

i5
i5δ

i7
i7δ

i3
i8δ

i8
i3 = N6. (6.14)

2They are given by the exchange of two adjacent indices, for example: (12345)→ (12435).
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Chapter 7

Summary and conclusions

Finally, we first sum up all the steps we moved in this work, collecting the results we
obtained.

• In chapter 1 we gave the basics of Quantum Chromodynamics: we first described
the properties of the SU(N) group and its generators. Then we described the
QCD lagrangian, derived the Feynman rules and underlined the key features of the
theory, in particular its asymptotic freedom at high energy scales.

• In chapter 2 we introduced the large N limit and applied it to the Gross-Neveu
model and to QCD. This non-perturbative technique was introduced in order to
avoid the breakdown of perturbation theory for QCD at low energy scales, where
gS ' 1. Thus, the idea is to replace gS with another parameter, given by 1/N ,
and use it to suitably expand QCD amplitudes. Furthermore, we pointed out the
relation between the order in powers of N of an arbitrary Feynman diagram and
the topology of surfaces. Then, as a further application, we studied the so called
’t Hooft model, that is nothing but (1 + 1)-dimensional QCD at large N : the
simplifications introduced by the large N limit allow us to prove that in this model
quarks are confined, to compute the dressed quark propagator and to describe
meson bound states using the formalism of the Bethe-Salpeter equation.

• In chapter 3 we first described both the standard and adjoint color decompositions
of gluon scattering amplitudes at tree-level. The first one, also called trace-based
decomposition, expresses a given amplitude as a superposition of (n − 1)! color-
ordered partial amplitudes, each weighted by a suitable color coefficient given by
traces of SU(N) generators. The second one expresses the same amplitude as a
superposition of only (n − 2)! partial amplitudes, in which the first and the last
external gluons are fixed in position and all the others are permuted. Each of them
is weighted by color coefficients given by strings of structure constants contracted
in a multi-peripheral way. Finally, we described further relations between partial
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amplitudes, called BCJ relations, allowing us to reduce the number of independent
partial amplitudes to (n− 3)!.

• In chapter 4, we first classified all the adjoint color coefficients up to ten external
gluons. Furthermore, inspecting their structures and classifications, we made some
guesses about their structure for an higher number of gluons: in particular we
guessed that, for an even number of gluons, only 0’s and 2’s are hit by the highest
order color contributions, while for an odd number of gluons, even 4’s are hit.
Furthermore, we conjectured formulas for the highest numerators appearing in the
coefficients singularly for each order in color. Then we studied the goodness of the
LC and NLC approximations up to eight gluons: for six gluons the LC amplitude
makes an average error of 1%, while for seven gluons we get an average error of
the 5%. Finally, for eight gluons the NLC amplitude turns out to be very good,
since the approximation gives an error of 0.1%.

• In chapter 5, we first introduced the adjoint color decomposition for 1-loop gluon
amplitudes, then we classified all color coefficients up to eight external gluons.

• Finally, in chapter 6 we introduced another important color decomposition, named
color-flow decomposition, by which we write a gluon tree-level amplitude as a
superposition of (n − 1)! partial amplitudes, as the trace-based decomposition
does. However, in this case color coefficients are given by strings of Kronecker’s
deltas, thus they are easier to compute. Then we proved that the total number of
NLC coefficients are given by

(
n+1

4

)
, where n is the number of gluons. Therefore,

increasing n, only a tiny percentage of all the (n−1)! permutations of the external
gluons gives a NLC contribution to a given amplitude.

In conclusion, the study of the accuracy of the 1/N expansion up to eight external gluons
at tree-level, the classification of the adjoint color coefficients and the proof of the bino-
mial rate of growth of the number of NLC coefficients for the color-flow decomposition
constitute the original contributions of this work. The NLC approximation turns out
to be very accurate at tree-level (at least up to eight gluons), and the validity of this
result for an higher number of gluons would allow us to obtain a more efficient way of
computing scattering amplitudes in QCD. It will be also interesting to test the NLC ap-
proximation accuracy and the validity of our guess on the structure of color coefficients
for an higher number of gluons. We defer this discussion to future works.
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Appendix A

Color factors computations

It is very well known that QCD Feynman rules involving matter fields (quarks) are almost
the same as the QED ones. The only difference is due to the presence of color factors. In
this appendix we describe a technology to evaluate color factors in graphical form. To
start with, we remind that the gauge fields are given by:

Aµ(x) = Aaµ(x)T a. (A.1)

The gauge boson propagator gets simpler if we choose to work in the Feynman gauge
ξ = 1 and reads:

Dab
µν(p) = δab

(
−iηµν
p2 + iε

)
, (A.2)

where δab encodes color conservation. In other words, we have 8 different gluons Aaµ(x)
each living in the adjoint representation and carrying 8 different color combinations.
However, things can be easier if we note that the adjoint representation 8 satisfies:

3⊗ 3̄ = 1⊕ 8. (A.3)

From the relations (1.23) and (1.25) we see that color transforms under 3 while anticolor
transforms under 3̄. Hence, if we contract a fundamental index with an antifundamental
one we obtain a color singlet or a color octet. The latter acts on the Hilbert space where
gluons live in. Furthermore, combining a color and anticolor we can form an uncolored
quantum state given by the singlet. Being these two representations not equivalent, any
tensor belonging to 3 ⊗ 3̄ will be written as B(x)ij, where the upper index transforms
under the antifundamental representation and the lower one under the fundamental. As
usual, an upper index can only be contracted with a lower one. By virtue of the tensorial
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equation (A.3), a tensor object living in the adjoint representation 8 can be thought as
having a pair of fundamental and antifundamental indices to which the contribution of
the trace (uncolored) part given by the singlet must be subtracted. Hence, instead of
expressing the gauge field Aµ(x) and the Feynman rules using adjoint indices, we can
use the fundamental and antifundamental ones:

Aµ(x) = [Aµ(x)]ij = [Aaµ(x)T a]ij. (A.4)

Writing the gauge fields in this way, the gluon propagator takes the form:

[Dµν(p)]ikjl = (T a)ij(T a)kl
(
−iηµν
p2 + iε

)
= 1

2

(
δilδ

k
j −

1
N
δijδ

k
l

)( −iηµν
p2 + iε

)
, (A.5)

where in the last step we used the Fierz identities making the adjoint index to disappear
from the propagator. We can represent this propagator as showed in figure A.1, where
the first term given by δilδkj encodes the conservation of color from l to i and from j to k,
and the second term δijδ

k
l encodes the same conservation from j to i and from l to k.

Figure A.1: Double line notation for the gluon propagator. N is the number of colors
and the term proportional to N−1 is due to the tracelessness of the gauge field Aµ(x).
The arrows point from the lower index to the upper index.

The structure for the propagator we just obtained is known as double line notation.
Hence it is evident that we can think to the gluon propagator as two quark propagators
pointing in opposite directions. The gluon carries the combination of a color and an
anticolor, but one of the nine possible combinations, the uncolored one, given by the
quantum state in the color part of the quark Hilbert space:

|Singlet〉 = 1√
3
|R̄R + B̄B + ḠG〉, (A.6)

formed by the sum of all equal color-anticolor pairs is subtracted away. The arrows can
be defined because 3 and 3̄ are not equivalent (so there is a distinction between upper
and lower indices). In order to compute color factors using these results we just have
to replace any gluon propagator with the espression given by (A.5) and use the new
Feynman rules for color established by the selected decomposition of the gauge field,
indeed:
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• For the quark-antiquark-gluon vertex we have:

= δσj δ
i
ρ. (A.7)

• For the three gluon vertex we get:

= δijδ
k
l δ

m
n . (A.8)

• Finally, for the four gluon vertex we have:

= δijδ
m
n δ

k
l δ

r
s . (A.9)

The first letters of the latin alphabet must not be confused with adjoint indices, they
are fundamental and antifundamental ones. In the following we give some examples of
color factors computations taken by [11] and [12]. We first restrict our analysis to graphs
containing only quarks or photons as external particles. To begin with, we try to find
the color factor for the quark self-energy, namely:

=

=




︸ ︷︷ ︸
δa

i δ
c
b
δj

d

×1
2

︸ ︷︷ ︸
δd

aδ
b
c

− 1
N

( )
︸ ︷︷ ︸

δb
aδ

d
c

 =
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= 1
2

︸ ︷︷ ︸
δj

i δ
c
c = Nδj

i

− 1
N

( )
︸ ︷︷ ︸

δj
i


= δji

2

(
N − 1

N

)
= CF δ

j
i .

In the last step we used the fact that the color loop in the first diagram gives a factor
of N , because we sum over the number of colors, given by δcc. Another example of
computation is given by the scattering qq̄ → qq̄:

=




︸ ︷︷ ︸

δa
i δ

j
b
δd

l
δk

c

×1
2

︸ ︷︷ ︸
δc

aδ
b
d

− 1
N

( )
︸ ︷︷ ︸

δb
aδ

c
d

 =

= 1
2


− 1
N


= 1

2

(
δki δ

j
l −

1
N
δji δ

k
l

)
= (T a)ji (T a)kl .

Hence, by direct inspection we recovered the Fierz identity. As a further example we can
compute the following graph:

=




︸ ︷︷ ︸
δa

i δ
i
b
δd

i δ
i
c

×1
2

︸ ︷︷ ︸
δb

aδ
c
d

− 1
N




︸ ︷︷ ︸
δb

d
δc

a


=
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= 1
2

︸ ︷︷ ︸
N2

− 1
N

︸ ︷︷ ︸
N


= N2 − 1

2 .

As a matter of fact, we have safely neglected the incoming and outgoing photons for the
obvious reason that they do not carry color charge. Then we substituted the internal
gluon line with (A.5) and suitably connected the different legs together. Finally, we can
calculate the color factor for the following one loop correction involving the interaction
with a photon:

=




︸ ︷︷ ︸
δa

i δ
j
cδ

d
b

×1
2

︸ ︷︷ ︸
δc

aδ
b
d

− 1
N

( )
︸ ︷︷ ︸

δb
aδ

c
d

 =

= 1
2


− 1
N






= 1

2

(
N − 1

N

)
δji = CF δ

j
i .

Again the presence of the emitted photon turns out to be completely irrelevant. Untill
now all the gluon lines we encountered were internal and consequently described by
propagators. We now want to consider graphs with a single external gluon. In this
case, we have to project the external gluon line on the octet representation using the
projector given by the Fierz identity. In so doing we replace the adjoint index carried by
the external gluon with the double line notation given by the Fierz identity and then we
suitably connect every line to the double line interaction vertex. Consider for example:
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= 1
2

︸ ︷︷ ︸
δc

aδ
b
d

− 1
N

( )
︸ ︷︷ ︸

δb
aδ

c
d

×
( )
︸ ︷︷ ︸

δd
c

=

= 1
2

 − 1
N

  = 1
2
(
δba − δba

)
= 0.

The same result could be obtained simply using the ordinary Feynman rules for QCD,
making use of the adjoint index a carried by the incoming gluon, namely:

Tr {T a} = (T a)ii = 0, (A.10)

by virtue of the tracelessness of the fundamental generators. We remark that the first
factor is the projection operator on the adjoint representation (octet) applied to the ex-
ternal gluon in order to correctly substitute its adjoint index and give the right null color
factor for the diagram. As a final remarkable example, we can consider the correction
to the quark-gluon vertex, that contains both an internal and external gluon:

=



×
1
2

[
− 1
N

( )]
×

×1
2

 − 1
N



 = − 1

2N


 .

In the last example we suppressed the Kronecker’s deltas for the sake of clarity and
calculations are not explicitly performed. They can be easily completed connecting all
the legs together in a suitable way following the arrows as usual.
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Appendix B

Spinor-helicity formalism

In this appendix we want to introduce the spinor-helicity formalism, a technique that is
largely used to calculate scattering amplitudes nowadays. We will follow the develop-
ments of the topic given in [13] and [14].

B.1 Momenta
It is very well known that 4-momenta pµ live in the following 4-dimensional representation
of the Lorentz group SO(3, 1):

RVector =
(1

2 ,
1
2

)
= τ 1

2
1
2
, (B.1)

called vector representation (or alternatively spin 1 representation). However, it is
also well known from the Clebsch-Gordan-Racah multiplication and decomposition rule
that:

RVector = τ 1
2

1
2

=
(1

2 , 0
)
⊗
(

0, 1
2

)
= τ 1

2 0 ⊗ τ0 1
2
. (B.2)

Hence, the spin 1 representation is the direct product of the left and right-handed spinor
representations. As a consequence, we can express a momentum vector in terms a 2× 2
matrix labeled by two spinor indices:

paȧ = (σµ)aȧpµ =
(
p0 − p3 −p1 + ip2

−p1 − ip2 p0 + p3

)
. (B.3)

Dotted and undotted indices label left and right-handed Weyl spinors and consequently
they transform with respect to

(
1
2 , 0

)
and

(
0, 1

2

)
respectively. Obviously (σµ)aȧ =
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(δaȧ, ~σaȧ), where ~σ are the usual Pauli matrices. As we use the Lorentz metric ηµν
to raise and lower vector indices, for spinor indices we use two different dotted and
undotted metrics defined as follows:

εab = −εab = εȧḃ = −εȧḃ =
(

0 1
−1 0

)
. (B.4)

In addition, using the fundamental relation:

εabεȧḃ(σµ)bḃ = (σ̄µ)ȧa, (B.5)

whose inverse is given by:

(σµ)aȧ = εabεȧḃ(σ̄µ)ḃb, (B.6)

we can write the momentum with both lower indices as:

pȧa = εabεȧḃ(σµ)bḃpµ = (σ̄µ)ȧapµ, (B.7)

where (σ̄µ)ȧa = (δȧa,−~σȧa). We incidentally stress that the order of the spinor indices
is essential. It is interesting to obtain the inverse relation of (B.3). To this purpose, we
use the following equality:

ηµν(σµ)aȧ(σν)bḃ = 2εabεȧḃ, (B.8)

to find by direct substitution that the inverse of (B.3) is given by the relation:

pµ = 1
2(σµ)aȧpȧa. (B.9)

Namely:

paȧ = (σµ)aȧpµ = 1
2η

µν(σµ)aȧ(σν)bḃpḃb = εabεȧḃpḃb = εabεȧḃ(σ̄µ)ḃb︸ ︷︷ ︸
(σµ)aȧ

pµ = paȧ, (B.10)

as we claimed. Analogously, we find the inverse relation:

pµ = 1
2(σ̄µ)ȧapaȧ. (B.11)
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All the equations we listed above allow us to convert from the RVector representation
of momenta to the bispinor one and vice versa. Furthermore, we can calculate the
determinant of the paȧ matrix finding the well known mass-shell relation:

det(paȧ) = pµp
µ = m2. (B.12)

The momentum matrix is singular if and only if we are dealing with massless particles
like photons and gluons. However, if we are in the high-energy limit, we can safely
neglect the masses of particles. In fact, in this case quarks are ultra-relativistic and the
energy scale of the process is much greater than their masses. This is certainly true for
LHC, where we have a center of mass energy Ecm = 13TeV= 13000GeV, an energy scale
that is much greater than the mass of the heaviest quark, the top quark:

mtop ' 173GeV. (B.13)

Hence, we can safely consider all quarks massless.

B.1.1 Helicity spinors and light-like momenta
We are now arrived to the heart of the matter: we define helicity spinors as doublets
of real numbers transforming in the τ 1

2 0 and τ0 1
2

representations of the Lorentz group.

Any left-handed helicity spinor will be conventionally labeled with upper undotted indices
as λa, while right-handed ones with lower dotted indices ψ̃ȧ. Choosing this convention,
we can write the inner product between left handed helicity spinor as:

〈ψχ〉 = εabψ
aχb = ψaχa = −εbaψaχb = −χbεbaψa = −χbψb = −〈χψ〉, (B.14)

since ψa and χb are real (therefore commuting) numbers. Notice that if they were
Grassmann (anticommuting) numbers, we would have:

〈ψχ〉 = 〈χψ〉. (B.15)

Furthermore, it is clear from (B.14) that we have to be careful in raising and lowering
contracted indices, because ψaχa 6= ψaχ

a. In the same way, we can define the inner
product between right-handed spinors (that we denote using a tilde symbol), namely:
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[
ψ̃χ̃
]

= εȧḃψ̃ȧχ̃ḃ = ψ̃ȧχ̃
ȧ = −εḃȧψ̃ȧχ̃ḃ = −χ̃ḃεḃȧψ̃ȧ = −χ̃ḃψ̃ḃ = −

[
χ̃ψ̃
]
. (B.16)

Finally, if we take ψ = χ and ψ̃ = χ̃, by virtue of (B.14) and (B.16) we easily find:

〈ψψ〉 =
[
ψ̃ψ̃

]
= 0. (B.17)

The choice of using angle and square brackets to denote the two inner products will be
clear in a moment. To proceed further, it is well known from linear algebra that every
singular 2× 2 matrix can be expressed as an outer product, namely:

paȧ = λaλ̃ȧ, (B.18)

where λa = (λ̃ȧ)†, because the momentum is real. This is exactly the case of light-like
momenta. As a consequence, we can express the Lorentz contraction of two light-like
momenta paȧ = λaλ̃ȧ and qaȧ = χaχ̃ȧ as:

pµq
µ = 1

4(σ̄µ)ȧa(σ̄µ)ḃbλaλ̃ȧχbχ̃ḃ = 1
2εabεȧḃλ

aλ̃ȧχbχ̃ḃ = 1
2〈λχ〉

[
χ̃λ̃
]
. (B.19)

At this point we can introduce a very useful notation:

λa = |p〉, λ̃ȧ = |p], λa = 〈p|, λ̃ȧ = [p|, (B.20)

so that:

paȧ = |p〉[p|, paȧ = |p]〈p|. (B.21)

Therefore, contracting Lorentz indices can be seen as taking a trace over spinor indices,
namely:

pµq
µ = 1

2pȧaq
aȧ = 1

2Tr {|p]〈pq〉[q|} = 1
2〈pq〉[qp]. (B.22)

B.2 Polarizations
The true power of the spinor-helicity formalism comes when applied to vector bosons
polarizations. We first recall that physical polarization satisfy:
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• The transverse wave condition,

pµε
µ = −1. (B.23)

• The light-like condition,
εµε

µ = 0. (B.24)

• Finally, we have the following result for the contraction of a polarization and its
complex conjugate:

ε∗
µε
µ = −1. (B.25)

If we take the momentum along the x-direction, we have only two physical polarizations,
namely:

pµ = (E, 0, 0, E), εµ+ = 1√
2

(0, 1, i, 0), εµ− = 1√
2

(0, 1,−i, 0). (B.26)

We can also notice that ε+
µ ε

−µ = −1. The light-like condition allows us to express the
polarization as an outer product of helicity spinors, as we did above for the momenta. In
order to find the expression of polarizations using spinor indices, we introduce another
light-like arbitrary momentum rµ not aligned with pµ, called reference momentum.
Therefore, we can express the two physical polarizations as follows:

[ε−
p (r)]aȧ =

√
2 |p〉[r|[pr] , [ε+

p (r)]aȧ =
√

2 |r〉[p|
〈pr〉

. (B.27)

We can easily check that these definitions are consistent with the constraint we listed
above. For example:

pµε
µ
p(r) = pȧa[ε−

p (r)]aȧ =
√

2 |p]〈pp〉[r|[pr] = 0, (B.28)

as it should be because of the transverse wave condition. All the other constraints can
be analogously checked. Finally, it is also very important to underline that:

• The arbitrariness of the reference vector rµ 6= c · pµ reflects the gauge freedom:
selecting a certain reference vector in place of another encodes a specific gauge
fixing choice.

• Furthermore, polarization vectors differing only by the reference vectors rµ and
(r′)µ are related as:

ε±µ
p (r′) = ε±µ

p (r) + α±pµ, (B.29)
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where:

α+ = (α−)∗ =
√

2〈rr′〉
〈pr〉〈pr′〉

. (B.30)

If we take (r′)µ = rµ + pµ, we get:

α+ = (α−)∗ =
√

2
〈pr〉

. (B.31)

Because of the arbitrariness of the reference vector, the amplitude cannot depend
on its value. Therefore this implies that the Ward identity pµAµ(p) = 0 automat-
ically holds. In other words, the longitudinal component of the polarization vector
is not physical and consequently the probability amplitude cannot depend on it.

The power of the helicity formalism arises from the arbitrariness of rµ. As we stated in
the third chapter, the color ordered-partial amplitudes are gauge invariant. This is very
useful, since for each partial amplitude we are free to choose the reference momenta in
different (and clever) ways, in order to simplify the computation as much as possible.

B.3 Dirac spinors
Finally, it is very simple to use helicity spinors to define Dirac spinors. First of all, we
write the gamma matrices using spinor indices as follows:

(γµ)aȧ =
(

0 (σµ)aȧ
(σ̄µ)ȧa 0

)
, (B.32)

so that the Feynman’s slashed momentum is given by:

/p =
(

0 paȧ

pȧa 0

)
=
(

0 (σµ)aȧpµ
(σ̄µ)ȧapµ 0

)
. (B.33)

Using our convention, a left-handed helicity spinor has upper undotted indices, while
a right-handed one has lower dotted indices. Therefore, we can identify left and right-
handed incoming Dirac fermions as:

u+(p) =
(
λa

0

)
=
(
|p〉
0

)
, u−(p) =

(
0
λ̃ȧ

)
=
(

0
|p]

)
. (B.34)
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The± symbols label positive and negative helicity. Furthermore, employing the crossing
symmetry, we have u±(p) = v∓(p), finding the expressions for outgoing left and right-
handed Dirac antifermions. To proceed further, we can construct both outgoing left and
right-handed fermions and incoming antifermions taking the Dirac conjugate of u±(p)
using the above expression for the γ0 matrix, finding:

ū+(p) = v̄−(p) =
(
〈p|, 0

)
, ū−(p) = v̄+(p) =

(
0, [p|

)
. (B.35)

We can easily check that these definitions are consistent. As an example, if we con-
sider the left-handed incoming fermion u+(p), we see that it trivially satisfies the Weyl
equation:

/pu+(p) = pȧa|p〉a = |p]〈pp〉 = 0. (B.36)

The same result holds for an outgoing left-handed fermion ū+(p):

ū+(p)/p = 〈p|apaȧ = 〈pp〉[p| = 0, (B.37)

and for all the other helicity states. We can now proceed to calculate some useful
expressions focusing on fermions for simplicity (the relations for antifermions can be
easily deduced by crossing). First of all, it is trivial to see that:

ū+(p)γµu+(q) = 〈p|γµ|q〉 = 0 = [p|γµ|q] = ū−(p)γµu−(q). (B.38)

Hence, we can only have fermions with different helicities meeting at an interaction
vertex. Furthermore we have:

ū+(p)γµu−(q) = 〈p|γµ|q] = 〈p|σµ|q] = [q|σ̄µ|p〉 = [q|γµ|p〉 = ū−(q)γµu+(p). (B.39)

Furthermore we get:

[ū+(p)γµu−(q)] [ū+(r)γµu−(s)] = 〈p|γµ|q]〈r|γµ|s] = 2〈pr〉[sq], (B.40)

and similarly:

ū+(p)γµkµu−(q) = 〈p|/k|q] = 〈pk〉[kq]. (B.41)
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These relations turn out to be very useful in calculating cross-sections involving fermions
in the high-energy limit.

B.4 Examples of calculation

B.4.1 Example from QED
Following [13], we give here a simple example of scattering amplitude calculation at high
energy taken by QED which involves only Dirac spinors: the unpolarized e+e− → µ+µ−

scattering at lowest order in the coupling constant e. Since we are in the high-energy
limit, we can safely treat the both electron (positron) and the muon (antimuon) as
massless. We have 24 = 16 possible different helicity amplitudes, but it turns out that
we are free to fix only the helicities of the incoming electron and the outgoing muon,
because in doing so we automatically fix the helicities of the other two particles. Hence we
end up with only four amplitudes to calculate. Let’s consider first a specific configuration
of the incoming and outgoing helicities. For example, we can take the incoming electron
as |1] (h1 = −) and the outgoing muon as 〈3| (h3 = +). This forces the amplitude to be:

iA(1−, 2+, 3−, 4+) = (−ie)2〈2|γµ|1]
(−iηµν

s

)
〈3γν4] = 2 ie

2

s
[41]〈23〉. (B.42)

Squaring this amplitude we get:

|A(1−, 2+, 3−, 4+)|2 = 4e2 [41]〈14〉〈23〉[32]
s2 = 16e2 (p1 · p4)(p2 · p3)

s2 = 4e4
(
u2

s2

)
. (B.43)

The amplitude A(1+, 2−, 3+, 4−) is identical by parity (that flips all helicities). The last
two amplitudes give the same thing but with 1↔ 2:

|A(1−, 2+, 3+, 4−)|2 = 4e4
(
t2

s2

)
. (B.44)

We now have to sum over final helicities and average over the initial ones, namely:

1
4
∑
hel.
|A|2 = 2e4

(
t2 + u2

s2

)
, (B.45)

as it should be when we set me = mµ = 0.
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B.4.2 Pure gluon tree-level amplitudes
We now want to apply all the relations we developed to the pure gluon tree-level scat-
tering amplitudes [13]. First of all, consider an amplitude with all the helicities of the
incoming particles (we take them incoming for convention1) having the same value, say
+. It is very easy to see that amplitudes with all positive (or negative) helicities vanish
at tree-level in QCD, for any number of external gluons, namely:

A(+,+, ...,+,+) = 0. (B.46)

The proof is very simple: first of all we choose the same reference vector rµ for all the
n external gluons, provided that it is different from all the incoming momenta pµi . In
every diagram, we have exactly n polarization vectors, that can be contracted either
with another polarization vector or with a momentum. At tree level, a single vertex can
provide at most a single momentum factor (none for the four gluon vertex). Furthermore,
any diagram has always fewer vertices than external lines. As a consequence, for each
term in the amplitude there is at least one contraction of the form:

ε+
iµ(r) · ε+µ

j (r) = 〈rr〉[ji]
〈ri〉〈rj〉

= 0, (B.47)

so that the amplitude itself trivially vanishes. This first example clearly shows how a
clever choice of the reference vectors can make the computation much simpler. Another
interesting case is that of an amplitude with a single external gluon with positive (or
negative) helicity, for axample:

A(−,+, ...,+,+). (B.48)

In this case, it is sufficient to choose the reference vector of all the gluons with positive
helicity to be equal to the momentum of the one with negative helicity, rµi = pµ1 , ∀i.
Repeating the steps above, every term in the amplitude contains vanishing contractions
between polarization vectors, namely:

1As a consequence, the helicities we write for the amplitude are not the physical ones. If we
write A(+, +, +, +) for a 2 → 2 gluon process, we are actually calculating the physical amplitude
Aphys(+, +,−,−), because the gluons in the final state are actually outgoing: as the momentum flips
the helicity flips.
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ε+
iµ(1) · ε+µ

j (1) = 〈11〉[ji]
〈1i〉〈1j〉 = 0, ∀i, j 6= 1,

ε+
iµ(1) · ε−µ

1 (r) = [ir]〈11〉
〈1i〉[1r] = 0, ∀i 6= 1.

This trick works for all the amplitudes with a number of external gluons greater than
three. Hence, we found that amplitudes with all but one positive (or negative) helicity
vanish at tree-level in QCD for any number of external gluons greater than three:

A(+,−, ...,−,−) = 0. (B.49)

For all the other configurations of helicities there is no general rule and the amplitudes do
not all vanish. Therefore, the leading non-vanishing amplitudes have at least two positive
or two negative helicities. These amplitudes are called maximally helicity violating
(MHV), and they can be expressed through the Parke-Taylor formula[24]:

A(1+, 2+, ..., j−, ..., k−, ..., n+) = 〈jk〉4

〈12〉〈23〉...〈(n− 1)n〉〈n1〉 , (B.50)

where (j, k) labels the couple of external gluons that have negative (or positive) helicity.

B.5 Little-group scaling
The little-group is the group of all Lorentz transformations leaving a certain pµ un-
changed. In the environment of spinor-helicity formalism, these transformations act on
spinor variables in order to leave paȧ invariant:

|p〉 −→ z|p〉, [p| −→ z−1[p|, (B.51)

where z ∈ C. Note that if momenta are real:

|p〉 = ([p|)†,−→ z|p〉 = 1
z∗ ([p|)†. (B.52)

Hence zz∗ = |z| = 1, then z is a pure phase, hence it cannot change the full amplitude
squared. As a consequence, polarization vectors transforms as follows:

ε+
p (r) −→ z−2ε+

p (r), ε−
p (r) −→ z2ε−

p (r). (B.53)
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Therefore polarizations describing different helicities transform in different ways under
the little-group. Since spinors allow us to express through angle and square parenthesis
both polarizations and external momenta, collecting the above transformation laws, a
color-ordered amplitude with n external gluons scales as:

A(h1, h2, ..., hn) −→
n∏
i=1

z−2hiA(h1, h2, ..., hn), (B.54)

where hi = ±. This scaling property furnishes a useful non-perturbative constraint. For
axample, if we consider the MHV amplitude A(−,−,+,+), we can easily state that it
can be given by expressions like:

〈12〉3
〈23〉〈34〉〈41〉 ,

〈21〉[34]2
[21][14]〈41〉 . (B.55)

but cannot be given by 〈12〉〈34〉, since this contraction does not scale as required by
(B.50).

B.6 Complex momenta

B.6.1 Three-point amplitude
In the above sections we imposed a reality condition on helicity spinors. However, it
turns out to be convenient to consider momenta as complex. In this case, the angle and
square brackets are independent, since:

λa = |p〉 6= ([p|)† = (λ̃ȧ)†. (B.56)

Thus we get:

〈ij〉∗ 6= [ij]. (B.57)

To see a first application, consider the three gluon amplitude. Momentum conservation
reads:

p1 + p2 + p3 = |1〉[1|+ |2〉[2|+ |3〉[3| = 0. (B.58)

Contracting with 〈1|, 〈2|, |1] and |2] on both sides we obtain:
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〈12〉[2| = −〈13〉[3|, 〈21〉[1| = −〈23〉[3|. (B.59)

These equations are satisfied if 〈12〉 = 0, that implies 〈13〉 = 〈23〉 = 0. Furthermore,
if we contract by |1] and |2] we get [12] = [13] = [23] = 0. If momenta are real, the
vanishing of angle parenthesis implies the vanishing of the square ones since 〈ji〉∗ = [ij].
All possible contractions vanish, consequently we have a trivially vanishing three gluon
scattering amplitude. However, if we consider all momenta as complex, we find that the
three gluon amplitude can be given only by 〈ij〉 or [ij], hence it does not vanish at all.
Considering the little group scaling behaviour, MHV three point amplitudes turn out to
be:

Aabc(1−, 2−, 3+) = Cabc 〈12〉3
〈12〉〈32〉 and Aabc(1+, 2+, 3−) = Cabc [12]3

[13][32] . (B.60)

While considering momenta as complex, it can be fruitfully used to construct amplitudes
involving more than three gluons through the BCFW recursion relations. Only at the
end of the computation the limit of real momenta will be performed to give the final
physical result.

B.6.2 BCFW recursion relations
The use of complex momenta is at the base of a powerful tool, the BCFW (Britto-
Cachazo-Feng-Witten) recursion relations [13, 33, 34]. In fact, suppose to have a tree-
level n-gluon scattering amplitude. The idea is to choose two external gluons, labeled as
i and j, and shift them as:

[̂i| −→ [i|+ z[j|, |̂i〉 −→ |i〉 − z|j〉, |̂i〉 = |i〉, [ĵ| = [j|. (B.61)

It is obvious to notice that such a shifting is possible since the spinors are complex, while
z is an arbitrary complex number. The corresponding momenta are then shifted as:

p̂i = |i〉[i|+ z|i〉[j|, p̂j = |j〉[j| − z|i〉[j|. (B.62)

They preserve the masselessness condition, as well as momentum conservation. As a
consequence of this shifting, we can think of the original amplitude as an holomorphic
function of z. Our purpose is to get an expression for the physical amplitude A(0).
Consider the function on the complex z-plane:
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f(z) = A(z)
z

. (B.63)

If A(z) → 0 as |z| → +∞, we can integrate f(z) on a circle centered at z = 0 and let
|z| → +∞. Using Cauchy’s theorem, we get:

1
2πi

∮
dzf(z) = A(0) +

∑
poles z̃

1
z̃

Res[A(z̃)] = 0. (B.64)

To get this result it is essential that A(z) is a rational function of kinematic variables
(hence it describes a tree-level diagram). Our task is to find the location of all the poles
of A(z). For this purpose, it is sufficient to notice that all the propagators involving z
give rise to single poles. They are those propagators connecting the two external gluons
i and j. Focusing on one of these poles z?, it satisfies the on-shell condition:

P̂ 2(z?) = 0, (B.65)

where P̂µ(z) is the momentum flowing in the associated internal propagator. To move
further, it is very well known that if an amplitude has external momenta taking values
such that one of its internal propagators goes on-shell, the requirement of unitarity of
the S-matrix implies that near the pole the amplitude factorizes in the product of two
on-shell sub-amplitudes connected by the on-shell internal propagator. We divide the
n gluons in two groups: gluons from a to b (including the shifted gluon j) are connected
to a sub-amplitude, while all the others (including the shifted gluon i) are connected to
the other sub-amplitude. The pole corresponding to this arrangement is then given by:

P̂ 2(z?ab) = (pµa + ...+ pµ(z?ab)i + ...+ pµb )2 = 0,−→ z?ab = (pa + ...+ pb)2

〈ia〉[aj] + ...+ 〈ib〉[bj] . (B.66)

Each partition of the n gluons gives us the associated pole. Hence, diagrammatically the
BCFW recursion relation reads [36]:

=
∑
a,b

∑
λ=±

, (B.67)
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while in formulas, using (B.64), we get:

− 1
z?ab

Resz→z?
ab

[
A1(z)A2(z)

(pa + ...+ pb)2 − z∑k〈ik〉[kj]

]
= A1(z?ab)A2(z?ab)

(pa + ...+ pb)2 , (B.68)

and finally the BCFW relation:

A(0) = A(1, 2, ..., n) =
∑
abλ

A1(a, ..., b→ P̂ λ)A2(P̂−λ → 1, ..., a− 1, b+ 1, ..., n)
(pa + ...+ pb)2 , (B.69)

where λ is the helicity of the internal on-shell propagator. Notice that the helicities
are opposite at the endpoints of this propagator since the momentum P̂ µ(z?ab) flows
from the left to the right. This relation allows us to construct any tree-level amplitude
recursively, using amplitudes with a lower number of external gluons as bricks. However,
are we sure we can guarantee that A(z)→ 0 as |z| → +∞? It turns out that this fear is
groundless, since for Yang-Mills theories we can always find a pair of external helicities
(+,−) such that this essential requirement is satisfied. Thus Yang-Mills theories are on-
shell constructible through BCFW recursion [35]. As a nice application of this powerful
tool, we can use it to prove the reflection identity for color-ordered partial amplitudes
(3.29) by induction. For n = 3 this relation trivially holds. Suppose indeed that the
reflection identity holds even for (n− 1) external gluons. Hence we choose to shift:

p̂1 = |1〉[1|+ z|1〉[n|, p̂n = |n〉[n| − z|1〉[n|. (B.70)

Thus we can write:

A(1, 2, ..., n) =
n−2∑
i=2

∑
λ=±

A(1̂, 2, ..., i, P̂ λ
1,...,i|P̂−λ

1,...,i, i+ 1, ..., n̂) =

=
n−2∑
i=2

∑
λ=±

(−1)i+1(−1)n−i+1A(n̂, n− 1, ..., i+ 1, P̂−λ
i,...,2,1|P̂ λ

i,...,2,1, i, ..., 1̂) =

= (−1)nA(n, n− 1, ..., 2, 1),

where the inductive step is used to get the second equality. We also used a shorthand
notation for the amplitude splitting (see [30]), for example:
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A(1̂, 2, P̂+
12|P̂−

12, 3, ..., n̂) = A1(1̂, 2→ P̂+
12)A2(P̂−

12 → 3, ..., n̂)
P̂ 2

12
. (B.71)

In addition, we can use the recursive power of this tool to prove the U(1) decoupling
identity. The path of the proof can be shown considering the n = 5 case. In fact, suppose
that it holds for n = 3, 4 (the proof is straightforward using reflection identity). We want
to show that:

∑
σ∈cyclic

A(1, σ(2, 3, 4, 5)) = 0. (B.72)

We choose to shift p1 and p2 and expand each term in this sum using the BCWF relations,
namely:

A(1̂, 2̂, 3, 4, 5) = A(1̂, P2̂3, 4, 5) + A(1̂, P2̂34, 5),
A(1̂, 5, 2, 3, 4) = A(1̂, 5, P2̂3, 4) + A(1̂, 5, P2̂34) + A(1̂, P52̂, 3, 4) + A(1̂, P52̂3, 4),
A(1̂, 4, 5, 2̂, 3) = A(1̂, 4, 5, P2̂3) + A(1̂, 4, P52̂, 3) + A(1̂, 4, P52̂3) + A(1̂, P452̂, 3),
A(1̂, 3, 4, 5, 2̂) = A(1̂, 3, 4, P52̂) + A(1̂, 3, P452̂).

A new shorthand notation was used to further lighten the expansions and to make the
color ordering manifest [30]. At this point, we can sum all these equations. Collecting all
the terms containing the same momentum for the on-shell internal line, we see that they
are proportional to the decoupling identities for n = 3, 4, hence they identically vanish,
implying that (B.72) holds. For example, considering those splittings with momentum
P2̂3 and fixed helicity λ of the on-shell internal gluon, we get:

A3(2̂, 3, P λ)
P 2

2̂3

[
A4(P−λ, 4, 5, 1̂) +A4(P−λ, 4, 1̂, 5) +A4(P−λ, 1̂, 4, 5)

]
=

= A3(2̂, 3, P λ)
P 2

2̂3

[
A4(P−λ, 5, 1̂, 4) +A4(P−λ, 4, 1̂, 5) +A4(P−λ, 1̂, 4, 5)

]
= 0. (B.73)

In the last step we used reflection identity. This method can be generalized to an arbitrary
n and can be used to prove the decoupling identity by induction. BCFW relations can
be even used to prove the Kleiss-Kuijf and BCJ relations presented in the third chapter.
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