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Sommario

Nel vasto ambito del Natural Language Processing (NLP), letteralmente

tradotto come elaborazione del linguaggio naturale, sono stati proposti, nel

corso del tempo, diversi modelli e tecnologie utili ad aggiungere questa ca-

pacità ai calcolatori.

Lungo questo lavoro andremo ad esplorare quali sono gli strumenti disponi-

bili oggigiorno, nello specifico vedremo i Transformer utilizzati all’interno del

modello BERT [9], creato da Google, e di alcuni modelli derivati da esso.

Questo modello è al momento lo “stato dell’arte” per diversi problemi di

NLP.

Andremo, in questa tesi, a focalizzarci sul Question Answering (QA),

ovvero l’abilità di cercare automaticamente risposte a domande poste in lin-

guaggio naturale. Il dataset di riferimento sarà SQuAD v2 ma verrà presen-

tato anche un ulteriore dataset sperimentale di nome OLP, entrambi verranno

successivamente descritti nel capitolo 4.

Il principale obiettivo di questo lavoro di tesi era quello di sperimentare i

benifici ottenibili intervenendo sul livello di question answering. Ci si è ispi-

rati al lavoro prodotto dal gruppo di ricerca HuggingFace ed al modello Distil-

BERT in particolare. Questo modello utilizza il paradigma Teacher-Student

(Insegnante-Studente) per trasmettere la capacità di generalizzazione tra due

modelli (verrà spiegato in maggior dettaglio nella sezione 5.2.1) e promette di

preservare il 97% della conoscenza di BERT, usato come Teacher dal gruppo

di ricerca, ma riducendo considerevolmente le dimensioni ed aumentando in

velocità di training ed inferenza.
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Infine verranno presentati i risultati ottenuti e spiegati i miglioramenti

che, seppur modesti, risultano in una conservazione della conoscenza del

94% rispetto al Teacher utilizzato. A livello di modelli sia per lo Student che

per il Teacher verranno proposti livelli di question answering modificati che

vedremo nel relativo capitolo (6). Inoltre saranno comparati anche risultati

ottenuti su OLP in diverse configurazioni con lo scopo di dimostrare come

un modello come BERT possa essere messo in difficoltà quando non si lavora

con un ambiente che rispetta certi vincoli.
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Chapter 1

Introduction

In the few last years, the Natural Language Processing (NLP) field has

seen a great expansion, also on large scale distribution. With the last

technologies, understanding and processing human language became an im-

portant part in research, making computer and other devices more human

friendly.

Nowadays, we all have already used, at least once, systems like Amazon

ALEXA, Google Home or Apple Siri. This is only a part of this field,

which is composed by many other sub-fields like speech recognition, text

generation and speech generation, text or natural language understanding.

NLP plays an important role also as a baseline to create support devices for

people with diseases, starting from a simple screen reader to a more complex

kind of information retrieval.

We found the purpose of our studies in text comprehension and focused

on the specific part of question answering by using the BERT model, which

is State-of-the-Art at the moment for many NLP tasks. In the next section

we will see an overview on what Natural Language Processing mean.

1
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1.1 Natural Language Processing

In short, the aim of this artificial intelligence field is to intermediate com-

munication between humans and machines by using the natural language.

Let us see some definitions (you can find them online) which explain the

concept with better words.

Natural Language Processing, usually shortened as NLP, is a branch of arti-

ficial intelligence that deals with the interaction between computers and hu-

mans using the natural language. The ultimate objective of NLP is to read,

decipher, understand, and make sense of the human languages in a manner

that is valuable. Most NLP techniques rely on machine learning to derive

meaning from human languages.1

Natural Language Processing (NLP) is a subfield of linguistics, computer sci-

ence, information engineering, and artificial intelligence concerned with the

interactions between computers and human (natural) languages, in particular

how to program computers to process and analyze large amounts of natural

language data.2

Natural Language Processing (NLP) is a branch of artificial intelligence that

helps computers understand, interpret and manipulate human language. NLP

draws from many disciplines, including computer science and computational

linguistics, in its pursuit to fill the gap between human communication and

computer understanding.3

NLP can be divided in four macroareas:

• Syntax

1https://becominghuman.ai/a-simple-introduction-to-natural-language-processing-ea66a1747b32
2https://en.wikipedia.org/wiki/Natural_language_processing
3https://www.sas.com/en_us/insights/analytics/what-is-natural-language-processing-nlp.

html

https://becominghuman.ai/a-simple-introduction-to-natural-language-processing-ea66a1747b32
https://en.wikipedia.org/wiki/Natural_language_processing
https://www.sas.com/en_us/insights/analytics/what-is-natural-language-processing-nlp.html
https://www.sas.com/en_us/insights/analytics/what-is-natural-language-processing-nlp.html
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• Semantics

• Discourse

• Speech

Of course, all of these areas have many subtasks like speech recognition,

part-of-speech tagging, automatic summarization etc.

Ambiguity is one of NLP keywords. The ambiguity of natural languages

makes all of the NLP tasks really challenging. We will focus on Question

answering, which is part of the Semantics macroarea.

Figure 1.1: Natural Language Processing[1]
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Chapter 2

Neural Networks

2.1 Artificial Neural Networks

An Artificial Neural Network, in the Machine Learning field, is an ar-

tificial model composed of connected neurons which should reproduce a

biological neural network. In other words, the Artificial Neural Network idea

is directly inspired by the human brain structure. These networks are rep-

resented by algorithms and they recognize numerical patterns, so we need

to convert sensory data information into numerical representations before

feeding them to the neural network.

Like signals transmitted through synapses, real numbers are transmitted

among neurons through the connection of the artificial network. We will see

the neuron and its possible activation functions more in details in the next

sections.

2.1.1 Neuron

The neuron is the fundamental part of an Artificial Neural Network. This

component receives a signal (a real number) input, makes some computation

and sends its output to the other neurons. A neuron can receive more than

one input at the same time; it processes all these signals to produce an unique

output. Normally it sums all the inputs xiwi, where xi is produced by the

5
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i-th neuron and wi is the weight associated to the connection, and adds a

bias (if it exists) before feeding the result to the activation function.

Figure 2.1: Artificial Neron

2.1.2 Activation Functions

An Activation Function represents the final elaboration step of the neuron

and it is performed before sending the output to other neurons.

Nowadays, the most popular function is the Rectified Linear Unit, also

called ReLU [2], which allows a faster convergence. Other examples of acti-

vation functions are the sigmoid and the tanh, defined as:

sigmoid(x) =
1

1 + e−x
(2.1)

Tanh(x) =
1− e−2x

1 + e−2x
(2.2)

while the ReLU is simply defined as:

ReLU(x) = max(0, x) (2.3)

ReLU is fast to compute since its value is equal to the identity and 0 for all

the negative x, so it is faster both during training and at inference time.
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In the next chapters, while talking about BERT, we will see the GELU

[14] activation function used inside BERT by the Google AI research group.

This function is defined as xP (X ≤ x) = xφ(x) which can be approximated

to:

GELU(x) = 0.5x[1 + Tanh(

√
2

π
[x+ 0.044715x3])] (2.4)

This variant should preserve neurons from dying, since the negative values

try to mitigate this case without eliminating it totally.

2.2 Type of ANN

2.2.1 Feed-Forward Neural Networks

The Feed-Forward Neural Network (FNN) [4] is an Artificial Neural Net-

works that does not present loops. It is the first simplest model of ANN in

which the information goes only forward, starting from the input nodes to

the output ones and passing though the so called Hidden Layers.

The most simple example of a Feed-Forward network is the Simple Per-

ceptron, composed only of the input and the output layers. Its neurons are

fully connected between the two layers while the Multi-Layer Perceptron

is composed of at least two layers of neurons without considering the input

one instead. This generalization allows neural networks to represent and

approximate complex non-linear functions.

Figure 2.2: Single and Multilayer Perceptron
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2.2.2 Convolutional Neural Networks

The Convolutional Neural Network (CNN) [24] is a special case of Multi-

Layer Perceptron inspired by biological processes. This tries to represent the

brain visual cortex. A CNN is composed of one or more Convolutional Layer

and could also have some pooling layers and finally a linear fully connected

network.

A Convolutional Layer extracts the features from an image. It acts

similarly to a scanner moving a particularly small matrix, called kernel, over

the entire image. Each convolutional layer extracts different kinds of features

because these matrices act like filters. A convolution is a kind of parameter

sharing, since each filter extracts the presence or the absence of a feature in

an image, which is a function of not just one pixel but also of its surrounding

neighbor pixels.

A Pooling Layer is normally applied after a series of Convolutional Lay-

ers in order to downsample the input by reducing its dimension but preserving

the features’ information.

The last level is composed of one or more Fully Connected Layers and

its result is a dot product between the output of the previous layer and the

weights’ matrix, which has to be trained.

Figure 2.3: Representation of a Convolutional Neural Network
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2.2.3 Recurrent Neural Networks

The keyword of the Recurrent Neural Network (RNN) [35] is memory.

What does it mean? It means that, unlike a basic Feed-Forward Network,

RNN remember things not only from the current training, but also maintain

some context from previous inputs, the so called Hidden State Vectors.

For example, the same input can produce different outputs, it depends on

the previous inputs. In other words, a permutation of the input sequence

normally leads to producing different outputs.

This kind of network is particularly suitable for tasks that need the help of

a context, such as speech recognition and other Natural Language Processing

tasks.

Parameter Sharing

RNN shares parameters across inputs. When this kind of network do not

share them, it is only a normal FNN where each input has its own weights.

The most commonly cells used in RNN are GRU [8] and the Long Short-Term

Memory (LSTM) [37].

Figure 2.4: Simple representation of a Recurrent Neural Network

Encoder-Decoder Sequence to Sequence RNN

For translation services, this network is composed of two Recurrent Neural

Network, the Encoder and the Decoder. The first one produces the context
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output, the encoder vector that is fed to the decoder part which translates

it to a sequence of outputs.

Figure 2.5: Encoder-Decoder with Recurrent Neural Network

2.3 Training

2.3.1 Hebb’s Rule

“Cells that fire togheter, wire together”, this is a summarize of the Donald

Hebb’s postulate. It is not completely correct because the original postulate

says “A cell A takes part in the activation of the cell B”[15], where A and

B are two connected neurons. The weights are updated during the training

phase at every training example, for a graphic representation have a look to

the Picture 2.1.

The Hebb’s rule is obsolete and does not accurately describe the behaviour

of a human brain. In fact, it assumes that a connection has to be strengthened

independently whether the result is good or not.
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2.3.2 Backpropagation

Nowadays, Backpropagation [32] is used, which is a supervised learning

technique that consists in minimizing the loss function by calculating the

gradient (descent in case of minimizing, ascent instead).

The gradient is the multi-variable generalization of a derivative of a func-

tion and determines how a weight value has to change and whether the

corresponding connection has to be reinforced or not. The two main reasons

to calculate the gradient are the following ones: the derivative shows the

direction of the cost function and also how much the weight needs to change

to minimize that function. After an input goes through a neural network,

we calculate the gradients and the new weight, which are pushed back in the

neural network to update all the weights inside it.

Although the gradient descent gives good results when changing weights,

it is really slow and this reflects negatively on the training time, so we need

to use some optimizers such as Stochastic Gradient Descent (sgd) [42]

and Adam [19]

2.4 Word Embedding

The Word Embedding is a kind of document representation in the Natural

Language Process field. It could be seen as a learning technique in which

the words are translated in their real number vector representation, so they

can conserve and give information about the context and the semantic for

each word in a document. We need this representation because our aim is

to capture word dependencies to reinforce the concept of context and have

better information about word relations in a text.

One of the most famous technique which implements this idea is word2vec

[26]. It uses Neural Networks and either Common Bag of Words (CBOW) or

Skip-Gram [27]. The first one predict the word based on the context while

the second one predicts the surrounding words given the current word.



12 2. Neural Networks

Figure 2.6: Comparison between CBOW and Skip-Gram

2.5 Dropout

The overfitting problem in Neural Networks consists of a model unable to

generalize, for example because it can become too specific about the training

set. This means that the model will make good predictions on data seen

during the training, but it will have bad performances when applying what

it learnt to unknown data.

This problem is mitigated though normalization techniques such as Dropout

[36]. It basically ignores randomly some connections by “dropping” them

temporarily and by avoiding to correct mistakes from previous layers. This

situation is called co-adaptation and could lead to overfitting because the

network does not generalize on unknown data.



Chapter 3

Transformers

3.1 Transformers Architecture

Transformers is the actual State-of-the-Art in NLP introduced by the

“Attention is all you need” paper [39]. A transformer is usually composed of

two parts: the Encoder and the Decoder. Both of them have an Attention

mechanism inside. Let us show in a more detailed way, in the next sections,

the Encoder and the Decoder.

Figure 3.1: Transformers high-level structure

13
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3.1.1 Encoder

If we explode the Encoder and look inside it we will actually find many

Encoders, going deeply in each of these “layers”, which have the same struc-

ture. We will find a Multi-Head Attention layer with a normalization layer

above and a Feed-Forward Network (a two layers network with ReLU ac-

tivation function in between them) with another step of normalization on

the top. The input goes through all the Encoder layers and at the end the

final output is passed to each Decoder layer at the same time. We prefer to

explain the Self-Attention and the Normalization in the 3.1.3 section.

3.1.2 Decoder

The Decoder part apparently uses the same structure as the Encoder

part, but having a look inside a Decoder layer, we can notice that there is

an additional layer, the so called Masked Multi-Head Attention with nor-

malization. Then, we will find an Encoder-Decoder Attention layer which

“connects” the Encoder part to the Decoder one. In fact, this layer receives

directly the encoder output, then the output of this layer is normalized, fed

to the Feed-Forward Network and normalized before passing the final output

to the next Decoder. In the end, the final decoder output goes through a

final linear layer with a softmax on the top.
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Figure 3.2: Encoder-Decoder connection and Attention

3.1.3 Attention

Definition: Self-attention, sometimes called intra-attention, is an atten-

tion mechanism relating different positions of a single sequence in order to

compute a representation of the sequence. [39]

Let us show Attention formulas before explaining each element in detail in

the next paragraphs.

A =
QKT

√
dk

(3.1)

Attention(Q,K, V ) = softmax(A)V (3.2)

Self-Attention

Self-Attention could substitute the LSTM [37] network with a new method

which takes the relation between the current word and all the other words

in the text into account.

Now we will see how to compute this attention to understand better
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what the concept of word VS words means. It is necessary to calculate three

important elements, which are called embeddings, for each word. Those

elements are Q, K, V, Query, Keys and Values respectively; to produce these

embeddings we need three different matrices which are learnt at training time

on loss back-propagated. In brief, each word embedding is multiplied for each

matrix to obtain the corresponding embedding. Assuming we are calculating

the embeddings for the word x1, the first step is to multiply x1emb for each

matrices:

x1emb ∗WQ = Q1 (3.3)

x1emb ∗WK = K1 (3.4)

x1emb ∗WV = V1 (3.5)

Here is an example to understand better what each of these embeddings

represents: assuming that a word x1 wants to know its value with respect to

another word, it has the possibility to query (our Q) the other word x2, which

will provide an answer (the K). The score is a simple dot product between Q

and K, Q ·K. This will be performed for each word, then a softmax function

Figure 3.3: Scaled Dot-Product, from equations: 3.1 and 3.2 [39]

is applied to all these scores to ensure a relative difference between scores.
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This step is performed by every word against all other words (the word VS

words we named above). The scores are now used by the word to obtain

a new value of itself w.r.t. the other words, in our case x2; depending on

the score, the corresponding V could be reduced or reinforced. The final

embedding, or better, the new word embedding, is given by summing up all

the Value embeddings, as shown in the figure 3.3.

Multi-Head Attention

Since we obtain many WQ,WK ,WV after the training, for each matrices

set and each word, we need to calculate many V
′
1 (e.g. for the first word).

All those embeddings have to be concatenated and thus multiplied with a

(learned) Z matrix to produce an unique embedding for the word x
′
1. The

Figure 3.4: Multi-Head Attention [10]

multi-head idea is to obtain a final embedding which takes into consideration

diverse contexts at the same time. This result could be reached by initial-

izing all the Q, K, V matrices randomly and by training them with loss

backpropagation.
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Figure 3.5: Representation of where Multi-head Attention is located inside

the transformers structure [40]

3.1.4 Layer Normalization

There are two main reasons to use Layer Normalization[3] instead of

Batch Normalization. The first is that with a batch size of 1 the variance is

zero and in this case the batch normalization can’t be applied; for this reason,

also small values of batch size produce noise that has a negative impact on

the training. The second reason is Recurrent Neural Networks (RNNs), the

model become more complicated since the recurrent activations of each time-

step will have different statistics and we are forced to store statistics each

step-time during training [18]. Layer Normalization normalizes the input

across the features rather than across the batch dimension, as we can see in

the following formulas:
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Batch Normalization Layer Normalization

µj = 1
m

∑m
i=1 xij µj = 1

m

∑m
j=1 xij

σ2
j = 1

m

∑m
i=1(xij − µj)2 σ2

i = 1
m

∑m
j=1(xij − µi)2

ẋ =
xij−µj√
σ2
j+ε

ẋ =
xij−µi√
σ2
i +ε

Table 3.1: Batch Normalization vs Layer Normalization Formulas

Compute statistics across the features means that they are independent

from other examples. A graphical explanation could help to understand what

“across the features” means (Figure 3.6).

Figure 3.6: Batch Normalization vs Layer Normalization[18]
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3.2 BERT

BERT model is considered a State-of-the-Art in many NLP tasks like

Question Answering (QA) or Natural Language Inference (MNLI). It uses a

bidirectional training strategy (Figure 3.7).

Figure 3.7: BERT [9]

BERT stands for Bidirectional Encoder Representation from Tranformers.

Released in the late 2019, it does not need to have the decoding part since its

aim is to generate language. This bidirectional mechanism allows BERT to

learn the context of a single word from the two words that surround it (left

and right). Later, the model reads the entire sentence at once[17]. BERT was

released in two different architectures, that is BERTBASE and BERTLARGE.

The smaller BERT presents 12 layers (transformers blocks), hidden size of

768, 12 self-attention heads and a final number of parameters of 110 million,

while BERTLARGE is a huge model, 24 layers, hidden size of 1024 and 16

self-attention heads, resulting in 340 million of parameters.
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Model NumLayers HiddenSize Self − AttentionHeads NumParameters

BERTBASE 12 768 12 110M

BERTLARGE 24 1024 16 340M

Table 3.2: BERTBASE and BERTLARGE Dimensions

We will see the training strategies in the next two sections, which are

divided in two phases, both about the BERT model. The training of BERT

is divided in two, the pre-training, which is the biggest part and takes a

considerable time and uses unlabled data, and the fine-tuning part, which

prepares BERT for a specific task.

3.3 Transfer Learning

With the term Transfer Learning we refer to the technology which

allows us to use the knowledge, acquired by training a model for a task, in

order to solve another related task. In this way is is possible to recycle a

huge amount of time and computational effort. Its aim can be explained, in

other words, as a different use of a model output. Let us take a practical

example: we do Transfer Learning when we use BERT prediction to solve

the Question Answering task by using an additional level to manipulate

that output. This was used for a long time with the Convolutional Neural

Networks and it is divided in two phases: the first one consists in getting

a pretrained-model which has been trained for long and, normally, on a big

set of GPUs, and a second one, where we use fine-tuning by using a new

more specific and smaller dataset for the task we want to solve or, in case

of the new dataset being very large by using the pre-trained model weights

to initialize the new model. This concept has never been used in Natural

Language Processing before BERT release.
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3.3.1 Pre-Training

Before starting with the pre-training, it is necessary to briefly introduce

the elements that help the model in this task. These actions are performed

before entering the model:

• [CLS] token: begin of the first sentence.

• [SEP] token: end of each sentence.

• The Sentence embedding is added to each token to recognize which

sentence it comes from.

• The Positional embeddings add the information about the position of

the token is in the sentence.

Figure 3.8: Representation of diverse embeddings in NSP training [9]

As it is shown in the picture 3.8, BERT takes in input a concatenation of

two segments composed of tokens. This concatenation is a single output

sequence with special tokens delimiting the two segments. The sequence

length is controlled by a parameter. So, assuming N is the first segment’s

length and M is the second segment’s length, if T is the maximun sequence

length that BERT can evaluate, then it must be that the sum of N and M

is less than T : N + M < T . The training was performed by using GELU

[14] activation function instead of the normal ReLU and the loss comes form
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the sum of the mean masked LM likelihood and the mean next sentence

prediction likelihood.

Masked LM (MLM)

MLM is a bidirectional approach which is used instead of the classic left-

to-right. This method starts setting the 15% of the total words as “possible

replacement” in each sequence by using the following criterion: 80% of

these words are substituted by the token [MASK], 10% are kept unchanged

and the remaining 10% are changed with randomly chosen words. The model

should attempt to predict the original words by considering the context from

the words that are not marked as “possible replacement”. Since this

approach considers only 15% of the words, it converges slower, but still with

better results. The model needs an additional classification layer on the top of

the encoder. The transformer has to keep all of the contextual representation

of every input token because it does not know which word could be replaced

or which one it has to predict. The model has to be trained for a long time

because MLM converges slower than normal left-to-right models.

Figure 3.9: MLM training mechanism [17]
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Next Sentence Prediction (NSP)

This sub-task is really useful for tasks like question answering. The system

receives a pair of sentences in input and learns whether the second sentence

is the one that follows the first sentence in the original text. The training

set is 50% balanced. In other words, one half of the input is composed of

real subsequent sentences, while the other half is composed of disconnected

sentences, which are randomly chosen.

Steps of prediction:

1. The whole input sequence goes through the transformer model.

2. A classification layer transforms the output of [CLS] token in a 2x1

vector.

3. The probability of isTheNextSentence is calculated via softmax.

Figure 3.10: Representation of diverse embeddings in NSP training [17]

MLM and NSP are trained together because the goal, when training BERT,

is to minimize the combined loss function of both strategies.

3.3.2 Fine-Tuning

BERT is a really flexible model because it is sufficient to add a simple

additional layer on the top of it.
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Depending on the task we are dealing with, we have to choose the correct

type of the last layer. For every up-level task we can directly use the BERT

part, which is already trained, and train only the layer for the specific task

by using BERT weight. In this way it is not necessary to train the whole

model every time. Here are some of the tasks we do by using a fine-tuned

BERT:

• Classification Tasks

• Question answering

• Named Entity Recognition

Question answering is the task in which we are interested the most. It

consist in “marking” a span in the sequence as an answer for a question posed

in natural language. BERT can be trained to learn two vectors that mark

the beginning and the end of the answer. Different datasets were created and

each of them could be used to fine-tune BERT, e.g. TriviaQA and SQuAD.

SQuAD is the baseline used in our work and we will explain its characteristic

deeply in the sections 4.2.1 and 4.2.2.

BERT could be treated as a black box, which could be used without

knowing how it works inside. What we need to study is its output and how

manipulate it to solve the specific task.

SQuAD v2 Representation

Questions which do not have an answer are treated as questions which

have one, but with an answer, span with start and end positions at [CLS]

token. This means that this value is normally zero. Thus, the probability

space had to be extended to include the position of the [CLS] token. When

we predict, we compare the score of no-answer span, snull, to the best non-

null’s score span, sîj. We predict a non-null answer when sîj ≥ snull + τ [9],

where τ is chosen to maximize the F1 score, we will explain it better and show

the formulas also for Exact Match in the 4.3 section talking about metrics.
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Figure 3.11: On the right is represented BERT as model and on the left the

highest levels which provide the task specific part [9]

3.4 Derived Models

The next few works are a very small part of the set of works on BERT

model. This underlines the importance of BERT in NLP field, since a lot of

people and teams demonstrate their interest in this model.

Researchers, when BERT came out, immediately noticed the huge dimen-

sion of the model and, consequently, the long time of training it requires,

then its training efficiency with the correct parameters. These characteris-

tics hinder BERT from being used on edge devices such as smartphones. The

following models all derive from BERT and tried to solve these problems.

3.4.1 RoBERTa

RoBERTa stands for Robustly Optimized BERT pre-training Approach

[25]. As it has been already said, one of the key points, when approaching

to a model like BERT, is to have a well trained model. This research group
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is composed of people from the University of Washington and the Facebook

AI research group. This work was born from the idea that BERT was signif-

icantly undertrained. They started doing experiments on the BERTBASE

configuration as a first try for the diverse train strategies.

Training Strategies

• Static Masking & Dynamic Masking: the original version of BERT

performs masking only once, before feeding the model. The training

data were augmented by 10 times by masking sequence in 10 different

ways to avoid the problem of Static approach. The RoBERTa group

invented a new system, Dynamic Masking, that generates masking

patterns every time, avoiding data duplication and occurrence of the

same masking patterns several times during training.

• Model Input Format and NSP: NSP resulted actually as an irrele-

vant task, so they removed it in favour of blocks of texts. FULL-

SENTENCES input can cross document boundaries and add an ad-

ditional token, which indicates the document ending. The input se-

quence is shorter than 512 token. DOC-SENTENCES is similar to

FULL-SENTENCES, except for the possibility of document bound-

aries crossing.

• Training with large batches: the batch size seems to have a consistent

influence in term of speed and performance. BERT was trained for

1 million steps with batch size of 256, which is equivalent to training

BERT for 125 thousand steps with batch size of 2 thousand or 31

thousand steps with batch size 8 thousand. Training with larger batch

size improves perplexity (how well a probability model predicts test

data. In the context of Natural Language Processing, perplexity is one

way to evaluate language models. Since it is an exponential of the

entropy, the smaller its value is, the better).
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• Text Encoding: Byte Pair Encoding (BPE) hybrid between words and

character-level, BPE uses bytes instead of characters.

In the end, the new training system was built by considering the results ob-

tained in the intermediate step. The final results are composed of a Dynamic

Masking approach, FULL-SENTECES without NSP task, larger mini-

batches and larger byte-level BPE. After the latest decision, they started

to use a bigger version of BERT, BERTLARGE. Firstly, BERTLARGE was

trained with RoBERTa settings for 100 thousand steps with BOOKCORPUS

[44] plus WIKIPEDIA English, obtaining a first improvement with respect to

the results published in the BERT paper. Then, they performed three more

trainings for 100, 300 and 500 thousand steps and combined the last dataset

with three more, CC-News [7], OPEN WEB TEXT [11] and STORIES [38],

for a total dimension of 160GB. We propose here a summary of the most

important results on SQuAD v1.1 and v2 published in the paper [25]:

Changes DataDimension BatchSize Steps SQuADv1.1 SQuADv2

BOOKS +WIKI 16GB 8K 100K 93.6 87.3

+OTHERDATASETS 160GB 8K 100K 94.0 87.7

+TRAINEDMORE 160GB 8K 300K 94.4 88.7

+TRAINEDEV ENMORE 160GB 8K 500K 94.6 89.4

BERTLARGE 13GB 256K 1M 90.9 81.8

Table 3.3: Comparison between RoBERTa and BERT results on QA task

using SQuAD Dataset (F1 score)

3.4.2 ALBERT

Differently, ALBERT’s goal is to reduce the dimension of the model and

give a speedup in terms of training time. Two main intuitions led to the final

“smaller” model: Factorized embedding parametrization and Cross-

layer parameters sharing.
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ALBERT promises to be 1.7 times faster than the original BERT and

to have 18 times less parameters, which could be seen also as a form of

regularization that helps with generalization.

Architectural Choices

As we have said above, BERT uses transformers encoders with GELU

which is a non linearity activation function. We will see here ALBERT’s

contribution:

• Factorized embedding parametrization: E is the wordPiece (context-

independent learning) embedding size, which is directly related to H,

the hidden size (hidden layer context-depending learning) and they take

normally the same value. It is possible to gain a more efficient use of

the total model parameters by separating these two values if H >> E.

Since the vocabulary is usually very large and the dimension of the

wordPiece[41] embeddings is given by V xE, the increase of H (and E)

results in a billion of useless model parameters.

With ALBERT, the authors divide embedding parameters in two ma-

trices; in this way, the number of parameters decays consistently from

O(V xH) to O(V xE + ExH) when H >> E. They choose to have

the same E for all word pieces because these are much more evenly

distributed across the documents compared to whole-word embedding

[23].

• Cross-layer parameters sharing: This would be also an improve-

ment in terms of parameter efficiency. Although there are many ways

of sharing, in this work it was decided to use all of the parameters shar-

ing across layers. After many experiments, this method led to better

results, as shown in tables 4 and 5 in the paper [23].

• Inter sentence coherence loss (SOP): Since NSP was a really triv-

ial task and did not have a substantial contribution during the training

phase, it was replaced by Sentence Order Prediction loss. SOP uses
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consecutive sentences (just like BERT) for the positive samples and

swaps its sequence for the negative examples instead of choosing ran-

dom sentences from the text.

Model and experimental Setup

In the following table (3.4) all the configuration of ALBERT and BERT

are summarized to have a better idea about what changes between the two

models, especially in terms of number of parameters:

Model Parameters Layers Hidden Embedding ParametersSharing

BERTBASE 108M 12 768 768 False

BERTLARGE 334M 24 1024 1024 False

BERTXLARGE 1270M 24 2048 2048 False

ALBERTBASE 12M 12 768 128 True

ALBERTLARGE 18M 24 1024 128 True

ALBERTXLARGE 60M 24 2048 128 True

ALBERTXXLARGE 235M 12 4096 128 True

Table 3.4: Comparison between BERT and ALBERT dimensions and number

of paramenters

The same dataset used with BERT (BOOK CORPUS + English Wikipedia)

was used for the pre-training of the model, by formatting the input in the

following way:

“[CLS] sentence1 [SEP] sentence2 [SEP]”.

The system was set to a maximum input length of 512 and a probability of

10% of input shorter than 512. The vocabulary dimension is of 30000 like in

BERT but it was tokenized by using SentencePiece[22] like in XLNet[43].

In addition, the masked inputs were generated by using n-gram with n of

maximum 3 and for a 125 thousand steps. To conclude the ALBERT chapter,
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we would like to present its results on Question Answering task obtained by

using SQuAD v1.1 and v2 in comparison with BERT (Table 3.5):

Model SQuADv1.1 SQuADv2

BERTBASE 90.4/83.2 80.4/77.6

BERTLARGE 92.2/85.5 85.0/82.2

BERTXLARGE 86.4/78.1 75.5/72.6

ALBERTBASE 89.3/82.3 80.0/77.1

ALBERTLARGE 90.6/83.9 82.3/79.4

ALBERTXLARGE 92.5/86.1 86.1/83.1

ALBERTXXLARGE 94.1/88.3 88.1/85.1

Table 3.5: Comparison between BERT and ALBERT results on QA task

using SQuAD Dataset (F1/EM respectively)

3.4.3 DistilBERT

DistilBERT approaches the dimension and the speed problems with an-

other technique. The main idea of the study is to create a considering smaller

model with the same structure of the bigger one. For example, in DistilBERT

the pooler and the token-type embeddings were removed. In addition, it has

less numbers of levels. We will explore this model better in sec: 5.3.

For now let us anticipate in a really brief description what they did. They

“Transferred” knowledge from the bigger model (BERT) to the smaller one

(DistilBERT) by using distillation, considerably reducing the training time

as well as the final dimension of DistilBERT.
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Chapter 4

Question Answering

4.1 Question Answering Problem

Question Answering is that specific field of Natural Language Processing

(NLP) which tries to reproduce human behaviour when answering questions

posed by humans. In 1960s, the first approaches were called BASEBALL and

LUNAR. Both of them had a restricted domain to search answers. After that

it was necessary for the research to focus more on improving these techniques

in information-retrieval.

One thing which is important to notice is that both of them use a closed-

domain. The research is limited to a specific topic, so the questions were given

on that context. Recent discovery in NLP (Natural Language Processing)

permits to work on opened-domain datasets. In brief, closed-domain datasets

and opened-domain ones differ in context, since opened-domain datasets do

not have a specific topic. We can divide the question answering problem in

four steps, which could be considered as the QA architecture.

The four steps are:

1. Question Analysis

2. Document Retrieval

3. Answer Extraction

33
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4. Answer Evaluation

The process flow is shown in the next picture (4.1).

Figure 4.1: Question Answering steps [16]

At the moment, with BERT, it is relatively simple to find an answer to

well formulated questions that have a specific right answer. In this task the

newest models reached human performances, while understanding if there is

an answer in the text, and in case finding it, is still an interesting challenge. A

more complex task is to find questions through text comprehension. In other

words, it is really difficult to find an answer that needs to capture some

text semantics, for example in the case of the answer being distributed in

different parts of the text. Anyway, it is possible, thanks to the last research,

to consider also open-ended and multi-answer questions.
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4.2 Datasets

In all the machine/deep learning applications it is necessary to have a

good dataset, from which a model can learn how to solve the problem. The

Stanford Question Answering Dataset (SQuAD) [31] was used as a baseline.

The SQuAD dataset is the result of crowdworkers work. It consists in

questions posed by humans and it is available in two versions, v1.1 [30] and v2

[29]. The second version adds the possibility to have unanswerable questions.

This means that some questions do not have an answer in the article under

consideration.

The second dataset, the OLP dataset ([6], [5]), is an experimental one.

It is still work in progress. The aim of this dataset is to be useful for other

text comprehension tasks.

4.2.1 SQuAD v1.1

The first dataset involves more than five hundred articles from Wikipedia

and more than a hundred thousand question-answer pairs. In this dataset

there is an answer for every question in the paragraph and it is relatively

simple for the existing models to reach very good results with this dataset

version. This idea was good in order to have a baseline, but at Stanford

university it was quickly understood that it would have been better to create

a more challenging version. So, less than 2 years later, the second version of

SQuAD came out.

4.2.2 SQuAD v2

SQuAD v2 is an extension of the previous version which contains also

non-answerable questions. Fifty thousand questions posed to be answerable-

like were added by crowdworkers. This means that the dataset is made of

2/3 answerable questions and 1/3 ones. To achieve good results with this

dataset, the system should also determine which question cannot find its

answer in the text. This version is definitely more complicated than the
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previous one because the system has to analyze the whole paragraph to

determine if it is possible to find an answer for a question. For this reason,

the models which perform well on SQuAD v1.1 perform significantly worse on

this version. Both versions have the same structure, except for the fact that

in the second version two keys for each question are added: is impossible

and plausible answers. The last one appears only in case of true value on

the is impossible (an example of both structure is given in A.1 and A.2).

4.2.3 OLP Dataset

This dataset is, as we have already seen, the result of a workgroup at

Bielefeld University. This dataset is composed of a collection of post-game

comments from football matches. The difference between the SQuAD dataset

and the OLP dataset, except for the structure, is that the first one has a so

called open-domain, while the OLP dataset uses a closed-domain instead.

The characteristic of this dataset is that it was thought to consider not

only questions with a specific answer in the text, but also situations in which

more complex techniques of text comprehension are needed. For example, we

can find questions like “How many goals did the player X score?”, so that the

answer could be structured in this way; “Player X scored at 33’”, “Player

X scored again for the guest team” and so on; the model should use some

ontology to understand the relation between the answers and the questions.

Preprocessing and Conversion

Both datasets had completely different structures. For this reason, the

fastest way to work with our models and the OLP dataset was to convert it

in a SQuAD-like version. A python script was created to extract the text

from the csv file. A file for each article by using the information about the

number of characters and the sentence number (e.g. B.1), together with

the annotation and question (e.g. in B.3 and in B.2) files (they were equally

named, so we could easily deal with the association between them) were used

to obtain the same structure as in SQuAD at the end.
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Since the dataset is still under development at the University, it is not

available to the public and we have not released the code yet. With the

cooperation of Matteo Del Vecchio and the support of Frank Grimm, we

started to study the datasets deeply. Although the datasets were actually

completely different in structure, we were able to figure out what the common

traits between OLP and SQuAD are.

During this analysis we discovered additional problems and part of the

dataset had to be modified. In particular, we worked on problems related to

the handmade annotations and fixed some policy which impeded the conver-

sion to SQuAD.

In its first version we found different duplications in the annotations files,

so we focused our attention on removing all of them and removed redun-

dancies in the dataset by using a python script to automatize the process as

much as possible. For unexpected cases we had to interfere manually. The

second problem derived from the reason why OLP Dataset was born (to have

a Question Answering Dataset where the answer had to be the result of some

semantic inference, so the answer could not appear directly in the text and

could also be composed of different pieces of text collocated far from each

other in the article). We often had to deal with this problem, for example

we found answer posed in the form “1:0”, to refer to a match result, while

in the text the answer was “1-0”, impeding our model to learn by evaluating

the answer since they were different. The question file was unique for all of

the datasets and, through an id system, we could understand what question

an answer referred to. But some of these questions were posed in a general

way by omitting a part of the text, for example a name, as we have already

shown above. Firstly, we tried to just ignore them but we quickly realized

that the dataset dimension became really small. We asked our referent, Frank

Grimm, how to deal with this problem and he provided us with a new version

with a question file for each article in which all the general questions where

specified.

Although there was no information about the answerability of a question,
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which is really important for SQuAD, we tried to extract it from the answer

file, but there was no assurance about whether the question was answerable

or not. For this reason, we suggested to add a tag answerable in the dataset

so we could simply set the tag is impossible. In this way, we had just to

invert the True or False value in answerable.

The tokenization was not always coherent because spaces were counted

directly on the difference between start and end position of tokens, but some-

times spaces were treated as token. We had to normalize every situation and

find a pattern to automatize this action without losing meaning in the text.

Once we solved this aspects, we could convert the dataset and obtain our

SQuAD-like version of OLP. The resulting Dataset was split in two parts, the

training part and the testing part, to maintain the coherence with SQuAD,

but we used also the whole dataset for an evaluation on how good the results

were with a model fine-tuned on SQuAD.

4.3 Metrics

The Exact Match (EM) and the F1 score are often used to measure

the accuracy in the Question Answering task. The first is basically how many

times the output of the model is equal to the ground truth, while the second

one considers how “near” the model is when compared to the groud truth.

The F1 score is an armonic mean between precision and recall. Let us

introduce some definitions to better understand the F1 formula:

• TP: True Positive is when the detection is correct.

• FP: False Positive is when the model says that the prediction is correct

but it is not.

• FN: False Negative is when the model gives us a negative prediction

instead of the expected positive one.

• TN: True Negative represents all the predictions which are true but in

which we are not interested for the current prediction.
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Here we will show the recall and precision formulas based on the notions

above:

precision =
TP

TP + FP
=

TP

AllDetection
(4.1)

recall =
TP

TP + FN
=

TP

AllGroundTruth
(4.2)

Finally, we can write the F1 formula:

F1 = 2 ∗ precision ∗ recall
precision+ recall

(4.3)

4.4 Before BERT

Before Transformers were invented there was some approach to the Ques-

tion Answering problem. Here we give an example of some older models,

precursors of the more recent BERT.

4.4.1 BiDAF

BiDAF (Bi-Directional Attention Flow) [34] is a closed-domain QA model

which can only answer questions with a string in the text. It was the State of

Art before ELMO and BERT. This model is composed of 3 main parts: the

Embedding layers, the Attention and modeling layers and the output layer.

The Embedding layers are three different levels of embeddings: character,

word and phrases embedding. As we have already said, this part transforms

words information into their real-valued vectors representation.

The Attention and model layers add context about the query by using

additional information and merge everything in a unique output, which is

called “Query-aware Context representation” in the paper.

The last layer transforms all the information received from previous layers

into probabilities values, which will be used to calculate the start and end

positions of an answer.
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Figure 4.2: BiDAF

4.4.2 ELMo

Not only does the idea of ELMo (Embeddings from Language Models) [28]

take into consideration the following word that can appear in a sentence given

the current word, but also the previous one, obtaining different embeddings

for the same word. It is the first time this kind of contextual approach has

been used, while before a fixed embedding was assigned to each word. To do

that ELMo needs to be trained on a huge dataset and it uses a bi-direction

LSTM (sec ??). The first direction is forward and considers information

about the following word, while the second network goes backward to consider

the previous word.

ELMo was used for Question Answering on SQuAD v1.1 by adding it to

an improved version of BiDAF. This led to an improvement of 4.7 percents

compared to the baseline, as shown in the relative paper.
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Figure 4.3: ELMo

4.5 Results Comparison

In the next table 4.1 a little recap. We will give an overview of all the

most significant results published in the papers of each model:

Model SQuADv1.1 SQuADv2

BiDAF 68.0/77.3 −/−
ELMo −/85.8 −/−

BERTLARGE(single) 84.1/90.9 78.7/81.9

RoBERTa 88.9/94.6 86.5/89.4

ALBERTXXLARGE 88.3/94.1 85.1/88.1

Table 4.1: The most significant results in Question Answering, given with

EM/F1 metrics
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Chapter 5

DistilBERT

5.1 Models Compression

From the literature we learn that there are many techniques to reduce

a model dimension and compress it to a smaller form losing something in

precision but gaining in lightness and speed. We are more interested in

Knowledge Distillation since it is the technique used to train DistilBERT5.3.

We are going to explain it more in details in the next section 5.2.

5.1.1 Pruning

This is a technique to prune weights that match a certain criterion by as-

signing the value zero to them. The most common pruning criterion consists

in comparing an absolute value to a threshold. If that value is smaller than

this threshold, it is set to zero, because a low value contribute only a little

for the final results and can be directly removed. This method was born

to contrast the over-parametrizetion of models and redundancy in logic and

features. There are two ways to do pruning: one-shot pruning and iterative

pruning. The first one is done only once, while the second one of course more

than once, but changing the pruning criterion every time (iteration)1.

1https://nervanasystems.github.io/distiller/pruning.html#pruning
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5.1.2 Quantization

Quantization reduces the precision of the values from the most widespread

FP32 (32-bit floating point) to a half precision FP16, or even to a lower

representation like 8-bit integer, but preserving the same accuracy. This also

leads to a reduction in terms of storage, estimated to be 8 times smaller by

using 8-bit integer instead of 32-bit floating point2.

5.1.3 Regularization

“Any modification we make to a learning algorithm that is intended to

reduce its generalization error, but not its training error.”[13]. We are not

really interested in this method, so we refer to the link at the bottom of the

page3 for a deeper study.

5.2 Knowledge Distillation

Knowledge Distillation (KB) could be seen as a transfer learning

technique, even though it has a different aim. In this case we want to obtain a

smaller network from the pre-trained one by transferring not its exact weights

but its way to generalize the task. It is more correct to say that Knowledge

Distillation’s goal is something more than barely transferring knowledge, but

it is also a form of compression from a huge high precision model to a smaller

one, without losing too much in generalization.

It is a reinforcement learning technique which wants to reduce the di-

mension of huge models (like BERT) and the training time by transferring

knowledge between two models. In particular, Teacher-Student paradigm

is composed of a small network, the Student, and a bigger one, the Teacher,

which should be trained on the complete dataset.

The training phase usually needs a consideably amount of time for models

2https://nervanasystems.github.io/distiller/quantization.html
3https://nervanasystems.github.io/distiller/regularization.html

https://nervanasystems.github.io/distiller/quantization.html
https://nervanasystems.github.io/distiller/regularization.html
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like BERT and also its dimension and response time do not help to execute

and use them in edge devices. The final aim is to teach the Student how to

simulate the Teacher’s behaviour. Let us define the two behaviour as ϕT

and ϕS .

In the case of the transformer distillation MHA (Multi-Head Attention)

and the FFN (Feed-Forward Network), the output could be used as behaviour

functions. The Knowledge Distillation can be modeled by minimizing the

following function:

LKD =
∑
x∈χ

L(ϕs(x), ϕt(x)) (5.1)

where χ is the dataset, x the next text input and L(.) is the loss function

destinated to evaluate the differences between the student and the teacher

predictions. We will introduce, explaining more in details the distillation,

notions like Student-Teacher network 5.2.1, softmax with Temperature

5.2.2 and Dark Knowledge 5.2.3.

5.2.1 Teacher-Student

As it was already anticipated the Teacher is the bigger high precision

network used to transmit the “behaviour” to the Student network. Firstly,

the Teacher network has to be trained over the complete dataset with high

performances. Secondly, when a Student is built, there has to be correspon-

dence between intermediate levels since they are different in dimension. The

pipeline is quite simple and it can be summarized in this way: the same input

passes through both models, the Teacher and the Student, producing their

output that is fed to the softmax. This is a key point because here we find a

special version of softmax, the softmax-temperature (5.2.2), which produces

soft-labels from the output of the Teacher and soft-predictions from the Stu-

dents output. Then the Loss function is calculated between them. The same

Temperature is used and this part is the Distillation Loss. Also the hard

prediction of the Student model is calculated by using the normal softmax,

which will be compared to the Ground Truth obtaining the Student Loss.
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Finally, both results are summed together to obtain the final Loss:

L(x;W ) = α ∗ H(y, σ(zs;T = 1)) + β ∗ H(σ(zt;T = τ), σ(zs, T = τ)) (5.2)

Where x is the input of the model, W are the student’s weights, σ is the

softmax (also with the Temperature T ), y are the labels of the Ground

Truth and H is the Cross-Entropy loss, while z represents both Student and

Teacher logits. The following picture (5.1) shows graphically the formula 5.2

above:

Figure 5.1: Teacher-Student Model schema [20]

5.2.2 Softmax-Temperature

Softmax-temperature is a standard Softmax with a coefficient that makes

the predictions of a network “softer”. In fact, if we compare the two formulas

we can easily notice that the only difference is in this T , which divides the

network logits.

pi =
exp(zi)∑
j exp(zj)

(5.3)

pi =
exp( zi

T
)∑

j exp(
zj
T

)
(5.4)
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Where the 5.3 is the standard one and the 5.4 is the Softmax with tempera-

ture.

This is the baseline of the Dark Knowledge in explained in the next section

(5.2.3).

5.2.3 Dark Knowledge

Dark Knowledge is the result obtained from the application of Softmax-

Temperature to the Teacher network prediction, adding more information

to the class that the Teacher found to be more probable. This additional

knowledge is the so-called Dark Knowledge [21] that we want to transfer

from the Teacher network to the Student. As we have already said in the

previous section 5.2.1, the soft-prediction of the Student is done by using the

same value of Temperature.

5.3 DistilBERT Model

Since BERT is a mastodontic model and requires a lot of time to train

and a significantly computational effort, the HuggingFace research group [12]

model tried to combine the Knwoledge Distillation with BERT. In addition,

the token-type embeddings and the pooler were removed, because they re-

alized that the next sentence classification was not so effective. The rest

of the architecture was kept identical but the number of layers was reduced

of a factor of two. As a result, a smaller language model, DistilBERT, was

born. This was trained with BERT supervision compressing it and preserving

almost the same performance as BERT.

To transfer the knowledge in DistilBERT, this was trained on the soft

target probability of the Teacher:

LCE =
∑
i

ti ∗ log(si) (5.5)

ti and si are calculated by using a softmax-temperature 5.4, where T is always

Temperature which controls the smoothness of the output distribution and
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was set to the same value, both for Teacher and the Student at training time,

while at inference time it is set to 1 (the standard softmax), to calculate the

hard prediction of the student. The code below shows how the knowledge

was distilled during the fine tuning phase of DistilBERT. The formula is

calculated in the run squad w distillation.py4:

Listing 5.1: Loss with distillation used during Fine-Tuning

loss_fct = nn.KLDivLoss(reduction="batchmean")

loss_start = loss_fct(

F.log_softmax(start_logits_stu / args.temperature ,

dim=-1),

F.softmax(start_logits_tea / args.temperature , dim

=-1),

) * (args.temperature ** 2)

loss_end = loss_fct(

F.log_softmax(end_logits_stu / args.temperature , dim

=-1),

F.softmax(end_logits_tea / args.temperature , dim=-1)

,

) * (args.temperature ** 2)

loss_ce = (loss_start + loss_end) / 2.0

loss = args.alpha_ce * loss_ce + args.alpha_squad * loss

while the following code comes from the file distiller.py in the same reposi-

tory:

Listing 5.2: Loss with distillation used during Training

loss_ce = (

self.ce_loss_fct(

F.log_softmax(s_logits_slct / self.temperature ,

dim=-1),

4https://github.com/huggingface/transformers.git

https://github.com/huggingface/transformers.git
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F.softmax(t_logits_slct / self.temperature , dim

=-1),

)* (self.temperature) ** 2

)

loss = self.alpha_ce * loss_ce

According to the results published on the DistilBERT paper [33], it can

reach 97% of BERT understanding skills, despite being 40% smaller and 60%

faster. For completeness, these results are summed up in the table 5.1 with

the GLUE baseline [33].

Model Score CoLA MNLI MRCP QNLI QQP RTE SST − 2 STS −B WNLI

ELMo 68.7 44.1 68.6 76.6 71.1 86.2 53.4 91.5 70.4 56.3

BERT − base 77.6 48.9 84.3 88.6 89.3 89.5 71.3 91.7 91.2 43.7

DistilBERT 76.8 49.1 81.8 90.2 90.2 89.2 62.9 92.7 90.7 44.4

Table 5.1: Comparison of DistilBERT’s results with BERT-base’s and ELMo

performance

DistilBERT can preserve most of the results of BERT-base on SQuAD

v1.1 or about 2 point less and even better, adding an ulterior step of distil-

lation during the fine-tuning phase. The results are shown in the next table

(5.2), where the double distillation process is indicated by a (D). Both mod-

els are incomparable in terms of lightness, since DistilBERT has 66 million

of parameters against the 110 of BERTBASE. It gets good results also on in-

ference time because BERT-base needs about 668 seconds, while DistilBERT

410 seconds 5.2.

Model IMDb SQuAD(EM/F1)

BERT − base 93.46 81.2/88.5

DistilBERT 92.82 77.7/85.8

DistilBERT (D) − 79.1/86.9

Table 5.2: DistilBERT ability of preserving the results of BERT
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Model Parameters(millions) Inference(seconds)

ELMo 180 895

BERT − base 110 668

DistilBERT 66 410

Table 5.3: DistilBERT number of parameters and speed

One further advantage of having less dimension and inference time is that

we can execute the model on edge devices (that could be a smartphone),

which do not have enough memory and computational power to execute

the whole BERT in an acceptable amount of time. The HuggingFace team

also managed to build an android application with the tensorflow version of

DistilBERT for question answering5.

5https://github.com/huggingface/tflite-android-transformers.git

https://github.com/huggingface/tflite-android-transformers.git


Chapter 6

QADistilBERT

6.1 QABERT

This version of Question Answering level was born from the collaboration

with Matteo Del Vecchio during the “projekt” at Bielefeld University, which

had the aim to start getting our hands on the existing NLP models.

QABERT is a task specific implementation of question answering level for

BERT. We thought about what could be the benefit of developing a different

architecture of this layer. For this reason, we implemented 5 combinations of

fully connected layers and activation functions, in total, three models with 2

fully connected layers, each of them with an activation function among ReLU,

GELU and Tanh, and two models with 4 fully connected layers with GELU

or ReLU between couple of layers. In the following sections we will show

come images we have created to have a graphical look at their compositions.

6.1.1 QABERT Vanilla

This was only to have a BERT-like baseline, since we did not have access

to the same hardware of google. We fine-tuned the vanilla version just like

the BERT QA level was developed by google. It does not use any activation

function and has an input shape (batch size, max seq length, hidden size)

and output (batch size, max seq length, 2 ).

51
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Figure 6.1: QABERTVanilla model schema

6.1.2 QABERT 2L

To explore the benefit of having more layers, we added two layers on the

top of BERT and tried different activation functions to understand which

one works better. We did this in order to achieve better results on question

answering. We also tried different configuration shapes and we will present

only the best ones. The idea was to have a conic function reduction of the

dimension; in this way we could have a more gradual reduction from the

BERT output dimension to 2.

QABERT 2L Tanh

In the version with Tanh function we opted for a reduction, firstly, from

768 to 384, and then from 384 to 2 (Figure 6.2).

Figure 6.2: QABERT2LTanh model schema



6.1 QABERT 53

QABERT 2L GELU

The second version of this model uses the GELU (Gaussian Error Linear

Units) activation function, which is used in BERT [14]. The conic in this

case decreases from 768 to 256 and from 256 to 2 (Figure 6.3).

Figure 6.3: QABERT2LGELU model schema

QABERT 2L ReLU

With ReLU activation function the same input dimension was kept in

both layers since the skip idea was introduced. The output of BERT is fed

to the first layer and then added to its output before feeding everityng to the

second layer (Figure 6.4).

Figure 6.4: QABERT2LReLU model schema
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6.1.3 QABERT 4L

With four layers we were able to develop a different idea of shapes reduc-

tion. In this case we had more layers and we thought about a more “rhombic”

idea. In fact, the shape increases its dimensions between the first two layers

and uses the same conic concept as above for the last layers.

QABERT 4 ReLU

This model uses the ReLU activation function between the layers and the

shape, as we have already said, which are firstly enlarged from 768 to 1024

and reduced from 1024 to 200 and from 200 to 2 at the end (Figure 6.5).

Figure 6.5: QABERT4LReLU model schema

QABERT 4 GELU

We will introduce another idea which consists in using to use only the

“rhombic” dimensions changing. The skip idea wants to take more into

account the BERT output. The third layer input thus has a dimension equal

to BERT output. As it is shown in the next picture, the original BERT

output is added to the second fully connected layer’s output. We will use

this question answering level as a baseline for our study because, looking at

the results we obtained by fine-tuning BERT with different configurations,

this structure reached better results with respect to the others (Figure 6.6).
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Figure 6.6: QABERT4LGELUSkip model schema

6.2 Implementation

It was used as starting code the HuggingFace interface of Transformers1 as

baseline for our work, in particular it was necessary to modify the functions

DistilBertForQuestionAnswering and BertForQuestionAnswering

in the same way. Considering the substantial changes, we decided to rewrite

the functions and rename them QABERT4LGELUSkip and QADis-

tilBert4LGELUSkip and put them in a separate file independent from

the transformers repository, but doing it required to execute our job. For

the training and evaluation task we used a computer equipped with 2 GPUs

Nvidia P1002 with 16 GB of memory and another one equipped with 2 GPUs

Nvidia 1080Ti3. Both computers are part of a cluster, which is collocated in

the CITEC area of Bielefeld University and composed of 6 nodes for a total

of 4 Nvidia P100 and 8 Nvidia 1080Ti.

The next piece of code comes from the file modeling distibert.py and shows

the implementation of a single question answering layer:

Listing 6.1: Original BERT QA level with one layer (from BERT code)

self.bert = BertModel(config)

1https://github.com/huggingface/transformers.git
2https://www.nvidia.com/en-us/data-center/tesla-p100/
3https://www.nvidia.com/en-us/geforce/products/10series/

geforce-gtx-1080-ti/

https://github.com/huggingface/transformers.git
https://www.nvidia.com/en-us/data-center/tesla-p100/
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080-ti/
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080-ti/
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self.qa_outputs = nn.Linear(config.hidden_size , config.

num_labels)

Listing 6.2: Output generation until logits (from BERT code)

sequence_output = outputs [0]

outputs = self.bert(input_ids , attention_mask=

attention_mask , token_type_ids=token_type_ids ,

position_ids=position_ids , head_mask=head_mask ,

inputs_embeds=inputs_embeds)

logits = self.qa_outputs(sequence_output)

start_logits , end_logits = logits.split(1, dim=-1)

start_logits = start_logits.squeeze (-1)

end_logits = end_logits.squeeze (-1)

outputs = (start_logits , end_logits ,) + outputs [2:]

While following the implementation of QADistilBERT4LGELUSkip (which

is almost the same for QABERT4LGELUSkip), the model output passes

through 3 intermediate levels before output logits, which will be of dimension

BS x EMBS x 2. It is subsequently split in two different vectors of dimen-

sion BS x EMBS x 1. Then a squeeze operation reduces the dimension in

BS x EMBS

Listing 6.3: QADistilBert4LGELUSkip level with one layer

self.distilbert = DistilBertModel(config)

self.middleOut1 = nn.Linear(config.dim , 1024)

self.middleOut2 = nn.Linear (1024, 768)

self.middleOut3 = nn.Linear (768, 384)

self.qa_outputs = nn.Linear (384, config.num_labels)

self.dropout = nn.Dropout(config.qa_dropout)

Listing 6.4: QADistilBERT4LGELUSkip level with one layer
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distilbert_output = self.distilbert(input_ids=input_ids ,

attention_mask=attention_mask , head_mask=head_mask ,

inputs_embeds=inputs_embeds)

hidden_states = distilbert_output [0] # (bs,

max_query_len , dim)

midOut1 = self.dropout(gelu(self.middleOut1(

hidden_states)))

midOut2 = self.dropout(gelu(self.middleOut2(midOut1)))

midOut3 = self.dropout(gelu(self.middleOut3(midOut2 +

hidden_states)))

logits = self.qa_outputs(midOut3) # (bs, max_query_len ,

2)

start_logits , end_logits = logits.split(1, dim=-1)

start_logits = start_logits.squeeze (-1) # (bs,

max_query_len)

end_logits = end_logits.squeeze (-1) # (bs ,

max_query_len)

outputs = (start_logits , end_logits ,) +

distilbert_output [1:]

The vanilla QA level is almost the same in DistilBERT implementation, so

we decided to take it as an example code from the two models to emphasize

the fact that the pooler was removed in DistilBERT. We can notice, in the

last line of both code 6.2 and 6.4, that outputs start from 2 instead of 1 as

it in DistilBERT. Since the pooler output is useless in Question Answering

task, in BERT implementation it has to be removed.

6.3 Results

The aim of this work was to understand if some benefit could be obtained

by adding fully-connected layers to the question answering level. Looking at

the pictures in the first section of this chapter, it is easily understandable

how this level was structured. In other words, BERT has been treated as a
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black box, so the focus is on the specific task of question answering.

Firstly, a fine-tuning over BERTBASE was performed by using SQuAD v2

to have a baseline, since there are no official results on this task for the BASE

version of BERT. Then we created the QABERT4LGELUSkip and fine-tuned

with the same hype-parameters as well, outperforming the baseline results.

We measured the F1 score 4.3 and the EM (Exact Match) score to have the

same set of results as in SQuAD paper. According to the paper, the F1 score

measures the average overlap between the prediction and the ground truth

answer, while EM measures the percentage of predictions that match exactly

everyone of the ground truth answers [30].

The configuration highlights are on the batch size. This was set on 12

and a gradient accumulation at 24. We fine-tuned both for 3 epochs without

performing any warmup period and with a learning rate of 5E-5.

QABERT4LGELUSkip BERT-QA-Vanilla

F1 EM F1 EM

76.56 73.15 69.38 66.074

Table 6.1: Comparison between fine-tuning on BERTBASE with a 4 Layer

QA level and 1 Layer QA level using SQuAD v2 Dataset

Unfortunately, due to hardware constraint, it was impossible to do any

try on BERTLARGE fine-tuning. In addition, it was impossible to distill

completely a new smaller version of BERT from scratch, to use a combination

of datasets and to use the theory of RoBERTa, which says that BERT is still

undertrained. In the end, we focused our effort on a smaller improvement in

question answering only.

6.4 SQuAD Results

Once the baseline was developed, we thought about making the same im-

provement in DistilBERT and fine-tuning it by using QABERT4LGELUSkip
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as the Teacher for the distillation part. Moreover, the same level for the

smaller model was created, called QADistilBERT4LGELUSkip, which is the

same idea of the Teacher; this was also fine-tuned. The final objective was

to compare the results of both versions on this specific task (QA). The next

table collects all the six fine-tuning-distillations we did, the highlighted line

is the one that allowed us to get better results:

Configurations Learning Rate Batch Size Num Epochs Warmup Grad Acc steps

config1 3.00E − 05 12.00 3 10% total steps 0

config2 5.00E-05 12.00 4 10% total steps 0

config3 3.00E − 05 24.00 3 10% total steps 0

config4 5.00E − 05 32.00 3 10% total steps 0

config5 5.00E − 05 32.00 6 10% total steps 0

config6 5.00E − 05 32.00 4 10% total steps 0

Table 6.2: Hyperparameters configurations for fine-tuning distillation step

We did not expect significant improvements because of our limited re-

source. Despite this, we got some interesting results. Starting from the

Teacher we obtained an unexpected increase in about 7 points, both in

F1 and Exact Match scores, as it shown in the table 6.1. We believe that

this is already a good result, but it is still useless if we are looking for a

model which has to be executed on edge devices. For this reason, and being

inspired by DistilBERT work, we thought we could get better results by us-

ing our QABERT4LGELUSkip as teacher, firstly by fine-tuning the Vanilla

DistilBERT QA layer and then by using the 4 layers implementation.

We summarized the results obtained from all trainings in the following

table in order to have a general overview for all the configurations 6.3: Dif-

ferently from the paper, we chose to use the version 2 of SQuAD dataset and

while normally the higher the scores are, the higher the value of batch size is,

in our case the best results came from the configuration with batch size of 12.

Other parameters which demonstrated to have an impact during the training

are the learning rate and the number of epochs (this is a very difficult choice

because it could lead to overfitting if the model is trained for too long, and
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Models DistiBERT QADistilBERT

Configurations F1 EM F1 EM

config1 (lr=3.00E-05, bs=12, epochs=3) 69.96 66.45 70.71 67.41

config2 (lr=5.00E-05, bs=12, epochs=4) 71.07 67.69 71.84 68.58

config3 (lr=3.00E-05, bs=24, epochs=3) 68.62 65.04 69.71 66.31

config4 (lr=5.00E-05, bs=32, epochs=3) 70.04 66.68 71.28 67.94

config5 (lr=5.00E-05, bs=32, epochs=6) 69.99 66.61 70.6 67.24

config6 (lr=5.00E-05, bs=32, epochs=4) 70.77 67.55 70.22 66.72

Table 6.3: QADistilBERT results after 6 fine-tuning configurations

to be underfitting otherwise).

In conclusion, during our experiments we found out that a wrong value of

gradient accumulation steps leads to bad results, so we thought it is better

to set it to zero, which means not using it.

6.5 OLP Results

We investigated also the results with the OLP dataset through a set of

experiments. We verified the behavior of our models with and without fine-

tuning on OLP. Firstly, we used our best configuration of DistilBERT and

QADistilBERT4LGELUSkip without fine-tuning on OLP (in two versions,

one of 384 and one of 512 of maximum sequence length) and by using the

whole dataset to make predictions on it. Results that are summarized in the

next table 6.4: In our second experiment we split the OLP Dataset in two,

Dim F1 EM Ans F1 Ans EM No Ans F1 No Ans EM

DistilBERT
384 50.13 49.28 12.75 10.51 72.53 72.53

512 49.93 49.12 12.77 10.61 71.89 71.89

QADistilBERT4L

GELUSkip

384 51.04 50.60 8.03 6.86 76.81 76.81

512 50.85 50.31 6.06 7.52 76.45 76.45

Table 6.4: The results obtained from a simple evaluation on the whole OLP

Dataset
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train and dev, and we made it for both versions, the 384 and 512 maximum

sequence length. Then we just used the train part for fine-tuning, for 4 epochs

more, the same versions of our model as above. It is interesting to notice

Dim F1 EM Ans F1 Ans EM No Ans F1 No Ans EM

DistilBERT
384 65.97 64.96 20.59 17.65 89.47 89.47

512 66.94 66.04 21.30 28.68 90.60 90.60

QADistilBERT4L

GELUSkip

384 65.01 63.50 18.32 13.90 89.19 89.19

512 65.22 63.60 19.03 14.28 89.17 89.17

Table 6.5: The results obtained from a simple evaluation obtained after a 4

epochs fine tuning on OLP

that there is a substantial increment in general F1 and Exact Match scores

after the fine-tuning on OLP. It is also interesting that the predictions which

contribute more to the general results are the ones about non-answerable

questions. We actually expected this kind of behaviour due to the stucture

of the dataset. How the questions were posed was not thought to solve the

task of finding a span which contains the answer directly in the text, so there

is an exiguous number of questions which can be found in this way.





Conclusion

This work turned out to be really interesting because, thanks to the

HuggingFace interface for BERT, it was quite simple to add our changes.

This was a good opportunity to put hands on a model like BERT and not

just use it as a black box, even though it was only for the specific task of

question answering. As it has been already said, the first good result is an

increase of 7 point in F1/EM score from the baseline.

Looking at the results in the table 6.3 we can observe that the student

that uses a final level with 4 fully-connected layers and GELU activation

function in between each of them, in general, reaches better results than the

one that uses Vanilla implementation (only one fully-connected layer without

activation functions). Using SQuAD v2 we can notice that with respect to

the F1/EM scores of

QABERT4LGELUSkip, QADistilBERT4LGELUSkip preserves the 94% in

F1 and 93,75% in EM. The only case in which we got better results with the

Vanilla QA of DistilBERT was the config6, where the batch size is 32 and

was trained for 4 epochs.

In conclusion (as it could be seen) despite the limited hardware, we got a

general improvement by using this extension of the question answering level;

this work gives space to further expansion and other optimization, hoping to

access to a more performant hardware. All the experiments can be repro-

duced by downloading the github repository QADistilBERT4LGELUSkip4.

Our policy consists in sharing, so the entire code is an open source and is

4https://github.com/simonepreite/QADistilBERT4LGELUSkip
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provided under MIT Licence.

6.6 Future Works

The same strategies could be applied with a bigger version of BERT, like

BERTLARGE. An example is to have the opportunity to train, by transferring

knowledge with distillation to an even smaller model than DistilBERT, and

to study the precision it could reach by taking less inference time. If the

resulting model is small enough in terms of dimension and speed, it can

be executed on an edge device. However, with a view to having smaller

and smaller devices but, at the same time, not having always an internet

connection, models that do not require high performances could be integrated

directly in apps, losing a little bit in precision, if an hosted bigger model could

not be reached. As additional idea, would be a little bot that could use BERT

to build a bot on diverse platforms, like Telegram or Facebook chats. In this

case both version, small or big, can be used because the model has to be

executed server-side (with an higher performance). The choice depends on

whether we are looking for a quick response time or for better precision.
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SQuAD examples

A.1 SQuAD v1.1

Listing A.1: SQuAD v1.1 example

1 {
2 "title": "University_of_Notre_Dame",

3 "paragraphs": [

4 {
5 "qas": [

6 {
7 "answers": [

8 {
9 "answer_start": 381,

10 "text": "a Marian place of prayer and

reflection"

11 }
12 ],

13 "question": "What is the Grotto at Notre Dame

?",

14 "id": "5733be284776f41900661181"

15 },

65
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16 {
17 "answers": [

18 {
19 "answer_start": 92,

20 "text": "a golden statue of the Virgin

Mary"

21 }
22 ],

23 "question": "What sits on top of the Main

Building at Notre Dame?",

24 "id": "5733be284776f4190066117e"

25 }
26 ],

27 "context": "Architecturally, the school has a

Catholic character. Atop the Main Building ’s

gold dome is a golden statue of the Virgin Mary

. Immediately in front of the Main Building and

facing it, is a copper statue of Christ with

arms upraised with the legend \" Venite Ad Me

Omnes \". Next to the Main Building is the

Basilica of the Sacred Heart. Immediately

behind the basilica is the Grotto, a Marian

place of prayer and reflection. It is a replica

of the grotto at Lourdes, France where the

Virgin Mary reputedly appeared to Saint

Bernadette Soubirous in 1858. At the end of the

main drive (and in a direct line that connects

through 3 statues and the Gold Dome), is a

simple, modern stone statue of Mary."

28 }
29 ]

30 }
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A.2 SQuAD v2

Listing A.2: SQuAD v2 example

1 {
2 "title": "Separation_powers_United_States_Constitution

",

3 "paragraphs": [

4 {
5 "qas": [

6 {
7 "question": "How many divisions of the

government did Montesquieu call for?",

8 "id": "56de244f4396321400ee25f0",

9 "answers": [

10 {
11 "text": "three",

12 "answer_start": 166

13 }
14 ],

15 "is_impossible": false

16 },
17 {
18 "plausible_answers": [

19 {
20 "text": "Separation of powers",

21 "answer_start": 0

22 }
23 ],

24 "question": "What originates in the writings

of the Legislative powers ?",

25 "id": "5ad370ad604f3c001a3fe25d",

26 "answers": [],



68 SQuAD examples

27 "is_impossible": true

28 }
29 ],

30 "context": "Separation of powers is a political

doctrine originating in the writings of

Montesquieu in The Spirit of the Laws where he

urged for a constitutional government with

three separate branches of government. Each of

the three branches would have defined abilities

to check the powers of the other branches.

This idea was called separation of powers. This

philosophy heavily influenced the writing of

the United States Constitution, according to

which the Legislative, Executive, and Judicial

branches of the United States government are

kept distinct in order to prevent abuse of

power. This United States form of separation of

powers is associated with a system of checks

and balances ."

31 }
32 ]

33 }
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OLP Dataset

B.1 OLP Article

Figure B.1: example of an OLP article tokenized
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B.2 OLP Questions

Figure B.2: example of questions on a OLP article
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B.3 OLP Annotations

Figure B.3: example of annotations on a OLP article
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Training Summary

C.1 Configuration

Configurations Learning Rate Batch Size Num Epochs Warmup Grad Acc Step

config1 3.00E − 05 12.00 3 10% total steps 0

config2 5,00E-05 12,00 4 10% total steps 0

config3 3.00E − 05 24.00 3 10% total steps 0

config4 5.00E − 05 32.00 3 10% total steps 0

config5 5.00E − 05 32.00 6 10% total steps 0

config6 5.00E − 05 32.00 4 10% total steps 0

Table C.1: Same table as 6.2, it is putted her only to have a quick configu-

rations summary
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C.2 DistilBERT

(a) General Loss trend during training (b) learning rate trend during training

Figure C.1: training hyperparameters: learning rate: 3e− 5, batch size: 12,

epochs number: 3, warmup period: 10%

(a) General Loss trend during training (b) learning rate trend during training

Figure C.2: training hyperparameters: learning rate: 5e− 5, batch size: 12,

epochs number: 4, warmup period: 10%
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(a) General Loss trend during training (b) learning rate trend during training

Figure C.3: training hyperparameters: learning rate: 3e− 5, batch size: 24,

epochs number: 3, warmup period: 10%

(a) General Loss trend during training (b) learning rate trend during training

Figure C.4: training hyperparameters: learning rate: 5e− 5, batch size: 32,

epochs number: 3, warmup period: 10%

(a) General Loss trend during training (b) learning rate trend during training

Figure C.5: training hyperparameters: learning rate: 5e− 5, batch size: 32,

epochs number: 6, warmup period: 10%
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(a) General Loss trend during training (b) learning rate trend during training

Figure C.6: training hyperparameters: learning rate: 5e− 5, batch size: 32,

epochs number: 4, warmup period: 10%
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C.3 QADistilBERT4LGELUSkip

(a) General Loss trend during training (b) learning rate trend during training

Figure C.7: training hyperparameters: learning rate: 3e− 5, batch size: 12,

epochs number: 3, warmup period: 10%

(a) General Loss trend during training (b) learning rate trend during training

Figure C.8: training hyperparameters: learning rate: 5e− 5, batch size: 12,

epochs number: 4, warmup period: 10%
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(a) General Loss trend during training (b) learning rate trend during training

Figure C.9: training hyperparameters: learning rate: 3e− 5, batch size: 24,

epochs number: 3, warmup period: 10%

(a) General Loss trend during training (b) learning rate trend during training

Figure C.10: training hyperparameters: learning rate: 5e− 5, batch size: 32,

epochs number: 3, warmup period: 10%

(a) General Loss trend during training (b) learning rate trend during training

Figure C.11: training hyperparameters: learning rate: 5e− 5, batch size: 32,

epochs number: 6, warmup period: 10%
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(a) General Loss trend during training (b) learning rate trend during training

Figure C.12: training hyperparameters: learning rate: 5e− 5, batch size: 32,

epochs number: 4, warmup period: 10%



80 Training Summary



Appendix D

Question Answering Models

D.1 QABERT4LGELUSkip

Listing D.1: QABERT4LGELUSkip

class QABERT4LGELUSkip(BertPreTrainedModel):

def __init__(self , config):

super(QABERT4LGELUSkip , self).__init__(config)

self.num_labels = config.num_labels

self.bert = BertModel(config)

self.middleOut1 = nn.Linear(config.hidden_size ,

1024)

self.middleOut2 = nn.Linear (1024, 768)

self.middleOut3 = nn.Linear (768, 384)

self.qa_outputs = nn.Linear (384, config.

num_labels)

assert config.num_labels == 2

self.dropout = nn.Dropout(config.

hidden_dropout_prob)
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self.init_weights ()

def forward(

self ,

input_ids=None ,

attention_mask=None ,

token_type_ids=None ,

position_ids=None ,

head_mask=None ,

inputs_embeds=None ,

start_positions=None ,

end_positions=None ,

):

outputs = self.bert(

input_ids ,

attention_mask=attention_mask ,

token_type_ids=token_type_ids ,

position_ids=position_ids ,

head_mask=head_mask ,

inputs_embeds=inputs_embeds ,

)

sequence_output = outputs [0]

midOut1 = self.dropout(gelu_new(self.middleOut1(

sequence_output)))

midOut2 = self.dropout(gelu_new(self.middleOut2(

midOut1)))

midOut3 = self.dropout(gelu_new(self.middleOut3(

midOut2 + sequence_output)))

logits = self.qa_outputs(midOut3)
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start_logits , end_logits = logits.split(1, dim

=-1)

start_logits = start_logits.squeeze (-1)

end_logits = end_logits.squeeze (-1)

outputs = (start_logits , end_logits ,) + outputs

[2:]

if start_positions is not None and end_positions

is not None:

if len(start_positions.size()) > 1:

start_positions = start_positions.

squeeze (-1)

if len(end_positions.size()) > 1:

end_positions = end_positions.squeeze

(-1)

ignored_index = start_logits.size (1)

start_positions.clamp_(0, ignored_index)

end_positions.clamp_(0, ignored_index)

loss_fct = CrossEntropyLoss(ignore_index=

ignored_index)

start_loss = loss_fct(start_logits ,

start_positions)

end_loss = loss_fct(end_logits ,

end_positions)

total_loss = (start_loss + end_loss) / 2

outputs = (total_loss ,) + outputs

return outputs # (loss), start_logits ,

end_logits , (hidden_states), (attentions)
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D.2 QADistilBERT4LGELUSkip

Listing D.2: QADistilBERT4LGEkLUSkip

class QADistilBert4LGELUSkip(DistilBertPreTrainedModel):

def __init__(self , config):

super(QADistilBert4LGELUSkip , self).__init__(

config)

self.distilbert = DistilBertModel(config)

self.middleOut1 = nn.Linear(config.dim , 1024)

self.middleOut2 = nn.Linear (1024, 768)

self.middleOut3 = nn.Linear (768, 384)

self.qa_outputs = nn.Linear (384, config.

num_labels)

assert config.num_labels == 2

self.dropout = nn.Dropout(config.qa_dropout)

self.init_weights ()

def forward(

self ,

input_ids=None ,

attention_mask=None ,

head_mask=None ,

inputs_embeds=None ,

start_positions=None ,

end_positions=None ,

):

distilbert_output = self.distilbert(
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input_ids=input_ids , attention_mask=

attention_mask , head_mask=head_mask ,

inputs_embeds=inputs_embeds

)

hidden_states = distilbert_output [0] # (bs,

max_query_len , dim)

midOut1 = self.dropout(gelu(self.middleOut1(

hidden_states)))

midOut2 = self.dropout(gelu(self.middleOut2(

midOut1)))

midOut3 = self.dropout(gelu(self.middleOut3(

midOut2 + hidden_states)))

logits = self.qa_outputs(midOut3) # (bs ,

max_query_len , 2)

start_logits , end_logits = logits.split(1, dim

=-1)

start_logits = start_logits.squeeze (-1) # (bs,

max_query_len)

end_logits = end_logits.squeeze (-1) # (bs,

max_query_len)

outputs = (start_logits , end_logits ,) +

distilbert_output [1:]

if start_positions is not None and end_positions

is not None:

if len(start_positions.size()) > 1:

start_positions = start_positions.

squeeze (-1)

if len(end_positions.size()) > 1:

end_positions = end_positions.squeeze

(-1)
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ignored_index = start_logits.size (1)

start_positions.clamp_(0, ignored_index)

end_positions.clamp_(0, ignored_index)

loss_fct = nn.CrossEntropyLoss(ignore_index=

ignored_index)

start_loss = loss_fct(start_logits ,

start_positions)

end_loss = loss_fct(end_logits ,

end_positions)

total_loss = (start_loss + end_loss) / 2

outputs = (total_loss ,) + outputs

return outputs # (loss), start_logits ,

end_logits , (hidden_states), (attentions)
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