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Abstract

Lo scopo di questo lavoro di tesi è di presentare l’implementazione di un problema
di fisica della materia condensata con un approccio di Deep Learning. Per farlo
introdurremo tre modelli che presentano caratteristiche topologiche: il modello di
Kitaev (un superconduttore unidimensionale) con accoppiamento tra primi vicini,
secondi vicini e interagente. In seguito presenteremo le tecniche di Machine Learn-
ing necessarie per svolgere il compito che ci siamo posti. Infine applicheremo tali
tecniche per allenare una rete neurale deep e una convoluzionale a riconoscere le fasi
topologiche del modello non interagente e predire le fasi di quello interagente.
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Abstract

This thesis is aimed at showing how to set up a typical problem of Condensed Matter
physics in a Deep Learning framework. In order to do this we will introduce the
Kitaev model (a superconducting quantum wire with topological properties) with
nearest neighbor coupling, next to nearest neighbor coupling and an interacting
term. Then we will present the Machine Learning techniques we are going to use.
Finally we will apply them to train a Neural Network and a Convolutional Neural
Network on recognizing the topological phases of matter of the non-interacting model
to test it on the classification of interacting data.
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Introduction

Condensed Matter physics relies on collective phenomena, that is the occurrence
of a global behaviour of many interacting bodies. In particular, phase transitions
are typical manifestations of a collective phenomenon. The study of phase transi-
tions has had at its core the Ginzburg-Landau theory for many decades, based on
Spontaneous Symmetry Breaking. This picture changed with the discovery of the
Quantum Hall Effect [1] which led to the discovery of a new type of phase transition
where the symmetry is not changed. That is, the topological phase transition [2].
According to the topological theory of phases of matter, there are several global
characteristics of a system for which two states can be in the different topological
phases while being in the same symmetry phase. Thus, the topological classifica-
tion of phases of matter goes beyond the symmetry classification [3]. An example
of model with an interesting topological behaviour is the Kitaev chain [4], a one
dimensional superconducting chain.
Machine Learning is an ever growing, extremely popular field of study which also
exploits the concept of a collective phenomen. Its purpose is to create algorithms
capable of learning from experience (data) and in order to do so it needs to rely
on structures with so many parameters to capture the complexity of any system
[5]. That is brought to an even more abstract level by Deep Learning, a subset of
Machine Learning, where the architectures of the algorithms are so complex that
they can capture the features describing the data and learn from them [6].
In the last few years Machine Learning and Deep Learning have flourished thanks
to the enormous amount of data available to learn from and their success in many
tasks from image and speech recognition to self-driving cars [5]. This has led to their
application to every field of science, including physics [7]. This is in fact justifiable
because Machine Learning relies on many mathematical concepts borrowed from
physics, starting from the first real premise of being able to learn from experience.
In the last few years, Condense Matter phyisicists have paid a lot of attention to
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Introduction

study the potential applicability of Machine Learning [8]. It turned out to be useful
for a wide variety of tasks from encoding the wavefunction and the dynamics of a
many body system [9], [10], to the study of classical and quantum phase transitions
which is the main goal of this theis. For example, Deep Learning was used to study
the phase transitions of classical 2D Ising Model [11], [12] and in lattice gauge theory
[12], for the Kitaev and Heisenberg models [13], in general topological models with
a specific symmetry [14], [15], and many other models with topological behaviour
[8].
As it is the case for fast growing fields of study, there has not been enough theoretical
background supporting the development of Machine Learning applied to science. It
is therefore now part of the effort of the physics community to analyze more in-depth
how this algorithms work and why they are capable of making sensible decisions [7].
Our work can be placed into this context and our aim is twofold: on one hand we
want to apply Machine and Deep Learning techniques to get insight into our data
and classify the topological phases of matter it belongs to. On the other hand, we
are interested in showing the behaviour of the algorithms. We want to do so by
training two different neural networks: a fully connected feed forward and a convo-
lutional. We train and test them on data obtained from the non-interacting Kitaev
chain. Then test them on data generated with the interacting Kitaev chain to see
that the convolutional neural network has more generalization power then the fully
connected one.
We care to stress that the purpose of this work is not to study the efficiency of
Machine Learning applied to physics but more to gain insight on how to set up a
modern and interesting physics problem in the Machine Learning framework. For
these reasons this thesis was structured in this way:

• Chapter 1. Here we introduce the physical framework we are talking about.
We will present the topological classification of phases of matter and why it
is a relevant field of study. After that we will introduce three models which
show a topological behaviour. Firstly, the Kitaev model, a one dimensional
superconducting fermionic chain. Then, two variations of this model, one
with next to nearest neighbor coupling and one with an interacting term in
the Hamiltonian.

• Chapter 2. The second chapter is dedicated to present all the concepts and
methods necessary to work with Machine Learning. We will do so trying
to emphasize aspects that can be interesting under a physical point of view
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Introduction

while discarding more technical aspects, for which we refer to other sources.
Therefore, we will start by introducing the basic concepts needed for Machine
Learning. Then, we will move to the presentation of the Deep Learning models
we implemented for our study. Lastly, we will present two examples of applying
Machine Learning techniques to study the classification of phases of matter on
the Ising 2D Classical Model and the Kitaev 1D Topological Model.

• Chapter 3. The last chapter is dedicated to the new results. The main idea is
to train a Neural Network to classify topological phases of the non-interacting
Kitaev model and test it on data generated with the interacting model. This
includes applying a preprocessing technique (Principal Components Analysis)
to learn the main features of our data. Then, we apply a Neural Network and
a Convolutional Neural Network to solve the problem. As already mentioned,
our purpose is just to present a typical Condensed Matter physics problem
approached with Machine Learning, for this reason we will concentrate on
showing what is learnt inside the algorithms and less on the training procedure.
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Topological Phases of Matter

Classification of phases of matter has always been one of the main goals of Condensed
Matter Physics. The Ginzburg-Landau theory has been the corner stone of this
research field and it is based on the mechanism of Spontaneous Symmetry Breaking,
in a sense that two phases differ in their symmetric, local characteristics such as the
order parameters [16]. The discovery of the Quantum Hall Effect (1980) [1] and its
study in the following decades has led to a new type of classification based on the
notion of topological order. That is because the QHE manifests in a state without
the need of breaking any symmetry, but rather because the state has fundamental
characteristics that are insensible to smooth changes in the system’s parameters.
The only way to change this characteristic is for the system to undergo a quantum
phase transition.
The study of the QHE led to the development of the research field of Topological
Phases of Matter. This field is based on a new classification of phases that takes
into account symmetry but goes further because it studies systems where there can
be a phase transition even without breaking any symmetry. The word topological
is indeed borrowed from topology, the field of mathematics that deals with the
broader, non-local, characteristics of a system that do not change through continuous
deformations of the system.
In this introductory chapter we first present the fundamental concepts of topological
matter, that is the symmetry classification of free fermionic Hamiltonians and the
concept of topological invariants.
We then move to the main model of this thesis, the Kitaev chain [4] which will be
studied in its original form, a variation with a next-to-nearest neighbor coupling and
its interacting form.
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1. Topological Phases of Matter

1.1 Symmetry Classification of Topological Phases

The concept and the field of topological phase transitions, as mentioned above, were
born due to the study of particular systems in which symmetries played no role
and yet a phase transition could occur. Anyhow, symmetries remain a fundamental
concept even in the context of topological phases for they still are protagonists of
many aspects that characterize a topological phase and transition.

In this section we want to show how symmetry can be the tool to classify topological
phases of matter.

The Hamiltonians we are interested in, and that we will be dealing with throughout
this whole chapter, are at temperature T = 0. Being the system at zero temperature,
the ground state is assumed to be the equilibrium state. We also assume these
Hamiltonians to depend on some parameter g (i.e. H(g)). Let us consider the
expectation value of some operator O on the ground state of these Hamiltonians.
We can thus say that if, in the infinte limit system size, there is a discontinuity for
some parameter gc of 〈O〉 then the system underwent a quantum phase transition
[16].

By defining a phase transition we can infer when two states are in the same phase.
That is, given two groundstates |φ(0)〉, |φ(1)〉 of different Hamiltonians H(0) and
H(1), if we can find a continuous path H(g) (0 ≤ g ≤ 1) connecting H(0) to H(1)

without a phase transition, the two groundstates are in the same phase.

Lastly, these Hamiltonians are gapped. That means there is a finite energy difference
between the ground state and the first excited state of the system. The presence of
a gap makes it non-trivial to find the Hamiltonians that are connected through a
continuous transformation. In fact we can say that the two states |φ(0)〉, |φ(1)〉 are
in the same phase if the gap of H(g) does not close on the continuous path from
H(0) to H(1). When this happens we say that the two groundstates are in the same
topological phase.

We need to look for particular properties of the ground states separated by a quan-
tum phase transition. If this properties are topological, meaning that they do not
depend on local characteristics or symmetry arguments, they can define ground
states in different topological phases.

Another equivalence relation for states in the same phase can be obtained. We can
say that two systems are in the same phase if they are connected through a Local
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1. Topological Phases of Matter

Unitary (LU) evolution [16], that is

|φ(0)〉 ∼ |φ(1)〉 iff |φ(1)〉 = T [e−i
∫ 1
0 dgH̃(g)] (1.1)

where T is the time-ordering operator and H̃(g) is a sum of local Hermitean oper-
ators.
Introducing the LU is useful to define a first classification of phases of matter based
on entanglement. In fact a state that can be transformed into a direct-product or
unentangled state by a LU transformation such as (1.1) is said to have Short Range
Entanglement (SRE). The opposite case, defines a state with Long Range Entan-
glement (LRE). LRE states turn out to have what is called intrinsic bulk topological
order [3]. That is, they possess a series of properties such as anyonic excitations
or groundstate degeneracies. On the other hand, SRE can all be connected to each
other trough a LU (since they can all be connected to a direc-product state) and
are thus all in the same phase.
Although there seems to be two different classes of topological phases of matter -
namely, the ones who possess intrinsic topological order and the ones characterized
by SRE - we have not considered symmetries yet.
Adding symmetries adds richness to the classification of phases. We can identify
three cases [3]: SRE states arising by spontaneous symmetry breaking, SRE states
where the symmetry is not broken called Symmetry Protected Topological (SPT)
states and LRE states with given symmetry constraints, called Symmetry Enhanced
Topological (SET) phases. Since our interest are the difference between SRE to LRE
and the presence of symmetry we summerize the main properties of Intrinsic Topo-
logical (LRE) states and Symmetry Protected Topological (SRE) states.
Let us see them:

• Intrinsic Topological Order. As already mentioned long-range entangle-
ment is the main feature of this class of topological phases. The presence of a
symmetry does not play any special role and it is thus not relevant for their
classification [3].
These states show topological order bulk properties such as ground state de-
generacies on topologically non-trivial manifolds, anyonic excitations which
may have fractional quantum numbers and robust gapless edge excitations.

• Symmetry Protected Topological States. They are characterized by SRE
and by a symmetry group for which all states are invariant. That is, there is no
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1. Topological Phases of Matter

symmetry breaking in the bulk to classify these states. Even though they have
a bulk gap they have no interesting bulk properties, but show their topological
nature on their boundaries.
The boundaries must have one of this properties [3]:

– Spontaneously break the symmetry governing the phase.

– In the presence of a gap, must have intrinsic (boundary) topological order,
meaning it has to present features such as anyonic excitations.

– Be gapless, which is understood as the presence of a zero energy state at
the boundary.

Examples of systems with intrinsic topological order are the fractional quantum
Hall or the toric code, both LRE states with familiar properties of a topological
order. Symmetry Protected state are the Kitaev p-wave superconductor or the
Integer quantum Hall. In the former, as an example, we will see that it shows zero
energy excitations at the edges of the one-dimensional case, manifesting its boundary
topological properties.
It is important once again to state what the word topological means in the way it was
used in this section. As much as in the same field of mathematics, topological here
means related to the global properties of the system that are preserved under smooth
transformations of its parameters. That is, we do not care about local differences
in Hamiltonians but only on general characteristic that are in common between the
different phases.

1.1.1 Role of Symmetries

We now turn to the symmetry classification of non-interacting fermionic Hamiltoni-
ans. By Symmetry classification we mean that we look at the least trivial and most
defining symmetries that a system can possess and how they can be used to split
the systems into different topological categories.
The study is only focused on free Hamiltonians because we have a full classification
of these systems, known as the ten-fold way [3]. Moreover, we have analytical so-
lutions of these systems and they can provide a starting point to study interacting
models.
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1. Topological Phases of Matter

Let us start by writing a general non-interacting fermionic Hamiltonian in the form

H =
∑
a,b

Ψ†aHabΨb (1.2)

where Ψα are fermionic operators acting on a Fock space as much as H.[Hab] = H is
a Hermitean matrix that gives the single particle representation of the Hamiltonian.
A symmetry is realized by its operators that act on a Hilbert space and leave invari-
ant the modulus of the scalar product of two Hilbert states. By Wigner theorem,
those operators can be either unitary or antiunitary. In this part we mainly follow
the work of [3].

Unitary and Antiunitary Operators A surjective transformation U defined on
a Hilbert space is unitary if

〈UΨ|UΦ〉 = 〈Ψ|Φ〉 (1.3)

and it is a symmetry of a system if it commutes with the Hamiltonian H

UHU † = H (1.4)

On a Fock space it acts on the fermionic operators as a change of basis:

UΨaU † =
∑
c

U †acΨb UΨ†aU † =
∑
d

Ψ†dU
†
db (1.5)

We can calculate its action on H in the following way

UHU † = U
∑
a,b

ΨaU †UHabU †UΨbU † =
∑
c,d,a,b

ΨcUcaHabU
†
bdΨd =

∑
c,d

Ψc[U ·H ·U †]cdΨ†d

(1.6)
which clearly shows that if the single particle Hamiltonian transforms as

H = U ·H · U † (1.7)

then the Hamiltonian H is invariant under the symmetry U . We know that this
means that the Hamiltonian can be put in a block-diagonal form, with each block
associated to a quantum number which is not a universal property of the system.
That is why unitary transformations commuting with H in the single particle frame
are not interesting to us even though the principal symmetries, (translations, rota-
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1. Topological Phases of Matter

tions etc...) are in fact represented by unitary transformations [3]. Therefore, we
now turn our attention to antiunitary symmetries.
An antiunitary transformation, instead, acts on two Hilbert states like this

〈AΨ|AΦ〉 = 〈Ψ|Φ〉∗ = 〈Φ|Ψ〉 (1.8)

while on complex numbers it is antilinear, meaning

AαA−1 = α∗ (1.9)

The symmetries produced by these operators are particular interesting for the clas-
sification of free fermionic Hamiltonians. Let us see them in detail.

Time Reversal Symmetry We consider time reversal T as a change of the time
parameter t→ −t so that it flips the momentum operator sign, leaving the position
operator unchanged. It acts on the fermionic operators in the same way as a unitary
transformation

T ΨaT =
∑
c

U †acΨc T ΨbT =
∑
d

Ψ†dUdb (1.10)

to preserve the anti-commutation relations. On a Fock space Hamiltonian it acts as

T HT −1 = T
∑
a,b

ΨaT −1T HabT −1T ΨbT −1 =
∑
c,d,a,b

ΨcUcaT HabT −1U †bdΨd

=
∑
c,d

Ψc[U ·H∗ · U †]cdΨ†d
(1.11)

Notice that since T is antiunitary, its action on the time evolution operator U(t) =

exp{itH} is T U(t)T −1 = U(−t) as we expect from a time-reversal operator.
From (1.11) we see that a system is invariant under time reversal transformation if

THT−1 = H (1.12)

where T is the first quantized version of T and we define T = UTK with K complex
conjugation operator such that KHK−1 = H∗ and UT a unitary matrix so that T
is antiunitary.
The square of the time reversal operator T 2 is unitary and its matrix representation
is T 2 = UTU

∗
T . Acting twice with the time reversal operator means going back
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1. Topological Phases of Matter

to the original configuration, thus we expect its square to be one or at most to
be proportional to a phase. It can be shown [3] that this leaves us three possible
situations that we will label with T :

T =


∅, The system is not time-reversal invariant
+1, The system is time-reversal invariant and T 2 = +1

−1, The system is time-reversal invariant and T 2 = −1

(1.13)

Particle-Hole Symmetry It is another word for charge conjugation symmetry,
which is the symmetry that turns fermions into antifermions and viceversa. On a
Fock space it acts in the following way

CΨaC−1 =
∑
c

(U †ac)
∗Ψ†a CΨ†bC

−1 =
∑
d

Ψd(Udb)
∗ (1.14)

and it is a unitary Fock space operator, i.e. CiC−1 = i.
The Fock space Hamiltonian H is invariant under charge conjugation, that is

CHC−1 = H (1.15)

if its single-particle representation transforms as

CHC−1 = −H (1.16)

where C = UCK, being K charge conjugation operator and UC unitary. Repeating
the same argument of the time reversal operator, acting twice with charge conjuga-
tion brings the system in its original form thus we can expect three configurations
for C and thus the label of the symmetry C:

C =


∅, The system is not particle-hole invariant
+1, The system is particle-hole invariant and C2 = +1

−1, The system is particle-hole invariant and C2 = −1

(1.17)

Chiral Symmetry There is yet another type of symmetry that can be con-
structed. Since a general symmetry in the single particle space is unitary and
commuting, time reversal is antiunitary and commuting, particle hole is antiunitary
and anticommuting we can expect a unitary anticommuting (in the single particle
representation) symmetry in principle.
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1. Topological Phases of Matter

Let us suppose such symmetry exists, if it anti-commutes with the single particle
Hamiltonian it is such that

SHS† = −H (1.18)

In order for this relation to work we need to impose the following transformation
rules for the fermionic operators

SΨaS−1 =
∑
c

(U∗)†acΨ
†
c SΨbS−1 =

∑
d

ΨdU
∗
db (1.19)

along with SiS−1 = −i making it antiunitary on the Fock space and commuting
with the second quantized Hamiltonian SHS−1 = H.
Chiral symmetry is not a symmetry per se because it anticommutes with H. It is
still considered a symmetry traditionally and it is also called sublattice symmetry
because it arises naturally in systems that are divided into two parts which interact
with each other and not with themselves.
Interestingly, chiral symmetry is not independent of charge conjugation and time
reversal. It is indeed made out of the product of the two in the single particle space
whenever H is invariant for both T and C. That is, S = TC = UTU

∗
C . It can be

shown [3] that S2 and thus its label S can only take two values

S =

{
∅, When H does not anticommute with chiral symmetry S
+1, When H anti commutes with chiral symmetry S

(1.20)

1.1.2 Ten-fold Classification

The classification of free fermionic Hamiltonians can be done considering combina-
tions of only time-reversal, charge conjugation and chiral symmetry. It is important
to stress that these three symmetries are not randomly picked but they are the only
possible symmetries realizable on a Hamiltonian after we eliminated all symmetries
generated by a unitary operator.
That is, we can consider 2 cases with only T , and 2 with only C where S, then,
cannot be realized. Then we have 4 cases with both T and C and thus a single fixed
value of S obtained from their product, one case with only S and finally the last
case without any symmetry. This adds up to 10 possible combination, listed in table
1.1. The symmetry classes are named after a classification given by E. Cartan. The
table also shows what class the evolution operator U(t) is according to the symme-
tries respected by H. We want to show now how having different symmetries for a
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1. Topological Phases of Matter

Cartan label T C S exp itH

A (unitary) ∅ ∅ ∅ U(N)
AI (orthogonal) +1 ∅ ∅ U(N)/O(N)
AII (sympletic) −1 ∅ ∅ U(2N)/Sp(2N)
AIII (ch. unit.) ∅ ∅ 1 U(N +M)/U(N) × U(M)
BDI (ch. orth.) +1 +1 1 O(N +M)/O(N) × O(M)

CII (ch. sympl.) −1 −1 1 Sp(N +M)/Sp(N) × Sp(M)
D (BdG) ∅ +1 ∅ SO(2N)
C (BdG) ∅ −1 ∅ Sp(2N)

DIII (BdG) −1 +1 1 SO(2N)/U(N)
CI (BdG) +1 −1 1 Sp(2N)/U(N)

Table 1.1: Topology classes and their time operator evolution space. The Cartan
labels and their associated symmetries are shown. With that, the space of the
time evolution operator e−itH is provided. For example, class A does not have any
symmetry so the time evolution is provided by a single particle Hamiltonian H
that only needs to be Hermitean. Thus, e−itH is unitary and so the time operator
evolution space is U(N).

system leads to particular behviours of the ground states of said system. In order
to do that we consider translational invariant systems for simplicity. This lets us
write the Schrödinger equation in momentum space

H(k)|uα(k)〉 = Eα(k)|uα(k)〉 (1.21)

where α runs on all the bands and k is a D dimensional vector on a D-dimensional
Brillouin Zone.
Our purpose here is to write all the translational invariant Hamiltonians into a
simplified form where all the n occupied bands have an assigned energy of -1 and
the m empty ones have an energy of +1.
We can do so by using a projector on the filled bands P (k) so that

Q(k) = 1− 2P (k) (1.22)

is the simplified, also named flatband, Hamiltonian we were looking for and it satisfies

Q(k)† = Q(k) Q(k)2 = 1 Tr[Q(k)] = m− n (1.23)
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1. Topological Phases of Matter

The new Hamiltonian Q(k) still holds the topological information of the original H
and it can be seen as a mapping from the BZ to a space S. Both the the BZ and S
are topological spaces, specifically due to the map connecting them the BZ is called
the base space and S the target space.
At this point it is important to introduce the concept of homotopy.

Homotopy Homotopy is a continuous interpolation of paths (it will be clear later
what we mean by path) in a topological space, that is, a transformation which
smoothly connects paths. Thus, homotopy can be seen as a relation between paths
and therefore it divides topological spaces in equivalence classes of all the paths that
are related by a homotopy [17](i.e. that are continously deformable into each other,
meaning that they are equivalent).
Homotopy classes of paths can be composed together with a product rule. Thus, it
can be shown that a set of homotopies is a group, called a homotopy group. In fact
we can define the product of two homotopy classes [α] and [β] as [α] ∗ [β] = [α ∗ β].
It is demonstrated in [17] that the group properties are respected, that is

• Associativity: ([α] ∗ [β]) ∗ [γ] = [α] ∗ ([β] ∗ [γ])

• Unit element: [α] ∗ [I] = [α] and [I] ∗ [α] = [α]

• Inverse: [α] ∗ [α−1] = [I], thus [α]−1 = [α−1]

The most simple homotopy group that we can consider in a topological space is the
homotopy group of loops, called the fundamental group. In this case the "paths" we
referred to are loops, meaning any continuous function φ from [0, 1] to the topological
space X such that φ(0) = φ(1) = x0 with x0 called base point. The fundamental
group can be defined as the homotopy group of continuous functions from the one
dimensional sphere to the topological space X, namely:

φ : S1 → X (1.24)

In this sense the fundamental group is the group maps that continuously transform
loops. That means that given two loops φ and φ′ with the same base point there
exist a smooth function h(t) such that h(0) = φ and h(1) = φ′. Basically, when
considering loops a homotopy is just a deformation of one loop into another that
does not break the loop at any point anytime.
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1. Topological Phases of Matter

In such case the loops are said to be homotopic and this relations splits the topo-
logical space X in equivalence classes for the fundamental group:

π1(X) = loops/homotopy (1.25)

which can be read as the set of all loops not connected by homotopy. A few examples
can shed more light

• π1(S2) = 0. The topological space in consideration is the 2-dimensional sphere.
Every loop on it can be reduced to a point so they are all connected by a ho-
motopy, i.e. in the same equivalence class. Thus this group can be considered
as the group made by only the neutral element 0.

• π1(S1) = Z. On a circle, the loops that cannot be deformed into each other
continuously are the ones with a different number of windings around the
origin. The windings count can be positive or negative if turning clockwise or
counter clockwise. Therefore the homotopy group is Z.

• π1(2D Torus) = Z2. The 2-dimensional torus is an extention of S1. The loops
winding on the vertical axis cannot be transformed into the loops winding
around the horizontal axis, so we need at least two numbers to identify these
homotopy classes. In addition to that the loops on both axis can wind more
then once as if they were on a circle, thus both directions are characterized by
Z giving us a Z2 class.

Generalizing from the fundamental group we define πn(X) the homotopy equivalence
classes of maps from the n dimensional sphere to the topological space X:

φ : Sn → X (1.26)

Ten-fold Classification In our context the maps are from the BZ to the target
spaces defined by Q(k) and by the different dimensions of the BZ. This means that
the job of finding all the different topological classes is substituted by finding all the
homotopy classes of the 10 categories for every dimensions. These results are taken
from [17] and are shown in table 1.2 for different dimensions.
It was proven that the homotopy classes are periodic in the dimensions with a period
of 8. Thus, all symmetry categories are classified for every dimension in the free
fermionic Hamiltonians case.
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1. Topological Phases of Matter

The homotopy class represents the (simplified) Hamiltonians, with certain symme-
tries, which cannot be transformed into each other. That translates into the number
of groundstates of those Hamiltonians that cannot be deformed into each other, in
our case without closing the energy gap.

Class T C S 1 2 3 4 5 6 7 8

A ∅ ∅ ∅ 0 Z 0 Z 0 Z 0 Z
AIII ∅ ∅ +1 Z 0 Z 0 Z 0 Z 0
AII −1 ∅ ∅ 0 Z2 Z2 Z 0 0 0 Z
DIII −1 +1 1 Z2 Z2 Z 0 0 0 Z 0
D ∅ +1 ∅ Z2 Z2 Z 0 0 0 Z 0

BDI +1 +1 1 Z 0 0 0 Z 0 Z2 Z2

AI +1 ∅ ∅ 0 0 0 Z 0 Z2 Z2 Z
CI +1 −1 1 0 0 Z 0 Z2 Z2 Z 0
C ∅ −1 ∅ 0 Z 0 Z2 Z2 Z 0 0
CII −1 −1 1 Z 0 Z2 Z2 Z 0 0 0

Table 1.2: Homotopy groups of the 10-fold classification, adapted from [2], obtained
by Schnyder et al. [18]. The columns, in order from the left, show the Cartan labels,
the absence(∅) or presence of a symmetry with its eigenvalue (±1) and the dimension
of the space. The homotopy groups are periodic in the number of dimensions. For
the first two "complex" classes the periodicity is modulo 2. While for the "real"
classes the periodicity is modulo 8. They are called complex and real because the
former do not have any reality condition on their first particle Hamiltonian, while
the latter do [3].

As a concrete example let us consider the A class of the 10-fold classification which
consists of Hamiltonians with no symmetries. Thus, the simplified Q(k) can be
transformed into a diagonal form by a Unitary transformation

UkQ(k)U †k =

(
1 0

0 −1

)
(1.27)

where U is a (m + n) unitary matrix and not unique because any multiplication of
U by a U(m) or U(n) matrix would still lead to (1.27).
Therefore, Q(k) describes a map from the BZ to the target space U(n+m)/[U(n)×
U(m)].
In D = 1, the BZ is S1 so the homotopy group is the fundamental group and it can
be shown that it is trivial on U(n+m)/[U(n)×U(m)], meaning it is 0. In D = 2 the
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BZ is a 2D torus but can be extended out of a lattice for simplicity on a 2-sphere.
Also Q(k) can be seen to be a 2-sphere, giving us

π2(S2) = Z (1.28)

In fact the quantum Hall effect belongs to this class of symmetries and the integer
characterizing each of its topological phases are the quantized Hall resistivities.
Another relevant example is given by the Kitaev chain [4], the model of interest of
this thesis. This model possess the three classifying symmetries and thus belongs
to class BDI. In one dimension, reading from table (1.2) we can infer that Z labels
the different groundstates. That means we can associate an integer number to every
groundstate. These numbers are the winding numbers around the origin of the map
from the BZ to the target space which in this case is a two dimensional flat space.

1.2 Topological Invariants

Topology studies how systems can be transformed into each other and what are the
elements that do not change in this transformation. In condensed matter physics we
ask ourselves which Hamiltonians can be continuously transformed into each other
and what they look like.
This concept was already introduced in the last section. We now give a more accu-
rate description of what a topological phase is, how Hamiltonians can be transformed
and what characterize the different phases beyond symmetry.
We can define an adiabatic deformation as a continuous transformation of a Hamil-
tonian in which

• the parameters are modified slowly and continuously

• the gap does not close

• the main symmetries are respected

and we can say that two Hamiltonians that are adiabatically connected are in the
same topological phase. If the gap closes during the transformation of some param-
eters we will say that the system underwent a topological phase transition.
Therefore, the most intuitive task to do is to find properties of the quantum system
that do not change during the adiabatic deformation. These are called topological
invariants. Topological invariants are quantum numbers that can be (sometimes in
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a difficult way) calculated for any systems and system with the same invariant are
in the same topological phase.
Adiabatic transformations are the base element of the adiabatic theorem, a key
concept in quantum mechanics which state that a physical system remains in its
instantaneous eigenstate if a given perturbation is acting on it slowly enough and if
there is a gap between the eigenvalue and the rest of the Hamiltonian’s spectrum.
The adiabatic theorem is of central importance in the study of the Berry phase and
topological invariants.

The Berry Phase The main focus of the study of topological phases of matter
is the ground state of a system. That is because we expect to see the topological
behaviour of a model in it.
In his paper [19], M.V. Berry showed how a ground state changes when its Hamil-
tonian is slowly changed.
Let us consider an adiabatic deformation which is slow in a sense that the adiabatic
theorem, stated above, is respected. If the system goes back to its original state at
the end of the deformation, there will be two phases picked up by the state. One
associated to the time evolution and one, called a Berry phase, with interesting
properties.
Let us go into details, following Berry’s work [19]. Consider an Hamiltonian depend-
ing on some parameters R which vary from time t = 0 to t = T . If R(0) = R(T )

the system follows a closed path C in the parameter space.
The system eigenstates |ψ(t)〉 will evolve according to

H(R)|ψ(t)〉 = i~ ˙|ψ(t)〉 (1.29)

and, given the adiabatic theorem, at any time we can consider an instantaneous
orthonormal basis from the eigenstates of H(R) as |n(R)〉 (with R = R(t)), for
which

H(R)|n(t)〉 = En(R)|n(t)〉 (1.30)

This basis is not unique, due to gauge-invariance of the states by any R-dependent
smooth function. So we can make a gauge choice requiring that the phase of the
eigenbasis is smooth and single valued on the parameter path C [20]. A system
prepared in a |n(R(0)〉 eigenstate will evolve into a state |n(R(T ))〉 so that the final
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1. Topological Phases of Matter

state can be written as

|ψ(t)〉 = e−
i
~
∫ t
0 dt

′En(R(t′))eiγn(t)|n(R(t))〉 (1.31)

While the common time-evolution phase can be erased by a gauge transformation,
the second phase eiγn(t) cannot. It is called the Berry Phase.
Plugging equation (1.31) into (1.29) we get

γ̇n(t) = i〈n(R)|∇R|n(R)〉Ṙ (1.32)

so that if we integrate this last relation we obtain an expression for the berry phase

γn(C) = i

∫
C
〈n(R)|∇R|n(R)〉dR (1.33)

as a path integral on the parameter space which does not depend on the rate of
change of the parameters.
From (1.33) we can define a vector-valued function

γn =

∫
C
dR · An(R) An(R) = i〈n(R)|∇R|n(R)〉 (1.34)

The vector An(R) is called the Berry connection or Berry vector potential in anal-
ogy to the gauge theory of vector potentials.
In fact we can show that the Berry connection is gauge-dependent. Making a pa-
rameter dependent gauge transformation as

|n(R)〉 → eζ(R)|n(R)〉 (1.35)

with ζ(R) an arbitrary continuous function, An(R) transforms as

An(R)→ An(R)−∇Rζ(R) (1.36)

As a consequence the Berry phase (1.33) will be modified by ζ(R(0)) − ζ(R(T )).
Before Berry’s article, the Berry phase was considered trivial because thanks to the
gauge redundance ζ(R) could be chosen so to cancel out the contribution of γn [20].
Berry’s idea to consider a closed path on C cast light again on this issue. Since we
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asked the phase to be single valued the gauge function must respect

ζ(R(0))− ζ(R(T )) = 2π ×m (1.37)

with m an integer, so that the phase γn can only be changed by an integer multiple
of 2π and cannot be removed. Thus, on a closed path the Berry phase is gauge
invariant, making it a physical observable quantity, in general given by

γn =

∮
C
dR · A(R) (1.38)

This definition underlines both the independency of the phase by how the parameters
change in time and the dependency on the geometry of the chosen loop.
Following the analogy to electrodynamics we define a gauge field tensor from the
Berry connection

Ωn
µν(R) = ∂µAnν (R)− ∂νAnµ(R) (1.39)

where ∂µ = ∂
∂Rµ

. It is called Berry’s Curvature, a gauge invariant field which allows
us to define γn as a surface integral

γn =

∫
S
dRµ ∧ dRν 1

2
Ωn
µν(R) (1.40)

where we used the Stokes’ theorem and S is any surface enclosed by the path C.
In three dimensional space the Berry curvature (1.39) obtains the familiar form of
the magnetic field of a vector potential, while the Berry phase becomes its surface
integral. That is,

Ωn(R) = ∇R ×A(R) γn =

∫
S
dS · Ωn(R) (1.41)

In his paper [21], Berry showed also how to switch the derivatives on the states, which
can be computationally cumbersome, to derivatives of the Hamiltonian. Using

〈n|∂µ|m〉 =
〈n|∂µH|n〉
En − Em

(1.42)

and the completeness relation, we obtain

Ωn
µν(R) = i

∑
m6=n

〈n|∂µH|m〉〈m|∂νH|n〉 − (µ←→ ν)

(En − Em)2
(1.43)
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which has the advantage of not having any differentiation on the wavefunction, so
it can be evaluated for any gauge.
Using the adiabatic approximation we have focused on the evolution of one energy
state. Equation (1.43) then looks like an interaction with the left out energy levels.
In fact, including all the energy levels in the calculation adds up to 0:∑

n

Ωn
µν(R) = 0 (1.44)

which is a local conservation law for the Berry curvature. In addition to that,
equation (1.43) is singular wherever two energy levels energies coincide on a point
R of the parameter space. This point corresponds to a monopole in parameter
space.

Chern and Winding Numbers One of the mathematical theorems that links
geometry to topology is the Gauss Bonnet theorem. It is applied to 2D compact
Riemannian manifolds without boundary and it connects the Gaussian curvature of
the manifolds to its number of genuses:

2(1− g) =
1

2π

∫
M
d2xF (x) (1.45)

where g is the genus, meaning the number of holes of the manifold M have, and
F (x) is the curvature, a local feature of a manifold.
The Gaussian curvature can be seen as the angle mismatch of a tangent vector after
it was parallel transported around an infinitesimal closed loop onM [2].
In the physical systems we consider, the manifold M is always the Brillouin Zone
and its tangent plane is spanned by the Bloch states of an occupied band at given
momentum k. The generalization to this context of the Gaussian curvature is the
Berry curvature.
The generalization of the Gauss-Bonnet theorem in algebraic topology is the quantity

2C =
i

2π

∫
BZ

TrF = 2
i

2π

∫
BZ

d2kTrF12 (1.46)

known as the first Chern number. It is a gauge-invariant quantity which can only
take integer values. It can be generalized to any d = 2s space using the s-th power
of the local Berry curvature F and taking its trace so to still have a gauge-invariant
quantity.
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We can see from table (1.2) that classes without chiral symmetry have an integer Z

topological invariant when the dimension of the space is even, in that case we can
consider the s-th Chern number as the topological invariant.
Let us now consider classes with chiral symmetry C, which are the systems that we
will be dealing with throughout this work.
We want to create an extension of the Chern number. In order to do so we consider
the flatband Hamiltonians Q(k) mentioned in the last section and we define

Cs = εi1...id

∫
BZ

ddkTr[Q(k)∂i1Q(k) . . . ∂idQ(k)] (1.47)

for d = 2s. This new topological invariant can be seen as the winding number of the
unitary transformation Q(k) over the compact BZ. It can be shown by calculations
that Cs = 0 for all odd spatial dimensions.
In odd dimension spaces we can define a different topological winding number, that
is

W (s) =
(−1)ss!

2(2s+ 1)!

(
i

2π

)s+1

εi1...id

∫
BZ

ddkTr[CQ(k)∂i1Q(k) . . . ∂idQ(k)] (1.48)

So that it can be interpreted as the winding number of the off-diagonal part of the
flatband Hamiltonian.
With the Chern and winding numbers we have a flag that represents the different
topological sectors of any symmetry class for systems with translational invariance.
It is important for our work to state that if interactions which do not break the
defining symmetry (neither spontaneously nor explicitely) are included in the picture
two things may happen

• Phases with a different winding number as defined above may be adiabatically
connected to each other

• The interaction changes the symmetry classification of topological phases with
topological characteristics different from the ones in the non interacing phases

Interactions will also have an impact on the conditions of existence of edge modes
in the model.
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1.3 The Kitaev Model

The main focus of this thesis is to work on the Kitaev Model [4], developed by A.
Y. Kitaev while studying fault-tolerant quantum computation.
Kitaev proposed a one dimensional superconducting model, a "quantum wire". as a
solution to the quantum errors that occur when dealing with quantum computation
in order to create a valid quantum memory.
There are two kinds of error that quantum systems are sensitive to: a classical and
a phase error. The former is due to a σxj operator that can flip the state of the j-th
qubit, the latter is due to the σzj operator that flips the sign of all the states with
the jth qubit equal to 1 with respect to all the states where that qubit is equal to 0.
Although these errors can be corrected it is usually hard to work on both of them.
This is where Kitaev introduced his model.
The idea is simple: firstly we are in an electronic system. Here the electrons can
work as qubits if we consider an empty state as |0〉 and an occupied state as |1〉.
In this picture a classical error would mean to destroy or create an electron which
is not allowed by the conservation of electronic charge (same would happen in a
superconductor where parity is conserved). Yet, if an electron could jump from one
site to another we would have two state flips, meaning two classical error. So this
must be avoided placing the fermions far apart enough.
The phase error in this context would be represented by the number operator and
it would not be lifted. The solution to this problem is to introduce the Majorana
fermions.

1.3.1 Majorana Modes

Majorana particles are interesting and important because they can be seen as build-
ing blocks of fermions. Specifically, a fermion can be decomposed into two Majorana
quasi-particles because of their particular statistics. Let us consider N fermionic cre-
ation/annihilation operators c1, . . . , cN and c†1, . . . , c

†
N with the usual statistics:

{ci, cj} = {c†i , c
†
j} = 0 {c†i , cj} = δij (1.49)
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where i, j run on the different N sites. Let us split the fermionic operators into a
real and imaginary part

ci =
1

2
(γ2i−1 + iγ2i) c†i =

1

2
(γ2i−1 − iγ2i) (1.50)

and call γ2j−1 and γ2j Majorana fermions. By inverting this formula and imposing
the fermionic anti-commutation rules (1.49) we obtain a definition for the Majorana
fermions

γ2i−1 = ci + c†i γ2i = −i(ci − ic†i ) (1.51)

and their anti-commutation relation

{γi, γj} = 2δij (1.52)

First of all, we obtain that γ†i = γi. Second of all, their exchange relation is very
interesting, it imposes that γ2

i = 1 which means that Majorana fermions do not
respect the Pauli Exclusion Principle. In addition to that, if we created a number
operator we would get γ†i γi = γ2

i = 1 so there is no real meaning of counting
Majoranas.
The idea of generating Majorana fermions as the real and imaginary part of a fermion
seems just a mathematical operation because Majoranas are quasi-particles that are
created together and cannot be spatially separated. There is, however, some physical
insight: we can see a fermion as a superposition of two Majorana fermions states
that can be spatially separated. These states would not suffer from the phase error
that typically affects fermionic states. In fact, as mentioned above, the phase error is
given by the number operator c†ici which is unlikely to accur if the Majorana modes
belonged to different sites. This is the starting point for Kitaev to look for a model
that has Majorana fermions as low energy degrees of freedom.

1.3.2 The Model

The nature of Majorana fermions makes them be their own anti-particle, or in a more
"particle-hole" language their own "hole". Thus, we can expect such fermions to be
an equal superposition of an electron and a hole state [22]. This idea suggests to
look for Majorana fermions in superconducting systems because in the Bogoliubov-
de Gennes Hamiltonian formalism we work with Bogoliubov quasi-particles which
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are indeed superpositions of electron and hole states. Another reason as why we
should consider a superconducting system is that it breaks down the gauge symmetry
of normal fermionic operators (i.e. the system invariance for transformations like
ci → eiφci) to Z2 so that Majorana operators do not mix with other operators.
In the most simple model we can create we consider a chain of N superconducting
fermions, with fixed spin, which gives us the Kitaev Hamiltonian

H =
∑
i

[
− t
(
cic
†
i+1 + ci+1c

†
i

)
− µ

(
c†ici −

1

2

)
+ ∆

(
cici+1 + c†ic

†
i+1

)]
(1.53)

where the index i runs on all the N sites, t is the hopping parameter, µ the chemical
potential and ∆ = |∆|eiθ the superconducting gap (whose phase parameter can be
absorbed into the fermionic operators so that |∆| = ∆).
Rewriting the Kitaev Hamiltonian using (1.50) we obtain

Hγ =
i

2

∑
i

[
− µ(γ2i−1γ2i) + (t+ |∆|)γ2iγ2i+1 + (−t+ |∆)γ2i−1γ2i+2

]
(1.54)

In this form it is easier to show the appearence of isolated Majorana modes for some
values of the parameters. Let us consider two cases:

• |∆| = t = 0, µ < 0. This brings (1.54) to the form

Hγ = −µ
∑
i

(
c†ici −

1

2

)
= −µ

2

∑
i

(
γ2i−1γ2i

)
(1.55)

and the Majorana operators γ2i−1 and γ2i of the same site are paired together
in a way to form a groundstate with a vanishing occupancy number. This
is called the trivial phase. This configuration is graphically shown in the top
part of Fig. 1.1.

• |∆| = t > 0, µ = 0. With this parameters we have

Hγ = it
∑

γ2iγ2i+1 (1.56)

which clearly shows that Majoarna operators of different sites are paired with
each other (see bottom part of Fig. 1.1). This is called the topological phase.
This suggests to consider creation/annihilation operators that spread over two
consecutive sites as c̃i = 1

2
(γ2i + iγ2i+1), ˜

c†i = 1
2
(γ2i − iγ2i+1) so to create a

Hamiltonian in the form H = 2t
∑N−1

i=1 (c̃†i c̃i − 1
2
). Its groundstate is defined
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Figure 1.1: Graphical representation of the two possible couplings for the Majorana
fermions. The pictures show the fermionic sites of the Kitaev chain labeled by
their number and represented by a box. The latter is bipartite into two Majorana
modes. The chain at the top shows the coupling between Majoranas inside the same
site, which leads to the trivial phase. The chain at the bottom shows the coupling
between Majorana of different sides which shows the topological behaviour. See how
the first and last Majorana fermions are decoupled from the chain.

from c̃i|ψ〉 = 0 for i = 1, . . . , N . So it does not contain any c̃i particle but
there are two Majorana modes that can host zero-energy excitations because
the operators γ1 and γ2N do not show up in the Hamiltonian (1.56). Two
orthogonal states |ψ0〉, |ψ1〉 respect the vacuum condition and we can see how
they differ in parity.
We can define a fermionic parity operator as

P =
∏
i

(
− iγ2i−1γ2i

)
=
∏
i

(
1− 2c†ici

)
(1.57)

which is +1/-1 when the system has an even/odd number of fermions. To
act on our groundstates let us define a fermionic non local operator Ψ =
1
2
(γ2N + iγ1) so that the parity operator reduces to P = 1− 2Ψ†Ψ = −iγ1γ2N

and we can see its action on |ψ0〉 and |ψ1〉

−iγ1γ2N |ψ0〉 = |ψ0〉 −iγiγ2N |ψ1〉 = −|ψ1〉 (1.58)

This means that |ψ0〉 does not host excitations of the Ψ particle while |ψ1〉
does.

The two specific cases we just explored show two different behaviours of the Kitaev
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Model. In the first one the coupling of Majorana pairs does not allow any edge
modes, while the second one does, leading to a degeneracy in the groundstates: the
one that contains a non local pair of Majorana fermions and the one that does not,
simply because there is no energy cost in creating such non local Majorana couple.
Even though we only worked with two specific sets of parameters the appearence of
zero-energy Majorana modes is not only confined to the µ = 0 case but to a whole
interval of values of µ.

Energy Spectrum To get more insight into the existence of the Majorana modes
let us solve the spectrum of the Kitaev Hamiltonian (1.53) in the Bogoliubov-de
Gennes formalism [23], which we will only quote briefly.
Using the BdG method consists in doubling the degrees of freedom of our system
and exploit this redundancy to write the Hamiltonian in a very convenient form,
useful for diagonalization. The redundancy is due to working with combinations of
creation/annihilation operators of particles and antiparticles, thus it also produces
a symmetric energy spectrum with respect to the zero energy level.
The BdG approach requires us to impose Periodic Boundary Conditions (PBC) on
the Kitaev chain. This prevents the generation of edge modes because there is
no edge anymore. Anyhow, we now want to study the bulk properties and see if
they can somehow show signs of the presence of the edge modes. Thus, there is no
problem in imposing PBC.
In order to do so we write the fermionic operators in momentum space through a
Fourier transformation

cn =
1√
N

∑
k

eiknck c†n =
1√
N

∑
k

e−iknc†k (1.59)

with k the discretized momenta k = 2πi where i = 0, . . . , N − 1, then the new
Hamiltonian is

H =
∑
k

[
− (t cos k + µ)c†kck − i∆ sin k

(
c−kck + c†kc

†
−k
)]

(1.60)

Written in the Bogoliubov-de Gennes formalism we get

H =
1

2

∑
k

(
c†k c−k

)(−2t cos k − µ i2∆ sin k

−i2∆ sin k 2t cos kµ

)(
ck

c†k

)
(1.61)

27



1. Topological Phases of Matter

So that it is easy now to find the energy spectrum

E(k) = ±
√

(2t cos k + µ)2 + (2∆ sin k)2 (1.62)

which clearly shows a gap for all values 2|t| 6= |µ| except for 2|t| = |µ| where the gap
closes for the values of k = ±π. This means that we can expect a phase transition
at µ = ±2t and that is exactly the point that discriminates the topological phase
with Majorana edge modes to the one without.

Majorana zero energy modes at the boundary In the last paragraph we
showed how two different kinds of coupling realized on the Kitaev chain produce
a trivial and a topological phase, defined by the absence or presence of Majorana
modes at the boundaries. The study of the bulk properties - the energy spectrum -
shows that the two phases are separated at the critical points |µ| = 2|t|.
Starting from this hypothesis we want to explicitely calculate the Majorana modes
wavefunction and show how they are localized at the edges of the chain as it is done
in [24].
Let us redefine for clarity the Majorana fermions in this way

γL,j = γ2j−1, γR,j = γ2j. (1.63)

Considering ∆ = t = 1 the Hamiltonian for µ = 0 is

H = i
N−1∑
j=1

γR,jγL,2j+1 (1.64)

and for µ 6= 0 is

H = −iµ
2

N∑
j

γL,jγR,j + i

N−1∑
j=1

γR,jγL,j+1. (1.65)

The latter Hamiltonian (1.65) implies that the Majoranas at the far right and left
end of the chain are uncoupled. We will name them ΨL = γL,1 and ΨR = γR,N . In
order to show how these two states are localized at the edges we consider an ansatz
for their wavefunction in this form

ΨL =
N∑
j=1

αjγL,j, ΨR =
N∑
j=1

βjγR,j. (1.66)
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Let us start with ΨL, if it represent a zero energy mode it must satisfy the relation

[H,ΨL] = 0, (1.67)

which gives us

iµ
N∑
j=1

αjγR,j − i
N−1∑
j=1

αj+1γR,j = 0. (1.68)

This can be rewritten so to isolate the γR,j, namely:

N−1∑
j=1

(
− µ

2
αj + αj+1

)
γR,j −

µ

2
αNγR,N = 0. (1.69)

We can solve this setting all the coefficients multiplying γR,j to 0 and find a recursive
relation so that αN is completely determined. That implies:

− µ

2
αj + αj+1 = 0, (1.70)

which leads to

αj =

(
µ

2

)j−1

(1.71)

by asking that ΨL(µ = 0) = mL,1, which sets α1 = 1. Now the complete wavefunc-
tion for the left Majorana edge state is

ΨL =
N∑
j=1

(
µ

2

)j−1

γL,j (1.72)

which, thanks to the exponential term, is localized at the edge of the chain for µ < 2.
This is in accordance with the condition µ < 2t we have for the existence of this
mode.
The same steps can be repeated for the right Majorana mode leading to

ΨR =
N∑
j=1

(
µ

2

)N−j
γR,j. (1.73)
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While both states ΨL and ΨR are localized at the (opposite) edges, none of them
commutes with the Hamiltonian if not on the thermodynamic limit N →∞, that is

[H,ΨL] = i
µ

2

(
µ

2

)N−1

γR,N , [H,ΨR] = −iµ
2

(
µ

2

)N−1

γL,1 (1.74)

The two modes can be composed into one non-local fermion as Ψ = 1
2
(ΨL + iΨR)

which still does not commute with the Hamiltonians in the finite size limit but it
has the exponentially decaying term in µ. Thus for N → ∞ the non-local fermion
has zero energy and the right and left Majoranas become unpaired.

1.3.3 Correlation Functions

We now turn our attention to the determination of the correlation functions. They
are the main tool to investigate the properties of the bulk and are the typical ob-
servable we measure in experiments. Specifically, the whole work on this thesis is
based on studying the correlation of Kitaev chains in different interacting and non-
interacting contexts.
In order to obtain the correlation functions we need to introduce the method devel-
oped by Lieb, Schultz and Mattis (LSM) [25] to put in a diagonal form our Kitaev
Hamiltonian (1.53).
The LSM was intended for all the Hamiltonians of a lattice system of N sites that
can be written in the form

H =
N∑
i,j

(
c†iAijcj +

1

2

(
c†iBijc

†
j + h.c.)

)
(1.75)

where A and B are real matrix with A symmetric and B anti-symmetric. The
difference with the Bogoliubov transformation is that there is no need to impose
periodic boundary conditions or to do a Fourier transformation. In addition to
that, there is no doubling of degrees of freedom and no double spectrum symmetric
to the zero energy level.
The purpose of the LSM approach is to put any Hamiltonian of the form (1.75) in
a diagonal form

H =
∑
k

Λkη
†
kηk + cost (1.76)
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through a suitable linear transformation of the fermionic operators c†i and ci:

ηk =
∑
k

(
gkici + hkic

†
i ) η†k =

∑
k

(
gkic

†
i + hkici) (1.77)

with gki and hki real matrices.
We can now impose the following relation:

[ηk, H]− Λkηk = 0 (1.78)

and we will see later on how it is fundamental to impose the ηk to be canonical in
their commutation relations. From this last relation we get the condition (we are
following [26]) ∑

j

gkjAji − hkjBji = Λkgki∑
j

gkjBji − hkjAji = Λkhki
(1.79)

which is true only if A and B are real. We define another set of matrices to simplify
calculations, namely:

φki = gki + hki

ψki = gki − hki
(1.80)

So that writing for semplicity φk = φki and ψk = ψki, equations (1.79) become

φk(A−B) = Λψk

ψk(A+B) = Λφk
(1.81)

That can be easily decoupled into

φk(A−B)(A+B) = Λ2φk

ψk(A+B)(A−B) = Λ2ψk
(1.82)

These two pairs of equations (1.81) and (1.82) are the core of the LSM method, if
calculate them we have an expression for the matrices φk and ψk which allow us
to do the operator transformation that puts the original Hamiltonian (1.75) in the
diagonal form (1.76).
Furthermore, since for the matrices the trivial relations (A+B)T = (A−B) holds,
we can infer that the eigenvalues Λ2

k are real and positive and that φk and ψk are
real and orthonormal. In particular, the orthonormality of the eigenvectors implies
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that the ηk operators follow canonical anti-commutation relations (it can be show
by easy computation).

φkφl = δkl

ψkψl = δkl
⇐⇒

{η†k, ηl} = δkl

{ηk, ηl} = 0
(1.83)

In the special case of the Kitaev Hamiltonian (1.53) we follow the steps of [26]
and [27]. It is easy to see that the symmetric part is given by the hopping term
and the chemical potential part while the superconducting side is antisimmetric by
construction. Both matrices A, B representing these sectors are real.
We can see that these matrices are constant on the diagonals (the central one is
referred to as 0 diagonal and then we count +1 or -1 going upwards/downwards).
This is a property of the so called Toeplitz matrices, i.e. Aij = Ai−j in the sense
that all the elements belongin to the same diagonal (i-j) are identical.
Specifically, the symmetric matrice A has a term −µ on the i− j = 0 and a −t term
on the i − j = ±1 diagonals for symmetry reasons. The B matrix will have the ∆

term on both the +1 an -1 diagonals but with opposite signs.
Since we are interesed in studying the properties of the bulk we can impose PBC
which makes the A and B matrices even more peculiar. They are indeed circulant
matrices, a special case of a Toeplitz matrix where Aij = Ai−j mod L for some L.
Following the definition of a Toeplitz matrix we express the matrices A, B:

Aij = a(i− j) = −t(δi,i+1 + δi,i−1)− µδi,j
Bij = b(i− j) = ∆(δi,i+1 − δi,i−1)

(1.84)

We recall now the main equations of the LSM method (1.81) and (1.82) derived
previously. We do notice, though, that being the squared eigenvalues Λ2

k positive
real numbers we can take them as a squared module i.e |Λk|2. In addition to that
we transpose the second pair of equations (1.82) (just a flip of sign for the B matrix)
so they are presented in a more ordered fashion. All in all, we obtain

φk(A+B)(A−B) = |Λ|2φk (A+B)φk = |Λ|ψk (1.85)

ψk(A−B)(A+B) = |Λ|2ψk (A−B)ψk = |Λ|φk (1.86)

To find a solution to this set of equations we rely on the circulant nature of the
matrices. In particular if A and B are circulant matrices so are (A+B) and (A−B)
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and their product too.
A theorem for circulant matrices states that any N × N circulant matrix M has
eigenvectors

ψk =
1√
N

(
1, e−i2πk/N , e−i4πk/N , . . . , e−i2π(n−1)k/N

)T
(1.87)

for k = 0, . . . , N − 1 and their corresponding eigenvalues

λk =
∑
j

aje
−i2πkj/N (1.88)

and the matrix can be diagonalized by the Fourier matrix FN

(FN)jk =
ei2πkl/N√

N
(1.89)

meaning that M = FN [diag(λk)]F
†
N .

To begin with, let us see that (A − B)(A + B) and (A − B) are both circulant
matrices which commute. So we can select as basis of eigenvectors the normalised
functions

ψkj =
ei2πkj√
N

(1.90)

which diagonalize both (A−B)(A+B) and (A−B). In particular using (1.86) we
have

(A−B)ψk = λkψk = |Λk|φk (1.91)

with λk is the eigenvalue of ψk with respect to the matrix (A-B). From this last
relation we find that φk = λkψk/|Λk| and since φk and ψk are normalized vectors,
the quantity λk/|Λk| must be a modulo one number, so we can directly set λk = Λk.
We only need the eigenvalues now that can be expressed through the formula (1.88)
to obtain

Λk =

(N−1)/2∑
l=−(N−1)/2

(
a(l)− b(l)

)
eikl Neven (1.92)

Λk =

(N−1)/2∑
l=−(N−1)/2

(
a(l)− b(l)

)
eikl + (−1)la(N/2) Nodd (1.93)
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with k the discretized wave-number so that k = 2πi/N with i = 0, . . . , N − 1. The
values of the eigenvalues we were looking for are thus the module of Λk.

Correlation Functions Calculation We now have all the ingredients to calcu-
late the quantum correlation functions. We are mainly interested in one-body and
two body correlations functions, namely

〈c†icj〉 = 〈GS|c†icj|GS〉 (1.94)

〈c†ic
†
j〉 = 〈GS|c†ic

†
j|GS〉 (1.95)

where (1.95) is called the anomalous correlator. The ground state is definied as
the state annihilated by all the annihilation operators of the LSM quasiparticles
ηk|GS〉 = 0 for all k’s.
In order to make this calculation we still follow the steps of [27] and [26]. An im-
portant characteristic of this approach is that it allows us to calculate the fermionic
correlation functions starting from the expectation values of Majorana operators.
Let us show how we can do that. We start by recalling the relations between
fermionic and Majorana operators (1.50) and (1.52)

ci =
1

2
(γ2i−1 + iγ2i) c†i =

1

2
(γ2i−1 − iγ2i) (1.96)

γ2i−1 = ci + c†i γ2i = −i(ci − ic†i ) (1.97)

and let us substitute them into the ηk operators like so

ηk =
∑
i

(
gkici + hkic

†
i

)
=
∑
i

(φki + ψki
2

ci +
ψki − ψki

2
c†i
)

=
∑
i

(
φki

ci + c†i
2

+ ψki
ci − c†i

2

)
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So that using (1.97) we obtain

ηk =
1

2

∑
i

(
φkiγ2i+1 − iφkiγ2i

)
η†k =

1

2

∑
i

(
φkiγ2i+1 + iφkiγ2i

) (1.98)

The last step is to invert these expressions using the orthonormality of the eigen-
functions φk and ψk

γ2i = i
∑
k

ψki
(
ηk − η†k

)
γ2i+1 = i

∑
k

φki
(
ηk + η†k

)
(1.99)

so that now we can evaluate correlations functions for Majorana fermions.
Let us recall that the groundstate is the ηk vacuum. We want to calculate the
groundstate expection value 〈mimj〉 for all combinations of i,j even and odd.

〈GS|γ2i+1γ2j+1|GS〉 =
∑
mn

φmiφnj〈GS|(ηm + η†m)(ηn + η†n)|GS〉

=
∑
mn

φmiφnj〈GS|ηmη†n|GS〉

=
∑
m

φmiφmj = δij

where we used the orthonormality of the eigenfunctions φk, analogously we use the
orthonormality of ψk to prove the following

〈GS|γ2iγ2j|GS〉 = i2
∑
mn

ψmiψnj〈GS|(ηm − η†m)(ηn − η†n)|GS〉

=
∑
mn

ψmiψnj〈GS|ηmη†n|GS〉

=
∑
m

ψmiψmj = δij
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The less trivial expectation values are

〈GS|γ2iγ2j+1|GS〉 = i
∑
mn

φmiψnj〈GS|(ηm − η†m)(ηn + η†n)|GS〉

= i
∑
mn

ψhimiψnj〈GS|ηmη†n|GS〉

= i
∑
m

ψmiφmj ≡ −i(TN)ij

and

〈GS|γ2i+1γ2j|GS〉 = −i
∑
mn

φmiψnj〈GS|(ηm − η†m)(ηn + η†n)|GS〉

= −i
∑
mn

ψmiψnj〈GS|ηmη†n|GS〉

= −i
∑
m

ψmiφmj ≡ i(TN)ij

We introduced the term TN so to create a 2× 2 off diagonal matrix in the following
manner

Cij =

(
0 (TN)ij

−(TN)ji 0

)
(TN)ij =

∑
m

ψmiφmj (1.100)

In order to write all the Majorana expectation values in a compact form

〈GS|γiγj|GS〉 = 〈γiγj〉 = δij + i(CN)ij (1.101)

where CN is a 2N × 2N block matrix with components (CN)ij = (Cij) with i, j =

1, . . . , N .
With these results we can calculate the fermionic correlation functions explicitely
from the ones obtained with Majorana operators and the results of the spectrum
calculations.
Let us consider the φk and ψk (1.90) equations we found. Since they are two complex
functions, in order to calculate TN we can consider the complex conjugate of ψk in
place of ψk, so that the definition for TN becomes

(TN)jl =
N−1∑
n=0

ψ̄njφnl =
1

2π

2π(N−1)/N∑
k=0

Λk

|Λk|
e−ik(j−l) (1.102)
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which becomes, in the termodynamic limit

(TN)jl =
1

2π

∫ 2π

0

dk
Λk

|Λk|
e−ik(j−l) (1.103)

Now we have all the ingredients to calculate the fermionic correlation functions
starting from

〈c†icj〉 =
1

4
〈(γ2i+1 + iγ2i)(γ2j+1 − iγ2j)〉 (1.104)

=
1

4
(〈γ2i+1 + iγ2j+1 − i〈γ2i+1γ2j〉+ i〈γ2iγ2j+1〉+ 〈γ2iγ2j〉) (1.105)

=
1

4
(2δij − (TN)ji − (TN)ij) (1.106)

and similarly for the anomalous correlation functions

〈c†ic
†
j〉 =

1

4
(2δij + (TN)ji − (TN)ij) (1.107)

1.4 Kitaev Model with Next Nearest Neighbor

Coupling

In the last section we studied the Kitaev model in its original form, that is with
nearest neighbor coupling. It is also interesting to show the effects of a longer range
coupling, specifically the next to nearest neighbor (NNN) coupling. Considering this
type of interaction was firstly proposed by Y. Niu et al [21] as a necessary step when
dealing with the real implementation of a quantum wire. The model they applied
it on was the quantum spin Ising chain which can be transformed into the Kitaev
chain. So we will follow the work [24].
As mentioned above, the Kitaev Hamiltonian belongs to the BDI symmetry class
which is characterized by a Z2 homotopy group. That means that different topolog-
ical phases are characterized by a different integer number which is the amount of
edge states. The Kitaev chain shows the presence of one edge state which is related
to the winding number ω = ±1. It is thus interesting to study models which can
host a larger number of edge modes. The NNN Kitaev model is one of such.

Energy spectrum and phase diagram Let us start by writing the Kitaev
Hamiltonian with NNN coupling. We define ta and ∆a as the hopping paramter
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and the superconducting gap of respectively, the Nearest Neighbor for a = 1 and the
NNN interaction for a = 2. Let us set t1 = ∆1 = λ1 and t2 = ∆2 = λ2, with λ1 and
λ2 real, so that we come to the following Hamiltonian

H1 =
λ1

2

N−1∑
j=1

(c†jcj+1 + c†jc
†
j+1 + h.c.) (1.108)

H2 =
λ2

2

N−1∑
j=1

(c†jcj+2 + c†jc
†
j+2 + h.c.) (1.109)

Hµ = −µ
N∑
j=1

(c†jcj −
1

2
) (1.110)

H = Hµ +H1 +H2 (1.111)

Since all the parameters are real, the total Hamiltonian (1.111) still enjoys the same
symmetries of the Kitaev chain with nearest neighbor coupling and thus belongs to
the BDI topological class. In figure 1.2 it is shown the forming of Majorana edge
modes for different hopping couplings for a more explicitly visual representation of
the phenomenon.

Figure 1.2: Different coupling realizations. The pictures show a fermionic chain
where each site, numbered, is divided into two Majorana sites giving us two sublat-
tices a and b. Panels (a), (b) and (d) show respectively no coupling, NN coupling
and NNN coupling with the consequent formation of 0,1, and 2 edge modes. Panels
(c) and (e) show a chain split in between separating into two open chains. Picture
taken from [28].

We now switch to momentum space with a Fourier transformation assuming PBC
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are met

cj =
1√
N

∑
k

eikjck c†j =
1√
N

∑
k

e−ikjc†k (1.112)

so that defining the new fermion operator Ψk = (ck, c
†
−k)

T we can write

H =
1

2

∑
k

Ψ†kHkΨk

Hk = [−λ1 sin(k)− λ2 sin(2k)]σy + [λ1 cos(k) + λ2 cos(2k)− µ]σz (1.113)

that is

Hk =

(
λ1 cos(k) + λ2 cos(2k)− µ −iλ1 sin(k)− iλ2 sin(2k)

iλ1 sin(k) + iλ2 sin(2k) −λ1 cos(k)− λ2 cos(2k) + µ

)
(1.114)

where σα are Pauli matrices. This last equation can be put in the form h(k) ·σ with

h(k) =

 0

−λ1 sin(k)− λ2 sin(2k)

λ1 cos(k) + λ2 cos(2k)− µ

 (1.115)

The windings around the origin of this vector define the topological phase the system
belongs to.
Let us calculate the single particle energy spectrum. By diagonalizing (1.114) we
obtain:

ε(k) = ±
√
µ2 + λ2

1 + λ2
2 + 2λ1(µ− λ2) cos(k)− 2λ2 cos(2k) (1.116)

The energy gap closes for λ2 = µ+λ1, λ2 = µ−λ1 and for λ2 = −µ for |lambda1| <
2|µ|. The positive sector of the phase diagram is showed in 1.3 with µ = 1. To
better understand the diagram 1.3, we first consider some limiting cases.

• |λ1|, |λ2| � |µ| is the trivial phase which hosts no Majorana edge modes

• λ2 = 0 (the orizontal axis) we regain the Nearest Neighbor coupling Kitaev
chain that we studied in the last section. Thus, we can see the phase transition
from 0 edge modes to 1 occuring when λ1, which is the hopping paramtere t,
is larger then µ/2.
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Figure 1.3: Phase diagram of the NNN Kitaev model. λ1 and λ2 are the parameters
of the Hamiltonian (1.108). The red numbers represent different topological phases
according to the count of Majorana edge modes. There are 0 edge modes for low
values of the hopping paramterers as we can expect. One edge mode in the zone
where the short range coupling is more relevant and two where the longer range
term is more relevant and thus the chain is decomposed into two subchains, each
one hosting one edge mode.

• λ1 = 0 In this case there is only next to nearest neighbor coupling so the wire
splits into two alternal Kitaev chains (the odd and even sites). Each chain has
one Majorana edge mode appearing when |λ2| > µ.

We show now the appearence of the Majorana modes in the NNN Kitaev chain
deriving their wavefunction.
Let us start by rewriting Hamiltonian (1.111) using the Majorana modes. For clarity
we define γ2j−1 = aj and γ2j = bj, so that the Majorana Hamiltonian becomes

H = i
∑[

µbjaj − λ1bjaj+1 + λ2bjaj+2

]
(1.117)
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and we write it down in the basis ψT = (a1, b1, a2, b2, . . . ) using the Majorana anti-
commutation relations aj, bk = 0, aj, ak = δjk for j, k = 1, . . . , N :

H = − i
2


0 µ 0 . . .

−µ 0 λ1 0 λ2 . . .

0 −λ1 0 µ 0 . . .

0 0 −µ 0 λ1 0 λ2 . . .
...

... . . . . . . . . .

 (1.118)

Correlation functions We now turn our attention to the calculation of corre-
lation functions once again, since they will be largely exploited in the following
chapters as our main data information.
Starting from the Fourier transformed Hamiltonian (1.4) and its one-particle matrix
version (1.114) we want to put in a diagonal form with the eigenvalues (1.116) on
its diagonal. In order to do that, we define new operators(

ηk

η†−k

)
≡ Uk

(
ck

c†−k

)
=

(
αk βk

−β∗k α∗

)(
ck

c†−k

)
(1.119)

for some unitary matrix Uk that we can put in a general form so that the new
Hamiltonian is

H =
∑
k

(
η†k η−k

)(εk 0

0 −εk

)(
ηk

η†−k

)
(1.120)

This requires that

UkHkU
†
k =

(
εk 0

0 −εk

)
(1.121)

In the one dimensional case we can write the unitary transformation setting αk =

cos θk and βk = i sin θk so that the last equation becomes(
cos θk i sin θk

i sin θk cos θk

)(
A B

−B −A

)(
cos θk −i sin θk

−i sin θk cos θk

)
=

(
εk 0

0 −εk

)
(1.122)

Solving for the angle θk gives us the relation

tan 2θk =
λ1 sin k + λ2 sin 2k

µ− λ1 cos k − λ2 cos 2k
(1.123)
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We can invert this relations to find θk and thus αk and βk. This completely deter-
mines the unitary matrix for the operators transformation.
In this way we introduced the Bogoliubov-de Gennes formalism in which the new
operators, usually called Bogoliubov quasi-particles, are a combination of N annihi-
lation operators of electrons, or creators of their "holes", and N creation operators of
the same electrons. We thus doubled the degrees of freedom and that is the reason
of having a double energy spectrum symmetric to the zero energy level.
In this new basis of quasi-particles the ground state of the system is given by the
condition

ηk|GS〉 = 0 k =
2πl

N
, l = 0, 1, . . . , N − 1 (1.124)

which can be shown to be a coherent state of superconducting Cooper pairs

|GS〉 =
∏
k

(cos θk + i sin θkc
†
kc
†
−k)|0〉 (1.125)

where |0〉 is the fermionic vacuum (i.e. ck|0〉 = 0 for all discretized momenta k).
Let us evaluate the correlation functions (1.94) on the Bogoliubov vacuum. Firstly,
we go into momentum space through a Fourier transformation

C(j, l) = 〈c†jcl〉 = 〈GS|c†jcl|GS〉 =
1

N

∑
k

∑
q

e−ikjeiql〈c†kcq〉 (1.126)

and then we invert equations (1.120) to express c† and c in terms of η† and η

=
1

N

∑
k

∑
q

e−ikjeiql〈(−i sin θkη
†
−k + cos θkηk)(cos θqηq − i sin θqη

†
−q)〉 (1.127)

The only term that does not vanish is the expectation value 〈ηkη†q〉, which leaves us
with

1

N

∑
k

e−ikjeiql〈(−i sin θkη
†
−k + cos θkηk)(cos θqηq − i sin θqη

†
−q)〉 (1.128)

=
1

N

∑
k

e−ik(j−l)(− sin2 θk) (1.129)

=
1

N

∑
k

e−ik(j−l)

[
µ− λ1 cos k − λ2 cos 2k

2ε(k)
− 1

2

]
(1.130)
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The same calculation for the anomalous correlation function F (j, l) gives us

F (j, l) = 〈c†jc
†
l 〉 =

1

N

∑
k

e−ik(j−l)

[
− 1

2

λ1 sin k + λ2 sin 2k

ε(k)

]
(1.131)

For both these correlation functions we are interested in their momentum space
functions so we will assume from now on to work with C(k) and F (k), that is

C(k) =
µ− λ1 cos k − λ2 cos 2k

2ε(k)
− 1

2

F (k) = −1

2

λ1 sin k + λ2 sin 2k

ε(k)

(1.132)

1.5 The Kitaev Interacting Model

Let us consider a Kitaev Hamiltonian with an interacting term. It is a very inter-
esting case of study due to the effects that the interaction has on the edge modes.
Depending on the physical realization of the chain there are two main effects that
can be detected. One effect is the suppression of the bulk gap by the interacting
term, which makes the topological phase less stable. The other one is that the
chemical-potential window over which Majorana modes exist is broaden by a repul-
sive potential [29].
The additional interacting term puts the Kitaev Hamiltonian in the form

H =
∑
i

[
−t
(
cic
†
i+1+ci+1c

†
i

)
−µ
(
c†ici−

1

2

)
+∆

(
cici+1+c†ic

†
i+1

)
+V nini+1

]
(1.133)

where ni = c†ici is the number operator for the fermionic site i, the interaction
is repulsive for positive values of V and we obviously regain the original Kitaev
Hamiltonian for V = 0. The introduction of the interacting term makes Hamiltonian
(1.133) non bilinear in the creation/annihilation operators and that does not allow
for any simple analytical solution. Therefore, numerical approaches to the problem
are in order.
The interacting term does not allow for conservation of the totale fermion number,
i.e. [H,F ] 6= 0, where F =

∑
i ni. However, the parity is still conserved.

Hamiltonian (1.133) is also symmetric under time reversal but not under charge-
conjugation.
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Phase Diagram The phase diagram of the interacting case can be obtained
through numerical methods. We consider the work of R. Thomale et al. [30] who
applied the Density Matrix Renormalization Group (DMRG) technique to calculate
the single-particle density of state. In figure 1.4 the V − µ phase diagram is shown
for ∆ = 0.5. The system can reside in 4 different phases separated by critical lines:
a trivial and a topological superconducting phases (SC), and two Charge Density
Wave phases (Incommensurate and Commensurate) which we will denote simply as
Density Wave phases (DW).
The topological phase is characterized by the two-fold degeneracy of the ground
state, it is the only phase with this property. The DW states have two groundstates
in the same parity sector but their distinction is not relevant for our purposes. From
now on they will both be considered as belonging to a trivial phase.
It is evident that for V = 0 we have the expected results for a non-interacting Kitaev
chain, that is the gap closes at µ = 2 breaking the groundstate degeneracy.

Figure 1.4: Phase diagram of the interacting Kitaev model obtained with the DMRG
for ∆ = 0 and t = 1. Different colors represent topological phases. The yellow part
with positive potential is the topological superconducting phase. This separates the
two trivial sectors which are: the trivial superconducting phase at low potential and
the Charge Density Wave (Incommensurate)
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Machine Learning for Physics

Artificial Intelligence (AI) is a very commonly used word in these days and it ac-
tually describes an extremely large variety of fields of research that ranges from
classical computation algorithms to cutting-edge technology [7].
While AI actually deals with any algorithm that, event faintly, resembles human
cognitive behaviour, there is a subfield, called Machine Learning, which has gained
a lot of attention from almost every scientific community in recent years.
Machine Learning (ML) and Deep Learning (DL) are hybrid fields of study ranging
from statics to data science which aim at making predictions from data, trying to
learn the rules that governs them [5].
Its extreme popularity in the last decades is certainly due to our recently achieved
access to enormous amount of data, simply known as Big Data, which are necessary
in order for ML and DL algorithms to work better then statistical methods [8].
Physics has always worked with exponentially increasing quantities of data, some-
times labelled as Extreme Data. It is, therefore, an extremely fertile field for these
type of algorithms to be developed.
In addition to that, many of the basic concepts and techniques of ML - such as
Monte-Carlo methods, simulated annealing, variational methods - have their origin
in physics. Moreover, many deep learning algorithms are "energy-based" and they
borrow many aspects from statistical physics [8].
Although these new techniques have had incredible results bringing us self-driving
cars and almost-human image recognition, their success has not been followed by a
complete scientific study which could validate it.
In this chapter we try to present the basic concepts of ML and DL that can be more
interesting from a physicist’s point of view. These ideas will be exploited in the
last chapter to work on physical models trying to give a more scientific perspective
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on the method used. We will mainly follow the review [8] which is addressed to
physicists.

2.1 Key Concepts of Machine Learning

Machine Learning describes a vast field of algorithms and statistical methods that
aim at making predictions learning from data.
Even though Machine and Deep Learning are two separated worlds they share many
features and most of the results and techniques of ML also apply to DL. They are
therefore very commonly confused, or intentionally put under the common name of
Machine Learning for simplicity. The way any ML algorithm works is inherently
different from any common computer algorithms. By that we mean that unlike
"classical" computation problems which aim at providing results by having a dataset
and a set of rules, ML tries to learn the rules knowing the data and their results [5].
While Machine Learning certainly stems from statistics, they clearly are two different
brands of data science.
ML is the subfield of Artificial Intelligence which deals with predicting from data
while statistics is more concerned with estimation of parameters from data. ML is
also used when dealing with larger amount of data, compared to statistics.
The two fields still share a common framework. That is, working on an arbitrary
quantity x we are interested in. This quantity depends on some parameters θ of a
model p(x|θ) which describes the probability of observing x given θ. While statistics
is more concerned in estimation of the parameters θ which best fits the data, ML
works on maximing the probability of predicting new data p(x|θ).
Deep Learning is a subset of Machine Learning. We can state that one of the main
differences between the two methods is in the knowledge of your data. ML tipically
works with structured data, meaning tables of numerical values identified by labels
- such as a list of information of clients of a specific service or the characteristics
of houses locations and prices in a city. These data is very often preprocessed and
cleaned in a way to make predictions easier. DL, instead, works with unstructured
data that sometimes do not even go through preprocessing.
This distinction is not actually very strong. In general, the two methods share most
of the common features. So, unless otherwise specified we - as much as the whole
computer science community - will refer to Machine Learning as for both ML and
DL.
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2.1.1 Features of a Machine Learning algorithm

The first important thing to know before diving into the subject is that Machine
Learning is traditionally split into three main subclasses according on how it works
with the data. They are

• Supervised Learning. This class of algorithms works on known data, that
is, the data is labelled either by a computer or a person.
The scope of this methods is to understand the function that associate to
the data their label. Classification problems are the perfect examples for this
method. In physics a typical supervised problem would be to assign the correct
phase to a system. Thus, the model can (has to) understand where the phase
transition occurs.

• Unsupervised Learning. For this class of methods no a priori knowledge
of the data is required. They are indeed suggested for use on unlabelled data
which we do not know many information of. Algorithms of this class are
commonly for clustering or dimensional reduction. The latter is particularly
important in physics where problems often scale exponentially with the system
size (the so called curse of dimensionality) [5].

• Reinforcement Learning. By this we mean all the algorithms that need
to learn a specific set of rules. This models communicate with an external
environment which gives them feedback on their behaviour. Starting from
random sets of "moves", the algorithm updates its parameters so to learn the
rules of the context. These types of algorithms are used for self-driving cars
and robot science. In physics, the generative models exploit these techniques
to compress the information of a wavefunction and describe the time evolution
of a quantum many body state.

On top of these three methods we can have hybrid combinations such as semi-
supervised learning and many others. Moreover, the line between the different learn-
ings is usually pretty thin and no scientifically defined. So, the name we use is not
as important as the previous knowledge we have of the data or the result of the
algorithm.
The common three ingredients of almost every ML algorithm are

• The dataset. A set of independent and identically distributed data (so called
i.i.d hypothesis [5]) and their labels. By i.i.d we assume the data to be gener-
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ated by the same (often unknown) distribution. When dealing with a super-
vised learning problem we usuallly represent it by D = (X,y) where X is a
set of data of any type and y are the labels associated to it. For unsupervised
learning, for example, there is no known label to assign to the data.

• The model. We can synthesize a ML algorithm as a function f(X; θ) from
X to y depending on some parameters θ which will be learned by the model
to best fit the data.

• The cost function. A function C(y, f(X;θ)) used to judge the precision
of the algorithm depending on its task. An example is the Mean Squared
Error (MSE) which is a simple average of the squared errors, that is CMSE =
1
N

∑N
i=1(yi − f(Xi;θ))2, where i runs over the test set elements.

The first measure is to split randomly the dataset into training data Dtrain and test
data Dtest. The partition is usually 90%−10%. Fitting the model consists in finding
the parameters θ̂ which minimize the cost function only using the training set. The
best set of parameters is then defined as θ̂ = arg minθ C(ytrain, f(Xtrain;θ)), where
arg minθ acts on a function (the loss function in our case) and returns the values θ
which minimizes it.
After the training, the model is then evaluated on the test set: C(ytest, f(Xtest; θ̂)).
This means that the same cost function that was minimized in the training process is
evaluated on the test data (using the best parameters θ̂ found during training) as a
measure of how efficient the algorithm is at predicting new values. The latter is called
the generalization or test error (or even cost or loss) Eout = C(ytest, f(Xtest;θ)),
while the error on the training set is simply the value of the cost function Ein =

C(ytrain, f(Xtrain;θ)). We can always expect Eout ≥ Ein because the model cannot
fit new unseen data better then the ones it used for training. The test error Eout is
the most common estimator for the performance of an algorithm. It is thus used to
compare different ML methods.

2.1.2 Statistical Learning Theory methods

In the last section we saw how Ein and Eout give a numerical idea of the difference
between fitting and predicting. We now want to give more insight into their rela-
tionship and how they are related to quantity such as the amount of data needed
and the best model complexity.
The following concepts are borrowed from the field of Statistical Learning Theory
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and Bayesian Inference. They are essential tools in giving a more precise meaning
to the performance of ML algorithms, what it means to generalize to new data and
what are the requirements in order to have the best prediction possible [5].
Let us start by considering a dataset D = (X,y) and a function f such that
f(X) = y. The task of ML is to find a function h such that h ≈ f , if we do
we can say we learned the model. By learned we mean that we expect the function
h to work on test data approximately as well as it did on the training data [8].
If we suppose that our target function f cannot be learned exactly (which is often

Figure 2.1: The picture shows the behaviour of the training and generalization error
for a very large data set. It also shows the key elements to take into consideration
for maximizing the efficiency of a model, that is the variance and the bias. Image
taken from [8].

the case in particular in Deep algorithms) we can expect the training error Ein to
become lower when increasing the data points. Then, since the function f cannot
be learned, the Ein will start to increase with the amount of data. The test error
instead will only decrease. Therefore, they will converge to the same error as the
number of data points tends to infinity. A schematic of the process is presented in
Figure 2.1.
We call the error in the infinite limit the bias. Which is the best our model can
perform. The difference on how it performs on new data compared to the training
set is the variance of the model. The variance is due to finite size effects of the
dataset. That is, the noise which cannot be cancelled out with a limited amount of
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Figure 2.2: The plot on the left side (a) shows how the test error, variance and
bias change with model complexity. We can plot them together since they are all
errors. Bias and variance grow inversely to each other, that is why there is need
to find a balance. The figure on the right (b) exposes graphically the bias-variance
tradeoff problem. A high-variance, low-bias model certainly recreates the output
of the data model but with a high cost in precision, while the opposite might not
exactly represent data but have good generalization error. Pictures taken from [8]

data.
The last quantity of interest in Figure 2.1 is the difference between test error and
training error to be read as the mathematical difference between predicting and fit-
ting data.
When the gap between Eout and Ein becomes very large we are dealing with the
problem called overfitting. That means that our model learnt the features of the
training set so well (low Ein) that it finds hard to recognize similar features on new
data, even though the test set comes from the same distribution as the training set
by hypothesis.
A similar issue, called underfitting, is simply the sign that the model is not learning
well and it is thus given by large Ein. It is signaled by the non convergence of the
loss function, meaning that Ein is too high.
Another statistical concept that is very important to us is deciding the complexity
of a model in order to have the best performance. Complexity is sometimes defined
qualitatively. In general, though, we can consider the number of parameters of an
algorithm as its complexity.
Although improving the complexity of a model certainly diminishes its bias on a
fixed dataset, it does not necessarily improve its performance. That is because on a
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finite sized dataset an overly complex model would just enhance the variance.
Finding the best model is thus a balancing of increasing or reducing bias or variance.
It is usually referenced as the bias-variance tradeoff and it is at the heart of why
ML is difficult [8].
Figures 2.2a and 2.2b show qualitatively how to reach the optimal performance of
an algorithm by complexity and what we mean by bias-variance tradeoff.

Bayesian Inference Bayesian Statistic is a field of studies that is born in the
context of statistical learning but is set on very different premises. Statistics, in
its frequentist approach, deals with making predictions based on an estimation of a
parameter. Bayesian Inference, instead, takes into consideration all possible values
of such (many) parameter(s) when making a prediction.
The Bayesian statistics uses probability to reflect degrees of certainty in states of
knowledge [5]. This reasoning takes inspiration in statistical mechanics in which
we interpret probability as descriptive of the behavior of large systems of which, in
principle, the dynamics is not determined.
A Bayesian problem revolves around three distributions: the prior distribution p(θ)

that collects any knowledge of the parameters that describe the data before we mea-
sure it, the posterior distribution p(θ|X) which contains the information we can infer
on the parameter after measuring the data and a likelihood function p(X|θ) which
is supposed to describe the data from the parameters θ. The three distributions are
related by the famous Bayes rule:

p(θ|X) =
p(X|θ)p(θ)∫

dθ′p(X|θ′)p(θ′))
(2.1)

The denominator is the distribution of the data, an often intractable function which
needs to be simulated by Markov Chain Monte Carlo methods. The bayesian infer-
ence is strongly connected to Machine Learning because its nature is to integrate
data with domain knowledge of the model environment [31].
A common feature of statistical and Bayes inference is the Maximum Likelihood
Estimation (MLE). In this view, one selects the parameters that maximize the log
probability of observing the data once the parameters are known, that is:

θ̂ = arg max
θ

log p(X|θ). (2.2)

51



2. Machine Learning for Physics

This equation is at the heart of Machine Learning. In fact, we will see soon that
the cost function is interpreted as the negative log probability of observing the data.
Minimizing that quantity is the same as the maximation of equation (2.2).
While this approach is common in the field of statistics, the knowledge of the prior
distribution is a unique bayesian feature. The priors are usually defined as either
informative or uninformative according to the degree of information they provide
on the parameters θ.
In ML we usually deal with informative priors and we can give a quantitative mea-
sure to this knowledge. That is done by substituting p(θ) (our knowledge of the
parameters) in equation (2.1) with the prior p(θ|λ) which is a distribution of the pa-
rameters that we can set based on what we expect. For example if we expect many
parameters to be around zero - which is sensible for models with tens of thousands
of parameters like ours - we will have a Gaussian prior p(θ|λ) =

∏
j

√
λ
2π
e−λθ

2
j . If

we expect most of them to be zero a typical prior is the Poisson distribution, i.e.
p(θ|λ) =

∏
j
λ
2
e−λ|θj |. We will see soon the meaning of the parameter λ in an exam-

ple.
Up to now we gave a meaning to the calculation of the probability p(θ|X), that in
ML we see as the estimation of the best parameters to fit our model. Yet, we need
to actually calculate the set of parameters θ from our estimation. This is commonly
done [30] by calculating the maximum-a-posteriori estimate

θ̂MAP = arg max
θ

p(θ|X). (2.3)

because it is more simple then actually evaluating the Bayes equation (2.1).
We can apply MLE and MAP to a linear regression problem to show their meaning.
Let us consider a set of points generated by some function y = xTw+ ε, where ε is
gaussian noise with mean 0 and variance σ2, w parameters which need to be learned
and all together they are the parameters θ of the model. To implement a bayesian
reasoning we write

p(y|x, θ) = N (y|µ(x), σ(x)) (2.4)

where µ(x) = xTw, σ(x) = σ2 and N stands for Normal Distribution. Now,
applying MLE we calculate

θ̂ = arg max
θ

log p(D|θ) = arg max
θ
l(θ) (2.5)
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where, assuming the i.i.d hypothesis are true

l(θ) =
n∑
i=1

log p(yi|x(i),θ) = − 1

2σ2

n∑
i=1

(
yi −wTx(i)

)2 − n

2
log
(
2πσ2

)
(2.6)

As a result, minimizing the log likelihood of the data distribution is the same as
performing least squares estimation (except for a constant value which we will dis-
card).
We already mentioned that instead of maximizing the likelihood we just calculated
it is easier to calculate the MAP estimator. Recalling Bayes equation

p(θ|D) ∝ p(D|θ)p(θ) (2.7)

the MAP calculation becomes

θ̂MAP ≡ arg max
θ

log p(θ|D) = arg max
θ

log p(D|θ) + log p(θ). (2.8)

Considering a Gaussian prior with variance τ 2 we get

θ̂MAP ≡ arg max
θ

[
− 1

2σ2

n∑
i=1

(
yi −wTx(i)

)2 − 1

2τ 2

n∑
j=1

w2
j

]
. (2.9)

This calculation defines the best cost function one can devise for a regression prob-
lem. It consists in maximizing the negative sum of the square losses (individual
differences between the prediction of the model yi on a single data point x(i)) and
the negative sum of the squared weights so that both quantities tend to zero.
The second term is a regularization term called L2 regularization, because it controls
the square module of the weights in order to minimize them. Had we used a Poisson
prior, we would have gotten the L1 regularization, i.e. λ

∑
i |wi|. In both cases a

new parameter is added to the model and needs to be set. They are the first two
example of hyperparameters of a ML algorithm. We will see in the next section of
to find their best values, though they will not be relevant in our final results.

2.1.3 Gradient Descent Algorithms

We already mentioned that every ML problem is based on minimizing a cost function
by adjusting its parameters according to data.
The minimization of the cost function is based on changing the parameters in the
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direction where the gradient of the cost function is larger and negative.
The objective is obviously to reach a minimum for the cost function often called error
function since it is a global function which needs to be minimized. Unfortunately,
this target might be very complicated to achieve because in ML and DL we work
with high-dimensional intricate and usually unknown functions that present many
local minima.
Let us consider an energy function E(θ), with θ its parameters, written as a sum
of terms over n elements of a dataset

E(θ) =
n∑
i=1

ei(xi,θ), (2.10)

where ei could be a squared difference or log probability etc. Mathematically speak-
ing the iterative process for GD at time t is

vt = ηt∇θE(θt), (2.11)

θt+1 = θt − vt (2.12)

where v is the directional derivative weighted by the learning rate ηt, an hyper-
parameter which determines how much the parameters should change along the
gradient direction.
If the learning rate is sufficiently small, the optimization procedure should take the
error function to its local minimum [8] but that comes with a high computational
cost because more steps would be needed for convergence. On the other hand, a
too large η might produce the opposite effect making the energy function skip the
minimum altogether. One can show that in the case of a quadratic energy function,
the optimal learning rate to reach the minimum is given by the second derivative
of the cost function [32]. This is indeed in agreement with the traditional Newton’s
method for finding the minimum of a function.
The generalization of this approach to multi-dimensional functions involves calculat-
ing the Hessian matrix. This is computationally too expensive for algorithms that
work with large datasets such as ours, it is therefore important to find first order
approximation to the GD problem.
Although finding the right learning rate is one of the main problems when deal-
ing with a ML algorithm, there are many other issues related to GD that we can
summarize in this way:
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• Local Minima. Since GD is deterministic it might always converge to the
same local minima and never be able to increase its performance. This prob-
lem, in physics, is avoided by simulated annealing with the introduction of
stochasticity which is what we need for GD.

• Computational Cost. Since most energy functions depend on values summed
over all the data points it is necessary to find a different way to calculate the
gradient.

• Sensitivity. The GD can vary significantly according to the choice of learning
rate and initial conditions.

The solution to this problems is called Stochastic Gradient Descent (SGD). Under
this name rely most of the ML algorithms used at present. Stochasticity is intro-
duced calculating the gradient of the cost function over a small portion of the dataset,
a mini-batch. Mini-batches are usually much smaller then the original dataset. Let
us divide the n points of the dataset in M mini-batches so that now the gradient of
the energy function (2.10) becomes

EBM(θ) =
∑
i∈Bk

∇θei(xi,θ), (2.13)

where Bk is the k − th minibatch and k = 1, 2, . . . , n/M . With this approach we
still follow the steps (2.11) but using EBM instead. The benefits of this algorithm
are multiple: it introduces a non deterministic dynamic so that the algorithm does
not get stuck in local minima, it speeds up calculations and it is also thought to
act a natural regularizer against overfitting in deep structured networks [33]. In
practice SGD averages over the data points of a minibatch. It is important that
the training data is shuffled before applying this procedure. In this way, at each
iteration, the upgrade of the model’s parameters is calculated taking into account
data with different labels and thus the step is more likely directed in the direction
of a global minima. If we did not shuffle the data there might be a mini batch made
up only of similar data (with same label) and the next step would be biased because
it would not average the other types of data (with a different label). So, we repeat
that in order for this approach to work it is necessary that the dataset is randomized
so that each minibatch contains as many different points as possible.
With gradient descent we can explain how the training of most ML algorithms
work. Once the model is decided and the dataset split into training and testing, the
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parameters are initialized randomly. Then for every batch of the training set the
upgrades are calculated and the parameters updated. Clearly the dimension of the
batch size determines how often this happens. Once the SGD has swept the whole
training data we say that one epoch of training is completed. It is customary to let
the SGD train for many epochs.
(Mini)Batch size and number of epochs are two hyperparameters, together with the
L1, L2 regularizers we saw in the last section and the learning rate η. In order
to determine the best values for the hyperparameters it is customary to split the
training data once again in a training and validation part. The training data is still
used for gradient descent, the validation data is instead used as a intermediate test
set, to evaluate the efficiency of the algorithm on new unseen data after every epoch.
In this way we have to check if both the cost function calculated on the training and
the validation set goes to zero with increasing number of epochs. When neither of
them approaches zero we fall into underfitting. When training loss goes to zero but
the validation does not we encounter overfitting. That is, the algorithm learns the
training data so well that it cannot generalize to new one. We will see in Chapter 3
that controlling the number of epochs and the batch size is particularly important.

Adding momentum Another important feature we can add to SGD is momen-
tum. Quantitatively it consists in adding a memory term γ, 0 ≤ γ ≤ 1 that keeps
track of the behavior of the algorithm, namely

vt = γvt−1 + ηt∇θE(θt), (2.14)

θt+1 = θt − vt. (2.15)

An equivalent discretized version of this is

∆θt+1 = γ∆θt − ηt∇θE(θt), (2.16)

where ∆θ = θt − θt−1. This formula is useful to make a comparison with a simple
physical model of a particle with mass m moving in a viscous medium with damping
coefficient µ and potential E(w), with w the particle’s position [34].
The equation of motion of the particle is

m
d2w

dt2
+ µ

dw

dt
= −∇wE(w), (2.17)
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and it can be cast into a discretized form 1 as

m
wt+∆t − 2wt +wt−∆t

(∆t)2
+ µ

wt+∆t −wt

∆t
= −∇wE(w). (2.18)

Inverting the equation we can rewrite it like

∆wt+∆t = − (∆t)2

m+ µ∆t
∇wE(w) +

m

m+ µ∆t
∆wt. (2.19)

If we consider the position w as the parameters θ we can compare it to (2.16) so to
identify

γ =
m

m+ µ∆t
, η =

(∆t)2

m+ µ∆t
. (2.20)

In this picture the momentum γ has the same behavior of a mass, i.e. providing
inertia, and both γ and the learning rate η depend on the viscous parameter.
The meaning of this is that adding momentum allows the SGD algorithm to move
faster in momentum space along directions with persistent yet small gradients. This
is useful in the initial phase of training an algorithm where the landscape of the
model function can be very flat. In fact momentum increases the speed along flat
parts and damps down oscillations on steeper paths with higher curvature.
Most of modern SDG algorithms exploit all the features we just introduced and
often also rely on momentum that multiply the square of the gradient of the cost
function. A recently introduced and extremely popular one is the ADAM algorithm
for SGD [35]. This algorithm, which we employed for our results in Chapter 3,
keeps a running average of the gradient. So that the gradient has larger updates in
the directions were the cost function changes more. We refer the reader to a more
detailed explanation in [35].

2.1.4 Regression for Classification Problems

Some of the most popular and successful algorithms in Learning Theory resolve
classification problems. This is particularly true in Deep Learning data science en-
vironments, for example in image recognition, but also in physical context. A typical
problem in this category is classification of phases of matter. It can be used in simple

1we can define a central difference as δh[f ](x) = f(x+ 1
2h)−f(x−

1
2h) so that the central second

derivative is simply f ′′(x) ≈ δ2h[f ](x)
h2 =

( f(x+h)−f(x)
h − f(x)−f(x+h)

h

)
/h = f(x+h)−2f(x)+f(x−h)

h2
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cases such as the Ising 2D classical model [12] (as we will see in section 2.3) or more
complicated topological phases classifications which need the use of Deep architec-
tures [14]. Classification algorithms are especially important to us since the aim of
this thesis is classifying topological phases of matter. That is why it is important
to spend some words on how and why a ML or DL classifier works.
The most simple classifier is called perceptron. It is the the parent of the present
neuron, the core structure of every deep learning algorithm which we will see in the
next section.
An implementation of a perceptron for binary classification performs a linear trans-
formation of the input data xi

si = xTi w + b0 (2.21)

and passes it through a sign function in order to get a 0 or a 1 in output.
In most cases, though, we are interested in an output that states the probability
that a certain data point belongs to a class. In order to obtain a probability rather
than a "hard" classification we pass the linear combination through an activation
function which is a nonlinear function whose outputs can be seen as probabilities.
Although there are several activation functions available, which we will present in
the next section, we now focus on two cases: the logistic function or sigmoid and
the SoftMax function.

Logistic Function for Binary Classification The sigmoid function is an acti-
vation of the input s such that

σ(s) =
1

1 + e−s
. (2.22)

By using the function (2.22) an algorithm can output the probability for a datapoint
xi to belong to one of two classes yi = 0, 1 as

P (yi = 1|xi,θ) =
1

1 + e−x
T
i θ
,

P (yi = 0|xi,θ) = 1− P (yi = 1|xi,θ),

(2.23)

where θ = w is the set of parameters that need to be learned, we will assume to
work only on weights and no bias term for simplicity.
Notice that these probabilities are the same for a two-state system of being in either
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one of the two states if their energy difference were ∆ε = xTi θ [8].
To determine the cost function of a classifier that uses the sigmoid activation we use
the Maximum Likelihood Estimation (MLE) as seen in section 2.1.2. The probability
of observing a set of N data D is

P (D|w) =
N∏
i=1

[σ(xiw)]yi [1− σ(xiw)]1−yi . (2.24)

Where from now on we assume that the product xw is element-wise. Then its
log-likelihood is

l(w) =
N∑
i=1

yi log σ(xTi w) + (1− yi) log[1− σ(xTi w)] (2.25)

and the maximum likelihood estimator (2.2) is the set of parameters that maximizes
(2.25), that is:

ŵ = arg max
θ

N∑
i=1

yi log σ(xTi w) + (1− yi) log[1− σ(xTi w)] (2.26)

while the cost, or error, function its simply the negative log-likelihood, that is

C(w) = −l(w) =
N∑
i=1

−yi log σ(xTi w)− (1− yi) log[1− σ(xTi w)] (2.27)

the r.h.s. of equation (2.27) is known as the cross-entropy.
To minimize this function we take its gradient with respect to the weights w. Let

59



2. Machine Learning for Physics

us call z = xTi w and using the relation ∂wσ(z) = σ(z)[1− σ(z)]xi we obtain

∇wC =
N∑
i=1

−yi∇w log σ(z)− (1− yi)∇w log[1− σ(z)]

=
N∑
i=1

−yi
1

σ(z)
σ(z)[1− σ(z)]xi − (1− yi)

1

1− σ(z)
[−σ(z)(1− σ(z))]xi

=
N∑
i=1

−yi[1− σ(z)]xi − yiσ(z)xi + σ(z)xi

=
N∑
i=1

[σ(z)− yi]xi.

(2.28)
This relation cannot be written in a closed form [8] so it needs numerical methods for
the gradient descent such as the ones we presented in the last section. An example
of binary classification using a sigmoid will be presented in section 2.3.

SoftMax function for multi-class classification. In the case, such as this
thesis, where there is need to divide a dataset into multiple classes we can generalize
logistic regression. Let us call yi the label of a datapoint xi which can assume M
values, yi ∈ 0, 1, . . . ,M − 1, we define a vector with all zeroes except for the value
category m of yi, namely

yim =

{
1, if yi = m

0, otherwise
(2.29)

Thus, the probability for xi to belong to the class m′ is

P (yim′|xi, {wk}M−1
k=0 ) =

ex
T
i wm′∑M−1

m=0 e
xTi wm

(2.30)

which is known as the SoftMax activation function. This function accepts in input
a vector of values and simply makes the largest value much larger then the rest of
the input points, which contribution is damped exponentially.
The likelihood of this classifier is

P (D|wk
M−1
k=0 ) =

N∏
i=1

M−1∏
m=0

[P (yim = 1|xi,wm)]yim [1− P (yim = 1|xi,wm)]1−yim , (2.31)
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so its negative logarithm is the cost function to minimize, that is:

C(w) = −
N∑
i=1

M−1∑
m=0

yim logP (yim = 1|xi,wm) + (1− yim)P (yim = 1|xi,wm) (2.32)

which is identical to (2.27) for M = 1 but whose gradient is more complicated.

2.2 Deep Learning

The popularity of Machine Learning is given by its simplicity and its success on a
vast variety of tasks. Yet, there is a set of problems such as speech recognition or
image classification, in which ML finds many difficulties. It is the search of more
powerful algorithms that led the AI world to the development and study of Deep
Learning [5].
The underlying architecture of any DL algorithm is the so called (Deep) Neural
Newtork (DNN). These type of structures have roots in the last century but became
popular only in the last decade thanks to a series of impressive results on tasks
where ML would greatly fail [8].
The fast development of the implementation of DNN was not though followed by a
complementary study of the theory behind them. That is why it is often unclear
how a DL algorithm can perform a task or what is exactly "learns". This problem
is often referred to as the computational black box that is every neural network.
Deep Learning is massively used nowadays in many fields of study, including math-
ematics and physics. The effort of these communities is not only directed to solving
new problems through the help of DL but also to try to understand why it works.

2.2.1 Deep Neural Networks (DNN)

A Neural Network is a deep learning structure that acts on an input with a series of
non-linear transformations. It is meant to be trained in a supervised environment
and mostly used for classification problems. The building block of these type of
algorithms is the neuron. As we already mentioned, the first example of a neuron
was proposed by Rosenblatt [36] under the name of perceptron. His idea was to
reproduce the action of a human neuron which takes acts on a linear combination
of some input data and outputs a value after acting with a non-linear function on
it. A graphical representation is shown in Fig 2.3.
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Figure 2.3: Representation of a single neuron (A) and the structure of a Neural
Network (B). The neuron has a set of weights and a bias value that transform the
input and pass it through some non-linear function, see below, to produce an output.
The structure of a Deep Neural Network is made out of stacked neurons, forming a
layer, and several layers following each other accepting the output of the previous
layer as their own input. Picture taken from [8]

.

If we stack more neurons working on the same data but taking in a different linear
combination of them we produce a layer. Stacking more layers one after the other
produces the "deep" architecture of a Deep Neural Network which is shown in a
simplified version in Figure 2.3. These layers are called hidden layers and they all
transform the input in a non-linear fashion until the last layer which produces the
output and it is known as the output layer. Each layer is connected through the
previous layer by a weight matrix and a bias vector which take the output of a layer
and transform it into the input of the following layer. For this reason a DNN can
be seen as a complicated nonlinear transformation of the input into an output that
depends on the parameters of every layer [8]. It is also the reason why this net-
work are called Fully Connected. The introduction of non-linearity in the network
is extremely important because it makes it highly non-trivial, non-deterministic and
more thus powerful in the task of generalization which is the purpose of every good
DL algorithm. If we consider the network as a mapping φ of the input into the
output, we can think og φ as providing a set of features to describe the input [5].
This gives a first intuition about the differences between ML and DL. The first one
works on inputs to directly produce an output while the latter learns characteristics
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Figure 2.4: Different activation functions. The first row shows activations that are
becoming obsolete and substituted with the second row. The Perceptron is a step
function, often known as a "hard" classifier. The Sigmoid gives less importance to
negative values, producing a zero. Tanh gives equal but opposite value to positive
and negative inputs. These last three clearly saturate pretty quickly giving the same
importance to very large or very small values. The second row shows more recent
activations, widely used for their simplicity in the optimazation of the DNN’s, see
Chapter 3. Picture taken from [8]

.

of the input and works on them to produce the output. This subtle but important
difference is the key to the generalization power of DL algorithms.
As already mentioned, nonlinearity is introduced through activations functions. Tra-
ditional ones are the sigmoid or logistic function or the tanh function. The first one
produce an output between 0 and 1 while the latter between -1 and 1. In recent years
the AI community started using more simple non-linear structures such a ReLU ac-
tivation function which gives out 0 for every negative input. A comparison is shown
in Fig 2.4.
The power of neural networks is encoded in the universal approximation theorem
which states that a neural network can approximate any function with the cost of
an at most exponential growth in the number of neurons [5]. Having said that, the
complexity of a neural network does not always come with a greater performance
for all the reasons mentioned in section 2.1.2. Although we can aspect a model to
reduce its bias increasing its complexity it is commonly found that selecting the
right dimension of NN is based on intuition and is often problem-specific [8].
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Training a DNN The procedure to train a neural network follows the same basic
step of every Machine Learning algorithm: define a cost/loss function, minimize it
through gradient descent (or possibly, any other technique), update the parameters
(weights) of the algorithm in order for the cost function to decrease. Most common
cost functions for training DNN are the Mean Squared Error

E(w) =
1

N

N∑
i=1

(yi − ŷi(w))2, (2.33)

or the binary/categorical cross entropy discussed in the last section.
In the training process, it is required to calculate the derivative of the cost function
w.r.t. every parameter of a model at each training step. This is not a feasable
task for neural networks because common DNN can have tens of thousands up to
millions of parameters. This issue firstly held back the study of this algorithms but
was resolved with the introduction of backpropagation [37].
Backpropagation, or backprop, is nothing but a simple application of the chain rule
of calculus. It is important, though, to have a mathematical insight of what happens
when a DNN is trained and what or why it actually learns something.
We will use a standard notation for the neural network architectures. Let us assume
there are L layers in our network and define the weights wljk and the biases blj as
the weights and biases connecting the k-th neuron of the l − 1-th layer to the j-th
neuron of the l-th layer. We call the activations al as the output after the nonlinear
function σ of the layer l. Thus, they are related to the previous layer by

alj = σ
(∑

k

wljka
l−1
k + blj

)
= σ(zlj) (2.34)

where we defined the affine transformation

zlj =
∑
k

wljka
l−1
k + blj (2.35)

The cost function is a function of the last layer activation such as C =
∑NL−1

j=0 cost(aL, ŷ).
Let us define the error associated to the j-th neuron of layer l as the partial derivative
of the cost function w.r.t. the weighted input zlj as

∆l
j =

∂C
∂zlj

=
∂C
∂alj

σ′(zlj) (2.36)
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We notice that this is also the partial derivative of the cost function w.r.t. the bias
blj since ∂blj/∂zlj = 1. Using the chain rule we can write

∆l
j =

∂C
∂zlj

=
∑
k

∂C
∂zl+1

j

∂zl+1
j

∂zlj
=
∑
k

∆l+1
k

∂zl+1
j

∂zlj
=

( l+1∑
k

wl+1
kj

)
σ′(zlj) (2.37)

Finally, the partial derivative of the cost function with respect to the network weights
is

∂C
∂wljk

=
∂C
∂zlj

∂zlj
∂wljk

(2.38)

Equations (2.36), (2.37) and (2.38) can be used to calculate any partial derivatives
with respect to the parameters of the network, and thus the gradient of the cost
function.
A sketch of the workflow of the algorithm is The Backpropagation Algorithm

1. Activation at input layer. Calculate the activations a1
j of the first layer,

2. FeedForward. Produce the activations of all the layers until the output layer,
this is also called the "forward pass"

3. Error at top layer Calculate the error of the top layer using equation (2.36),

4. Backpropagate the error. Use equation (2.38) to propagate the error back-
wards and calculate ∆l

j for all layers

5. Calculate gradient. Use equations (2.36) and (2.38) to calculate the partial
derivatives of the cost function w.r.t. the weights and the biases of all the
layers

We can see how the algorithm is called backpropagation, it relies on calculating all
the activations of a network and then going backwards to calculate all the contribu-
tions to the partial derivatives of the total gradient. The fact that the information
is passed forward gives these types of networks the name FeedForward Neural Net-
works.

2.2.2 Convolutional Neural Newtorks (CNN)

A common feature in all the fields of study of physics is the exploitation of sym-
metries and invariances of the system. Very often even the dataset that we feed
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to neural networks have local features or global characteristics which are invariant
to translations, rotations or other type of transformations of data. While DNN do
not generally take into consideration these characteristics of the structure of the
data there is a series of algorithm which do, they are called Convolutional Neural
Networks (CNN).
Invented by LeCun et al. [38] CNN are neural networks which respect the locality
of the input data and are translationally invariant [8].
The general structure of a convolutional algorithm stems from the architecture of a
neural network. So it is divided in layers connected through weights. The difference
is in that it is made up of two main operations: discrete convolution and pooling.
These operation reduce the dimension of the input and are repeated through the
network. The final output is usually fed to a DNN in order to make a classification,
for example. Figure 2.5 gives a visual idea of the steps followed by a CNN.
The core idea of CNN’s is to use a Local Receptive Field (LRF). That means pro-

Convolution Coarse-graining
(pooling)

Convolution Coarse-graining
(pooling)

Fully 
Connected
Layer

W

H

D

Figure 2.5: Architecture of a Convolutional Neural Network. The input on the left is
a three dimensional tensor consisting of three images in RGB colors and thus three
channels (see main text). The algorithm proceeds repeating twice a two dimensional
convolution and a pooling. The first convolution has D filters applied to all the three
RGB channels producingD channels of reduced heightH and widthW . The pooling
clearly reduces intensively the layer dimension. The result is fed to a fully connected
neural network. The picture is taken from [8].

cessing the data in patches which preserve the structure of the input. This is done
by applying a filter, or kernel, which is a matrix (or tensor in more dimension) of
weights that slides across the input. A kernel performs the same affine transforma-
tion that a DNN would do but it does it considering only a small portion of the input
at a time and using the same weights across the whole input. That is commonly
referred to as the shared weights advantage of CNN. In this way we can expect a
kernel to learn a specific feature of the data and concentrate to recognize only it.
This first operation is a discrete convolution. Although CNNs can be applied to all
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Figure 2.6: Discrete convolution of a 3× 3 kernel across a 5× 5 input image. Each
of the nine weights of the filter multiplies a different input value (in blue) and then
they are all summed up to form the receptive field (in green). In this context no
bias was added to the convolution, Image taken from [39].

kinds of dimensions we will stick to 2D inputs. Let us revise the main parameters
of this algorithm:

• Patch-size. The dimension of the kernel decides the new dimension of the
receptive field. We denote it as Lpatch.

• Padding. This technique overcomes the problem of the side values that are
considered a smaller number of times in the convolution operation. It consists
in adding Nz zeroes to the corner of the image.

• Stride. It is the "walk" that we allow the filters to use. In the case of Figure
2.6 the stride is one both along the x and y dimensions. In two dimensions is
indicated by (s, s).

• Channels. The input of a CNN is a N-dimensional tensor, the first N-1
dimensions represent the data type (a vector, a 2D image, a 3D image etc.),
the last dimension is the number of channels, NC . That is due to the fact that
in data science we often work with images with RGB colors and there needs
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to be a matrix of pixel for each one of them. So the input to a CNN that
classifies, for example, 28x28 images can be a tensor of dimension (28, 28, 3).
The kernels thus obtain a new dimension themselves: (Lpatch, Lpatch, NC) so
they add the contributions of all the channels together.

• Number of filters. Lastly, one always want to consider applying more then
one filter, in order to learn more local features of the data. Thus the same
convolution of a kernel will be repeated by Nf other kernels, each one with
their shared weights.

Figure 2.6 can help understand how this works. The picture shows the single steps
of convolution made with the kernel: One can verify by direct calculation that for

0 1 2

2 2 0

0 1 2

each 3× 3 sub-set of the input 5× 5 matrix, there is a element wise moltiplication
with the values of the filter. In the particular example of Figure 2.6 there is no
padding, the stride is (1, 1), there is only one channel (one input matrix) and only
one filter (the single kernel) which obviously has patch size (3, 3).
All in all, if a squared 2D input a(0) has dimensions L× L, we can expect the first
layer of the CNN, the receptive field, to have a(1) = L1 × L1 neurons with

L1 =
L− Lpatch + 2Nz

s
+ 1 (2.39)

Actually, there is going to be one receptive field a(1) for every filter used. The general
rule to calculate the activation of a layer (l), from layer (l − 1) when applying a
convolution of Nf filters with size Lpatch × Lpatch ×Nc is then

a
(l)
x,y,k = gl

( Lpatch∑
m=1

Lpatch∑
n=1

NC∑
c=1

a
(l−1)
x+m−1,y+n−1,cW

(l)
mnck + b

(l)
k

)
(2.40)

where x, y are the coordinates of the datapoints,< along which the weights W act, c
is summed over all the Nc channels of the previous layer and k runs over the number
of filters we wish to have for the next layer. Thus at each layer the information of
all the channels of the previous layer is summed up by every filter, each one of those
will produce a new channel itself.
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The shared weights nature of this algorithm drastically reduces the number of the
network parameters. A second operation is often added to convolution and it is a
"coarse-graining" procedure which is necessary when dealing with very large image
inputs (that is why it will not interest us). This operation is called pooling and it
consists in reducing the dimension of the receptive field by sliding through it and
assign a single number to every patch. The two mostly used way to do this are
maxpooling, where the largest element in every patch is considered and average
pooling which takes an average of the values of a patch. The result is pretty similar
to that of a step of the lattice renormalization flow.
The pooling operation clearly loses much of the information and it is thus suggested
for data with high correlation, meaning redundant information.

2.2.3 Principal Component Analysis (PCA)

A central aspect of Condensed Matter physics is dimensional reduction. That is
because typical problems described by quantum many body theory are subject to
the curse of dimensionality, that is the exponential growth of a problem with the
number of degrees of freedom.
In data science, and in physics, dimensional reduction can help understanding bet-
ter the underlying characteristics of a dataset and thus apply the best algorithm to
make predictions.
The reduction of dimensionality of a problem is also a common theoretical approach
in physics. Almost every statistical and field theory, for example, are usually de-
scribed by an extreme or infinite amount of degrees of freedoms. Indeed, they rely
on capturing the physics of the whole theory in fewer parameters such as the order
parameters, which expected to act as a degree of freedom.
Reducing the dimensions of the problem can also lead to some issues when the di-
mensions are reduced below the number of intrinsic dimensions [5] (defined as the
minimum dimension necessary to reproduce the data). Its result is the so called
"crowding problem" for which points that are separated in the original space tend
to overlap on the target, less-dimensional, space.
Principal Component Analysis (PCA) is a statistical method for dimensional re-
duction that lies on the assumption that orthogonal directions of the data with the
largest variance are considered more informative. The main idea behind this algo-
rithm is to perform a rotation of the input space of the data in order to align to the
principal axes of variance in the new rotated basis [5].
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Even though PCA loses a part of the information it still can be used as a data
preprocessing tool. It has led to interesting results in studying the classical 2D Ising
model for detecting the phase transition (Wetzel, [40]) and finding a correspondece
with the Renormalization Group flow across the phase transition [41].

Dimensional Reduction In mathematical language PCA is the Singular Value
Decomposition (SVD) of the matrix of the data.
Let us assume we have N data point {x1,x2, . . . ,xN} living in a D-dimensional
space. We construct a design matrix X as a N × D matrix where each row is
made up of the D components of each datapoint and each column is considered as
a feature of the data [8].
We now normalize the data allowing them to have zero mean and arbitrary variance.
In this way the symmetric D ×D correlation matrix is simply given by

Σ(X) =
1

N − 1
XTX (2.41)

It is important to standardize the data so that the diagonal of Σ(X) contains the
variance of each feature and Σ(X)ij is the covariance, or connected correlation for
physicists, between features i and j.
Now we look for a decomposition of the covariance matrix that highlights the direc-
tions in which data have a larger variance and damps the redundancy between basis
vectors. In order to do so we apply SVD to the design matrix, that is we look for a
representation for X such that X = USV T . U has as its columns the left singular
vectors of X, V has the right singular vectors and S has the singular values si of
the design matrix.
Thus, we can rewrite the covariance matrix as

Σ(X) =
1

N − 1
V SUTUSV T = V

(
S2

N − 1

)
V T ≡ V ΛV T (2.42)

where Λ is a diagonal matrix with decreasing eigenvalues. With the simple steps of
(2.42) we created a bridge between the SVD of the design matrix and the eigende-
composition of the covariance matrix. In fact the singular values ofX are related to
the eigenvectors of Σ(X) by λi = s2

i /(N − 1). At the same time the right singular
vectors of the design matrix are the eigenvectors of the covariance matrix. In this
way it is mathematically equivalent to decompose the design matrix into its singular
values or to calculate the eigenvectors of the correlation matrix, in order to produce

70



2. Machine Learning for Physics

the PCA. The diagonalization of the correlation matrix implies that the new direc-
tions (represented by the eigenvectors) we found are not correlated to each other,
i.e. we erased completely the linear correlation between data points.
Having said that, we need now to find the projections of the original data into the
new lower-dimensional space.
Firstly we select the larger eigenvalues of the correlation matrix. We do that taking
into consideration the sum λi/

∑D
J=1 λj. This term is the percentage of explained

variance, basically a quantity that states the amount of information contained by
each new principal component.
Now we select the eigenvectors in V corresponding to the p largest eigenvalues we
selected and acting with

Y = V TX (2.43)

we obtain the p-dimensional representations of our dataset which contain an amount
of information of the original data equal to the explained variance.
Clearly, low values of the explained variance suggest that the intrinsic dimension of
the data might be larger the expected and thus it require the calculation of more
principal components.
We will see an example of the implementation of this algorithm in the analysis of
the data of the non-interacting Kitaev model in Chapter 3.

2.3 Deep Learning in Condensed Matter Physics

In the previous sections we tried to give an idea of what are the main features behind
Machine Learning and Deep Learning algorithms and how they can be exploit in a
physics oriented fashion.
The part of physics we are interested on working on is Condensed Matter and the
study of topological phase transitions, specifically for the Kitaev model. Chapter
3 is entirely focused on the presentation of a work in this field. We keep this last
section as a presentation of two examples of application of Deep Learning to the
study of phase transitions.
In the first example we build a neural network to study the phase transition of the
classical Ising 2D Model. The second one is based on the reproduction of interesting
results obtained by Nieuwenburg et al. by applying what they call as confusion
scheme to study in an unsupervised fashion to the topological phase transition of
the Kitaev model with nearest neighbor coupling in one dimension.
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2.3.1 Classifying Phases of the Ising 2D Model

The classical Ising model in two dimensions is a very simple model which shows a
phase transition.
This basic model is very popular thanks to its simplicity and to the non trivial fact
that it shows a phase transition. This is why it is always studied as a benchmark
for new methods, in particular in Machine Learning.
It describes an interaction between classical spin degrees of freedom Si which can
only take values +1,−1. Let us consider a two dimensional Ising model on a square
lattice. If we only consider nearest neighbors coupling and no external magnetic
field the Hamiltonian is quite simple

H = −J
∑
〈i,j〉

SiSj (2.44)

where J > 0 quantifies the interaction between neighbouring spins and the sum
runs on the four nearest neighbors of every lattice site. The presence of a minus
sign characterize the groundstate of the model as ferromagnetic because all the
spins line up in the same direction in order to minimize the total energy. The
groundstate is reached for low temperatures, while in the limit of high temperatures
all the spins randomly point either up or down (paramagnetic phase). The transition
between ferromagnetic and paramagnetic phase occurs when the Z2 symmetry of the
paramagnetic phase is broken down at low temperature. This phenomenon occurs
at the critical temperature Tc/J = 2/ ln

(
1 +
√

2
)
≈ 2.269 [42].

In this section we recreate the results of the paper by Carrasquilla et al. [12] where
they apply a DNN to the study of the Ising 2D model, along with a CNN to study
the Ising 2D lattice gauge theory, to show the basic feature of a machine learning
approach to study phase transitions. We will only focus on the first part.
The purpose of our work is to show how a neural network can be trained for a simple
binary classification, thus we will not dive into too many details of the training and
testing.
Let us quickly present the architecture of the model

• The dataset. We generated 5000 binary spins configurations of L×L lattices
with L = 10, 20, 30, 40 and 50. We divide it into training, validation propor-
tion 3 : 1 : 1. The configurations were generated with a Monte Carlo Markov
Chain for N2 steps at 500 different temperatures in the range 0.1 to 5 taking
J = 1. Some configurations are shown in 2.7. This was implemented as a
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(a) L = 20, T = 0.1 (b) L = 20, T = 2.277 (c) L = 20, T = 3.911

(d) L = 50, T = 1.188 (e) L = 50, T = 2.277 (f) L = 50, T = 5.0

Figure 2.7: Ising 2D spin configurations at different temperatures and for lattice size
L = 20 (first row) and L = 50 (second row). The three temperatures considered
are, in order from the left, lower, close and larger then the critical temperature
TC = 2/ ln

(
1 +
√

2
)
.

python program. It needs to be taken into consideration that for low temper-
atures there some domains form which are hard to break down and thus their
magnetization is not zero. This will affect the precision of the network.

• The algorithm. We created a neural network with input a L2 array of binary
spins +1,−1, one hidden layer of 100 neurons and two output layers. To do
this we programmed with Keras [43], a high level API for development of
neural networks which uses TensorFlow [44] as Backend. The activation in the
first layer is a ReLU, for the output is a sigmoid function. The model has a
total of (L2 +1)×100+(100+1)×(2) parameters between weights and biases.
Thus it goes from having 10,302 parameters for L = 10 to 250,302 for L = 50.

• The training. The gradient descent is performed by the ADAM algorithm
[35]. We use a cross-entropy cost function. We try different batch sizes and
epochs but do not focus on regularization terms or learning rate. The accu-
racy of the model is simply calculated as the percentage of correctly classified
samples out of the 1000 test data points.
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• The output. The DNN has two output neurons: a "hot" neuron that should
activate (give a probability close to 1) when T < TC and a "cold" neuron
which behaves in a opposite way.

We consider the output of the network for L = 20, batch size 100 and 50 epochs
of training as a reference. Varying the dimensions of the lattice, batch sizes and
epochs only slightly changes the result as we will show later. The plot of the output
neurons is shown in Figure 2.8. We take it as example to show the common feature
with the other outputs for different L. The picture shows the output of the cold

Figure 2.8: Output probabilities of the "cold" and "hot" neuron. The ferromagnetic
and paramagnetic are clearly distinguished by the algorithm. The DNN looses
precision around the critical temperature because it has no reference on how to
separate the two phases. The picture shows the classification of the whole test set
of 1000 data points.

neuron in blue and the hot neuron in red. The scatter plot is fitted with a sigmoid
function and the crossing point of the lines is at T = 2.285, which can be considered
as the critical temperature "learned" by the model. We notice that the network
is not precise in the distinction of phases around the critical temperature. That is
understandable since the difference in the spins configurations around TC are not
neat at all even at eye sight.
There is a discrepancy in the number of incorrectly classified points. The right side
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T < TC T > TC

T < TC 436 6
T > TC 54 504

Table 2.1: Confusion matrix of the output of the DNN with accuracy 94%. It shows
the number of predicted values (rows) against the expected ones (columns). The
off-diagonal values represent the mistakes of the network. The number of points over
the critical temperature mis-classified as ferromagneticly ordered is much larger then
the other wrong points. The same situation arises for every configuration tried.

of the graph, indeed, shows more errors. That is probably due to the fact that the
total number of up or down spins in the disordered phase is often similar to the
cases of low temperature where a domain wall forms (see Figure 2.7). The accuracy
reached is 94% and the confusion matrix is presented in the table 2.1 The confu-
sion matrix shows the unbalance we were mentioning more clearly, this behaviour
repeats for different sizes of the configurations. So we can infer that the neural net-
work might be discriminating the two phases by a mere count of the up and down
spins. The algorithm is in fact incapable of recognising explicitly visual patterns
such as the formation of a domain wall. In order to exploit this and other symmetry
properties there would probably need a convolutional neural network.
Since neural networks usually feed on large amounts of data we try to reproduce the
outcomes doubling the dataset size. Thus using a total of 10 thousand configura-
tions, 1000 of which for validation and 1000 for testing.
The plot of the outcome is similar to the one for fewer data but we do see a 1.5%

increase in the precision on the test set for both L = 20 and L = 30.
This first basic example permits us to gain more intuition in the functioning of a
neural network. In Chapter 3 we will exploit this knowledge and compare different
sizes of datasets, consider the convergence of the loss function in the training and
be more precise under different aspects.

2.3.2 Learning the Kitaev Model by Confusion

In this section we present a particular technique invented by van Nieuwenburg et
al. [13] called "confusion scheme". This technique creates an unsupervised model
through the use of neural networks, which are supervised algorithms, to study the
topological phase transition of the Kitaev model. It is very interesting to study
because unsupervised approaches are key to investigate unknown data. One thing
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is to "teach" a network how to recognise phases of matter, as we did in the last
section, by telling it exactly which is one. Another thing is creating an algorithm
that can tell you where a phase transition happens without telling it where it should
find it.
The idea behind the confusion learning is simple yet effective. It consists in training
many neural networks with the same data but different labels. Let us assume the
data depends on some parameter, in the case of the Kitaev model we consider the
chemical potential µ. Let us also assume the model goes through a phase transition
for a specific value of µ that we will call µc. Thus a neural network would have the
data labelled as 0 or 1 according to µ which generated it if it is larger or lower then
µc. This is standard procedure for training a DNN to recognise a phase transition.
Now, let us consider the case in which the critical value µc is not known and it
is only supposed to reside inside an interval of possible values [µmin, µmax]. One
can consider N values of µ inside that interval, one of which should correspond
to the real critical value µc (or should be close enough, the precision can be set
by choosing a large N). The "confusion" is introduced when training N different
neural networks with the same architecture each one with a different value µi to
discriminate the two phases. Thus, for example, the network with µi = µmin will
have all its data labelled as 1 (because they are all above the critical point), while
the network with µi = µmax will have all its data labelled with 0, for obvious reason.
The confusion is due to the wrong labelling of the data, of course only the network
trained with the real, unknown, value µi = µc will have a sensible labelling. This
intuitively means that the accuracy of this network will be maximum, or at least
larger then the accuracy of the other networks since they are working with wrong
data. In particular if there is any characteristic that actually separates the data of
the two phases, only the network with the right µc will be able to classify them.
Interestingly enough we can predict the plot of the accuracies of all the networks
to have a "W" shape. That is due to the fact that both the example of µi = µmin

and µi = µmax will be trained to assign the same label to all the data, and will thus
perform perfectly (with 100%) on new data. When changing the µ from the extreme
values we expect the accuracy to decrease and then to increase again close to the
right values of µc. This same reasoning can be applied to larger intervals of the
parameter, at bigger computational cost, basically being able to predict any phase
transition or even multiple ones which will be all recognisable due to a peak in the
accuracy of the networks [13].
We now reproduce the same results of van Nieuwenburg et al.. We consider the
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Kitaev chain which shows a topological phase transition at |µ| = 2|t|. We firstly
introduce the neural network we used for classification before applying the confusion
scheme. The data we worked with are the 10 largest eigenvalues of the Entanglement
Spectrum (ES). This data was calculated in [45] by applying a bipartition of the
chain into subchains A and B and calculating the partial density matrix by tracing
out one of the two sublattices, i.e. ρA = TrB |ψ〉〈ψ|. We call the eigenvalues of ρA as
ri and the ES is given by the values λi = − ln ri. The degeneracy of the groundstate
in the topological phase is reflected by the same degeneracy in the spectrum.

• Dataset. We used the 10 largest values of the Entanglement Spectrum cal-
culated at 4000 different values of µ from −4.0 to 0. So the design matrix is a
10× 4000 matrix. The first four eigenvalues for different µ/t values are shown
in Figure 2.9. The other eigenvalues are all close zero.

• Architecture. For this classification we considered a DNN with an input of
10 values, a hidden layer of 80 neurons with sigmoid activation and two output
neurons with sigmoid activation showing either topological or trivial phase.

• Training. We followed the same approach as the Ising2D model so ADAM
optimizer for gradient descent and cross entropy validation.

• Output. The output was produced by testing the algorithm on 1000 sam-
ples. The neurons output the probability of a sample to belong to either the
topological or the trivial phase. It is shown in figure 2.10

The output classification of the neural network is shown in Figure 2.10. The de-
generacy of the spectrum makes this kind of classification particularly easy. The
network reaches an accuracy of 100% in a few epochs. From the image we can see
that the precision of the neurons follows the values of the spectrum because it is
probably learning that their values are the indicator to learn to discriminate the
two phases, along with the already mentioned degeneracy. We now turn to the ap-
plication of the confusion scheme. We consider a window of values for the chemical
potential −4 < µ < 0 and train 20 DNN assuming that their value of µ is the critical
µ. The results of the different trainings are presented in Figure 2.11. The expected
"W" shape is obtained. As predicted, the networks trained with the extremal val-
ues of µ have a 100% accuracy. The precision then linearly decreases with rising µ
and it reaches a peak for µ = 2 where we know the phase transition occurs. This
very simple model has a very intuitive approach but it relies on a very interesting
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Figure 2.9: Entanglement Spectrum of the Kitaev chain. The first 4 elements of the
spectrum are shown. When µ/t ∈ [−4,−2] the eigenvalues λ2 and λ3 overlap. The
degeneracy of the ES is evident in the interval µ/t ∈ [−2, 0] where the two largest
eigenvalues λ1 and λ2 overlap as much as λ3 and λ4.

reasoning. If we actually applied this method to learn the phase transition of a
model with unknown phase diagram we might learn the presence of a transition due
to some change in the data. That it precisely what was done in paper [13] where
they applied another type of confusion scheme in learning the phase diagram of the
random filed Heisenberg chain.
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Figure 2.10: Output neurons probabilities. The plot shows the probability after the
sigmoid activation of the two neurons of the DNN. One is supposed to guess the
topological phase and the other one the trivial.

Figure 2.11: Plot of the accuracies of the different 20 neural networks trained with
"confused" data. The "W" shape lets us infer there is a phase transition at µ = 2
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Results

As it is customary in every Machine Learning procedure let us start by introducing
the problem, in order to devise the most suited computational model for it. As al-
ready mentioned in the first chapter, the interacting Kitaev model is not described
by a quadratic Hamiltonian. Thus, it cannot be diagonalized and we do not have
analytical results that allow us to build its phase diagram. Nonetheless, we have
analytical results for the non-interacting Kitaev model with nearest and next to
nearest neighbour coupling as shown in sections 1.4 and 1.5.
Our main goal is to be able to predict the phase diagram of the interacting model
by using data of the non-interacting model (from now on we will assume that non-
interacting and interacting data means data generated for the next to nearest neigh-
bor and interacting Kitaev chain). That requires training and testing an algorithm
on non-interacting data to see if it learns their topological phase. Then, applying it
to a different test set which is made only of data obtained from the interacting model
and thus different from the ones the network was previously trained and tested on.
This is, on a physical principle, an extremely interesting goal. Being able to make
any sort of predictions about a model for which we do not have analytical results is
of primary importance in the field of Condensed Matter Physics. On the other hand,
on a machine learning research point of view, we are asking for a very particular type
of generalization. That is, we are not only going to test our algorithms on the data
they were trained on. We are also going to use as test set data which are in the same
topological phases of the training data but still belong to a different model. For this
reason, the core idea behind these results is not only to find a ML algorithm capable
of making predictions about non-interacting data but also to understand how that
is possible and what are the "features" that the algorithm learns on non-interacting
data to predict interacting ones.
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For the reasons listed above, this chapter is not an example of application of DL to
study the efficiency of algorithms. It is focused on describing physics through the
models.
We will start presenting the task in a more detailed way: showing the structure of
the data we work on and the measures that needs to be taken.
After that we will apply a preprocessing procedure to have more insight on the data
we use. That is, the Principal Component Analysis presented in section 2.2.3.
Then, we will show the main results of applying a fully connected neural network
trained on the non-interacting data to classify the topological phases of the inter-
acting data. We will open up the computational "blackbox" in order to understand
why it fails at recognizing parts of the test set.
Eventually, we will train a Convolutional Neural Network on the same non-interacting
data and see that it is able to predict the whole phase diagram of the interacting
model, contrarily to the Deep Neural Network. Also in this case we will open up
the network and show into details what features are learnt.

3.1 Setting Up the Procedure

In the introduction we outlined the goal of this chapter and how to reach it. First
thing of setting up a Machine Learning problem is to decide the data to work on,
the model and the cost function.

• The dataset. The correlation functions, or structure factors, of the non-
interacting Kitaev model with next to nearest neighbor coupling. Labelled
with the topological phase they were calculated in.

• The model. There is no known function which is able to predict the phase of
a set of correlation functions. Given also the complexity of the generalization
required (from non-interacting to interacting data) we decide to implement a
neural network.

• The cost function. Since we are dealing with a classification process we will
use cross entropy to evaluate the performance of our networks.

3.1.1 Non-Interacting Data

One of the main ways to study the Kitaev model (1.53) is to measure its correlation
functions: the one body operators C(j, l) = 〈c†jcl〉 and F (j, l) = 〈c†jc

†
l 〉. They can
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Figure 3.1: Reconstructed phase diagram of the next to nearest neighbor model.
Parameters λ1 and µ vary in the interval [−5, 5], [−4, 4]. The three topological
phases are identified by colors. Blue is for 0 winding number, orange for ±1 and
green for 2. The diagram reproduces the phase diagram of the NNN model shown
in Figure 1.3 but we are varying different parameters so the critical lines are slightly
different. Notice how there is only one sector for w = 2, and two sectors for w = ±1
and w = 0. The white lines

be calculated exactly over the fermionic vacuum for the sites j, l of a L long chain
for both the NN (nearest neighbor) and NNN (next to nearest neighbor) models as
shown in Chapter 1. More precisely, we usually work on their Fourier transforms:

C(k) =
1√
L

∑
j,l

ei(j−l)kC(j, l), F (k) =
1√
L

∑
j,l

ei(j−l)kF (j, l). (3.1)

Throughout the whole chapter we work with a Kitaev chain of L = 100 sites. The
analytical structure of the correlation functions was already calculated in the first
chapter, we rewrite it for brevity:

C(k) =
µ− λ1 cos k − λ2 cos 2k

2ε(k)
− 1

2

F (k) = −1

2

λ1 sin k + λ2 sin 2k

ε(k)

(3.2)
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along with the Hamiltonian of the model:

H1 =
λ1

2

N−1∑
j=1

(c†jcj+1 + c†jc
†
j+1 + h.c.) (3.3)

H2 =
λ2

2

N−1∑
j=1

(c†jcj+2 + c†jc
†
j+2 + h.c.) (3.4)

Hµ = −µ
N∑
j=1

(c†jcj −
1

2
) (3.5)

H = Hµ +H1 +H2 (3.6)

where the hopping parameter t1 and the superconducting gap ∆1 were both set
equal to λ1 = t1 = ∆1 for the nearest neighbor interaction, same for λ2 with next
to nearest coupling.
To generate different samples we set λ2 = 1 and vary λ1 and µ in different intervals
such as [−5, 5] and [−4, 4] for Figure 3.1. In this way we span all the three topological
phases with winding numbers 0, ±1, and 2. Figure 3.1 represents the datapoints
generated, each dot corresponds to the values of µ and λ1 for which we calculated
the functions C(k) and F (k). The white lines correspond to the data used for testing
and thus neglected in training. Since we took λ2 = 1 the gap closing lines occur for

λ1 = ±(1− µ), µ = −1, (3.7)

a direct comparison with graph 1.3 demonstrates it is the same phase diagram.
The plot of three samples generated in the three different topological sectors is shown
in Figure 3.2.
We created three datasets of different size to train the ML algorithms. We did
that in order to show, if necessary, the difference in working with larger or smaller
amount of data. We generated

• Dataset D1. With a total of 5000 samples: 4000 for training, 500 for valida-
tion and 500 for testing.

• Dataset D2. With a total of 10 000 samples: 8000 for training, 1000 for
validation and 1000 for testing.

• Dataset D3. With a total of 25 000 samples: 20 000 for training, 2500 for
validation and 2500 for testing.
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Every dataset consists of 2/5 of samples generated at winnding number 0, 2/5 at
winding number 1 and 1/5 at winding number 2. Throughout the chapter we will
simply refer to dataset D1, D2 and D3 assuming validation and test size are already
set, unless differently specified.
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Figure 3.2: Plots of the structure factors C(k) and F (k) for three different combina-
tions of λ1, µ. The correlations function are calculated, from the left at λ1 = −0.40,
µ = 0.64, λ1 = 3.47 (w = 0), µ = −7.00 and λ1 = 13.69 (w = 1), µ = 8.80 (w = 2).

3.1.2 Interacting Data

As already mentioned the interacting data for the model (1.133) were obtained with
the DMRG. That is due to the fact that there are no analytical solutions for the
model. To work on the interacting Kitaev chain we produced C(k) and F (k) for
the different values of µ and V in the phase diagram 3.3 which we replot here for
brevity. The phase diagram shows the three phases: trivial and non trivial super-
conducting, Density Wave (DW). The Kitaev data can be seen as residing in only
two topological sectors: the trivial phase labelled with 0 (trivial superconducting
and DW) and the superconducting phase labelled with 1. The labels correspond to
the winding number as defined for the non-interacting Kitaev Model.
We show the structure factors for three values of the potential to show their be-
haviour around the phase transition and far from it.
The first line of Figure 3.4 shows data for V = 6 that are all in the trivial phase
with winding 0. That is the same for the third line of plots generated for V = −2.
Both this sets of data are in the same trivial phase but they are rather different.
In particular the plots 3.4g, 3.4h and 3.4i resemble the data generated in the non-
interacting case at winding number 0 as in Figure 3.2a, while 3.4a, 3.4b and 3.4c
slightly resemble data in Figure 3.2b with the exception that the C(k) and F (k)

85



3. Results

Figure 3.3: Phase diagram of the interacting Kitaev chain characterized by two topo-
logical sectors: a trivial phase for low and high values of the potentials corresponding
to trivial superconducting and Density Wave phase (blue), a superconducting non
trivial phase (yellow). The colorbar shows the density of state of the edge modes.

functions do not intercept.
These visual features can already make us predict that it is probably going to be
more difficult to distinguish the trivial phase of the data at large V than the values
at low V.
On the other hand, plots 3.4d, 3.4e and 3.4f clearly show that the system underwent
a phase transition passing from correlation functions identical to the non-interacting
ones at phase 1 to phase 0. In particular the correlations showsn in Figure 3.4e are
close to the phase transition and will thus be probably hard to classify.
These preliminary considerations we are making can perhaps be better understood
by plotting how the correlation functions change along the µ axis for a fixed value
of V.
This is done in Figure 3.5. This last series of plots shows the correlation functions
for µ in the range [0, 6.2] for interesting fixed values of the interaction potential V.
With these plots it is easier to see what changes when the phase transition occurs,
for example in Figures 3.5b and 3.5b.
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(a) V = 6, µ = 0.8 (b) V = 6, µ = 2.4 (c) V = 6, µ = 4.8

(d) V = 0.8, µ = 0.8 (e) V = 0.8, µ = 2.4 (f) V = 0.8, µ = 4.8

(g) V = -2, µ = 0.8 (h) V = -2, µ = 2.4 (i) V = -2, µ = 4.8

Figure 3.4: Correlation functions for the interacting Kitaev chain. The plots show
the 100 values of C(k) and F (k) calculated at V = 6, 0.8,−2 for three different
values of µ = 0.8, 2.4, 4.8. The second line of plots passes through a phase transition
from the superconducting topological phase to the trivial phase.
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(a) V = 6

(b) V = 0.8

(c) V = -2

Figure 3.5: Correlation functions for the interacting Kitaev chain at different po-
tentials V. In each graph the lines above/below are the correlations C(k)/ F (k).
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3.2 PCA of the Kitaev Model

When working on a ML project the best practice is to preprocess the data. This
helps us to understand what we are working on and to extract as much information
as possible from it. In this thesis we firstly analyzed our data by performing PCA.
As mentioned in section 2.2.3 we can perform PCA by both doing singular value
decomposition on the data or by finding the diagonal form of the correlation matrix
of the data. In addition to that we can consider using the implemented methods of
the package library scikit-learn [46]. Since we are dealing with a simple calculation
we decide to work with the diagonalization in order to have better control on the
parameters of the algorithm. Nevertheless we performed the PCA with all the three
methods once to prove there were no relevant differences.

3.2.1 Non-Interacting Data.

We started by considering the non-interacting data. We selected the largest dataset
D3 hoping to see a clustering behaviour of the datapoints with a different winding
number.
The design matrix X is thus a 25000 × 200 matrix where each line is made up by
the 100 values of C(k) and F (k) concatenated and it is considered as a point in a
200-dimensional space.
Interestingly, the first few eigenvalues of the correlation matrix S = XTX seem to
possess large part of the information. More precisely, the explained variance (ratio
of the eigenvalues to the sum of the eigenvalues) of the first three eigenvalues is
91.9% and their values are 80.7, 71.9 and 29.4. It is true, though, that the sum of
the first 6 eigenvalues adds up to 97.2% of the total information. Thus, there is
some interesting information that we lose considering only the first three principal
components. In fact from Figure 3.6b the eigenvalues do decrease in an exponential
fashion when sorted in descending order but the first ten do not decrease so fast.
Thus, we can expect to extract much of the information from the first three principal
components - that is, the projection of our matrix of data onto the eigenspace of
the first three eigenvectors of S - but still lose a small part of it. Let us start by
projecting the data on the first two components which have explained variance of
71.1%. In Figure 3.6c we can see the results of this operation.
The graph shows there is a neat difference in between the points belonging to phase
2. On the other hand, phases 0 and 1 show a different behaviour but are still con-
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Figure 3.6: PCA of the non-interacting data. Plot (a) shows a zoom in the first 10
eigenvalues, while plot (b) on the left shows the values of all the 200 eigenvalues of
the correlation matrix S, both in log scale. We can see how only the first few values
contain much of the total information. The explained variance for the first three
values is indeed 91.9%. The plot at the bottom (c) shows the projection of the data
onto the first two eigenvectors, or principal components.

nected in some points. It is also evident that the points with winding number 2 are
also separated themselves by white lines. We attribute this particular structure to
the fact that when generating the data we intentionally avoided points along some
lines of the phase diagram.
It is also very clear from the graph that the points of phase 2 seem to reproduce the
triangular form of their phase in the phase diagram (Figure 3.2).
Lastly, even though some form of clustering seems already to appear we want to
extract more information from the data and so we project the data onto the first
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Figure 3.7: The plot shows the eigenvalues of the correlation matrix of the 20000
samples generated without obscured lines in the phase diagram. The explained
variance of the first two eigenvalues is 78.3%, and of the first three is 92.5%. The
general behaviour is similar to the case with the D3 dataset but the eigenvalues drop
to zero faster.

three principal components.
Putting together all these considerations we generated 20000 samples without ne-
glecting any lines of the phase diagram and we projected along the first three eigen-
vectors. The log plot of the eigenvalues of this new dataset is shown in Figure 3.7.We
represent the outcome of the resulting 3D plot shown in Figure 3.8 under different
viewing angles. The explained variance for the first three principal components is
92.5% The first thing we notice is that the obscured lines of the phase diagram
disappeared, showing that our prediction was correct. Secondly, it is clear that the
PCA is able to recreate the phase diagram of the points. This is somewhat impres-
sive considering that we only need three components, out of the total 200, of every
point to separate phase 2 from the other phases. It is nonetheless predictable that
the first few components can already separate our data so clearly.
That is on one hand due to the fact that we only need two variables, that is µ and
λ1 to assign a position to the data in the phase diagram. On the other hand it is
due to the fact that the correlation functions we are working on, shown in the first
section of this chapter, have a high level of correlation. By that we mean that their
features are redundant. For example they are are continuous. Thus, it is easy to
predict the value of, say, the 100-th point of C(k) if we know the first 99. Moreover
they are periodic, with periodicity 2π, and thus translationally invariant in a sense
that if all the input values of C(k) or F (k) is shifted to the left by one the function
is still self-identical and an algorithm should notice that and exploit that, as we will
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(a) (b)

(c)

Figure 3.8: Three snapshots of the projection of the 20000 non-interacting data-
points onto the first three principal components. The phase 2 points are clearly
separated from the two other phases. Points belonging to phase 0 and 1 show a
different behaviour but are still not completely separated.

see in the next section.
All in all, with the data we are working we can expect to see a clear separation of
it even when only extracting a few components.
Having said that we want to obtain more insight into these representations on the
data. The presence of a triangular form for the phase 2 points suggests that the
phase 0 and 1 points should also be divided so explicitely. The fact that they are
not separated that much means that they are more similar to each other then the
phase 2 points are to each of them. To show that we would require more then three
dimensions. Nonetheless we can show that the contact points of phase 0 and phase
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(a) (b)

(c)

Figure 3.9: Three snapshots of the projection of the 20000 non-interacting data-
points onto the first three principal components with the critical points labelled in
light green color. The graphs are the same as in picture 3.8

1 projections are indeed on the critical lines on the phase diagram.
To do that we consider that the equations of the critical lines are λ1 = 1 − µ,
λ1 = µ − 1 and µ = −1 and we assign the same label to all the data points at
distance of ε = ±0.5 from these lines. In this way we can see which points in the
PCA projection are close to the critical lines. The results for this are shown in
Figure 3.9. Here, the points close to the transition lines are colored in green.
From these new images it emerges that the points close to the critical lines are indeed
at the boarder of the different clusters of the phases. In particular, they are more
clearly defined for the phase 2 and less defined for the other two phases. Yet, we can
see that where the phase 0 and phase 1 connect we have the phase transition points.
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By using the PCA we reconstructed the phase diagram of the model. As already
mentioned a real definition of the division between phases 0 and 1 would require to
exploit the information on the other directions (eigenvectors) of the decomposition.

3.2.2 Interacting Data

We now turn the attention to study the interacting Kitaev model (Eq. (1.133)) di-
mensional reduction. We perform PCA on 1223 samples of the correlation functions
C(k) and F (k), 710 of which calculated in the trivial phase with winding number
0 and 513 in the supercoducting topological phase at winding number 1. Thus the
design matrix has shape (1223 × 200). The 200 eigenvalues of the decomposition
are plotted in Figure 3.10. The plot shows that the eigenvalues decrease slowly
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Figure 3.10: Plot of the eigenvalues of the correlation matrix for the interacting
model. We can compare the behaviour of the data to the eigenvalues of the non-
interacting case and see that they do not go to zero as fast.

compared to the data of the non-interacting case. That means that less information
is encoded in the first principal components. For us this means that either we can
expect less informative plots of the projections on the first three components and
that it is going to be hard to separate the phases of this model.
Quantitatively, the less correlation in the data is expressed by lower values of the
explained variance of the first components. The first two eigenvalues have an ex-
plained variance of 71.1%, which is comparable to the 75.7% of the non-interacting
case, but the explained variance of the first three components is 84.7% against the
92.5%.
The complexity of the data is evident in the 3D plots of the projections on the
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first three components of the interacting data. Those are shown in Figure 3.11 as
3D plots of the same data under different points of view. The column on the left
of Figure 3.11 shows different points of view of the same data labelled with their
topological phase (0 and 1). Column on the right shows exactly the same data and
the same points of view of the graphs on their left but every datapoint is labelled
with the potential it was calculated at. Thus, for example, one can check from 3.11c
that the points with potential V = 6 (right panel) are in phase 0 (left panel).
Interpreting these plots is much more challenging than the non-interacting ones.
Nonetheless, there are some behaviours of the data that can be understood. First
of all from Figure 3.11a we can see that there is a first neat separation of the data
in phase 0 and 1 (left graph of 3.11a) when the potential of interaction grows from
low negative to the first positive values (right panel of 3.11a). The data seems to
grow along the third principal component y3 and then change phase at the peak,
while preserving the phase 1 label going down.
Cross referencing this details with the view from above of Figure 3.11b (left panel)
we can see the exact point where there is a phase transition. Contrarily to the phase
diagram of the interacting model, Figure 3.3, in which points along a fixed value of
the potential can be in a different phase, here we see that the data points align in
the directions of the same phase. Consequently, the superconducting sector of the
phase diagram, which changes in a diagonal fashion for increasing V, is recreated
slightly rotated by the PCA.
The superconducting phase points (yellow points in the left column panels) are very
spread out in their projection on the principal components. This is true in particular
if compared to the dense distribution of the trivial phase points (for high V) which
are spanned over many more values of V but still so concentrated.
The two sets of blue points correspond to the trivial phase sector and the (Incom-
mensurate) Density Wave sector and are separated by the yellow, superconducting
phase. Even though they are in the same topologically trivial phase they are not
clustered together. This once again tells us that they are not similar data and thus
will not be easy to classify. In fact, we will see that only a network able to recognize
their general similarities will be able to see them as in the same phase.
Having said that, it would be hard to notice these behaviours if one were to do the
PCA on this data without labels. Their projections would create a homogeneous
manifold which would not help to cluster the points but, considering the results of
the PCA o non-interacting data, give hints on the shape of the phase diagram.
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(a) Lateral, rising, view

(b) Top, peak, view

(c) Lateral, decreasing, view

Figure 3.11: Three snapshots of the projection of the 1223 interacting datapoints
onto the first three principal components. Each of the snapshots is presented with
the labels of the phase and the interacting potentials to help distinguish the two
phases. If we consider the projections of the data as moving along the third principal
component, then the data are taken respectively at the rising part, the peak and
then the decreasing part. The colorbar shows the values of the potential.
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3.3 DNN to Predict the Phases of the Interact-

ing Model

The PCA decomposition of our data turns out to be very useful to understand how
to work on our data and what to expect. On one hand, we expect the non-interacting
data to be easier to recognize and classify. On the other end we saw that the line
between phase 0 and phase 1 data is "thin" in a sense that it requires more infor-
mation to be understood (Figure 3.11). We realize then that the interacting data is
more intricate then expected, meaning that the phase separation lines are not easy
to detect as in the non-interacting case.
The information we just gathered seems very general and not too informative. In-
stead, we can use it to find the most fitted algorithm to work on and to understand
while it might fail in its generalization task.
In this part of the results we show how we worked on a Fully Connected Neural Net-
work for classifying the topological phases of the interacting model. Our purpose
is to train a network with the non-interacting data and apply the same network to
interacting data to understand if there is any feature that was learned by the DNN
and to see if these features are enough to classify data generated by a different,
interacting, Hamiltonian. Moreover, our task has a more general point of view. We
are trying to show if it possible to make a Deep Learning algorithm for learning
a model of which we know the phase diagram and predict the phase diagram of
a related model of which we have less knowledge. The task we require our algo-
rithm to perform is not a generalization on the training data to the test data of the
same distribution. We are asking it to generalize on test data of a different model.
Therefore, we do not expect it to behave regularly and we will not focus on the
performance of the network on its own data rather than its performance on the new
data.
Before diving into the results, it is important to state the decision process that led us
to choose a Deep Learning algorithm rather than a Machine Learning one. The first
reason has just been mentioned, that is we expect the generalization we are asking
for to be out of the scope of a ML algorithm. Because in order to be successful the
algorithm will have to understand deep structures of the data. The second reason is
that we want to investigate which features of the data are learned and why they are
important in the decision process of the algorithm. Neural Networks, even though
their black box nature does not allow it in principle, can indeed be "opened up" to
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Figure 3.12: Architecture of the Neural Network used for the results of this chapter.
The inputs are the 200 values of the correlation functions C(ki) and F (ki) with
i = 1, . . . , 100. The hidden layer has 100 neurons and then the output has 3 neurons
to classify the topological phase of the input with a certain probability.

understand which features were learnt (as it is done in many papers on DL applied
to Condensed Matter Physics such as [14]). Lastly, the PCA already showed that
data is not clustered as expected and thus can be difficult to analyze and interpret.

3.3.1 Training and Testing on Non-Interacting Data

We start by investigating the ability of a simple Neural Network to predict the
topological phases of the non-interacting data.
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For this purpose we devise a basic Neural Network which has 200 input neurons
corresponding to the values of the correlation functions C(k) and F (k), one hidden
layer of 50 neurons and an output layer of 3 neurons corresponding to the probability
of the input to belong to either one of the three topological phases. We train the NN
with the ADAM algorithm, using categorical cross entropy validation and measuring
the accuracy of the algorithm by simply counting the number of correctly classified
points. We did not focus on the choice of hypeparameters at first, see discussion
below. The activation of the first hidden layer is the sigmoid function, for the output
layer the SoftMax. We train the network with batches of 10 samples over 30 epochs
using the three datasets described at the beginning of the chapter. The results of
this first test are shown in the confusion matrices in Figure 3.13. The accuracies of
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Figure 3.13: Confusion matrices of a Neural Network trained with batch size 10 for
30 epochs for the different datasets Di. The confusion matrices show the predicted
(columns) vs expected (rows) classifications of the data. For example the NN trained
on D1 misclassified 2 points belonging to phase 0 (first raw) as points belonging to
phase 1 (second raw).

the NN trained with the different datasets are for 99, 6% for D1 , 99, 9% for D2 and
99, 6% for D3 on the test set for the data shown in Figure 3.13. During some first
runs on the trainings the accuracy even reached 100% for some models. In addition
to the confusion matrices we plot the accuracy and the loss on both the training and
validation set of the D1 dataset only. The behaviour of both quantities is expected:
the loss function approaches lower values with the epochs and the validation follows
it. This is the sign that the algorithm does not experience neither overfitting nor
underfitting. The same happens for the accuracy which converge to the maximum
value possible. In this case, as in some others we will see, the validation loss seems
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Figure 3.14: Training Loss and accuracy on both the training and validation set for
30 epochs of the D1 dataset

to be lower then the training loss. Although it is in theory not possible to perform
better on unknown data, such as the validation ones, this is still possible when the
validation data is particularly "easy" to classify (less noisy, e.g.).
The lower loss values of the validation set can also depend on the fact that the loss of
one epoch of training is an average of how the algorithm performs from the beginning
of the epoch-when it could classify poorly- to the end. The loss on the validation,
instead, is measured after a whole epoch so the algorithm is indeed slightly more
"experienced" then during the previous epoch of training.
Having said that, a large and constant difference in training and validation cannot
be accepted as a good "fit" of the data. It is actually considered overfitting. In
order to subvert this issue we retrained the network every time there was a large,
negative, gap between validation and loss.
Moreover the behaviour of both the training loss and accuracy has to be controlled
more specifically, we will see soon what we mean by that, for now we just wanted
to show the main parameters introduced in Chapter 2.
In general, from this data we understand that even a simple neural network classifier
can identify the phases of the non-interacting model with great precision. This is
something we somehow expected when analyzing the principal components.
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3.3.2 Testing on Interacting Data

With this positive results we apply the three models trained with different Di to the
interacting data.
The classificators perfectly recognize the phases of the interacting model for V =

−2,−0.2, 0.2, 0.8 with a 100% precision. We decided to test on these values because
they are both far from the phase transition lines (V = −2) and localized around
them (all the other values).
For potential V = 6 the three neural networks are not able to assign even one correct
phase to the data points. All the points with winding number 0 are classified as
having winding number 1. This problem was in a certain way predicted by looking
at the more complicated shapes of the correlation functions calculated at this high
potential.
To make sure the problem of classification in the interacting case is not due to a
poor performance of the DNN we try switching a few hyperparameters. We changed
learning rate, the number of layers in the DNN, the number of neurons per layer,
the type of activation from sigmoid to ReLu and eventually the batch size and
the epochs. None of this changes seem to produce any relevant different in the
classification of the interacting data at V = 6 except from the batch size.
To be more precise we analyzed the behaviours of the loss functions for different
batch sizes and epochs. We noticed that the loss function (for both training and
validation) goes to zero with a power law only for large batch sizes such as the ones
plotted in Figure 3.15. The plots are all generated after the same number of epochs,
500. The difference is in the batch size which ranges from 100 to 1000. We can see
that the two plots with lower batch size are more likely to suffer overfitting. On the
other hand, the graphs with batch 500 and 1000 go to zero exponentially and are
followed by the relative validation error.
We need to emphasize that this analysis would not be necessary if we only dealt
with the non-interacting value, since our confusion matrices are almost perfect. This
analysis is important to recognise what elements we should control when asking for
a different generalization such as predicting the phase of the interacting model.
We interpret the precision of the batch 500 and 1000 trainings as a sign of possible
quality of generalization on interacting data. In fact training the neural network
with batch 500 does indeed make the predictions on V = 6 better. Even though
the classifier still has an accuracy of 0% on this data, the output probabilities of
the neurons are different. That is, the probability of the wronly assigned phase
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Figure 3.15: Training and validation losses of the NN trained on the D1 dataset. All
the plots are generated for 500 epochs of the training.

starts decreasing as we approach the most fitted batch size for the model, as shown
in Figures 3.16. The plot of the probabilities of the output neuron is the different
values from 0 to 1 that everyone of the three output neurons assign to a datpoint to
belong to phase 0, 1 or 2. As expected the phase 2 neuron outputs zero values for all
the datapoints of V = 6. As we can see, although the classification is still incorrect
because the network classify the points as belonging to the superconducting phase,
there is a slight improvement for the network trained with 40 epochs as compared
to 60 or 80. On the same level, the plots of the training and validation loss seem to
converge better than the others. This concludes our first consideration on the role
of the batch size and on the generalization capabilities.
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(b) Epochs = 60
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(c) Epochs = 80

Figure 3.16: Training and validation losses of the NN trained on the D1 dataset and
the corresponding output probabilities of the neurons for data points at V = 6.

3.3.3 Opening up the Neural Network

Since our neural network seems to fail in the classification task we proposed we try
to analyze what could be the cause of mistake by understanding what the network
learns. This is typically done by investigating the weights of the network and the
activations of the layers.

Weights of the NN The first layer of the network is made up of 50 neurons. The
input is instead made of 200 values of the C(k) and F (k). Therefore, the weight
matrix connecting the input to the first layer has dimensions 200 × 50, while the
weight matrix from the first layer to the output layer is 50×3. The plots are showed
in Figure 3.17, to make it more readable the weights are plotted both in their original
form and in a discretized color version to erase the noise of small values. From both
Figure 3.17a and 3.17b we can see that the weights are respectively large around
the mulitples of 50 input neurons. These weights are multiplied with the extremal
values and the central values of the correlation functions, namely their values around
k = 0, π, 2π for both C(k) and F (k). In particular from picture 3.17b it is clear that
most part of these curves is obscured by weights around 0 that cancel each other
out, while the values around k = π of the correlation function C(k) seem to be very
relevant at this step of the neural network "forward pass" process.
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(a) First Layer (b) First Layer (c) Output Layer

Figure 3.17: Weight matrices of the NN trained with D3 for 30 epochs and batch
10. The plot on the left is the weights connecting the input layer to the first hidden
layer. The one in the middle is plotted with discretized color to show that most
weights are around zero. The last bar shows the weights connecting the hidden
layer to the output.

Unfortunately, it looks very hard from picture 3.17b to predict the behaviour of the
outcome of the network. Thus we check the activations of the layers.
In order to check that the values of the weights grow larger close to k = 0, π, 2π

we trained the same neural network but inverting the order of the input neurons.
By that we mean we divided every single sample of the data in 5 sectors 0, 1, 2, 3, 4,
shuffled them into 4, 3, 1, 0, 2 and fed it to the neural network for training. The
result is shown in Figure 3.18 where we plotted the weights of the regular input
next to the new weights so that it can be inspected that the learned weights are still
larger in the values around k = 0, π, 2π

Layer Activations of Non-Interacting Data The layer activations in the ML
language are the outputs of a layer, that is the outcome of each neuron after the
input has gone through the activation function.
Considering the neural network trained on dataset D1 for 30 epochs and batch size
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(a) (b)

Figure 3.18: Comparison of the learned weights of the Neural Network trained with
dataset D3 with different inputs. On the left, the model was trained with the usual
input. On the right, the model was trained with regular data but the order of its
points was shuffled (in the same manner for every data entry) in 5 blocks of 40
neurons each. For example the second block going from neuron 40 to 80 was moved
down of one block and it is indeed reproduced by the neuron weights from 80 to 120
in the plot to the right.

of 10 samples we first plot the activations of the first hidden layer when we feed
it with the data it was trained on. We find that the behaviour of the activation
changes only slightly between points of the same phase.
Figures 2.4 show the activations when the network is fed with three training set
values with corresponding to phase 0, 1, and 2. Let us recall that the input data
is firstly linearly transformed by the weights (such as the ones in Figure 3.18) and
biases of the network. Then it goes through a sigmoid activation function in order
to produce the outputs visualized in Figure 3.19. Mathematically, let us write the
array [C(k), F (k)] of 200 elements as one input array [I(ki)] where i = 1, . . . , 200.
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(a) w = 0 (b) w = 1 (c) w = 2

Figure 3.19: These plots show the values that the first layer of the network gives
as output after it is fed with, respectively, data from phase 0, 1 and 2 of the non-
interacting dataset.

This inputs goes through a first linear transformation:

Zm =
200∑
i=1

WimI(ki) + bm, (3.8)

and then throguh the sigmoid activation:

am = σ(Zm) =
1

1 + e−Zm
(3.9)

which produces numbers am in the range [0,1].

Layer Activations of Interacting Data When we feed the neural network with
the interacting data we can see from the activations of the first layer what changes
in the classification process.
In Figure 3.20 the plot on the left shows the activations of the interacting data at
V = 0.8 which undergoes the phase transition when µ is between 3.4 and 3.6. Indeed,
the behaviour of the activations changes abruptly in that interval. That is why it
perfectly recognizes the two phases (recall that none of the models has problem
recognizing phases at low values of V ). Notice how the activations resemble the
behaviour of 3.19b and 3.19a before and after the transition.
Conversely, at the interacting potential V = 6 there is no sensitive change in the
activations and the active neurons are the same of 3.19b meaning that it recognises
this (wrongly) as a phase with winding number 1. Some neurons start activating
when µ varies, but only enough to reduce the certainty of the prediction (which goes
to a lower 70% for µ = 5.6 for example) even though it is still wrong. To understand
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the slight change we can confront with 3.5a and 3.5a where the correlation function
C(k) is changing.
These two outputs are from the network trained with 30 epochs and batch size 10.
We will use these types of results to compare what is learned by the DNN compared
to the CNN.
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Figure 3.20: Activations of the first hidden layer of the DNN for interacting data.
The plots show the activations at V = 0.8 and V = 6 for all the values of µ. The
phase transition happens at µ = 3.4, 2.4 for V = 0.8, 0.2 respectively, where the
activations change.

3.4 Convolutional Neural Network

The first part of these results shows how and possibly why a feedforward neural
network fails to assign the right topological phase to data generated at high potential
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Figure 3.21: Representation of the Convolutional Network used in these results
section. The algorithm performs a 2D convolution extracting 40 features. Then, a
1D convolution extracting one feature that is finally put in a DNN for classification.
Picture taken from [14].

V in the interacting Kitaev chain.
One of the reasons that a DNN cannot correctly classify our data is that it does not
learn the spatial features of it and does not take it into account. This is why we
decided to apply a Convolutional Neural Network. We were also inspired by the job
of Zhang et al. [14] who applied CNN’s to classify the topological phases of generic
models in the AIII symmetry class. The data they used was a series of values of the
Hamiltonian at different values of momentum k.
In our work we present an algorithm realized in a simile manner to that of [14] but
using correlation functions as data.

3.4.1 Structure of the Network

A scheme of the Convolutional Neural Network (or ConvNet) is shown in Figure
3.21 The input is a matrix 2 × 100 with the structure factors C(k) and F (k) as
columns. The first convolution uses M = 40 different kernels of dimension (2,2) to
extract 40 features called receptive fields which are 1× 99 arrays:

Z̃k
i = W k

1,1C(ki) +W k
1,2F (ki) +W k

2,1C(ki+1) +W k
2,2F (ki+1) +W k

0 (3.10)
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where k = 1, . . . , 40 labels the M receptive fields, W k
0 is the bias and i = 1, . . . , 99

because the convolution stops at L − 1 = 99. Z̃k
i is a tensor representing the 99

components of the 40 extracted features. These are passed through ReLU activation,
that is

Zk
i = max{0, Z̃k

i }. (3.11)

The job of this non linear activation is simply to not consider the activations with
negative values. Then, a 1D convolution (of kernels which are obviously (1,1)),
produces one single receptive field of 99 elements:

Ãi =
M∑
k=1

wkZ
k
i + w0 (3.12)

Ai = max{0, Ãi} (3.13)

This result is in just a simple linear combination of the previous 40 activations. The
convolution steps produce an array which is now fed to a feedforward neural network
with a hidden layer of 5 neurons. Therefore the array Ai is transformed by a matrix
99× 5:

F̃η =
L−1∑
n=1

SηnAn +Bn, (3.14)

Fη = max{0, F̃η} (3.15)

and then transformed by a 5× 3 matrix

Ol =
5∑

η=1

PlηFη (3.16)

ω̃l =
eOl∑3
l=1 e

Ol
(3.17)

where the last nonlinear transformation is the SoftMax activation and ω̃l is the
probability that each of the three outputs gives to a datapoint to belong to one of
the three phases. All in all, the matrices and arrays W k

i,j,W
k
0 , wk, w0, Sη,n, Bn, Pl,η

are the parameters to be learnt.
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3.4.2 Reproducing the Interacting Phase Diagram

Testing on Non-Interacting Data We investigate the power of generalization
of this model. From what we gathered in the last section it is best to work with large
batch sizes. In the training procedure we get optimal results on the non-interacting
test set, as it was for the DNN. The results are shown in the confusion matrices
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Figure 3.22: Confusion matrices of the ConvNet. The CNN classifies the non-
interacting data with accuracy of (a) 99.2% for the D1 dataset, (b) 99.1% for the
D2 dataset and (c) 100% for the D3 dataset.

in Figure 3.22. The CNN has the same precision of classification of non-interacting
data as the DNN (values in the caption of Figure 3.22).
In addition to the confusion matrices we plot the loss and accuracy of the model
trained with the D2 dataset. As already mentioned this is common procedure to
prevent underfitting (both validation and training loss does not converge to 0) and
overfitting (trainig loss convergences but validation loss does not).

Testing on Interacting Data We are interested in the results on the interacting
data. Surprisingly, the CNN perfectly classifies them. The plots 3.24 show the
predictions of the convolutional neural network. This shows the output of the three
neurons of the network, for different values of µ for fixed values of the potential V .
The predictions for V = −2, 0.2, 0.8 are less interesting because we already showed
by the data PCA and the DNN implementation that they are easy to recognize.
Nonetheless, it is interesting to notice the sharp drop of the neurons probability
prediction of the values at V = 0.2, 0.8 where the phase transition occurs. The
V = 6, instead, represents the Charge Density Wave sector with a trivial topological
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Figure 3.23: Loss and Accuracy of both the training and validation sets for 50 epochs
of the D2 dataset.

phase that is much more difficult to find.
Since these results are promising we want to see if the same happens for datasets D2

and D3. We find that for batch size 300 also the CNN trained on the second dataset
reach a 100% precision on the test set at V = 6 (unless diversely specified we will
assume 100% accuracy also on the other test data). The same happens for the CNN
trained on the D3 dataset at batch size 800. Therefore, the batch size has to increase
with the data in order to have good generalization power on the interacting data.
To validate our results we check the convergence of the loss functions of the models
for many epochs of training. Their convergence is shown in the first row of Figure
3.25. By convergence we mean that both the training and the validation loss tend
to zero as the number of epochs increases. In addition to that, we check that the
loss for the three models suffers from slight overfitting. In fact in the second row of
Figure 3.25 we see that in the three models-trained respectively for 30, 50 and 50
epochs at batches 100, 300 and 800- the validation loss starts moving away from the
training loss.
It is important, though, that this does not affect the classification for low V, it
actually just enhance the prediction abilities for high potentials. That might mean
that in order to predict the complicated phases at V=6 the ConvNets need a bit of
overfitting to allow for generalization in the sense that we are asking. In summary,
CNN’s turn out to be much more reliable to understand the data we provided and in
fact can be used to predict the whole phase diagram of the interacting model. Figure
3.26 is the reproduction of the phase diagram. For every data entry at different µ
and V we plotted the certainty that the CNN feels in assigning topological phase 0
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(c) V = 0.8
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Figure 3.24: Some output probabilities of the CNN trained on data at V = 0 and
tested on data at V = −2, 0.2, 0.8, 6, the most interesting values. Conversely to the
DNN, the ConvNet perfectly recognizes the trivial character of C(k) and F (k) even
at high potential.

or 1 to the point. Comparing it to Figure 3.3 we can affirm it is an accurate result.
In the reconstructed phase diagram we even see the points on the critical lines, which
have transitioning colors from yellow to blue because the network is not certain how
to classify these points. On the other hand, many data points with non zero values
of the density of edge modes (on the phase diagram produced with the DMRG)
are here labelled with 100% certainty. That is probably due to the fact that the
network is asked to produced a "hard" classification (either one phase or the other)
for these points with the highest probability possible and that does not leave room
for interpretability.
Considering what has been said, it is still very impressive that we were able to
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Figure 3.25: Training and validation loss for the models trained on datasets Di. The
top row is the result of 500 epochs of training, plotted in order to check if in the
limiting case of infinite epochs the algorithm converges monotonically to zero loss.
Bottom row is for the models trained on 30, 50 and 50 epochs respectively when
they perfectly classify the points of V = 6.

reproduce this diagram, shown in Figure 3.26, with the simple knowledge of the
non-interacting model and the phase transitions.

3.4.3 Opening Up the ConvNet

As already mentioned, we want to show what the CNN learns, so we show the acti-
vations of the layer of the ConvNet. The activations are the receptive fields. That
is, every kernel produces a convolution which results in a single array, this is passed
through ReLu activation and that is the activation for that filter. As Convolutional
Neural Networks are designed to work mostly on image it is easier to understand
what features of the data are learnt and which are discarded.

Non-interacting Data The first convolution of the network is usually supposed
to recreate the data or at least some general features of it. In Figure 3.27 we see
how the set of 40 arrays of 99 neurons activates after convolution and ReLU acti-
vation. We present them as a matrix where each column is a different activation,
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Figure 3.26: Predicted phase diagram: plot of the output of the CNN trained on the
D3 dataset with batch 800 for 50 epochs. In the graph we show the probability of a
datapoint to belong to the superconducting phase of winding number 1. Remarkably,
the likelihood of a point to belong to a class reproduces the interacting model phase
diagram.

or receptive field. Due to the particular form of the ReLu function all the negative
values are set to zero. That is a measure to avoid redundance: the idea of CNN is
that the negative values would just learn the same features of the positive ones and
there is no need of them. In the figure we see that some of the arrays are indeed
zero, thus they carry no information.
Comparing the activations for different data points at w = 0, 1, 2 we see that the
activations for the datapoint at winding 0 are mostly flat (Figure 3.27a), meaning
that each receptive field is an array of constant values. The activations of the dat-
apoints of phase 1 and 2 (Figures 3.27b, 3.27c) have a more complicated structure,
resembling the wave structure of the input correlations for which they were gener-
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(a) w = 0 (b) w = 1 (c) w = 2

Figure 3.27: Activations of the 40 receiptive fields of the first 2D convolution. The
input is convoluted by the 40 kernels, each one produces an array of 99 elements
which is filtered by the ReLu activation. The images are activations of the CNN
when the input is a datapoint with w = 0, 1, 2 respectively.

ated. The second convolution brings the results of the 99 rows of the activations
in Figure 3.27 together. That happens thanks to a linear combination. This result
is passed through ReLu activation. The output is a single array of 99 values with
different intensities which resembles a smooth curve. We present the activations
of the second layer in Figure 3.28. Here, for every dataset Di we plot the curves
produced for an input datapoint of phase 0, 1 and 2 going from left to right. For
every curve plotted there is also a colored line to represent it on top of it. That will
be helpful to understand the interacting data results. The color representation helps
to see the curve in a more compact way. The three "curves", on each line of Figure
3.28, are different from each other and this is very helpful for classification since they
become the input to a Fully Connected Neural Network with one hidden layer and
then the output. Notice also how they are on very different scales since the ReLu
activation does not normalize the output. In particular the first and second curves
(produced for an input datapoint of phase 0 and 1 respectively) are similar in shape
but different in shape. The CNN probably exploits this difference for classification.
We infer that it is very easy for the DNN part to recognize such different inputs
and that is why the classification of the CNN is so efficient. In order to produce
such different curves the ConvNet is taking into consideration the shape of both
correlations C(k) and F (k).
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Figure 3.28: Ativations of the second convolutional layer for the non-interacting
data.
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Interacting Data We show now the activation of the second layer, right before
being fed to the fully connected part of the algorithm, for the interacting data. This
is done in Figure 3.29 where we show the activations for different values of V, with
varying µ. Each line of Figure 3.29 presents the results of a different dataset. In
each row, from left to right we plot the activations due to the interacting data at
potential V = −2, 0.2, 6 respectively. For a specific V and µ there are 99 values of
the second layer activation. So each panel shows 32 activation lines corresponding
to different values of µ ∈ [0, 6.2] (vertical axes) for a fixed V . Each row of Figure
3.29 has the same scale, shown in the colorbar to their right.
From this plots we can see the input to the last fully connected part before the
classification. Let us start from the low potential values:

• V = −2. The activations shown in the plots of the left column are very similar.
They resemble the activations in Figure 3.28a of the typical input with winding
0. In fact the CNN has no trouble classifying this points correctly. Notice how
every model trained with a different dataset has a different scale for this values.

• V = 0.2. The activations of the central column show that the input points
change phase from superconducting non trivial (phase 1) to superconducting
trivial (phase 0). Indeed for µ in the range [0, 2.4] the activations are similar
to the ones in Figure 3.28b of the phase 1 non interacting points. After µ hits
the phase transition point the shape of the activations changes abruptly to the
ones of the figures on their left. That is in fact the same topological sector.
Once again we see how the ConvNet perfectly classify these datapoints.

• V = 6. The right column of the figure shows the most interesting behaviour.
The activations do not seem to resemble the ones in Figure 3.28a of phase 0.
They indeed look more alike to the activations of a datapoint with winding
1. Having said that, the CNN classify these points accurately as belonging to
the trivial phase 0.

What is remarkable about these results is that the CNN seems to recognize that the
datapoints at low and high potential are different. For low potential, the activations
are similar to what we expect for a point in the superconducting trivial phase. For
high potential, the activations correspond to a different new behaviour that we could
expect for the Density Wave sector. Yet, it assigns the same topological phase to
both since they are indeed both trivial phases due to the absence of edge modes.
If we compare these results with the activations of the neural network 3.20 we see
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Figure 3.29: Activations of the second convolutional layer of the CNN. The three
rows are for the different models trained on the datasets D1,D2,D3. These show the
values of the 99 elements fed as input to the last neural network part of the CNN
for different values of V = 6, 0.2,−2 (from top to bottom figures) and µ ∈ [0, 6.2]
(for each figure).
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that both do not change at high potential for µ ∈ [0, 6.2] but the DNN simply
classifies with the wrong phase every data point.

Conclusions In conclusion of this section we can make some reasonings on the
results. Firstly, we showed through the PCA how the non-interacting data are easier
to classify than their interacting counterpart. Secondly, we saw how even a well
trained Fully Connected Neural Network which perfectly recognises non-interacting
data has indeed problems in the recognition of interacting ones. We associated
this problem to the fact that it does not take into account the shape of the input.
Therefore, the CNN seemed the best option to choose and in facts proved to be
solid in the recognition of the phases of the interacting Kitaev chain, allowing us to
draw the phase diagram from scratch with only the knowledge of the non-interacting
model.
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In this thesis we applied Machine Learning and Deep Learning procedures and al-
gorithms to study the phases and the phase transitions of the Interacting Kitaev
Model in one dimension using correlation functions of the non-interacting Kitaev
Model.
We set up the problem taking into consideration the results from the Principal Com-
ponent Analysis. This decomposition showed us the difference in the complexity of
our datasets: the non-interacting one has more defined phases, easier to cluster
than the interacting ones. From this we expected to find the correct phase of the
interacting model with more difficulty. In fact, the Neural Network we trained on
non-interacting data was able to classify with high accuracy and certainty only a
part of the interacting phase diagram.
In particular the DNN seemed to have problems in distinguishing the high potential,
trivial phase, apart from the superconducting low dimensional one. Opening up the
"black box", checking the weights and activations of neurons, indeed showed that
this network concentrate on some local features of the correlation functions, such as
the presence or absence of peaks at values around π and 2π.
These first results suggested the development of a second type of network: the Con-
volutional Neural Network. Thanks to their convolution of the input data, seen as a
matrix of values, this type of network can take into account the spatial distribution
of the training data. This was used by the ConvNet to perfectly classify the right
phase of every datapoint of the interacting case. That allowed us to reconstruct the
phase diagram of the interacting model with an optimal degree of accuracy with the
only knowledge of the non-interacting case.
This result is very interesting in the field of Condensed Matter Physics in which
many models do not have analytical solutions that allow to plot the phase diagram
exactly. In addition to that we were able to give a sensible estimation of what
happens inside of neural networks and which processes led them to make a decision
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when assigning the topological phase to a point.
This work can be extended making some more considerations. Firstly, in terms
of PCA we only used the first three principal components, while the data showed
that much information was contained in remaining components, in particular for
the interacting model. To further analyze this data one would need to reduce again
the dimensionality of the representation, for example using clustering methods such
as t-distributed Stochastic Neighbor Sampling (tSNE) which are keen to work on
dimensional reduction of high-dimensional data.
Another extension of this work would be to employ different sets of data. For ex-
ample including the density-density correlation. This would make the input of the
CNN a 3 × 100 matrix, with more information in it. On the same line of reason-
ing, one could consider employing the values of the Hamiltonian on the momentum
space for different values of the discretized momenta as it is done in [14]. Another
option of dataset could be the entanglement spectrum which encodes the topological
behaviour of a model.
In addition to that, it could be considered to use different models on our data. For
example Random Forests for classification, which have a high interpretability po-
tential, or one dimensional convolution on the correlation functions interpreted as
time series.
Lastly, the procedure we implemented in this thesis might be reproduced on many
other models of which we do not know the behaviour of when interaction is added
to the model.

122



Bibliography

[1] K. v. Klitzing, G. Dorda, and M. Pepper. New method for high-accuracy
determination of the fine-structure constant based on quantized hall resistance.
Physical Review Letters, 45(6):494–497, August 1980.

[2] Andrei Bernevig and Titus Neupert. Topological superconductors and category
theory, 2015.

[3] Andreas W. W. Ludwig. Topological phases: classification of topological insu-
lators and superconductors of non-interacting fermions, and beyond. Physica
Scripta, T168:014001, Dec 2015.

[4] A. Yu. Kitaev. Unpaired majorana fermions in quantum wires. Physics-Uspekhi,
44(10S):131–136, Oct 2001.

[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016.

[6] Francois Chollet. Deep Learning with Python. Manning Publications Co., USA,
1st edition, 2017.

[7] Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld,
Naftali Tishby, Leslie Vogt-Maranto, and Lenka Zdeborová. Machine learning
and the physical sciences. Rev. Mod. Phys., 91:045002, Dec 2019.

[8] Pankaj Mehta, Marin Bukov, Ching-Hao Wang, Alexandre G.R. Day, Clint
Richardson, Charles K. Fisher, and David J. Schwab. A high-bias, low-variance
introduction to machine learning for physicists. Physics Reports, 810:1–124,
May 2019.

[9] Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body prob-
lem with artificial neural networks. Science, 355(6325):602–606, Feb 2017.

123



BIBLIOGRAPHY

[10] Giacomo Torlai and Roger G. Melko. Learning thermodynamics with boltz-
mann machines. Physical Review B, 94(16), Oct 2016.

[11] Lei Wang. Discovering phase transitions with unsupervised learning. Physical
Review B, 94(19), Nov 2016.

[12] Juan Carrasquilla and Roger G. Melko. Machine learning phases of matter.
Nature Physics, 13(5):431–434, Feb 2017.

[13] Evert P. L. van Nieuwenburg, Ye-Hua Liu, and Sebastian D. Huber. Learning
phase transitions by confusion. Nature Physics, 13(5):435–439, Feb 2017.

[14] Pengfei Zhang, Huitao Shen, and Hui Zhai. Machine learning topological in-
variants with neural networks. Physical Review Letters, 120(6), Feb 2018.

[15] Ning Sun, Jinmin Yi, Pengfei Zhang, Huitao Shen, and Hui Zhai. Deep learning
topological invariants of band insulators. Physical Review B, 98(8), Aug 2018.

[16] Xie Chen, Zheng-Cheng Gu, and Xiao-Gang Wen. Local unitary transforma-
tion, long-range quantum entanglement, wave function renormalization, and
topological order. Physical Review B, 82(15), Oct 2010.

[17] M. Nakahara. Geometry, topology and physics. Institute of Physics Publishing,
2003.

[18] Andreas P. Schnyder, Shinsei Ryu, Akira Furusaki, and Andreas W. W. Lud-
wig. Classification of topological insulators and superconductors in three spatial
dimensions. Physical Review B, 78(19), November 2008.

[19] Michael Victor Berry. Quantal phase factors accompanying adiabatic changes.
Proceedings of the Royal Society of London. A. Mathematical and Physical Sci-
ences, 392(1802):45–57, 1984.

[20] Di Xiao, Ming-Che Chang, and Qian Niu. Berry phase effects on electronic
properties. Reviews of Modern Physics, 82(3):1959–2007, Jul 2010.

[21] Yuezhen Niu, Suk Bum Chung, Chen-Hsuan Hsu, Ipsita Mandal, S. Raghu,
and Sudip Chakravarty. Majorana zero modes in a quantum ising chain with
longer-ranged interactions. Physical Review B, 85:035110, Jan 2012.

124



BIBLIOGRAPHY

[22] Martin Leijnse and Karsten Flensberg. Introduction to topological super-
conductivity and majorana fermions. Semiconductor Science and Technology,
27(12):124003, Nov 2012.

[23] N. N. Bogolyubov, V. V. Tolmachev, and D. V. Shirkov. A New method in the
theory of superconductivity. Fortschritte der Physik, 6:605–682, 1958.

[24] Iman Mahyaeh and Eddy Ardonne. Zero modes of the kitaev chain with phase-
gradients and longer range couplings. Journal of Physics Communications,
2(4):045010, Apr 2018.

[25] Elliott H. Lieb, Theodore Schultz, and Daniel Mattis. Two soluble models of
an antiferromagnetic chain. Annals Physics, 16:407–466, 1961.

[26] J. P. Keating and F. Mezzadri. Random matrix theory and entanglement
in quantum spin chains. Communications in Mathematical Physics, 252(1-
3):543–579, Oct 2004.

[27] A. R. Its, F. Mezzadri, and M. Y. Mo. Entanglement entropy in quantum spin
chains with finite range interaction. Communications in Mathematical Physics,
284(1):117–185, Aug 2008.

[28] Wade DeGottardi, Manisha Thakurathi, Smitha Vishveshwara, and Diptiman
Sen. Majorana fermions in superconducting wires: Effects of long-range hop-
ping, broken time-reversal symmetry, and potential landscapes. Physical Review
B, 88(16), Oct 2013.

[29] Hosho Katsura, Dirk Schuricht, and Masahiro Takahashi. Exact ground states
and topological order in interacting kitaev/majorana chains. Physical Review
B, 92(11), Sep 2015.

[30] Ronny Thomale, Stephan Rachel, and Peter Schmitteckert. Tunneling spectra
simulation of interacting majorana wires. Physical Review B, 88:161103, Oct
2013.

[31] David Barber. Bayesian Reasoning and Machine Learning. Cambridge Univer-
sity Press, USA, 2012.

[32] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio. Object recognition with
gradient-based learning. In D. Forsyth, editor, Feature Grouping. Springer,
1999.

125



BIBLIOGRAPHY

[33] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyan-
skiy, and Ping Tak Peter Tang. On large-batch training for deep learning:
Generalization gap and sharp minima, 2016.

[34] Ning Qian. On the momentum term in gradient descent learning algorithms.
Neural Networks, 12(1):145–151, January 1999.

[35] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion, 2014.

[36] F. Rosenblatt. Perceptron simulation experiments. Proceedings of the IRE,
48(3):301–309, March 1960.

[37] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. Nature, 323(6088):533–536, Octo-
ber 1986.

[38] Y. LeCun and Y. Bengio. Convolutional networks for images, speech, and
time-series. In M. A. Arbib, editor, The Handbook of Brain Theory and Neural
Networks. MIT Press, 1995.

[39] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for
deep learning, 2016. arXiv:1603.07285.

[40] Sebastian J. Wetzel. Unsupervised learning of phase transitions: From principal
component analysis to variational autoencoders. Physical Review E, 96(2), Aug
2017.

[41] Sam Foreman, Joel Giedt, Yannick Meurice, and Judah Unmuth-Yockey. RG-
inspired machine learning for lattice field theory. EPJ Web of Conferences,
175:11025, 2018.

[42] Lars Onsager. Crystal statistics. i. a two-dimensional model with an order-
disorder transition. Physical Review, 65(3-4):117–149, February 1944.

[43] François Chollet et al. Keras, 2015. Software available from keras.io.

[44] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

126



BIBLIOGRAPHY

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

[45] Roberto Rubboli. Wavefunctions and correlations of the complex kitaev model
on a finite chain, 2019. https://amslaurea.unibo.it/19466/.

[46] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

127


	Introduction
	Topological Phases of Matter
	Symmetry Classification of Topological Phases
	Role of Symmetries
	Ten-fold Classification

	Topological Invariants
	The Kitaev Model
	Majorana Modes
	The Model
	Correlation Functions

	Kitaev Model with Next Nearest Neighbor Coupling
	The Kitaev Interacting Model

	Machine Learning for Physics
	Key Concepts of Machine Learning
	Features of a Machine Learning algorithm
	Statistical Learning Theory methods
	Gradient Descent Algorithms
	Regression for Classification Problems

	Deep Learning
	Deep Neural Networks (DNN)
	Convolutional Neural Newtorks (CNN)
	Principal Component Analysis (PCA)

	Deep Learning in Condensed Matter Physics
	Classifying Phases of the Ising 2D Model
	Learning the Kitaev Model by Confusion


	Results
	Setting Up the Procedure
	Non-Interacting Data
	Interacting Data

	PCA of the Kitaev Model
	Non-Interacting Data.
	Interacting Data

	DNN to Predict the Phases of the Interacting Model
	Training and Testing on Non-Interacting Data
	Testing on Interacting Data
	Opening up the Neural Network

	Convolutional Neural Network
	Structure of the Network
	Reproducing the Interacting Phase Diagram
	Opening Up the ConvNet


	Conclusions and Outlooks
	Bibliography

