
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA
CAMPUS DI CESENA

Scuola di Ingegneria e Architettura

Corso di Laurea (Magistrale) in Ingegneria e Scienze Informatiche

A platform for aggregate computing
over LoRaWAN network

Tesi di laurea in
Pervasive Computing

Relatore
Prof. Mirko Viroli

Correlatore
Ing. Dott. Danilo Pianini
Prof. Danny Weyns
Dott. Roberto Casadei

Candidato
Andrea Placuzzi

III Sessione di Laurea

Anno Accademico 2018-2019

Abstract

Recent technological developments led to increased computational and network-
ing capabilities of everyday objects. This situation resulted in an increase in
number of devices embedded in cyber-physical systems. In order to simplify the
design and management of pervasive and heterogeneous systems like these, there
is need for new high-level paradigms able to capture concerns like heterogeneity
and location of the devices. Aggregate computing is one of these: it proposes
to describe the global behaviour of a system by managing global spatio-temporal
data structures, and abstracting details of its physical network, as topology and
communication technology. A related problem with the design of complex perva-
sive systems is verifying their behaviour in a real scenario, because it is generally
expensive, complicated, and not always possible in practice. A partial solution
to the problem is testing this kind of systems using simulations. Even though
simulations execute a system model, it should be noted that such model is only
a system abstraction; however they can still provide reliable insights on the sys-
tem behaviour and performance. In the Internet-of-Things context, an emergent
enabling communication technology for situated devices is LoRaWAN. LoRaWAN
is a network protocol that allows long range communications and low energy con-
sumption, at the cost of limited data rate. There are currently no platforms
for aggregated languages that support their execution over LoRaWAN networks.
Moreover nowadays there are no simulators supporting real simulation of aggre-
gate system over LoRaWAN networks: however there are simulators supporting
aggregate applications or LoRaWAN networks. The contribution of this thesis is to
provide a platform that supports the LoRaWAN abstractions as backend of an ag-
gregate computing system, and join it to the existing DingNet simulator achieving
a platform allowing aggregate applications simulations over realistic LoRaWAN
networks.

iii

Contents

Abstract iii

Introduction ix

1 Background 1

1.1 Aggregate Computing . 1

1.1.1 Field-calculus . 2

1.1.2 Building blocks operators 3

1.1.3 Protelis . 4

1.2 LoRaWAN . 5

1.2.1 Physical Layer . 5

1.2.2 MAC Layer . 6

1.3 DingNet: a LoRa-over-MQTT network and simulator 7

2 Contribution 11

2.1 Extension and evolution to DingNet 11

2.1.1 Platform requirements . 12

2.1.2 Problem analysis and Design 13

2.2 Aggregate programming over a LoRa-over-MQTT network 21

2.2.1 Integration of Protelis with DingNet 21

3 Case studies 25

3.1 Case study: Pollution-aware user navigation 25

3.1.1 Design of the system . 26

3.1.2 Simulation in DingNet . 28

3.2 Case study: Monitoring and control of air quality 30

3.2.1 Design of the system . 31

3.2.2 Protelis program . 33

3.2.3 Simulation in DingNet . 33

v

vi CONTENTS

4 Wrap-up 37
4.1 Conclusion . 37
4.2 Future work . 38

List of Figures

1.1 Aggregate programming stack . 2
1.2 LoRaWAN network architecture . 6
1.3 LoRaWAN protocol stack . 7
1.4 LoRa-over-MQTT architecture . 8

2.1 NetworkEntity architecture with Sender and Receiver interfaces. . . 15
2.2 Architecture to manage incoming packets mote side 15
2.3 MqttClient interface and its available implementations 17
2.4 Communications between gateways and applications 18
2.5 Time representation in DingNet simulator 18
2.6 Architecture of the configurable sensor 20
2.7 Model of ExecutionContext for LoRa nodes 22
2.8 Abstract model of a Protelis application composed of LoRa nodes . 23

3.1 High level architecture of the system (case study 1) 26
3.2 UserMote model (case study 1) . 28
3.3 Snapshots of a simulation run of the first scenario (case study 1) . . 29
3.4 Snapshots of a simulation run of the second scenario (case study 1) 30
3.5 High level architecture of the system (case study 2) 31
3.6 Model of the sensor and building entities (case study 2) 32
3.7 Snapshots of a simulation run (case study 2) 35

vii

Introduction

The everyday environment we are immersed in is pervaded by devices capable of
computing and communicating. Devices with these capabilities enable to think
and design smart-environments, that accordingly to the domain and scale of the
application can be smart-cities, smart-homes, smart-hospitals, and so on. All these
systems, and more in general, the cyber-physical systems (CPSs), are composed
of myriads of heterogeneous devices. The devices can differ in their computational
and communication capabilities, and ability to interact with the environment.
This heterogeneity makes it difficult to design open, distributed, and technology
independent systems. One of the most particular components to enable inter-
operability is the communication technology. In fact there exist several wireless
communication technologies that differ for their features and limitation, like trans-
mission range, energy consumption, device cost, data rate, and so on. One of the
most promising communication technology featuring low power consumption and
long communication range is LoRaWAN1.

In literature, several approaches exist to try to simplify the design of hetero-
geneous distributed situated systems. One class of approaches proposes the usage
of unifying middlewares. The devices applications are supposed to leverage it in
order to be able to communicate with each other. One example is Sentilo2, a cross
platform middleware designed for the smart-city of Barcelona. It provides a sim-
ple REST interface to send and receive sensor data, and a set of core modules to
govern the system, like real time storage, and network security. Its architecture
is extendible and allows horizontal scalability from single servers to clusters. A
different take on the problem is proposed by global to local paradigms. These
paradigms do not focus on programming single devices and on their communica-
tion, but they try to interpret the whole system as a single computational machine
with a space-time extension and to program it. Aggregate computing [4] is one
of these paradigms and proposes a devoted language. The language considers the
entire set of system devices as a single computational machine; further, it abstracts
from the specific network protocols used at low level.

1https://lora-alliance.org/sites/default/files/2018-07/lorawan1.0.3.pdf
2http://www.sentilo.io

ix

https://lora-alliance.org/sites/default/files/2018-07/lorawan1.0.3.pdf
http://www.sentilo.io

x INTRODUCTION

The behaviour of a complex pervasive system, and of an aggregate system as
well, cannot be tested on a single machine; at the same time, testing in the real
world is usually inconvenient, complex, and expensive, or even straightforwardly
impossible. A partial solution to test the behaviour of a system prior to deployment
is via simulation. There are several simulators that aim to simulate Internet-of-
Things (IoT) systems. These simulators can capture different levels of abstraction
and be generic or specific for some application domains. Generally, the more you
increase the flexibility of the simulator, the more you pay in performance or lose
in the proximity between the real system and the executed model. One simulation
tool, designed in University of Bologna, is Alchemist [14]. Alchemist has been
used in the past, for instance, for simulating: crowd detection [6, 19] and evacua-
tion [18], mixed edge-cloud computation [7], opportunistic instant messaging [8],
smart vehicle counting [21], etc. Alchemist allows simulating aggregate systems,
but it abstracts from the network specifications, and along this calls the realis-
tic simulation of networking protocol and physical layers. A specialised platform
for simulating the network layer and dedicated to LoRaWAN system is DingNet.
This platform is useful to simulate CPSs that includes a high number of Long
Range (LoRa)-based devices; considering also the high-density of devices that can
be integrated in these kind of networks [11].

The purpose of this thesis is to allow the simulation of aggregate programs on
a network of LoRaWAN devices. To do so two main activities will be performed:

• design and implementation of a LoRaWAN network platform for the Pro-
telis [15] programming language;

• design and implement a connection layer between the existing DingNet sim-
ulator and the above mentioned platform for the execution of Protelis pro-
gram.

Thesis Structure. Accordingly, the reminder of this thesis is structured as
follows. Chapter 1 provides an overview of the aggregate computing paradigm,
LoRaWAN protocol, and the DingNet simulator. Chapter 2 exposes the appli-
cation layer and other features, which improves DingNet adding the support to
execute applications over LoRaWAN, and the work done to allow the execution of
Protelis application over the LoRaWAN network. Chapter 3 illustrates two case-
studies developed in the new simulation framework. Finally, Chapter 4 concludes
this thesis by summarising its main contribution and introducing future works and
interesting topics to evaluate.

Chapter 1

Background

This chapter provides an overview of the main concepts and technologies on which
this thesis is based. Section 1.1 introduces the Aggregate Computing paradigm;
it discusses its core idea, the theory and basic mechanism under it, and finally
introduces Protelis, a language rooted in this paradigm. Section 1.2 discusses
the LoRaWAN network protocol, finally Section 1.3 introduces the DingNet Lo-
RaWAN network and the relative simulator.

1.1 Aggregate Computing

Recent technological developments led to computational and networking capabili-
ties being more and more integrated with everyday objects, such as smartphones,
wearable devices, drones, smart vehicular systems, domestic appliances, and other
kinds of sensors and actuators. This development led to distributed systems count-
ing many devices differing from each other for computational capabilities and com-
munication technologies, and producing pervasive heterogeneous and complex sys-
tems. The classic approach for distributed systems proposes a device-centric point
of view. The goal is to obtain the global behaviour as emergent phenomena from
the interaction of single devices. So the focus of the designer is on local structure,
behaviour, and interaction. The final result is typically a system strongly depen-
dent on communication technology that tends to be rigid and costly to testing,
evolve, and maintain.

Aggregate computing is an emerging programming paradigm devoted to mod-
ern distributed systems [4], which proposes a paradigm shift. It proposes to pro-
gram the entire set of devices as a single entity. The goal is to define the global
behaviour in a declarative way focusing on manipulation of global spatial and tem-
poral data structures. This allows the designer to abstract from the real device
that will execute the program, its communication capability, network infrastruc-

1

2 CHAPTER 1. BACKGROUND

ture, and its execution platform [20]. The final result will be a complex, modu-
lar, extendible, self-adaptive and self-organized distributed system. The aggregate
computing approach offers base functionalities that are composable with each other
to assemble advanced and user-friendly APIs. In order to organize all the provided
functionalities, a multilayer stack has been designed, which collects them all by
abstraction level. As it is possible to see from the stack in Figure 1.1, the base
constructs are based on the field calculus [2] theory.

Figure 1.1: Aggregate programming stack. [4]

1.1.1 Field-calculus

The field calculus is a theoretical model that describes a set of primitives to ma-
nipulate the concept of computational field. A computational field is a distributed

1.1. AGGREGATE COMPUTING 3

data structure that maps every networked device to some local value. In field cal-
culus, everything is a field (value, variable, expression, function) and the constructs
to build and manipulate it are:

• Functions, b(e1, . . . , en) applies function b to arguments e1, . . . , en. The
output field is obtained by the point-wise evaluation of the operator to the
input fields;

• Stateful computation, rep(x← v) {s1; . . . ; sn} a local variable x is defined
and initialized to value v. Then the value is periodically updated with the
result of statements s1; . . . ; sn;

• Interaction, nbr(s) share the local value of s, represented as a field, with its
neighbours. The result is a field of fields (the same information shared from
neighbours) that is possible to reduce to a simple field using hood operators;

• Domain restriction, if(e) {s1; . . . ; sn} else {s′1; . . . ; s′n} split the field in
two sub-field according to the evaluation of e. Where e is true is applied the
statement s1; . . . ; sn, while where e is false is applied the statement s′1; . . . ; s

′
n.

The behaviour of aggregate systems can be expressed as a functional com-
position of operators that manipulate (evolve, combine, restrict) computational
fields [10].

1.1.2 Building blocks operators

Basic field calculus constructors are low-level operators which do not guarantee
to develop self-stabilizing programs as proved in [18]. In complex system, self-
stabilizing property guarantees that after each transitory phase, the system returns
to a stationary state (if exists), where it is possible to predict its behaviour. [5]
introduces a set of building blocks that are programs written with the low-level
operators. These programs are self-stabilizing and it is possible to prove that
programs written combining only these functions will be self-stabilizing. These
building blocks compose the central layer of the aggregate programming stack,
Figure 1.1, and the main ones are:

• G(source, init,metric, accumulate): function to spread information across
space. First, build a field of the shortest path that starts from the source with
the chosen metric. Then spread the information across the field starting from
the init value and modifying it at each step with the accumulate function;

• C(potential, reduce, local, null): function to accumulates local value along
the potential field until the source. The final value is obtained applying the

4 CHAPTER 1. BACKGROUND

reduce function to the local value of the crossed nodes. If there is nothing
to accumulate default value null is returned;

• T (init, zero, decay): function to evolve the state for a specified period. The
period starts from init and decreases to zero with a decay rate;

• S(grain,metric): function to split the network into partitions of nodes. This
function leverages the metric function to define partitions of a size propor-
tional to grain and elects a leader for each one.

This set of four functions with the domain restriction operator is able to provide
most of the commonly used coordination patterns for distributed systems.

1.1.3 Protelis

Protelis [15] is a language rooted on the aggregate computing paradigm, sharing
its semantic with field calculus and inspired on Proto [3]. It provides an imple-
mentation of the entire aggregate computing stack, and supports for higher-order
field calculus [2], that introduces functions as first-class citizens with a lot of ben-
efits. Protelis adopts a C- or Java-like syntax to reduce the learning curve, but
it is a purely functional language. Protelis aims to be a language that allows to
use the principal of aggregate computing in a practical way. It tries as much as
possible to be interoperable leaning on the existing Java platform. This allows to
avoid to rewrite aggregate computing libraries for different platforms, and to use
the plethora of Java libraries. According to the aggregate programming languages
principles a Protelis program abstracts from the implementation of device capa-
bilities, real network topology and communication technology. In order to fill this
abstraction gap Protelis requires the implementation of a back-end that provides
a platform operation for every node in the system. A Protelis backend requires to
implement:

• the device model, it has to display its sensors, actuators, and capabilities
provided by the hardware;

• the communication layer, it has to perform two tasks: define the neigh-
bourhood policy, and deliver the messages of each device to the others ones
in its neighbourhood.

1.2. LORAWAN 5

1.2 LoRaWAN

In the context of smart-city and more in general of the IoT, it is important to
have devices capable of long-range communications, low battery consumption, and
have the lowest possible installation, maintenance, and purchase costs. Low-power
wide-area network [17] (LPWAN) is a type of wireless networks that allows to
satisfy the first two requirements. Typically devices for this type of networks can
communicate in a range spanning from a few hundred meters in urban areas to
over 10 Km in open-spaces areas. These networks do not only allow to satisfy
the first two requirements, but they also contain the costs as composition of three
factors:

• lightweight protocols, which allow for using devices with simple hardware
and cheap;

• use of licence-free band frequency with no cost for network occupation;

• low power consumption allowing devices to run for years with a small battery.

LoRaWAN1 is one of the main LPWAN protocol. A LoRaWAN network, Fig-
ure 1.2, is composed of three fundamental elements: end-devices (aka motes),
gateways (aka concentrators) and a network-server. The network topology typi-
cally is a star-of-stars topology with the gateway that intermediates between motes
and network-server. The communication between gateway and network-server is
IP-based, while the communication between gateways and motes uses the LoRa
(Long Range) modulation.

The role of network-server is to govern and optimise the interactions between
motes and gateways and provides the mote’s packet to applications in the applica-
tion server. So among other tasks, it has to filter duplicated packet received from
gateways and find the best gateway to deliver an application message to a mote.
The LoRaWAN protocol, Figure 1.3, is composed of two layers: the physical layer
and the MAC one.

1.2.1 Physical Layer

The physical layer implements the LoRa protocol allowing communication until 15
Km of distance, with a data rate from 0.3 Kb/s to 11 Kb/s with LoRa modulation,
and to 50 kb/s with FSK modulation. The most important parameters for LoRa
modulation are Bandwidth (BW), Spreading Factor (SF) and the Code Rate (CR).
The SF value is in the range from 7 to 12 and represents the number of bits in
each symbol. It is an important parameter because it defines: the maximum

1https://lora-alliance.org/sites/default/files/2018-07/lorawan1.0.3.pdf

https://lora-alliance.org/sites/default/files/2018-07/lorawan1.0.3.pdf

6 CHAPTER 1. BACKGROUND

Figure 1.2: LoRaWAN network architecture [12] with all the fundamental ele-
ments. Straight lines represent IP-based communication, while the circle around
the gateways is the communication range based on LoRa modulation.

packet length, the range of communication, and the bit rate. SF7 means longest
packet length and highest bit rate, but shortest communication range; while SF12
means shortest packet length and lowest bit rate, but longest communication range.
Another important aspect of SF is that concurrent transmissions with different SF
will not produce any collision between them. Finally, LoRa uses the regional
Industrial, Scientific and Medical (ISM) band. This means low network cost, but
limitation of the duty cycle to maximum 1% for each channel imposed from the
European telecommunications standards institute (ETSI).

1.2.2 MAC Layer

The MAC layer regulates the communications between motes and gateways. Up-
link communication (mote to gateways) uses an ALOHA-like protocol. Motes start
a broadcast communication when they need without checking the channel state,
but applying a small random delay. For downlink communication (gateway to
mote), in order to reduce the battery consumption of the motes, and respect la-
tency requirement of different applications, the layer defines three different classes
of devices (A, B and C) with different behaviours. Devices of class A define two
fixed receiving windows after each uplink communication, with the second one
opened only if the mote receives a communication during the first. This class has
the lowest battery consumption with the drawback of the highest latency. Devices
of class B allow to define more receiving windows, but it is necessary to keep motes
and server synchronised via synchronised Beacons. This class has lower latency

1.3. DINGNET: A LORA-OVER-MQTT NETWORK AND SIMULATOR 7

Figure 1.3: LoRaWAN protocol stack [1] where brown rectangle represent the
physical layer and the azures rectangles the MAC one.

than class A but also higher battery consumption. Finally, devices of class C al-
ways allow to receive messages except while executing an uplink communication.
This class has the lowest latency, but the highest battery consumption.

1.3 DingNet: a LoRa-over-MQTT network and

simulator

The LoRaWAN protocol does not standardise communications after the gateways,
but only defines that they are IP-based. LoRa-over-MQTT identifies a network
where the communication between gateways and network-server is implemented
using the publish-subscribe pattern via MQTT protocol, and the application server
provides data to applications in different ways, but at least via MQTT. An example
of LoRa-over-MQTT architecture is ChirpStack2, see Figure 1.4, that is an open-
source LoRaWAN Network Server stack to manage all the LoRaWAN network
components and provides data to applications in several ways.

DingNet3 is a real LoRaWAN network of class A composed of 11 gateways
that cover the entire city of Leuven and adopts a LoRa-over-MQTT architecture.
DingNet allows adding users’ devices and applications to the network for research

2https://www.chirpstack.io/ (Jan 2020)
3https://admin.kuleuven.be/icts/english/services/dingnet (Jan 2020)

https://www.chirpstack.io/
https://admin.kuleuven.be/icts/english/services/dingnet

8 CHAPTER 1. BACKGROUND

Figure 1.4: Example of the LoRa-over-MQTT architecture of ChirpStack. [9]

purposes. The DingNet Simulator [16] allows for simulation of applications in
different scenarios before deploying them in the real network reducing costs and
time for the deployment. It is a time-driven simulator focused on the simulation
of LoRa communications between gateways and motes while the remainder of
the network is simulated with a higher-level of abstraction. The simulator allows
configuring the environment of the network in terms of gateways, motes, and
typology of areas that compose the environment. Different terrains are represented
in the simulator as different type of area; like forest, open space, and building area.
Each area differs for how much the transmission power is decreased; for example,
a building area decreases power more than an open space one. Motes can be
stationary, but also mobile with the possibility do define their path. For each mote
is possible to configure all the most important parameters for a LoRa transmission,
like bandwidth, spreading-factor and transmission power. The simulator for each
transmission computes the time-on-air based on the previous parameters and the
packet size. Then it applies an algorithm to decrease the transmission power
based on the distance from the source and typology of areas that the transmission
is going through to find all the gateway inside the communication range. Every
transmission is considered arrived at a gateway when enough time (time-on-air)
has passed from the beginning of the transmission. Finally, the gateway applies
a particular algorithm to check if the transmission collided with others. If not
it publishes the received packet on the MQTT broker for the applications. At
the end of each simulation is possible to export different information for mote’s
transmission:

• received power from the gateways (dBm);

• time on air (ms);

• used power for the transmission (dBm);

1.3. DINGNET: A LORA-OVER-MQTT NETWORK AND SIMULATOR 9

• used energy for the transmission (mJoule);

• collision with others transmissions (true/false).

Nowadays, the simulator is used mainly to simulate self-adaptive applications
in large scenarios to increase the number of transmissions correctly delivered to at
least one gateway reducing the energy consumption from the motes.

Concluding remarks. This chapter introduced the aggregate computing
paradigm, discussing its benefits for pervasive and heterogeneous systems, and
the language Protelis. Then it introduced LoRaWAN, which is one of the main
LPWAN protocols. Finally it introduced DingNet a LoRaWAN network and its
simulator.

Chapter 2

Contribution

This chapter explains the contribution of this thesis. Section 2.1 starts exposing all
the work done to extend and evolve the DingNet simulator; Section 2.2 illustrates
the work done to support the execution of aggregate computing programs over the
DingNet simulator, and in particular Protelis programs.

2.1 Extension and evolution to DingNet

This section exposes all the improvements and extensions applied to the DingNet
simulator to achieve an extendible and configurable simulator, which simulates the
entire LoRa-over-MQTT network. Previous work on the simulator were focused
mainly on three areas:

1. LoRaWAN communications: simulation of bi-directional communication
between LoRa motes and LoRa gateways;

2. GUI: provide a good user interface that simplifies the configuration of sim-
ulations and allows the user to see the simulations results;

3. Self-adaptive applications: evaluation of algorithms to reduce the en-
ergy consumption for LoRa motes communications, but ensuring that each
transmission is received at least from one gateway.

The following part of the section discusses the contribution to the DingNet simu-
lator (part of this work has been done in collaboration with Federico Quin, a PhD
student at KU Leuven).

11

12 CHAPTER 2. CONTRIBUTION

2.1.1 Platform requirements

This section illustrates the identified requirements that the platform DingNet has
to satisfy to enable simulations of applications over the LoRa-over-MQTT net-
work stack. The requirements are grouped in functional requirements, and non-
functional requirements.

Functional requirements

The functional requirements are the following:

• Entities displacement and motes mobility: the simulator has to allow
to displace both the entities (gateways and motes) in the entire simulation
region. It has also to allow the mote mobility in each direction to emulate
realistic movement;

• LoRa transmission: the simulator has to simulate the communication
between gateways and motes. This means emulate the propagation of LoRa
transmissions based on the source configuration. It has to compute the
transmission power decay, considering the distance from the source and the
terrains crossed by the signal, in order to identify the gateways that receive
the transmission. Finally, it has to be able to detect the collisions among
different transmissions;

• Configuration of the LoRa transmission parameters: the platform
has to support the configuration of the parameters that effect the LoRa
transmissions, verifying the validity of their values. These parameters are
transmission power, spreading factor, bandwidth, and code rate;

• Communication protocol gateways-motes: the MAC layer of the
LoRaWAN protocol defines an ALOHA-like protocol to regulate the com-
munication from mote to gateways, and three different interaction schemes
to standardise the communication from gateway to mote. The simulator has
to implement the simplest type of ALOHA protocol and adopt the interac-
tion schema for the devices of “class A” as default. However, it has to allow
to change these protocols in future to evaluate the simulated systems with
different ones;

• Managing incoming message mote-side: the motes entities are able to
receive packets from the network-server for network administration purposes,
and from the applications. So, the platform should allow to manage the
incoming packets mote-side, applying actions with side effect to the mote or
to the environment in accord with the packet payload;

2.1. EXTENSION AND EVOLUTION TO DINGNET 13

• Application layer: it is the layer that includes the interaction between
the gateways and the applications, and the involved entities. This platform
want to simulate LoRaWAN networks with LoRa-over-MQTT architecture,
so the interactions between gateways and application are intermediated by
the network-server and they are based on MQTT. This layer can be composed
by several services (for example the geolocation one), but the only mandatory
is the network-server;

• Time-frame simulations: the platform has to allow the user to perform
simulation with a predetermined duration even for more than a day. It is
useful to verify how the system reacts in different scenarios and conditions
that can happen in large time-frames;

• Configurable sensors: the behaviour of the simulated applications can
depend from the sensed data received from the motes. So, it is important
provide configurable sensors, that guarantee to the user to define the values
to produce in each zone of the simulated region in every instant. This is
useful to simulate the applications in different scenarios, and to assure the
simulation reproducibility;

• Transmission statistics: the simulator should be able to export statistics
about the transmissions to evaluate and compare the different solutions sim-
ulated. Information of interest are the transmission received power from the
gateways, the energy consumed by the motes, the number of collision among
transmissions, the time on air of each transmission, and the transmission
source position.

Non-functional requirements

The identified non-functional requirement concerns with the project maintain-
ability. In this context techniques to automatise the project life cycle have to be
applied, and mainly to automatise dependency management, project build, exe-
cution of all the tests in fresh environments, enforce adoption of a common style,
and optionally also deployment of the project. Automatise all these activities is
useful to increase the productivity and maintain a good quality project over time.

2.1.2 Problem analysis and Design

This section discusses the requirements above illustrated and exposes the adopted
solution. Requirements as simulation of LoRa transmissions, configuration of their
parameters, and export of transmission statistics are already satisfied, so they are
not further discussed.

14 CHAPTER 2. CONTRIBUTION

Entities displacement and motes mobility

DingNet already allows these features, but with limitations due to the spatial
reference system (SRS) of the simulation environment. The SRS is a discrete one
and this leads to:

• low precision in displacement of gateways and motes in the environment;

• mobile motes can move only in horizontal or vertical directions.

In order to increase the precision for the displacement of the entities and move
mobile motes in each direction with straight lines, the discrete SRS is converted
to a continuous one.

Communication protocol gateways-motes

Actually the simulator encapsulates the communication protocols of gateways and
motes inside the class NetworkEntity , that is their base class. This does not allow
to evaluate simulated systems with different protocols, but more important this
means that gateways and motes can apply only the same protocol. The architec-
ture proposed in Figure 2.1 generalises the behaviour of the two entities export-
ing the protocol logic outside the base class with the two strategies Sender and
Receiver . It grants to define different protocols for each entity allowing the motes
to apply a ALOHA-like protocol, and to regulate the communication gateway-
mote with the interaction schemes defined by the classes of device. Finally, it also
allows to evaluate the network behaviour with several variants of protocols.
Sender interface defines methods to send a packet, check the transmission sta-
tus, and manage parameters that influence the transmission; while the Receiver
interface defines methods to receive incoming transmissions, and allows to the
NetworkEntity to specify how manage them.

Managing of incoming message mote-side

The simulator partially supports the managing of incoming message mote-side: it
is designed only the structure to manage the MAC Commands (special commands
exchange between network server and motes for network administration) motes
side. The architecture illustrated in Figure 2.2 is designed to complete the man-
aging of incoming messages to a LoRa mote, allowing to use all the information
contained in the payload. ReceivedPacketStrategy defines the strategy to use to
store all the incoming packets and manage the pending queue of packets to con-
sume. ConsumePacketStrategy defines how to use the information in the payload
to produce a side-effect on the LoRa mote or on the environment. Every mote

2.1. EXTENSION AND EVOLUTION TO DINGNET 15

Figure 2.1: NetworkEntity architecture with Sender and Receiver interfaces.

can have a list of ConsumePacketStrategy , which are performed in an ordered way
with strategies that can use or ignore the packet. Figure 2.2 shows two imple-
mentations of ReceivedPacketStrategy , and none of ConsumePacketStrategy . This
because the first strategies are cross domain while the second ones are domain
specific in respect of the simulated application.

Figure 2.2: Architecture to manage incoming packets mote side

16 CHAPTER 2. CONTRIBUTION

Application layer

The actual application layer provided by DingNet connect directly gateways and
applications without the mediation of the network-server, and without use MQTT
as communication technology. So, in order to obtain the desired simulation plat-
form, and provide realistic simulation over the LoRaWAN stack it is necessary to
implements both.

MQTT communication

MQTT has to be used as communication technology for both the bi-directional
communications gateways to network-server and network-server to applications,
but there are no requirements that obligate to use the same broker for both the
interactions. During the problem analysis phase the following requirements were
identified for the MQTT client:

Req1. allow simulations with different client abstractions, optimisations, and realise
a simulator technology independent for MQTT client’s implementation;

Req2. avoid MQTT messages conversions to domain specific objects at each topic
subscription.

In order to fulfil Req1 it is necessary to allow to switch client implementation in
a simple and fast way (for example from a mock implementation to a real one).
To do so the interface MqttClient is defined, which allows to avoid to use directly
a particular implementation. It represents a MQTT client and it provides all the
basic functionalities to interact with a MQTT broker. This interface grants to
use custom implementations of MQTT client or external libraries implementing a
wrapper extending the interface. In order to satisfy Req2 it is necessary to delegate
conversions from and to the MQTT message type to the client, which interacts
with the broker and knows how manipulates them. This requires to specify the
receiving message type during the topic subscription phase. Figure 2.3 shows the
MqttClient interface and its actual available implementations.
The designed architecture is not valid only for this project, but it is reusable in
different projects, so it is decided to export it as an external library. The library is
actually available on github1 and a release on Maven Central Repository is planned
shortly.

Network server

The network server is the entity appointed to regulate the communication between
gateways and applications, but there isn’t any specification that defines which tasks

1https://github.com/Placu95/MqttClientWrapper

https://github.com/Placu95/MqttClientWrapper

2.1. EXTENSION AND EVOLUTION TO DINGNET 17

Figure 2.3: MqttClient interface and its available implementations. Thanks to
addSerializer and addDeserializer methods it is possible to define custom strategies
to convert messages for each client.

has to perform and which is its architecture. Different providers propose different
solutions. The solution designed for the simulator is composed of an autonomous
simulator entity that performs two tasks:

1. filtering of duplicated messages in communication from gateways to applica-
tions;

2. selections of the best gateway to deliver an application’s message to a LoRa
mote. Default strategy to choose the gateway selects the gateway that has
received the last transmission from the LoRa mote with more transmission
power, but it is possible to change it defining different strategies.

Figure 2.4a introduces the new communication schema from a gateway, which
receives a LoRa transmission, to the application; while Figure 2.4b introduces the
new communication schema from an application, which wants to send a message
to a LoRa mote, to the selected gateway that performs the LoRa transmission.

Time-frame simulations

The platform actually does not support time-frame simulations, but only single
run simulations, and multiple run simulations. A single run simulation finishes
when all the mobile LoRa motes arrive at the respective destination, while a multi
run consists simply in run more time a single run simulation. So, it is necessary
to define a new type of simulation that satisfy the requirement. Another problem
is the impossibility to perform simulation of more than a day dues to the actual

18 CHAPTER 2. CONTRIBUTION

(a) Communication from gateways
to application

(b) Communication from application
to gateways

Figure 2.4: Communications between gateways and applications

time representation. Timed run is the new type of simulation introduced to go
beyond the limitations of the single run one. This type of simulation differs from
the single run only for the termination condition. The condition requires to define
the duration of the simulation, so the condition evaluates it as finished when the
defined time is passed. In order to enable simulation of more than a day, it is

Figure 2.5: Time representation that provides all the basic functionalities.

2.1. EXTENSION AND EVOLUTION TO DINGNET 19

necessary to change the time representation from the java class LocalTime to a
new one. The new time representation is proposed in Figure 2.5. It does not enable
only multi-days simulation, but also it simplifies the time manipulation providing
methods for the different unit of measure, including the milliseconds that are the
default one used by the simulator.

Configurable sensors

DingNet already defines its own concept of sensor defined by the interface
SensorDataGenerator , and some its implementations. The problem is that miss a
support to configure with low effort the values that the sensors has to produce. In
order to solve the problem, it wants to define an extendible architecture starting
from the sensor interface already defined, which grants to configure the values to
produce. The idea is to have sensors that produce values in a configurable way
splitting the region of simulation in a matrix of configurable dimension. So for
each cell of the matrix it is defined a list of configurations. Each cell’s configura-
tion defines the starting time of validity and the range of producible values. Then
starting from this configuration is produced a tricubic spline interpolation func-
tion where the three variable are: the two coordinates of the matrix and the time;
while the result is the corresponding sensor value. Finally, when a mote requires
a new value to the sensor, it produces the value considering the mote position and
the simulation time. The result is that each sensor inside the same cell produces
the same value at the same time. The architecture of this sensor is showed in
Figure 2.6, and:

• Cell represent the cells that compose the configurable matrix;

• RangeValue is the range of validity for the value to produce;

• RangeDataGenerator is the abstract class that loads the configuration
file of the sensor, generates the interpolating function and produces values
for LoRa motes. It requires only to define the type of the two interfaces Cell
and RangeValue.

In order to define new configurable sensors it is require only to implement the
RangeDataGenerator abstract class specifying the type of Cell and RangeValue.
The actual file format for the sensor configuration file is toml2, but thanks to the
konf 3 library (used to parse the file) it will be possible to change the file format
with low effort.

2https://github.com/toml-lang/toml (Feb 2020)
3https://github.com/uchuhimo/konf (Feb 2020)

https://github.com/toml-lang/toml
https://github.com/uchuhimo/konf

20 CHAPTER 2. CONTRIBUTION

Figure 2.6: Architecture of the configurable sensor

Project maintainability

In order to automatise the dependency management, and the project build was
evaluated two build tool: Apache Maven and Gradle. Gradle is preferred to Apache
Maven for several reasons4. The main ones are: performance, highest readability
of the project’s configuration file due to a less verbose syntax, and better script
support (with the possibility to write them in kotlin with Gradle Kotlin DSL).
Instead, Travis-CI 5 is chosen as continuous integration service to run a new build of
the project and execute all its test in fresh environments after every change. Travis-
CI is chosen because it is free, well integrated with GitHub which hosts the project,
and support to automatise the deployment. It is configured to test the project in
all the main operative systems (linux, windows, and osx) and with different java
versions (11 and 12), but is not configured to automatise the deployment. Finally,
Checkstyle6 is adopted to enforce the use of a common style in the entire project,
and its execution is planned every time Travis-CI performs all the class of tests.

4https://gradle.org/maven-vs-gradle (Feb 2020)
5https://travis-ci.com (Feb 2020)
6https://checkstyle.sourceforge.io/ (Feb 2020)

https://gradle.org/maven-vs-gradle/
https://travis-ci.com/
https://checkstyle.sourceforge.io/

2.2. AGGREGATE PROGRAMMINGOVER A LORA-OVER-MQTTNETWORK21

2.2 Aggregate programming over a LoRa-over-

MQTT network

This section discusses the integration between the aggregate computing paradigm
and a LoRa-over-MQTT network like DingNet; enabling the simulation of aggre-
gate applications on this platform. In order to join these two concepts, at first is
necessary to define how to map the networks entities in an aggregate computing
system, and second identifies potentially additional requirements or limitations
for these entities. In the aggregate computing viewpoint, a system is composed
of a set of distributed heterogeneous computational entities, called nodes. Nodes
execute the same global program and communicate with a subset of them defined
by a neighbourhood policy. While, in a LoRaWAN network the main entities are:
LoRa motes, gateways, and network server; but at application level the only inter-
esting entities are the LoRa motes. So, following the aggregate vision it is natural
to map each LoRa mote in a node that represents its digital twin (from now on
called LoRa node) inside the aggregate system.
On the one hand, LoRa nodes can be considered as generic nodes and they do not
require any specific neighbourhood’s policy, or the use of particular communication
technology to interact with their neighbours. But on the other hand, they have
to support communication via MQTT to enable bidirectional communication with
the respective physical counterparts. Finally, it is necessary to analyse if all the
network entities, or only some of them, can host the aggregate nodes. In [13] the
authors propose a software architecture to enable the execution of aggregate com-
puting programs on LoRa motes, but after evaluations of the proposed solution,
they identify some issues due to the physical limitations of the communication
technology. These issues do not allow to execute aggregate computing program di-
rectly on the LoRa motes, but they are not valid for the other network entities and
there is any paper that identifies others possible issues. Even if all the LoRaWAN
network entities excluded the motes can host the aggregate node (LoRa nodes or
other types of nodes), it is important to specify a limitation for the LoRa nodes.
The LoRa nodes can interact with the respective LoRa mote only following the
interaction schema defined from the LoRa-over-MQTT networks. For example, if
a LoRa node is hosted by a LoRa gateway, that receives directly the transmissions
of the respective LoRa mote, it cannot receive directly the packet, but it has to
wait that the packet is published on the MQTT broker.

2.2.1 Integration of Protelis with DingNet

The only things to do to enable the development of Protelis applications over
the DingNet network is to satisfy the requirement previously identified. That

22 CHAPTER 2. CONTRIBUTION

requirement represents a specific capability of this type of nodes and Protelis
defines a single place appointed to host it, the ExecutionContext . Figure 2.7 shows
the model of the ExecutionContext designed for the LoRa nodes.

Figure 2.7: Model of ExecutionContext for LoRa nodes

For devices spatially embedded and mainly used to transmit sensor values, their
position is a relevant information. So, PositionedExecutionContext is defined,
which extends AbstractExecutionContext (provided by Protelis) implementing the
two interfaces that define functions to obtain spatial information of the device.
LoRaNodeExecutionContext is the basic execution context for a LoRa node that:

• adds support for MQTT communication, satisfying the identified require-
ment;

• encapsulates the subscription to the MQTT topic to receive the sensed values
from the respective LoRa mote;

• manages the received packet adding the sensed values to the knowledge-based
of the node, or modifying its position if the value belongs to the GPS sensor.

The introduced model enables the design of Protelis application composed of LoRa
nodes, but also of not LoRa nodes. Protelis applications with the model illustrated
in Figure 2.8 are not only valid for the DingNet network but for all the LoRa-
over-MQTT networks that provide LoRa mote’s data on a MQTT broker. In
order to execute Protelis applications on the top of DingNet simulator, enabling
the simulation of Protelis applications composed of LoRa nodes, one last small
operation is necessary: unify the concept of time. This operation is necessary
because the behaviour of every Protelis node depends also from the time in which
their execution is scheduled, and the LoRa packets are received. To do this it
is sufficient wrapping the LoRaNodeExecutionContext using the simulator time
concept.

2.2. AGGREGATE PROGRAMMINGOVER A LORA-OVER-MQTTNETWORK23

Figure 2.8: Abstract model of a Protelis application composed of LoRa nodes

Concluding remarks. This chapter discussed the main works done during this
thesis. First it exposed the main improvements and evolution on DingNet simu-
lator. Then it illustrated the support to simulate Protelis application inside the
DingNet simulator.

Chapter 3

Case studies

This chapter illustrates two case studies developed on the DingNet simulator.
The case study in section 3.1 shows the DingNet platform after its extension.

The main new features used are the application layer that enables the communica-
tion between LoRaWAN gateways and applications, the managing of the incoming
messages mote-side, and the new type of sensor. To do so, a system that requires a
bi-directional communication between the application and the motes, and with the
application behaviour dependent on the payload of the motes packets is conceived.

The case study in section 3.2 exploits all the new features added in the DingNet
simulator. It uses the integration for the execution of Protelis application over
DingNet, and the new type of simulation (TimedRun) in addition to the features
already used in the previous case study.

3.1 Case study: Pollution-aware user navigation

Leuven is a cycling city where most of the inhabitants and students use daily
their bike to move across the city. In this context we want to realise a system
able to provide to the user the healthiest route to reach a destination. The route
generation will be based on the air quality level, based on the CAQI index1, of
the crossed areas to reach the destination. The user, in order to obtain the route,
has to require it to the application deployed in a remote server. The system uses
data received from the sensor network to create a city map of quality air. Then,
the application has to define the route to a destination that optimise the trade-
off between air quality and length of the route. The system should be able to
recompute the best route if the environment condition change, and communicate
it to the user. The sensor network can be composed of two types of sensors:

1https://www.airqualitynow.eu/download/CITEAIR-Comparing Urban Air Quality across
Borders.pdf

25

https://www.airqualitynow.eu/download/CITEAIR-Comparing_Urban_Air_Quality_across_Borders.pdf
https://www.airqualitynow.eu/download/CITEAIR-Comparing_Urban_Air_Quality_across_Borders.pdf

26 CHAPTER 3. CASE STUDIES

• Fixed: positioned along the roads and at intersections;

• Mobile: placed on public transport or bicycles.

All the sensors have to be deployed in a LoRaWan network. Similarly also the
user device, which interacts with the application to require the route, has to use
the LoRa technology.

3.1.1 Design of the system

Figure 3.1 shows the high level architecture of the system, and introduces the
main entities. The main entities are the sensors devices, the user devices, and
the routing application. As requirement both sensors devices and user devices
have to be displaced inside the LoRaWAN network and use the LoRa technology
to communicate with the routing application. Using the DingNet simulator to
simulate the LoRaWAN network:

• the routing application is mapped in a generic application deployed in the ap-
plication server that communicates with the LoRaWAN network via MQTT;

• the sensor devices, which have to send only packet with the sensed value,
can be mapped in the Mote simulator entity;

• the user devices are special devices, because they do not send only packets
with the sensed value. They have also to require the route for a destination
and be able to manage the received packets with the route. Actually there
is not simulator entity with these specific abilities, so it will be necessary to
define it.

Figure 3.1: High level architecture of the system.

3.1. CASE STUDY: POLLUTION-AWARE USER NAVIGATION 27

Interaction between application and devices

If on the one hand the transmissions from the devices (both sensor and user) to
the application are in compliance with the maximum packet’s length defined by
the LoRaWAN standard (1 byte for packets with the sensed value, and 16 bytes
for the packet to require the route); on the other hand it is impossible to send the
packet from application to the user device with the entire route, so the only way
to do it is to split the packet. In order to send the entire route to the user device,
two approaches are available:

1. define a specific interaction protocol to send all the packets with the entire
route to the user device immediately after its computation;

2. send a packet with part of the route only when the user has finished the
previous part of the route.

Considering also the requirement to recompute the route if the environment con-
dition change, the second option is chosen, enabling to recompute the route before
send its next part.

User device model

The user device has to perform three activity: require the route, send updates of
its position, and manage the incoming packets. If on the one hand the last two
activities can be performed also from a Mote, on the other hand it cannot require
the route. For this reason in Figure 3.2 a new entity simulator is introduced,
the UserMote. It extends the Mote adding the logic to require the route when
needed sending a packet with starting and destination positions. Then to manage
incoming packets are chosen MaintainLastPacket as the strategy to store them
until that they are consumed, and ReplacePath as the only strategy to consume
them. It consumes each packet updating the user route in accord with the packet
payload until the route is completed. To perform the last activity, send updating
of the user position, is only necessary to add the GPS sensor to the UserMote, and
send it when the user is closer to the sub-route destination.

Routing application

The application to find the best route implements an A-star algorithm on the graph
of the streets of the city. The weight of the edges of the graph corresponds to the
distance between the two points multiply for a factor that represents the air quality
level in that street. The values sensed by the sensors are retrieved subscribing to
the topics where the LoRaWAN network publishes them. The route is sent to

28 CHAPTER 3. CASE STUDIES

Figure 3.2: UserMote model.

the user mote publishing the massage with sub-route on its receiving topic. The
application recomputes the best route only when the user device communicates
its new position and if some environment condition is changed from the previous
computation.

3.1.2 Simulation in DingNet

Here, simulations of two possible small scale scenarios are illustrated. The simu-
lations are conducted over the city of Leuven with the DingNet simulator. First,
the setup of the two simulated scenarios is presented; then the simulation results
discussed in a qualitative way based on simulation snapshots.

Setup

Both scenarios has a common configuration and differ only for the starting position
of the user. The environment is composed of:

• 2 gateways;

• 4 fixed sensors equipped with a set of sensors and send directly the final
CAQI index value;

• one mobile sensor that follows a path like a public transport. It assumes the
same behaviour of a fixed sensor, but is equipped also of a GPS sensors;

• user that requires a route to a destination.

All the types of LoRa devices are configured in a way to try to reduce collision
between transmissions. In the first scenario the user starts from the south of the
city, which is the most polluted in the simulation configuration; while in the second
scenario the user starts from the north of the city.

3.1. CASE STUDY: POLLUTION-AWARE USER NAVIGATION 29

Results

Figure 3.3 and Figure 3.4 show snapshots taken from the two simulated scenarios.
The transparent layer represents the air quality level in that location based on the
received sensor value. The mote number 4 is the mobile sensor and the red line is
its route. The user is identified by the cyclist. Its line (route) is of two colours:
blue and red. The blue one is the complete route computed by the application,
while the red one is the sub-route received by the user until that time.

Figure 3.3 shows three snapshots of the first simulated scenario. The first snap-
shot shows the initial situation and the first computed route. The second snapshot
shows how after an environment conditions change, the route is recomputed with
a longer one, but considered better by the application, combining distance with
pollution. So the user has received a new sub-route of the new best route that
starts from its actual position. Finally, the last snapshot shows the user arrived
at destination.

Figure 3.3: Three snapshots of a simulation run with changing of the route dues
to the change of the environment conditions.

Figure 3.4 shows three snapshots of the second simulated scenario. In this case the
user best route never changes because the change of the environmental conditions
do not affect the areas crossed by him.

Although they are simple simulations with few sensors and only one user de-
vice, it can be deduced that use LoRa technology also for user devices is possible
only in certain scenarios. In these scenarios the number of transmissions neces-
sary to transmit all the route is high, so according to LoRaWAN limitations it
is possible only for short routes. Moreover considering a real scenario where the
number of user is higher (es. more than one thousand) the network congestion will
increase with also the probability of collisions among transmissions, which require
re-transmission worsening the situation.

30 CHAPTER 3. CASE STUDIES

Figure 3.4: Three snapshots of a simulation run without changing of the route
despite the change of the environmental conditions.

3.2 Case study: Monitoring and control of air

quality

Nowadays air pollution is a very common problem of cities of all over the world.
Two of the main strategies used to reduce the emission of polluting gas are traffic
bans in strategic city’s areas, and maximum temperature allowed in public and
private building heating.

In this context we want to realise a monitoring system for the air quality based
on the CAQI index, which is able to apply strategies to maintain under control
the air pollution level. The sensor network is composed of a set of fixed sensors
scattered around the city, and mobile sensors placed on public transports (like bus
or public bicycles). All the sensor devices are equipped at least with a sensor for
the particular matter 10 (PM10). The idea is to displace strategically the fixed
sensors to achieve good city coverage, using mobile sensors for its refinement and
to reduce reading errors of the fixed ones.

In a first step to reduce air pollution it has been chosen to control the maximum
temperature allowed for the heating of buildings. The idea is to allow the system
to manage the building heating systems control devices (from now on building
devices). So the system can set the maximum reachable temperature based on
pollution level of its area.

All the sensors have to be displaced in a LoRaWAN network to communicate
their sensed data to reduce their cost and the cost for their maintenance. Building
devices have not any particular requirements, they have not problems of energy
consumption because they can be connected to the power line of the building. The
same policy can be adopted for the Internet connection, this allows to avoid to
use LoRa technology reducing the number of LoRa devices in the network and
increasing their communication capability.

3.2. CASE STUDY: MONITORING AND CONTROL OF AIR QUALITY 31

3.2.1 Design of the system

Aggregate computing is a good approach for this system for several reasons. First
of all, it is a heterogeneous system composed for at least two types of devices (sen-
sor and building device) with different capabilities like connectivity, computational
resources, and their interaction with the environment. Furthermore it is composed
of an high number of devices (one device building for each house of the city, a set
of fixed sensors, and a set of mobile ones) so scalability can be a problem. But
with aggregate computing is possible to solve it scaling horizontally and moving
the computational node in different network devices without the need to change
the program. Figure 3.5 shows a high level architecture of the system.

Figure 3.5: High level architecture of the system

Designing the system with aggregate computing is important to model the two
different kinds of devices and the communication layer of the aggregate nodes.

Sensors and building devices models

The sensor devices are LoRa motes, so they are mapped in Mote inside DingNet,
while, according to section 2.2.1, in the aggregate application they can be mapped
in simple ProtelisLoRaNode. The building devices are not LoRa motes, so they
do not require to be mapped in ProtelisLoRaNode and they can be generic Pro-
telis nodes. Anyway it is decided to map them in BuildingNode, which extends
ProtelisLoRaNode, Figure 3.6a. This because:

• the building node has not a physical mote then its topic will never receive a
MQTT message, so it has not any overhead;

• all the types of nodes have a base ExecutionContext where introduce func-
tions domain specific;

• if in the future they will have a physical mote, it will not be necessary to
change the system architecture.

32 CHAPTER 3. CASE STUDIES

Figure 3.6b completes the model of the entities with their ExecutionContext .
SensorExecutionContext updates the knowledge-base of the node computing the
CAQI index at each new sensed data received. It contains also all the methods
for the logic domain specific. BuildingExecutionContext extends it adding the
capability to modify the temperature in its physical counterpart.

(a)
(b)

Figure 3.6: Model of the sensor and building entities.

Interaction between Protelis nodes

In order to complete the Protelis backend is required to implement the communi-
cation layer. It has to:

1. define the neighbourhood policy to determine the neighbours of each node;

2. design and implement the communication between the Protelis nodes.

As neighbourhood policy a distance based one is chosen. This policy is chosen
considering the application domain, in fact the behaviour of each node depends
on the environment state in its area.
MQTT is chosen to implement the NetworkManager and enable the communica-
tion between Protelis nodes. MQTT is chosen because it is a lightweight protocol
and enables devices to send the same message to more devices with only one com-
munication. This is very important in a large scale system where the nodes are
displaced in many places and the connectivity can go down.
This system is composed also of mobile nodes and when one node change position
its neighbours can change, as the neighbourhood of other nodes. So the defini-
tion of the neighbourhood cannot be done only at configuration time, but it has

3.2. CASE STUDY: MONITORING AND CONTROL OF AIR QUALITY 33

to performed also after. The NeighborhoodManager is an autonomous entity de-
fined to manage the neighbourhood of all the nodes. It receives the update of the
node position, recomputes the neighbourhoods, and communicates them to all the
nodes. This entity allows also to modify the composition of the system at run-time,
adding or removing entities with all the neighbourhood updated automatically.

3.2.2 Protelis program

After discussing the design of the Protelis back-end, this section introduces the Pro-
telis program for the global behaviour of the system. The program, visible in List-
ing 3.1, requires only 25 lines of code. Methods decreaseTemp and increaseTemp
modify the temperature of the building devices of a delta temperature every half
an hour. These methods are built on top of the function cyclicFunction, which is
contained in the developer API of the aggregate stack. Lines 16 - 23 first create
a computational field of sensed values and distances from the respective sensor.
Then they manipulate it defining a field of maximum temperature allowed for each
device based on CAQI index. The final part of the program defines the target tem-
perature for each device and selects the correct method to achieve it.

3.2.3 Simulation in DingNet

Here, a simulation of a possible scenario is illustrated. The simulation is con-
ducted over the city of Leuven with the DingNet simulator. First, the setup of
the simulated scenario is presented; then the simulation results are discussed in a
qualitative way based on simulation snapshots.

Setup

The configuration of the simulation provides for an environment composed of the
following entities:

• 9 of the 11 DingNet network gateways (the others two are outside of the
simulation region);

• 8 fixed sensors equipped with the PM10 sensor;

• 2 mobile sensors equipped with PM10 and GPS sensors;

• 3 building devices displaced in three different areas of the city.

All the sensors are configured to send a new measurement every hour, according
to the CAQI index specifications for this polluting gas. The low number of mobile
sensors and building devices is only due to visualisation purposes.

34 CHAPTER 3. CASE STUDIES

Listing 3.1: Protelis program for the monitoring application�
1 module protelis:homeHeating_timer

2 import it.unibo.acdingnet.protelis.util.Const.ProtelisEnv .*

3 import org.protelis.lang.datatype.Option .*

4 import protelis:state:time

5 import protelis:utility

6

7 public def decreaseTemp () = env.put(CURRENT_TEMP , rep (

8 v <- env.get(CURRENT_TEMP)) {

9 cyclicFunction (1800, { roundToDecimal(v - self.getDecreaseDelta

()) }, v)

10 })

11 public def increaseTemp () = env.put(CURRENT_TEMP , rep (

12 v <- env.get(CURRENT_TEMP)) {

13 cyclicFunction (1800, { roundToDecimal(v + self.getIncreaseDelta

()) }, v)

14 })

15

16 let pollutionField = nbr(mux(env.has(IAQLEVEL)) {

17 optionally ([self.nbrRange (), env.get(IAQLEVEL)])

18 } else {

19 absent ()

20 })

21 let sensorValues = foldUnion ([pollutionField]).filter { it.

isPresent () }.map { it.get() }

22 let maxTemperature = self.temperatureByPollution(

23 idw(sensorValues))

24 optionally(env.get(DESIRED_TEMP , JAVA_NULL))

25 .map { mux(it < maxTemperature) { it } else { maxTemperature } }

26 .map {

27 if(it < env.get(CURRENT_TEMP)) { decreaseTemp }

28 else { if(it > env.get(CURRENT_TEMP)) {

29 increaseTemp } else { emptyFun } }

30 }

31 .orElse(emptyFun).apply ()� �

3.2. CASE STUDY: MONITORING AND CONTROL OF AIR QUALITY 35

Results

Figure 3.7 shows three snapshots taken from a simulation run of five days. The
transparent layer represents the air quality level, which is obtained applying an
inverse distance weighting on sensed values in the range of 1Km. Green colour
means “very low” level, while red colour means “high” level. The two motes with
a red line are the mobile sensors, while the others are the fixed ones. The building
devices are represented with a black dot and a text with pattern “X/Y/Z”. X is its
current temperature, Y is its desired temperature, and Z is its maximum reachable

Figure 3.7: Three snapshots of a simulation run.

36 CHAPTER 3. CASE STUDIES

temperature based on pollution level. The three snapshots show how the pollu-
tion changed during the five days of simulation, and how the building maximum
reachable temperature is adapted consequently. In particular the building in the
north of the city has always the desired temperature greater than the maximum
reachable. The building in the centre of the city has first the desired temperature
greater than the maximum reachable, but after the pollution change it is the op-
posite and the building reaches its desired temperature. Finally, the building in
the south has always the desired temperature lower than the maximum reachable.

Concluding remarks. This chapter illustrated two case-studies developed on
the DingNet simulator. The first one showed the new application layer of the simu-
lator and the new main features. It confirmed the validity of LoRaWAN as enabling
technology for a sensor network and its limits regarding the communication from
application to LoRa devices. The second case study showed an application devel-
oped using all the features of the platform and proved its validity as a platform to
simulate Protelis applications over a LoRaWAN network.

Chapter 4

Wrap-up

4.1 Conclusion

This thesis focus on providing a platform to simulate aggregate systems over
LoRaWAN networks. At first, the focus has been on the improvement and the
extension of the DingNet simulator, by refining its model and adding new fea-
tures. After that, the support to simulate aggregate systems inside it has been
designed. During this phase the focus has been on producing a platform that
allows to move the simulated system to a real deployment with a low effort. Fi-
nally, two different case studies have been illustrated as a proof of concept of all
the improvements and extensions introduced. A demo of the first case study was
showed during the Day of Science in Flanders to introduce the LoRaWAN tech-
nology receiving a lot of attention. The second case study was actually evaluated
only in a qualitative way, but further evaluations of quantitative nature are under
investigation and they will be the subject of a future publication. In the end it is
possible to say that the achieved platform enables the simulation of an aggregate
system over a LoRaWAN network, and allows to move it in a real deploy with a
low effort. To do so only two activities are necessary:

1. change the time conception used from the Protelis nodes, from the simulator
time to the time of the real device that hosts the node;

2. change the MQTT client implementation (if a mock one is in use) and the
MQTT broker address to subscribe to receive the mote packets.

So the entire aggregate system developed for the simulation (Protelis backend and
program) does not require any changing.

37

38 CHAPTER 4. WRAP-UP

4.2 Future work

Several improvements and interesting topics in different areas are available starting
from the work illustrated in this thesis.

One area is to further improve the DingNet simulator. For example, it is
possible to refine the model by simulating the loss of synchronism among the
devices clock. It is possible to do so with different abstraction levels and required
effort; starting with the application of a simple jitter to the clocks, arriving to
introduce a stochastic model like a Markov chain.

Another area concerns the case study exposed in section 3.2. Here it is possible
to evolve the program applying the techniques of machine learning to predict
periods with high pollution and take countermeasures in advance. For example,
it is possible to train a neural network that predicts the pollution level of the
following days, considering the actual situation and the weather forecast.

Finally, an interesting topic deals with an extension of the thesis subject. This
thesis is focused on joining the aggregate computing with the communication tech-
nology LoRaWAN, and provide a platform to simulate this kind of systems. But
real complex pervasive scenarios do not use usually only one communication tech-
nology. So, to support aggregate applications in real use case scenarios, a mid-
dleware is needed to fill the network abstraction gap introduced by the paradigm.
Consequently, the future work is to find an existing middleware that can fill this
abstraction gap complying with the aggregate computing requirements. For ex-
ample, Sentilo could be an interesting starting solution.

Bibliography

[1] LoRa Alliance. What is lorawan, jan 2020. https://lora-alliance.org/sites/def
ault/files/2018-04/what-is-lorawan.pdf.

[2] Giorgio Audrito, Mirko Viroli, Ferruccio Damiani, Danilo Pianini, and Jacob
Beal. A higher-order calculus of computational fields. ACM Transactions on
Computational Logic, 20(1):1–55, January 2019.

[3] Jacob Beal and Jonathan Bachrach. Infrastructure for engineered emergence
on sensor/actuator networks. Intelligent Systems, IEEE, 21:10 – 19, 04 2006.

[4] Jacob Beal, Danilo Pianini, and Mirko Viroli. Aggregate programming for
the internet of things. IEEE Computer, 48(9):22–30, 2015.

[5] Jacob Beal and Mirko Viroli. Building blocks for aggregate programming of
self-organising applications. Proceedings - 2014 IEEE 8th International Con-
ference on Self-Adaptive and Self-Organizing Systems Workshops, SASOW
2014, pages 8–13, 03 2015.

[6] Roberto Casadei, Giancarlo Fortino, Danilo Pianini, Wilma Russo, Claudio
Savaglio, and Mirko Viroli. Modelling and simulation of opportunistic IoT
services with aggregate computing. Future Generation Computer Systems,
sep 2018.

[7] Roberto Casadei, Danilo Pianini, Mirko Viroli, and Antonio Natali. Self-
organising coordination regions: A pattern for edge computing. In Lecture
Notes in Computer Science, pages 182–199. Springer International Publishing,
2019.

[8] Roberto Casadei, Mirko Viroli, Giorgio Audrito, Danilo Pianini, and Ferruccio
Damiani. Aggregate processes in field calculus. In Lecture Notes in Computer
Science, pages 200–217. Springer International Publishing, 2019.

[9] ChirpStack. Chirpstack architecture, jan 2020. https://www.chirpstack.io/
img/graphs/architecture.png.

39

https://lora-alliance.org/sites/default/files/2018-04/what-is-lorawan.pdf
https://lora-alliance.org/sites/default/files/2018-04/what-is-lorawan.pdf
https://www.chirpstack.io/img/graphs/architecture.png
https://www.chirpstack.io/img/graphs/architecture.png

40 BIBLIOGRAPHY

[10] Ferruccio Damiani, Mirko Viroli, and Jacob Beal. A type-sound calculus of
computational fields. Science of Computer Programming, 117, 12 2015.

[11] Alexandru Lavric. LoRa (long-range) high-density sensors for internet of
things. Journal of Sensors, 2019:1–9, February 2019.

[12] The Things Network. Lora network architecture, jan 2020. https://www.the
thingsnetwork.org/docs/network/.

[13] Danilo Pianini, Ahmed Elzanaty, Andrea Giorgetti, and Marco Chiani.
Emerging distributed programming paradigm for cyber-physical systems over
LoRaWANs. In 2018 IEEE Globecom Workshops (GC Wkshps). IEEE, De-
cember 2018.

[14] Danilo Pianini, Sara Montagna, and Mirko Viroli. Chemical-oriented simula-
tion of computational systems with ALCHEMIST. J. Simulation, 7(3):202–
215, 2013.

[15] Danilo Pianini, Mirko Viroli, and Jacob Beal. Protelis: practical aggregate
programming. In Proceedings of the 30th Annual ACM Symposium on Applied
Computing, Salamanca, Spain, April 13-17, 2015, pages 1846–1853, 2015.

[16] Michiel Provoost and Danny Weyns. Dingnet: A self-adaptive internet-of-
things exemplar. pages 195–201, 05 2019.

[17] Usman Raza, Parag Kulkarni, and Mahesh Sooriyabandara. Low power wide
area networks: An overview. IEEE Communications Surveys & Tutorials,
19(2):855–873, 2017.

[18] Mirko Viroli, Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and Danilo
Pianini. Engineering resilient collective adaptive systems by self-stabilisation.
CoRR, abs/1711.08297, 2017.

[19] Mirko Viroli, Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and Danilo
Pianini. Engineering resilient collective adaptive systems by self-stabilisation.
ACM Transactions on Modeling and Computer Simulation, 28(2):1–28, mar
2018.

[20] Mirko Viroli, Roberto Casadei, and Danilo Pianini. On execution platforms
for large-scale aggregate computing. In Proceedings of the 2016 ACM Inter-
national Joint Conference on Pervasive and Ubiquitous Computing, UbiComp
Adjunct 2016, Heidelberg, Germany, September 12-16, 2016, pages 1321–1326,
2016.

https://www.thethingsnetwork.org/docs/network/
https://www.thethingsnetwork.org/docs/network/

BIBLIOGRAPHY 41

[21] Mirko Viroli, Roberto Casadei, and Danilo Pianini. Simulating large-scale ag-
gregate MASs with alchemist and scala. In Proceedings of the 2016 Federated
Conference on Computer Science and Information Systems. IEEE, October
2016.

	Abstract
	Introduction
	Background
	Aggregate Computing
	Field-calculus
	Building blocks operators
	Protelis

	LoRaWAN
	Physical Layer
	MAC Layer

	DingNet: a LoRa-over-MQTT network and simulator

	Contribution
	Extension and evolution to DingNet
	Platform requirements
	Problem analysis and Design

	Aggregate programming over a LoRa-over-MQTT network
	Integration of Protelis with DingNet

	Case studies
	Case study: Pollution-aware user navigation
	Design of the system
	Simulation in DingNet

	Case study: Monitoring and control of air quality
	Design of the system
	Protelis program
	Simulation in DingNet

	Wrap-up
	Conclusion
	Future work

