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“The computer is incredibly fast, accurate, and stupid. Man is
incredibly slow, inaccurate, and brilliant. The marriage of the

two is a force beyond calculation.”
− Leo M. Cherne

To my grandparents
To my family
To my friends





Sommario

L’Elaborazione del Linguaggio Naturale, o Natural Language Processing
(NLP), è un settore dell’Intelligenza Artificiale che si riferisce all’abilità dei
computer di capire il linguaggio umano, spesso in forma scritta e principal-
mente usando applicazioni di Machine Learning e Deep Leaning per estrarre
pattern. In modo più specifico, due sottoinsiemi principali sono Natural Lan-
guage Understanding (NLU) e Natural Language Generation (NLG). Il primo
permette alle macchine di capire un linguaggio, mentre il secondo permette
loro di scrivere usando quel linguaggio. Tale settore è diventato di particolare
interesse a causa dei progressi fatti negli ultimi anni, in seguito all’affermarsi
di nuove tecnologie, quali nuove GPU più performanti, le Google Tensor
Processing Units (TPUs) [11], nuovi algoritmi o altri migliorati.

L’analisi delle lingue è molto complessa, a causa delle loro differenze,
astrazioni ed ambiguità; di conseguenza, la loro elaborazione è spesso molto
onerosa, in termini di modellazione del problema e di risorse. Individuare
tutte le frasi in un testo è qualcosa che può essere messo in pratica con poche
righe di codice, ma capire se una data frase è sarcastica o meno? Ciò è
qualcosa di difficile anche per gli umani stessi e quindi richiede meccanismi
molto complessi per essere affrontato. Questo tipo di informazione, infatti,
pone il problema di una rappresentazione che sia effettivamente significativa.

La maggior parte del lavoro di ricerca riguarda il trovare e capire tutte
le caratteristiche di un testo, in modo tale da poter sviluppare dei modelli
sofisticati che affrontino problemi quali la Traduzione Automatica, il Rias-
sumere ed il Question Answering.
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ii Sommario

Questa tesi si concentrerà su uno dei modelli allo stato dell’arte recen-
temente reso pubblico e ne approfondirà le performance sul problema del
Question Answering. Inoltre, verranno mostrate alcune idee per migliorare
tale modello, dopo aver descritto i cambiamenti importanti che hanno per-
messo il training ed il fine-tuning di grandi modelli linguistici.

In particolare, questo lavoro è strutturato come di seguito:

• Il Capitolo 1 contiene un’introduzione sulle Reti Neurali, il loro uso e
il ruolo che esse svolgono nell’ambito della rappresentazione del testo

• Il Capitolo 2 descrive il problema del Question Answering, alcune dif-
ferenze tra i vecchi ed i nuovi modelli che lo affrontano ed alcuni dei
dataset utilizzati

• Il Capitolo 3 introduce in dettaglio l’architettura del Transformer [41],
il quale può essere considerato il modello alla base di tutti quelli allo
stato dell’arte

• Il Capitolo 4 descrive ALBERT [21], il modello su cui si concentra
questa tesi, e tutte le caratteristiche e decisioni che relative alla sua
progettazione

• Il Capitolo 5 mostra le idee sviluppate per migliorare ALBERT [21],
con un’attenzione principale al training ed ai risultati

• Le Appendici A e B mostrano alcune informazioni riguardo gli hyper-
parameters del modello e del codice.



Introduction

Natural Language Processing (NLP) is a field of Artificial Intelligence
referring to the ability of computers to understand human speech and lan-
guage, often in a written form, mainly by using Machine Learning and Deep
Learning methods to extract patterns. More specifically, two of the principal
subsets are Natural Language Understanding (NLU) and Natural Language
Generation (NLG). The former empowers machines to understand a language
while the latter empowers them to write using that language. It gained a
particular interest because of advancements made in the last few years, due
to the rise of new technologies, such as new high-performing GPUs, Google
Tensor Processing Units (TPUs) [11], new algorithms or improved ones.

Languages are challenging by definition, because of their differences, their
abstractions and their ambiguities; consequently, their processing is often
very demanding, in terms of modelling the problem and resources. Retriev-
ing all sentences in a given text is something that can be easily accomplished
with just few lines of code, but what about checking whether a given sen-
tence conveys a message with sarcasm or not? This is something difficult
for humans too and therefore, it requires complex modelling mechanisms to
be addressed. This kind of information, in fact, poses the problem of its
encoding and representation in a meaningful way.

The majority of research involves finding and understanding all charac-
teristics of text, in order to develop sophisticated models to address tasks
such as Machine Translation, Text Summarization and Question Answering.

This work will focus on one of the recently released state-of-the-art models
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iv Introduction

and investigate its performance on the Question Answering task. In addi-
tion, some ideas will be experimented in order to improve the model, after
exploring breakthrough changes that made training and fine-tuning of huge
language models possible.

In particular, this work is structured as follows:

• Chapter 1 contains an introduction about Neural Networks, their usage
and what role they play in text representation

• Chapter 2 describes the Question Answering problem, differences be-
tween old and new models tackling it and the datasets used

• Chapter 3 introduces in detail the Transformer [41] architecture that
can be considered the basic building blocks of all current state-of-the-
art models

• Chapter 4 describes ALBERT [21], the model this work focuses on and
the necessary steps involved in its design

• Chapter 5 shows the ideas employed in order to improve ALBERT [21],
with an additional focus on training pipeline and results

• Appendices A and B cover significant information such as model hy-
perparameters and code.
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Chapter 1

Neural Networks

A Neural Network is a computational model whose basic building block
is the artificial neuron. At the beginning, its concept was highly inspired to
the biological neuron, as proposed and logically described by McCulloch-Pitts
[25], but later on it shifted to a simplified representation, without taking into
account all the characteristics of the biological neuron, as described in Section
1.1.1. Generally speaking, these small computational units can be grouped
and stacked together to form what is recognised as a Neural Network. As
a consequence, there are several types of them with different characteristics
but one of the main classification is: shallow versus deep.

A network is defined as shallow when it only has one hidden layer between
the input and output layers; it is considered deep otherwise, as shown in
Figure 1.1. This qualification, however, is quite broad as there are no proved
evidence about the number that configures either one type or the other. In
addition, even though this concept has been investigated for decades, it is
still unclear when it is better to use shallow networks instead of deep ones.

According to the Universal Approximation Theorem [7], it is always pos-
sible to create a network capable of approximating any complex relation
between input and output. In particular, any shallow network with a finite
number of neurons in its hidden layer should be enough. However, in the
reality, deep networks are more used because they require less resources.
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2 1. Neural Networks

Figure 1.1: An illustrated comparison of a shallow network (left) and a deep
network (right). Image taken from [28].

Again, a proof about why this happens is still not available and this belief
only follows after a trial-and-error approach on many tasks. In particular, it
is believed deep networks may represent a composition of several functions,
where previous layers encode simpler features on top of which following lay-
ers build more complex ones. For this reason, a neural network can also be
defined as a function approximator which tries to model a function between
the input and output, but depending on millions of parameters.

The following sections will describe in detail many of the concepts that
contribute to define this kind of model and some of its different types.

1.1 Basic Concepts

1.1.1 Neuron

The artificial neuron is the smallest computational unit in a neural net-
work; according to the Figure 1.2, it is easily modelled from the biological
neuron. All the input signals of a neuron coming from its dendrites are joined
with their respective synapse and then, processed by the cell body itself, be-
fore being sent to other neurons through the axon.

1Image taken from https://is.gd/Ry7PcF

https://is.gd/Ry7PcF
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Figure 1.2: The artificial neuron model (right) compared to its biological
counterpart (left)1

Even though this could seem quite difficult to be modelled, its mathe-
matical translation is very simple: every input signal is represented as a real
number, x1, x2, . . . , xn, every synapse with a weight factor w1, w2, . . . , wn and
the output is just the weighted product of all signals. In order to model the
firing mechanism of the biological neuron, the so-called bias term b is intro-
duced to model a threshold which is associated to every neuron. Given z the
output of a neuron, Equation 1.1 shows this mathematical representation.

z = b+
∑
i

wixi (1.1)

After applying some simple algebraic concepts, Equation 1.1 can be rewrit-
ten in a more compact way, shown in Equation 1.2, where x is the input
vector, w is the weights vector and the summation has been replaced with
the dot product.

z = w · x+ b (1.2)

1.1.2 Activation Function

The neuron output, as described earlier, is just a linear combination of
its input. In the reality, another processing step is employed which consists
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of applying a non-linear function f(·) to z. It is called the activation func-
tion and plays an important role in the process of letting a neural network
learn. As a consequence, the updated mathematical representation is shown
in Equation 1.3.

y = f(z) = f(w · x+ b) (1.3)

During the decades, many activation functions have been used for mod-
elling the learning process of a neural network, in particular the sigmoid
function (1.4) and the hyperbolic tangent (1.5). They both have the advan-
tage of mapping the input to a fixed range, [0, 1] and [−1, 1] respectively;
however, they both suffer of the vanishing gradient problem, which almost
prevent large networks to learn at all.

sigmoid(x) =
1

1 + e−x
(1.4) tanh(x) =

ex − e−x

ex + e−x
(1.5)

Following the work of Glorot at al. [10] and Krizhevsky at al. [19], a
simple activation function such as the Rectified Linear Unit (ReLU) proved
to be very beneficial when training particularly large networks and it became
the de-facto standard. It is very simple, as shown in Equation 1.6, and avoids
the vanishing gradient problem because positive input values very close to
1, linearly approach 1, as it can be see in Figure 1.3. However, it has the
exploding gradient problem, which can almost be considered as the opposite
of the vanishing one. Both problems will be described in Section 1.3.5.

ReLU(x) = max(0, x) (1.6)

Even though ReLU is considered to be the most used activation function
nowadays, currently state-of-the-art models, such as the ones described in the
following chapters, made Gaussian Error Linear Unit (GELU) [13] popular.
It is just a combination of other functions and approximated numbers but
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the interesting fact is its plot, which is quite similar to ReLU’s one.

GELU(x) = 0.5x(1 + tanh(

√
2

π
(x+ 0.044715x3))) (1.7)

Figure 1.3: Comparison of Sigmoid, Tanh, ReLU and GELU activation func-
tions

1.1.3 Main Layers

In the following layer descriptions, a forward pass means the act of feeding
an input to the layer and computing the output. More information about
this behaviour are described in Section 1.3.

In addition, a feature is every kind of relevant information extracted from
data, which is useful to compute the output. As it will be shown, the purpose
of many layers is exactly to learn how to extract these features, in order to
obtain a feature map.
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Fully Connected Layer

The Fully Connected Layer is the simplest type of layers in a neural
network. As its name suggests, it has full connections with all the outputs
from the previous layer but no connections between neurons in the layer itself.
The forward pass of a fully connected layer is just one matrix multiplication
with weights, followed by a bias offset and an activation function.

Weights matrix associated to this layer has a shape of (n,m) and a bias
vector b, where n is the number of neurons in the current layer (k), while m

is the same number but referring to the previous layer (k− 1). According to
the Equations 1.1 and 1.3, this operation will compute:

y(k) = f(


w1,1 . . . w1,m

... . . . ...
wn,1 . . . wn,m



y
(k−1)
1
...

y
(k−1)
m

+


b1
...
bn

) (1.8)

Supposing a simple network with an input layer of shape (2, 1), a fully
connected layer of shape (3, 1) and an output layer of shape (1, 1), the result
of the fully connected layer is given from the following equation:

y1 = f(


w1,1 w1,2

w2,1 w2,2

w3,1 w3,2


(
y01

y02

)
+


b1

b2

b3

) =


y11

y12

y13

 (1.9)

Convolutional Layer

As its name suggests, this layer applies the operation of convolution to its
input. In the context of neural networks, however, the definition is slightly
different from the pure mathematical one: it is a linear operation that in-
volves the multiplication (dot product) of the input and a smaller weights
matrix, called filter or kernel. Because of its smaller size, a filter can be
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thought as a light that slides over the input, applying the convolution on the
highlighted portion only. This sliding approach involves just two dimensions,
width and height, from left to right, top to bottom. Even though the filter
considers two dimensions only, it will extend through all the other dimen-
sions, such as depth. In fact, every filter will produce a different feature map
which are stacked together along the depth dimension.

This mechanism is governed by some hyperparameters:

• Depth (not to be confused with the dimension): states the number of
different kernels to learn that are applied on the same portion of input

• Stride: states the amount of neurons/pixel the kernel has to slide from
the previous position

• Zero-Padding: states the number of padding neurons at the borders in
order to make the filter fit the input; this will also allow to arbitrarily
control output size

Given an input of size (Wi,Hi,Di), a kernel width KW , a stride S, a
padding P and the number of kernels to be applied K, the output will be
of size (Wo,Ho,Do), where Do = K and Wo given by the Equation 1.10
(similarly for Ho). An example of a convolution is shown in Figure 1.4:
given the input of shape (3, 3, 3), two kernels of shape (2, 2, 3) are applied
with S = 1 and P = 0.

Wo =
Wi−KW + 2P

S
+ 1 (1.10)

Pooling Layer

A Pooling Layer applies a downsampling operation to its input, in order
to reduce input dimensionality and the associated number of parameters.
Similarly to what happens with convolutional filters, this layer also supposes
the usage of a particular filter all over the input; in other words, it applies a
function, generally max or average, on portions of input data.
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Figure 1.4: Example of convolutional layer output; the highlighted numbers
are the ones who contribute to compute 15 in the first output slice, since the
first kernel is applied

A pooling operation depends on two hyperparameters: filter width K

and stride S. Given an input of shape (W1, H1), the output dimensions are
computed with the Equation 1.11 (similarly for the height). Figure 1.5 shows
an example of both max and average pooling with K = 2, S = 2 on an input
of shape (4, 4); the colours refer to the portion on which the function has been
applied. Note that if the input shape is composed of additional dimensions,
such as the depth, this operation will leave them untouched.

This layer with K = 2 is the most common one, together with the over-
lapping pooling, where K = 3 and S = 2; however, increasing filter size
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usually results in information loss.

W2 =
W1 −K

S
+ 1 (1.11)

Figure 1.5: Example of max and average pooling operations

1.2 Types of Neural Networks
Before describing some of the main types of neural networks, layers can be

classified based on the position they have in the architecture. For instance,
the input layer is the first one which expects model input; the output layer
is the last one and is designed according to the task the model has to tackle;
and finally, all the others, if present, are called hidden layers.

1.2.1 Feed-Forward Network

A Feed-Forward Network is the simplest type of network where the com-
putation flows only from the input layer to the output one and, in particular,
iteratively from one layer to the next one. In addition, its structure does not
expect back connections or cycles. Strictly speaking, a network of this type
is composed of fully connected layers but this term is often used to only state
the iterative, one-directional way of computation.

The simplest example is the Single Layer Perceptron network, which is
only composed of an input and an output fully connected layers, and its gen-
eralization, called Multi Layer Perceptron, because it has at least an hidden
layer in between.
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Figure 1.6: Single (left) and Multi (right) Layer Perceptron networks2

1.2.2 Convolutional Neural Network

A Convolutional Neural Network is a deep feed-forward network mainly
composed by convolutional and pooling layers. They also usually have some
final fully connected layers depending the task the model has to address,
particularly for classification.

This kind of network is highly inspired to the humans’ visual cortex and
the concept of receptive field because smaller portions of data are consid-
ered while being processed, as described in Section 1.1.3. Because of their
usual architecture and the mathematical operations applied, Convolutional
Networks have the following main characteristics:

• They are local connected, as every neuron of a layer is connected to
only a local region of its input, as opposed to fully connected layers.
As a consequence, number of parameters is highly reduced

• Instead of vectors and matrices, they work with data treated as 3D
volumes (width, height, depth), according to a specific spacial arrange-
ment

• Under the assumption that if a learned feature is useful on a specific
spacial position, it will also be useful on another position, filter applied
on data slices along the depth dimension can share weights and biases

2Images taken from https://is.gd/T0ok7j and https://is.gd/KDlpRO

https://is.gd/T0ok7j
https://is.gd/KDlpRO
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• They are translation invariant: if the network learns to detect a par-
ticular feature, it will continue to detect it even if it gets translated in
another position

Their main and most effective applications involve Computer Vision, with
image classification, analysis and recognition, and Natural Language Process-
ing, with sentence classification and feature extraction.

Important early works regarding convolutional networks have been pro-
posed by Y. LeCun, such as the LeNet [22] architecture. Subsequent famous
works are AlexNet [18], GoogLeNet [40] and VGGNet [37].

Figure 1.7: Convolutional Neural Network example: the VGG16 architec-
ture3

1.2.3 Recurrent Neural Network

Traditional networks as the ones described earlier suppose every input
is independent from the others. Consequently, sequential information are
poorly handled. On the contrary, Recurrent Neural Networks perform the
same computation on every element of an input sequence, where the output

3Image taken from https://is.gd/pGYy31

https://is.gd/pGYy31
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depends on the previous ones. In particular, they can be viewed as networks
with a memory of all that has been computed so far. In order to make
this possible, a Recurrent Network can be considered very similar to a Feed-
Forward one, with the main difference that the former allows the presence of
cycles in its architecture. Actually, this is what characterizes them the most,
as shown in Figure 1.8.

Because text and language are inherently sequential, this type of networks
became popular for Natural Language Processing tasks, such as, Next Word
Prediction or Sequence Labelling.

Figure 1.8: Recurrent Neural Network example; on the right the extended,
unfolded version of the network4

For every token in a sequence, it is fed to an hidden layer to compute
the related output but the hidden state of the previous token is fed too.
By doing so, the predicted output value takes into account also information
about previous tokens, just like an informed context.

From an analytical point of view, the equations to compute outputs
slightly change, as they have to take into account new and different weights
and biases. Generally speaking, given a time step or token position t, the
following equations apply:

at = g(U · xt + V · at−1 + ba) (1.12)
4Image taken from https://is.gd/utjo8r

https://is.gd/utjo8r
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yt = f(W · at + by) (1.13)

W , U and V are learnable weights matrices, ba and by are bias vectors for
computing hidden state activations and outputs, respectively. Such matrices
are shared across time steps/token positions so the model will not increase
its number of parameters with the size of input.

Because of their structure, Recurrent Networks have the advantage of
allowing inputs of an arbitrary dimension; in the reality, however, this poses
the problem of long-term dependencies, as it is difficult to keep track of
contextual information for rather long sequences. In addition, they are quite
expensive to train and slow to compute, due to their sequential nature, and
they only get information from the past context instead of the future one
too.

Many state-of-the-art models described later in this work focused on tack-
ling many of these drawbacks, in order to obtain feasible and powerful lan-
guage models.

1.3 How Neural Networks Learn

After modelling a neural network and its architecture, how is it possible
to make them learn? How can they really understand their input and decide
which answer to return? As it has been said earlier, everything is inspired to
the human brain but the reality consists in only learning algorithms which
accordingly update numbers.

1.3.1 Hebbian Learning

One of the first learning algorithms has been proposed by D. Hebb in
1949, following the neuroscientific theory often summarized as “cells that
fire together, wire together”. In other words, the fact that two neurons fire
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together has the consequence of strengthening the synapse between them, or
weakening it otherwise.

From the point of view of artificial neural networks, nodes that tend to
be both positive or both negative at the same time have a positive weight
connecting them, a negative one otherwise.

In general, this idea does not take into account a ground truth value, so
tasks which require a supervised learning approach are not feasible with this
learning algorithm.

1.3.2 Gradient Descent

Another learning algorithm is Gradient Descent, which is an instance
of local optimization algorithms. On the contrary of Hebbian Learning, this
algorithm supposes the knowledge of ground truth values, in order to compare
them with the model predicted output. This comparison is made through a
loss function, which has to be continuous and differentiable.

The general idea of gradient descent is to minimize the loss function, by
discovering the lowest minimum point of that function, as shown in Figure
1.9. Ideally, when this point is reached, the loss is optimal so model accuracy
should be as high as possible.

Figure 1.9: A simple cost function representation; in the reality, more and
more parameters are involved5
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The minimum loss value is iteratively found by computing the gradient of
the loss function. Given a N -dimensional space, where N states the number
of parameters the model depends upon, the gradient of the loss function
with respect to the parameters is a vector whose components are partial
derivatives of the loss function. Equation 1.14 shows this formulation, where
L is the selected loss function, y is the expected output value and f(x; θ) is
the predicted output value which depends on model parameters θ.

∇θL(f(x; θ), y) =


∂

∂w1
L(f(x; θ), y)

∂
∂w2

L(f(x; θ), y)
...

∂
∂wN

L(f(x; θ), y)

 (1.14)

After computing the gradient, weights and biases are updated according
to the rule in Equation 1.15, where ∇L is the gradient and η is the learning
rate. This hyperparameter is particularly important when training neural
networks because it states the magnitude of the gradient updates on the
weights. In fact, when this value is too small, the model will train very
slowly; when it is too big, the model may not learn as the minimum value
could be skipped, resulting in a loss function divergence.

θt+1 = θt − η∇L(f(x; θ), y) (1.15)

1.3.3 Backpropagation

Since the loss function is computed at the end of the neural network, the
derivatives shown in the previous section are only valid for the last layer,
even though the majority of parameters belongs to intermediate hidden lay-
ers. Backpropagation, then, is an algorithm to appropriately compute the
gradient taking into account the architecture of the network. In other words,

5Image taken from https://is.gd/Qpbkim

https://is.gd/Qpbkim
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it propagates the information about the loss back to the input layer by using
the concept of computation graph.

Having a mathematical expression, its computation graph is a representa-
tion in which the computation is broken down into separate operations and
each one of them represents a node in the graph. In the forward pass, input
values are passed left to right in the graph, computing the operations in the
nodes values flow through; in the backward pass, instead, derivatives with
respect to the output function are computed.

This kind of differentiation uses the chain rule: supposing a composite
function f(x) = g(u(v(x))), its derivative with respect to x is:

∂f

∂x
=

∂g

∂u
· ∂u
∂v

· ∂v
∂x

(1.16)

Each partial derivative is calculated along the edges of the graph, right
to left, taking into account the operations in the nodes, until the input is
reached.

1.3.4 Stochastic Gradient Descent

As the name suggests, this is a modification of the gradient descent al-
gorithm which overcomes a drawback: plain gradient descent considers the
entire training dataset when computing one update. As anyone can image,
this can be very slow or even unfeasible. On the contrary, stochastic gradient
descent considers only one sample from the data to update the weight; this
sample is chosen randomly among all the dataset. As a consequence, this
algorithm is faster but the minimum it usually finds may not be the optimal
one because of the variations caused by each sample.

1.3.5 Undesired Effects

Vanishing/Exploding Gradients

Vanishing or exploding gradient is a common problem when dealing with
deep neural networks that actually prevented them from being trained until
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some discoveries in the last few years. This phenomenon happens when
gradient-based learning methods and backpropagation are used to train a
network, as described in Section 1.3.

Gradients at a specific layer are computed as the multiplication of gradi-
ents of prior layers, because of the chain rule. For this reason, having gradi-
ents in the range (−1, 1) will result in numbers that gets smaller and smaller,
until they vanish and will not update the weights. As a consequence, initial
layers in the architecture will not receive a meaningful update, resulting in
a long training time and considerable performance loss. On the contrary,
if weights initialization and gradient computation produce large numbers,
exploding gradients will happen, as their multiplication will easily tend to
infinity.

Overfitting/Underfitting

Another undesired effect when developing machine learning or statistical
models is the overfitting or underfitting of data. The purpose of these models
is to find the best approximated function that describes the data. In partic-
ular, it should be able to generalize, in order to correctly be applied on new
data.

Speaking about overfitting, it can happen under different situations, such
as when using a model with too many parameters or when it is trained for
too long or when the training data used is not enough. In fact, in such cases,
the model will not focus on the relevant relation that describes the data but
it will learn also statistical noise and useless information.

Underfitting, on the contrary, can be seen as the opposite problem: it
happens when the model can not adequately capture the underlying structure
of the data because the representative power is too low or is has been trained
for too few time.
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1.4 Normalization and Regularization

1.4.1 Dropout

Dropout [38] is a regularization technique used to prevent a model from
overfitting while training. It is different from other techniques, such as L1
and L2 regularization as it does not change the cost function, but instead, it
relies on changing the network itself and updating only a subset of weights
and biases.

Large neural networks often suffer of co-adaptation: stronger connections
between a subset of neurons is learned and they overlook the weaker ones.
The direct consequence of this behaviour is that the model will also learn
some statistical noise from the training dataset. In other words, it will per-
form really well on that dataset but its generalization capabilities will reduce
considerably.

Dropout tries to prevent this by randomly deactivating some neurons and
their connections with a probability sampled from a Bernoulli distribution of
parameter p. As a consequence, only a subset of neurons is trained, breaking
the co-adaptation problem and making them more robust because they have
to learn features without relying too much on other neurons. After every
training iteration, deactivated neurons are restored and a new subset is sam-
pled. From a practical perspective, this means that multiple different models
are trained at the same time: given the model with n units, it can be thought
as a collection of 2n smaller networks.

At test time, no units are deactivated and all weights are multiplied by p

to guarantee coherence on the output between both training and test time. In
addition, considering all weights together acts as a form of averaging between
all smaller models.

A parameter p = 0.5 is quite frequent in the Computer Vision field,
even though this technique has been overcome by others, such as Batch
Normalization [15]; in NLP, instead, a value p = 0.1 is more common despite
difficulties of its application due to the nature of problems.



1.4 Normalization and Regularization 19

Figure 1.10: Dropout intuition; neurons in b) will result in two different
models6

1.4.2 Batch Normalization

Because of how neural networks are structured, the output of every layer
is passed as input to the following layer and so on, until the output one.
This has implications on the distributions of inputs, leading to the concept
of Internal Covariate Shift [15], which is the change in the distribution of
network activations due to the change in network parameters during training.
These shifts can be problematic because the discrepancy between subsequent
layer activations can be quite pronounced.

Batch Normalization [15] then, aims to limit the shifting problem by
normalizing the output of each layer; in particular, the network will learn γ

and β parameters to transform the input distribution in order to have zero
mean and unit variance.

Given a mini-batch B = x1, · · · , xm, the first step involves the compu-
tation of mini-batch mean and variance, which are then used to normalize
mini-batch values, as shown below.

µB =
1

m

m∑
i=1

xi (1.17)

6Image taken from https://developers.google.com/machine-learning/
crash-course/embeddings/translating-to-a-lower-dimensional-space

https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space
https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space
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σ2
B =

1

m

m∑
i=1

(xi − µB)
2 (1.18)

x̂i =
xi − µB√
σ2
B + ϵ

(1.19)

BNγ,β ≡ γx̂i + β (1.20)

Because of its formulation, one of Batch Normalization drawbacks is that
it can not be applied to settings where mini-batch size is not big enough to
obtain good results, for instance at least 32 or 64. In this case, other forms
of normalization are preferred.

1.4.3 Layer Normalization

Layer Normalization [2] has been introduced to address some drawbacks
of Batch Normalization, such as the overcomplication needed to apply it in
Recurrent Neural Networks (RNNs) or the requirement of big mini-batches.

Recalling, a mini-batch is a set of multiple examples with the same num-
ber of features and it is represented as a matrix/tensor where one axis corre-
sponds to the batch and the others to feature dimensions. On the opposite
of Batch Normalization, which normalizes over the batch dimension, Layer
Normalization learns γ and β parameters (mean and variance) over features,
as it is shown in the equations below. As a consequence, these values are
independent from other examples, allowing an arbitrary mini-batch size.

µi =
1

m

m∑
i=1

xij (1.21)

σ2
i =

1

m

m∑
i=1

(xij − µi)
2 (1.22)

x̂ij =
xij − µi√
σ2
i + ϵ

(1.23)
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LNγ,β ≡ γx̂ij + β (1.24)

Figure 1.11: Visualization of difference between Batch and Layer Normaliza-
tion7

1.5 Transfer Learning and Fine Tuning

Transfer Learning is the process of training a model on a large-scale
dataset and then, use the learned knowledge as a base for a downstream
task. This type of learning has been quite popular since the ImageNet 2015
Challenge [33], where the winning model showed how powerful such tech-
nique could be for Computer Vision. Later on, research in that field literally
exploded but other fields, such as NLP, still struggled. In fact, examples
of successful transfer learning applied to text were only few and usually too
specific to be generalized.

In the last few years, however, pretrained language models showed their
power, enabling a generic transfer learning for NLP too. The general pro-
cedure, in fact, consists in pretraining a model on a large unlabelled dataset
and then, adapting its learned representation on a supervised target task
with a new, smaller labelled dataset.

The introduction of BERT [8], whose description will follow in the next
chapters, marked huge progress in many state-of-the-art baselines for many

7Image taken from [44]
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different tasks, such as Question Answering and Sentence Classification. Fol-
lowing transfer learning, a fine tuning phase is usually applied: in this case,
models are slightly adjusted to improve their performance on a smaller and
more specific task. In other words, transfer learning makes a model learn
general understanding abilities while fine tuning leverages them to tackle
one precise problem.

1.6 Embeddings

From a practical point of view, neural networks expect a numerical input
to process when they have to fulfil a task. This kind of input, however, is
not composed by random numbers but instead, they semantically represent
a high-level concept or object. A simple example is an image, where every
number in its encoded representation states the intensity of every base colour
for each pixel. Some inputs are intrinsically easy to be represented by num-
bers, while other not, such as text. It is not immediate to transform a text
in a series of numbers because of all the meanings it conveys, the relations
between words, its structure, its similarities and so on.

Vector semantics is a model that tries to encode all these characteris-
tics by taking into account the environment in which every words is usually
employed and a vector representation. Such vectors are called embeddings
because they embed a word in a particular high-dimensional vector space.
Embeddings can be either sparse or dense: the main difference is the dimen-
sionality of the vector; the former, in fact, is usually as big as the vocabulary,
while the latter has a fixed size, usually about hundreds of values.

Given a vocabulary of size V , an example of sparse embedding is the one-
hot encoding: a vector of size V is associated to every word in the vocabulary.
The encoding for the i-th word will have a 1 in the i-th index and zeros
anywhere else. Generally speaking, sparse embeddings can become unfeasible
to be used in tasks where the vocabulary size is very big, making dense ones
more suitable for them.
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Figure 1.12: Example of one-hot encoding of words8

Some other kinds of embeddings follow from the distributional seman-
tics research area and the so-called distributional hypothesis, which states
that “words occurring in similar contexts tend to have similar meaning”.
This hypothesis is the base of many statistical methods for analysing the
relations between terms and documents, mainly focusing on counting their
occurrences.

1.6.1 Word2Vec

Word2Vec [26] is a set of models designed to compute dense and short
word embeddings. The intuition consists of replacing count statistics between
words with a binary classifier whose task is to predict whether a word x is
likely to show up near another word y.

Given a large corpus of text, Word2Vec will produce a vector space in
which word vectors are positioned, according the assumption that word shar-
ing a similar context in the corpus will be closely located in the vector space.

Continuous bag-of-words (CBOW) or Skip-gram are the two models used
by Word2Vec: the former predicts the next word by looking at some sur-
rounding context words, while the latter does the opposite, predicting a set
of context words given the current word. Once the learning phase for the clas-
sifier is done, the embeddings consists of the weights the model has learned

8Image taken from https://is.gd/IG6W4P

https://is.gd/IG6W4P
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for every word.

Figure 1.13: Word2Vec CBOW and Skip-gram block-diagram example9

9Image taken from https://is.gd/x3WTdD

https://is.gd/x3WTdD


Chapter 2

Question Answering

Question Answering (QA) is the field belonging to Natural Language
Processing whose purpose is to create a system which is capable of automat-
ically answer questions made by humans using natural language. Every QA
system can be classified as closed-domain, when only questions regarding a
specific and narrow topic can be asked or when they are limited (i.e. What
is the capital of Italy?), or as open-domain, when basically anything can be
requested (i.e. What was your last travel trip experience like?).

Since the early stages in the 1960s, a knowledge base has been the primary
source of information, shifting to information retrieval (IR) approaches in
the late 1980s. By definition, a knowledge base is a way of storing complex
structured and unstructured data in a form of facts, assumptions and rules;
for this reason, this data representation usually requires an expert that has
enough knowledge to model it in an appropriate way. Many expert systems,
in fact, rely on a knowledge base and an inference model to reason and
provide answers. Due to the design, this kind of system is difficult to scale
and they are only used for narrow and specific topics.

Nowadays, even though many IR systems are available and used, there is
a growing interest in machine reading comprehension (MR) models. Watson
[9], from IBM, is an example of QA system based on a huge knowledge base
which became famous when it defeated Jeopardy top-player in 2011, putting

25
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the spotlight on how powerful machines can be.
IR and MR models are quite different: the former involve searching for

documents, deciding the relevant ones and identifying passages of text that
can provide an answer, while the latter assume a question and a passage will
be given and their purpose is to understand them, in order to look for the
correct answer.

2.1 Evaluation Metrics

After developing a system, it has to be evaluated according to some met-
rics; their choice usually depends on the particular task and data format the
model returns, in order to obtain real and meaningful information. In other
words, the purpose of evaluation is answering the question how well does the
system work?. Regardless task type, either it is generic such as classifica-
tion or regression, or more specific, the main idea is always to compare the
predicted output from the model and the ground truth, representing the real
expected values.

Confusion Matrix

Before digging into some of the main metrics, it is important to under-
stand the Confusion Matrix, which is a tabular or visual representation of
the relations between predicted labels and real ones from the ground truth,
of size (num labels, num labels). Figure 2.1 shows the confusion matrix on
a subset of the Iris Dataset [1], restricted to two classes only.

This representation is particularly useful because it allows to obtain the
required information to compute multiple metrics:

• True Positive (TP): number of correctly predicted examples of the
positive class

• False Positive (FP): number of examples whose predicted class is the
positive one but the actual one was another
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Figure 2.1: Confusion Matrix computed on a subset of the Iris Dataset

• False Negative (FN): number of examples whose actual class is the
positive one but another one was predicted

• True Negative (TN): number of correctly predicted examples of all
the other classes

Accuracy

Accuracy is one of the simplest metrics as it states the ratio between
correctly predicted values and total number of predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
=

# correct predictions

# total predictions
(2.1)

Precision

Precision is a classification measure that intuitively states the ability of
a classifier not to label as positive samples that are negative; it is also called
Positive Predictive Value (PPV). This metric can be more meaningful than
accuracy when classes in a dataset are imbalanced: in fact, in that case the
model would correctly predict the most frequent class, thus resulting in a
high accuracy rate; in the reality, however, it may not be learning at all the
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least frequent classes.

Precision =
TP

TP + FP
(2.2)

Recall

Recall intuitively states the ability of a classifier to find all the positive
examples; it is also called Sensitivity. If used alone, it may not be very
meaningful, as it is easy to obtain the maximum recall; to avoid this scenario,
it may be necessary to compute also statistics about non-relevant examples,
such as precision.

Recall =
TP

TP + FN
(2.3)

F1 Score

The F1 Score, or F-measure, is the harmonic mean between precision and
recall. In case of binary classification, it can be seen as a measure of a test’s
accuracy. It is mainly used in settings where both precision and recall are
important, such as in Natural Language Processing.

F1 = 2 · Precision ·Recall

Precision+Recall
(2.4)

Generally speaking, the Fβ score is given by the Equation 2.5, where
β states how many times recall is more important than precision; for this
reason, the F1 gives the same importance to them.

Fβ = (1 + β2) · Precision ·Recall

(β2 · Precision) +Recall
(2.5)

Exact Match

In Natural Language Processing, Exact Match (EM) score is a simple but
very useful metric which states the ratio between correctly predicted values
and total number of predictions, with the constraint that the predicted value
must be exactly the same as the expected one.



2.2 Datasets 29

Considering the example in Figure 2.1, we treat the “versicolor” class as
the positive one, obtaining the following metrics:

TP = 13 FP = 3 FN = 0 TN = 9

Accuracy =
TP + TN

TP + TN + FP + FN
=

13 + 9

13 + 9 + 0 + 3
= 0.88 = 88%

Precision =
TP

TP + FP
=

13

13 + 3
= 0.8125 = 81.25%

Recall =
TP

TP + FN
=

13

13 + 0
= 1.0 = 100%

F1 = 2 · Precision ·Recall

Precision+Recall
= 2 · 0.8125 · 1.0

0.8125 + 1.0
= 0.8965 = 89.65%

2.2 Datasets
Many dissimilar dataset are available, such as TriviaQA [16], WikiQA

[45], WikiReading [14], MSMarco [4] and SQuAD [30], with diversities on
the way questions and answers have been created, the number of questions
and the source documents considered. For instance, WikiQA is very sim-
ilar to SQuAD, as it also considers Wikipedia documents but its purpose
is sentence selection instead of span extraction. Some of them also assume
presence of questions whose answers are not in the related text passage; the
intuition behind this choice is that models should also be able to evaluate
when information provided are enough to return a meaningful answer, oth-
erwise it is better to avoid answering. However, due to every dataset key
aspects, not all machine reading question answering datasets can be used for
the span extraction task; in this work, we mainly focused on the SQuAD one.
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2.2.1 SQuAD Dataset

Stanford Question Answering Dataset (SQuAD) is one of the biggest read-
ing comprehension dataset that is available to the community. In fact, it is
a collection of more than 100000 question-answer pairs, created by crowd-
workers on a set of 400+ Wikipedia articles. In particular, answers have
been annotated manually by selecting a span of text in the passage, together
with the starting index. For this reason, this dataset can be used with every
model capable of span extraction.

Figure 2.2: Example of paragraph from SQuAD v2.0 dataset, with questions
and answers

One thing characterizing SQuAD v1.1 [31] is the assumption that ev-
ery question has at least an answer in the provided text; in other words,
a model trained on it will always predict an answer, even though it is not
relevant. This assumption, of course, oversimplifies the reality as situations
of uncertainty and lack of information could arise in every moment.

Consequently, SQuAD v2.0 [30] has been released as a brand-new dataset
during 2018. The inclusion of about 40000 new pairs of unanswerable ques-
tions is supposed to tackle the assumption described earlier and these new
information are marked by the attribute is_impossible set to True.

The train dataset, however, is not balanced with respect to the question
type: as you can see from the summarizing table below, the ratio is 67%-33%
in favour of answerable questions. Instead, the dev dataset is well balanced.

In addition to train and dev, an evaluation script on the dev set has been
provided, allowing researchers to evaluate their models before submitting
results to the official leaderboard [39]; this is necessary because the real
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Train Dataset Dev Dataset
Questions Unanswerable Questions Unanswerable

SQuAD v1.1 87599 – 10570 –
SQuAD v2.0 130319 43498 11873 5945

Table 2.1: Questions distribution by type across datasets.

figures appearing online are evaluated on a test set that has been kept closed-
source. According to the scores shown online, SQuAD v1.1 is considered
solved as many models exceeded the human performance of 82.304 EM and
91.221 F1 measure. Version 2.0, instead, is more challenging (86.831 EM and
89.452 F1 measure) and new models are being developed week after week.

The dataset is released as a JSON object, whose every inner object rep-
resents a specific topic; each one of them is a collection of one or more text
paragraphs with the associated question objects and answers, when available.
An example of SQuAD v2.0 object about Normans, with both an impossible
and a possible questions can be seen in Appendix B.1.

Results Comparison

Following the brief introduction about the dataset, Table 2.2 shows a
comparison between current state-of-the-art models and previous approaches
tackling this problem. In particular, some of them will be described in detail
in the following chapters, in order to understand breakthrough changes which
led to performance improvements.

Question answering approaches to this dataset changed a lot during the
decade; chronologically, in fact, the following systems have been implemented
to address this task:

• Sliding Window Approach [32] (2013): baseline system involving the
usage of lexical features; bag of words are created taking into account
both the question and the hypothesized answer
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• Logistic Regression model [31] (2016): extracts several types of fea-
ture for every possible answer, most of which are lexical ones, such as
matching word and bigram frequencies and lexical variations; they all
contribute to make the model pick the right sentence

• BiDAF [35] (2016): this model leverages many different “blocks”, such
as CNNs, LSTMs and attention mechanisms, focusing on both con-
text and question information in a bidirectional way. It will compute
probabilities for every token to be the start and the end of the answer
span

Model
SQuAD v1.1 SQuAD v2.0

F1 EM F1 EM
Human Performance * 91.2 82.3 89.45 86.8
Sliding Window 20.2 13.2 - -
Logistic Regressor 51.0 40.0 - -
BiDAF (single) 77.3 67.7 - -
BERTBASE 88.5 80.8 - -
BERTLARGE 90.9 84.1 81.9 78.7
RoBERTa 94.6 88.9 89.4 86.5

Table 2.2: Performance comparison of state-of-the-art models on both
SQuAD v1.1 and v2.0 dev datasets. * as stated in [31], [30].

2.2.2 OLP

In addition to SQuAD, another dataset has been used to experiment
with the investigated models: it is the OLP dataset [6] [5] developed by a
workgroup at Bielefeld University. As it is still under development, it is not
publicly available yet. As opposed to SQuAD, OLP is a Question Answering
dataset that focuses on free text and knowledge base integration.

One of the main differences between SQuAD and OLP is the fact that the
latter is composed of closed-domain questions; in particular, it is about after-
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game comments of football matches. For this reason, many questions required
some degree of knowledge and semantic processing, as the real answer was
not explicitly stated in the text.

In the next sections, there will be a description of the work done to
preprocess, normalize and convert OLP to a SQuAD-like format, in order to
feed them to our Question Answering models.

2.2.3 Preprocessing

As it can been seen from Figures 2.3, 2.4, 2.5, the structure is very differ-
ent, as it is composed of three kind of CSV files: Question, Annotation and
Tokens.

Given a specific topic, the first file contains a list of all the questions
about that article, with information such as the ID and the correct answer
got from a Knowledge Base; the Tokens file, instead, contains the entire text
passage, token by token, with specific offsets (character-based, token-based
and sentence-based); finally, the Annotation file contains all the information
about the hand-made annotations on the text. This file can be considered the
way of linking together questions and texts, as both IDs, offsets and answers
are stated.

With support from Simone Preite and Frank Grimm, we tried to deeply
understand how the dataset was composed and to which extent it was dif-
ferent from SQuAD, in order to write the appropriate logic to do a con-
version. We wrote many Python scripts to automatically normalize and
build the dataset in the proper format but we also had to manually fix
mismatches between annotations and questions or wrong knowledge base an-
swers. In addition, we removed duplicate entries and cleaned offsets values,
as multiple whitespaces caused them to be unreliable. In addition, we added
is_impossible information to every question by checking whether the an-
swer was explicitly stated in the text or not.
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Figure 2.3: Example of questions file from OLP dataset

Figure 2.4: Example of tokens file from OLP dataset

2.2.4 Conversion

After preprocessing OLP, the next step was its conversion: we wrote
another Python script to automatically generate the JSON file with the
SQuAD-like format, starting from the new data. Unfortunately, we had
to take into account maximum sequence length of text paragraphs: OLP
texts, in fact, were usually longer than the ones in SQuAD, as shown in
Table 2.3, or the ones used for pre-train the models. While converting the
dataset, then, we added an option to automatically split long paragraphs into
shorter ones belonging to the same topic. This operation, however, involved
also a careful handling of questions and annotations, in order to avoid dan-
gling references. For instance, splitting took into account entire sentences,
avoiding cut phrases between paragraphs and questions about the same topic
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Figure 2.5: Example of annotations file from OLP dataset

Tokens Per Paragraph 0-999 1000-1999 2000-2999 3000-3999 >4000
Number of Paragraphs 101 26 4 1 1

Table 2.3: Distribution of OLP paragraphs by number of tokens

were replicated in every resulting paragraph. We finally wrote also the ap-
propriate logic to split the resulting dataset into a train and dev splits, so
that it can be used to fine-tune a Question Answering model, defaulting to
a 70%-30% split.
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Chapter 3

Transformers

In this chapter there will be a discussion about the Transformer Archi-
tecture [41] and its benefits, making it the basic building block of almost all
the current state-of-the-art models available.

Seq2seq is one of the most frequent tasks in NLP; in fact, as its name
suggests, it involves sequences processing. The main examples are the trans-
lation of a sentence between two different languages or the summarization of
a long text. They used to be addressed through Recurrent Neural Networks
(RNNs): two networks of this type were stacked one after the other; the first
one acted as an encoder while the following one as a decoder. The encoder
part in only used to obtain a hidden state representation of the input, called
context vector which is then fed to the decoder, that used it as additional
information to predict target tokens.

Unfortunately, the longer the sequence, the more difficult it was to en-
code the meaning in a fixed-size vector. In addition, this model is sequential
by definition, as each state needs the previous one as input; for this reason,
its training can’t take advantage of parallel computation, resulting in long
training time, often without the expected results. On the other side, a Trans-
former can execute everything in a parallel fashion because of its design and
its Attention mechanism let it process the entire sequence at once, in order
to get a better representation of the relationships between tokens.

37
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3.1 Input

Text sequences are fed as input to the model through their embedding
representation. In this case, their size is dinput = 512 but this is just an
hyperparameter that can be set, as it indicates the longest representable
sequence. In particular, a vector of that size will be created for every token
appearing in the sentence. Then, assuming a sequence of T tokens, input
will be a matrix of size T × dinput. Every sentence will be processed as a sort
of set of token: this, however, has the drawback of losing information about
their order.

3.1.1 Positional Embeddings

Given the parallel nature of this architecture, the model needs a way
to encode tokens ordering of the given sentence. The intuition here is that
a particular pattern can be instilled in the embeddings: for each token, a
positional embedding conforming to that pattern is added to the normal
one. Following that, the model will be able to learn the pattern and rebuild
the original word ordering.

In this case, the addition is given by a sinusoidal signal with different
frequencies and phases based on position (sin for even positions and cos

for odd ones), but this is not the only possible choice: one benefit of the
chosen one is the ability of scaling well with sequences of different length. In
particular, given a token at position j in the sentence, every element i of its
positional embedding vector is defined as:

PE(i, j) =

sin(wk · j), if i = 2k

cos(wk · j), if i = 2k + 1
with wk =

1

10000
2k

demb

(3.1)

The resulting positional embedding vector will be:

p⃗ej =
[
sin(w1 · j) cos(w1 · j) · · · sin(w demb

2

· j) cos(w demb
2

· j)
]

(3.2)
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3.2 Architecture

A Transformer can be just considered as a collection of blocks where
information flow through; a visual representation is shown in Figure 3.1.
The two main parts are the Encoder stack (left side in the image) and the
Decoder stack (right side in the image). Both stacks have the same number
of layers, which are N = 6; the data is fed to the first encoder, processed by
the entire Encoder stack and the passed to the Decoder stack which returns
the output representation. Ideally, it is a simple, sequential architecture but,
as it will be described in the following sections, the reality is quite different,
with many parallelized computations. This is due to the fact that each token
can flow through the architecture almost independently from the other ones.
Furthermore, every encoder in the stack do not share its learned weights with
the other encoders.

Figure 3.1: Encoder-Decoder representation of a Transformer model archi-
tecture1
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Finally, on top of the architecture there are a Fully Connected layer to-
gether with a Softmax one, so that the output from the Decoder stack can
be converted into a logits vector, where each value refers to a word in the
vocabulary. The Softmax transforms this vector in a probability distribution
from which the next token can be predicted.

3.2.1 Encoder

Every Encoder is a stack of three types of layers: Self-Attention, Feed-
Forward Network and Add & Normalization, with skip connections. Self-
Attention layer is the most important mechanism that makes a Transformer
a powerful model and it will be described in detail in the next section.

The Feed-Forward Network is basically a stack of two Fully Connected
layers with a ReLU [27] activation function in between. Assuming input is of
size dinput = demb = 512, the first layer will project it to a dimension 4 times
bigger, having a inner size of dinner = 2048; the second layer, instead, will
output it back to the original size. Given Wi, bi, i ∈ {1, 2} the weights and
biases of the the layers and x the normalized attention scores, this network
will apply the following transformation:

FFNLayer(x) = max(0, xW1 + b1)W2 + b2 (3.3)

Both the Feed-Forward Network and the Self-Attention Layer have a skip
connection around them: the purpose of the Add & Norm Layer is to sum the
processed output from the previous layer with the same, unprocessed input
got from the residual connection, and then, to apply a LayerNormalization

[2] on the resulting data, in order to normalize across features and indepen-
dently from examples. As it has been shown in [12], skip connections are
useful for mitigating the vanishing/exploding gradient problem, letting huge
deep neural networks to be successfully trained.

1Image taken from [41]
2Image taken from http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/
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Figure 3.2: Encoder block of Transformer architecture2

3.2.2 Decoder

The Decoder is conceptually very similar to the Encoder counterpart: it
takes a shifted masked embedding as input together with the Encoder stack
output. The latter is given to every Decoder in the stack while the former only
to the first one. During the decoding phase, it does not make sense to know
words after the current one: for this reason, the embeddings gets shifted and
masked with zeros in order to let the model focus on only the previous tokens.
This new information is then used by the Attention mechanism to incorporate
it with contextual data for the whole sentence, given by the Encoder stack.
Finally, the Feed-Forward Network and the Layer Normalization will apply
the same transformations as described earlier.

Figure 3.3: Decoder block of Transformer architecture3

3Image taken from http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/
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3.3 Self-Attention
Generally speaking, Attention is a mechanism introduced by [3] which

automatically decides which part of text is relevant to achieve a specific task:
if Machine Translation is taken into account, this method will choose the most
important words to translate the current one. In other words, it considers
both input and output. Many different types of Attention have been proposed
over the years, focusing in particular on Self-Attention. It relates different
positions of a single sequence in order to obtain a general representation of
the whole sentence. As a consequence, every word is encoded based on all
the other words.

This explanation could seem unclear: given the sentence “The postman
delivered a letter, it is on the ground.”, the Self-Attention mechanism will try
to associate the word “it” with the one it is referring to, “letter”. Assuming
a certain degree of abstraction, one can say that every word will query every
other word how much their relationship is relevant and update its value
consequently, based on every key answer.

Before moving on, word embedding will be assumed to change meaning
based on the current layer in the stack: in particular, it is the embedding
itself when it is fed to the first Encoder but it is also considered as the inter-
mediate output between two Encoders/Decoders.

Given a word embedding Emb of size demb = 512, their query Q, key
K and value V representations will be obtained by multiplying it with the
corresponding matrix WQ ∈ Rdemb×dk , WK ∈ Rdemb×dk and WV ∈ Rdemb×dv .
These matrices are learned by the model during its training phase. The
resulting vectors are of size dk, dk and dv, respectively.

Q = Emb WQ K = Emb WK V = Emb WV (3.4)

The following phase consists in calculating the attention score which de-
termines how much focus to place on other parts of the input, while encoding
a word in a specific position. First, the dot product between Q and K is
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computed for the currently encoded word and it is scaled by a factor
√
dk

to stabilize gradients. In the meantime, the same operations are applied to
the other words. Next step, in fact, applies a softmax function over all the
results, obtaining a probability distribution that sums to 1, used to choose
the relevant word to consider. Finally, everything will be multiplied by V

and summed to get the score for the current word. As it can be seen, every
word seems to follow a precise and almost independent path, which can be
parallelized.

3.3.1 Matrix Generalization

Those calculations can be easily generalized: instead of feeding a single
word embedding as input, an embedding matrix can be used, as stated in
Section 3.1; this allows the processing of an entire sentence at the same time.
As a consequence, all the previously defined vectors will become matrices
and the steps can be summarized by the following equation:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (3.5)

3.3.2 Multi-Head Attention

In order to make the model even more powerful, Self-Attention in every
Encoder and Decoder is replicatedM times. The advantage is that the model
can increase its ability of focusing on different positions, as multiple different
sets of Q/K/V matrices are considered, called heads. The Attention matrix is
now the concatenation of the resulting matrices from all the heads available.
Now, however, a new learned matrix is needed to condense all the information
in a new one with the proper size expected from the Feed-Forward Network.
In particular, that matrix is WO ∈ RMdv×demb .

One thing worth noticing is the relation between the embedding size and
the number of heads: demb must be divisible by M , as Q/K/V dimensionality
depends on that result. Following that, the original Transformer employed
M = 8 and dk = dv = 64.
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3.4 Training Intuition

As many Deep Neural Networks, the intuition the training is based upon
is quite simple: given some input, the network executes the forward-pass,
it compares the output with the expected one (ground truth), calculates the
gradients and executes the backward-pass to update all the weights and biases
with these gradients. When handling text, this is applied to its embedding
representation; in particular, gradients are computed using a loss function
(often Cross-Entropy Loss) between model output and the one-hot encod-
ing of the expected word. In general, every output represents the Softmax
result for that word. Gradients will then be used to shift that probability
distribution in order to make it similar to the expected one, as shown in the
following figures.

Figure 3.4: Starting from the untrained model on the left, training will up-
date weights in order to obtain a model that produces the output on the
right, when predicting the sentence “Today is Monday”

3.5 State Of The Art

In this section, an overview about the state-of-the-art models will be pro-
vided, with a particular focus on models thought for addressing the Question
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Answering problem on the SQuAD dataset.

3.5.1 BERT

Introduced in late 2018, Bidirectional Encoder Representations from Trans-
formers (BERT) marked the start of a new era for many NLP tasks. The
model takes into account two different phases: pre-training and fine-tuning.
During pre-training, the model is trained in order to make it understand bidi-
rectional representations of text, by conditioning all layers to look at both
left and right contexts. On the other side, the fine-tuning phase makes the
model specific for a particular downstream task, by just slightly training all
parameters.

BERT architecture is based on multiple Transformer Encoder blocks, as
they were described in Section 3.2.1, and it has been developed in two vari-
ants, in which the number of layers, attention heads and the hidden size
change, as shown in Table 3.1. One change with respect to the original
Transformer architecture is that ReLU activation function across the entire
model has been replaced with GELU [13].

An important characteristic of BERT is its versatility because the archi-
tecture has been designed in a generalized way, in order to tackle multiple
tasks: both single sentence and pairs can be used (a pair is packed into a
single sequence, separated by the special [SEP] token). Every sequence has
the special [CLS] token as the first one. Input representation consists of
the sum between token, positional (as for Transformers in Section 3.1.1) and
sequence embeddings. This last type is the particular way BERT uses to
describe whether a token belongs to the first or second sentence. On the
contrary, output representation is given by the final hidden vectors: the one
belonging to the [CLS] tag is denoted as C ∈ RH , while given the i-th input
token, its output is given by Ti ∈ RH .

Pre-training is based on two tasks, Masked Language Modelling (MLM)
and Next Sentence Prediction (NSP), and the training corpus is made up of
BookCorpus (800M words) and part of English Wikipedia (2500M words).
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Model Layers L Hidden Size H Attention Heads A Parameters
BERTBASE 12 768 12 110M
BERTLARGE 24 1024 16 340M

Table 3.1: Differences in BERT architecture variants.

Task-specific architecture modifications consist in adding just one linear
layer on top of BERT, which will use the output representations as input:
in case of token-level tasks, such as Question Answering, all token represen-
tations Ti are fed, while for classification tasks, such as sentiment analysis,
just the [CLS] representation C is fed.

Masked Language Modelling

Bidirectional conditioning is made possible because some input tokens
are randomly masked and then, the language model is asked to predict them.
In particular, a softmax operation over the entire vocabulary is applied to
the final hidden representation of the masked token. One consequence of
this behaviour is a mismatch between pre-training and fine-tuning data, as
masked tokens are not available while fine-tuning. For this reason, masking
operations are slightly changed taking into account the following assumptions
and its representation Ti will be used for prediction with cross entropy loss:

• Only 15% of token positions are masked
• After choosing the i-th token, it is replaced:

– with [MASK] 80% of the time, e.g. the post office is closed
→ the post [MASK] is closed

– with a random token 10% of the time, e.g. the post office
is closed → the post beach is closed

– leave the i-th token unchanged the remaining 10% of the time
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Next Sentence Prediction

This task is particularly important for problems like Question Answering,
as it lets the model understand the relation between two different sentences.
During pre-training, sentence pairs (A,B) are chosen in a way that 50% of the
time B is the actual sentence following A (labelled as IsNext), otherwise B

is a random one from the corpus (labelled as NotNext). The binary classifier
will then use [CLS] output representation C to predict the appropriate label.

1 [CLS] the post [MASK] is closed [SEP] I can not send the [MASK] [SEP]
2 Label = IsNext
3

4 [CLS] the post office is [MASK] [SEP] bringing the [MASK] together [SEP]
5 Label = NotNext

Code 3.1: Next Sentence Prediction binary classification example on masked
sentences

WordPiece

WordPiece Model [34], [43] is a tokenization algorithm very similar to
the Byte-Pair Encoding (BPE), whose idea was at the core of a compression
algorithm. This model will create a language model with a vocabulary of
a predefined size, starting by treating every char as a unicode element of
the vocabulary; the model is trained on it and new subwords are added
by merging the ones which increase the likelihood on the training data the
most. This process continues until the desired vocabulary size is reached.
Below there is an example of tokenized text using the WordPiece model; in
particular, one can notice how suffixes and prefixes are treated.

Out-of-Vocabulary (OOV) words can not happen in this scenario as words
not present in the vocabulary will be split into subwords, while rare words
will be brought back to the case of being split.

Even though this model is quite famous and used by BERT [8], the real
implementation is closed-source and it is used internally at Google. Many
available implementations are not guaranteed to be as exactly as the original
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one.

1 INPUT: Lorem ipsum dolor sit amet.
2 TOKENIZED: 'lore', '##m', 'ip', '##sum', 'do', '##lor', 'sit', 'am', '##et', '.'

Code 3.2: Example of sentence tokenization using WordPiece

Fine-Tuning on SQuAD

SQuAD paragraphs and questions are modelled as sentence pairs, such
that the input representation is [CLS] question tokens [SEP] paragraph
tokens [SEP], with a maximum sequence length of 512. A start vector
S ∈ RH and an end vector E ∈ RH are introduced, in order to compute
start/end word probabilities. Given a word i, its probability of being a start
word is computed through the Equation 3.6. In other words, the dot product
between the start vector S and output representation Ti is computed before
applying a softmax over all words in the paragraph. The same happens for
the end word.

Psi =
eS·Ti∑
j e

S·Tj
(3.6)

The predicted answer span is the one who maximizes the span score,
defined as S · Ti + E · Tj, j ≥ i, where i and j are token positions in the
paragraph. The train objective is then the sum of log-likelihoods of the
correct start and end positions.

The introduction of SQuAD v2 with impossible answers requires some
adjustments on how answer spans are predicted: for questions without an
answer, the span is defined on the [CLS] token.

ŝi,j = maxj≥iS · Ti + E · Tj

simp = S · C + E · C
(3.7)

In addition to the most probable answer span from text, an impossible
span simp in calculated, by computing the dot product with the [CLS] output
representation C. The final answer span prediction is given when ŝi,j >
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simp + τ , where τ is a threshold selected on the dev dataset, in order to
maximize F1 score.

3.5.2 RoBERTa

Almost an year after the introduction of BERT, Facebook AI and Univer-
sity of Washington released RoBERTa, which stands for Robustly Optimized
BERT Approach [23]. As its names suggests, their work focuses on a thorough
evaluation of hyperparameters and design choices, proving that BERT-like
models are very sensitive to these settings; for instance, they shows training
is very sensitive to the Adam [17] epsilon term.

Experimental setups they conducted involved the usage of a larger pre-
training dataset and a different training procedure: static vs. dynamic token
masking, Next Sentence Prediction objective removal, different input format,
larger batches and a BPE-based subtoken vocabulary. After an extensive
ablation study, the final configuration uses dynamic masking (tokens are dy-
namically masked when a sequence is fed to the model), large mini-batch,
a byte-level BPE vocabulary of about 50K units, and Full-Sentences input
format without NSP (input consists of full sentences from one or more doc-
uments). Furthermore, they showed an increased pre-training dataset and a
longer training time further improve performances, without overfitting risk
on downstream tasks; as it can be seen in the results comparison on SQuAD
datasets in Section 2.2.1, the model sets a new state-of-the-art score. In ad-
dition, unanswerable questions from SQuAD v2 dataset are first selected by
a binary classifier, jointly trained while fine-tuning.
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Chapter 4

ALBERT

Since the introduction of BERT [8], the world of NLP tasks and Natural
Language Understanding faced a dramatically improvement in research and
end-use cases. This is why it is considered one of the milestones of the latest
years. Continuing on this trend, Google Research released ALBERT [21],
a new model that quickly gained the attention of NLP community because
of its improvements, establishing new state-of-the-art performances on many
tasks. In particular, ALBERT stands for “A Lite BERT”: most of the work
behind this model is focused on a more efficient usage of the Transformer
architecture, as it will be described in this chapter. In addition, this model
will be used as the base for a custom one, developed for the purpose of this
thesis.

4.1 Yet Another Model. Why?

Before going on explaining ALBERT, a question should arise: why do we
all need another NLP model? Efficiency. As shown earlier, Transformer-
based models are all particularly well-performing on reading comprehension
and classification tasks but their weak point is definitely their size. In fact,
number of parameters usually ranges from millions to even billions, as it
happens for the MegatronLM [36] model developed by NVIDIA (8.3 billion).

51
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Having a large network is very important for achieving state-of-the-art
performance. At the contrary, having larger and larger models can not be
the answer for keeping improving performances, as memory limitations are
quite restrictive. Even considering just BERTBASE, batch size and maximum
sequence length are two of the most relevant hyperparameters with respect
to memory usage; for this reason, a quite good GPU, or even better a TPU,
is mandatory to carry out a training with valid results. At the same time,
inference is also affected by this phenomenon, even if in a lower magnitude.
As a consequence, it is even more important to start investigating techniques
to lower the number of parameters and memory usage, without harming
performance.

From this point of view, ALBERT proposes two techniques, Factorized
embedding parametrization and Cross-layer parameter sharing.

4.2 Factorized Embedding Parametrization

In models such as BERT, all input and internal representations depend
on the hidden size H and the vocabulary size V . For instance, the embedding
matrix has size V ×H.

Recalling that WordPiece embeddings are meant to learn context-independent
representation, on the contrary, embeddings from hidden layers are meant
to learn context-dependent representations. For this reason, increasing the
hidden size H allows the model to have an higher representation capacity to
learn these context-dependent information. As a consequence, the embed-
ding matrix will become bigger and bigger, resulting in million or billion of
parameters which are sparsely updated during training.

Given a new parameter E which represents the vocabulary embedding
size, the intuition is to untie V from H by decomposing the embedding
matrix into two smaller matrices, depending on E. Therefore, embedding
parameters are reduced from O(V ×H) to O(V × E + E ×H), making the
reduction even more pronounced when H ≫ E, as shown in Table 4.1. From
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a practical point of view, this matrix decomposition involves the projection of
word embeddings in an intermediate space of size E, instead of directly into
the hidden space of size H, resulting in a more efficient usage of parameters.
In ALBERT, the default vocabulary embedding size is E = 128, taken into
account model performance and size.

Hidden Size H BERT ALBERT Reduction Factor
128 3.84M 3.85M 0.99
384 11.52M 3.89M 2.96
768 23.04M 3.94M 5.85
1024 30.72M 3.97M 7.74
2048 61.44M 4.1M 14.98
4096 122.88M 4.36M 28.16

Table 4.1: Factorization effect on embedding parameters supposing a vocab-
ulary size V = 30000 and vocabulary embedding size E = 128

4.3 Cross-Layer Parameter Sharing

In addition to the Factorized Embedding Parametrization, the other im-
portant advancement in ALBERT is Cross-Layer Parameter Sharing. It is a
parameter reduction technique which consists in avoiding multiple different
parameters by sharing most of them between layers.

Generally speaking, given the number of layers L, sharing takes place
by dividing their weights in N groups, each of them sized M , according
to the relation L = N × M ; only weights belonging to the same group
are shared. Furthermore, four different settings have been investigated: all-
shared (ALBERT setting), shared-FFN (only Feed-Forward Network weights
are shared), shared-attention (only attention heads are shared), not-shared
(BERT setting), under the assumption of using an ALBERT-base configura-
tion with vocabulary embedding size E = 128, 768.
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The effect of this technique with respect to the number of parameters is
shown in Table 4.2. As before, default vocabulary embedding size is E = 128

and E = 768 has been used for comparison only. Before choosing the default
sharing strategy, the effects on downstream tasks has been investigated too
and the results are shown in Table 4.3.

Model Setting Parameters Reduction Factor

ALBERT Base
E=768

all-shared 31M 1.0
shared-attention 83M 2.68
shared-FFN 57M 1.84
not-shared 108M 3.48

ALBERT Base
E=128

all-shared 12M 1.0
shared-attention 64M 5.33
shared-FFN 38M 3.17
not-shared 89M 7.42

Table 4.2: Cross-layer parameter sharing reduction effect on total number of
parameters

According to this figures, sharing Feed-Forward Network weights can be
considered the worst case scenario, as performance drops under both con-
figurations. In addition, also the all-shared setting results in a little drop
on average. Taking into account only the scenario where E = 128, sharing
attention weights only seems to be the best case, even though it is just 0.3
points above the all-shared strategy. For this reason, the default setting cho-
sen for ALBERT is the all-shared one because the huge parameter reduction
is worth a slight decrease in performance. From a practical point of view,
this is implemented by using N = 1 groups of size M = L.
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Model Setting
SQuAD v1.1 SQuAD v2.0

Avg
F1 EM F1 EM

ALBERT Base
E=768

all-shared 88.6 81.5 79.2 76.6 81.47
shared-attention 89.9 82.7 80.0 77.2 82.45
shared-FFN 89.2 82.1 78.2 75.4 81.22
not-shared 90.4 83.2 80.4 77.6 82.9

ALBERT Base
E=128

all-shared 89.3 82.3 80.0 77.1 82.17
shared-attention 89.9 82.8 80.7 77.9 82.82
shared-FFN 88.9 81.6 78.6 75.6 81.17
not-shared 89.9 82.8 80.3 77.3 82.57

Table 4.3: Cross-layer parameter sharing effect on SQuAD task

4.4 Sentence Order Prediction

Following many studies, such as [23], Next Sentence Prediction loss has
been proven to be often unreliable, thus the decision of removing it. It
was designed to merge topic and coherence predictions in a single task but,
apparently, predicting coherence is much more complicated than predicting
topic shifts. For this reason, NSP was unwittingly focusing on topics during
training, as negative examples were created by sampling two segments from
different documents.

ALBERT, instead, models a Sentence Order Prediction loss focusing just
on coherence. In particular, the only change with respect to NSP is how neg-
ative examples are created: as it can be seen from Code 4.1, given a positive
example consisting of two consecutive segments of text, the negative one is
obtained by swapping their order. Even though the change is particularly
simple, it forces the model to focus on discourse-level coherence properties.

1 Positive Example:
2 [CLS] the post [MASK] is closed [SEP] and I can not send the [MASK] [SEP]
3

4
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5 Negative Example:
6 [CLS] and I can not send the [MASK] [SEP] the post [MASK] is closed [SEP]

Code 4.1: Sentence Order Prediction positive and negative examples for
learning coherence

4.5 Minor Changes

4.5.1 Masked Language Modelling

Masked Language Modelling objective has been slightly updated with
respect to the one used in BERT, by employing n-gram masking. Instead of
masking single tokens in a segment, up to n consecutive words are selected
randomly, with n = 3.

4.5.2 Dropout and Data Augmentation

In order to keep the comparison between ALBERT and other BERT-
like models as meaningful as possible, pre-training data was the same: a
concatenation of BookCorpus and part of English Wikipedia. However, AL-
BERT was also pre-trained with additional data, the same used in [23] and
[46]. According to Figure 4.1(a), MLM accuracy improves with the aug-
mented pre-training dataset, even though performance on SQuAD task are
slightly worse. Since no signs of overfitting were observed during pre-training,
dropout effects were also investigated, in order to increase model represen-
tative capacity. As shown in Figure 4.1(b), by removing dropout, MLM
achieves a significant boost in accuracy, together with downstream tasks,
even if in a lower measure.

4.5.3 SentencePiece

SentencePiece [20] is a new tokenizer/detokenizer developed by Google
specifically designed for neural-based text processing. In particular, it per-
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(a) Additional data (b) Dropout

Figure 4.1: Dropout and additional data effects on MLM accuracy while
pre-training. Images taken from [21]

SQuAD v1.1 SQuAD v2.0
F1 EM F1 EM

No additional data * 89.3 82.3 80.0 77.1
With additional data * 88.8 81.7 79.1 76.3

With dropout † 94.7 89.2 89.6 86.9
Without dropout † 94.8 89.5 89.9 87.2

Table 4.4: Dropout and additional pre-training data effects on ALBERT
for downstream tasks. * refers to ALBERT-base configuration; † refers to
ALBERT-xxlarge configuration

forms a language-independent subword processing. Because of these charac-
teristics, it aims at becoming a new open-source standard in NLP community:
it removes the burden of relying on hand-crafted rules for text segmentation,
mostly for non-whitespace-separated languages such as Chinese or Japanese,
and it also allows direct training from raw sentences, as it automatically
handles vocabulary mapping. Besides custom normalization and an efficient
implementation of segmentation, the main contributions are two: lossless
tokenization and self-contained model. The former encodes all the necessary
information for the detokenization in the tokenized output, for instance solv-
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ing whitespace ambiguity problems, while the latter makes experiments easily
reproducible, as the model contains the vocabulary and segmentation/nor-
malization parameters.

Below an example of tokenized text using SentencePiece is shown.

1 INPUT: Lorem ipsum dolor sit amet.
2 TOKENIZED: '_lore', 'm', '_i', 'ps', 'um', '_do', 'lor', '_sit', '_a', 'met', '.'

Code 4.2: Example of sentence tokenization using SentencePiece

4.6 Configurations and Results

All ALBERT configurations investigated are reported in Table 4.5. As it
can be seen, even considering the xxlarge configuration, which has a Hidden
Size H 4 times bigger than the one used in BERTLARGE, the difference in
number of parameters is quite pronounced. In addition, big configurations,
such as large, xlarge and xxlarge, have been explicitly created to explore the
effects of network depth and width, in order to verify whether it is worthy
to keep increasing model size to obtain better performance on downstream
tasks. In particular, results show this assumption doesn’t hold as increasing
model capacity, for instance by using a larger amount of Transformer layers,
often results in a smaller performance gain; the same applies to Hidden Size
H. Furthermore, the xxlarge configuration uses only 12 Transformer layers,
as it would have been computationally more expensive to employ 24 layers,
without a significant increase in performance.

Config Parameters Layers L Hidden H Embedding E

base 12M 12 768 128
large 18M 24 1024 128
xlarge 60M 24 2048 128
xxlarge 235M 12 4096 128

Table 4.5: Overview of different ALBERT configurations
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The ALBERT configuration taken into account for an evaluation on
SQuAD considers the following settings: xxlarge configuration, combined
MLM and SOP losses, no dropout, additional pre-training data and addi-
tional training time (1M and 1.5M steps).

Even though ALBERT xxlarge has fewer parameters than BERTLARGE,
it is computationally more expensive to be trained, but it obtains signifi-
cantly better results. Due to hardware restrictions, the work explored in
the following chapter considers the ALBERT base configuration only, un-
less otherwise specified. For a complete overview of the experimental results
about ALBERT, its configurations and investigations, please refer to [21].

Model
SQuAD v1.1 SQuAD v2.0
F1 EM F1 EM

BERTLARGE 90.9 84.1 81.8 79.0
XLNet 94.5 89.0 88.8 86.1
RoBERTa 94.6 88.9 89.4 86.5
ALBERT (1M) 94.8 89.2 89.9 87.2
ALBERT (1.5M) 94.8 89.3 90.2 87.4

Table 4.6: Comparison on SQuAD dataset assuming the best performing
ALBERT configuration
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Chapter 5

ALBERT Improvements

This chapter includes a detailed description of all the work done for this
thesis, with the purpose of investigating and improving ALBERT perfor-
mance on the Question Answering task.

5.1 Settings

Before describing efforts and ideas for this project, it necessary to in-
troduce the environment used. The majority of work consisted in writing
Python scripts handling trainings and results collection, but also editing ex-
isting ones to adjust models.

As of today, there are two main frameworks for Deep Learning and Neural
Networks development and deployment available to the Python community
which are Tensorflow [24] and PyTorch [29]. Although ALBERT official code
released by Google Research is Tensorflow-based, Pytorch has been preferred
due to its simplicity and previous experience; in particular, version 1.3.1 has
been employed. Other tools includes Tensorboard for training visualization,
regex and Numpy.

In order to avoid a complete porting of ALBERT from Tensorflow to
PyTorch, Hugging’s Face Transformers [42] library has been used: it is a
collection of all state-of-the-art NLP models completely written in PyTorch,

61
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continuously updated and community-driven.
Most of the research and trainings have been carried out using the GPU

Cluster at CITEC, Bielefeld University, mainly through 2x NVIDIA P100
16GB GPUs.

5.2 Main Ideas

Due to the limited resources available, a complete pre-training of AL-
BERT was unfeasible: in fact, it took more than 32 hours employing 64 to
512 Google Cloud TPUs V3, depending on the configuration. As a conse-
quence, all kind of improvements regarding the real representation capacity
of this models have been excluded from the beginning; examples of this kind
of changes could have been an updated loss function involving an addition-
al/updated objective task, as it has been done with SOP, or data augmen-
tation. The challenge then, consisted of finding reasonable but, hopefully,
effective strategies to be applied while fine-tuning the model, after loading
pre-trained weights.

5.2.1 Binary Classifier

As the main focus was on Question Answering and, in particular, on
the SQuAD v2.0 dataset, one of the first ideas involved a better handling
of unanswerable questions. Instead of letting the model predict them by
returning an answer span on the [CLS] token, the idea was to add a binary
classifier to predict question type and then, the classic answer span extractor.
For Question Answering task, [CLS] token is not used, as it is an invalid
position with respect to the text from which the answer has to be found;
on the contrary, it is employed for every kind of classification task, such
as Sequence Classification, because it contains a representation of the entire
input. Consequently, the immediate extension was to implement the classifier
on top of the [CLS] output while keeping the span extractor on the rest.



5.2 Main Ideas 63

Figure 5.1: Schema for the binary classifier idea

Joint Loss

In order to let the model leverage the binary classifier output, it had to
be trained on both answerable and unanswerable questions. For this reason,
the usual loss function for the Question Answering task has been modified,
as shown in the Equation 5.1, to take into account the classifier loss and
jointly learn them.

Loss = LSPAN + αLCLS (5.1)

In particular, LSPAN is the span extractor loss, e.g. Cross Entropy Loss
on start and end positions, while LCLS is a Binary Cross Entropy Loss,
applied on [CLS] output logits; α is a scaling factor applied to investigate
the contribution of the classifier on the whole task.

5.2.2 Hidden States Concatenation

Another idea concerned Transformer layers output: to which extent is
every output relevant for the final model decision? Even though every Trans-
former layer takes into account the previous output, the Question Answering
system only considers the final Transformer output. The investigation in
this case consisted in concatenating some of the last layers output, in order
to understand whether intermediate representations could be effective; from
another point of view, this operation could be considered almost as a skip
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Figure 5.2: Schema for the CL = 4 hidden states concatenation

connection but for Encoder outputs.
However, the majority of work was on the Binary Classifier idea, thus less

effort has been put into this one: given CL as the number of concatenated
outputs, only few trainings were conducted with CL = 2, 4.

5.3 Implementation

The principal step before implementing the aforementioned ideas was an
analysis of both Tensorflow-based official code and PyTorch implementation
from Hugging Face, in order to get a proper understanding of their design
choices. During this work, in fact, some mismatches in the configurations
were found between the published ALBERT paper and the ones used by
both codebases; for instance, dropout rates in Transformer sub layers were
wrong, as Google confirmed to me on a GitHub issue1, or the usage of a
different GELU approximation. The updated configuration can be seen in
Appendix B.2.

The span extractor is implemented using a single Fully Connected layer

1https://github.com/google-research/ALBERT/issues/23

https://github.com/google-research/ALBERT/issues/23
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which reduces input last dimension from Hidden Size H to 2, for Start and
End logits; the same implementation as in Section 3.5.1.

Unanswerable Questions Classifier

By default, Hugging Face’s ALBERT model already returns a pooled out-
put with shape (BatchSize,H), which is a representation of the entire input,
processed and compressed into the [CLS] token. In other words, according
to BERT implementation, it contains all the relevant information to perform
a classification task. Since the aim is to get a boolean information whether
the question can be answered or not, the pooled output is projected to this
desired value through a Fully Connected layer which changes the shape from
(BatchSize,H) to (BatchSize, 1); a dropout probability of 0.1 is applied to
the pooled output before feeding it to this layer.

As stated earlier, a Binary Cross Entropy Loss is computed during train-
ing between the is_impossible data from the ground truth and the logits
computed by the classifier. In addition to editing the model, the fine-tuning
script has been updated too, in order to get appropriate metrics with respect
to the classifier. During the prediction phase, instead, accuracy is evaluated
in the following way: output logits are converted back to the range [0, 1] by
applying the Sigmoid function and every value lower than 0.5 has been ap-
proximated to 0, otherwise 1. For every batch, the accuracy is then the ratio
between correct predictions over the total and the final classifier accuracy is
the mean of all batch accuracies.

A complete overview of these implementations is shown in Appendix B.4.

Output Concatenation

In case of ALBERT Base configuration, every Transformer returns an
output of size H = 768 and the final span extractor expects an input of that
size. In order to consider multiple different output together, they have been
concatenated along last dimension: for instance, given CL as the number
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of concatenated outputs and an output shape (BatchSize, SeqLen,H), the
shape of the resulting tensor will be (BatchSize, SeqLen, CL × H). Due
to this change, another intermediate representation is needed in order to
make the last dimension of the proper size. This is done by adding a Fully
Connected layer between ALBERT model and the span extractor. The dis-
advantage of this approach, however, is the increasing number of learned
parameters: for instance, assuming concatenation of the last CL = 4 hid-
den states, the new intermediate layer has to reduce the dimension from
H × CL = 768 × 4 = 3072 back to 768. An operation like this introduces
about 2.3M of parameters.

A complete overview of these implementations is shown in Appendix B.5.

5.4 Training Pipeline

From a broad point a view, the training pipeline that has been followed
to carry out results and evaluations can be summarized with the following
list:

• Model creation and selection
• Hyperparameters investigation depending on available resources
• Fine-tuning execution on SQuAD v2.0 dataset
• Evaluation during and after fine-tuning through metrics and Tensor-

board data
• Choice of most promising models to use them as starting point for

fine-tuning and evaluation on OLP dataset

Due to limited hardware resources, the Base configuration was the only
feasible one that made extensive experiments possible, particularly with re-
spect to some hyperparameters, such as batch size and maximum sequence
length. In fact, the mean GPU memory usage was about 15 GB each.

As it will be shown in the following results, some hyperparameters were
fixed in order to guarantee a fair comparison between different experiments,
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while some others were investigated and changed accordingly. For instance,
maximum sequence length has been fixed to 512 to make the improved model
consistent with the pre-training.

A complete description of the hyperparameters changed and their val-
ues can be seen in Appendix A, in addition to some graphs provided by
Tensorboard.

5.5 Results

Later in this section, a complete overview of model configurations and
results will be provided, both on SQuAD and OLP datasets, with an appro-
priate discussion.

5.5.1 Configurations

Table 5.1 shows the investigated configurations that have been fine-tuned
on SQuAD v2.0. Unless otherwise specified, all of them used a Batch Size
of 32 while fine-tuning and the initial pre-trained weights from ALBERT
were the version albert-base-v22. Furthermore, for an additional analysis,
few ALBERT large configurations were used, as shown in Table 5.2 but
hyperparameters have been changed in order to successfully proceed with
the fine-tuning; unfortunately, this settings can be difficult to compare with
the other ones. In this case, the initial weights were changed accordingly to
albert-large-v23.

A side note regarding FP16: even though half-precision could be useful
to speed up trainings and optimize GPU memory usage, this option has only
been employed once because of lack of these benefits, as shown in Table 5.3.
This is mainly due to the fact that specific GPU architectures are necessary,
such as NVIDIA Volta GPUs.

2https://tfhub.dev/google/albert_base/2
3https://tfhub.dev/google/albert_large/2

https://tfhub.dev/google/albert_base/2
https://tfhub.dev/google/albert_large/2
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Config BinCLS Concat MSL LR TE WP FP16

base_binCls 3 7 512 3e-5 3.0 0.2 7

base_binCls_384seq 3 7 384 3e-5 3.0 0.2 7

base_binCls_4epochs 3 7 512 3e-5 4.0 0.2 7

base_binCls_fp16 3 7 512 3e-5 3.0 0.2 3

base_binCls_highLR 3 7 512 5e-5 3.0 0.2 7

base_concat2 7 3 512 3e-5 3.0 0.1 7

base_concat2_highLR 7 3 512 5e-5 3.0 0.1 7

base_concat4 7 3 512 3e-5 3.0 0.1 7

base_concat4_highLR 7 3 512 5e-5 3.0 0.1 7

Table 5.1: Main Base configuration investigated while improving ALBERT.
BinCLS: binary classifier for unanswerable questions. Concat: last hidden
states concatenation. MSL: Max sequence length. LR: Learning rate. TE:
Train epochs. WP: Warmup steps proportion. FP16: Half-precision.

Config BinCLS Concat BS MSL LR TE WP

large_binCls 3 7 12 512 3e-5 3.0 0.2
large_binCls_highLR 3 7 12 512 5e-5 3.0 0.2
large_binCls_hLR_2ep 3 7 12 512 5e-5 2.0 0.2

Table 5.2: An overview of few Large configurations. BS: Batch size.

All models employed the uncased vocabulary and the optimizer was
AdamW, which is a slightly modified version of Adam allowing the usage
of warmup steps; in particular, that number was a percentage of total steps
(according to warmup proportion hyperparameter) during which the learning
rate was increased linearly until the maximum value. In case of base config-
urations, one training epoch took approximately 1 hour, which increased to
4 hours for large-based ones.

The following tables present results on SQuAD v2.0 dataset by com-
paring them with the appropriate baseline; moreover, every table shows an
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overview taking into account each improvement separately, in order to un-
derstand their contribution. Best F1 and Best EM scores refer to F1 and EM
computed after finding the best null threshold on the dev set, as stated in the
official SQuAD evaluation script. This threshold is computed according to
the predictions, in order to choose the best value discriminating unanswerable
predictions from answerable ones.

For a complete description about these two metrics, please refer to Section
2.1.

Binary Classifier for Unanswerable Questions

Config
Best HasAns NoAns CLS

Acc.F1 EM F1 EM F1 EM

ALBERT Base 80.0 77.1 - - - - -
base_binCls 82.63 79.38 83.65 76.64 79.98 79.98 85.67
base_binCls_384seq 82.75 79.46 83.92 76.94 79.8 79.8 85.04
base_binCls_4epochs 81.91 78.72 83.28 76.45 78.86 78.86 84.91
base_binCls_fp16 81.88 78.67 83.24 76.32 79.56 79.56 85.35
base_binCls_highLR 81.47 78.34 82.75 75.67 79.33 79.33 84.84

Table 5.3: Results on SQuAD v2.0 dataset for ALBERT base configurations
with binary classifier for unanswerable questions

As it can be seen from these results, using a higher learning rate or
training for an additional epoch instead of the usual 3 hurts performances as
both settings will likely increase model overfitting chances.

base_binCls proves to be the best performing configuration with respect
to the binary classifier accuracy and performances on unanswerable ques-
tions. Overall, base_binCls_384seq seems to perform better than base_binCls
on answerable questions, leading to better F1/EM scores; taking a closer look,
however, the difference between these two configurations is not so pronounced
so the base_binCls has been preferred because of its better contribution in
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tackling unanswerable questions.

In addition to these figures, different scaling factor values have been ex-
perimented, in order to understand the best weight to give to the binary
classifier loss, according to the joint loss in Section 5.2.1.

Even though ALBERT was pre-trained with longer sequences, base_binCls_384seq
performs slightly better than base_binCls, and even more with respect to the
plain ALBERT base configuration. Since the difference between these two
best performing settings is not so marked, base_binCls will be used in sub-
sequent experiments.

Table 5.4 shows the effect of different scaling factors on binary classifier
loss; as it can be seen, having a 2× factor results in higher scores, but still
lower than the plain base_binCls configuration shown in Table 5.3, which
uses the same scale of the span extractor loss (α = 0.5).

Config
Factor

α

Best HasAns NoAns CLS
Acc.F1 EM F1 EM F1 EM

ALBERT Base - 80.0 77.1 - - - - -
base_binCls 1.0 82.27 79.17 83.29 76.32 79.53 79.53 85.28
base_binCls 2.0 82.4 79.03 83.5 76.33 79.61 79.61 85.57
base_binCls 6.0 81.47 78.03 82.49 75.19 79.41 79.41 85.24

Table 5.4: Results on SQuAD v2.0 dataset for ALBERT base configurations
after applying a scaling factor α to binary classifier loss

Finally, a large-based configuration allows to reach better performance,
even considering the lower batch size used during fine-tuning. Generally
speaking, the same considerations on learning rate applies to these settings
too; however, these configurations require more training time and memory
for about a +1.5 F1 improvement.

Looking at the figures regarding the binary classifier accuracy, it seems to
be difficult to obtain a value greater than 85%; the objective of performing
binary classification, in fact, seems to be too easy with respect to the span
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Config
Best HasAns NoAns CLS

Acc.F1 EM F1 EM F1 EM

ALBERT Large 82.3 79.4 - - - - -
large_binCls 83.94 80.84 84.83 78.32 81.82 81.82 86.7
large_binCls_highLR 82.94 79.69 83.88 76.75 80.49 80.49 85.79
large_binCls_hLR_2ep 82.86 79.69 83.52 76.62 80.59 80.59 85.67

Table 5.5: Results on SQuAD v2.0 dataset for ALBERT large configurations
with binary classifier for unanswerable questions

extraction one. As a consequence, the model tends to focus on the latter one,
preventing the classifier to reach better performance. However, this setting
requires further investigation, considering also more complex architectures
as classifier on top of the [CLS] output.

Hidden States Concatenation

Config
Best HasAns NoAns

F1 EM F1 EM F1 EM

base_concat2 82.40 79.21 82.06 75.54 82.34 82.34
base_concat2_highLR 81.82 78.73 81.3 74.58 81.78 81.78
base_concat4 82.32 79.3 82.29 75.67 81.45 81.45
base_concat4_highLR 81.54 78.57 81.27 74.71 81.19 81.19

Table 5.6: Results on SQuAD v2.0 dataset for ALBERT base configurations
with hidden states concatenation

Considering the hidden states concatenation instead, it seems that con-
catenating the last four hidden states returns the best results, particularly
on answerable questions; on unanswerable questions instead, this configura-
tion performs slightly worse probably because the model puts more efforts on
finding the answer span. Moreover, in both cases, having an higher learning
rate hurts performance. In this case too, base_concat2 has been preferred
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because of its better performances on unanswerable questions, the very little
difference on answerable ones and also the lower introduction of new param-
eters.

In conclusion, looking at those figures, the following configurations are
considered as the best ones and will be used also with the OLP dataset, as
shown in the following section: base_binCls, base_binCls_384seq, base_concat2
and large_binCls.

5.5.2 OLP Results

Differently from SQuAD, experiments on OLP dataset happened in two
phases: a first plain evaluation using models fine-tuned only on SQuAD and
another one after performing a second step of fine-tuning, on OLP itself too;
results are shown in Table 5.7 and 5.8, respectively. In addition, two versions
of the dataset have been employed, by changing the maximum sequence
length of text passages.

Leveraging on Question Answering knowledge provided by SQuAD, OLP
does not seem to be handled well, as all performances are way worse than
expected. Considering how the evaluation script has been set up, it auto-
matically computes the best null score threshold, in order to compute best
metrics. In particular, Best F1 and Best EM scores become meaningless,
since the same null threshold is chosen among all models and due to single
low scores on answerable and unanswerable questions.

After applying the second step of fine-tuning, scores greatly improve, even
outperforming previous figures on SQuAD. For instance, configurations based
on a maximum sequence length of 384 result to be the best performing ones
on OLP. This, however, shows that even though the datasets share the same
format, a fine-tuning step is still required to make the model understand the
peculiarity of each of them.
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Config MSL
Best HasAns NoAns CLS

Acc.F1 EM F1 EM F1 EM

ALBERT Base - 80.0 77.1 - - - - -
base_binCls 384 62.53 62.53 29.78 24.23 31.58 31.58 50.13
base_binCls 512 62.86 62.86 26.94 21.36 37.15 37.15 51.94
base_binCls_384seq 384 62.53 62.53 19.17 15.33 53.54 53.54 53.23
base_binCls_384seq 512 62.86 62.86 17.4 13.03 58.1 58.1 53.79
base_concat2 384 62.53 62.53 31.84 26.57 28.61 28.61 -
base_concat2 512 62.86 62.86 30.61 25.45 32.23 32.23 -

ALBERT Large - 82.3 79.4 - - - - -
large_binCls 384 62.53 62.53 27.98 23.8 38.06 38.06 49.59
large_binCls 512 62.86 62.86 26.66 22.58 41.81 41.81 51.15

Table 5.7: Results after plain evaluation on OLP dataset

Config MSL
Best HasAns NoAns CLS

Acc.F1 EM F1 EM F1 EM

ALBERT Base - 80.0 77.1 - - - - -
base_binCls 384 85.92 84.41 72.21 68.18 94.05 94.05 83.25
base_binCls 512 81.49 79.74 65.62 60.9 90.78 90.78 84.03
base_binCls_384seq 384 87.05 85.23 73.17 68.32 95.36 95.36 84.07
base_binCls_384seq 512 82.02 80.53 67.86 63.79 90.15 90.15 83.65
base_concat2 384 81.33 79.92 59.25 55.18 94.49 94.49 -
base_concat2 512 78.32 76.59 52.17 47.42 93.64 93.64 -

ALBERT Large - 82.3 79.4 - - - - -
large_binCls 384 86.76 85.28 74.63 69.93 93.0 93.0 83.96
large_binCls 512 87.08 85.59 73.05 68.79 94.36 94.36 86.08

Table 5.8: Results after fine-tuning each model on OLP dataset
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Conclusions

The work of this thesis has been the right way to investigate and under-
stand Natural Language Processing and its impact on a specific task, such
as Question Answering. After introducing some basic information and con-
cepts, this research focused on state-of-the-art, Transformer-based models to
address the task.

First with BERT, then with ALBERT, the purpose was to figure out
possible improvements for them, considering the difficulty of the task and
the available resources. In the end, we proposed some different ideas and
experiments that showed important advancements on Question Answering,
particularly on the SQuAD v2.0 dataset and also on the OLP one. In fact,
they involved the usage of a binary classifier focusing on unanswerable ques-
tions and a concatenation of last hidden layers, in order to have a more
representative output on which extracting answer spans.

As results look promising, further investigation is needed to better under-
stand the contribution of every ideas and how much they apply when scaling
to bigger model architectures.
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Future Developments

As previously described across chapters, Natural Language Processing
and, in particular, Question Answering task is gaining more and more at-
tention from the community, mainly because of the release of new state-of-
the-art models such as ALBERT. Research will keep going on until they will
reach human performance, or even more.

This work focused on fine-tuning ALBERT and trying to improve its
performance on the Question Answering task. Even though huge perfor-
mance advancements can not be expected without a different pre-training,
there are still some ideas to be explored while fine-tuning. In particular, the
ones explored in this work can be extended with a more careful hyperpa-
rameter tuning or with more expressive final representations for the binary
classifier. Furthermore, with appropriate resources, it could be interesting
to understand how to apply attention mechanisms specifically designed for
span extraction, or even transformers.

Another room for improvement could be investigating new types of nor-
malization, both on the transformer architecture or only on the final layers.
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Appendix A

Additional Models Info

A.1 Hyperparameters Overview

Hyperparameters SQuAD OLP
Batch Size 32, 12 16, 12
Max Sequence Length 512, 384 512, 384
Learning Rate 3e-5, 5e-5 2e-5
Train Epochs 3.0, 4.0 3.0
Warmup Proportion 0.1, 0.2 0.0

Table A.1: Overview of training hyperparameters used while fine-tuning on
SQuAD and OLP datasets

A.2 Tensorboard Data
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(a) Joint loss

(b) Classifier loss

(c) Learning rate with warmup

Figure A.1: Training metrics for base_binCls configuration
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(a) Joint loss

(b) Classifier loss

(c) Learning rate with warmup

Figure A.2: Training metrics for large_binCls configuration
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Appendix B

Code

B.1 SQuAD v2.0 Example

1 {
2 "title": "Normans",
3 "paragraphs": [{
4 "qas": [{
5 "question": "When were the Normans in Normandy?",
6 "id": "56ddde6b9a695914005b9629",
7 "is_impossible": false,
8 "answers": [
9 {"text": "in the 10th and 11th centuries",

"answer_start": 87},
10 {"text": "10th and 11th centuries", "answer_start": 94}
11 ]
12 },
13 {
14 "question": "Who gave their name to Normandy in the

1000's and 1100's",
15 "id": "5ad39d53604f3c001a3fe8d1",
16 "is_impossible": true,
17 "answers": [],
18 "plausible_answers": [
19 {"text": "Normans", "answer_start": 4}
20 ]

83



84 Code

21 }],
22 "context": "The Normans (Norman: Nourmands; French:

Normands; Latin: Normanni) were the people who in the 10th
and 11th centuries gave their name to Normandy , a region in
France. They were descended from Norse (\"Norman\" comes
from \"Norseman\") raiders and pirates from Denmark..."

23 }]
24 }

Code B.1: An example of JSON object regarding Normans from v2.0 dataset

B.2 ALBERT Base Updated Configuration

1 {
2 "attention_probs_dropout_prob": 0,
3 "hidden_act": "gelu_new",
4 "hidden_dropout_prob": 0,
5 "embedding_size": 128,
6 "hidden_size": 768,
7 "initializer_range": 0.02,
8 "intermediate_size": 3072,
9 "max_position_embeddings": 512,

10 "num_attention_heads": 12,
11 "num_hidden_layers": 12,
12 "num_hidden_groups": 1,
13 "num_labels": 2,
14 "net_structure_type": 0,
15 "output_attentions": false,
16 "output_hidden_states": true,
17 "gap_size": 0,
18 "num_memory_blocks": 0,
19 "inner_group_num": 1,
20 "down_scale_factor": 1,
21 "type_vocab_size": 2,
22 "vocab_size": 30000
23 }
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Code B.2: Updated configuration for ALBERT Base model following
mismatches fix

B.3 ALBERT Large Updated Configuration

1 {
2 "attention_probs_dropout_prob": 0,
3 "hidden_act": "gelu_new",
4 "hidden_dropout_prob": 0,
5 "embedding_size": 128,
6 "hidden_size": 1024,
7 "initializer_range": 0.02,
8 "intermediate_size": 4096,
9 "max_position_embeddings": 512,

10 "num_attention_heads": 16,
11 "num_hidden_layers": 24,
12 "num_hidden_groups": 1,
13 "num_labels": 2,
14 "net_structure_type": 0,
15 "output_attentions": false,
16 "output_hidden_states": true,
17 "gap_size": 0,
18 "num_memory_blocks": 0,
19 "inner_group_num": 1,
20 "down_scale_factor": 1,
21 "type_vocab_size": 2,
22 "vocab_size": 30000
23 }

Code B.3: Updated configuration for ALBERT Large model following
mismatches fix
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B.4 Binary Classifier Code

B.4.1 Layer Definitions

1 def __init__(self, config):
2 super(AlbertForQuestionAnswering , self).__init__(config)
3

4 # ALBERT Transformer model
5 self.albert = AlbertModel(config)
6 # Span extractor
7 self.qa_outputs = nn.Linear(config.hidden_size ,

config.num_labels)
8

9 # Binary classifier with dropout
10 self.classDrop = nn.Dropout(0.1)
11 self.classifier = nn.Linear(config.hidden_size , 1)

Code B.4: Class definition of ALBERT model for Question Answering with
the addition of the binary classifier for unanswerable questions

B.4.2 Forward Pass

1 def forward(self, input_ids=None, attention_mask=None,
token_type_ids=None, position_ids=None, head_mask=None,
inputs_embeds=None, start_positions=None,
end_positions=None, impossibleData=None,):

2

3 outputs = self.albert(input_ids=input_ids ,
attention_mask=attention_mask ,
token_type_ids=token_type_ids , position_ids=position_ids ,
head_mask=head_mask , inputs_embeds=inputs_embeds ,)

4

5 sequence_output = outputs[0]
6 pooled_output = outputs[1]
7

8 # Computing classifier logits
9 clsLogits = self.classifier(self.classDrop(pooled_output))

10 clsLogits = clsLogits.squeeze(-1)
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11

12 # Computing logits for span extraction
13 logits = self.qa_outputs(sequence_output)
14 start_logits , end_logits = logits.split(1, dim=-1)
15 start_logits = start_logits.squeeze(-1)
16 end_logits = end_logits.squeeze(-1)
17

18 outputs = (start_logits , end_logits , clsLogits ,) + outputs[2:]
19

20 # if training
21 if start_positions is not None and end_positions is not None

and impossibleData is not None:
22 if len(start_positions.size()) > 1:
23 start_positions = start_positions.squeeze(-1)
24 if len(end_positions.size()) > 1:
25 end_positions = end_positions.squeeze(-1)
26 ignored_index = start_logits.size(1)
27 start_positions.clamp_(0, ignored_index)
28 end_positions.clamp_(0, ignored_index)
29

30 if len(impossibleData.size()) > 1:
31 impossibleData = impossibleData.squeeze(-1)
32

33 # Computing binary classifier loss
34 clLossFun = nn.BCEWithLogitsLoss()
35 clsLoss = clLossFun(clsLogits , impossibleData)
36

37 # Computing span extractor loss
38 loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
39 start_loss = loss_fct(start_logits , start_positions)
40 end_loss = loss_fct(end_logits , end_positions)
41 span_loss = (start_loss + end_loss) / 2
42

43 # Computing joint loss
44 combined_loss = span_loss + 0.5 * clsLoss
45

46 total_loss = (combined_loss , span_loss , clsLoss)
47 outputs = (total_loss ,) + outputs
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48

49 return outputs

Code B.5: Forward pass for computing model outputs and losses while
training

B.4.3 Accuracy Evaluation

1 # Computing accuracy for a batch
2 # outputs is from a forward pass
3 sigmoidedIsImp = sigmoid(outputs[2])
4 isImpLogits = sigmoidedIsImp.detach().cpu().numpy()
5 isImpGT = isImpGT.detach().cpu().numpy()
6 tmp_acc = flat_accuracy(isImpLogits , isImpGT)
7

8 # Function definition for batch accuracy
9 def flat_accuracy(preds, labels):

10 preds = np.where(preds >= 0.5, 1, 0).flatten()
11 labelsFlat = labels.flatten()
12 return np.sum(preds == labelsFlat) / len(labelsFlat)

Code B.6: Code executed during evaluation for computing binary classifier
accuracy on a single batch

B.5 Hidden State Concatenation Code

B.5.1 Layer Definitions

1 def __init__(self, config):
2 super(AlbertForQuestionAnswering , self).__init__(config)
3 self.CL = config.num_concatenated_hidden_states
4

5 # ALBERT Transformer model
6 self.albert = AlbertModel(config)
7 # Intermediate layer for concatenated input
8 self.middle = nn.Linear(self.CL * config.hidden_size ,

config.hidden_size)
9 # Span extractor
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10 self.qa_outputs = nn.Linear(config.hidden_size ,
config.num_labels)

11

12 self.init_weights()

Code B.7: Definition of the intermediate Linear layer handling the
concatenated hidden states input

B.5.2 Forward Pass

1 def forward(self, input_ids=None, attention_mask=None,
token_type_ids=None, position_ids=None, head_mask=None,
inputs_embeds=None, start_positions=None,
end_positions=None,):

2

3 outputs = self.albert( input_ids=input_ids ,
attention_mask=attention_mask ,
token_type_ids=token_type_ids , position_ids=position_ids ,
head_mask=head_mask , inputs_embeds=inputs_embeds ,)

4

5 sequence_output = outputs[0]
6 hidden_states = outputs[2]
7

8 # Concatenating last 4 hidden states along last dimension
9 concat = torch.cat((sequence_output , hidden_states[-2]), 2)

10 concat = torch.cat((concat, hidden_states[-3]), 2)
11 concat = torch.cat((concat, hidden_states[-4]), 2)
12 # Projecting back to Hidden Size H
13 middleOutput = self.middle(concat)
14 # Computing span logits
15 logits = self.qa_outputs(middleOutput)
16

17 start_logits , end_logits = logits.split(1, dim=-1)
18 start_logits = start_logits.squeeze(-1)
19 end_logits = end_logits.squeeze(-1)
20

21 outputs = (start_logits , end_logits ,) + outputs[2:]
22
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23 # if training
24 if start_positions is not None and end_positions is not None:
25 if len(start_positions.size()) > 1:
26 start_positions = start_positions.squeeze(-1)
27 if len(end_positions.size()) > 1:
28 end_positions = end_positions.squeeze(-1)
29 ignored_index = start_logits.size(1)
30 start_positions.clamp_(0, ignored_index)
31 end_positions.clamp_(0, ignored_index)
32

33 # Computing span loss
34 loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
35 start_loss = loss_fct(start_logits , start_positions)
36 end_loss = loss_fct(end_logits , end_positions)
37 span_loss = (start_loss + end_loss) / 2
38

39 outputs = (span_loss ,) + outputs
40

41 return outputs

Code B.8: Forward pass of ALBERT for Question Answering with
concatenated hidden states and loss computation while training
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