

Stress Injection Study on Hard Real-Time
Operating Systems

Scientific work to obtain the degree of
Master in Electronic Engineering
at the Department of Electrical, Electronic, and Information Engineering
Alma Mater Studiorum Universita di Bologna.

Submitted By Daniel Mauricio Sepúlveda Flórez

Diploma Electrical Engineer

Supervised By Dr.-Ing. Albrecht Mayer, Infineon Technologies AG

Prof. Andrea Bartolini, University of Bologna

Co-Supervised By M.Sc. Max Brand, Infineon Technologies AG

Submitted In Bologna, Italy, March 2020

Acknowledgements

I would like to express my sincere gratitude to Infineon Technologies AG and all the people
who made it possible to do this work. Through this work, I have acquired new skills and im-
proved old ones. Across this work, I faced many challenges and I overcome them, marking
a new phase on my personal and professional life.

Initially, I would like to express my deepest gratitude to my family. To my parents, Martha
Lucía and Juan, my brother Juan Carlos and my sister Johanna, for their unconditional help
and support. I am grateful to my sister for her unlimited advice and encouragement. I
thank my parents for their unlimited support and for helping me to face new challenges and
experiences. This journey would never have been possible without them.

I am grateful to my supervisor at the University of Bologna, Prof. Dr. Andrea Bartolini, for his
support and enrichment feedback in this work. I appreciate his trust and the time invested
in my advisory.

I would like to offer my special thanks to the company Infineon Technologies AG and the
Technology Platform and Innovation Group at the Automotive Department. It was a fabulous
experience plentiful of knowledge and new challenges. I would like to express the deepest
appreciation to my supervisor at Infineon, Dr.-Ing Albrecht Mayer who provided straight sup-
port and established a solid foundation of my work. His deep experience contributed to the
successful realization of this work.

Last but not least, I would like to express my gratitude to my co-supervisor at Infineon M.Sc.
Max Brand for his constant support and the very valuable feedback in this work. Our tech-
nical discussions allowed me to further optimize this work.

Bologna, Italy, March 2020. Daniel M. Sepúlveda F.

2

Contents

1 Introduction 10
1.1 Motivation . 10
1.2 Problem Description . 11
1.3 Goals of the thesis . 13
1.4 Contribution of the thesis . 14
1.5 Structure of the thesis . 15

2 Main Concepts 17
2.1 RTOS . 17

2.1.1 Task . 18
2.1.2 Lifecycle of a task . 19
2.1.3 Timing Parameters . 21

2.2 Scheduling . 21
2.3 Schedulability Analysis . 23
2.4 Standards . 24

2.4.1 ISO 26262 - Automotive Safety Standard 24
2.4.2 OSEK/VDX Standard . 26
2.4.3 OSEK-OS . 27

2.5 ERIKA Enterprise RTOS . 27
2.6 TriCore AURIX 2G Microcontroller . 28

3 State of the Art 29
3.1 Automotive evaluation: Robustness and performance 29
3.2 Robustness and Performance Testing Tools 30
3.3 Analysis Techniques . 30
3.4 Stress Injection Evaluation . 31

4 On-Chip Trace and Debugging Architecture 33
4.1 On-Chip Trace Architecture . 33
4.2 Infineon Technologies AG AURIX On-Chip Trace solution 36
4.3 Trace Target . 36
4.4 Multicore Debug Solution (MCDS) . 37

4.4.1 Observation Block (OB) . 38
4.4.2 Multicore Cross Connect (MCX) . 39
4.4.3 Debug Memory Controller (DMC) . 40

4.5 Device Access Server (DAS) . 40

3

4.6 Infineon Technologies AG AURIX Debug and Trace Tools (MTV and ChipCoach) 40
4.6.1 MCDS Trace Viewer (MTV) . 41
4.6.2 ChipCoach . 42

5 Stress Injection 44
5.1 Stress Injection . 44

5.1.1 General description . 44
5.1.2 Types and Requirements . 45

5.2 Infineon Technologies AG AURIX On-Chip Debug and Suspend Generation . 45
5.3 Stress Injection Trigger Line Timer . 47
5.4 Developed Stress Injection Feature in ChipCoach 50

5.4.1 Tracing Configuration . 52
5.4.2 Stress Injection Configuration . 54
5.4.3 Trace Sort and Map . 54
5.4.4 Evaluation Metrics Generation . 56
5.4.5 Report of Evaluation Metrics . 63

6 Methodology 66
6.1 General Description . 66
6.2 RTOS Test Methodology . 67

6.2.1 Task Set Generation and Utilization Bounds (TGU) 68
6.2.2 Stress Injection . 70
6.2.3 Trace Configuration . 70
6.2.4 Device Under Test (DUT) . 71
6.2.5 Trace Capture and Map (TCM) . 71
6.2.6 Metrics Quantification . 72
6.2.7 Worst-Case Response Time Analysis 74

6.3 Bare-metal Test Methodology . 76
6.3.1 Instructions Generator: . 77
6.3.2 Device Under Test (DUT): . 77
6.3.3 Flow Control Configuration: . 78
6.3.4 Evaluation Metric: . 79

6.4 Summary . 79

7 Case Studies and Experiment Results 81
7.1 General Description . 81
7.2 RTOS Experiments . 82

7.2.1 Case Study 1: Synchronous task set with Total Utilization of 70% and
non-harmonic periods . 84

7.2.2 Case Study 2: Synchronous task set with Total Utilization of 70% and
Harmonic periods . 92

7.2.3 Case Study 3: Synchronous task set with Total Utilization of 70% and
non-harmonic periods with Shared Resources 97

7.3 Bare-Metal Experiments . 102

4

7.4 Summary . 105

8 Conclusions and Future Work 107

5

List of Figures

2.1 Basic task state transitions . 19
2.2 Extended task state transitions . 20
2.3 Example of execution of three tasks and the respective states with the timing

parameters. 21
2.4 Example of electronic systems in a car and the respective ASIL. 25
2.5 V-model for software developments. 26

4.1 Trace and debug architecture . 34
4.2 Infineon Technologies AG on-chip trace solution 36
4.3 MCDS Architecture . 38
4.4 Main blocks of the Observation Block . 39
4.5 Device Access Server(DAS) Configuration . 41
4.6 ChipCoach Layers . 42

5.1 OCDS and Suspend Generation . 47
5.2 32-bit Register of the Trigger Line 1 Suspension Targets 48
5.3 32-bit Register of the Trigger Line Timer . 49
5.4 Stress injection (a) Single suspension (configurable Timer value and fixed

CPU suspension); (b) Periodic suspension. 50
5.5 Data flow diagram of the stress injection feature Galenus. 51
5.6 Block diagram stress injection feature. 52
5.7 Block diagram of the trace configuration function. 53
5.8 Block diagram of the stress configuration function. 54
5.9 Block diagram of the trace sort and map function. 55
5.10 Single trace message stages of mapping. 55
5.11 Block diagram of the evaluation metrics generation function. 56
5.12 Designed Finite State Machine and the timing parameters. 57
5.13 Example of the stage 1 with the developed FSM 58
5.14 Mapping example of the timing parameters in the Stage 1 59
5.15 Mapping example of the complex timing parameters in the Stage 2 60
5.16 Mapping example of the descriptive statistics in the Stage 3 61
5.17 Algorithm implemented for the Bare-metal Test of instruction dependency . . . 62
5.18 User Interface of Galenus . 64

6.1 General description of the RTOS test methodology. 67
6.2 Task Set Generation and Utilization Bounds (TGU) block. 68

6

6.3 Stress Injection block. 70
6.4 Trace Configuration Block. 70
6.5 Device Under Test (DUT) block for the RTOS test methodology. 71
6.6 Trace Capture and Map (TCM) block. 72
6.7 Metrics Quantification block. 72
6.8 Response time regions of analysis. 74
6.9 General description of the Bare-metal test methodology. 76
6.10 Instructions Generator block. 77
6.11 Design Under Test block. 78
6.12 Flow Control Configuration block. 78
6.13 Evaluation Metric block. 79

7.1 Case-Study 1 Task Set: Six synchronous and independent tasks with non-
harmonic periods and a total utilization of 70%. 84

7.2 Case-Study 1: CPU utilization when the stress injection is performed. 86
7.3 Case 1: WCRT and Minimum Slack time Ratio Symptom (SRS) when the

stress injection is performed. 87
7.4 Case 1: Maximum Preemption Time when the stress injection is performed. . 88
7.5 Case-Study 1:WCET when the stress injection is applied. 89
7.6 Case-Study 1: WCRT when the stress injection is performed. 90
7.7 Case-Study 1: 100 msTask stress injection response time region analysis. . . 91
7.8 Case-Study 2 Task Set: Six synchronous and independent tasks with har-

monic periods and a total utilization of 70%. 92
7.9 Case-Study 2: CPU utilization when the stress injection is performed. 93
7.10 Case-Study 2: WCRT and Minimum Slack time Ratio Symptom (SRS) when

the stress injection is performed. 94
7.11 Case-Study 2: Maximum Preemption Time when the stress injection is applied. 95
7.12 Case-Study 2: WCRT when the stress injection is performed. 95
7.13 Case-Study 2: 120 msTask stress injection response time region analysis. . . 96
7.14 Case-Study 3 Task Set: Six synchronous and independent tasks with non-

harmonic periods and a total utilization of 70%. 97
7.15 WCRT when the stress injection is applied, in case of 1 msTask and 20 msTask

sharing internal resources, showing the infeasibility of the system 98
7.16 Case-Study 3: CPU utilization when the stress injection is applied. Shared

internal resources: (a) 1 msTask and the 5 msTask. (b) 1 msTask and the
10 msTask. 99

7.17 Case-Study 3: SRS Symptom when the stress injection is performed. Shared
internal resources: (a) 1 msTask and the 5 msTask. (b) 1 msTask and the
10 msTask. 100

7.18 Case-Study 3: WCRT when the stress injection is performed. Shared internal
resources: (a) 1 msTask and the 5 msTask. (b) 1 msTask and the 10 msTask. . 101

7.19 Case-Study 3: 1 msTask stress injection response time region analysis for the
case of internal shared resources between 1 msTask and 10 msTask. 101

7

7.20 Normalized CPI vs Stress Injection Factor. 105

8

List of Tables

2.1 Software Testing Methods by Safety Standard Industry. 27

4.1 Trace information according with the trace target 37
4.2 Trace unit types according with the target information 39

5.1 Transitions function of the FSM. 58

6.1 Summary I/O of the RTOS test methodology blocks. 79
6.2 Summary I/O of the Bare-metal test methodology blocks. 80

7.1 Summary RTOS experiments. 83
7.2 Summary Bare-metal experiments. 103
7.3 Execution time, CPI and Ratio of Stress for the four study cases with stress-

free and maximum stress. 104

9

1 Introduction

This chapter presents a general overview of this thesis. It is composed of five sections. The
first section describes the motivation behind the elaboration of the thesis. It describes the
challenges of the design of automotive devices. The second section describes the problems
and limitations of the current solutions. The goals of the thesis and contributions are presen-
ted in the third and fourth sections. Finally, the structure and organization of the thesis is
presented in the fifth section.

1.1 Motivation

The automotive industry has been revolutionized by the widespread adoption of new digit-
alization technologies, such as the electric mobility, the high increase of automation and
connectivity, and the integration of smart and autonomous mechanisms (e.g., autonomous
driving). While these technologies have the potential to provide a variety of additional ser-
vices and functions in and around the vehicle, the high criticality of the automotive systems
demands a high degree of predictability and resilience. As the degree of vehicle automation
increases, so too must the safety and reliability measures.

Real-time constraints demand that the execution of an automotive application task is per-
formed mandatory bounded to hard deadlines. The execution of a task after the deadline
may lead to injuries or fatal events. For example, an effective and good steering and braking
system depend on the correctness of the computation of different variables and on the exe-
cution time. Therefore, high reliability and predictability are imperative in such systems.

High VLSI levels of integration and hardware resource sharing of the multicore System-on-
Chips (SoCs), usually designed to implement automotive applications, make it challenging
to assurance reliability and predictability. One of the techniques used to reach high levels
of reliability is through the system evaluation based on CPU timing analyzing tools. These
tools are able to verify and evaluate the deployment of different software tasks through a
set of timing performance metrics and constraints. However, these tools present several
drawbacks: i) they cannot exactly estimate the CPU performance; ii) they cannot model
the timing parameters of the task executed in the system; ii) they cannot estimate the ef-
fect of the data and peripherals disturb on the CPU performance. In order to improve and

10

enhance the evaluation of such systems, improved performance tools are required. These
tools should perform a better timing constraints analysis and define an assure boundary for
the demanded CPU performance. However, these are challenging tasks. The delineation of
the boundary is critical. On one hand, it may lead to a safety risk if it is excessively close to
the performance limit of the system. On the other hand, it may lead to the misuse of the sys-
tem capabilities. Determining the boundary range requires the detection and the analysis
of the critical timing chains rather than the lapse of time in which the CPU remains in the
idle task. Due to the challenging task of defining this safe boundary, it is imperative to find
a symptom or indicator that determines where the system is pushed to its limit. As an ana-
logy, we can think on the human body (SoC), which is a very complex system, composed by
different organs (IP cores) which are interconnected by different structures, such as nerves,
veins (links) and which react to different input stimuli gathered by the senses (peripherals).
The body (SoC) supports different functionalities which should operate in a harmonized way
in order to work in a proper manner (reliability) and to react to different situations to pre-
serve life (safety). Arrhythmic breath, heart rate or just delayed reflex can threaten life. The
correct functionality of the body should be maintained under different situations, such as re-
pose (zero load operation), normal conditions (common operation) and extreme conditions
(corner cases). This evaluation under different stress conditions may help in the diagnosis
of possible sickness (fault or erratic behavior). Note that sickness usually has many symp-
toms. That is before a sickness invades the whole body, the symptoms can be treated to
avoid a grave condition and death (failure of the system). In such an analogy, a set of tests is
required to evaluate the health of the body (SoC) under different stress conditions (operation
conditions). This evaluation allows to identify the symptoms of very bad deceases.

1.2 Problem Description

Critical applications require that the tasks, implemented as embedded software, are able
to meet the performance and cost requirements no matter the operation conditions of the
system. In order to guarantee such a challenging goal, the embedded software designer
can benefit from a deep understanding of the system hardware so to effectively use the
capabilities of the SoC. Therefore, it is mandatory to understand and to know the hardware
operation boundaries and the possible implications of the pierced boundaries.

The automotive domain is a very challenging environment. The software complexity has in-
creased exponentially in the last 30 years, growing from 0 to over 10 million lines of code [1].
Nowadays, automotive applications are built on top of a hard real-time operating system
where thousands of tasks are executed, some of them simultaneously. Approximately 40%
of the production costs of a vehicle is due to the software and electronic content infrastruc-
ture [1]. To attend the functional safety and security standards dictated in the ISO 26262 and
ISO/SAE 21434, the automotive software development normally follows the V-model. This
model divides the software development into two main wings: the design wing and the test

11

wing. The final product is only released if it satisfies all the requirements of the use case. In
order to ensure that the electronic devices for automotive applications meet the functional
and non-functional concerns, several testing tasks at different abstraction/refinement levels
of the software are performed.

The standard ISO 26262 has provided a set of guidelines to develop improved safety sys-
tems for vehicles, from simple airbag deployment systems to more complex systems such
as the Advanced Driver Assistance Systems (ADAS) capable to predict and avoid accidents.
Among the methods for software integration testing described in the ISO 26262 standard,
there is the so called Resource Usage test. This method states that the test reuse is neces-
sary to ensure the fulfillment of requirements influenced by the hardware architecture with
sufficient tolerance. This method includes the measurement of different metrics, such as
the average and maximum processor performance, minimum or maximum execution times.
However, some aspects of the resource usage test can only be properly evaluated when
the software integration tests are executed on the target hardware or if the emulator for the
target processor supports resource usage tests [2]. The ISO 26262 standard also includes
tests to determine the robustness of the system. There are two main methods. First, the
Resource Usage test, also used for software integration testing. Second, the Stress Test ,
which is performed to drag the system far beyond the capabilities and analyze the behavior
of operation. In contrast to a simple load test, the Stress Test uses loads that are far away
over the system is expected to handle.

Due to the increase of the VLSI integration levels, the complex requirements, the time-to-
market and cost pressures characteristic of the Automotive domain, the software integration
and robustness tests should be performed effectively and efficiently. Early silicon debug
and in-field diagnostics are key points for a safe and robust system. This has motivated to
automate different test processes and to offer different hardware/software support. Different
types of trace and debug tools have been developed to enable the software engineer to
access the internal functionalities of the SoC. Thus, enabling the information gathering of
the system when different types of tests are performed (offline and during runtime). Using
more advanced tools for tests and analysis of hard real-time systems is attractive, once they
lead to maximize the exploitation of the SoC resources while providing the best safety for
the user.

Semiconductor vendors have developed a different type of hardware/software support for
these types of tests. In the case of Infineon Technologies AG, the AURIX 2G microcontroller
has integrated a novel hardware architecture designed to support the Resource Usage Test
and the Stress Test. Despite the hardware support Stress Test based on the stress injection
by CPU suspension embedded in the AURIX Infineon microcontroller, it has never been used
before. There this is the need to provide an automated method able to perform the stress
injection to the Device Under Test (DUT), allowing to evaluate the performance and reliability
of the system. This tool is capable to offer the observability and controllability of the different
conditions of the test for the analysis of hard real-time systems. The tool support allows the
software designer to gather a clear and wide understanding of the system behavior, aiding in

12

the design of safety-critical systems, such as they are designed in the automotive industry.

1.3 Goals of the thesis

The main goal of the thesis is to develop a method that uses stress injection to analyze
the performance, robustness values and boundaries of hard real-time systems under dif-
ferent scenarios. The designer is able: i) to configure the embedded debugging hardware
architecture in order to efficiently explore different stress scenarios; ii) to gather information;
and to quantify different types of performance and robustness metrics. The method is auto-
mated and fully parameterizable. The developed tool in this thesis is called Galenus1. The
tool is integrated into the already existing debugging environment of Infineon AURIX named
ChipCoach. To achieve that goal, the following tasks were performed:

1. Identify the load parameters that are of interest for a designer in order to explore
different stress injection scenarios.

2. Identify a set of metrics that are of interest for a designer in order to evaluate the
performance and robustness of the system.

3. Define a method to perform stress injection and which is able to exploit the current
deployed debugging hardware support of the AURIX Infineon Microcontroller.

4. Automate the method for stress injection in order to efficiently evaluate different stress
scenarios.

5. Define different case studies that demonstrate the utility of the method. It includes
defining a set of tasks that can be deployed in a hard Real-Time Operating System
(RTOS).

6. Inject different levels of stress on the previously defined task sets.

7. Collect the timing parameters of the different stress injection levels of the system with
the tracing tool.

8. Analyze and evaluate the collected data.

1Following the SoC health test analogy, the developed stress injection feature tool in this work is called Galenus
in honor of Claudius Galenus. He was a physician and surgeon in the Roman Empire considered one of the
most important figures in the history of Medicine.

13

1.4 Contribution of the thesis

The following contributions were achieved throughout the work in this thesis:

1. Development of an efficient method that is able to perform stress injection through the
exploitation of debugging hardware architecture. This method allows the designer to
explore different stress injection (by CPU suspension) scenarios and to evaluate the
performance and robustness of critical systems.

2. Development of Galenus, the tool that automates the proposed method and that ex-
ploits the AURIX Infineon Microcontroller embedded debugging architecture. Galenus
is integrated into the ChipCoach debugging tool of Infineon Technologies AG. Galenus
is fully parameterizable and allows the efficient evaluation of the SoC.

3. The design of the tool allows that future capabilities are easily and effortless integ-
rated, such as the integration of statistical distribution used to define and model the
input parameters of the stress injection capabilities. Further and wider exploration can
be easily performed.

4. Definition method to measure the performance and the robustness of the DUT. This is
done through the technique of stress injection by CPU suspension implemented within
two types of software application, RTOS and Bare-metal.

5. Utilization for the first time of the embedded debugging hardware architecture of the
AURIX Infineon microcontroller for stress injection. The stress injection is based on
the reduction of the effective performance of a SoC component (IP hardware core
e.g., TriCore within AURIX). The stress injection allows to assess the sensitivity of the
SoC under different stress scenarios. These scenarios are defined on the offline initial
state using formal methods of scheduling theory. Using the stress injection method,
the SoC designer is able to identify possible risk scenarios testing the performance
and robustness of the system at runtime. This thesis is based on the stress injection
by CPU suspension within two types of software application, RTOS and Bare-metal.

6. Detailed documentation of the method, which allows Infineon hardware and software
designers inside Infineon Technologies AG to easily get familiar with the stress injec-
tion method and to easily profit from all the capabilities of Galenus and Chipcoach.

14

1.5 Structure of the thesis

The rest of the thesis is organized as follows.

• Chapter 2: Main Concepts This chapter introduces the main concepts that were
used throughout this thesis. It is divided into four parts. The first section introduces
the concepts related to the RTOS. The second section presents the concepts for task
scheduling. The third section introduces the schedulability analysis. The fourth section
presents some of the standards of the automotive domain. The fifth section introduces
the hard RTOS ERIKA OS [3]. Finally, the sixth section introduces the TriCore AURIX
second generation microcontroller 2 developed by Infineon Technologies AG.

• Chapter 3: State of the Art This chapter introduces the current works and available
tools in the area of stress injection from the academic and industrial contexts. The
first section presents the automotive evaluation of robustness and performance. The
second section introduces the main robustness and performance testing tools. The
third section presents the analysis techniques. Finally, the fourth section presents the
stress injection evaluation.

• Chapter 4: On-Chip Trace and Debugging Architecture This chapter introduces
the on-chip trace and debug solutions developed by Infineon Technologies AG for
the AURIX microcontroller. The chapter is divided into six sections. The first section
presents the general concepts and architecture of the on-chip trace. The second
section introduces the architecture of the on-chip trace solution developed by Infineon
Technologies AG. The third section describes the trace targets supported by the on-
chip solution. The fourth section describes the Multicore Debug Solution (MCDS) a
main component of the on-chip trace solution. The fifth section introduces the Device
Access Server (DAS), the interface between the SoC and the trace tool. The sixth
section presents the main trace tool of Infineon Technologies AG and the ChipCoach
tool, further extended in this thesis with Galenus, to support stress injection.

• Chapter 5: Stress Injection This chapter presents the first contribution of the thesis:
the design of the stress injection feature for the SoC evaluation. This feature was
included in the Infineon Technologies AG design flow for tracing and debugging, more
precisely, at the ChipCoach tool. Despite the hardware architecture to support the
stress injection that is already embedded in the AURIX 2G Infineon microcontroller, it
has never been used before. The work performed in this thesis allows the utilization
of such an infrastructure for the first time. This chapter is divided in four sections. The
first section presents a general description of the Stress Injection. The second section
presents the Trigger Line Timer (TLT) of the OCDS Trigger Switch (OTGS) that is used
to perform periodic suspensions of one or more CPUs. The third section describes the

2Referred in this work as AURIX 2G

15

Stress Injection Trigger Line Timer that is part of OCDS in the central debug interface.
The fourth section describes the developed stress injection feature called Galenus.

• Chapter 6: Methodology In this chapter, the methodology proposed in this thesis
is presented. The goal of the methodology is to measure the performance and the
robustness of the DUT through the technique of stress injection by CPU suspension
implemented within two types of software application, RTOS and Bare-metal. This
chapter is divided into four sections. The first section presents the general descrip-
tion of the methodology. The second section describes the overall methodology for
the RTOS test composed by six blocks. The third section describes the overall meth-
odology for the Bare-metal test composed by six blocks. Finally, the fourth section
presents a summary of the methodology.

• Chapter 7: Case Studies and Experiment Results In this chapter, the experimental
work is presented. It describes the experiments performed for the two types of soft-
ware application: RTOS and Bare-metal. For the RTOS and the Bare-metal experi-
ments, six case studies are designed, three for RTOS and four for Bare-metal. For
each case study the performance and robustness evaluation results are presented,
following the method proposed in Chapter 6. This chapter is divided into four sections.
The First Section describes the general configuration and characteristics of the exper-
imental work. The second section describes the RTOS experiments and results. The
third section presents the Bare-metal experiments and results. Finally, a summary of
the experimental results is shown.

• Chapter 8: Conclusions and Future Work This chapter presents the main conclu-
sions of this thesis and future work.

16

2 Main Concepts

This chapter introduces the main concepts that were used throughout this thesis. It is divided
into four parts. The first section introduces the concepts related to the Real-Time Operating
Systems RTOS. The second section presents the concepts for task scheduling. The third
section introduces the schedulability analysis. The fourth section presents some of the
standards of the automotive domain. The fifth section introduces the hard RTOS ERIKA OS
[3]. Finally, the sixth section introduces the TriCore AURIX 2G microcontroller developed by
Infineon Technologies AG.

2.1 RTOS

Today low-end and high-end cars consist usually of 20 to 110 Electronic Control Units
(ECUs) [4]. These ECUs are connected with a set of sensors and actuators, running di-
verse distributed control applications. There are two main safe examples of the ECUs in
vehicles. First, the controller of an airbag must be activated in less than two milliseconds
when a crash is detected [5]. Second, the brake controller and the steering in the Advanced
Driver Assistance Systems (ADAS). In those and other systems, the tasks or processes
must be performed in a specific maximum time of execution called the deadline. Due to the
time constraints of the system, it is mandatory to prove the logical and temporal correctness
of the system to avoid catastrophic consequences to the user.

The automotive application functions performed by the ECUs are built on top of an RTOS
where hundreds of tasks are executed. RTOS contains a real-time kernel and other higher-
level services such as protocol stacks,file management and other ocomponents [1]. These
services are executed within real-time requirements based on the deadlines. There are
three types of RTOS:

1. Hard RTOS: If the results are provided after its deadline, it can result in catastrophic
consequences on the system under control and fatal injuries on humans [6].

2. Firm RTOS: If the results are provided after its deadline it is useless for the system,
but does not cause any damage [6].

17

3. Soft RTOS: If the results are provided after its deadline it still has some utility for the
system, although it causes performance degradation [6].

The hard RTOS are required on automotive applications due to the time constraints. The
software within an RTOS is divided into executable units, called tasks.

2.1.1 Task

A task is a block of instructions to be executed by a processor for a specific purpose [7].
Tasks can be triggered periodic or aperiodic. The first appears for example if a sensor must
be checked on a regular basis, while the latter is for example applied on tasks triggered by
external interrupts caused due to user interaction. The requirements and constraints that
regulate the execution of the tasks are constituted by eight relevant attributes [8]:

Period: Describes how often a task is activated. There are three types related to the peri-
odicity of activation. Periodic, the task is activated in an equidistant way with a constant
frequency. Aperiodic, the task is activated in a non-periodic way with varying frequency.
Sporadic, the task is activated in a non-periodic way in the system with less frequency than
the aperiodic task usually corresponds to a user request or an interrupt of the system.

Deadline: Defines a time constraint of a task in which the task has to finish the execution. In
general, every task must be finished before the deadline. If it is finished after the deadline,
the system became Infeasible and can incur severe consequences for the system and the
user.

Priority: Is a value that represents the significance of the task in the system. A higher
priority task that is ready for execution will be executed prior to a low priority task, which
means that the lower priority task will be preempted.

Execution Time: Describes the time it takes for a task to be executed completely. The
longest duration of a task is often referred as the Worst-Case Execution Time (WCET) and
the shortest as the Best-Case Execution time (BCET)

Arrival Time: Describes the instant when a task is activated and ready for the allocation of
the resource of the CPU. For periodic tasks, the arrival time is known before the execution
of the system. For aperiodic tasks, the arrival time is only known during the runtime when a
specific triggering event occurs.

Offset: Specifies the time between the system starts and the first occurrence of a periodic
task. Usually, the offset for the task with higher priority starts as soon as the system is
executed.

18

In an RTOS, a task as a block of instructions with allocated functions, which are executed by
the processor for specific purposes. These allocated functions inside the tasks are defined
in this thesis defines as Runnables. Therefore, a single task is compound by one or more
Runnables. When a task is executed, the Runnables are executed as well. In the automotive
domain, the Runnables commonly are in charge of reading a sensor, processing data and
trigger an actuator [9]. For example, the brake by wire with the anti-lock system in a car,
which consists in the control of the breaks. For each wheel, it consists of four Runnables
with functions of: i) senses the rotation of the wheel; ii) processes the data; iii) activates
the brake according to the processed data; and iv) triggers the corresponding test to the
brakes [10]. A set of tasks are called concurrent when they are ready to be executed at the
same time or partially. If this concurrent set of tasks must be executed in one processor,
the execution order of those tasks has to be defined following a dedicated strategy called
scheduling.

2.1.2 Lifecycle of a task

Figure 2.1: Basic task state transitions

During the runtime in the RTOS, each task must be always in one of the following states
showed in Figure 2.1. For basic tasks, after the activation, the task is in the ready state.
Therefore, the task is ready to be executed and must wait until CPU resources are assigned.
The allocation of a task to the processor is based on a defined scheduling that is performed
by the scheduler of the RTOS. When the task is set to be executed, it changes the state to
Running state. In case the task is preempted, the task goes from running to the ready state.
After the execution is finished, the task’s state changes to the suspended state.

19

In case an extended conformance class according to [] is used, tasks can have an addi-
tional state. When the task is waiting for an event or a resource, it includes all the previous
states plus the waiting state. When the task is in running state and then is waiting for the
occurrence of an event, it moves from the running state to the waiting state. After the event
occurred, the task changes to ready state showed in Figure2.2.

Figure 2.2: Extended task state transitions

1. Suspended: This is the default state of the tasks, where the task is suspended and
ready to be activated.

2. Ready: In this state, the task is activated and waiting for the allocation of the CPU.
The scheduler of the RTOS manages all the tasks residing in ready state and sorts
them by their priority.

3. Running: The task is using resources of the CPU and it is executed. For single-core
implementations, only one task per time can be in this state. While for the other states,
more than one task can be in those states.

4. Waiting: The task changes from running state to the waiting state due to a requirement
of a resource. To continue the operation the task must wait until the resources are
acquired. This state is exclusive for the extended task.

20

2.1.3 Timing Parameters

The timing parameters of a task refers to the period it takes for a task from one initial state
until a final state of the real-time behavior of the task. For a basic task, there are five
important timing parameters: i) Response Time, the period between the task arrival until it
is suspended. ii) Execution Time, is the accumulation of time between the Running state
and the Suspended state. iii) Initial Pending Time, the period between the Ready and
Running state that occurs the first time on an instance of a task. iv) Preemption Time, the
period between the Ready and Running state that occurs more than one time. Otherwise
correspond to the Initial Pending Time parameter. v) Slack Time, the interval of time between
the Suspended state and the Ready state. In the following Figure 2.3 shows an example of
execution of a task set of three basic tasks with periods of 1ms, 5ms, and 10ms using the
Rate Monotonic Scheduling (RMS) algorithm, where the 5msTask and the 10msTask are
preempted and the total execution time is the sum of the Core Executions.

Figure 2.3: Example of execution of three tasks and the respective states with the timing
parameters.

2.2 Scheduling

Scheduling is the process of resource allocation of the CPU on a task within a task set. The
scheduling produces a schedule, in other words, the order in which the tasks are executed.
A schedule is defined as Feasible when the complete task set meets its deadlines. The
task set is defined as Schedulable when there exists a feasible schedule for an arrival pat-
tern. An RTOS can implement different scheduling algorithms with diverse types of schedul-
ing policies for concurrent tasks. The main purposes of the scheduling algorithms are to

21

guarantee the correctness in the execution between the tasks and minimize the resource
starvation.

There are several scheduling algorithms for RTOS and the criteria selection is dependent
on the type and the purpose of the system. According to the literature [6], the common way
to classify the scheduling algorithms is based on the moment in which the procedure to
schedule is taken. Two main types can be found for this criterion. First, off-line algorithms
are implemented with static policies, i.e. all the task parameters and instances are defined
previous to the execution of the system. Second, on-line algorithms are implemented with
dynamic policies, in other words, the scheduling is performed at runtime. Most of the on-
line algorithms are preemptive scheduling algorithms, therefore a currently running task can
be preempted by a task with higher priority. The preempted task can only continue the
execution when the higher prioritized task has completed the execution. The most common
classification for the on-line algorithms is based on the task priority parameter criteria. There
are two types of on-line algorithms:

Dynamic Priority Scheduling (DPS): The priority of a task can be modified at runtime. One
example of DPS is the Earliest Deadline First (EDF) scheduling algorithm, which assigns the
highest priority to the task with the closest deadline.

Fixed Priority Scheduling (FPS): The priority is fixed before the start of the system. There
are two main examples of FPS. First, the Deadline Monotonic Scheduling (DMS) algorithm,
where the priority is assigned based on the deadlines in inverse proportion. Second, the
Rate Monotonic Scheduling (RMS) algorithm, where the priority is assigned according to
the period, where a smaller period results in a higher priority.

The most common FPS is the RMS, widely used in RTOS safety-critical applications such as
in the automotive domain. One example of the use of the (RMS) algorithm in automotive is
the admission control for the combustion engine in a car [11]. Due to the importance of this
scheduling algorithm on automotive, more detail and description will be done in this thesis.
As shown before, RMS is an on-line preemptive scheduling algorithm with fixed priorities
for periodic tasks. The priorities are assigned to the tasks based on their periodicity values
defined by the software designer engineer [12]. The priority of a task is directly proportional
to its frequency. Therefore, a task with lower periodicity value, meaning a greater number
of occurrences within a fixed time interval, is assigned a higher priority. The fundamental
theory for the RMS is the rate monotonic analysis. This analysis is stated in the following
model [12].

1. All processes run on a single CPU, consequently, there is no task parallelism.

2. The context switching time is ignored.

3. The task load remains constant.

22

4. Tasks are independent of each other.

5. Implicit Deadline, the deadline of an instance of a task occurs at the end of its period.

According to the previous model, the following theorem has been stated in [12]: “ Given
a set of periodic tasks to be scheduled using a preemptive priority scheduling, assigning
priorities, such that the tasks with shorter periods have higher priorities, yields an optimal
scheduling algorithm.”

2.3 Schedulability Analysis

The schedulability analysis aims to determine whether a task set is schedulable. This is
done using certain techniques that use mathematical methods called schedulability tests.
For most of the scheduling algorithms, including the (RMS) exist certain schedulability tests
[6]. There are two common schedulability tests for the (RMS). First Utilization-Based Ana-
lysis (UBA) [13], that provides a sufficient but not necessary condition. Second, Response
Time Analysis (RTA) [14].

� Utilization-Based Analysis (UBA): In this schedulability test, as used in this work,
the task with a shorter period is given the higher priority and the task deadlines are
equal to the period, therefore the task set is defined with Implicit Deadline. This test
defines the following sufficient condition in (2.1) for schedulability for a task set that
consists of n periodic tasks τ1, τ2, ..., τn :

U =

n∑
i=1

Ci

Ti
≤ n

(
21/n − 1

)
(2.1)

Where Ci corresponds to the Worst-Case Execution Time (WCET) of the task τi with
the respective period Ti. This sufficient condition states that if the total utilization U of
the task set is lower than the utilization bound n(21/n− 1), the task set is schedulable
under the (RMS). However, it is a sufficient condition, a system might be schedulable
even if the CPU utilization is higher than the utilization bound. In such cases, it is
necessary to use an exact schedulability test such as the Response Time Analysis
[13].

� Response Time Analysis (RTA): This schedulability test is based in the Worst-Case
Response Time (WCRT). This approach uses the following recurrence equation (2.2)
to compute the WCRT Ri of a task τi:

23

R
(k)
i = Li +

i−1∑
j=i

[
R

(k−1)
i

Tj

]
Lj (2.2)

Where the term of the summation is the total interference from the higher priority tasks
during Ri and Li is τi own execution time assuming that τj has a higher priority than
τi if j < i. The equation (2.2) is iterated until Ri converges at a value. This value
is compared against the τi deadline in order to determine the schedulability of τi.
This schedulability test for the (RMS) states a theorem in which takes into account
the critical i.e there is no offset between the tasks, therefore the tasks are released
simultaneously. The theorem states, if all the tasks meet their first deadline after a
critical instant, they will also meet all the subsequent once since the critical instant is
considered as the worst case [14].

2.4 Standards

2.4.1 ISO 26262 - Automotive Safety Standard

Security standards are concerned about protecting a system from attackers, but safety
standards aim to prevent any possible harm to the user arising from hazards. There are
many safety standards that depend on the industry sector [15]. The automotive industry is
constantly improving the safety of the user on the vehicles, implementing a different type of
safety system such as the Advanced Driver Assistance Systems (ADAS) that allows to pre-
dict and avoid accidents. These types of functions are performed by electronics. Nowadays
a car usually consists of multiple different ECUs, these are connected with a set of sensors
and actuators. In response to the increase of electronic systems in vehicles and the recog-
nition of the safety-critical functions that they performed, the ISO 26262 standard has been
created [16].

The safety standard ISO 26262 provides a detailed guideline to produce all the safety-
critical or not equipment and software for automotive systems. This standard determines
a risk-management approach and four risk classes (A-D), called Automotive Safety Integrity
Levels (ASILs). This levels of risk, specify the required safety measures in order to avoid
an unreasonable residual risk, where D is the most rigorous level [16]. Figure 2.4 shows an
example of some of the electronic systems in a vehicle and their respective ASIL according
to the ISO 26262 standard.

The software development guideline is also contemplated in the ISO 26262. The develop-
ment of software normally follows the V-model showed in Figure 2.5 that is divided into two
main branches, the design, and the test branch. The final product must satisfy all the initial

24

Figure 2.4: Example of electronic systems in a car and the respective ASIL.

requirements of ASIL determined by the standard ISO 26262. These requirements are war-
ranty by performing the testing at several levels that address functional and non-functional
requirements. Functional requirements are formalized by a function hierarchy such as Unit
or Integration Testing. Non-functional requirements are quality process requirements for the
final product such as performance. load, stress, and reliability [1]. Some of the software
tests are: i) Performance Test that validates the requirements of the system; ii) System
Test in charge of validates the specified software architecture; iii) Integration Test that valid-
ates the software requirements specifications; and iv) Unit Test, responsible to validate the
component design.

The software testing methods are standardized depending on the industry as shown on the
Table 2.1. The safety standard ISO 26262 contemplate the methods for software integra-
tion testing such as the Resource Usage Test, for this test, the ISO 26262 estates that the
Resource Usage Test it is necessary in order to ensure the fulfillment of requirements in-
fluenced by the hardware architectural design with some degree of tolerance. Properties
such as average and maximum processor performance, minimum or maximum execution
times must be determined. Some aspects of the resource usage test can only be evaluated
properly when the software integration tests are executed on the target hardware or if the
emulator for the target processor supports resource usage tests [2]. ISO 26262 contem-
plates the level of robustness as well by the Resource Usage but also by the method of
the stress test. The standard states that the stress test verifies the test system for correct
operation under high operational loads or high demands from the environment [2].

25

Figure 2.5: V-model for software developments.

2.4.2 OSEK/VDX Standard

OSEK/VDX is a standard for most of the Operating Systems used in the Automotive Industry,
based on the ISO 17356 standard. The standard of the software architecture for the ECU in
the automotive field was a consequence in one hand by the complexity of the vehicles due to
the increase of the networked subsystems and on the other hand the ambition of cost reduc-
tion. The basic idea of the standards is to have an architecture characterized by components
with easy interchangeability and re-usability. The principal standard for the RTOS it is called
OSEK-VDX by the German “Offene Systeme und deren Schnittstellen für die Elektronik in
Kraftfahrzeugen” in English “Open Systems and their Interfaces for the Electronics in Mo-
tor Vehicles”. This standard provides provide a standard software architecture for real-time
systems in vehicles with different interfaces, where the most relevant are [17].:

1. OSEK-OS: Service of the real-time Kernel that declares an operating system based
on priorities.

2. OSEK-OIL: OSEK implementation language, kernel configuration.

3. OSEK-RTI: Declares the internal operation of an OSEK OS and a debugger.

4. OSEK-COM: Specify the communication environment.

26

Automotive Medical Avionics Railway
Testing Methods ISO 26262 IEC 62304 DO-178B/C EN 50128

Static Analysis X X X X
Requirements Based Tests X X X X
Data / Control Flow Interfaces X X X
State Transition X
Resource Usage Test X X X X
Timing Tests X X X X
Boundary Value Analysis X X X
Error Guessing X X
Fault Injection / Error Seeding X X X
Structural Coverage Testing X X X X

Table 2.1: Software Testing Methods by Safety Standard Industry.

2.4.3 OSEK-OS

The OSEK-OS was designed thinking on embedded systems with a specific purpose. OSEK-
OS has been used as a basis in ECUs in the automotive domain. This standard provides
several features to build and describe task-based real-time systems. This standard defines
the implementation language called OIL that represents the standard system configuration
this includes the specifications of interrupts, tasks, resources and many others. OSEK-OS
is a static operative system where the tasks, priority of task, memory used, events and other
characteristics are assigned at design time before compiling the code. Priorities are defined
with an integer number from 0 to 255, where a higher number implies a higher priority. In the
case where two tasks have the same priority, they will be executed according to the order
of activation. To avoid priority inversion and deadlocks, OSEK-OS uses the priority ceiling
protocol [17]. OSEK-OS differentiates two types of tasks with different behaviors: i) Basic
Task, is configured with no events therefore there is no waiting state on it. ii) Extended Tasks
are configured with events and these tasks can wait for the activation of one or more events.
Some of the open-source RTOS with OSEK/VDX certificate are FreeOSEK [18], AUTOSAR
[19], ERIKA Enterprise [20], and Trampoline RTOS [21].

2.5 ERIKA Enterprise RTOS

ERIKA Enterprise is an open-source Hard RTOS, certified and designed for the automotive
domain with the OSEK/VDX certification aimed for multi-core devices. This RTOS provides
an environment with the support of advanced real-time scheduling algorithms. The main
features offered of ERIKA enterprise RTOS are: i) Hard real-time support with fixed priority
scheduling; ii) Immediate priority ceiling; iii) Support for periodic alarm activation. iv) Support
for shared resources; and v) Support for four Conformance Classes called: BCC1, BCC2,

27

ECC1, ECC2. The classes starting with the letter B only support Basic Tasks, instead those
starting with the letter E support both Basic Task and Extended Task. The classes ECC1 and
ECC2 have been designed to be the most appropriate support classes for synchronization
primitives which involve the use of separate stacks for the exchange rate mechanism stack
[22]. The RTOS selected to use in this thesis for the AURIX Second Generation TC39B is
ERIKA Enterprise RTOS. The main reasons for choosing this RTOS are:

1. Well known in the automotive industry.

2. Open Source.

3. OSEK-VDX certified.

4. TriCore AURIX microcontroller support.

2.6 TriCore AURIX 2G Microcontroller

The 32-bit TriCore AURIX 2G is a hexa-core microcontroller developed by Infineon Techno-
logies AG that combines safety architecture with high performance. These characteristics
are ideal for safety-critical automotive applications. The AURIX is used by many automotive
brands in several applications. Ranging from the airbag, power steering and braking sys-
tems to more complex systems such as the fail-operational systems that are supported by
sensor systems using radar or camera technologies. The AURIX 2G is manufactured in a 40
nm embedded flash technology with six cores running at 300 MHz and with four additional
checker cores delivering 4000 DMIPS and 16 MB of internal flash memory. The AURIX is
designed to support the standard ISO 26262 up to ASIL-D [23].

Nowadays, vehicles are designed to meet more complex demands for the multiple systems
controlled by the ECUs. Therefore, Infineon Technologies AG has developed the Multicore
Debug Solution MCDS in order to design and optimize the performance of these systems.
The key features of MCDS are the tracing of CPUs, buses, events and peripherals with
powerful trigger capabilities. Together with this multicore trigger and trace system, Infineon
has developed several tools for its AURIX microcontrollers. This work describes in detail the
main trace tool known as the MCDS Trace Viewer (MTV) tool and the internal developed
ChipCoach tool. The ChipCoach tool was extended in this thesis, in order to develop a
new feature capable of performing stress injection in the AURIX microcontrollers through
Galenus. The MCDS and the other tools are going to be described in detail in Chapters 4
and 5.

28

3 State of the Art

This chapter introduces the current works and available tools in the area of stress injection
from the academic and industrial contexts. The first section presents the automotive evalu-
ation of robustness and performance. The second section introduces the main robustness
and performance testing tools. The third section presents the analysis techniques. Finally,
the fourth section presents the stress injection evaluation.

3.1 Automotive evaluation: Robustness and performance

The main purpose of the embedded software is to fulfill the requirements of the application
and the respective quality needs according to certain standards. These are achieved by
the effective utilization of the capabilities of the available hardware combined with quality
software routines. Therefore, the software engineer must be aware of the boundaries of
functionality and risks of the hardware together with the development of functions and pro-
grams that ensure the dependability of the system. In the automotive domain, as in other
industries, a method to verify the dependability of a system is based on the testing of the
robustness and defining the usage of the resources.

The robustness of a system is defined by the IEEE 610.12 standard as the degree to which
a system can function correctly in the presence of invalid inputs or stressful conditions [24].
This characteristic is challenging for embedded software systems in many industries as the
execution environment can not be fully recreated at the time of development. Therefore
the robustness tests are required to verify not only general considerations but also more
specific ones. General considerations include the absence of deadlocks or no run-time
errors. Specific considerations include the capability of the system to remain in a nominal
state after being degraded and the resources remain available for the tasks with high-priority
on the system. The robustness failures are caused by many reasons, some of these failures
are due to the performance CPU and memory-related issues [25].

29

3.2 Robustness and Performance Testing Tools

The robustness and performance testing tools in many industries are in general build in-
house or open-source customized in-house. Where the main functionality is to assist in
monitoring the visualization of the chain of activities, status reports and generation, and
control of large streams of data [25]. These functions allow the tools to provide flexibility
in the construction of worst scenarios and the possibility to replay them (reproduce the
scenarios). In the automotive domain, one of the main robustness failures is in the timing
constraints. Due to the safety-critical application in automotive, the development of more
advanced tools is required. The tools are tied to the hardware architecture functionalities of
the SoC that it can provide to support these tests such as tracing and debugging solutions.

In the automotive domain, there are some performance tools based on the timing constraints
analysis of the system [26], [27]. The Timing Suite T1 was developed by GLIWA GmbH [26].
This tool is able to perform timing measurements using the hardware trace capabilities of
the SoC. The Timing Suite T1 performs analysis and verification tasks. The chronVIEW
and chronVAL suite of tools are developed by INCHRON GmbH [27]. They offer to per-
form statistical analysis of large hardware traces in order to execute verification of timing
requirements together with the visualization of the RTOS scheduling.

3.3 Analysis Techniques

According to [28], the techniques for analysis of the performance tools that carry out schedulab-
ility analysis on real-time systems can be divided into two complementary groups:

• Approaches based on real-time scheduling theory, which are characterized by the es-
timation of the schedulability of a set of tasks. It is based on the analytical models that
use formulas and theorems that normally assume corner cases such as the WCET
and the WCRT. The result of these approaches can be too conservative due to the
lack of accuracy in estimating the time values of the worst-cases.

• Model-based approaches to schedulability analysis, which are based on more refined
models/representations of the system. The schedulability analysis of a system model
seizes the specifications and details of the real-time tasks.

30

3.4 Stress Injection Evaluation

Previous works present different techniques to evaluate the robustness and performance of
the system. The works related to real-time system evaluation through stress testing can be
divided into two categories:

� Offline Initial State: The schedulability analysis is performed using formal methods
based on the scheduling theory or using models such as genetic algorithms. A lower
bound on timing parameters of the task set is defined in order to enforce the reachab-
ility in an initial state of the stress test.

� Runtime Stress: At runtime a framework plugged on the RTOS observes the execu-
tion of the system and the stress is injected

Most of the previous works deal with only a single stress testing technique of time-critical
hardware-software systems [29], [30], [31]. In the works of [29] and [30], the authors pro-
pose different techniques for finding worst-case scenarios with respect to deadline misses.
The work of [29] uses genetic algorithms to perform the search, while in [30] the search
is based on constraint programming to generate the test cases that most likely will gener-
ate misses. The stress inputs are modeled as a combination of sequences of aperiodic
tasks in the RTOS of the DUT. These works show that the search for these test scenarios
is a complex and demanding task that requires large execution times. In addition, it was
demonstrated that on large and complex systems constraint programming outperforms ge-
netic algorithms in terms of efficiency. While genetic algorithms are able to generate very
wide and heterogeneous test scenarios, it is not possible to guarantee the coverage, due to
the search nature of the genetic algorithms. Further research should be performed on this
issue.

In [31] the authors present a parametric model that enforces a specific test scenario under
different time behavior of the system. It is composed by two steps. During the offline step, a
set of delays is computed. Model-based approaches are used. During the online step, the
system is monitored and delays are injected in order to enforce the desired behavior (e.g.,
simulate longer execution of a set of tasks on RTOS). This is implemented on the Cortex-M4
running Trampoline RTOS with a stress testing strategy based on the seeding time of aperi-
odic and sporadic tasks. After the first stage of Offline Initial State, the delays are injected at
runtime to enforce the bounds established on the Initial State. The delays are defined with a
timer on the RTOS and then with a framework plugged to the system to observe the beha-
vior of the DUT. This technique allows to accurately perform a test. However, it is limited to
enforce reachability properties. Complex properties are not considered (e.g., liveness).

This thesis developed a feature tool that performs a new method for the robustness and

31

performance analysis using the stress injection method by the CPU suspension technique.
To date, no work or study has been developed about this new technique. This is due to
the new hardware architecture embedded on the Tricore AURIX 2G, which supports the
stress injection by three techniques: i) Artificial Reads; ii) CPU Interrupts; and iii) CPU
Suspension. Despite the stress injection hardware architecture is already embedded in the
AURIX Infineon microcontroller, it has never been used before. The work performed in this
thesis allows the utilization of such an infrastructure for the first time. The stress injection is
based on the reduction of the effective performance of a SoC component (IP hardware core)
during short and periodic time intervals at runtime. The stress injection allows to assess the
sensitivity of the SoC under different stress scenarios. These scenarios are defined on the
Offline Initial State using formal methods of scheduling theory. Using the stress injection
method, the SoC designer is able to identify possible risk scenarios testing the performance
and robustness of the system at runtime. This thesis implements the stress injection by CPU
suspension within two types of software application, RTOS and Bare-metal.

32

4 On-Chip Trace and Debugging
Architecture

This chapter introduces the on-chip trace and debug solutions developed by Infineon Tech-
nologies AG for the AURIX microcontroller. The chapter is divided into six sections. The first
section presents the general concepts and architecture of the on-chip trace. The second
section introduces the architecture of the on-chip trace solution developed by Infineon Tech-
nologies AG. The third section describes the trace targets supported by the on-chip solution.
The fourth section describes the Multicore Debug Solution (MCDS) a main component of the
on-chip trace solution. The fifth section introduces the Device Access Server (DAS), the in-
terface between the SoC and the trace tool. The sixth section presents the main trace tool
of Infineon Technologies AG and the ChipCoach 1 tool, further extended in this thesis with
Galenus, to support stress injection.

4.1 On-Chip Trace Architecture

System-on-Chips (SoCs) are widespread in different markets, e.g., Internet-of-Things (IoT),
avionics and automotive industries. Nowadays, SoCs in the automotive domain plays an
important role, not only for the vast quantity of them integrated inside of a car but espe-
cially for the hard real-time constraints. Tracing and debugging capabilities are critical to
design a SoC that meets all these constraints. However, for automotive applications, the
use of traditional debug and trace methods is not recommended. Usually, these methods
require the system to halt. These intrusive methods present two main drawbacks: i) the
system behavior is interrupted, and ii) they perform only a static observation rather than a
runtime system observation. Thus, a non-intrusive on-chip trace and debug solution able
to analyze the system without perturbing the runtime behavior of the SoC is needed. Many
SoC vendors already integrate such on-chip tracing and debugging capabilities, allowing at
runtime the tracing of the SoC.

To perform the real-time tracing, an on-chip tracing and debugging hardware infrastructure
is used. It allows the observation and annotation of the software execution on the SoC. This
infrastructure is supported by circuits embedded on the SoC (target device) which are able

1Tool developed internally at Infineon Technologies AG

33

to: i) monitor different on-chip events; ii) generate a stream of trace messages containing the
information of the events (e.g., timestamp, type of traced data, operation, address, source);
and iii) output the generated trace outside of the SoC through a dedicated output port. Such
information is gathered and analyzed by specialized software tools.

It is well-known that a single-core SoC may produce more than 10 gigabits per second of
raw trace data [32]. The management of such a vast amount of data is still a challenge. In
order to address this trace flow problem, three mechanisms are employed:

• Trace compression, that shrinks the generated information into smaller chunks of
data.

• Trace qualification, that selects only the meaningful data.

• Trace storage, which saves the different on-chip events to the cost of the integration
of massive memories.

The general architecture for the real-time tracing and debugging is shown in the Figure 4.1.
As presented in [32], the architecture is composed by six-layers (from L1 to L6).

Figure 4.1: Trace and debug architecture

34

Usually, for the traditional debugging and tracing, the first three layers (L1 to L3) are integ-
rated on-chip, while the remaining layers depending on the used methodology (L4 to L6)
are performed off-chip. However, their implementation may differ according to the semicon-
ductor vendor.

The tracing architecture is made by data streams obtained from different trace targets (e.g.,
CPUs, buses and memories). This data is reduced by the use of a trace qualification tech-
nique to be stored in a trace buffer. Finally, the stream is reconstructed and then analyzed
through a debugger and trace tool. The details of each layer of the tracing and debugging
architecture are described below:

� L1-Target: In this layer the trace and debugging targets are defined. It includes the
type of the component (e.g., CPUs, buses, memories, interfaces), the type of inform-
ation (e.g., value, transition, duration). Each trace target is connected through an
adaptation logic to an observation point. Depending on the target, different types of
trace information can be gathered.

� L2-Trace Message Generation: In this layer the data control is performed. The data
controller gathers all the trace and debugging messages from the different observation
points. It compiles all the information and creates a single trace stream, which keeps
the exact temporal order of all the trace messages.

� L3-Trace Qualification: In this layer is performed a reduction of the amount of trace
and debugging data, defining which kind of trace messages are eligible to be stored.
This reduction is known as the trace qualification process and is performed according
to certain parameters (e.g., detail level of trace, address range, memory operations).
This information allows to identify, for example, when a function is called by a particular
task or a specific state of the SoC.

� L4-Trace Storage: After the trace qualification, in this layer, the trace data is stored
into a memory. Usually, this layer is implemented off-chip but it may differ according
to the chip vendor.

� L5-Trace Reconstruction: In this layer, the trace data is reconstructed. Usually, it
includes several additional information (e.g., timestamps, data, address, operation).

� L6-Debug and Trace Tool: The final layer is in charge of setting several parameters,
such as the trace qualification, the buffer size, tracing duration and trace targets.

35

4.2 Infineon Technologies AG AURIX On-Chip Trace solution

Figure 4.2: Infineon Technologies AG on-chip trace solution

Infineon Technologies AG developed an on-chip trace solution based on the trace architec-
ture described in the Section 4.1. The on-chip trace solution of Infineon Technologies AG for
the 32-bit AURIX microcontroller is shown in the Figure 4.2. The trace layers are divided in
four groups: i) the trace target of the microcontroller (which implements L1); ii) the Multicore
Debug Solution (MCDS) and the trace storage (which implement L2-L3 and L4, respect-
ively); iii) the Device Access Server (DAS) (which implements L5); and iv) the MCDS Trace
Viewer (MTV) together with the tool ChipCoach (which implements L6). In this thesis, the
capabilities of the ChipCoach tool were extended in order to be able to perform the stress
injection. The feature is referred as Galenus. In the following sections, each one of the layer
groups will be further described.

4.3 Trace Target

The on-chip trace solution of Infineon Technologies AG supports two types of trace targets:
CPUs and Buses. Depending on the trace target type, different information is available for
tracing. Table 4.1 presents the five types of information that can be gathered by target. It
includes: i) Process ID or task ID, that is usually an 8-bit to 16-bit information that allows
the process identification; ii) Instruction pointer, which refers to the program flash address

36

that stores the instructions; iii) Data, which refers to the information that is written or read
by the trace target; iv) Status, that indicates the state of the information from the target; and
v) Watchpoint, that provides information of the watchpoint events produced by the matching
between the instruction addresses or data and the programmed by the debug tool. Each
trace target is connected to the MCDS through an Adaptation Logic (AL) which performs the
signal adaptation between the trace targets and MCDS. Moreover, the AL block synchron-
izes the signals from the clock domain of the trace target to the MCDS clock domain. The
design of the AL blocks depends on the type of the target. Each AL block connects the
trace target custom interface (e.g. address, data or instruction pointer) that is connected to
a generic standardized interface used by the MCDS [33].

Trace Information CPU Bus

Process ID X
Instruction Pointer X
Data X X
Status X X
Watchpoint X X

Table 4.1: Trace information according with the trace target

4.4 Multicore Debug Solution (MCDS)

The Multicore Debug Solution (MCDS) is the main component of the on-chip trace solution
of Infineon Technologies AG. MCDS is an on-chip multicore trigger and trace system. It is
composed by several configurable IP building blocks capable to provide the following func-
tionalities: i) complex cross-target triggering; ii) trace qualification; iii) trace compression,
and iv) timestamping. MCDS is available on the special Emulation Devices (ED) used dur-
ing the development stage for tracing, profiling and verification. It allows a parallel recording
of multiple trace targets into a single trace stream with the correct temporal order. Thus, cap-
turing relevant data without modifying the application software. The MCDS is shown in the
Figure 4.3. It consists of three main blocks: i) Observation block (OB); ii) Multicore Cross-
Connect (MCX); and iii) Debug Memory Controller (DMC). Each one of these components
is further explained in the next subsections.

37

Figure 4.3: MCDS Architecture

4.4.1 Observation Block (OB)

The OBs are IP blocks that are connected to each trace target through an Adaptation Logic
(AL). At each OB block, the trace qualification and trace message generation takes place.
The interconnection of the different OBs with the remaining MCDS components and the
trace targets is shown in Figure 4.3. In addition, the internal architecture of the OBs is
shown in Figure 4.4. OBs are composed by three main building blocks: Trace Units, Trace
Qualification Unit (TQU) and the Message Sequencer Unit (MSU).

� Trace Units, correspond to IP blocks able to encapsulate the gathered data from the
AL into a trace message. They are identified as the 1© in Figure 4.4. The integration
of a certain type of Trace Units IPs is determined by the trace requirements. Table 4.2
presents the five most common Trace Units and the type of gathered information.

� Trace Qualification Unit (TQU), that corresponds to an IP block programmed by the
trace tool and which contains a filter mechanism able to control the trace message
that is sent to the Message Sequencer Unit (MSU). They are identified as the 2© in
Figure 4.4.

� Message Sequencer Unit (MSU), which is an IP block in charge of sorting the trace
messages from the different Trace Units. This sorting is performed based on the trace
time tags. They are identified as the 3© in Figure 4.4.

38

The information gathered from the Trace Target is properly interfaced through the AL and
after being processed by the OB, the sorted information is sent to the Debug Memory Con-
troller (DMC) block.

Figure 4.4: Main blocks of the Observation Block

Trace Unit Type Target Information

Data Trace Unit (DTU) Data
Program Trace Unit (PTU) Instruction Pointer
Debug Status and Control Trace Unit (DCU) Status
Ownership Trace Unit (OTU) ID Process
Watchpoint Trace Unit (WTU) Watchpoints

Table 4.2: Trace unit types according with the target information

4.4.2 Multicore Cross Connect (MCX)

This block is connected with all the OBs through several input and output trigger lines (cross
triggers). The MCX is responsible for the distribution of the cross triggers. The cross triggers
are programmable and can be configured through the Trace Qualification Units embedded at
the OBs (as shown in subsection 4.4.1). Additionally, the MCX provides a central timestamp
for all the trace messages. The output of the MCX feeds the Debug Memory Controller
(DMC) block.

39

4.4.3 Debug Memory Controller (DMC)

This block collects the trace messages generated from the different OBs and the timestamp
generated by the MCX. In addition, DMC has the functionality of sorting the trace mes-
sages according to the time tags added by the Trace Units IPs inside the OBs and the MCX
timestamp. In case several trace messages present equal time tags, they are combined
into a single trace message. This technique ensures the trace message ordering, which is
mandatory for the trace reconstruction at the trace tools.

The collected trace messages by DMC are written into one single trace stream and then
stored in an on-chip trace memory (TMEM), usually dual-ported. It allows simultaneously the
read and write of the gathered trace messages. A debug interface allows the transmission
of the on-chip trace data to the off-chip trace tool for analysis purposes. Typically, the trace
memory size is in the range of several kilobytes. In order to better profit and enhance the
trace capabilities of the system, only relevant trace data is captured and compressed. This
process highly depends on the Trace Unit type used in the OBs as discussed in subsection
4.4.1. For example, for the Program Trace Unit (PTU), the data compression is performed
through the storage of only the difference between two successive instruction pointer values.
However, for the Data Trace Unit (DTU), the complete addresses and data must be stored.

4.5 Device Access Server (DAS)

Infineon Technologies AG has developed the Device Access Server (DAS), a software that
is able to perform the interface between the SoC (Device Under Test) and the different
debugging and trace tools. DAS is used for multicore systems with high demanding emu-
lation requirements. The DAS Application Programming Interface (API) is implemented on
software through generic Dynamic Link Libraries (DLLs). DAS is executed on the host PC
together with the debug and trace tools and it allows that these tools access the On-Chip
Debug Support (OCDS) and the Multicore Debug Solution (MCDS) through the USB port,
as shown in Figure 4.5. Alternatives for accessing the hardware includes a miniWiggler, a
converter between USB and DAP/JTAG.

4.6 Infineon Technologies AG AURIX Debug and Trace Tools
(MTV and ChipCoach)

For several complex systems in the automotive domain, such as the power-train control, it
is mandatory to analyze the system behavior under all the possible operational scenarios.

40

Figure 4.5: Device Access Server(DAS) Configuration

This analysis allows the evaluation of the reliability of the system, that is, the capability of
SoC is able to meet the functional and performance constraints under any scenario. As
discussed in Section 4.4, the MCDS infrastructure is used to perform on-chip tracing and
debugging functionalities. It includes on-chip trigger generation, trace data compression,
and trace storage. Due to the memory limitation, only relevant trace data is provided to the
debug and trace tools. Therefore, even under complex scenarios, it is possible to design
reliable systems. Infineon Technologies AG has developed several tools for their AURIX
microcontrollers. In this work is described in detail the main trace tool known as the MCDS
Trace Viewer (MTV) tool and the internal developed ChipCoach tool. The ChipCoach tool
was extended in this thesis in order to support the stress injection feature through Galenus.
The extension of the tool is described in detail in Chapter 5.

4.6.1 MCDS Trace Viewer (MTV)

MTV is a non-intrusive trace tool developed on top of the DAS interface with two main func-
tions: i) the MCDS trace configuration; and ii) the trace decoding. The MTV tool uses the
MCDS trace qualification and triggering capabilities to monitor and trace many trace targets
with different range of detail. In order to perform this tracing, it is necessary to configure
some MCDS registers. The MTV tool provides an easy-to-use and friendly interface in which
the user can configure the trace and analyze the decoded data trace in an efficient manner.
The MCDS Trace Configuration and the Trace Decoding are further detailed below.

� MCDS Trace Configuration: It sets the values of the main parameters of a trace
using MCDS. The parameters that are configured include the trace targets, the on-
chip trace buffer mode (by default the buffer stops the trace once it is completely filled)
and many other parameters. Furthermore, it is possible to configure the Trace Units of
the OB blocks, defining the trace qualifiers and the triggers. After the parameters are
set, MTV generates automatically the proper configuration information which is then

41

transmitted to the MCDS.

� Trace Decoding: To get full information of the trace data, it is possible to load the
Executable and Linkable Format (ELF) file. After the trace is performed, the trace
data is stored in the TMEM. Then, MTV reads the trace information along with the
associated ELF file. The trace data is the information gathered using the trace qualifier
and trace triggers, while the ELF file contains the instructions that were executed on
the micro-controller. MTV uses this information and displays it to the user through a
chart. It includes the timestamps, the address, the data, and many others.

Figure 4.6: ChipCoach Layers

4.6.2 ChipCoach

The ChipCoach is a tool developed by Infineon Technologies AG and is based on the MCDS
hardware tracing functionalities embedded in the AURIX microcontrollers. ChipCoach is
able to configure the MCDS and gather the trace messages in order to perform a different
types of analysis of the system. This tool runs on Windows and uses DAS and MTV libraries.
ChipCoach is programmed on top in Java and in the lower layers in C/C++. Figure 4.6 shows
the four layers for the tracing and debugging flow for the ChipCoach tool.

This tool allows to perform different types of post-processing and runtime system diagnosis
using the trace and debug functionalities of the AURIX microcontrollers. The architecture of

42

this tool allows to develop advanced features based on the trace scope configuration and
the trace messages gathered. Therefore, by exploiting these tracing control functionalities,
in this thesis, the tracing control functionalities were used in order to develop a new feature
capable to perform stress injection in the AURIX microcontrollers. The new feature called
Galenus allows to gather and filter the trace messages in order to analyze the performance
and robustness of the system at runtime when the stress injection is performed. This feature
is explained in detail in Chapter 5.

43

5 Stress Injection

This chapter presents the first contribution of the thesis: the design of the stress injection
feature for the SoC evaluation. This feature was included in the Infineon Technologies AG
design flow for tracing and debugging, more precisely, at the ChipCoach tool. Despite the
hardware architecture to support the stress injection that is already embedded in the AURIX
2G Infineon microcontroller, it has never been used before. The work performed in this thesis
allows the utilization of such an infrastructure for the first time. This chapter is divided in four
sections. The first section presents a general description of the Stress Injection. The second
section presents the Trigger Line Timer (TLT) of the OCDS Trigger Switch (OTGS) that is
used to perform periodic suspensions of one or more CPUs. The third section describes the
Stress Injection Trigger Line Timer that is part of OCDS in the central debug interface. The
fourth section describes the developed stress injection feature called Galenus.

5.1 Stress Injection

In this Section, the general concept of the stress injection is presented. The first subsection
describes the goal of the stress injection in a SoC and the second subsection describes the
types of stress injection.

5.1.1 General description

The stress injection is a technique for performance and robustness evaluation of a SoC
that must meet hard real-time constraints1. It is based on the reduction of the effective
performance of one or more CPUs by periodic intervals. The stress injection allows to
assess the sensitivity of the SoC under different stress scenarios. A robust system is able
to meet the hard real-time constraints even under a high level of stress injection (in this

1The evaluation of the performance and robustness of the SoC usually is called as the SoC health test. By
following this medical analogy, the SoC stress injection is similar to a human breath test. The breath test
is a non-invasive method to help doctors to diagnose a number of conditions in a human being. By
analyzing the breath, the amount of certain gases is measured, allowing doctors to arrive in a diagnosis
regarding the health of the patient quickly and accurately. In this case, the patient is the SoC.

44

work a robust system is also called as healthy system). The stress injection is a key tool
for SoC diagnosis and debugging. By using stress injection, the SoC designer is able to
identify possible risk scenarios (where the system is not able to meet the hard real-time
requirements) and to trigger possible mechanisms for solving/improving and supporting the
reliable operation of the SoC.

5.1.2 Types and Requirements

According to the stress injection method and the IP hardware block target for the perform-
ance degradation, three types of stress injection techniques can be identified: i) stress
injection by artificial reads; ii) stress injection by CPU interrupts; and iii) stress injection by
CPU suspension. These techniques of stress injection are periodically performed for a brief
interval of time to analyze the overall effect on the SoC. In order to analyze the effect of the
stress injection, the SoC under test must support access to the trace and debug infrastruc-
ture. By using this, a designer is able to configure the system and to gather the information
required to analyze the SoC behavior.

5.2 Infineon Technologies AG AURIX On-Chip Debug and
Suspend Generation

The On-Chip Debug Support (OCDS) is the on-chip debug solution for the Infineon AURIX
microcontroller family. The OCDS infrastructure is based on an on-chip network of coupled
debug units, which also are interconnected to the processing and communication compon-
ents of the SoC (e.g., CPUs, bus controllers, peripherals, interrupt requester). This network
enables to gather the different debug events of the system. The general structure of the
OCDS is shown in Figure 5.1. OCDS is a complex structure that integrates many com-
ponents. For performing the stress injection (goal of this thesis) four main elements of the
OCDS are highlighted: i) Cerberus; ii) OCDS Trigger Switch (OTGS); iii) Trigger Lines (TL),
and iv) Trigger Line Timer (TLT). Further details of these components are given below.

1. Cerberus: It is the central debug interface for the set of on-chip debug units. It in-
tegrates three main components. First, the OCDS Trigger Switch (OTGS), which is
the central component for run-controlling. It controls the propagation of the signals
suspend and halt through the so-called Trigger Lines. These transmission lines are
linked to all the trace targets (e.g., CPUs, peripherals). Furthermore, the OTGS monit-
ors the trace targets and guarantees that the collected data is forwarded to the MCDS
for their later analysis at the debug and trace tools.

45

2. OCDS Trigger Switch (OTGS): It is embedded in the Cerberus and its function is to
control the operation between the trigger sources and trigger targets. That is, OTGS
is able to route the triggers from the MCDS (trigger source) to the CPU (trigger target).
The trigger routing (transmission) is performed through the trigger lines. This allows
to route one or more trigger sources to several trigger targets. The process (software
component) that defines the state of the OTGS’s (trigger lines) is the Multicore Break
Switch (MCBS and is executed on the OTGS. In case of a CPU suspension request
(assertion of suspend signal), the CPU pipeline is either stalled or delayed through
the injection of NOP (no operation) instructions. This state is kept until the suspend
signal is deasserted. Then, the CPU can resume the operation.

3. Trigger Lines: These lines correspond to the transmission wires used to route the
triggering signals. These lines link the OCDS with the different trigger sources and
trigger targets. The trigger lines are especially important because they allow the syn-
chronous suspension of the trigger targets (e.g., CPUs, peripherals). Once a trigger
line is set, a suspension is performed in all the IP blocks that are sensitive to this
trigger line, that is, the suspension signal is broadcasted to all the sensitive IP blocks.
A suspension will generate two effects on the IP blocks: i) halting of new bus trans-
actions, and ii) completing the ongoing computation/processes, but without executing
new processes (also called delayed suspension). Note that as a default, the IP blocks
of the SoC are not sensitive to a suspend request. The configuration of the IP block
sensitivity to a trigger line is explained in Section 5.3. The only trigger line that is able
to implement the delayed suspension is the trigger line 1 (TG Line 1). This trigger line
will be used in this work to implement the stress injection.

4. Trigger Line Timer (TLT): It is a hardware component embedded within the OTGS
and that can be used to trigger periodic suspensions in the trigger targets (e.g., CPUs
and peripherals). The timer is based on a synchronous counter which decrements
with every clock. The suspension is triggered when the counter value reaches 0 and
remains in suspension by 12 CPU clock cycles. The configuration of the timer is done
by modifying the initial value of the counter (the new value is stored in the counter
register). This modification is performed through the MCDS and the debug tool. This
timer is used in this thesis in order to perform the stress injection. This feature will be
further described in detail in the Section 5.3 of this Chapter.

The generation of suspension signals is performed using these blocks. Note that the MCDS
(trigger source) is configured by a debug and trace off-chip tool. The process of suspen-
sion/activation is executed through four steps. The first step takes place when the MCDS
triggers the suspend signal in the Cerberus OTGS block. When a periodic suspension is
required, the MCDS also configures the TLT of the OCDS. In the second step, the execution
of the MCBS on the OTGS component is performed. As a result, a suspension is created.
In the third step, this signal is transmitted through the TG Line 1 to the sensitive trigger
targets (e.g., CPUs, peripherals). Then, these blocks are suspended. The consequence
of the suspension of the IP hardware blocks of the SoC is the immediate halting of new

46

transactions and the completion of the remaining pending transactions. In the fourth step,
the suspend signal is cleared after 12 CPU clock cycles, then the CPUs are able to resume
the operation.

Figure 5.1: OCDS and Suspend Generation

5.3 Stress Injection Trigger Line Timer

The Stress Injection Trigger Line Timer and the Injector for Faults and Stress(IFS) are Cer-
berus functionalities that evaluate the performance and the robustness of the DUT in a
systematic and repeatable way. This work uses theStress Injection Trigger Line Timer to
apply the stress to the DUT and IFS only will be explained. IFS performs a predictable
fault injection for registers and controlled periodic stress injection. By using the stress injec-
tion, two scenarios can be evaluated: i) to determine the amount of stress that causes the
first performance and robustness degradation symptoms of the system, and ii) to determine
the sensitivity of a specific performance metric in the system. For example, the CPU time
required to execute a task under a defined amount of stress.

The method of stress injection intentionally reduces the effective performance of a SoC
resource (e.g., CPU, memory) in order to analyze the overall effect on the performance
and robustness of the system. There are three possible types of stress injection: i) Stress
injection by artificial reads; ii) stress injection by CPU interrupts, and iii) stress injection by
CPU suspension.

47

1. Stress Injection by Artificial Reads: Defines a periodic number of consecutive read
accesses to the shared resources. It uses the OTGS Trigger Line Timer (TLT).

2. Stress Injection by CPU Interrupts: Defines a periodic interrupt request for a CPU.
It employs the TLT and the interrupt routing.

3. Stress Injection by CPU Suspension: Defines a periodic suspension of the CPU.
It uses the TLT of one or all CPUs. The number of clock cycles during which the
suspension is performed should be defined by the SoC designer.

Among all these stress injection techniques, in this thesis the stress injection by CPU sus-
pension method was selected using Stress Injection Trigger Line Timer. The suspension of
the CPU has the greatest impact on the SoC performance when compared to the remaining
two techniques. Furthermore, for critical systems, the CPU timing parameter is the most
important performance component in a hard real-time system. For example, if the break
by wire with an anti-lock system in a car is starved of CPU time due to a CPU overload,
a deadline miss or a response miss can be provoked. Thus, producing a potentially seri-
ous consequence in the safety of the user. In order to perform the stress injection by CPU
suspension, the process described in Section 5.2 is followed. The trace tool configures the
sensitive list of the suspension targets (e.g. the CPUs) through the MCDS and OCDS com-
ponents. Furthermore, the trace and debug tool additionally configures the trigger line timer
in order to perform a periodic suspension. These two configuration processes are explained
below:

� Suspension Targets Configuration: In order to configure the suspension targets
to perform the stress injection it is necessary to turn the CPUs sensitive to the sus-
pension signal. This process is done through the trigger line with the functionality of
suspension, as explained in the Section 5.2. By modifying the 32-bit register of the
central debug interface (Cerberus) that corresponds to the Trigger Line 1 of the OTGS,
the sensitivity to suspension can be activated. Note that a single or multiple CPUs can
be sensitive to suspension. The Trigger Line 1 broadcast the suspend signal to all the
CPUs and peripherals that are sensitive to this line.

Figure 5.2: 32-bit Register of the Trigger Line 1 Suspension Targets

48

� Timer Configuration: It is used to perform a periodic suspension of the CPUs for
stressing the system and analyzing its behavior. The OTGS of the central debug
interface (Cerberus) has a timer function that allows to implement periodic suspension
with a fine resolution (from 12 to 780000 CPU clock cycles). The timer configuration
requires the setting of four parameters (by modifying the value stored in the 32-bit
register of Cerberus): timer value, reload timer (RL), trigger line value (VTZ) and timer
to trigger value (TGL). The structure of the register is shown in the Figure 5.3. The
parameters are discussed below.

� Timer Value: The timer value represents the number of clock cycles between
each suspension. It is represented as a 16-bit value which is automatically
decremented each 12 clock cycles until it reaches the zero value.

� RL: The Reload Timer generates a periodic suspension. It is represented as a
1-bit. When the RL is set to high (logic 1), the Timer Value is reloaded to the
initial 16-bit number after the counter reaches zero. Otherwise, when the RL is
set to low (Logic 0), the Timer value field of the register is not reloaded after the
zero is reached.

� VTZ: The Trigger Line value stores the value that will be routed through the
Trigger lines after the counter reaches zero. To activate the suspension of the
sensitive suspension targets, VTZ should be set to high (logic 1).

� TGL: It controls the Timer to Trigger Line routing. It is represented as a 4-bit
value, where each value correspond to the trigger line selected. The activated
line will transmit the value stored at VTZ. In order to transmit the suspension,
the TG Line 1 is used. It is able to activate the sensitive trigger targets.

Figure 5.3: 32-bit Register of the Trigger Line Timer

The stress injection based on the CPU suspension technique is performed by turning the
CPUs (sensitive trigger targets) sensitive to the suspension. The periodicity of the suspen-
sion is achieved through the timer function of the central debug interface. The schematic of
the single and periodic suspensions are shown in the Figure 5.4. The periodic suspension
constitutes the so-called stress injection. By modifying the 16-bit data stored at the Timer
Value the interval between t0 and tS is configured, as shown in Figure 5.4 (a). The CPU

49

suspension is fixed to at least 12 CPU clock cycles and it is represented as the interval from
tS to tR. Note that the CPU suspension can be greater than 12 clock cycles. It will depend
on the pipeline state of the CPU at the instant of time when the CPU suspension is activated.
In order to achieve a periodic stress injection, the RL should be set to high (logic 1). In this
way is performed periodically the stress injection to the system.

Figure 5.4: Stress injection (a) Single suspension (configurable Timer value and fixed CPU
suspension); (b) Periodic suspension.

5.4 Developed Stress Injection Feature in ChipCoach

Following the international standards for functional safety of electronics systems for the auto-
motive domain (ISO 26262), Infineon Technologies AG has developed a new generation of
AURIX microcontrollers. These devices have the capability to perform resource usage tests
when the software integration tests are executed on the hardware. To perform this new
functionality using the embedded debug and trace infrastructure, Infineon Technologies AG
has developed ChipCoach, a tool introduced in the Chapter 4. This thesis further extends
ChipCoach by integrating a new feature that enables stress injection. In this thesis, the new
feature will be called as Galenus.

Galenus is an additional feature of ChipCoach, programmed in Java and fully configurable by
the user. The Galenus is capable to implement the stress injection through CPU suspension
within two types of software applications (RTOS and Bare-metal). Furthermore, it quantifies
a set of metrics based on the gathered information of the SoC that allows the analysis of
performance and robustness of the system. Galenus has four main functions: i) configure
the trace; ii) configure the stress injection; iii) sort and map the trace, and iv) generate the
evaluation metrics. Depending on the application, all or a set of these functions can be
used. For instance, RTOS applications employ all the functionalities of the Galenus. In

50

contrast, Bare-metal applications do not require the Sort and Map Trace functionality. The
four functionalities of Galenus are described below.

1. Configure the Trace: It sets the values of the parameters that define the trace char-
acteristics. The trace is configured by setting the trace target, the observation block
with the trace units, the record buffer size, the qualifier and the record type.

2. Configure the Stress Injection: It defines the characteristics of the stress injection.
The stress injection is configured by setting the parameters of the registers for the
timer and suspension targets configuration as described in the Section 5.3.

3. Sort and Map the Trace: It configures the sorting and mapping characteristics of the
stress injection. After the trace stream is gathered from the DUT, the trace is sorted
and mapped according to the requirements of the test.

4. Generate the Evaluation Metrics: According to the sort, the timing parameters are
obtained and the evaluation metrics of the performance and robustness of the system
are generated.

Figure 5.5: Data flow diagram of the stress injection feature Galenus.

The data flow of Galenus, is shown in the Figure 5.5. Galenus configures the MCDS in order
to set the trace configuration and to apply the stress injection. MCDS configures the register
of the central debug interface, then set the timer and the suspension targets. Afterwards,
the suspension is done using the OCDS component in the CPU. While the stress is being
performed, MCDS records the trace and sends it to the Host-PC running ChipCoach. Then,
Galenus gatherers and sorts the trace stream to quantify the set of evaluation metrics that
allow the evaluation of the performance and robustness of the system.

51

The block diagram of Galenus is presented in the Figure 5.6. It is composed by four blocks,
one for each function of the feature. The enumerated circle identifies the functionality pre-
viously described. In the following subsections, each one of the blocks will be further de-
scribed in detail.

Figure 5.6: Block diagram stress injection feature.

5.4.1 Tracing Configuration

The trace configuration block is responsible to define the setup of the trace that will be
performed in the DUT when the system is stressed. This configuration is defined according
to the six input parameters:

� Trace Buffer Parameters: Refers to three parameters of the on-chip trace buffer: i)
The size of the buffer that is used to store the recorded trace data (e.g., 16kB); ii) The
buffer record mode (e.g., record Until full mode or the circular tracing stopped by a
trigger mode); iii) The trigger position type, that indicates the amount of data to be
traced after the trigger conditions are met (e.g., 30%, therefore 70% of the buffer is
filled with the trace data after the trigger conditions are met).

� Trace Target OB: This parameter defines the Observation Block (OB) in the trace
target (e.g., CPU1).

52

� Timestamp Type: This parameter defines the type of timestamp of the trace message
of the MCDS (e.g., Ticks enabled).

� Data Trace Unit Parameters: Refers to three parameters that should be set in order
to configure the DTU. These parameters are i) The trace Target (e.g., CPU1); ii) The
type of range of the qualifier (e.g., in-range or out-range), that define in which regions
of the program memory the trace must be performed. In case the qualification is in-
range, the trace will be performed only if the Instruction Pointer points to an address
inside the defined ranges; iii) The type of trace data to be captured (e.g., the data and
the address of all the write and read operations).

� Qualifier Parameters: Refers to two parameters that should be set in order to con-
figure the qualifier. These parameters are i) The type of range of the qualifier (e.g.,
in-range); ii) The start and the end address for the qualifier.

� Continuous Trace Parameters: Refers to three parameters that should be set when
the continuous trace is used. These parameters are: i) The use of the reset before the
trace is started (e.g., enable reset); ii) The maximum tracing time until the trace stops
(e.g., 3 seconds); iii) The maximum amount of data until the trace stops (e.g., 10kB).

Figure 5.7: Block diagram of the trace configuration function.

The value of these parameters configures the trace in order to extract the desired trace data.
It defines the trace parameters, which include: the trace target, the used trace unit and the
region of the memory in which the system should be traced. By applying this configuration
to the MCDS, we can now start to trace the DUT. The next functionality, the stress injection
configuration, is then activated.

53

Figure 5.8: Block diagram of the stress configuration function.

5.4.2 Stress Injection Configuration

The stress injection configuration block is responsible for defining the settings to perform the
stress injection. The stress injection is performed through the CPU suspension technique.
Therefore, the tracing CPUs targets should be sensitive to suspension and the configura-
tion of the trigger line timer, to perform a periodic suspension, should be configured. In
order to perform such a task, the stress injection configuration block requires five inputs: i)
Timer Value, a 16-bit value that represents the number of clock cycles between each sus-
pension; ii) Reload Timer, a 1-bit value used to enable a periodic timer; iii) Trigger Value, a
1-bit value that represents the value set to the trigger when the timer reaches the zero; iv)
Trigger Line Routing, a 4-bit value that defines the Trigger Line in which the function of the
timer is communicated; and v) Suspension Targets, which defines the IP blocks that will be
suspended.

According to the value of the aforementioned parameters, the stress injection configuration
block communicates to the MCDS a set of values that will be written down into the MCDS
registers. The write access is performed immediately after the request and the functionality
of the MCDS is then configured. Once the trace and stress configuration is done, the tracing
is started and the trace data is retrieved by the Trace Sort and Map block.

5.4.3 Trace Sort and Map

The Trace Sort and Map block is responsible for filtering the trace stream gathered from
the SoC. Afterward, when an RTOS application is implemented, the mapping is performed.
Otherwise, in the case of a Bare-metal application, the trace data is automatically redirected
to the Evaluation Metrics Generation block. To perform the sorting and mapping process,

54

Figure 5.9: Block diagram of the trace sort and map function.

the Trace Sort and Map block requires three information: i) Trace stream, which refers to
the data stream acquired from the SoC. The trace is gathered after the trace and stress
injection configuration are performed and after the tracing process takes place; ii) Task
Status Addresses, which refers to the memory addresses that contain the status of the
task set of the RTOS; and iii) Task Status Values, which refers to the values that represent
the states of a task as explained in Chapter 2 (e.g., Suspended (3), Ready (2), Running (0)).
According to the values of these three inputs, the sort and mapping process are performed in
three stages. Figure 5.10 shows the three-stage filtering process for a single trace message.
This process is applied to all the trace stream data. A further detailed description of the
stages is presented in the next paragraphs.

Figure 5.10: Single trace message stages of mapping.

� Stage 1: It filters the trace message according to the type. Only the trace message
type Data can continue to stage 2. The remaining types (e.g., Trace Gap, End of
Trace, FIFO Overflow) are discarded.

� Stage 2: It filters the trace message according to the address. Only the trace mes-
sages with the memory address equal to the defined Task Status Addresses input
information can continue to the stage 3.

55

� Stage 3: It filters the trace message according to the value of the data. Only the
trace messages with the data value equal to the defined Task Status Values input
information can continue to the mapping process.

After the single trace passed through all the three stages, the map is performed following the
data structure shown in the right side of the Figure 5.10. This structure is composed by two
elements called Key and Value. The Key is unique for the Task Status Address. Therefore,
the number of keys is equal to the number (n) of tasks in the RTOS. The Value is a list of
tuples composed by the timestamp T and the Task Status Values D. The possible values
of D are Suspended (3), Ready (2), Running (0). These values may vary according to the
selected RTOS.

5.4.4 Evaluation Metrics Generation

Figure 5.11: Block diagram of the evaluation metrics generation function.

The Evaluation Metrics Generation block is responsible for calculating the metrics used for
evaluating the DUT. The set of metrics may vary according to the software application test.
In the case of an RTOS test, the input of the block is the mapped tasks generated by the Sort
and Map Trace block. Otherwise, for a Bare-metal test, the input is directly the trace mes-
sage without mapping. Each case will be further described in the following paragraphs:

� RTOs Test: To quantify the metrics for evaluating the performance and robustness
of the system under stress injection and when an RTOS software application test is
used, three stages should be performed.

� Stage 1 - Timing Parameters Trace: This stage is responsible for measuring
the timing parameters based on the monitored task-set, generated by the block
of Trace Sort and Map. The timing parameters we can derive from our trace
match the parameters that were already introduced in Chapter 2. Each mapped
task is described by their Value, a list of tuples (Ti, Di), where T refers to the

56

timestamp and D is the Task Status Values. To obtain the task timing para-
meters, a Mealy Finite State Machine (FSM) was designed and implemented.
The high-level representation of the FSM is shown in Figure 5.12. This FSM is
composed by five states, which corresponds to the initial state (Init), three Task
Status Values (Suspended, Running, Ready) together with the preempted state.
The way that the FSM is activated is used to calculate three aspects of the task:
timing information, number of preemptions and number of instances.

Figure 5.12: Designed Finite State Machine and the timing parameters.

The FSM is represented by a 6-tuple (Σ,Λ, S, s0, F, δ), where Σ is a finite non-
empty set of symbols called the input alphabet, Λ is a finite non-empty set of
symbols called the output alphabet, S is a finite non-empty set of states, s0 is
the initial state of S, F is the final state of S and δ is the state transition function.
The designed FSM is described as follows:

Σ = {0, 2, 3} refers in this work as the Status Values of the Task (ST).

Λ = {AT, IPT,CET/R-P,PT,CET/R-S,NP,NI}, where the output alphabet cor-
responds to the timing parameters. They are (in order) the Activation Time, Ini-
tial Pending Time, Core Execution Time R-P, Preemption Time, Core Execution
Time R-S, Number of Preemptions and the Number of Instances.

S = {Init, Suspend,Ready,Running, Preempted} refers to the states of the
FSM.

s0 = {Init}, refers to the initial state of the FSM. It corresponds to the Init state.

F = {Suspended}, refers to the final state of the FSM. It corresponds to the
suspended state.

delta, the transition function of the FSM is shown in the Table 5.1.

57

Current State Input ST Next State Output
Suspended 0 Suspended -
Suspended 2 Ready ActivationT ime = Tn − Tn−1

Suspended 3 Suspended -
Ready 0 Running InitialPendingT ime = Tn − Tn−1

Ready 2 Ready -
Ready 3 Ready -

Running 0 Running -

Running 2 Preempted
CoreExecutionT imeR− P = Tn − Tn−1

NumberofPreemptions = n+ 1

Running 3 Suspended
CoreExecutionT imeR− S = Tn − Tn−1

NumberofInstances = n+ 1
Preempted 0 Running PreemptionT ime = Tn − Tn−1

Preempted 2 Preempted -
Preempted 3 Preempted -

Table 5.1: Transitions function of the FSM.

The output of the FSM corresponds to the timing parameters of the system. The
values are acquired by the difference between the current timestamp Tn and
the previous timestamp Tn−1. Figure 5.13 presents an example of the use of
the FSM to gather the timing parameters. The input information is a mapped
task (performed by the previous block), where the address of task 1 is mapped
together with a list of tuples of the timestamp and the Status Value of the Task
(ST).

Figure 5.13: Example of the stage 1 with the developed FSM

58

For the sake of simplicity, in this example only seven tuples of a preempted
task are shown: (10,0), (12,3), (14,2), (17,0), (18,2), (22,0), (29,3). Note that
integer numbers are used to represent the magnitude of the timestamp, and
milliseconds are used as units of measurement. After the initialization, the FSM
is initiated at the Init state.

For the first tuple (10,0), ST = 0, therefore the FSM does not perform any
transition. A change of state takes place only when ST is equal to three. This
fact ensures the measurement of a full instance of a task instead of a partial
instance. Following this process, for the second tuple (12,3), ST = 3, and then
the first transition takes place. The current state is Suspended.

For the third tuple (14,2), ST = 2, then the next state is Ready. The out-
put timing parameter Activation Time is equal to the difference between the
timestamp of the current tuple and the timestamp of the previous tuple. There-
fore, the Activation Time is equal to AT = Tn − Tn−1 = 14 − 12 = 2ms. The
result is then added into a list that records the timing parameter.

For the fourth tuple (17,0), ST = 0, then the next state is Running. The output
timing parameter Initial Pending Time is equal to the difference between the
current timestamp and the previous timestamp. Therefore, the value of IPT =
Tn − Tn−1 = 17 − 14 = 3ms. For the fifth tuple (18,2), ST = 2, meaning
that the task has been preempted by higher priority task. Then, the next state is
Preempted which results to the timing parameter Core Execution Time R-P to
be equal to CET/R − P = Tn − Tn−1 = 18 − 17 = 1ms and the Number of
Preemptions NP = 1.

Figure 5.14: Mapping example of the timing parameters in the Stage 1

For the sixth tuple (22,0), ST = 0, then the next state is Running. The timing
parameter Preemption Time PT = Tn − Tn−1 = 22 − 18 = 4ms . For the

59

seventh and final tuple of the example (29,3), ST = 3, then the next state is
Suspended, which signals the end of a task instance. The value of the timing
parameter Core Execution Time R-S CET/R − S = Tn − Tn−1 = 29− 22 =
7ms and the Number of Instances NI = 1.

This process is repeated until the complete trace data is processed. In case
there is a non-complete instance of a task, e.g., in the presence of a gap in the
trace when a continuous trace is performed, then the interrupted timing para-
meters are not considered. This guarantees data reliability. When the process
is finished for a single task, all the list values of each timing parameters are
mapped for the respective task, as shown in Figure 5.14. The process is done
for every task.

� Stage 2 - Complex Timing Parameters: This stage is responsible for com-
puting more complex timing parameters (e.g., the Execution Time, Response
Time and the Period) based on the gathered values mapped at Stage 1. The
three complex timing parameters are described below and an example is given,
which follows the example presented at Stage 1.

The Execution Time is defined as the time required for the implementation of a
task in the CPU, as described in Chapter 2. To compute the Execution Time,
the Core Execution Time R-P and the Core Execution Time R-S of an instance
of a task are added. This ensures that the metric considers the preemption of
a task. The values obtained at Stage 1 are used and the process is performed
for all the task set. The results are included in the Execution Time map for each
task as shown in the Figure 5.15

Figure 5.15: Mapping example of the complex timing parameters in the Stage 2

60

The Response time is defined as the time required for a task to be completed.
The value of this parameter is equal to the addition of all the timing parameters
since the task is in Ready state. Therefore, the response time involves the
summation of all the timing parameters excluding the Activation Time from the
Stage 1. The addition is performed when the instance of a task is completed and
then is mapped for the respective task, as shown in Figure 5.15. The process is
repeated for all the tasks.

The Period of a task is defined as the interval the task is repeatedly activated,
as explained in Chapter 2. It is necessary to add all the timing parameters of
the respective task in order to quantify the Period. That is, it is equal to the
addition of the Response Time and the Activation Time. Afterwards, the value
is mapped for the respective task and repeated for all the tasks. The Figure
5.15 continues with the proposed example for Stage 1. It shows the mapping
process for the Execution Time, Response Time and the Period for the Address
Tasks 1 (with values) and other address tasks. For the mapped Execution Time,
the value stored at the list is ExecutionT ime = CET/R−P −CET/R−S =
1 + 7 = 8ms (addition of the Core Execution R-P and the Core Execution R-S).
For the mapped Response Time, the value stored at the list isResponseT ime =
IPT +CET/R−P +PT +CET/R− S = 3 + 1 + 4 + 7 = 15ms(addition of
all the timing parameters excluding the activation time). Finally, for the mapped
Period, the value isPeriod = AT +IPT +CET/R−P +PT +CET/R−S =
2 + 3 + 1 + 4 + 7 = 17ms.

� Stage 3 - Descriptive Statistics and Utilization:

Figure 5.16: Mapping example of the descriptive statistics in the Stage 3

This stage is responsible for calculating further statistics regarding the behavior
of the mapped timing parameters from Stage 1 and Stage 2 and for mapping the
results for the task set. The calculated statistics include the maximum, average

61

and the minimum of each timing parameter. Moreover, the designer can use
these values to further calculate elaborated measurements (e.g., deviation, dis-
tribution, utilization). Afterwards, the descriptive statistics are mapped for each
task as shown in Figure 5.16. The presented values follow the example started
in Stage 1.

Once the descriptive statistics are quantified, it is possible to calculate the Util-
ization for each task. As described in the Chapter 2, the utilization of a task is
defined as the quotient of the maximum execution time and the period.

� Bare-metal Test:

In order to analyze the instruction dependency against the stress injection, a Bare-
metal test for different types of instructions was designed. It uses a flow control vari-
able and the System Timer Module (STM). The Galenus is able to measure the time
it takes for a defined amount of instructions to be executed under different levels of
stress injection.

The algorithm implemented in the Bare-Metal environment is shown in the Figure 5.17.
It is defined a flow control variable (called Block) in a while loop and can be modified
by the Galenus. When the Block variable is changed to false, the Start Time is taken
from the STM module. Afterwards, the test instructions are executed. Finally, it is
acquired the elapsed time of execution after all the instruction of the same type are
executed. The variable Duration stores the difference between the current value of the
STM and the Start Time value.

Figure 5.17: Algorithm implemented for the Bare-metal Test of instruction dependency

62

For this type of test, the stress injection feature is responsible for: i) modifying the
value of the flow control variable called Block ; and ii) gathering the interval of time
required to execute a defined amount of instructions.

By using the tool framework to decode symbolic data and addresses of the ELF file,
it is possible to obtain the respective address for a selected variable of the system.
Therefore, once the ELF file is loaded to the tool framework it is possible to write
and read the values of the variables contained in the registers. In order to perform
a stress injection test and evaluate the set of metrics for a Bare-metal application in
Galenus, the following steps should be performed: i) load the ELF file of the Bare-
metal system to the tool framework; ii) perform the stress injection configuration by
the Stress Injection Configuration block explained in detail in the subsection 5.4.2; iii)
modify the flow control variable Block ; iv) gather the value of the Duration variable,
which registers the elapsed time of execution of the instructions.

With this test, it is possible to quantify the exact time it takes a defined amount of
instructions to be executed when the stress injection is performed. As the flow control
variable is modified after the stress injection is activated, it is guaranteed that the
gathered time is related only to the interval for the instruction set execution. By using
different types of instructions and applying the same amount of stress injection, it
is possible to identify the presence of certain instruction dependency for the stress
injection.

5.4.5 Report of Evaluation Metrics

Once the evaluation metrics are generated for the two supported software application tests,
Galenus is capable to provide the evaluation metrics of the stress injection to the software
developer. Two methods are used to represent the quantified values: i) to display the eval-
uation metrics through a table in the User Interface (UI) of the tool framework, and ii) to
generate a Comma-Separated Values (CSV) file with the quantified evaluation metrics and
the descriptive statistics for further analysis. These two methods are described in detail
below:

� UI Report

The designed User Interface (UI) for Galenus is shown in the Figure 5.18. The de-
signer can use the on-chip tracing capabilities with and without stress injection and
can obtain a set of evaluation metrics. One of the goals of the UI is the better visu-
alization and understanding of the system behavior, as well as better control of the
stress injection capabilities. Note that this UI can be easily modified in order that the
designer has a refined control over the stress injection. The first release of Galenus
was designed to provide the basic functionalities of the stress injection. To expose
and turn available the different parameters of the stress injection is a decision of the

63

Figure 5.18: User Interface of Galenus

chip vendor. Further parameters can be opened in the future to the designer. These
basic and minor changes are left as future work. The User Interface is composed
by five main elements indicated with an enumerated circle in the Figure 5.18. These
elements are further described below.

1 Console Messages Option: This feature offers the designer a very refined in-
formation regarding all the on-chip trace processing and evaluation. It includes the
trace gathering, the several filtering steps and concludes with the quantification of a
set of metrics. The software developer can observe step-by-step the data flow trans-
formation, allowing a better understanding of the system. The information is shown in
the tool console.

2 Trace with Stress Injection Button: This feature is represented as a button that
allows the execution of the stress injection test. Once the button is activated, the
system is traced with the functionality of the stress injection. Once the test is finished,
a CSV file is automatically generated and the result of a set of metrics is obtained.

3 Trace without Stress Injection Button: This feature is represented as a button
that executes the tracing of the system without the stress injection. This feature is
used to gather the initial trace of the system without the stress injection. The trace
values are shown in the table of the UI.

4 Recording Time and Total Utilization data: This feature shows the results of
two main information, named the recording time and the total utilization data. The

64

information is generated every time that the trace test is finalized.

5 Evaluation Metrics Report Table: Once the test is finalized the main evaluation
metrics are displayed in the table of the UI. This information provides a brief report of
the test to the software developer.

The User Interface allows the software developer to perform the stress injection and
to visualize a brief report of the evaluation metrics. This report is also generated as a
CSV file, which contains all the trace data and the evaluation metrics obtained through
the stress injection test.

� CSV Report File

Each time a stress injection test is performed, a CSV file is generated automatically.
The CSV is a common data exchange format that is widely supported by different
types of programs (e.g., MATLAB, Excel). By using this format, the software developer
can quickly create a program to import the files, to plot the information (using different
colors and styles) and to analyze the data. The CSV file usually contains the following
information:

� The timing parameters of a task for RTOS and Bare-metal tests. For an RTOS
test metrics such as Response Time and Execution Time are obtained. For
a Bare-metal test, the metric such as the interval of time of execution by the
instruction set can be obtained.

� The number of instances and the utilization of a task.

� The recording time of the trace.

� The number of gaps in case of continuous tracing.

� The amount of performance degradation.

� The parameters of the test (e.g., the period of the timer of the stress injection).

� The descriptive statistics for all the evaluation metrics (e.g., maximum, average,
minimum).

65

6 Methodology

In this chapter, the methodology proposed in this thesis is presented. The goal of the
methodology is to measure the performance and the robustness of the DUT through the
technique of stress injection by CPU suspension implemented within two types of software
application, RTOS and Bare-metal. This chapter is divided into four sections. The first sec-
tion presents the general description of the methodology. The second section describes the
overall methodology for the RTOS test composed by six blocks. The third section describes
the overall methodology for the Bare-metal test composed by six blocks. Finally, the fourth
section presents a summary of the methodology.

6.1 General Description

The performance and robustness of an embedded system vary according to the type of
load and the operating conditions. This is especially critical for Systems-on-Chip (SoCs)
that are subject to hard real-time constraints. Therefore, to guarantee the meeting of the
time requirements of the DUT, stress testing is required. Software designers must analyze
and understand the behavior of the SoC under a wide variety of scenarios. Usually, the
load of the SoC is described by a set of parameters, which when set to a selected set of
values, are able to create different load scenarios. Once the DUT is stressed by a load
scenario, the system behavior can be observed. To execute a system analysis of hard
real-time applications, an efficient, non-intrusive and parallel system observation structure
is indispensable. Therefore, the stress test analysis must be done through an on-chip trace
structure embedded on the DUT. The trace of the system is performed at run-time while
the system is stressed. Among the different types of stress, in this work has been selected
the stress injection through CPU suspension, which was described in detail in the Chapter
5. This technique has been selected for its huge impact on the DUT, achieving a system
degradation on a larger scale when compared with the other stress techniques. In order
to gather and evaluate the behavior of the DUT, a trace stream generated by the DUT is
captured. Based on such information, a set of metrics are quantified. This type of test can
be implemented for two types of software application, RTOS and Bare-metal.

66

6.2 RTOS Test Methodology

Figure 6.1: General description of the RTOS test methodology.

The high-level representation of the method proposed in this work for an RTOS test is
presented in 6.1. It is composed by six blocks, indicated with an enumerated circle:

1 Task Set Generation and Utilization Bounds (TGU): Generates a feasible task set
and the utilization bounds. A feasible task set is defined when every task in the set meets
its deadlines (Subsection 6.2.1).

2 Stress Injection: Generates the stress injection parameters for the debug interface
(Subsection 6.2.2).

3 Trace Configuration: This block configures the trace that will be performed in the DUT
when the system is stressed (Subsection 6.2.3).

4 Design Under Test (DUT): It is composed by software and hardware components. It
schedules the task set along with the stress injection. The DUT generates a stream of trace
data (Subsection 6.2.4).

5 Trace Capture and Map (TCM): Gathers and sorts the stream of trace data of the task
set. (Subsection 6.2.5).

6 Metrics Quantification: Quantifies a set of metrics able to evaluate the performance
and robustness goals (Subsection 6.2.6).

In the following subsections, each one of the blocks will be further described.

67

6.2.1 Task Set Generation and Utilization Bounds (TGU)

Figure 6.2: Task Set Generation and Utilization Bounds (TGU) block.

The Task Set Generation and Utilization Bounds (TGU) is the first block of the proposed
methodology as shown in Figure 6.1 as 1 . The TGU is in charge of performing three
functions. The first function of TGU is to generate a feasible task set S. It corresponds to a
collection of n tasks J, where each task J is a collection of m runnables B. The task set S
and the task J are defined as in (6.1) and (6.2), respectively.

S = [J1, J2, ...Jn] (6.1)

J = [B1, B2, ...Bm] (6.2)

The second function of TGU is to distribute the task load among the runnables B. The third
function of the TGU is to define the utilization boundaries of the task set.

The TGU has three parameters as an input: i) the total amount of tasks n, which constitutes
the feasible task set; ii) the task attributes A as in (6.3), that includes the period T,defined
as the regular interval of time of activation of the task, offset F, defined as the range of
time between the starting of the system and the first occurrence of the task, priority P,
which represents the relative importance among the tasks that are executed in the system.
Tasks with higher priority are executed before the tasks with lower priority and the activation
of shared resources H in a task, defined as a binary value that represents the activation
of shared resources of a task; and iii) the total number of runnables m per task J to be
assigned to the task set.

A = [T, F, P,H] (6.3)

TGU quantifies the lower bound for the total utilization Ub of the system based on the number
of tasks n and on the UBA schedulability test (described in the Chapter 2, where the value
of Ub is defined as in (6.4).

68

Ub = n(21/n − 1) (6.4)

Once the lower bound is quantified, afterward, for each task, the task load L is quantified as
in (6.5) using the period T of the task and the total number of tasks n. It assumes an even
distribution of the utilization of the tasks.

L =
UL ∗ T
n

(6.5)

The upper bound of total utilization of the system is calculated using the exact test RTA
approach explained in the Chapter 2. It employs the task load L (quantified previously) and
the recursive equation (6.6). As a result, the WCRT Ri of the task Ji can be quantified as in
(6.7).

R
(0)
i = Li (6.6)

R
(k)
i = Li +

i−1∑
j=i

⌈
R

(k−1)
i

Tj

⌉
Lj (6.7)

In the previous equations, Li is the task load of the task Ji. Assuming without loss of gen-
erality, that the tasks have an implicit deadline (Deadline D = Period T) and that the task Jj
has a higher priority than Ji. The equation (6.7) can be solved iteratively tillRi converges. In
order to determine the schedulability of Ji the converged value is then compared against the
implicit deadline of Ji. If Ri ≤ Di for the complete task set, then the task set is schedulable.
Otherwise, the task set is not schedulable.

By using the equations 6.5 till 6.7 and increasing the value of UL for the task load iteratively
in 6.5 until the task set is no longer schedulable in 6.7, it is possible to determine the upper
bound value of the total utilization of the system. Hence, the first output of TGU is generated,
that is, the utilization bounds of the system.

Finally, after the feasible task set is obtained, the load per task is distributed evenly between
the number of runnables. In this way, TGU generates a feasible task set and the utilization
bounds for a non-faulty analysis of the DUT that which is stressed. The generated feasible
task set is scheduled by the RTOS in the CPUs of the DUT and the utilization bounds will
support the analysis once the evaluation metrics are acquired.

69

6.2.2 Stress Injection

Figure 6.3: Stress Injection block.

The Stress Injection block, indicated in the Figure 6.1 as 2 , generates the parameters for
the on-chip trigger and trace interface of the DUT. The stress injection block has two inputs:
i) the timer parameters (i.e., timer period, timer routing, initial value and reload, further
explained in Chapter 5); and ii) the stress injection target CPUs of the DUT. According to
these variables, this block generates a set of values that will configure a set of registers
of the central debug support interface. These values are transferred through the on-chip
trigger and trace interface in the DUT. The alterations in the registers differ according to
the architecture of the DUT. These values are known in this work as the stress injection
instructions and are used to perform the stress injection in the DUT.

6.2.3 Trace Configuration

Figure 6.4: Trace Configuration Block.

The Trace configuration block is shown in the Figure 6.1 as the 3 . This block is responsible
for defining the setup of the trace that will be performed. The trace configuration is defined
according to the input Trace Parameters. These parameters may differ according to the
semiconductor vendor. However, usually the trace configuration is characterized by five
main parameters: i) trace buffer (e.g., size, wide, flow control); ii) trace target; iii) timestamp
type; iv) data trace (e.g., type of captured data); v) qualifier (e.g., range and type); vi) type
of trace (e.g., continuous trace, trigger trace). The setting of the trace may differ according
to the architecture of the DUT. The trace configuration is performed by sending the value of
the selected parameters to the on-chip trace and debug solution of the DUT. The RTOS is
scheduling the task set on the DUT. Based on the three outputs generated from the Stress
Injection block and the trace instructions it is possible to apply the stress injection and to
trace the DUT.

70

6.2.4 Device Under Test (DUT)

Figure 6.5: Device Under Test (DUT) block for the RTOS test methodology.

The DUT is indicated in the Figure 6.1 as 4 . It is composed by a software (RTOS) and
hardware components. In the DUT the task set is scheduled in the CPUs and the stress
is injected. The DUT considered in this methodology is an embedded system with hard
real-time constraints that is time-triggered with periodic task set. This block is compound
by three inputs: i) the feasible task set generated by the TGU block; ii) the stress injection
instructions, generated by the stress injection block; and iii) the trace configuration, gener-
ated by the Trace Configuration block. According to the value of these inputs, the task set is
scheduled by the RTOS into the CPUs of the DUT. Then, the stress injection instructions are
gathered by the on-chip trigger and trace interface. As a result, the registers of the central
debug support interface are configured to inject the stress in the target CPUs. The output
of the DUT is the Trace Stream, which is sent to the TCM through the on-chip trigger and
trace interface. This trace extraction is performed simultaneously with the non-interrupted
operation of the system.

6.2.5 Trace Capture and Map (TCM)

The TCM block is indicated in the Figure 6.1 as the 5 . It captures the trace stream of
the stressed task set scheduled by the DUT. After the trace configuration is applied and the
stress injection to DUT is performed, the trace stream is captured. The stream of trace data
is captured, filtered and mapped according to two characteristics. First, the task status ad-
dresses, that refers to the addresses of the task scheduled by the RTOS and which contain
the status of each task of the task set. Second, the task status data values, which refer to
the state values of each task that belongs to the task set allocated in the DUT by the RTOS.
These states are described in detail in the Chapter 2. In general, there are four states:

71

Figure 6.6: Trace Capture and Map (TCM) block.

Ready, Running, Waiting and Suspended. Afterward, the mapping contains the task iden-
tifier with the state and the respective timestamp (obtained during the trace for all the task
set). The TCM block generates the mapped task set, that is sent to the metrics quantification
block.

6.2.6 Metrics Quantification

Figure 6.7: Metrics Quantification block.

The Metrics Quantification block, indicated in the Figure 6.1 as 6 , quantifies a set of met-
rics for the performance and robustness evaluation of the DUT. This block has two inputs: i)
the constructed map with the trace data of the task set provided by the capture TCM block;
and ii) the feasible utilization bound, given by the TGU block. According to the mapped trace
of the task set, the metrics quantification block generates all the timing parameter explained
in the Chapter 2. The timing metrics, for instance, WCET, WCRT, Slack Time and others
are calculated having the identifier of the task. This process is followed by the insertion of
the utilization bounds for the stress injection provided by the TGU block. Therefore, the final

72

generated evaluation metrics will be centered in this range of utilization for the analysis of
the correct data.

The output of this block is a set of evaluation metrics for the performance and robustness
of the DUT. Note that the methodology can be extended and can further quantify several
metrics defined by the designer. In this work, the two main metrics used for the stress
injection analysis are i) the ratio between the WCRT and the minimum Slack time; and ii) the
ratio between the WCRT and the Deadline. For further system analysis, two complementary
metrics are used in this work, named Utilization and the Maximum Preemption Time. These
metrics are the most common values used by designers. Note that further metrics can be
quantified. These metrics are evaluated in terms of the Performance Degradation (PD) of
the system utilization. The PD is expressed as a percentage value which represents the
total utilization added to the system when the stress injection is performed by the technique
of CPU suspension. The PD is calculated as the difference between the total utilization of
the system when the stress injection US is performed and the initial total utilization without
stress injection U as shown in the Equation 6.8:

PD = US − U (6.8)

The selected metrics to analyze the system under stress injection were chosen for the mean-
ingful description of the system behavior. In this subsection are introduced the main symp-
toms of the system (following the SoC health test analogy): the WCRT and the minimum
Slack Time Ratio Symptom (SRS). These values indicate when the allocation of the task set
is close to the infeasibility. Furthermore, the ratio between the WCRT and the Deadline is
relevant in this work to find the so-called Infeasible Point (IFP). The remaining of the metrics
helps to describe the system behavior before and after the system pass through the SRS
and the IFP.

� WCRT and Minimum Slack time Ratio Symptom (SRS): This ratio combines the
WCRT and the minimum Slack Time. The Slack time refers to the interval of time
between the completion of the task and its deadline. This metric is used as a symptom
of the system, once the ratio represents how close the task is to reach the deadline.
Therefore, when the value of this metric is greater than one, the system falls into a
Danger Region, where it is no longer feasible. The regions of operations are further
described in the Subection 6.2.7.

� Ratio of the WCRT and the Deadline: This ratio shows how close the system is to
reach the Infeasible Point (IFP). In such a region, the whole system becomes infeas-
ible. When the value of this ratio is greater than one, the task set becomes infeasible
and therefore the system can no longer operate correctly.

� WCET: This metric represents the maximum interval of time spent by the task actively
using the CPU resources. As the stress injection adds load to the system, performing

73

the stress injection in the system will affect the WCET. This metric helps the designer
to evaluate the system behavior under different load conditions.

� WCRT: This metric represents the maximum interval of time between the activation
and termination of a task. Using this metric, it is possible to characterize the system,
where the maximum interference is considered. By using this metric combined with
other metrics, it is possible to define a risk symptom of the system such as the SRS
or a specific point where the task set of the system is no longer feasible.

� Utilization: This metric represents the CPU utilization of a task. By using this metric
it is possible to evaluate the operation of the system and to identify hot spots. The
utilization is a key value to identify the symptom (SRS) and to determine when the
Infeasible Point (IFP) is reached.

� Maximum Preemption Time: This metric represents the maximum preemption time
of a task. This metric shows the behavior of the task of the task set when the stress
injection is performed.

6.2.7 Worst-Case Response Time Analysis

Figure 6.8: Response time regions of analysis.

A task-set is considered infeasible when it violates the temporal constraints (e.g., deadline).
Therefore, the most intuitive time-based approach to identify a malfunction of the system
uses the deadline as a reference point for identifying abnormal behavior. However, for hard
real-time systems, the deadline miss is insufficient considering that awaiting until the task vi-
olates the deadline may be dangerous. The miss of the deadline could lead into catastrophic
events. Therefore, is required to define a temporal boundary to delineate the off-normal be-
havior of the task set of the system, as shown in the Figure 6.8.

74

The WCRT metric is important to characterize the system. However, to base the analysis
only in the response time metric does not provide a complete system information. The
WCRT should be analyzed together with other metrics. The Slack time is defined as the
interval of time between the termination of a task and its deadline. This interval of time can
be used to understand which kind of task can be executed on the system without missing
the deadline. When the interval of the response time is higher than the minimum slack time,
the task is dangerously close to miss the deadline. Therefore, following the SoC health test
analogy described in the Chapter 5, this metric can be used as a symptom of the malfunction
of the system. The WCRT and Minimum Slack Time Ratio Symptom (SRS) represent the
lower boundary of the so-called Stressed Danger Region (as shown in the Figure 6.8). The
upper boundary of this region is the Infeasible Point (IFP), which refers to the point in which
the task misses the deadline.

The defined temporal boundary that delineate the performance of the response time of a
task when the stress injection is performed, it is shown in the Figure 6.8. It is composed by
four regions:

1. Non-Stressed Normal Region: This region is bounded by the Best-case Response
Time (BCRT) and the Worst-Case Response Time (WCRT) of the system without the
stress injection. It represents the normal behavior of the system before the stress
injection. When the system is stressed, the stressed WCRT passes to the Stressed
Caution Region.

2. Stressed Caution Region: This region is bounded by the initial WCRT, before the
stress injection, and the SRS.

3. Stressed Danger Region: This region is bounded by the SRS Symptom and the
Infeasible Point (IFP). It represents a task that is dangerously close to violate the
deadline. Thus, the task set may become infeasible.

4. Stressed Infeasible Region: Over the Infeasible Point (IFP) the system became in-
feasible and therefore, may cause possible catastrophic consequences for the user.

Following the analogy of the breath test to the Stress Injection, a non-invasive method to
diagnose a possible disease is very important. It is desirable to identify the symptoms of
the disease (infeasibility of the system) in an early stage. This may lead to apply less
aggressive treatment methods to the patient (SoC). That is, instead of a total reboot of the
system (aggressive treatment), a simple rescheduling of a task at design time may save the
operation of the SoC. In addition, it may guarantee that the system continues operating in a
stable state. Therefore, using early symptoms, such as the SRS , will lead in less aggressive
correction methods and will maintain the feasibility of the hard real-time system.

75

6.3 Bare-metal Test Methodology

To characterize the system behavior when the stress injection is applied at the instruction-
level, the stress is directly applied to a set of instructions in a bare-metal software applica-
tion.

Figure 6.9: General description of the Bare-metal test methodology.

It is based on gathering the execution time for different types of instructions. This method
allows the identification of possible dependencies of a certain type of instruction against the
stress injection performed in the DUT. The high-level representation of the method adopted
in this work for a Bare-metal test is presented in 6.9. It is composed by six blocks, indicated
with an enumerated circle:

1 Instructions Generator: This block generates the set of instructions that will be ex-
ecuted on the Bare-metal environment. (Subsection 6.3.1).

2 Stress Injection: Generates the stress injection parameters for the debug interface
(Subsection 6.2.2).

3 Trace Configuration: This block configures the trace that will be performed in the DUT
when the system is stressed (Subsection 6.2.3).

4 Design Under Test (DUT): It is composed by a software and hardware components.
(Subsection 6.3.2).

76

5 Flow Control Configuration: This block modifies the flow control variable of the bare-
metal system in order to perform the stress injection to the test set of instructions (Subsec-
tion 6.3.3).

6 Evaluation Metric: Quantifies the execution time metric. It evaluates the instruction
dependency to the stress injection in the DUT (Subsection 6.3.4).

Two of these six blocks used for the bare-metal test (Stress Injection and Trace Configuration
blocks) are also used for the RTOS test and were previously described. Therefore, they are
not described again. The following subsections further describe the remaining four blocks.

6.3.1 Instructions Generator:

Figure 6.10: Instructions Generator block.

The instructions Generator block, shown in Figure 6.9 as the 1 . It generates the set of
instructions that are executed on the bare-metal implementation. The Instructions Generator
block has two inputs: i) amount of instructions; and ii) type of instructions. According to
these variables, this block generates a set of equal type of instructions using the respective
registers of the DUT. Afterward, the set of test instructions are implemented in the Bare-
metal environment to apply the stress injection and to implement the trace configuration.

6.3.2 Device Under Test (DUT):

The DUT is indicated in the Figure 6.9 as the 4 . It is composed by a software (bare-metal)
and hardware components. This block requires four inputs: i) set of test instructions gen-
erated by the Instructions Generator block; ii) stress injection instructions generated by the
Stress Injection block; iii) trace instructions generated by the Trace Configuration block; and
iv) flow control instructions generated by the Flow Control block. The set of instructions is
implemented in the bare-metal environment of the DUT and the stress injection is performed.
Once the flow control instructions unblock the flow control variable, the set of instructions
are executed. The execution time, limited to the set test instructions are measured using
System Timer module as a reference clock for the measurement and the value is stored in a
variable. Afterwards, the data stream generated by the DUT is sent to the Evaluation Metric
block.

77

Figure 6.11: Design Under Test block.

6.3.3 Flow Control Configuration:

Figure 6.12: Flow Control Configuration block.

The Flow Control Configuration block is indicated in the Figure 6.9 as the 5 . This block
is responsible for modifying the value of the flow control variable implemented in the Bare-
metal system. The Flow Control Configuration Block is composed by two inputs: i) ELF file,
which contains binary and symbolic information; and ii) Unblock signal, which controls the
flow control variable. The Flow Control Configuration block decodes the ELF file in order to
acquire the binary and symbolic information of the flow control variable. Once the unblock
signal is set, the Flow Control Configuration block generates the Flow Control Instructions
that modifies the register that stores the flow control variable. This process ensures that
the execution time gathered from the DUT belongs exclusively to the set of instructions
generated by the Instructions Generator block and implemented in the DUT.

78

Figure 6.13: Evaluation Metric block.

6.3.4 Evaluation Metric:

The Evaluation Metric block, shown in the Figure 6.9 as the 6 is responsible for acquiring
the execution time of the instructions. This block has two inputs: i) trace stream generated
by the DUT; ii) ELF file of the system. According to these parameters, this block decodes
the variable that contains the execution time of the instructions. This process is achieved
by using the trace stream of the DUT and by linking the trace with the binary and sym-
bolic information available in the ELF file. Afterward, the result is displayed to the software
developer.

6.4 Summary

Block Inputs Outputs

Task Set Generation
& Utilization Bounds (TGU)

-Total Amount of Tasks
-Task Attributes
-Total Amount of Runnables

-Feasible Task Set
-Utilization Bounds

Stress Injection
-Timer Parameters
-Target CPUs

-Stress Injection Instructions

Trace Configuration -Trace Parameters -Trace Instructions

Design Under Test (DUT)
-Feasible Task Set
-Stress Injection Instructions
-Trace Configuration

-Trace Stream

Trace Capture and Map (TCM) -Trace Stream -Mapped Task Set

Metrics Quantification
-Mapped Task Set
-Utilization Bounds

-Evaluation Metrics

Table 6.1: Summary I/O of the RTOS test methodology blocks.

In this chapter was presented the methodology to apply the stress injection. First, the meth-
odology of stress injection in an RTOS system was described. The method is summarized
in the Table 6.1. In this system were implemented a feasible periodic task with implicit dead-
line and balanced distribution of the loads within the task set in order to perform a reliable
analysis.

79

Block Inputs Outputs

Instructions Generator
-Amount of Instructions
-Type of Instructions

-Set of Test Instructions

Stress Injection
-Timer Parameters
-Target CPUs

-Stress Injection Instructions

Trace Configuration -Trace Parameters -Trace Instructions

Design Under Test (DUT)

-Set of Test Instructions
-Stress Injection Instructions
-Trace Instructions
-Flow Control Instructions

-Trace Stream

Flow Control Configuration
-ELF File
-Unblock Signal

-Flow Control
Instructions

Evaluation Metric
-Trace Stream
-ELF File

-Evaluation Metrics

Table 6.2: Summary I/O of the Bare-metal test methodology blocks.

Second, the methodology of stress injection in a Bare-metal system was described. It is
summarized in the Table 6.2. The goal of this approach is to analyze the instruction de-
pendency when the stress injection is performed. In this system were implemented a set of
instructions on a Bare-metal environment to apply a stress injection on the DUT and obtain
the execution time of the set of instructions. In order to acquire the exact execution time of
the set of instructions when the stress injection is performed. This methodology uses a flow
control mechanism where the data acquired from the DUT is ensured to belongs exclusively
to the set of instructions implemented in the system.

80

7 Case Studies and Experiment Results

In this chapter, the experimental work is presented. It describes the experiments performed
for the two types of software application: RTOS and Bare-metal. For the RTOS and the Bare-
metal experiments, six case studies are designed, three for RTOS and four for Bare-metal.
For each Case Study the performance and robustness evaluation results are presented,
following the method proposed in Chapter 6. This chapter is divided into four sections. The
First Section describes the general configuration and characteristics of the experimental
work. The second section describes the RTOS experiments and results. The third section
presents the Bare-metal experiments and results. Finally, a summary of the experimental
results is shown.

7.1 General Description

The method presented in this thesis allows the SoC designer to evaluate the performance
and robustness of an AURIX Infineon microcontroller with two types of software application,
RTOS and Bare-metal and under different stress injection scenarios. For both applications
the stress injection is performed as explained in Chapter 5 and using the methodology de-
scribed in Chapter 6.

For the RTOS experiments, a feasible periodic task with implicit deadline and an even dis-
tribution of the load within the task set is implemented. These experiments are designed to
evaluate the behavior of the system implemented within an RTOS application under critical
performance and robustness cases for the AURIX microcontroller. The used RTOS is the
ERIKA OS executed on the AURIX microcontroller. The case studies for the RTOS experi-
ments implement three configurations of task sets, described and analyzed in detail in the
Section 7.2.

For the Bare-metal experiments, a set of instructions in a Bare-metal environment is imple-
mented. These experiments have the purpose to study the instruction dependency when
the stress injection is performed. In each Case Study the stress injection is implemented
within four different types of instructions, explained and analyzed in detail in the Section
7.3.

81

The stress injection is performed in the AURIX 2G TC39 using Galenus, which is executed
in the ChipCoach framework and was programmed in Java. The full description of Galenus
is described in Chapter 5. In order to guarantee the reliability of the initial conditions of the
experiments, the setup of each experiment is verified using the Multicore Debug Solution
Trace Viewer (MTV). Using Galenus the stress injection is executed, a set of metrics are
quantified and the results are finally plotted for both cases (RTOS and Bare-metal). The
most relevant plots for each experiment are shown in this work.

7.2 RTOS Experiments

The single-processor RTOS experiments use the RTOS ERIKA OS. It uses preemptive RMS
as scheduling strategy. Each Case Study implements a feasible task set of six periodic tasks
with implicit deadline (D = T) and an even distribution of the loads on the task set. Following
the methodology of stress injection described in the Chapter 6, six parameter values must
be defined:

1. Total Amount of Tasks: For all the case studies the total number of tasks implemen-
ted in the RTOS is six.

2. Task Attributes: For each Case Study the task attributes are modified as shown in
Table 7.1

3. Total Runnable per Task: For each Case Study the total number of runnables per
task is modified as shown in Table 7.1

4. Timer Parameters: For all case studies the fourth timer parameters are modified in
the same way: i) Timer Value varies in the range from 1 to 125, which in clock cycles
represents a variation from 12 to 1500 CPU cycles.This means, when the Timer Value
takes the value of 1, it represents that every 12 CPU clock cycles it is performed the
CPU suspension. In case of a value 125, the stress injection is performed every 1500
CPU cycles. Therefore at value of 1, the stress injection is maximum. The range
between 12 to 1500 CPU cycles, was selected after detecting that from 1500 CPU
cycles on, it is possible to detect a performance degradation over 1%; ii) Reload Timer
Value is fixed to one. Therefore, the Timer Value is reloaded when the countdown
timer reaches zero; iii) Trigger Line Value is fixed to one. Therefore, the trigger line is
set to one when the Timer Value reaches zero. Thus, activating the suspension to all
the sensitive suspension targets, and iv) Timer to Trigger Line Value is fixed to one.
Therefore, the broadcast capabilities of the Trigger Line 1 can be used to communicate
the suspension signal to all the sensitive targets.

5. Target CPUs: The target CPU in which the stress injection is performed is fixed for all
the case studies as CPU0.

82

6. Trace Parameters: For all the case studies the six parameters are modified similarly:
i) Trace Buffer Parameters are fixed to 16 kB buffer size, with FIFO (First-in-First-out)
IFTG (If-Full-Trace Gap) as a recording type and a continuous trace of the DUT; ii)
Trace Target OB is fixed to the CPU0; iii) Timestamp Type is fixed to trace the events
based on the DUT ticks; iv) Data Trace Unit (DTU) Parameters are set for the CPU0
with an in-range qualifier and to capture the address and data of all the write opera-
tions; v) Qualifier Parameters records the start and the end address of the qualifier.
The ERIKA OS stores the state of each task in an array variable called EE_th_status.
Therefore, the qualifier is set in the range of this variable for the implemented task set;
and vi) Continuous Trace is set to five seconds of a continuous trace.

Case
Total

Utilization
(%)

Load
Balance

(%)

Period (ms) /
Runnables (#)

Harmonic
Task Set

Independent
Tasks

1 70 11.6

1 / 4
5 / 1
10 / 1
20 / 4
50 / 3
100 / 1

No Yes

2 70 11.6

1 / 4
5 / 1
10 / 1
20 / 4
60 / 3
120 / 1

Yes Yes

3 70 11.6

1 / 4
5 / 1
10 / 1
20 / 4
50 / 3
100 / 1

No No

Table 7.1: Summary RTOS experiments.

Table 7.1 shows the task set parameters implemented in the RTOS for the three case stud-
ies. The wider variety of case studies is advantageous in the analysis of the system. It
increases the coverage of different load scenarios and thus favors the reliability and per-
formance evaluation of the SoC. In the following subsections, each Case Study is described
with the respective distribution of the loads within the task set. The results are presented
and analyzed with the respective plots. Moreover, the evaluation metrics quantified by Ga-
lenus are evaluated in terms of the Performance Degradation (PD) of the total utilization of
the system, as explained in the Chapter 6. The PD is a percentage value that represents

83

the utilization added to the system when the stress injection is applied. The stress injection
is increased for each study case. The stress injection is inversely proportional to the Timer
Value. That is, when the Timer Value gets smaller, a higher CPU suspension is performed
and therefore, the stress injection gets larger.

7.2.1 Case Study 1: Synchronous task set with Total Utilization of 70% and
non-harmonic periods

The first Case Study of stress injection on an RTOS software application is designed to start
the stress injection with the worst independent task set attributes in terms of schedulabil-
ity, using the Rate Monotonic Scheduling (RMS). This behavior occurs when the task set
has non-harmonic periods, synchronous task set and the total utilization is at the bound of
the sufficient condition for the utilization of the system. The task periods are considered
harmonic when each task period is an exact integer multiple of the next short period. In a
synchronous task set, the offset of the first release of each task is equal to zero. In an inde-
pendent task set, the task does not depend on the completion of requests of other tasks.

The designed task set is composed of six independent tasks with non-harmonic periods,
as shown in Table 7.1 for this Case Study. Where the 50 msTask disturbs the harmonic
behavior of the remaining tasks. With the non-harmonic relation among the task set periods
using RMS, the schedulability bound downgrades.

Figure 7.1: Case-Study 1 Task Set: Six synchronous and independent tasks with non-
harmonic periods and a total utilization of 70%.

84

The designed task set is synchronous. In addition, the bound of the sufficient condition of
the utilization of the system for the six tasks at RMS is set at 70% of CPU utilization. The
utilization percentage was calculated based on the Utilization-Based Analysis presented in
Equation 6.4. It provides the lower bound of the utilization for the RTOS experiments with
a task set of six tasks. Once the lower bound is quantified, the load per task is evenly
distributed on the task set considering the periodicity of each task quantified based on the
Equation 6.5. The load per task is evenly distributed between the number of runnables per
task, as shown in Figure 7.1.

The upper bound of the total utilization of the system is quantified based on the Response
Time Analysis (RTA). It provides an exact test using the recursive Equation 6.7. The upper
bound is equal to the necessary condition for achieving the 100% of utilization. Therefore, it
guarantees that the system remains schedulable even when applying a stress injection that
forces the 100% of the total utilization. This kind of load is very similar to the real automotive
domain scenario, where the utilization of the system is very close to 100% and the SoC
should guarantee the schedulability of the task set.

The experiment is executed according to the methodology described in this thesis. It can be
summarized as follows. First, the task set is implemented in the RTOS and then the stress
injection is performed. The tracing information is gathered and filtered in order to quantify a
set of metrics through Galenus. Results are plotted using MATLAB.

For this Case Study, six graphs are presented and analyzed in terms of the Performance
Degradation:

i) CPU Utilization graphs, it is identified the operation point on which the injected degree of
stress makes that the system losses the even distribution of the load for each task; ii) WCRT
and Minimum Slack Time Ratio symptom graph, which is used to identify the SRS symp-
tom. iii) Maximum Preemption Time graph, which shows the preemption time for each task;
iv) WCET graph, which shows the effect on the core execution when the synthetic load is
added by the stress injection test; and vi) WCRT graph, which shows the maximum time that
a task takes since its activation until its completion when different degrees of stress injection
are applied. With this graph, it is identified the Infeasible Point (IFP).

85

� CPU Utilization:

Figure 7.2: Case-Study 1: CPU utilization when the stress injection is performed.

Figure 7.2 shows the behavior of CPU utilization of each task executed on the DUT
with different degrees of stress injection. Figure 7.2 (a) on terms of Performance
Degradation and Figure 7.2 (b) on terms of the Timer Value. Figure 7.2 (a) shows how
the CPU utilization increases directly proportional to the amount of stress injected on
the DUT. This behavior is maintained until the Performance Degradation reaches the
26%.

Considering that the initial total utilization of the system is 70% and that the Per-
formance Degradation is defined as a percentage of the total utilization added to the
system when the stress injection is applied. Therefore at 26% of Performance De-
gradation the total utilization of the system is at 96%.

To have a clear view after the 26% of Performance Degradation Figure 7.2 (b) at
the x-axis the Timer Value shows the resource starvation of the higher priority task
i.e. 1 ms Task, showed with color green starve the CPU time for the lower priority
task i.e. 100 ms Task, showed in Figure with the color red. While the lower priority
decreases the CPU utilization from 15.5% to 8.3% while the other tasks increase their
CPU utilization. The higher priority task increased from 17.7% to 19.3%.

The starvation of CPU resources from the higher priority over the lower priority and
the total utilization of the system at that moment 96% of utilization leads in a miss of
a deadline of the lower priority task. Therefore, the system becomes infeasible above
96% of utilization. This will be shown in the following evaluation metric.

86

� WCRT and Minimum Slack time Ratio Symptom (SRS):

Figure 7.3: Case 1: WCRT and Minimum Slack time Ratio Symptom (SRS) when the stress
injection is performed.

Figure 7.3 shows the percentage ratio between WCRT and the minimum Slack time.
This ratio represents how close is the task to the Infeasible Point. Using the SoC
health analogy, this ratio is a symptom of the system that is detected using the non-
invasive stress injection test to help in this case the software developer to diagnose
the system before it became infeasible. In this work the WCRT and Minimum Slack
time Ratio symptom is called SRS, once the percentage is over 100% it is considered
as a symptom of infeasible system. Therefore, performing a stress injection with a
larger amount of CPU suspension over the SRS symptom is found will lead soon in
the infeasibility of the system.

Figure 7.3 shows on the one hand how the four tasks with high priority in the system
i.e. 1 msTask, 5 msTask, 10 msTask, 20 msTask, are in the range of 15% to 25% of the
SRS during the stress injection. This means that these four tasks are still distant to
reach the 100% of the SRS symptom and be considered as a symptom of infeasible
system. On the other hand, the remaining tasks i.e. 50 msTask and 100 msTask
present a larger degree of increase of SRS overall the task with lower priority showed
in Figure 7.3 with the color red the 100 msTask. This task surpasses the 100% of SRS
when the system is at 14% of performance degradation ergo the system is at 84% of
total utilization. This task reaching the 100% of SRS, the system is now in the Danger
Region defined in the Chapter 6 as the region between the SRS Symptom and the

87

Infeasible Point (IFP). The system became infeasible after the 26% of performance
degradation and the SRS is detected at 14% of performance degradation. Therefore,
applying the stress injection on the system helps the software developer to identify
these thresholds of operation of the RTOS application on the DUT and diagnose it
before it became infeasible. Considering the time constraints of the hard real-time
systems, detect only when the system is infeasible is insufficient, therefore performing
the stress injection on the DUT will lead in the detection of the SRS before the system
reaches the Infeasible Point.

� Maximum Preemption Time:

Figure 7.4 shows the maximum Preemption Time for each task of the task set when
the stress injection is performed on the system and therefore the performance of the
DUT is degraded. As shown in Figure 7.4 the two tasks with higher priority are never
preempted i.e. 1 msTask and 5 msTask. The following three tasks on priority i.e.
10 msTask, 20 msTask, and 50 msTask present a linear increase, directly proportional
to the performance degradation. However, for the task with lower priority on the system
i.e. 100 msTask presents a non-linear behavior. This occurs due to the addition of the
synthetic load added to the system when the stress injection is performed triggering
the increase in the preemption of the other tasks over the lower task.

Figure 7.4: Case 1: Maximum Preemption Time when the stress injection is performed.

The many leaps on the behavior of the maximum preemption time on the lower priority
task are a consequence of the non-harmonicity of the task set. Therefore, the interval
of time in which the lower task is preempted is not regular due to the preemption of

88

the non-harmonic 50 msTask that preempts the lower priority task. This will be verified
on the Case Study 2, that is performed with a harmonic task set. As a consequence
of the behavior of the preemption time on the task set, this is reflected in the WCRT
of the tasks and is shown in the WCRT evaluation metric analysis.

� WCET:

Figure 7.5: Case-Study 1:WCET when the stress injection is applied.

Figure 7.5 shows the WCET for each task when the degree of stress injection is in-
creased. The WCET refers to the maximum consumed time of the core execution of
a task. In Figure 7.5 all tasks behave linearly, the WCET is directly proportional to
stress injection. The stress injection adds to the system a synthetic load by the CPU
suspension on the DUT, therefore increasing the number of suspension on the system
will lead to the increased time of the core execution of the tasks as shown in Figure
7.5.

� WCRT:

Figure 7.6 shows the WCRT when stress injection is performed on each task of the
system. The WCRT represents the maximum time it takes for a task since it is activ-
ated until it is completed. When the stress injection is performed, the synthetic load
is added to the system affecting the core execution as well the preemption time as
analyzed previously. The minimum value of WCRT will be used for the response time
analysis showed in Figure 7.7.

Figure 7.6 shows that as the synthetic load increases, it degrades the performance

89

Figure 7.6: Case-Study 1: WCRT when the stress injection is performed.

of the system on a linear behavior for all the tasks except for the lower priority task
i.e. 100 msTask. The non-linear behavior is due to the preemption delay that all the
five tasks add to the lower priority task when the stress injection is performed. This
behavior continues until reaching 26% of performance degradation, as analyzed in
the CPU Utilization figure. The higher priority task starves the resources of the lower
priority task. The 100 ms Task with less CPU time and higher WCRT will lead in a
miss of a deadline after the 26% of performance degradation.

At the point of 26% of performance degradation, the 100 msTask reaches the max-
imum feasible WCRT, used in this work as the Infeasible Point (IFP). After this point,
the system became infeasible, therefore the analysis of the evaluation metrics of this
Case Study will be done until the IFP.

According to the temporal boundary regions defined in the Chapter 6 to delineate the
off-normal behavior of the system. This is defined in four regions showed in Figure 7.7,
using the evaluation metrics acquired by Galenus when the stress injection is applied.
The software developer can use the response time analysis regions to analyze the
performance and robustness of the DUT. Figure 7.7 shows the analysis for the lower
priority on the system i.e. 100 msTask.

Before performing the stress injection, the Non-Stressed Normal Region showed with
green color is bounded by the best and the worst-case response time for the 100 msTask
between the 24 ms and 24.1 ms. When the stress injection is applied, the WCRT is on
the Stressed Caution Region bounded by the initial WCRT and the SRS symptom. As

90

analyzed before, the SRS is detected when the system is at 14% of Performance De-
gradation (PD) with a WCRT of 50.11 ms. Once the SRS is detected, the WCRT pass
to the Stressed Danger Region that is bounded between the SRS and the Infeasible
Point (IFP).

Finally, the detected IFP were found at 26% of performance degradation of the system
after this point the complete system is at Stressed Infeasible Region. Performing the
stress injection was possible to degrade the performance of the system, as shown in
the previous analysis for the 100 msTask, the WCRT was degraded from 24.1 ms to
109.5 ms.

Figure 7.7: Case-Study 1: 100 msTask stress injection response time region analysis.

91

7.2.2 Case Study 2: Synchronous task set with Total Utilization of 70% and
Harmonic periods

This second Case Study, differs from the previous one, according to the implementations
of a task set with harmonic periods. The task set of this Case Study is compound by six
independent tasks with harmonic periods as shown in Figure 7.8 where the 50 msTask and
100 msTask of the previous study case were replaced by the 60 msTask and 120 msTask.

This case study was designed in order to study the stress injection on an RTOS application
with a task set with harmonic periods. As the previous case, the task set is synchronous
and the initial total utilization of the system is 70% with a balanced distribution of the load
within the task set as shown in Figure 7.8 where the number of the runnables per task
are maintained. The analyzed utilization bounds for the stress injection remains equal to
the previous case. For this Case Study, four graphs will be introduced and analyzed: i)
CPU Utilization. ii) WCRT and Minimum Slack time Ratio Symptom (SRS). iii) Maximum
Preemption Time and iv) WCRT.

Figure 7.8: Case-Study 2 Task Set: Six synchronous and independent tasks with harmonic
periods and a total utilization of 70%.

� CPU Utilization:

Figure 7.9 shows the behavior of the CPU utilization for each task with harmonic
periods when the stress injection is performed on the DUT. We can observe, compared
with the CPU utilization with non-harmonic periods, in this case, the CPU Utilization for
all the task set, the load distribution is sustained during the performance degradation.
It is sustained, starting the stress injection until the 26% of performance degradation,
where the task with higher priority starve the CPU time of the lower priority and the

92

Figure 7.9: Case-Study 2: CPU utilization when the stress injection is performed.

system became infeasible. For the non-harmonic case, on the same type of graph,
the task with higher priority has a higher utilization even when the load is distributed
evenly. However, for the Case Study 2 with harmonic periods, the CPU utilization for
all the task set start close. This behavior remains during almost all the performance
degradation. Until the system is close to became infeasible at 26%.

� WCRT and Minimum Slack time Ratio Symptom (SRS):

Figure 7.10 shows the percentage of the SRS for the task set with harmonic periods. It
shows that the symptom in this Case Study is detected only until reaching the 18% of
performance degradation rather than 14% compared with the case with non-harmonic
periods. This difference is due to the period of the lower priority task i.e., 120 ms. The
SRS remains nearly stable for the complete task set until the 12% of performance
degradation. Only after the 12% of performance degradation, the system starts to
present symptoms that the system is starting to be pushed to the boundaries of the
performance.

93

Figure 7.10: Case-Study 2: WCRT and Minimum Slack time Ratio Symptom (SRS) when
the stress injection is performed.

� Maximum Preemption Time:

Figure 7.11 shows the maximum Preemption Time for each task of the task set when
the stress injection is applied to the system. As shown in Figure 7.4 on the Case
Study 1 with non-harmonic periods and in Figure 7.11 on Case Study 2 with harmonic
periods, the two tasks with higher priority are never preempted i.e., 1 msTask and
5 msTask.

The following tasks on priority i.e., 10 msTask, 20 msTask, 50 msTask and 120 msTask
present a linear increase, directly proportional to the performance degradation. This
behavior remains during all the performance degradation except for the lower priority
i.e. 120 msTask at 12%. At this point, this task shows a big leap in the preemption
time. This occurs due to the addition of the synthetic load added to the system when
the stress injection is performed, triggering the increase in the preemption of the other
tasks over the lower task.

Comparing the maximum preemption, the Figure 7.4 for the Case Study 1 and Figure
7.11 for the Case Study 2, it shows a clear different behavior for the lower priority task.
On the one hand, for Case Study 1, presents two leaps, one at 2% of performance
degradation and the other at 6%. On the other hand, for Case Study 2, present only
one leap at 12% of performance degradation. This comparison between an harmonic
and non-harmonic task set, shows how the period harmonicity of the task set, affect
the performance of the system.

94

Figure 7.11: Case-Study 2: Maximum Preemption Time when the stress injection is applied.

� WCRT:

Figure 7.12: Case-Study 2: WCRT when the stress injection is performed.

95

Figure 7.12 shows the WCRT for each task of the task set when the stress injection
is applied. Observing this figure, it is possible to identify the minimum WCRT and the
Infeasible Point (IFP), metrics that we will use to perform the response time region
analysis that we will observe at Figure 7.13.

On this configuration with harmonic periods, it is possible to observe how all the tasks
behave linearly until the 12% of performance degradation. This behavior is due to the
preemption time, as discussed in the previous item. For the Case Study 1 with non-
harmonic and this Case Study 2 have the same behavior after the 26% of performance
degradation. In both cases, the system became infeasible after this percentage of
performance degradation. This behavior in both cases is due both systems are close
to reach the 100% of total utilization, therefore less CPU time will be allocated in the
lower priority task, leading in the infeasibility of the task set.

Figure 7.13: Case-Study 2: 120 msTask stress injection response time region analysis.

According to the temporal boundary regions defined in Chapter 6 to delineate the off-
normal behavior of the system. Figure 7.13 shows the defined temporal boundaries
regions for the analysis of the response time of the system when the DUT is under
stress. Once the system is stressed performing an increased number of CPU sus-
pension, the synthetic load added to the system increases the number of preemptions
over the lower priority task.

Comparing the response time region analysis between the previous Case Study 1 in
Figure 7.7 and for the Case Study 2 in Figure7.13. For Case Study 2 with harmonic
periods, it is until 18% of performance degradation when the SRS is activated with a
WCRT of 67.1 ms and it is until the 26% of performance degradation that the system
reaches the Infeasible Point with a WCRT of 130.1 ms. These two metrics form the

96

Stressed Danger Region of the range of 63 ms, however for Case Study 1, this region
is smaller, i.e., 59.3 ms. For the Stressed Caution Region, Case Study 2 has a range
of 38.4 ms and for Case Study 1, this region has a range of 26.01 ms. For the Case
Study 2 this region is also larger. For the software engineer, it is beneficial to have
larger regions because it implies that more stress of the system can be applied without
causing infeasibility.

7.2.3 Case Study 3: Synchronous task set with Total Utilization of 70% and
non-harmonic periods with Shared Resources

Figure 7.14: Case-Study 3 Task Set: Six synchronous and independent tasks with non-
harmonic periods and a total utilization of 70%.

The Case Study 3 is compound by six synchronous and independent tasks with non-harmonic
periods. However, this third Case Study will add another degree of complexity by modifying
the independent tasks to dependent tasks by sharing internal resources between two tasks
of the task set. The sharing resources are performed between two tasks, to have a clear
view of the behavior of the task set when this occurs.

97

For Case Study 3, two tests of shared resources between two tasks are performed between:
i) 1 msTask and 5 msTask. ii) 1 msTask and 10 msTask. This Case Study was designed in
this way in order to compare the results with the Case Study 1, due that case has the
same task set characteristics except for the internal shared resources. The target of internal
shared resources is to create groups of cooperative tasks to prevent concurrent access to
shared resources.

The internal shared resources are the resources that are allocated for an instance of a task.
Therefore, with this mechanism, all the tasks that use the same internal resource will be-
have as non-preemptive tasks. Considering the priority of the task using the resource, this is
automatically changed to the ceiling priority of the resource. For this reason, in this case, the
internal shared resources between the highest priority task and a task below the 10 msTask
in terms of priority i.e. 20 msTask, 50 msTask and 100 msTask the system became infeasible
even without performing the stress injection as sown in Figure 7.15. This figure shows the
WCRT in which the 1 msTask and the 20 msTask are sharing internal resources. We can ob-
serve for the 1 msTask with the green line, starting the performance degradation, it is already
infeasible. The response time is significantly larger than 1 ms. For this reason, the stress
injection study is applied in two independents tests between i) 1 msTask, 5 msTask and ii)
1 msTask,10 msTask. These two tests are executed independently, however on the analysis
of the evaluation metrics will be analyzed together to perform a clear comparison between
both tests. The evaluation metrics evaluated in this Case Study are: i) CPU Utilization, ii)
WCRT and Minimum Slack time Ratio Symptom (SRS), and iii) WCRT.

Figure 7.15: WCRT when the stress injection is applied, in case of 1 msTask and 20 msTask
sharing internal resources, showing the infeasibility of the system

98

� CPU Utilization:

Figure 7.16: Case-Study 3: CPU utilization when the stress injection is applied. Shared
internal resources: (a) 1 msTask and the 5 msTask. (b) 1 msTask and the
10 msTask.

Figure 7.16 shows the behavior of the CPU utilization for each test. On the one hand,
Figure 7.16 (a) depicts the results for the 1 msTask and the 5 msTask On the other
hand, Figure 7.16 (b) shows the results for the 1 msTask and the 10 msTask. Com-
paring the utilization of the system between the case of 5 msTask Figure 7.16 (a) with
internal shared resources and the first Case Study, it is possible to observe, the be-
havior of both systems are different, most of all, in the behavior of the 1 msTask . This
behavior is due to the internal resources are automatically taken when the task enters
the running state.

In Figure 7.16 (b) when the 10 msTask is using the resources at running state i.e.
critical section, 1 msTask it is waiting for the resources that the 10 msTask is using.
Comparing with Figure 7.16 (a), this behavior is not observed due to the effects on
the CPU utilization are distinct on the highest priority. This behavior is possible to
observe on the 1 msTask on Figure 7.16 (b) with color green between 1% and 4% of
performance degradation the nonlinear behavior, this due the 1 msTask had a larger
blocking time by the 10 msTask.

99

� WCRT and Minimum Slack time Ratio Symptom (SRS):

Figure 7.17: Case-Study 3: SRS Symptom when the stress injection is performed. Shared
internal resources: (a) 1 msTask and the 5 msTask. (b) 1 msTask and the
10 msTask.

Figure 7.17 shows the percentage of the SRS symptom when the stress injection is
performed. On the one hand, Figure 7.17 (a) shows the activation of the symptom
at 14% of performance degradation and at 15.6% the system became infeasible. On
the other hand for Figure 7.17 (b) the symptom is detected at the start of the test, as
will be showed on the WCRT evaluation metric the 1 msTask starts the test close to
the Infeasible Point, considering the blocking time of the 10 msTask over the highest
priority time.

� WCRT

Figure 7.18 shows the WCRT for the internal shared resources case when the stress
injection is applied. Figure 7.18 (a) shows that the internal shared resources between
the 5 msTask and the highest priority task produce no impact on the performance on
the system if we compare with the same graph for Case Study 1.

For the case between 1 msTask and 10 msTask at Figure 7.18 (b). 1 msTask starts the
stress injection close to become infeasible. This behavior is due to the blocking time
of the lowest priority task, in this case, the 10 msTask is larger compared with 7.18
(a). Besides, the tasks with shared resources behave as non-preemptive, therefore
the response time of the highest priority i.e., 1 msTask is close to the deadline starting
the stress injection. As a consequence, the system became infeasible at 13% of
performance degradation. Rather than 26 % for the 7.18 (a).

100

Figure 7.18: Case-Study 3: WCRT when the stress injection is performed. Shared internal
resources: (a) 1 msTask and the 5 msTask. (b) 1 msTask and the 10 msTask.

Figure 7.19: Case-Study 3: 1 msTask stress injection response time region analysis for the
case of internal shared resources between 1 msTask and 10 msTask.

According to the temporal boundary regions defined in Chapter 6 to delineate the off-
normal behavior of the system. The analysis is applied for the 1 msTask in the case of
sharing internal resources between the 1 msTask and 10 msTask and shown in Figure

101

7.19. This case was selected due to the behavior of the WCRT. Before the stress in-
jection, the Non-Stressed Normal Region showed with green color is bounded by the
best and the worst-case response time for the 1 msTask between the 0.125 ms and
0.129 ms. In this case, the system is already pushed on the edge of the performance,
therefore starting the stress injection, the system starts at the Stressed Danger Re-
gion until the 13% of performance degradation at 1 ms, for the 1 msTask the system
turns infeasible.

7.3 Bare-Metal Experiments

The purpose of the Bare-metal experiments is to analyze at instruction level the effects of
the stress injection. This is achieved by acquiring the time required to execute a predefined
number of instructions on the system when the stress injection is applied. The Bare-metal
experiments are implemented on a single-processor of the AURIX microcontroller. These
experiments consist on the execution of an instruction of the same type on the Bare-Metal
environment several times. Using Galenus and the System Timer Module (STM) it is pos-
sible to acquire the time of execution of these instructions on the system while the stress
injection is performed. Following the methodology for a Bare-metal test of stress injection
described in the Chapter 6, six parameter values must be defined:

1. Total Amount of Instructions: For all the Bare-metal experiments the total number
of instructions executed on the DUT are 2704.

2. Type of Instructions: The type of instructions executed on the Bare-metal environ-
ment were: i) Arithmetic Instructions. ii) Logic Instructions. iii) Shift Instructions. iv)
Data Transfer Instructions. v) Branching Instructions.

3. ELF File: Binary information of the software application provided by the software
designer in order to obtain the address of the flow control variable and the execution
time variable.

4. Timer Parameters: For all the Bare-metal experiments, the four timer parameters are
modified in the same way: i) Timer Value varies in the range from 1 to 125, which in
clock cycles represents a variation from 12 to 1500 CPU cycles.

5. Target CPUs: The target CPU in which the stress injection is performed on all the
Bare-metal experiments is the CPU0.

6. Trace Parameters: For all the Bare-metal experiments the six parameters are fixed:
i) Trace Buffer Parameters are fixed to 16 kB buffer size with an On-Chip Trace Buffer
Mode as Full, therefore the trace buffer is filled with trace data until it is full. ii) Trace
Target OB is fixed to the CPU0; iii) Timestamp Type is fixed to trace the events based

102

on the DUT ticks; iv) Data Trace Unit (DTU) Parameters are set for the CPU0 with the
qualifiers enabled to capture the address and data of all the write and read operations;
v) Program Trace Unit (PTU) Parameters are set for the CPU0 with an instruction level
of trace detail. vi) Qualifier Parameters the qualifier is set in the range of all the system
considering is a Bare-metal application. and vii) Mode of Trace is set to On-chip Trace
Buffer Mode.

The Bare-metal experiments are divided into four case studies, according to the type of
instruction executed on the DUT as shown on the Table 7.2. Each instruction is executed
2704 times while the system is stressed. Afterwards, the execution time is acquired by Ga-
lenus and then the degree of stress injection is increased. This process is repeated until the
complete range of stress injection is applied, this range is defined by the software designer
on the Timer Parameters. Once the complete range of stress is applied, this process is
repeated for the next instruction.

Case Type of Instruction Instruction Syntax

1 Arithmetic

-ADD Addition No Saturation
-SUB Substract
-MUL Multiply Signed
-DIV.F Divide Float

-ADD D[a], D[b]
-SUB D[a], D[b]
-MUL D[a], D[b]
-DIV.F D[a], D[b], D[c]

2 Logic
-OR Bitwise OR
-XOR Bitwise XOR
-AND Bitwise AND

-OR D[a], D[b]
-XOR D[a], D[b]
-AND D[a], D[b]

3 Branching
-CALL-RET Call-Return from Call
-J Jump Unconditional

-CALL foobar; RET
-J foobar

4 Data Transfer -MOV Move -MOV D[a], D[b]

Table 7.2: Summary Bare-metal experiments.

For example, for the first arithmetic instruction i.e. ADD instruction. The timer value is con-
figured from 12 to 1500 CPU cycles. Therefore, the stress injection is performed every 1500
CPU cycles while the ADD instructions are executed 2704 times, then Galenus acquires
the execution time and decreases the timer value for the CPU suspension to 1499 CPU
cycles. This process is repeated until reaching the 12 CPU cycles of the timer value. This is
repeated for each instruction on each case of study.

Once this process is performed for all the instructions of each Case Study, the metrics ac-
quired by Galenus are plotted using MATLAB. These results are shown in a logarithmic
graph, the y-axis is the normalized value of the Cycles Per Instruction. The x-axis is the
Stress Injection Factor (SIF). SIF is an integer value from 1 to 125 which refers to the clock
cycles of the timer used to perform the suspension of the CPU. Therefore, when SIF takes
the value of 1, it represents that every 12 CPU clock cycles it is performed the CPU sus-
pension. In case SIF takes the value 125, the stress injection is performed every 1500 CPU
cycles. Therefore when SIF takes the value of 1, the stress injection is maximum.

103

The analysis is performed jointly for the four case studies to have a more clear understanding
of the behavior of the instructions against the stress injection. In the Table 7.3, shows the
execution time per instruction set and the CPI without stress and with the maximum stress for
each type of instruction. Additionally, this table shows the Ratio of Stress, which represents
the ratio of the CPI with maximum stress and the CPI without stress.

Instruction
Execution
Time (ns)

CPI
Execution Time

Maximum Stress (ns)
CPI Maximum

Stress
Ratio of
Stress

ADD 9050 1.014 31040 3.479 3.43
SUB 9050 1.014 31040 3.479 3.43
MUL 18160 2.035 54410 6.098 3.00
DIV 54450 6.102 108500 12.159 1.99
OR 8990 1.007 31210 3.498 3.47
XOR 13500 1.513 36400 4.079 2.70
AND 8990 1.007 31210 3.498 3.47
CALL-RET 117080 13.121 216730 24.288 1.85
JUMP 27190 3.047 72480 8.123 2.67
MOVE 13400 1.502 36400 4.079 2.72

Table 7.3: Execution time, CPI and Ratio of Stress for the four study cases with stress-free
and maximum stress.

With the data acquired we can observe that the instructions that are executed in a shorter
time are the instructions that have a larger ratio of stress. This behavior is due to the charac-
teristic of the stress injection by CPU suspension. In which the stress injection immediately
halts new transactions and allows to complete the remaining pending transactions in order
to perform the CPU suspension and this state is kept until the suspend signal is deasser-
ted. Then, the CPU can resume the operation. Therefore, with maximum stress, the stress
injection is performed every 12 CPU clock cycles and the instructions that are executed in a
shorter time have larger stress injection effects.

In order to have a clear understanding of the stress injection at the instruction level, the
CPI at stress was normalized as shown in Figure 7.20. This figure shows the six different
behaviors that were identified performing the stress injection on the four cases studies.
When the stress injection is applied, the SUB, OR, XOR and AND instructions have the
same behavior of the ADD instruction, therefore they were omitted in Figure 7.20.

Decreasing the Stress Injection Factor (SIF) the frequency of CPU suspensions increases.
Under a SIF of 66, meaning a stress injection every 792 CPU clock cycles, on one hand, the
MOV instruction continues on a stable normalized CPI close to 1 until the SIF is equal to 4,
this behavior is unexpected and was not further investigated but should. On the other hand,
the behavior of the other five instructions remains increasing exponentially until SIF reaches
20 were the stress injection is performed every 240 CPU clock cycles. At this point, the
DIV and CALL-RET instructions start to behave differently according to the ADD, MUL and

104

JUMP instructions. While the DIV instruction has a moderate degree of exponential decay,
the CALL-RET instructions present two peaks between the range of 4 and 10 SIF.

Considering that the experiment was performed several times with the same setup, obtaining
the same behavior for all the case studies. Hence the behavior for the CALL-RET instruc-
tions is due to the execution of Call instruction and Return instruction while in the other
cases are only executed one type of instruction.

Figure 7.20: Normalized CPI vs Stress Injection Factor.

7.4 Summary

Experimental results of the stress injection by CPU suspension were acquired with Galenus,
within two types of software application, RTOS and Bare-metal under different stress injec-
tion scenarios. For the RTOS experiments were able to evaluate the behavior of the system
implemented within an RTOS application under critical performance. Performing the stress
injection, the CPU utilization increases directly proportional to the amount of stress injected
on the DUT. This is due to the increased core execution time when the CPU suspension is
performed. Analyzing the evaluation metrics provided by Galenus, it was possible to identify
the starvation of CPU resources from the higher priority task over the lower priority task.
This leads in a miss of a deadline of the lower priority task becoming infeasible the system
reaching the Infeasible Point (IFP).

105

On the RTOS case studies, the Minimum Slack time Ratio Symptom (SRS) was a clear rep-
resentation of how close the task is to the IFP. The SRS parameter will help the software
developer to identify these thresholds of operation of the RTOS application on the DUT.
Using the Soc health analogy, the software developer as the doctor can perform the stress
injection as the breath test, in order to early detect symptoms as the SRS in order to apply
the less aggressive treatment to the patient as the DUT. Otherwise, a delayed or not iden-
tification of a symptom will lead in a more aggressive treatment for the patient. Therefore
using early symptoms in the hard real-time such as the SRS Symptom will lead in a less ag-
gressive repercussions in the system in order to maintain the feasibility of the hard real-time
system.

For the Bare-metal experiments, the instructions that are executed in a shorter time are
the instructions that have a larger ratio of stress. This response is due to the property of
the stress injection by CPU suspension. In which the stress injection instantly halts new
transactions and permits complete the remaining pending transactions in order to perform
the CPU suspension and this state is kept until the suspend signal is deasserted. Then, the
CPU can resume the operation until the next CPU suspension is asserted.

106

8 Conclusions and Future Work

The developed stress injection feature Galenus is a reliable and usable new feature on the
internally developed tool at Infineon Technologies AG. Galenus is suitable to measure the
performance and robustness of a hard real-time system. This goal is achieved based on
the measurement of the performance and robustness factors such as the CPU utilization,
WCET, WCRT and the feasibility of the system against the stress injection. Galenus is cap-
able to implement the stress injection through CPU suspension within two types of software
applications (RTOS and Bare-metal). The main functionalities of Galenus are the configur-
ation of the stress injection and trace, sorting and mapping the trace stream and generating
the evaluation metric of the performance and robustness. The evaluation metrics acquired
by Galenus are crucial for the software designer in order to build adequate evidence to
demonstrate that no safety risks are raised against potential CPU overloads.

The experimental results of the case studies of the stress injection by CPU suspension were
performed on the AURIX 2G microcontroller following the methodology presented on this
thesis, with two types of software application, RTOS and Bare-metal under different stress
injection scenarios. On the RTOS experiments, were performed an exploration of system
behavior against the stress injection with feasible periodic tasks with implicit deadlines and
a balanced distribution of the load within the task set of the RTOS. These experiments were
possible to identify and validate the impact of the stress injection in the effective performance
of a CPU by periodic suspensions of the CPU. Moreover, the robustness of the system was
tested, studying the feasibility of the task set against the stress injection using Galenus. The
RTOS experiments were able to identify thresholds of operation of the RTOS application on
the DUT using the evaluation metrics provided by Galenus such as the Minimum Slack time
Ratio Symptom (SRS) and the Infeasible Point (IFP).On the Bare-metal experiments was
possible to investigate the instruction dependency in four different types of instruction sets
against the stress injection.

The methodology presented in this thesis allows the SoC designer to evaluate the per-
formance and robustness of an AURIX 2G under different stress injection scenarios. This
methodology together with the Multicore Debug Solution (MCDS), the Infineon internal de-
veloped tool (Chipcoach) and the developed feature Galenus developed on this thesis. It
allows the SoC designer to perform the resource usage and stress tests leading to the max-
imum exploitation of the resources of the system with the maximum safety of the user.

107

This work allowed the utilization for the first time of the hardware debugging architecture and
thus opening a wide variety of future and interesting works. It includes: i) to perform stress
injection on more complex and realistic systems; ii) the integration of statistical properties to
model the different scenarios can also already be performed easily with the current Galenus
configuration; iii) the utilization of AI techniques for further exploration and identification of
the parameters of the stress injection; iv) the further identification of complex indicators in
stressed systems to determine the stability of them; and v) the exploration of different stress
injection types on the AURIX 2G microcontroller, including the artificial reads and the CPU
interrupts.

108

Bibliography

[1] Inga Harris. Chapter 22 - embedded software for automotive applications. In Robert
Oshana and Mark Kraeling, editors, Software Engineering for Embedded Systems,
pages 767 – 816. Newnes, Oxford, 2013. ISBN 978-0-12-415917-4.

[2] ISO. Road vehicles – Functional safety, ISO 26262, 2011. URL https://www.iso.
org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en. Accessed: 2020-01-14.

[3] Paolo Gai, Enrico Bini, Marco Di Natale, and Luca Abeni. Architecture for a portable
open source real time kernel environment. 07 2001.

[4] Peter Schiefer. Automotive conference call. URL https://www.infineon.com/dgdl?
fileId=5546d4615ee5d3d6015f02a0a266023f&redirId=57324. Accessed: 2020-
02-27.

[5] National Highway Traffic Safety Administration-NHTSA. Air bags, May 2019. URL
https://www.nhtsa.gov/equipment/air-bags. Accessed: 2019-11-15.

[6] Giorgio C. Buttazzo. Hard real-time computing systems predictable scheduling al-
gorithms and applications. Springer, 2011.

[7] Xiaocong Fan. Chapter 12 - software architectures for real-time embedded systems.
In Xiaocong Fan, editor, Real-Time Embedded Systems, pages 303 – 338. Newnes,
Oxford, 2015. ISBN 978-0-12-801507-0.

[8] Brinkley Sprunt, Lui Sha, and John Lehoczky. Aperiodic task scheduling for hard-real-
time systems. Real-Time Systems, 1(1):27–60, Jun 1989. ISSN 1573-1383. doi:
10.1007/BF02341920. URL https://doi.org/10.1007/BF02341920.

[9] R. Long, H. Li, W. Peng, Y. Zhang, and M. Zhao. An approach to optimize intra-ecu
communication based on mapping of autosar runnable entities. In 2009 International
Conference on Embedded Software and Systems, pages 138–143, May 2009. doi:
10.1109/ICESS.2009.63.

[10] M. Peraldi-Frati, A. Goknil, J. DeAntoni, and J. Nordlander. A timing model for spe-
cifying multi clock automotive systems: The timing augmented description language
v2. In 2012 IEEE 17th International Conference on Engineering of Complex Computer
Systems, pages 230–239, July 2012.

109

https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en
https://www.infineon.com/dgdl?fileId=5546d4615ee5d3d6015f02a0a266023f&redirId=57324
https://www.infineon.com/dgdl?fileId=5546d4615ee5d3d6015f02a0a266023f&redirId=57324
https://www.nhtsa.gov/equipment/air-bags
https://doi.org/10.1007/BF02341920

[11] S. Lauzac, R. Melhem, and D. Mosse. An efficient rms admission control and its applic-
ation to multiprocessor scheduling. Proceedings of the First Merged International Par-
allel Processing Symposium and Symposium on Parallel and Distributed Processing.
doi: 10.1109/ipps.1998.669964.

[12] Phillip A. Laplante. Real-time systems design and analysis, pages 92–95. Wiley, 2004.

[13] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM, 20(1):46–61, January 1973. ISSN 0004-5411. doi:
10.1145/321738.321743. URL https://doi-org.ezproxyegre.uniandes.edu.co:
8843/10.1145/321738.321743.

[14] M. Joseph and P. Pandya. Finding Response Times in a Real-Time System. The
Computer Journal, 29(5):390–395, 01 1986. ISSN 0010-4620. doi: 10.1093/comjnl/
29.5.390. URL https://doi.org/10.1093/comjnl/29.5.390.

[15] Kristian Beckers. Background, pages 11–35. Springer International Publishing, Cham,
2015. ISBN 978-3-319-16664-3. doi: 10.1007/978-3-319-16664-3_2. URL https:
//doi.org/10.1007/978-3-319-16664-3_2.

[16] Mark Pitchford. Chapter 15 - embedded software quality, integration and testing tech-
niques. In Robert Oshana and Mark Kraeling, editors, Software Engineering for Em-
bedded Systems, pages 441 – 510. Newnes, Oxford, 2013. ISBN 978-0-12-415917-4.

[17] Georg Macher, Muesluem Atas, Eric Armengaud, and Christian Kreiner. Automotive
real-time operating systems: A model-based configuration approach. SIGBED Rev.,
11(4):67–72, January 2015. doi: 10.1145/2724942.2724953. URL https://doi.org/
10.1145/2724942.2724953.

[18] Freeosek. URL http://opensek.sourceforge.net/. Accessed: 2020-02-28.

[19] Automotive open system architecture - autosar. URL https://www.vector.com/int/
en/know-how/technologies/autosar/. Accessed: 2020-02-28.

[20] Evidence SRL. Erika enterprise rtos v3, Sep 2019. URL https://www.
erika-enterprise.com/. Accessed: 2020-02-28.

[21] Trampoline rtos, Feb 2020. URL https://github.com/TrampolineRTOS/
trampoline. Accessed: 2020-02-28.

[22] Erika enterprise manual, 2012. URL http://erika.tuxfamily.org/drupal/
documentation.html. Accessed: 2019-12-03.

[23] Infineon Technologies AG. 32-bit tricore aurix– tc3xx. URL https://www.infineon.
com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/
32-bit-tricore-aurix-tc3xx/. Accessed: 2019-11-22.

[24] Ieee standard glossary of software engineering terminology. IEEE Std 61012-1990,
page 1–84, Dec 1990. doi: 10.1109/ieeestd.1990.101064.

110

https://doi-org.ezproxyegre.uniandes.edu.co:8843/10.1145/321738.321743
https://doi-org.ezproxyegre.uniandes.edu.co:8843/10.1145/321738.321743
https://doi.org/10.1093/comjnl/29.5.390
https://doi.org/10.1007/978-3-319-16664-3_2
https://doi.org/10.1007/978-3-319-16664-3_2
https://doi.org/10.1145/2724942.2724953
https://doi.org/10.1145/2724942.2724953
http://opensek.sourceforge.net/
https://www.vector.com/int/en/know-how/technologies/autosar/
https://www.vector.com/int/en/know-how/technologies/autosar/
https://www.erika-enterprise.com/
https://www.erika-enterprise.com/
https://github.com/TrampolineRTOS/trampoline
https://github.com/TrampolineRTOS/trampoline
http://erika.tuxfamily.org/drupal/documentation.html
http://erika.tuxfamily.org/drupal/documentation.html
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/

[25] S. M. A. Shah, D. Sundmark, B. Lindström, and S. F. Andler. Robustness testing of
embedded software systems: An industrial interview study. IEEE Access, 4:1859–
1871, 2016. ISSN 2169-3536. doi: 10.1109/ACCESS.2016.2544951.

[26] GLIWA GmbH. Timing suite-t1, . URL https://www.gliwa.com/index.php?page=
products_T1&lang=eng. Accessed: 2019-12-14.

[27] INCHRON GmbH. Analyze and verify real-time capability in worst-case scenarios, .
URL https://www.inchron.com/tool-suite/chronval/. Accessed: 2020-01-09.

[28] Shiva Nejati, Stefano Di Alesio, Mehrdad Sabetzadeh, and Lionel Briand. Modeling
and analysis of cpu usage in safety-critical embedded systems to support stress test-
ing. In Robert B. France, Jürgen Kazmeier, Ruth Breu, and Colin Atkinson, editors,
Model Driven Engineering Languages and Systems, pages 759–775, Berlin, Heidel-
berg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-33666-9.

[29] Lionel Briand, Yvan Labiche, and Marwa Shousha. Using genetic algorithms for early
schedulability analysis and stress testing in real-time systems. Genetic Programming
and Evolvable Machines, 7:145–170, 06 2006. doi: 10.1007/s10710-006-9003-9.

[30] S. Di Alesio, S. Nejati, L. Briand, and A. Gotlieb. Stress testing of task deadlines:
A constraint programming approach. In 2013 IEEE 24th International Symposium on
Software Reliability Engineering (ISSRE), pages 158–167, Nov 2013. doi: 10.1109/
ISSRE.2013.6698915.

[31] J. Béchennec, S. Faucou, O. H. Roux, M. Brun, and L. Givel. Testing real-time systems
with runtime enforcement. IEEE Design Test, 35(4):31–37, Aug 2018. ISSN 2168-2364.
doi: 10.1109/MDAT.2018.2791801.

[32] A. Mayer, H. Siebert, and K. D. McDonald-Maier. Boosting debugging support for
complex systems on chip. Computer, 40(4):76–81, April 2007. doi: 10.1109/MC.2007.
118.

[33] A. Mayer, H. Siebert, and C. Lipsky. Multi-core debug solution ip, soc software debug-
ging and performance optimization. May 2007.

111

https://www.gliwa.com/index.php?page=products_T1&lang=eng
https://www.gliwa.com/index.php?page=products_T1&lang=eng
https://www.inchron.com/tool-suite/chronval/

Glossary

ADAS Advanced Driver Assistance Systems.

AL Adaptation Logic.

API Application Programming Interface.

ASIL Automotive Safety Integrity Levels.

BCET Best-Case Execution time.

BCRT Best-case Response Time.

DAS Device Access Server.

DCU Debug Status and Control Trace Unit.

DLL Dynamic Link Libraries.

DMC Debug Memory Controller.

DMS Deadline Monotonic Scheduling.

DPS Dynamic Priority Scheduling.

DTU Data Trace Unit.

ECU Electronic Control Unit.

ED Emulation Device.

EDF Earliest Deadline First.

ELF Executable and Linkable Format.

FPS Fixed Priority Scheduling.

IFP Infeasible Point.

IoT Internet of Things.

112

MCDS Multicore Debug Solution.

MCX Multicore Cross Connect.

MSU Message Sequencer Unit.

MTV Multicore Debug Solution Trace Viewer.

OB Observation Block.

OCDS On-Chip Debug Support.

OTGS OCDS Trigger Switch.

OTU Ownership Trace Unit.

PD Performance Degradation.

PTU Program Trace Unit.

RL Reload Timer.

RMS Rate Monotonic Scheduling.

RTA Response Time Analysis.

RTOS Real-Time Operating System.

SIF Stress Injection Factor.

SoC System on Chip.

SRS Slack Time Ratio Symptom.

TGL Timer to Trigger Value.

TGU Task Set Generation and Utilization Bounds.

TLT Trigger Line Timer.

TMEM On-Chip Trace Memory.

TQU Trace Qualification Unit.

UBA Utilization-Based Analysis.

VTZ Trigger Line Value.

WCET Worst-Case Execution time.

WCRT Worst-Case Response time.

WTU Watchpoint Trace Unit.

113

	Introduction
	Motivation
	Problem Description
	Goals of the thesis
	Contribution of the thesis
	Structure of the thesis

	Main Concepts
	RTOS
	Task
	Lifecycle of a task
	Timing Parameters

	Scheduling
	Schedulability Analysis
	Standards
	ISO 26262 - Automotive Safety Standard
	OSEK/VDX Standard
	OSEK-OS

	ERIKA Enterprise RTOS
	TriCore AURIX 2G Microcontroller

	State of the Art
	Automotive evaluation: Robustness and performance
	Robustness and Performance Testing Tools
	Analysis Techniques
	Stress Injection Evaluation

	On-Chip Trace and Debugging Architecture
	On-Chip Trace Architecture
	Infineon Technologies AG AURIX On-Chip Trace solution
	Trace Target
	Multicore Debug Solution (gls:mcds)
	Observation Block (OB)
	Multicore Cross Connect (MCX)
	Debug Memory Controller (DMC)

	Device Access Server (DAS)
	Infineon Technologies AG AURIX Debug and Trace Tools (MTV and ChipCoach)
	MCDS Trace Viewer (MTV)
	ChipCoach

	Stress Injection
	Stress Injection
	General description
	Types and Requirements

	Infineon Technologies AG AURIX On-Chip Debug and Suspend Generation
	Stress Injection Trigger Line Timer
	Developed Stress Injection Feature in ChipCoach
	Tracing Configuration
	Stress Injection Configuration
	Trace Sort and Map
	Evaluation Metrics Generation
	Report of Evaluation Metrics

	Methodology
	General Description
	RTOS Test Methodology
	Task Set Generation and Utilization Bounds (TGU)
	Stress Injection
	Trace Configuration
	Device Under Test (DUT)
	Trace Capture and Map (TCM)
	Metrics Quantification
	Worst-Case Response Time Analysis

	Bare-metal Test Methodology
	Instructions Generator:
	Device Under Test (DUT):
	Flow Control Configuration:
	Evaluation Metric:

	Summary

	Case Studies and Experiment Results
	General Description
	RTOS Experiments
	Case Study 1: Synchronous task set with Total Utilization of 70% and non-harmonic periods
	Case Study 2: Synchronous task set with Total Utilization of 70% and Harmonic periods
	Case Study 3: Synchronous task set with Total Utilization of 70% and non-harmonic periods with Shared Resources

	Bare-Metal Experiments
	Summary

	Conclusions and Future Work

