Abstract
Parallel robots with configurable platform are a class of parallel robots in which the end-effector is a closed-loop flexible chain of rigid links. We have developed a 5-RRR planar mechanism that features a flexible 5-bar chain as end-effector. The angles between adjacent sides of this chain can be controlled through the actuated revolute joints attached to the base of the mechanism. This thesis consists in the geometrical design of n-RRR planar parallel robots and in the study of the Direct Kinematics for 4-, 5- and 6-RRR mechanisms using Bilateration, a method that greatly reduces the computational time for the kinematic analysis. The next step is the singularity analysis for the n-RRR robot architectures; finally, in the last part of this thesis we present the results from experimental tests that have been performed on a 5-RRR robot prototype.