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Abstract

One of the most important tasks in the field of 3D Computer Vision is surface
matching, which means finding correspondences between 3D shapes. The
most successful approach to handle this problem involves computing compact
local features, called descriptors, that have to be matched across different
poses of the same shape and thus need to be invariant with respect to shape
orientation. The most popular way to achieve this property is to use Local
Reference Frames (LRFs): local coordinate systems that provide a canonical
orientation to the local 3D patches used to compute the descriptors. In the
literature, there exist plenty of methods to compute LRFs, but they are
all based on hand-crafted algorithms. There is also one recent proposal
deploying neural networks. Yet, it feeds them with manually engineered
features, and therefore it does not fully benefit from the modern end-to-end
learning strategies.

The aim of this work is to employ a data-driven approach to fully learn a
Local Reference Frame from raw point clouds, thus realizing the first example
of end-to-end learning applied to LRFs. To do so, we take advantage of
a recent innovation called Spherical Convolutional Neural Networks, that
process signals living in SO(3) and are therefore naturally suited to represent
and estimate rotations and LRFs. We test our performances against existing
methods on standard benchmarks, achieving promising results.
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Abstract

Uno dei problemi più importanti della 3D Computer Vision è il cosiddetto
surface matching, che consiste nel trovare corrispondenze tra oggetti tridi-
mensionali. Attualmente il problema viene affrontato calcolando delle fea-
ture locali e compatte, chiamate descrittori, che devono essere riconosciute
e messe in corrispondenza al mutare della posa dell’oggetto nello spazio, e
devono quindi essere invarianti rispetto all’orientazione. Il metodo più usato
per ottenere questa proprietà consiste nell’utilizzare dei Local Reference Fra-
me (LRF): sistemi di coordinate locali che forniscono un’orientazione cano-
nica alle porzioni di oggetti 3D che vengono usate per calcolare i descrittori.
In letteratura esistono diversi modi per calcolare gli LRF, ma fanno tutti
uso di algoritmi progettati manualmente. Vi è anche una recente proposta
che utilizza reti neurali, tuttavia queste vengono addestrate mediante featu-
re specificamente progettate per lo scopo, il che non permette di sfruttare
pienamente i benefici delle moderne strategie di end-to-end learning.

Lo scopo di questo lavoro è utilizzare un approccio data-driven per far im-
parare a una rete neurale il calcolo di un Local Reference Frame a partire da
point cloud grezze, producendo quindi il primo esempio di end-to-end lear-
ning applicato alla stima di LRF. Per farlo, sfruttiamo una recente innova-
zione chiamata Spherical Convolutional Neural Networks, le quali generano
e processano segnali nello spazio SO(3) e sono quindi naturalmente adatte
a rappresentare e stimare orientazioni e LRF. Confrontiamo le prestazioni
ottenute con quelle di metodi esistenti su benchmark standard, ottenendo
risultati promettenti.

v





Prefazione

A differenza del resto della tesi, questa piccola prefazione sarà in italiano, perché
italiani sono coloro a cui è rivolta. E non sarà proprio una prefazione, quanto più
un flusso di pensiero con qualche ringraziamento qua e là, sparso a zuccherare un
discorso che è perlopiù rivolto a me stesso.

Ho pensato a lungo, negli ultimi (tanti) mesi, a cosa farò in futuro, nella vita
e per lavoro, e non sono riuscito a darmi pace. Con la Laurea Magistrale, più
che un traguardo, dovrei aver raggiunto un punto di partenza, un punto in cui
posso finalmente impegnarmi a fondo in qualcosa per dimostrare quello che ho
imparato negli anni e quello che posso scoprire d’ora in poi. Il problema, in questa
bella visione, è che non mi sento né particolarmente preparato, né particolarmente
appassionato per poter andare avanti con successo in una qualunque attività, men
che meno se di ricerca. Inoltre, mi sento completamente spaesato dalla mancanza
di un percorso chiaramente definito davanti a me.
Ho riletto la prefazione che ho scritto per la tesi triennale, qualche giorno fa, e
questo mi ha fatto riflettere su cosa sia cambiato da allora e cosa no. Ho scritto
che era solo una piccola tappa, che avrei continuato a studiare ancora a lungo, e
che non sentivo di essere arrivato ad alcun traguardo: sono parole che, per fortuna,
condivido ancora in buona misura, ma mi ha fatto bene rileggerle.
Al momento mi sento tornato a come stavo negli ultimi anni di Liceo, quando
ottenevo buoni risultati ma lo facevo soltanto perché lo sentivo come un obbligo nei
confronti di me stesso, oppresso. La necessità di libertà che provavo allora è stata
tale da avermi fatto scegliere un percorso totalmente dettato dal mio interesse,
ovvero l’informatica, materia di cui non sapevo nulla ma che mi aveva sempre
incuriosito, e di dedicarmi parallelamente a tante altre attività di svago personale.
Dopo un bellissimo percorso triennale, durante il quale mi sono divertito, non posso
negarlo, mi sono trovato col rimorso per non aver scelto un percorso differente,
che più mi rispecchiasse, e sentivo persa la mia identità. Questi sentimenti sono
continuati per tutto il percorso magistrale, che ho scelto per portare a termine
uno studio che altrimenti sentivo incompleto e sprecato, e sono ora mutati in una
nuova sensazione di oppressione, con conseguente nuova necessità di libertà. Mi
sono quindi servite le mie parole della prefazione triennale, perché ricordo la voglia
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viii PREFAZIONE

di fare con cui le ho scritte, ma, pur condividendole ancora, le devo conciliare con la
necessità di libertà che è tornata a farsi vedere. Al momento della stesura di questa
prefazione non ho ancora una scelta definitiva su quello che farò nei prossimi mesi,
ma conto di averla presto. Ringrazio tanto, anche per il supporto nella scelta, il
Prof. Di Stefano.

Ringrazio poi anche il Prof. Salti, Riccardo e Marlon, correlatori, che mi hanno
sempre prontamente aiutato, anche a orari improbabili, e spesso real-time. D’ora
in poi smetto di fare nomi perché, cos̀ı come sono timido nel parlato, lo sono anche
nello scritto quando c’è da ringraziare.
Saluto e ringrazio i miei amici e compagni di corso, con cui ho condiviso tante
esperienze, e ai quali non mando un messaggio di possibile addio a causa del
termine degli studi comuni, anzi, mando un messaggio di speranza di poter saldare
ulteriormente i rapporti in una convergenza di percorsi che possa giovare a tutti.
Parlando di termine degli studi, mi tornano in mente i pensieri riguardanti la scorsa
Laurea, ovvero l’impossibilità fisica di invitare conoscenti alla mia discussione, la
delusione di non poter mostrare a chi tiene a me il punto a cui ero giunto, e la
speranza di poterlo fare finalmente al termine della Magistrale. Ho assistito a
tante Lauree, è una cosa bellissima poter discutere del proprio lavoro davanti ad
altre persone, per poi uscire a festeggiare per il proprio successo. Peccato che non
sia stato cos̀ı, peccato che non potrà esserlo neanche questa volta, e peccato avere
quindi una seconda delusione riguardante il termine di un percorso di studi.

Essendo un flusso di pensieri, la parola termine mi riporta all’altro percorso
che si conclude insieme a quello magistrale, ovvero il Collegio Superiore. Un luogo
che mi ha dato tanto, a cui spero di aver dato tanto, e che non vorrei mai lasciare.
Un’esperienza veramente unica, sia per le persone che ci vivono, sia per il senso di
comunità, e soprattutto per la condivisione della propria vita con tanti altri ragazzi
brillanti provenienti da percorsi estremamente diversi tra loro e dal mio. Li saluto
tutti, li ringrazio, e spero di poter continuare a fare qualcosa per il Collegio anche
una volta uscito.

Infine, ringrazio la mia famiglia, i miei genitori, mia sorella e i miei nonni, che
sono sempre stati pronti a darmi ogni tipo di aiuto e non mi hanno mai fatto
mancare nulla: è raro trovare famiglie del genere. E ovviamente ringrazio la mia
ragazza, che non so come possa aver sopportato prima la mia distanza, poi il mio
morale basso, e poi anche il mio poco tempo libero. Vedrai che andrà meglio :)

E ora, per chi vuole, buona lettura.
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Chapter 1

Introduction

Computer Vision is a highly interdisciplinary scientific field that aims to pro-
vide computers with human-like or superhuman abilities in terms of vision-related
tasks, such as object recognition, pose estimation, video tracking, 3D scene recon-
struction, augmented reality and many more. It involves mathematics, computer
science and artificial intelligence, allowing computers to carry out countless in-
dustrial activities (e.g. quality control, defect detection), surveillance duties and
consumer-related tasks (e.g. face recognition and visual search), eventually en-
abling futuristic applications such as augmented reality and autonomous vehicles.
Computer Vision processes images and videos, both 2D and 3D, provided by cam-
eras, scanners and depth sensors.

In the context of this work, we will be dealing with 3D data, namely with point
clouds: sets of points in the 3D space, generated by scanners and depth cameras.
One of the most crucial and researched on problems in 3D Computer Vision is
surface matching, i.e. the process of finding similarities between surfaces [29] [15],
in order to tell if a surface matches another and, if so, how to align them. Surface
matching has applications in a wide variety of fields, such as robotics, automation,
biometric systems, 3D scene reconstruction, search in 3D object databases [29],
augmented reality, obstacle avoidance and path planning for autonomous vehicles,
and has become increasingly relevant due to the availability of off-the-shelf depth
sensors such as Microsoft Kinect and Intel RealSense [18]. It also represents the
foundation of two very important tasks [22]: surface registration, which is the
process of aligning different 3D fragments into a single common coordinate system
[27], and 3D object recognition.
In the past, surface matching was handled with global approaches, that suffered
from clutter and occlusion problems. Following the trend of 2D Computer Vision,
in the last two decades the paradigm has undergone a shift towards local methods,
that are able to more effectively withstand such nuisances [22] [29]. A local ap-
proach means finding interesting points (called keypoints) on the 3D surface, and
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8 CHAPTER 1. INTRODUCTION

considering only a limited neighborhood (hereinafter support) of such points for
the computation of compact representations (named descriptors) of such neighbor-
hoods. These compact descriptors should be at the same time highly distinctive
and robust, in order for corresponding points of two views of the same surface to
be successfully matched together. If enough descriptors are matched between a
model and a target point cloud, the model object could be present in the target
cloud (object recognition); moreover, if enough descriptors are matched, they al-
low for the estimation of rigid body transformations, that are the key to surface
registration [22].
In order to have such results, the descriptors should be informative enough to avoid
false matches as much as possible, while still being robust enough to be matched
across point clouds with very different orientations, and withstanding nuisances
such as noise, point density variations, clutter and occlusion. The property of being
invariant to 3D rigid body transformations is called rotation invariance, meaning
that a descriptor should encode information about the shape and not about the
pose, and it is a key property for descriptors to carry out their work. In order to
achieve it, some authors sacrifice part of the informativeness, some others try to
develop a process that is inherently rotation invariant, while a third group relies
on the definition of local systems of Cartesian coordinates, called Local Reference
Frames (LRFs), which provide a canonical orientation for every local support. The
last approach is highly researched on, and aims to create an invariant descriptor
by coupling an informative description of the support with a way to orientate the
points under consideration.

1.1 Objectives

In the past, a lot of effort has been put into defining high-performing handcrafted
Local Reference Frames and descriptors. Recently, following their success in ad-
vancing the state of the art for other Computer Vision tasks, there is an increasing
interest into employing Artificial Neural Networks to achieve better performances
also in surface matching. While interesting results with learned descriptors have
already been published, there is still quite little going on about learned LRFs:
there exist plenty of methods to compute them but they are all based on hand-
crafted algorithms, with the only exception of a recent proposal that deploys neural
networks. Yet, it feeds them with manually engineered features, and therefore it
does not fully benefit from the modern end-to-end learning strategies. Learned
descriptors have allowed for advancements in matching precision and recall, and
a successful end-to-end learned solution has been proposed for the first time last
year by the team of CV Lab (University of Bologna) [26], showing better results
than methods that feed manually engineered features to a network. Thus, the
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objective of this thesis is to develop an end-to-end learned LRF for point clouds,
leveraging the architecture described in [26] and [35], and assess its performances
compared to the current state of the art. The final objective is to do so with
unsupervised learning methods, because they do not require ground-truth data,
which is cumbersome to obtain for surface matching, but partial results deriving
from supervised methods will be presented as well.

1.2 Thesis outline

The first part of this thesis (Chapter 2) will briefly review the most important
existing works on LRFs for point clouds, showing their working princples and the
absence of fully learned LRFs. Hints on local descriptors will be given as well.
The second part (Chapter 3) will present a mathematical explanation of the con-
cepts that underlie the proposed method, followed, in Chapter 4, by a description
of such method, of the employed neural network and of the training and bench-
marking processes.
The last part (Chapter 5) will describe the datasets used for the experimental
validation, and show the results.
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Chapter 2

Related works

A wide variety of different LRFs have been proposed in the literature. This chap-
ter will list the most influential and performant ones, describing their working
principles. The last section will also mention some local descriptors and the use
they make of LRFs, showing the lack of a fully learned LRF.

2.1 Local Reference Frames

As stated in [18] and [33], hand-crafted LRF estimation methods can be divided as
based upon Covariance Analysis (CA) or Geometric Attributes (GA). The former
group includes the LRF used by Mian et al. [19], SHOT [29] [24], EM [20], RoPS
[14], along with many others, while the latter group includes PS [3], Board [22],
FLARE [21], TOLDI [34] and GFrames [18]. To the best of our knowledge, the
only example of a data-driven approach for LRFs is represented by the work of
Zhu et al., posted as pre-print on ArXiv in January 2020 [37], that will also be
briefly presented in this chapter.

Definition 2.1. (LRF). [18] Given a point cloud P , the LRF of point p ∈ P is
defined as

L(p) = {x̂(p), ŷ(p), ẑ(p)} (2.1)

where x̂(p), ŷ(p), ẑ(p) are the orthogonal axes of the coordinate system, satisfying
the right-hand rule ŷ = ẑ ∧ x̂.1

Thus, defining an LRF means defining a way to compute each one of its axes.
Moreover, for the following sections:

• let p ∈ P be the point for which we want to compute the LRF,

1Bold means vector notation (column matrices) and the circumflex means unit vector. Brack-
ets with the indication of the point can be omitted if the point is not ambiguous.

11



12 CHAPTER 2. RELATED WORKS

• let NR(p) be the support of radius R around p,

• let pi ∈ NR(p) for i = 0, . . . , k,

• let n̂(p) be the normal to the surface at point p.

2.1.1 CA-based methods

All the methods belonging to this category share the need of a covariance matrix
of the points in the local support, and they differ from each other in the way they
use this information to compute the axes.

Mian [19]. It has been proposed in 2010, and basically employs Principal Com-
ponent Analysis in order to determine 3 orthogonal unit vectors. In fact, given
a point p and its local support, it computes the normalized eigenvectors of the
following covariance matrix:

Σbp =
1

k

k∑
i=0

(pi − bp)(pi − bp)
T (2.2)

with bp being the the barycenter of the points in NR(p):

bp =
1

k

k∑
i=0

pi (2.3)

The problem with this method is that eigenvectors define the direction only,
whereas their sign is ambiguous. Disambiguation happens for the z axis only,
that is chosen so as to have a positive product with the normal n̂(p), but am-
biguity remains for the other axes, implying that this method potentially defines
multiple LRFs for a single point, a fact that greatly increases the time requirements
to match points in different point clouds [21] [33].

SHOT [29] [24] It has also been proposed in 2010. It is the first CA method
that removes the ambiguities in the axes [29] [33], and it has become one of the
most popular LRFs in the literature. It computes a slightly different, weighted
covariance matrix, that proved to be more robust against clutter:

Σpw =
1∑k

i=0(R− di)

k∑
i=0

(R− di)(pi − p)(pi − p)T (2.4)

with the L2 distance di = ‖pi − p‖2 < R. Notice that the barycenter has been
substituted by the the point p, thus also reducing computation times.
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The eigenvectors resulting from the covariance matrix are assigned in decreasing
eigenvalue order to x+,y+, z+, while their opposites are referred to as x−,y−, z−

Disambiguation is carried out on the x and z axes as follows:

S+
x := {i : di < R ∧ (pi − p) · x+ ≥ 0}
S−x := {i : di < R ∧ (pi − p) · x− > 0}

x̂ =

{
x+ if |S+

x | ≥ |S−x |
x− otherwise

(2.5)

and analogously for z, meaning that the sign of an axis has to be coherent with
the majority of the points in the support. For the remaining axis, ŷ = ẑ ∧ x̂.
This method provides a good balance in terms of efficiency, repeatability and
robustness to clutter and occlusion. However, its feature matching performance is
not always paralleled by its repeatability [33].

2.1.2 GA-based methods

These methods typically compute their axes successively, possibly in different ways,
leveraging geometric attributes such as normals and signed distances [33].

Board [22]. Proposed in 2011, it is the result of an extensive analysis of existing
proposals. It is based on the definition of two different supports: NRz(p) and
NRx(p), typically set to have Rz small and Rx > Rz.
Firstly, it fits a plane on the points of NRz(p) and takes its normal (z+/z−). It
then computes the average normal ñ across support points, and chooses between
z+ and z− so to have a positive inner product with ñ.
Secondly, for each point pi ∈ NRx(p) it computes the cosine of the angle between
ẑ and the average normal at that point, named ñ(pi). The point pmin with the
lowest cosine (highest angle) is selected, and the vector from p to pmin is projected
onto the tangent plane on p and normalized, to become the x axis. Since pmin
almost always lies in the outer regions of the support, the computation is sped up
by considering only the support points with distance from p greater than a defined
threshold, usually 0.85 ·Rx.
As usual, the y axis is computed by cross-product.
Board also takes into account the possibility to have missing regions, defining a
heuristic procedure to estimate if pmin lies in the missing region or not.

FLARE [21]. Proposed in 2012, it is a modified version of Board, by the same
authors. It computes the z axis as in Board, but for the x axis it uses the signed
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distance instead of the cosine with the normal.
The signed distance of a point pi is defined as:

dSD(pi) = ppi · ẑ (2.6)

with ppi being the vector going from p to pi. The algorithm selects the point
with the largest signed distance, which is the point whose component parallel to
the z axis is the largest, meaning the most distant point from the tangent plane at
point p. As before, the projection of this point to the tangent plane is normalized
and taken as the x axis.
FLARE has proven to be more repeatable than Board, but they both have similar
problems with noise and outliers [33].

TOLDI [34]. Proposed in 2016, it computes the z axis in a very similar fashion
to CA methods, as it computes the covariance matrix (using the barycenter) and
considers as z+ the unit eigenvector with the smallest eigenvalue. The first differ-
ence is that this covariance is computed on NR

3
(p) instead of NR(p). The other

difference is in the disambiguation of the sign, that follows the rule:

ẑ =

{
z+ if z+ ·

∑
pi∈NR(p) pip ≥ 0

−z+ otherwise
(2.7)

The x axis will lie in the tangent plane of p with respect to the normal ẑ, but
finding an orientation for such plane is more difficult than finding ẑ.
The first step is the computation of the projections of the support points on the
plane. For each pi ∈ NR(p),

vi = ppi − (ppi · ẑ(p)) · ẑ(p) (2.8)

The x axis is then computed as a weighted sum:

x̂ =
1∥∥∥∥ k∑

i=0

wi1wi2vi

∥∥∥∥
2

k∑
i=0

wi1wi2vi (2.9)

In this sum, wi1 is related to the distance of the point and is designed to improve
robustness to clutter, occlusion and incomplete border regions, while wi2 is set
to make the points with larger projection distance contribute more to the x axis,
since such distance feature is a distinctive cue and can provide high repeatability
on flat regions. They are defined as follows:

wi1 = (R− ‖p− pi‖2)
2 (2.10)
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wi2 = (ppi · ẑ(p))2 (2.11)

As usual, the y axis is computed by cross product.
TOLDI can produce great performances, but it has been shown to be quite sensitive
to keypoint localization error [33].

GFrames [18]. It has been proposed in 2019 by a team of researchers from
different institutions, including the University of Bologna.
It assumes that the point cloud (or the mesh) is a sampling of a 2D Riemannian
manifold embedded in the R3 space. Since the method needs the areas of the
mesh triangles, it works straight away with meshes, while for point clouds it uses
a procedure that locally computes estimates of triangles.
The z axis is defined as the normal on the point, n̂(p), while for the x axis it
computes the following formula:

x(p) :=
1∑

tj∈NR(p)A(tj)

∑
tj∈NR(p)

A(tj)∇f(tj) (2.12)

with tj a mesh triangle, NR(p) the set of triangles within distance R from p, A(tj)
the area of the tj triangle and f a user-defined scalar function.
The actual x̂(p) is computed by projecting the result of equation 2.12 on the
plane defined by n̂(p) and normalizing the projection to have a unit vector. The
remaining axis is the usual cross product.
In [18], different f functions are tested, such as the mean curvature, the Gaussian
curvature, the sum of total Euclidean distances, and the function of FLARE itself
(average of the signed distances from tangent plane), showing great robustness and
repeatability. GFrames is also particularly suited for non-rigid transformations,
thanks to its flexibility.

2.1.3 Data-driven methods

As previously stated, to the best of our knowledge there exist a single public
data-driven method applied to learning a Local Reference Frame for point clouds,
named LRF-Net. Nevertheless, the aforementioned approach does not rely on
feeding the network with the raw information from the point cloud: it feeds hand-
crafted features computed on the point cloud, instead. Thus, there are currently
no public proposals of end-to-end learning applied to Local Reference Frames.

LRF-Net [37]. Proposed at the beginning of 2020, it is the first data-driven
approach for LRFs.
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In spite of being data-driven, it still relies on a traditional approach to compute
the z axis, that is in fact set to be equal to the normal n̂(p) of the keypoint p.
The x axis, instead, is computed by the following formula:

x̂(p) =
1∥∥∥∥ k∑

i=0

wivi

∥∥∥∥
2

k∑
i=0

wivi (2.13)

with vi defined as in equation 2.8 to be the projection of ppi on the tangent plane.
The weights wi are computed by an Artificial Neural Network, consisting of 8 fully
connected layers with batch normalization and ReLUs after each layer.
The network has a 2D input layer and a 1D output layer, with the inputs being
aidist and aiangle for point pi ∈ NR(p), defined as follows:{

aidist = ‖ppi‖2 /R
aiangle = cos(ẑ(p),ppi)

(2.14)

Basically, the first one is the fraction of the distance of the i-th point with respect
to the maximum distance of the support, and the second one is the cosine between
the normal on the keypoint and the vector from the keypoint to the i-th point.
The network computes each weight separately.
As stated in [37], these features are complementary to each other, providing in-
formation about distance and angle for each point in the support, and are also
invariant, provided that z is repeatable. This is crucial for the network to produce
an invariant output, which is used to compute a linear combination of the vis,
equivariant by definition, thus providing an x axis that rotates along with the
point cloud as long as the z axis is repeatable.
The network is trained in a weakly supervised, Siamese, way (more on this in
Chapter 4), loading corresponding pairs of keypoints from point clouds recorded
from different viewpoints, rotating each keypoint with its support according to
the LRF computed as defined above, and minimizing the Chamfer Distance [1]
between the two rotated local supports.

2.2 Local descriptors

Since local descriptors, which are compact representations of the neighborhood of
a point, are out of the scope of this work, this section will not go into detail about
how they are computed.

It’s worth noting that most of the Local Reference Frames deliver their best
performances under very specific circumstances and/or particular applications [33],
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or when coupled with their respective descriptor: in fact, part of the papers that
define a Local Reference Frame do so in order to support the definition of a custom
local descriptor. Mian, SHOT and TOLDI, for example, define both a LRF and a
descriptor, whereas Board, FLARE and GFrames do not.
Other notable descriptors, defined separately from LRFs, are USC (Unique Shape
Context, 2010) [28], CGF (Compact Geometric Features, 2017) [16] and 3DSmooth-
Net (2018) [12]. Both the first two use SHOT, and are hand-crafted, while the last
one uses a slightly modified version of TOLDI and is a learned descriptor. Other
learned descriptors, that do not rely on LRFs, are PFFNet [11], PPF-FoldNet [10]
and PRIN [35], all from 2018.

An interesting example of a non-invariant learned descriptor that does not rely
on hand-crafted features and that also defines its own LRF, is described in [26]
by Spezialetti et al.2. By taking advantage of spherical convolutions, their net-
work processes a spherical signal (directly computed from the point cloud), and
computes a 512-dimensional codeword that is used as an equivariant descriptor.
Being equivariant, it is theoretically possible to compute the rotation between
two descriptors (or intermediate feature maps) by computing the arg max of the
correlation between the two. However, this is practically impossible to do when
matching descriptors, since doing that for every possible pair of descriptors re-
quires a tremendous amount of computing time. Because of this reason, they
decided to choose a heuristic on the descriptor, for example the highest value. If
the descriptor is perfectly equivariant, this maximum will be present in different
bins in the descriptors of corresponding keypoints in two rotated point clouds.
Thanks to the structure of the network and to the mathematical properties of
spherical convolutions, it is possible to analyze the position of these maxima and
infer the rotation operation that aligns them. As a consequence, the position of
the maximum can be used to define a Local Reference Frame in such a way that
the descriptor, orientated according to the LRF, becomes invariant to input rota-
tions. While theoretically interesting, the highest value alone is not robust enough
to reach good results in practice, and a different heuristic has been used, involving
the computation of the density of the top k values.
Such learned descriptor, coupled with the proposed LRF, achieves great perfor-
mances, but they can be further improved by using FLARE as the LRF, as shown
in [26]. Due to the promising mathematical properties of the network, though, it
seems to be possible to use the proposed framework to specifically learn a Local
Reference Frame, and this is where this thesis lays its foundations.

To sum up, here is a table (figure 2.1) that categorizes all the cited methods.
Hand-crafted LRFs are divided as in [33]; each descriptor is followed by the LRF
it makes use of, except for PPF-based descriptors and PRIN; lastly, there is an

2CVLab, University of Bologna
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evident gap in learned Local Reference Frames, as the present method doesn’t
use end-to-end learning and is employed for just one out the three axes of the
coordinate system.

As of now, FLARE, TOLDI and GFrames are considered state-of-the-art meth-
ods, with FLARE being selected for direct comparisons with the method developed
in the next chapters.

Figure 2.1: Categorization of Local Reference Frames and Descriptors.



Chapter 3

Theoretical background

The aim of this chapter is to provide all the required concepts to understand
Spherical Convolutional Neural Networks and the architecture proposed in Chapter
4.

Most of this chapter is based on the renowned book “Deep Learning”, by Good-
fellow, Bengio and Courville [13] and on the work of Cohen, Geiger, Koehler and
Welling about group equivariant neural networks and Spherical CNNs [4] [5] [6],
although with changes in notation. For this reason, citations to the aforementioned
works will be avoided, whereas different sources will be cited when used.

The chapter will first present a brief recap on standard convolution, correlation
and CNNs: their short description is mainly provided to set the notation for the
equations, and to offer a parallel presentation of them and the core theoretical
part, Spherical CNNs.
The chapter will then describe the possible ways to represent rotations in 3D space,
followed by the definition of a quality measure for Local Reference Frames, that
will be used to assess the performance of the proposed method.

3.1 Standard CNNs

Definition 3.1. (1D Convolution). For continuous real-valued scalar signals
f, g : R −→ R, convolution is defined as:

h(t) = [f ∗ g](t) =

∫ +∞

−∞
f(τ)g(t− τ)dτ (3.1)

while for discrete signals it is sufficient to substitute the integral with a sum.

The result of convolution is not a number, it is a function h : R −→ R whose
domain is the same of f and g. The output of h for a certain input t is the integral

19
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(or sum) of the product between f and g, with the latter being flipped around
the origin and translated by t. As a consequence, it is possible to visualize the h
function as a 1D signal, with each value computed as stated above.
Convolution is a commutative operation.

Definition 3.2. (1D Correlation). Similarly, correlation is defined as:

i(t) = [f ? g](t) =

∫ +∞

−∞
f(τ)g(τ + t)dτ (3.2)

with i : R −→ R. Again with a sum in case of discrete signals.

As a difference, correlation does not flip the g function, and is not commutative.

These two operations are strongly connected to each other, and are often used
interchangeably if the g function is symmetric. In fact, it is possible to compute
convolution using correlation by simply flipping the second function and inverting
the order (so that the first function gets translated instead of the second), and
vice-versa, with flipping being unnecessary if g is symmetric.

All of this can be straightforwardly generalized to signals on the plane, and
thus it can be applied to images, that are in fact 2D discrete signals. All the
following formulas can be expressed with summations instead of integrals to cope
with discrete signals.

Definition 3.3. (2D Convolution). Let f, g : R2 −→ R, the 2D Convolution is
defined as:

h(x, y) = [f ∗ g](x, y) =

∫ +∞

−∞

∫ +∞

−∞
f(α, β)g(x− α, y − β)dαdβ (3.3)

with x, y ∈ R and h : R2 −→ R.

Definition 3.4. (2D Correlation). Similarly, the 2D Correlation is defined as:

i(x, y) = [f ? g](x, y) =

∫ +∞

−∞

∫ +∞

−∞
f(α, β)g(α + x, β + y)dαdβ (3.4)

with i : R2 −→ R.

As for the 1D case, computing a convolution between two signals means over-
lapping (by multiplication) the input functions and computing their sum or inte-
gral, with the second function being flipped around the origin and translated by a
quantity specified by the input of the convolution function.
If we say that f is an image and g is a kernel (or filter), i.e. two real-valued
discrete functions on the plane, the output of a correlation/convolution can be
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Figure 3.1: Visualization of 2D discrete correlation, image from [13]. Notice that in
case of a finite domain the output dimensions are smaller than the input, because
placing the kernel out of the image is a (usually) not allowed operation.

easily visualized as in figure 3.1. It is an image itself, whose pixels are computed
by multiplying the original image and an accordingly shifted kernel. The actual
operation in this image is a correlation between the kernel and the image (not
commutative), with convolution being analogous (with a flipped kernel).

Convolutional Neural Networks (CNNs) take their origin from the aforemen-
tioned operations of convolution and correlation and, in spite of the name, they
usually employ correlation as the layer operation, while convolution arises dur-
ing backpropagation. In fact, the key difference between a MultiLayer Perceptron
(MLP) and a CNN is that the former computes a matrix multiplication between
inputs and weights as the layer operation, while the latter uses correlation between
the input to the layer and a set of filters, that are simply small kernels like in figure
3.1.
In the previously defined correlation, an input of (x, y) means translating the filter
by (−x,−y), thus practically flipping the output map with respect to the origin.
In order to have a direct correspondence between a point of the output and a point
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of the input, as in figure 3.1, the usual operation that happens in CNNs is a variant
of correlation that corresponds to a correlation with commuted input functions.

Definition 3.5. (CNN Layer Operation). Consider a CNN with n layers.
The input of each layer l is a feature map f : Z2 −→ RKl

, the number of output
channels for layer l is K l+1, and the K l+1 filters for layer l are ψi : Z2 −→ RKl

for
i = 1, . . . , K l+1. The output of layer l is defined as:

[f ? ψi](x, y) =
+∞∑

α=−∞

+∞∑
β=−∞

Kl∑
k=1

fk(α, β)ψik(α− x, β − y) (3.5)

with i = 1, . . . , K l+1. Feature maps and filters are considered to be defined every-
where in Z2 and 0-valued in out-of-map domain points.
Interestingly, each filter has as many channels as the input, and each correlation
produces a real-valued output. Thus, each correlation is computed on all the input
channels, which are eventually summed together to produce the output.

The parameters learned by a CNN (i.e. the weights) are the values of the
filters. This approach has 3 main advantages:

• It greatly reduces the number of parameters, because filters are chosen to be
much smaller than the input images;

• It allows for weight sharing, because each pixel of the output is computed
with the same weights but with a different input (portion of the input image);

• It is equivariant to translations, meaning that if a certain input produces a
certain output when correlated with a filter, then the same input in a different
portion of the image will produce the same output but in a correspondingly
different portion of the output feature map.

The last property is the most interesting for the purposes of this work, so here
is a more precise definition of it.

Definition 3.6. (Equivariance). [31] [2] Let G be a set of transformations.
Consider a function Φ : X −→ Y that maps inputs x ∈ X to outputs y ∈ Y . A
transformation g ∈ G can be applied to any x ∈ X by means of the operator
T Xg : X −→ X , such that x is transformed to T Xg [x], and analogously for y ∈ Y
transformed to T Yg [y]. Φ is said to be equivariant to G if:

Φ(T Xg [x]) = T Yg [Φ(x)] (3.6)
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The operators T Xg [x] and T Yg [y] are basically the application of the same trans-
formation g to elements from different domains, and are related by the equation
above. Invariance, instead, is a particular case of equivariance in which the op-
erator T Yg [y] is the identity transformation, meaning that the result of Φ doesn’t
change with a transformation of the input.

It is possible to apply this definition of equivariance to the operation defined in
equation 3.5, and thus to Convolutional Neural Networks. In fact, if we consider Φ
as the layer operation, x ∈ X as a point of the input image, y ∈ Y as a point of the
output, and G as the set of 2D translations (with T Xg [x] = T Yg [y] as the application
of such translations), it is trivial to see that CNNs are translation-equivariant. By
defining the operator Lt,s to take a 2D function and translate it by (t, s) as

[Lt,sf ](x, y) = f(x− t, y − s) (3.7)

translation-equivariance can be proved as follows, by substituting α with α+ t and
β with β + s (channels are dropped to slim down notation):

[Lt,sf ? ψ](x, y) =
+∞∑

α=−∞

+∞∑
β=−∞

f(α− t, β − s)ψ(α− x, β − y)

=
+∞∑

α=−∞

+∞∑
β=−∞

f(α, β)ψ(α + t− x, β + s− y)

=
+∞∑

α=−∞

+∞∑
β=−∞

f(α, β)ψ(α− (x− t), β − (y − s))

= [f ? ψ](x− t, y − s)
= [Lt,s[f ? ψ]](x, y)

(3.8)

It is also worth noting that in a convolution or correlation, let’s say for con-
tinuous 2D signals, the domain of the input functions f and g is the plane R2,
whereas the domain of the output function (so the domain of the convolution or
correlation itself) is the subgroup of 2D translations (because computing the op-
eration for (x, y) means translating the g function by (x, y)), which is isomorphic
to the plane R2. This is a subtle difference, because such subgroup acts on itself,
but it will be useful for the next section as this is not always the case.

Going back to the aim of this thesis, which is finding a Local Reference Frame,
it is important to notice what follows: given a keypoint with its local support,
a LRF will set 3 axes, defining an orientation for such keypoint1. If the same
keypoint is rotated and then a LRF is computed, we expect the LRF to produce

1By orientating (or rotating) a keypoint, we intend with its own local support.
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the same axes as before with respect to the shape of the support, meaning that
the two keypoints can be perfectly aligned. In other words, this means that the
LRF should rotate in the 3D space along with the input, and thus that the LRF
should possess the 3D rotation-equivariance property. How to achieve it?

3.2 Spherical CNNs

Cohen et al. [5] [6] have shown that it is possible to achieve equivariance to
rotations in space by using spherical signals and spherical convolutions. Their
theory has been developed for spherical images, i.e. images that are defined on a
sphere instead of a plane, because the usual way to handle these images was to
use standard CNNs with multiple planar projections, a sub-optimal approach due
to planar projections producing distortion. By using their method, it is possible
to define a natural convolution on the sphere itself.
The input format for this work, though, is not a spherical signal, it is a point
cloud. However, there are multiple ways to transform point clouds into spherical
signals: ray casting [6] and spherical voxelization [35] are two examples, with the
latter being deployed in this context and described in the next chapter. Thus, we
can consider to be able to use spherical signals and continue with the dissertation.

Definition 3.7. (S2). The unit sphere S2 is defined as the set of points x ∈ R3

with norm 1. It’s a 2-dimensional manifold that can be parametrized with spherical
coordinates α ∈ [0, 2π] and β ∈ [0, π].

Definition 3.8. (Spherical Signal). A spherical signal is a vector-valued func-
tion f : S2 −→ RK , with K as the number of channels.

Definition 3.9. (SO(3)). 3D linear transformations can be represented by 3x3
matrices, and the set of 3x3 matrices with orthonormal columns, along with matrix
multiplication, forms the Orthogonal group O(3). This group is made of two
connected components, one with determinant 1 and the other one with determinant
-1. The first component also contains the identity matrix, and thus is a subgroup
containing all the rotations in 3D space. This subgroup is called SO(3), the Special
Orthogonal group for 3 dimensions, also known as rotation group.

SO(3) is a 3-dimensional manifold, and can be parametrized in many different
ways. The following formulas will consider a parametrization wih ZYZ-Euler an-
gles α ∈ [0, 2π], β ∈ [0, π] and γ ∈ [0, 2π]. Moreover, in order to apply rotations to
spherical signals by matrix multiplication, points on the sphere S2 can be consid-
ered as 3D unit vectors. Rotations and their representations are further described
in section 3.3.
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Definition 3.10. (Rotation of Spherical Signals). Given a spherical signal
f : S2 −→ RK and a rotation R ∈ SO(3), the rotation operator LR rotates the
signal as:

[LRf ](x) = f(R−1x) (3.9)

with x ∈ S2. By rotating the input by the inverse of R, it effectively rotates the
signal by R. Notice that LRR′ = LRLR′ .

Definition 3.11. (Inner Product). Spherical signals constitute a vector space.
Thus, given two K-valued spherical signals f, ψ : S2 −→ RK , their inner product
can be defined as:

〈ψ, f〉 =

∫
S2

K∑
k=1

ψk(x)fk(x)dx (3.10)

with dx as the standard rotation invariant integration measure on the sphere,
dx = dα sin(β)dβ/4π in spherical coordinates α and β.

An invariant measure means that the integral doesn’t change with rotations,
and thus that the inner product between two functions doesn’t change if they are
rotated by the same rotation R:

〈LRψ, f〉 =

∫
S2

K∑
k=1

ψk(R
−1x)fk(x)dx

=

∫
S2

K∑
k=1

ψk(x)fk(Rx)dx

= 〈ψ,LR−1f〉

(3.11)

With the concepts defined above, it is possible to proceed to define a correlation
for spherical signals, that will constitute the fundamental block of Spherical CNNs.

Definition 3.12. (Spherical Correlation). Let f, ψ : S2 −→ RK , their spherical
correlation is:

[ψ ? f ](R) = 〈LRψ, f〉 =

∫
S2

K∑
k=1

ψk(R
−1x)fk(x)dx (3.12)

Let’s now compare this function to equation 3.5, that is the standard CNN
correlation. They look very similar to each other, with the spherical correlation
that looks to be its direct generalization to spherical signals. But here the subtle
difference about the domain of the resulting function arises. In fact, while standard
correlation is defined on the subgroup of 2D rotations, that is isomorphic to R2

and can act on itself, there is no way to define a group on the sphere S2, so the
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domain of a spherical correlation is the set of 3D rotations: SO(3). It is possible
to visualize this by thinking of two spheres, that can be multiplied to each other
after being rotated in all 3 dimensions. In the 2D domain it would be equivalent
to being able not only to translate the maps, but also to rotate them around one
of their points.

By using this spherical correlation as the layer operation for Spherical CNNs,
we immediately face a change in the domain of the signals. Indeed, despite the fact
that the input to the first layer is an S2 signal, and so are its filters, the output of
such layer will be a signal defined on SO(3), with as many channels as the number
of filters. We should then repeat this process for SO(3) signals, as follows.

Definition 3.13. (Rotation of SO(3) Signals). Given an SO(3) signal f :
SO(3) −→ RK and a rotation R ∈ SO(3), the rotation operator LR can be straight-
forwardly generalized to rotate the SO(3) signal as:

[LRf ](Q) = f(R−1Q) (3.13)

with Q ∈ SO(3). Notice that, in this case, both R and Q belong to SO(3).

Definition 3.14. (SO(3) Correlation). Let f, ψ : SO(3) −→ RK , their spherical
correlation is:

[ψ ? f ](R) = 〈LRψ, f〉 =

∫
SO(3)

K∑
k=1

ψk(R
−1Q)fk(Q)dQ (3.14)

with dQ as the invariant measure on SO(3). If we parametrize it with the afore-
mentioned ZYZ-Euler angles, it is dQ = dα sin(β)βdγ/(8π2).

This time, the domain of SO(3) correlation is SO(3) itself, which is a group. At
this point, we have both layer operations required to build a Spherical CNN, whose
peculiar characteristic is the equivariance to rotations, and is thus suitable
to our needs. By recalling the definition of equivariance (definition 3.6), and
considering Φ as the correlation, x as point on the sphere or on SO(3), y as a point
on SO(3), G as SO(3) itself, and Tg as LQ, the proof proceeds as follows.

[ψ ? [LQf ]](R) = 〈LRψ,LQf〉 (3.15)

Using the invariance property of the inner product (equation 3.11) and the property
at the end of definition 3.12, we have:

〈LRψ,LQf〉 = 〈LQ−1Rψ, f〉 (3.16)

By using, respectively, the definition of correlation (3.12 and 3.14) and the defini-
tion of rotation (3.10 and 3.13), we can end the proof:

〈LQ−1Rψ, f〉 = [ψ ? f ](Q−1R) = [LQ[ψ ? f ]](R) (3.17)
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This proof applies to both spherical and SO(3) correlation.

We have now a complete definition of rotation-equivariant Spherical CNNs,
whose first layer computes the spherical correlation and the following layers com-
pute the SO(3) correlation. In these peculiar CNNs, the first layer has spherical
signals as filters, whereas the other layers have signals on SO(3).

In practice, though, to speed up the computation, layers employing spherical
or SO(3) correlation do not directly compute those transformations. Instead, they
compute their results using a Generalized Fast Fourier Transform, but this is out
of the scope of this work. More on this can be found in [6].

3.3 Representations of rotations

There are many different ways to represent rotations in the 3D space. This section
will briefly show the ones used for this work, namely: Euler angles, 3x3 matrices,
axis-angle and Rodrigues’ vectors. Quaternions are another very interesting rep-
resentation, especially for machine learning purposes, but they will not be covered
since they haven’t been used.

Before starting, it’s worth noting that a Local Reference Frame can be identified
exactly as the rotation that transforms the original coordinate system of the point
cloud into the new coordinate system, or as the inverse of such rotation. So, the
following representations also apply to LRFs.

3.3.1 Euler angles

Let us have a coordinate system (or Local Reference Frame, they are synonyms in
this context) to be rotated. It is possible to visualize its rotation by duplicating
the coordinate system, fixing one copy, and rotating the other. Since rotations in
3D space have 3 degrees of freedom, only 3 parameters are necessary to charac-
terize a rotation. If we imagine to rotate the moving copy around the Z axis first,
then around the Y axis, and finally around the X axis, the 2D rotation angles
around such axes are known as the 3 Euler angles α, β and γ. Consequently, a
full rotation will be the composition of such 3 transformations (XYZ).
As previously stated, in this context we will consider the ZYZ-Euler angles, mean-
ing that both the first and the last angles will refer to rotations around the Z axis.
This does not lower the degrees of freedom as long as the rotation around Y is not
null, as will be clearer when dealing with matrices.
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3.3.2 3x3 matrices

2x2 rotation matrices can be straightforwardly generalized to 3D rotations by
combining 2D rotations around different axes. If we take the previously defined
XYZ-Euler angles, and by defining Rx(α) as the rotation matrix of α around the
X axis, and analogously for the other axes, a full 3D rotation matrix is:

R = Rx(α)Ry(β)Rz(γ) (3.18)

where:

Rx(α) =

1 0 0
0 cosα − sinα
0 sinα cosα

 (3.19)

Ry(β) =

 cos β 0 sin β
0 1 0

− sin β 0 cos β

 (3.20)

Rz(γ) =

cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 (3.21)

In case of a ZYZ representation it is easy to see that, as long as the Y rotation
is not null (and thus the Ry matrix is not an identity matrix), all the rows and
columns of the resulting rotation R have values that, overall, depend on 3 differ-
ent parameters, effectively producing a new coordinate system with 3 degrees of
freedom.

The rotation matrix is the most used representation to identify Local Reference
Frames throughout this work: if we use the rotation matrix that transforms the
original axes into the LRF, then the axes of the LRF are the columns of such
matrix; whereas if we use the transposed2, the axes are the rows, and such matrix
can be directly applied to points to change their coordinate system into the new
one. Definition 2.1 considers the LRF as the former case, thus with axes on
columns, whereas the code used for learning and benchmarking will mostly use
the latter for practical reasons involving arrays.

3.3.3 Axis-angle representation

Another very intuitive way to refer to a 3D rotation is the axis-angle represen-
tation. In fact, defining an axis (a line through the origin) and a rotation angle
along that axis is sufficient to completely characterize a rotation in R3. Having a

2Rotation matrices are orthogonal and, as such, their inverse equals their transpose: R−1 =
RT .
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rotation matrix R, the points of the rotation axis stay the same before and after
the rotation, and are thus the invariants of the rotation. As a consequence, for
such points p we have:

Rp = Ip (3.22)

where I is the 3x3 identity matrix.
By solving the equation above we can find the eigenvectors corresponding to the
unitary eigenvalue, and use one of them to refer to the rotation axis.

To find the rotation angle θ, it is possible to use the following formula:

Tr(R) = 1 + 2 cos θ (3.23)

where Tr is the trace operation.

3.3.4 Rodrigues’ vector

This representation will be very useful for visualization purposes, because it allows
to represent a rotation as a single 3x1 vector, whose elements are called Euler-
Rodrigues parameters.

Definition 3.15. (Rodrigues’ vector.) [9] Let û = [ux, uy, uz]
T be the 3D

unit vector that represents the rotation axis in the axis-angle representation of
rotations, and let θ be the angle. The Rodrigues’ vector b is defined as:

b =

bxby
bz

 =

ux tan θ
2

uy tan θ
2

uz tan θ
2

 = tan
θ

2
· û (3.24)

The vector b thus represents the rotation axis, with norm equal to the tangent
of half of the rotation angle.

In Chapter 5, this representation will be used to show the output feature maps,
but the tangent will be dropped in order to have a better scale for visualization.

3.4 LRF quality measure: repeatability

The last thing we need is a measure of how good a LRF is performing.
In the literature, plenty of different measures have been proposed, mostly in-

volving the computation of the distance between the computed LRFs on a keypoint
from two different (i.e. rotated) viewpoints. But, as noticed in [22] and [21], the
problem with this approach is that it doesn’t take into account the fact that LRFs
work only if they are almost perfectly equivariant to rotations of the keypoint, and
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are able to align different views of the same keypoint. If a pair of rotated key-
points produces LRFs that do not match, it doesn’t matter if it is by 30 degrees
or by 180 degrees (the maximum possible): they are simply not repeatable, and
thus they would not work if used for pose estimation or keypoint matching. For
this reason, Petrelli and Di Stefano proposed in [21] a new quality measure, called
repeatability. In this work, their definition has been extended to include 2 axes of
the LRF instead of a single one, because here the normal axis is not computed in
a standard way as in methods described in Chapter 2. Computing it also for the
third axis is not needed, since it is uniquely identified from the other two.

Definition 3.16. (LRF Repeatability.) Let D be a dataset with M different
views {V1, V2, . . . , VM}, and let ph ∈ Vh and pk ∈ Vk (with h, k = 1, . . . ,M and
h 6= k) be the same point p in two different views. Suppose to have an algorithm
to determine a LRF and let L(ph),L(pk) be the computed LRFs for such point3.
We say that the LRFs for corresponding points ph and pk are repeatable if:

x̂(ph) · x̂(pk) ≥ Th

and

x̂(ph) · x̂(pk) ≥ Th

(3.25)

with Th as a user defined threshold, usually set to 0.97 in this context. The dot
means scalar product, and thus produces the cosine between the axes, since their
norm is unitary.

Intuitively, this means that a LRF is repeatable if, when computed on corre-
sponding points, it is able to align their coordinate systems with a minimum cosine
of Th for each axis.
The repeatability on a whole scene or dataset is then computed as the percentage
of repeatable keypoints over the total number of identified keypoints.

3See definition 2.1.



Chapter 4

Architecture and methodologies

This chapter will show how we have employed the previously described rotation-
equivariant operations to estimate LRFs. It will illustrate the architecture of the
neural network, the process that transforms input data (point clouds) to output
data (LRFs), and the methodologies that have been used to train and test the
network. In the course of this chapter there will be some numeric values: they
refer to figure 4.1 and represent the best hyperparameters we have found for the
network. For the purpose of this chapter they are to be taken as examples.

As for project technicalities, the programming language we used is Python
(v3.6.8), with PyTorch (v1.0.0) as the framework for neural networks; Spherical
CNNs are built using the original implementation of [6], that can be found on
GitHub1. Training and testing Spherical CNNs is a very heavy and time-consuming
task, so it has been partially sped up by employing GPUs and CUDA. All the
trainings and tests have been executed on an Intel i7-4790K with a Gigabyte
GeForce GTX 970 G1, or on an Intel i7-8700 with an NVIDIA Titan V (Volta)
and an NVIDIA GeForce RTX 2080 Ti.

4.1 Network architecture

The neural network we used is almost entirely made of convolutional layers, in
order to achieve equivariance to rotations. In figure 4.1 it’s possible to see a
graphical scheme of the network: the input is a spherical signal, the first layer
employs the spherical correlation (definition 3.12) and all the subsequent layers
employ the SO(3) correlation (definition 3.14). While not present in the figure
for motivations related to clearance, each convolutional layer, except from the last
one, is followed by a Batch Normalization layer and by a ReLU that acts as the
non-linearity. The last SO(3) layer is followed by batch normalization only, and

1https://github.com/jonas-koehler/s2cnn.
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Figure 4.1: Graphical representation of the network. The numbers under the
spherical signal represent the bandwidth and the number of channels. The numbers
under the correlation layers represent the input bandwidth, the output bandwidth
and the output channels. The last layer is a custom version of the soft-argmax
function: notice that the output of the last SO(3) layer is a 3D feature map. The
spherical signal representation is from [35].

by a soft-argmax layer that selects the output value. Notice that, since our main
goal is to achieve equivariance, there are no pooling layers of any kind. The only
small hindrance to the perfect mathematical equivariance, besides quantization, is
represented by the ReLUs.

As one may notice, the input of the network is a spherical signal, and not a
point cloud, because Spherical CNNs work on spherical signals. The generation of
a spherical signal starting from a point cloud will be explained in the next section,
so here we will simply address the network itself.
The triplets under each convolutional layer are, respectively, the bandwidth of the
input to the layer, the bandwidth of its output, and the number of channels of the
layer.
The number of channels has a direct correspondance to standard CNNs, because
it represents the number of filters for that layer. For example, the output of the
first layer is an SO(3) signal with 40 channels, where 40 corresponds to the K
variable in definition 3.14. This means that each filter of the second layer is an
SO(3) signal with 40 channels (as many as its input), and there are 20 of them,
and so on for the other layers.
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The bandwidth, instead, is a less trivial concept because it is involved in the Gen-
eralized Fast Fourier Transform that happens in the layers. Practically speaking,
it translates to the resolution of the signal: an output bandwidth of 24 means that
the output of each layer is an SO(3) signal with a 48x48x48 discrete domain2.
The exact same concepts apply to the spherical signal as well: the first number,
24, is a bandwidth, and it means that the signal is defined on a 48x48 domain3;
the second number means that it has 4 channels.

The soft-argmax layer does not implement the standard soft-argmax function:
it uses a custom operation and it will be explained in the next section. Its output
is a point location in the 48x48x48 domain of the output of the last SO(3) layer:
the location of such point is identified by 3 SO(3) coordinates that correspond to
ZYZ-Euler angles. Such angles unambiguously determine a rotation, and thus a
Local Reference Frame.

Note. Number of layers, bandwidths and channels are hyperparameters of the
network and have been tested in different combinations. The values indicated here
represent the best-performing network, but the next chapter will contain results
from networks with different settings as well.

4.2 Training data flow (forward)

This section illustrates the process that transforms a point cloud into a list of
keypoints with their support, and each of them into a Local Reference Frame,
thus showing the entire forward step of the pipeline. The operations from “cloud
subsampling” to “spherical voxelization” are carried out by a dataloader, and are
used for the training process. The benchmark follows a very similar procedure,
but without data augmentation, as will be explained in section 4.4.

Cloud subsampling. A point cloud may contain a huge number of points in
the 3D space. In order to speed up the computation, a subsampling may be
performed by using the voxel down sample() function of the Open3D library,
with the leaf subsampling parameter provided by the user (the higher the leaf the
lower the number of extracted points). Figures 4.2 and 4.3 show how subsampling
modifies an example input cloud.

2The SO(3) subgroup is 3-dimensional.
3The domain is S2, a 2-dimensional manifold in R3.
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Figure 4.2: Example point cloud right after loading. (Cloud 0, rgbd-scenes-v2-
scene 02 [17], 3DMatch dataset [36])

Figure 4.3: Same cloud as figure 4.2, after subsampling. Subsampling has been
exaggerated for illustration purposes.
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Keypoints selection. To select the keypoints, we uniformly sample the point
cloud. This procedure ignores the underlying structure of the point cloud, and
is employed because selecting interesting points requires an effective and general
purpose 3D keypoint detector, which has not emerged yet. Indeed, this is the
standard way to define keypoints when computing local descriptors. The procedure
is implemented by using the same voxel down sample() function as above, with
the user-specified leaf keypoints parameter: the lower the parameter and the
higher the number of extracted keypoints. Figure 4.4 shows keypoints in a point
cloud, sampled with a high leaf value.

Figure 4.4: Same point cloud. Keypoints highlighted with black spheres enclosing
their support. During actual execution the number of keypoints is much higher
and their support can be larger.

Local support extraction. For each keypoint, it is necessary to create a local
point cloud that comprehends the points in the neighborhood of the keypoint
itself. A radius is chosen by the user and a KDTree (from Open3D) is used to
select the points within the radius. All such points are shifted in order to refer
their coordinates to the position of the keypoint and achieve translation invariance.
As an example, figure 4.5 shows the support of a keypoint.

Data augmentation. The local support undergoes a simple augmentation pro-
cess, that consists in the application of a random 3D rotation. Since this process
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Figure 4.5: Local support of a key-
point from the cloud of previous fig-
ures.

Figure 4.6: Local support of the
same keypoint as figure 4.5, after
a random sampling. The sampling
has been exaggerated for illustration
purposes.

is repeated each time a keypoint is extracted, the network potentially never sees
the same support twice, because it will always be rotated in a different way. This
is useful to increase the diversity of input data and to artificially generate differ-
ent views of an object, as the real-world datasets often include a small number of
different viewpoints.

Random sampling. This operation is optional. It is another form of data aug-
mentation and consists in sampling with replacement a user-specified amount of
points from the support, discarding the rest. It can be useful to enhance the ro-
bustness of the network to clouds with lower resolutions and to acquisition noise.
Figure 4.5 and 4.6 show the support of a keypoint before and after random sam-
pling.

Spherical voxelization [35]. This is the most important operation, since it
allows to create a spherical signal from the support points. One of the simplest
methods to create a spherical signal is ray casting (see [6], figure 5): it consists in
surrounding the support with a sphere, and projecting rays towards the enclosed
object. As these rays touch the surface of the object, they may be used to extract
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multiple features such as distance and cosine, and thus define a signal with a
spherical domain. This process, though, can only extract information about the
surface of the object, and not about the rest of its structure; moreover, vanilla
point clouds do not have any information about surfaces, they are simple sets
of points, not meshes, and thus ray casting is not suitable for them. Spherical
voxelization, instead, can address both problems and has been proposed by You
et al. in [35]. It can be seen in figure 4.7.

Figure 4.7: Graphical representation of the spherical voxelization operation, figure
from [35]. On the left, a keypoint and its support are enclosed in a sphere, which
gets discretized and unfolded to a rectangular (or cubic) grid.

Taken a keypoint with its support, suppose to center a sphere on the key-
point, with radius equal to the support radius, and suppose to express the point
coordinates in spherical coordinates (α ∈ [0, 2π] azimuth, β ∈ [0, π] elevation
and d distance from the origin, which is the keypoint). The spherical surface is
parametrized with the analogous spherical coordinates a and b. Since we are using
computers, everything has to be discrete, so the whole sphere is divided into small
curved rectangles depending on the bandwidth. For example, the bandwidth in
figure 4.1 is 24 and so there are 48x48 such regions4. If we project lines from the
keypoint to the boundaries of such regions (up to the support radius), the space
itself gets divided into 48x48 3D regions called spherical voxels : each point is la-
beled to be part of the corresponding voxel, and each voxel is identified with the
spherical coordinates a, b and c of its center.
Now, in each spherical voxel we compute the density of the contained points, where
each point is weighted by a function of its radial distance from the center of the
voxel, |d − c|: the radially closer to the center, the higher the contribution. To
visualize this, we can imagine to keep the spherical-voxel discretized structure of

4Both the domains of a and b are discretized in 2 · 24 intervals.
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the space and to also draw a sphere with half the radius of the support, where all
the centers of the voxels lie. Each voxel now corresponds to the space between the
keypoint and the half-radius sphere, plus the space between the half-radius sphere
and the full-radius sphere. We compute the density by weighting each point in
the voxel with a function of its distance from the half-radius sphere. This whole
procedure thus produces a real-valued scalar spherical signal, on the half-radius
sphere.
Since we want to take into account the internal structure of the cloud as well, this
process is generalized to multiple concentric spheres, parametrized in the same
way and discretized with the same bandwidth. To produce a scalar signal we have
drawn 2 spheres, the outer sphere and the half-radius sphere; thus, to produce two
scalar signals we draw 3 spheres: one with 1/3 of the radius, one with 2/3 of the
radius, and the outer one which has full radius. This produces 2 concentric and
partially overlapped layers of voxels: the first layer is made of the volume between
the keypoint and the first sphere, plus the volume between the first and the second
sphere; the second layer is between the first and the second sphere, plus between
the second and the outer. We proceed to compute the distance-based density on
each voxel, producing 2 signals: one for the inner layer, one for the outer. The
same process can used with more layers, producing k different spherical signals,
or a single k-valued spherical signal, as it will be considered for correlations. In
figure 4.1 we have 4 input channels, so we produce 4-valued signals by drawing 5
concentric and equally-spaced spheres.
From a practical point of view, the signal is represented by a 3D PyTorch Tensor,
whose dimensions are 48x48x4. In figure 4.7, instead, we have the single-channel
case, that is represented by a planar grid.

As represented in the central part of figure 4.7, though, the spherical regions
have very different areas depending on their elevation coordinate. In order to pro-
duce a more even spacing, a so-called density aware factor has been introduced in
[35]. It is η = sin(b), and its inverse is used in order to produce uniform regions
across the sphere: it is 1 at the equator and smaller towards the poles5. With this
technique, the size of regions closer to the poles increases, but the size of equato-
rial regions does not decrease, making the total area of the regions bigger than the
sphere itself. As a consequence, spherical voxels will have overlapping volumes,
sharing part of their points with the voxels of neighboring regions.

Spherical CNN. The whole 4-channel signal is fed to the network, which com-
putes the spherical and SO(3) correlations up to the last layer, as described in the

5The original formulas can be found in [35] and will not be reported here, because they unnec-
essarily weigh the explanation down. The code is also available on GitHub at shorturl.at/gqOST.
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previous section. The output of the last layer is a signal on SO(3), which is rep-
resented by a cubic feature map. According to figure 4.1, such map is 48x48x48
and has a single channel (i.e. scalar values). Each of the 3 dimensions of this
map encodes a Euler angle as its index, making each position of such map a fully
identified 3D rotation.

Soft-argmax. A rotation can directly correspond to a Local Reference Frame
(as seen in section 3.3), so what we need to do in this layer is extract a single
rotation out of this output.
A very simple way to do this is by applying the soft-argmax function, that com-
putes probabilities by taking exponentials and normalizing them to add up to 1.
The bin with the highest probability can be chosen to be the Local Reference
Frame.
Experimentally, this approach delivered deluding performances. Better results
have been obtained by using a Parzen window, as follows6. First, we take the
argmax of the last layer. Second, we compute the distances between each position
and the position of the argmax, producing a 48x48x48 cubic map of distances.
After this, we feed such map to the Parzen window, which is a 1D function of the
distance: it reaches a maximum in the argmax and decreases monotonically to 0.
Figure 4.8 and the following piecewise equation represent such function:

f(x) =


1− 6x2(1− x) if x ≤ 1

2

2(1− x)3 if 1
2
< x ≤ 1

0 if x > 1

(4.1)

where x is the distance from the argmax divided by half the width of the cube, thus
the function has a non-negative domain. This means that points whose distances
from the argmax are higher than 24 steps (out of 48) get 0 as a value.
Thus, by feeding the cubic map of distances to this Parzen function, we obtain
another cubic map which gets normalized and multiplied element-wise to the out-
put of the last correlation layer, resulting in a signal peaked on the argmax. Each
value of this new map will be considered the weight corresponding to the (α, β, γ)
coordinates of the position of such value in the map. For this reason, a weighted
sum of the coordinates is carried out, and the resulting triple is the output of this
whole soft-argmax operation.

LRF extraction. From the last operation we have a triple of SO(3) coordinates
corresponding to ZYZ-Euler angles. By applying equations 3.20 and 3.21, we can

6From the implementation at https://github.com/MWPainter/cvpr2019

https://github.com/MWPainter/cvpr2019
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Figure 4.8: 2D graph of the employed piecewise Parzen function. Each interval of
equation 4.1 is drawn in a different color. The x-axis represents the ratio between
the distance from the argmax and half of the cube width. This means that points
farther away than half of such width receive a Parzen value of 0.

compute the rotation matrix that corresponds to the LRF:

LRF(α, β, γ) = Rz(α)Ry(β)Rz(γ) (4.2)

Please note that, in the actual code, every matrix of the equation above has been
transposed (and the multiplication order has been reversed), in order to have the
LRF as the rotation matrix that transforms the points into LRF coordinates, as
explained in section 3.3.2.

4.3 Training process (backward)

The training process is carried out differently depending on the learning tech-
nique. We employed: unsupervised learning, full-fledged adaptation and weakly
supervised learning. It’s important to notice that there is no way to have labeled
data to train our network: having labeled data, in this context, means having
a ground truth LRF for each point of the cloud, but there is no absolute truth



4.3. TRAINING PROCESS (BACKWARD) 41

about LRFs7. The only strictly defined property of LRFs is that they have to ro-
tate coherently with the cloud, and thus they only make sense when compared to
each other, in a relative way. For this reason, all the following learning techniques
will make use of a relative loss between 2 rotated versions of the same keypoint,
effectively using a Siamese setting (i.e. with 2 identical networks).

Figure 4.9: Unsupervised learning flow chart. Subsampling and random sampling
are not represented to simplify the figure.

Unsupervised learning. Learning without supervision means that we do not
use any kind of information about data: we only take raw point clouds and com-
pute their LRFs. In order to have a meaningful setting, the unsupervised process
proceeds as in figure 4.9: we take a keypoint from a pointcloud, extract its support,
and then duplicate it. One copy gets augmented by a random rotation, while the
other one undergoes a different random rotation. The resulting rotation matrix
that separates such two copies is computed and saved, becoming our synthetic
ground truth.
The network is fed both keypoints and it computes their respective LRFs. Then,
the LRF of the second copy gets rotated back using the previously saved ground
truth matrix (which is the relative rotation between the first and the second copy
of the keypoint), and thus the two outputs can be compared with a loss function.

7It’s possible to have labeled data by computing a hand-crafted LRF and using the network
to learn such function, but this has two negative implications: first, it would be constrained to
the performances of the hand-crafted LRF; second, it would not learn something new.
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Full-fledged adaptation. This technique is unsupervised and proceeds as fol-
lows: first, unsupervised training of a network on a certain training set; then, this
network is trained with the test set itself for a certain number of iterations, in
order for the network to adapt to the new data before being tested.
This may seem as a very clear case of data spoofing but, actually, since none of
these data has any label or ground truth, there is no spoofing involved. Moreover,
it can be legitimized by a simple consideration: is it possible to use this technique
when using the network with real data? The answer is yes, because any surface
matching or pose estimation program that uses this network can train it first with
some of the data loaded by the user, and then ask it to compute the LRFs.
A very extreme version of this technique consists in fully training form scratch a
new network with test data, and it has also been tried in this work.

Full-fledged adaptation is expected to achieve slightly better results than the
normal unsupervised learning.

Weakly supervised learning. The last learning technique we used is a form
of supervised learning. As already said, not having labels means that we cannot
perform a normal supervised learning. Nevertheless, we can use the ground truth8

information contained in datasets to have realistic input data.
The weakly supervised process proceeds as follows (see figure 4.10). We take two
views of the same scene, which are contained in the dataset and for which we
know the ground truth rotation matrix that transforms one view into the other.
We select keypoints in one of them and then we temporarily rotate the cloud of
keypoints to check if the same points exist in the other view9, pairing them, and
we discard all the keypoints that do not have a correspondent. Now, for each pair
of keypoints, we augment one of the two with an additional random rotation and
then we feed them to the network, computing two LRFs. We know the ground
truth and the random rotation applied, so we can rotate back the outputs and
compute the loss.

By using real-world rotations instead of the synthetic ones, we expect this
method to produce better test results. In fact, despite not being able to use the full-
fledged adaptation in this setting, the usage of real rotations can make the network
more robust to real nuisances such as: sensitivity of the depth camera, occlusion,
clutter, noise. In fact, the same object or scene from two distinct viewpoints can
appear very differently, and this is certainly good for the network to learn. Of

8The ground truth usually consists in the rotation matrices that separate the camera orien-
tations that have captured the different point clouds in the dataset. This means that with the
ground truth we can align different views of the same object or scene, and use such views to have
real rotations instead of the synthetic ones produced in the processes above.

9In the actual implementation we check if it exists a point closer than a certain, small,
threshold.
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course, it’s not always possible to use supervised learning, because not all the
datasets have enough supervised data to train and test the network.

Figure 4.10: Weakly supervised learning flow chart. Subsampling and random
sampling are not represented to simplify the figure.

As a closing remark, the actual implementation of all these procedures opti-
mizes execution times and randomizes the input order, so the extraction of all the
keypoints from all the clouds/pairs happens all at once at the beginning of the
training. When a certain keypoint gets selected for a forward pass, it is loaded
with its local support only, without loading the entire point cloud.

4.3.1 Loss function

The last step we are missing for the training process is represented by the loss
function. Divergences (such as the Kullback–Leibler or the Jensen–Shannon diver-
gence) or distances (such as the Wasserstein distance from the Optimal Transport
problem) between the feature maps of the last layers of corresponding keypoints
are very interesting approaches that are yet to be tested. The actual loss used in
this network is much simpler, though, and it consists in the 3D angle between two
correspondingly computed LRFs. Such LRFs, computed from paired keypoints,
are aligned using the ground truth, that can be synthetic (unsupervised) or from
real data (weakly supervised). A perfect algorithm would result in a perfectly
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aligned pair of LRFs, so we compute the angle between them: the lower, the bet-
ter. Such angle is referred to as Theta angle, and is computed by means of the trace
of the rotation matrix that separates them, as in section 3.3.3: finding such matrix
is easy, since both of the LRFs are actually rotation matrices. This loss function
is referred to as Theta loss, and minimizing it indirectly causes an improvement
in our repeatability measure (section 3.4), because repeatability can be 1 only if
the Theta angle is low. The network is mathematically rotation-equivariant but
this loss function, along with the soft-argmax operation we have defined, forces
the network to learn to robustly produce equivariant maxima.

Apart from the loss function itself, computing it with the Parzen window
scheme that has been explained before appears to be far from optimal, both in
terms of experimental performances and in terms of theoretical significance, even
though it is still better than a vanilla soft-argmax operation. From the latter
point of view, using this window has a two-fold effect: first, we only let the net-
work accumulate gradients to shift the position of the maximum identified with the
window, but we do not encourage the network to produce similar feature maps for
corresponding pairs; second, the window itself does not accumulate any gradient,
because its values are computed using an argmax, which is a non-differentiable
operation. Moreover, another good addition would be to force the output to be
clearly peaked in a small area, because the usage of maxima without forcing a
peaked output structure produces very non-robust results, as found in [26]: if two
or more high values exist, it is likely that a rotation of the input causes them to
also shift their values, and thus to change the output of the network. If the output
had instead a Gaussian structure, for example, this problem could be solved, as a
very close bin would get selected. Using as loss a divergence between correspond-
ing feature maps and/or a divergence with a feature map and a Gaussian could
partially address these problems, and they could be worth exploring in the future.

4.4 Benchmarking process

After training a network, it is necessary to assess its performances. Testing the
network with synthetically rotated data would not produce a realistic indicator
of performance. Thus, independently from the training process, the benchmark
follows a standard pattern that is also used for the different methods we tested
as baselines (FLARE and SHOT), and that is analogous to the weakly supervised
approach to training, except for data augmentation.

Point clouds are loaded in pairs, along with the ground truth rotation that
separates them. After a subsampling, the first point cloud is uniformly sampled
to select the potential keypoints, according to a user-defined leaf keypoints pa-
rameter. The first cloud is then temporarily rotated to match the second one,
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using the ground truth, and for each potential keypoint we select the closest point
to it in the second cloud. If, for a certain candidate, the closest point is closer
than a user-defined min distance, such candidate is rotated back and selected
as a keypoint, and its closest point is used as the corresponding keypoint in the
second cloud.
All such keypoints undergo a forward pass in the network along with their sup-
port, the extracted LRFs are rotated using the ground truth and their alignment
is evaluated using the LRF repeatability measure, defined in section 3.4.
This process is repeated for all the view pairs of a certain scene, and a repeatability
percentage is produced for every scene. Notice that, for some datasets, informa-
tion about the percentage of overlapping regions in each pair is also available: for
such datasets, only the pairs with an overlap of at least overlap threshold are
selected for the benchmark.
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Chapter 5

Experimental results

This chapter presents the most interesting results obtained. They will be provided
with visual charts and numeric tables, and will be followed by comments and by
an analysis of the motivations that have brought to such results. When useful,
some examples of clouds or keypoints will be shown, along with a representation
in Rodrigues’ vectors of the output feature map of the network.

In the following charts and tables, many different parameters will be changed
and tuned to achieve better performances. Unfortunately, despite the use of
CUDA-capable GPUs and a constant optimization of the code, trainings and tests
require a significant amount of time: a single-epoch training with a bandwidth of
24 can take 10 hours, and a training can need 5-10 epochs to be completed, or
more, depending on the number of samples in each epoch1; a full benchmark can
take from 8 to 20 hours, because it selects more keypoints than the training to
have more precise results, and it is bound to using real view pairs, independently
from the split we’re benchmarking on (train, validation, test). For these reasons,
doing a full grid search to look for the best combination of hyperparameters is
impossible, at least in the time span of a thesis. In order to converge anyway to
a good combination, a substantial amount of trainings and tests have been done
heuristically, and obtaining partial results only. This means that these results will
not be shown here, but they were useful to select the direction of the search. More-
over, the whole set of produced results is too big to be discussed completely, so
only the most interesting and complete results will be shown in the next sections.

Another peculiar fact is that, since benchmarking times are so high, it is im-

1The dimension of the dataset defines the number of meaningful keypoints we can extract.
For a dataset we were able to extract 25K points or more, for another just a tenth of it: if the
first needs 8 epochs to train, the second needs around 80. To have acceptable results, we’ve found
that its the total amount of inputs that are fed to the network that has to stay constant, so the
product between keypoints per epoch and the number of epochs. For this reason, independently
from the number of keypoints, training times are approximately constant.

47
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possible to meaningfully use real view pairs to select the best training checkpoint
with a benchmark on the validation set. Thus, for unsupervised (and full-fledged)
trainings, the validation performances are evaluated exactly as during training, so
with synthetic rotations, and the checkpoint of the network is selected from this
evaluation. The only exception to this impossibility is the supervised training, in
which, instead, we employ real rotations to check the validation performance, so
we actually benchmark the validation set at each checkpoint. It’s worth noticing,
though, that it has been possible to apply supervised training only to extremely
reduced training and validation sets, due to otherwise unfeasible training and
benchmarking times.

In terms of fixed hyperparameters for almost all the shown results, we have:
learning rate equal to 0.001; batch size equal to 8 2; number of SO(3) layers equal
to 3; number of input channels equal to 4; equal bandwidth for all the layers and
the input; channels of the layers set as in figure 4.1. If a parameter is set differently,
it will be explicitly stated.
For benchmarking, the threshold used in the repeatability measure of section 3.4 is
0.97, meaning that for two LRFs to be repeatable, both their x and z axes should
produce a cosine higher than 0.97, and thus that x and z axes can be misaligned
each by a maximum of arccos (0.97) ≈ 14 deg, or around 0.246 radians.

In order to have a comparison with the state of the art, the results of the
network will be compared with the scores of FLARE [21], computed using the
exact same benchmark as for the network. A side note about FLARE is that, in
order to work, it needs the normal of each point. Thus, it works seamlessly with
meshes, but it can also work with point clouds if provided with such normals. Since
our network works with point clouds only, the scores of FLARE are shown both
at its peak performance (with meshes, when available) and at the same conditions
as the network (so with point clouds).

All the following results and charts will be available in this repository, as well
as all the partial and less interesting results that are not shown in this chapter:
https://github.com/CVLAB-Unibo/thesis-stella

5.1 3DMatch

The dataset we refer to as “3DMatch” is actually a collection of 5 different real-
world datasets, capturing indoor scenes, that have been converted to the same
format. This collection has been produced by Zeng et al., from Princeton Uni-
versity, for their work on learning descriptors from 3D data [36]. Their model

2Smaller sizes lead to worse results, higher sizes do not improve results significantly. By
chance, 8 is usually the maximum parallelism allowed by the VRAM of the used GPUs.

https://github.com/CVLAB-Unibo/thesis-stella
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is called 3DMatch, from which the name of the dataset that can be found at
http://3dmatch.cs.princeton.edu, that comprises:

• SUN3D [32]: http://sun3d.cs.princeton.edu

• 7-Scenes [25]: https://www.microsoft.com/en-us/research/project/rgb-d-data
set-7-scenes

• RGB-D Scenes v2 [17]: http://rgbd-dataset.cs.washington.edu/dataset/rgbd-
scenes-v2

• BundleFusion [8]: http://graphics.stanford.edu/projects/bundlefusion

• Analysis by Synthesis [30]: http://graphics.stanford.edu/projects/reloc

The total number of different scenes is 62, and each scene is made of a variable
number of views (point clouds), from 6 to almost 300. The test split is the same
as in [36] and [26], while the rest has been divided into training and validation.
Here are the validation (6 scenes) and test (8 scenes) splits, whereas the training
split comprises the remaining 48 scenes. Validation:

• analysis-by-synthesis-apt2-kitchen,

• sun3d-harvard c11-hv c11 2,

• rgbd-scenes-v2-scene 10,

• 7-scenes-heads,

• sun3d-brown bm 4-brown bm 4,

• bundlefusion-office0.

Test, in brackets the short name they are referred to in this work and in [26]:

• 7-scenes-redkitchen (Kitchen),

• sun3d-home at-home at scan1 2013 jan 1 (Home1),

• sun3d-home md-home md scan9 2012 sep 30 (Home2),

• sun3d-hotel uc-scan3 (Hotel1),

• sun3d-hotel umd-maryland hotel1 (Hotel2),

• sun3d-hotel umd-maryland hotel3 (Hotel3),

http://3dmatch.cs.princeton.edu
http://sun3d.cs.princeton.edu
https://www.microsoft.com/en-us/research/project/rgb-d-dataset-7-scenes
https://www.microsoft.com/en-us/research/project/rgb-d-dataset-7-scenes
http://rgbd-dataset.cs.washington.edu/dataset/rgbd-scenes-v2
http://rgbd-dataset.cs.washington.edu/dataset/rgbd-scenes-v2
http://graphics.stanford.edu/projects/bundlefusion
http://graphics.stanford.edu/projects/reloc
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• sun3d-mit 76 studyroom-76-1studyroom2 (Study),

• sun3d-mit lab hj-lab hj tea nov 2 2012 scan1 erika (Lab).

Additionally, we defined two very small training and validation sets, mainly used
to get quicker results, to check the generalization of the network, or to train it
with the supervised method, that takes much longer and is impossible to run on
the full training set. Such sets are referred to as “Train2”, containing sun3d-
brown cogsci 1-brown cogsci 1 and rgbd-scenes-v2-scene 02, and “Validation1”,
containing only analysis-by-synthesis-apt1-kitchen. The others will be referred
to as “TrainFull” and “ValidationFull”, or simply by full training set and valida-
tion set. Please note that the validation scene sun3d-harvard c11-hv c11 2 could
not be used for benchmarking because it lacks the ground truth, so it has been
used during synthetic validation only.
An example of a point cloud from this dataset is shown in figures 4.2 and 4.3.

For all the following evaluations we kept the support radius constant at 30 cm,
a value arisen from short tests and previous works such as [26].

5.1.1 Training vs Validation vs Benchmark

Before proceeding with the chapter, here is a comparison of the performances of
the network during a typical unsupervised training and the performances of the
same network during the benchmark, which makes use of real rotations. In figure
5.1 and 5.2, we can see that training and validation performances increase very
quickly at the beginning, and they continue to increase more slowly in later stages.
The network these figures refer to is trained with the full training split for 5 epochs,
and uses a bandwidth of 24. The abscissa in the figures indicates the checkpoint
number, where each checkpoint corresponds to 1000 forward passes, and each
epoch contains around 25K keypoints: at each checkpoint, a full evaluation of the
validation set is carried out, whereas the training performances are taken as the
epoch-average up to that point.

Another thing we can see in these plots is that the validation performance is
better than the training performance, at least up to a certain point in which they
become approximately identical, whereas in the literature the validation perfor-
mance is usually lower than the training one. This can be explained by the fact
that training performances are epoch-averages, whereas the validation set, be-
ing smaller, is fully evaluated at each keypoint. For early checkpoints, in fact, the
learning curve is still quite steep and the average of the training performances pro-
duces values that are slightly biased towards the worse, underestimating the real
performances on the training set. This bias is greatly reduced in later checkpoints,
because the learning curve becomes flatter, and in these points the validation per-
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Figure 5.1: Theta loss during a typical training. A unit on the x axis represents
1000 forward-backward passes.

Figure 5.2: Repeatability (%) during a typical training. A unit on the x axis
represents 1000 forward-backward passes.

formances are aligned to the training ones. Moreover, there is no sign of overfitting
involved.

Performances in the benchmark, though, independently from the set we use, are
significantly worse: whereas training and validation repeatabilities span from 80%
to 90%, the repeatability in the benchmark rarely goes above 40%, even though it
can touch 60% on certain scenes. This happens because the benchmark uses real
view pairs instead of synthetically rotated keypoints: the latter method produces
the same support, but rotated, whereas the former can produce quite different
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supports because of noise, clutter and occlusions. Changing the viewpoint means
that objects can partially occlude other objects in the scene, or that a side of an
object that was in front of the camera becomes captured sideways, and thus with
a much lower point density. An example of how much clouds can change with a
viewpoint variation can be seen in figures 5.3 and 5.4: they show two overlapped
views of the same scene in different colors, taken from rgbd-scenes-v2-scene 02 and
rotated with the ground truth in order to be aligned. In the scene we can see a sofa
in front of a table with some objects, inside a room. Apart from the outer objects
that appear in one view and not in the other, the sofa and the table appear quite
differently in the two views. Moreover, the objects on the table cast two different
“shadows” on it, that can be seen by looking at the missing red and green regions
on the table. There are a lot of border keypoints that are correctly found in both
clouds but show very different supports: it’s mainly because of these differences
between viewpoints that benchmark performances are so low when compared to
training and validation. In fact, during supervised training, these differences do
not arise, and the training and validation performances, while being lower, are
good indicators of the benchmark score.

Figure 5.3: Overlap of 2 different views of the same scene, one in green and the
other in red.

Moreover, due to the mathematical equivariance of the network, one may ex-
pect training performances to almost touch 100%. But, as explained in section
4.1, the presence of non-linearities lowers the equivariance of the network and, in
addition, the random sampling makes the pairs of training keypoints non-identical.
In figure 5.5 we can see that training without random sampling boosts the equiv-
ariance, and the absence of subsampling boosts it even more. However, it is worth
highlighting that those operations have been introduced for robustness, and that
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these performances refer to unsupervised training and validation with synthetic
rotations, and do not have any implication on the benchmark performances. The
impact of the two sampling operations will be analyzed in the following sections.

All the considerations made in this section apply to the other datasets as well.

Figure 5.4: Overlap of 2 different views of the same scene, one in green and the
other in red. Virtually rotated.

Figure 5.5: Repeatability (%) during typical trainings. A unit on the x axis
represents 1000 forward-backward passes. 0 is a normal training, 1 is without
random sampling, 2 is without both random sampling and subsampling.
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5.1.2 Bandwidth selection

The first thing we tried to optimize is the bandwidth of the network. Assuming
that the bandwidths are equal in all the layers, duplicating the bandwidth means
duplicating each side of 3-dimensional feature maps, and thus it means multiplying
by around 23 = 8 the training time. We fully tested bandwidths up to 24, and
only partially tested 32 due to excessive time requirements. Figure 5.6 and table
5.6 show the benchmark repeatabilities on the full validation set. All the networks
have been trained with the small Train2 dataset to have quicker results.

Table 5.1: Benchmark repeatability on the validation set for networks with differ-
ent bandwidths. Best result on each column in bold.

Apt-Kitchen Scene10 Heads Brown bm4 Office0 Mean

Bandwidth 3 0.05616 0.04186 0.03403 0.1274 0.05089 0.06206
Bandwidth 6 0.2482 0.1818 0.1118 0.3065 0.2150 0.2127
Bandwidth 12 0.4207 0.2948 0.2163 0.3836 0.3271 0.3285
Bandwidth 24 0.5075 0.4108 0.3402 0.4167 0.4234 0.4197

Figure 5.6: Benchmark repeatability chart for networks with different bandwidths
(validation set).

As already stated, bandwidth 32 is not included in the chart because it has been
trained and tested only up to 2 epochs, producing similar results to bandwidth
24, that is clearly the winner in this comparison. For these reasons, 24 has been
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selected as the bandwidth for all the subsequent tests, and will be considered
a default parameter from now on, event though we suggest further testing with
higher bandwidths.

5.1.3 Generalization and robustness

Train2 vs TrainFull. Having selected the bandwidth, the first thing we want to
assess is the difference between a network trained on Train2 and a network trained
on the full training set. Figure 5.7 and table 5.2 show the benchmark results on
the validation set.

Table 5.2: Benchmark repeatability on the validation set for networks trained with
different training sets. Best result on each column in bold.

Apt-Kitchen Scene10 Heads Brown bm4 Office0 Mean

Train2 0.5075 0.4108 0.3402 0.4167 0.4234 0.4197
TrainFull 0.5358 0.4049 0.3350 0.4180 0.4228 0.4233

Figure 5.7: Benchmark repeatability chart on the validation set for networks
trained with different training sets.

The two networks are extremely similar, with the full training having a very
small overall advantage. This means that the networks don’t need a lot of data
to attain such performances, and a training set that contains two scenes only can
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be enough to generalize to many unseen scenes. As a side note for this data,
though, the network trained on Train2 has been trained for a little longer than the
other one, and it samples much more keypoints per point cloud in order to have
a similar pool of keypoints to train with. This can also explain why it behaves
better on some scenes. Thus, due to the little overall lead of TrainFull despite the
training-time advantage for Train2, we decided to use the full training set for the
next tests.

Rotating the test set. Speaking of generalization, another important aspect to
take into account is how much the network can tolerate rotations, since this is the
initial goal of this work. Thus, we benchmarked the TrainFull network of table 5.2
both on the test set and on a randomly rotated version of it, in which every view
has been rotated with a different matrix, in order to see the rotation-equivariance
of the network.

Table 5.3: Benchmark repeatability on the test set and on a randomly rotated
version of it.

Kitchen Home1 Home2 Hotel1 Hotel2 Hotel3 Study Lab Mean

Normal 0.2764 0.3575 0.3325 0.3268 0.3365 0.3986 0.2876 0.3430 0.3324
Rotated 0.2718 0.3513 0.3237 0.3179 0.3295 0.3995 0.2771 0.3309 0.3252

Figure 5.8: Benchmark repeatability chart on the test set and on a randomly
rotated version of it.
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In figure 5.8 and table 5.3 we can see that the network delivers very similar
performances, and that random rotations do not have a meaningful impact: it
excellently generalizes to rotated data.

Effect of sampling operations. In the previous chapter, we discussed about
the subsampling and random sampling operations, employed to have faster train-
ings and more robust networks. We also showed in section 5.1.1 that these two
operations actually lower training and validation performances, but to really see
if they are useful we have to rely to the benchmark. Figure 5.9 and table 5.4
show the performances of a network trained normally (thus with subsampling and
random sampling), a network trained without random sampling and a network
trained without both random sampling and subsampling, all of them trained with-
out supervision.

Table 5.4: Benchmark repeatability on the test set comparing presence and absence
of sampling operations.

Kitchen Home1 Home2 Hotel1 Hotel2 Hotel3 Study Lab Mean

Normal 0.2764 0.3575 0.3325 0.3268 0.3365 0.3986 0.2876 0.3430 0.3324
No-rand 0.3222 0.3578 0.3307 0.3743 0.3353 0.3993 0.2770 0.3424 0.3424

No-rand&sub 0.2528 0.3451 0.3193 0.3097 0.3206 0.3808 0.2756 0.3314 0.3169

Figure 5.9: Benchmark repeatability chart on the test set comparing presence and
absence of sampling operations.

Despite the mean being higher for the network without random sampling, the
“normal” network is actually tied with it for the number of scenes in which they
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achieve the highest scores. Removing subsampling proved to be harmful, instead.
Since disabling the sampling operations significantly increases the training time
with little to no performance improvement, we will consider the network with
bandwidth 24, unsupervised training and both random sampling and subsampling,
as the reference network for this dataset and for transfer learning on other datasets
as well. Moreover, the absence of sampling operations will not be further tested
as it doesn’t seem to lead to interesting results.

5.1.4 Overall results

Having set the hyperparameters and checked the robustness of the network, we
can present here the best results we have achieved and compare them to some
state-of-the-art methods. For these results, we consider 3 networks: the first is
the reference one, and followed an unsupervised training on TrainFull, the second
one followed a full-fledged adaptation from scratch on the test set, the third one a
weakly supervised training on Train2. Their results on the test set are compared
to FLARE and SHOT in figure 5.10 and table 5.5. Since 3DMatch doesn’t provide
meshes, FLARE is executed on the point clouds, with normals computed by means
of Open3D.

Table 5.5: Benchmark repeatability on the test set, comparing the network to
FLARE and SHOT. Best result on each column in bold.

Kitchen Home1 Home2 Hotel1 Hotel2 Hotel3 Study Lab Mean

Unsupervised 0.2764 0.3575 0.3325 0.3268 0.3365 0.3986 0.2876 0.3430 0.3324
Full-fledged 0.2841 0.3684 0.3522 0.3364 0.3479 0.3983 0.2988 0.3569 0.3429

Weakly Supervised 0.3152 0.3753 0.3617 0.3800 0.3965 0.4421 0.3429 0.3653 0.3724
FLARE 0.321 0.376 0.325 0.369 0.384 0.387 0.338 0.296 0.3495
SHOT 0.206 0.244 0.227 0.189 0.188 0.228 0.181 0.218 0.2101

As we can see, the full-fledged method does improve over the unsupervised
training, but not by a large margin, showing again that the network has great
generalization capabilities.
The improvement of the weakly supervised method is not large either, but it is
significant and is enough to surpass FLARE. SHOT, instead, is clearly behind all
the other methods and will not be included in the next charts.

5.1.5 Result analysis

The numbers clearly show that the performances of the network are very similar
to those of FLARE, that represents one of the current state-of-the-art methods,
with the supervised network being able to beat it even by using only 2 scenes for
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Figure 5.10: Benchmark repeatability chart on the test set comparing the network
to FLARE and SHOT.

the training. Despite the results being promising, it is necessary to try to analyze
them more in depth, in order to understand the weaknesses and produce better
methods for future work.

For all the following figures and considerations, the network used is the refer-
ence one, which is the unsupervised row of table 5.5.

Theta histograms. In figure 5.11 we can see a plot of the distribution of the
Theta angle in radians between LRFs of synthetically rotated pairs of keypoints,
for the whole validation set. The great majority of them have angles much lower
than 0.5, preluding great validation repeatabilities for synthetically rotated data,
as we’ve already seen. What is interesting about this chart is that the histogram
is bimodal, having another peak in the right-end. The whole histogram evolves a
lot during training: it starts as an almost flat histogram, then it start to become
bimodal, with peaks on the left and on the right, followed by a thick trail. As the
training goes on, the peaks become higher and the trail lower, with the left peak
eventually overcoming the right peak.
A peak on the right means that there is a certain number of points whose LRFs get
misaligned by a full 180 degrees rotation around some axis in the space, which is
the maximum possible misalignment. It is still not totally clear why this happens,
but particularly symmetrical inputs and imperfect equivariance of the network can
be two causes. A further study on this could be needed, for example trying to track
down the rotation axis.

The situation gets much worse in the benchmark (figure 5.12a), where the
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Figure 5.11: Theta histogram of the validation set with synthetic rotations, ob-
tained while training an unsupervised network.

(a) Network histogram. (b) FLARE histogram.

Figure 5.12: Theta histograms of the test scene Home1 with real-world rotations.

histogram is more clearly bimodal in most of the cases. The figure refers to a test
scene, but the situation is totally analogous for training and validation scenes, as
long as we use real-world rotations. However, there are particular scenes in which
this happens much less (figure 5.13), and they are usually the scenes with the
highest repeatability.
An example from the benchmark with FLARE shows that its histogram, while
having a similar left peak, shows almost no right peak, at the disadvantage of the
trail which is thicker (figure 5.12b).
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Figure 5.13: Theta histogram of the network on the validation scene Apt-Kitchen
with real-world rotations.

Rodrigues’ vector visualization. In order to understand what is happening
inside the network, it would be great to visualize the weights of the kernels or
the feature map of the last layer. In our network, though, these objects are 3-
dimensional and are weirdly parametrized with ZYZ-Euler angles. In order to be
able to meaningfully visualize them, our approach is to take a pair of corresponding
keypoints from the benchmark, feed them to the network, and convert each position
of the feature maps of the last SO(3) layer into a Rodrigues’ vector (see definition
3.15). At this point, we can visualize the vectors of each keypoint, separately, in
a 3D chart in order to see the structure of the output for that keypoint3: close
rotations will be represented by close Rodrigues’ vectors in the space4. In order to
also understand which are the highest valued vectors (i.e. LRFs), recalling that
a high value means high probability in the soft-argmax, we plot them using a
heat map color scheme. In figure 5.14 we can see such plot for two different pairs,
where we show the top 500 highest values with the following heat map: blue means
smaller value, green means higher value. In black, we can see the highest value
(argmax), whereas the yellow point is the soft-argmax (the guess of the network):
they are usually very close to each other and are of course enclosed in the greenest
part of the cluster of points. There is also a red point, which represents the LRF
guess for the other keypoint in the pair, aligned to the first one with the ground
truth: if the pair is repeatable, the two guesses (yellow and red) should be close
to each other. In the figure we can see that there is a clear cluster of points
around the yellow point, with probability values decreasing with the distance from

3We actually use angles instead of tangents of half-angles in the formula for Rodrigues’ vectors,
in order to have a better visualization in terms of scale.

4The only exception to this is the 180-degree rotation, which can also be represented by a
rotation of -180 degrees.
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the yellow point itself: this means that the network actually learned to peak the
output around its guess for the LRF, even though there are other clusters as well.
The distance between the yellow and the red points, instead, is an indicator of the
Theta angle: in figure 5.14a they are so close that it’s possible to see the black
point only, and in fact it is a repeatable pair. Figure 5.14b, instead, shows the
output for a non-repeatable pair: the yellow and black points are close, but they
are quite far from the red one. However, we can see that there is a little cluster
around the red point, meaning that the network was uncertain about its output.
This is not always the case, but it indicates that taking the second-best cluster
as a second possible guess would slightly improve repeatability at the expense of
computation time.

(a) Keypoint from a repeatable pair. (b) Keypoint from a non-repeatable pair.

Figure 5.14: Visualization with Rodrigues’ vectors of the output layer of the net-
work. From blue to green: increasing output value. Black: highest value. Yellow:
network guess. Red: guess for the other keypoint of the pair, rotated using the
ground truth.

Another interesting plot we can show with Rodrigues’ vectors is in figure 5.15,
obtained from the same pairs of the previous figures. The two keypoints of a pair
are referred to as source and target, and for both of them we show the top 500
values with a heatmap. As before, the black point is the argmax, whereas the
yellow point is the guess of the network. The two keypoints belong to differently
rotated views, so the central part of the figures shows the rotated version of the
source5, to align it with the target. Figure 5.15a shows a repeatable pair, whereas
5.15b shows a non-repeatable pair: in the former case we can see that the feature
maps are much more similar than in the second one, meaning that a loss function
that focuses on the similarity of feature maps could be beneficial to this network. In

5Rotating Rodrigues’ vectors does not correspond to visually rotating the figures, of course.
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the latter case, we can see that the network correctly reproduces one of the clusters,
but it fails to fully reproduce the one that actually contained the maximum for
the source keypoint.

(a) Keypoints from a repeatable pair.

(b) Keypoints from a non-repeatable pair.

Figure 5.15: Visualization with Rodrigues’ vectors of the output layer of the net-
work. From blue to green: increasing output value. Black: highest value. Yellow:
network guess. On the left, the output for one of the keypoints of the pair, named
source; on the right, the output for the other. In the center: the left map rotated
with the ground truth of the pair.

Repeatability vs angle and overlap. In order to check why some scenes pro-
duced better results than others, here are 2 pairs of plots that show the correlation
between the repeatability (y axis) and the overlap percentage or the 3D angle be-
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tween each pair of views (x axis)6. Figure 5.16 shows the validation set, whereas
figure 5.17 shows the test set, all of them computed with the benchmark.
Considering validation data, the correlation is quite clear in both plots, even
though with high vertical variability, but the angle seems to carry more infor-
mation: the Apt-Kitchen scene has the highest performance, and in fact all of its
pairs have a relatively small angle separating them. Office0 and Heads, instead,
show both very similar overlaps and similar angles: the difference in performance
(in favor of the former) is not totally justified by the lower number of high-angle
pairs. In fact, Office0 has a higher repeatability even with the same angle and
further analysis will be required to understand why.
The same reasoning can be applied to test data as well.

Figures 5.18 and 5.19 show the same plots for FLARE: these results are similar
to those of the network, apart from the fact that the repeatability of FLARE does
not easily go to 0 even for low-overlap or high-angle pairs, whereas the repeatability
of the network does.

(a) Repeatability vs angle. (b) Repeatability vs overlap percentage.

Figure 5.16: Scatter plots of the benchmark performances of the network on the
validation set.

63DMatch doesn’t have the overlap information, so it is computed by the benchmark itself.
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(a) Repeatability vs angle. (b) Repeatability vs overlap percentage.

Figure 5.17: Scatter plots of the benchmark performances of the network on the
test set.

(a) Repeatability vs angle. (b) Repeatability vs overlap percentage.

Figure 5.18: Scatter plots of the benchmark performances of FLARE on the vali-
dation set.

(a) Repeatability vs angle. (b) Repeatability vs overlap percentage.

Figure 5.19: Scatter plots of the benchmark performances of FLARE on the test
set.
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5.2 StanfordViews

This dataset is synthetic and has been created by the CV Lab at the University of
Bologna [21]. It consists of random views of models belonging to the Stanford 3D
Scanning Repository [7], acquired by using a software simulation of a Kinect de-
vice. It’s important to notice that this dataset is composed of meshes, so FLARE
can directly work on it.
It has no training-test splits, and in our work it consists of 3 objects: Bunny, Ar-
madillo and Dragon. They can be seen in figure 5.20. Since there is no training-test
split, we could neither proceed to unsupervised learning, nor to weakly supervised
learning. Moreover, the amount of data available is considerably lower than with
3DMatch, and in order to have more keypoints we had to rely on lowering the
leaf value considerably. For these reasons, the only viable methods are transfer
learning from networks trained on 3DMatch and full-fledged adaptation. In addi-
tion, we could not use validation performances to select the training checkpoint
but, since there were no signs of overfitting on 3DMatch, we simply selected the
checkpoint with the best training repeatability.

(a) Bunny. (b) Armadillo. (c) Dragon.

Figure 5.20: Objects of the StanfordViews dataset, figures from the Stanford 3D
Scanning Repository [7]

In terms of parameters, the only changes for this dataset are in the learning
rate, which is set to 0.0005, and the support radius, whose choice is shown in
the next section. The bandwidth has been set to 24, following the considerations
made in the previous section. Since this dataset contains overlap information, the
benchmark is executed on all pairs with an overlap percentage of at least 10%.
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5.2.1 Choice of support radius

Training performances are very similar to those of 3DMatch and thus are not shown
here, proving again that synthetic rotations of the same keypoint are easily handled
by the network. Instead, here we show the benchmark performances of full-fledged
networks, trained from scratch on StanfordViews, comparing support radii (figure
5.21 and table 5.6). The best radius is only 2 cm, very low if compared to the
30 cm used for 3DMatch, but reasonable since the point clouds of StanfordViews
represent little objects with higher absolute resolutions. We can also see that
increasing the radius above 4 cm improves the repeatability, but quick tests on
higher radii showed no advantages in doing so. Thus, a radius of 2 cm will be set
for all the following results on this dataset.

Table 5.6: Benchmark repeatability of networks with different support radii. Best
result on each column in bold.

Bunny Armadillo Dragon Mean

1 cm 0.3015 0.2472 0.2807 0.2765
2 cm 0.3225 0.2789 0.3013 0.3009
4 cm 0.1622 0.1645 0.1664 0.1644
6 cm 0.1256 0.2009 0.2197 0.1821

Figure 5.21: Benchmark repeatability chart comparing different support radii.
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5.2.2 Full-fledged adaptation.

In this section we show the impact of the full-fledged adaptation on the repeata-
bility scores. We start from the transfer learning of the reference network for
3DMatch, and we gradually adapt it to StanfordViews by means of the full-fledged
adaptation. Finally, we show the performances of a network trained from scratch
on StanfordViews. Notice that, due to the lower number of keypoints, we have
let the network train for much more epochs, in order to maintain approximately
constant the total number of keypoint pairs fed to the network. Figure 5.22 and
table 5.7 show the comparison.

Table 5.7: Benchmark repeatability of different training methods. Best result on
each column in bold.

Bunny Armadillo Dragon Mean

Transfer Learning 0.05568 0.07506 0.1006 0.07712
FF 2 epochs 0.2495 0.1986 0.2029 0.2170
FF 16 epochs 0.3138 0.2588 0.2778 0.2834
FF 75 epochs 0.2785 0.2656 0.2832 0.2758

FF from scratch 0.3225 0.2789 0.3013 0.3009

Figure 5.22: Benchmark repeatability chart comparing different training methods.

As we can see, the transfer learning approach doesn’t yield good results, but the
network quickly adapts to the new dataset, overfitting a little with 75 epochs. The
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full-fledged network trained from scratch delivers the best performances anyway,
and will be taken as the reference for this dataset.
A very interesting thing we can notice here is that a huge change in the support
radius, that has been divided by 15 (from 30 cm to 2 cm), is not as detrimental as
one may guess. If we think about it, the network itself has no concept of support
radius: it matters only for the spherical voxelization procedure, and it sets the
dimension of the visible region to the network. In fact, a small tuning with the
full-fledged adaptation is enough to have much better performances. The cause for
the lower performances of the transfer learning network is to be correlated with the
intrinsic differences between this dataset and 3DMatch, and not with the change
in radius.

5.2.3 Overall results

Here we compare our network to FLARE. It is worth reminding that FLARE
benefits from meshes, while our network only uses point clouds, and that the
performances of FLARE on this dataset have been thoroughly optimized in [21], for
each object independently. For this reason, this comparison shows both FLARE on
meshes, with parameters from [21], and FLARE on point clouds, with the normal
at each point computed using Open3D and a support radius of 2 cm. This latter
approach shows a direct comparison between FLARE and our network, since it uses
the same support radius as the latter. Both comparisons make sense: the first can
compare the network with the best possible results of FLARE; the second, instead,
compares the two methods under the same conditions, since meshes are not always
available and especially since parameter optimization for each scene/object is not
always feasible, for example if no ground truth is available.
Results can be seen in figure 5.23 and table 5.8.

Table 5.8: Benchmark repeatability of the network compared FLARE. Best result
on each column in bold.

Bunny Armadillo Dragon Mean

FF from scratch 0.3225 0.2789 0.3013 0.3009
FLARE on mesh 0.629 0.464 0.521 0.538

FLARE on point cloud 0.348 0.170 0.173 0.230

The best performing method is clearly FLARE on meshes, whose parameters
are individually optimized for each object. To let the network leverage the mesh
information as well, we could create additional input channels when processing
meshes. This is left to future work.
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Figure 5.23: Benchmark repeatability chart comparing the network to FLARE.

On the contrary, the comparison on point clouds is won by the network, which
delivers better performances than FLARE when they both work on the same input
representation and with the same parameters on all the objects.

5.2.4 Result analysis

Our results on StanfordViews cannot be considered state of the art, because they
are easily surpassed by FLARE, but the fact that we are bound to point clouds
only, and that we beat FLARE when it is constrained to work on them, is an
indicator that our direction is promising, and that we may be able to improve our
performances by endowing the network with the ability to process richer input
data.

Theta histograms. As for 3DMatch, the histogram of Theta angles is bimodal.
In figure 5.24a we can see it during training, with synthetic rotations: it is appar-
ently almost perfect. However, during the benchmark, it becomes substantially
worse, as in figure 5.24b, even though it is still better than the histograms on
3DMatch. Figure 5.25a shows the same histogram for FLARE on meshes, which is
clean as usual; instead, figure 5.25b shows that FLARE on point clouds produces
a much worse histogram than the one of the network, clearly bimodal and with a
right peak even higher than the left peak.

Repeatability vs angle and overlap. Rodrigues’ vector do not produce any
new information on this dataset, so they are not shown. Instead, in figure 5.26
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(a) Training data, on the whole dataset. (b) Benchmark data, on Armadillo.

Figure 5.24: Theta histograms of the network.

(a) Using meshes. (b) Using point clouds.

Figure 5.25: Theta histograms of FLARE on Armadillo.

we can see the correlation between repeatability, angle and overlap for the net-
work: this time, the relationship between repeatability and angle seems to be
quite unpredictable, but the relationship with the overlap (which is provided with
the dataset in this case), is very clear. As a comparison, figure 5.27 shows the
same data for FLARE on meshes: the big difference between the two is that the
relationship with overlap has a low incline for FLARE, whereas it is much more
steep for the network.
Figure 5.28 shows FLARE on point clouds, whose correlation with the overlap has
worsened to become almost exponential.

In addition, the angle plots show that FLARE has a lower overall variability,
with the network going to 0 much more easily; in the overlap plots its FLARE
that has more variability, but its mesh version still doesn’t go to 0 even for very
low overlaps, indicating that the usage of surface normals is probably beneficial
for the estimation of a LRF. This is consistent to what was found in [22].
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(a) Repeatability vs angle. (b) Repeatability vs overlap percentage.

Figure 5.26: Scatter plots of the benchmark performances of the network.

(a) Repeatability vs angle. (b) Repeatability vs overlap percentage.

Figure 5.27: Scatter plots of the benchmark performances of FLARE on meshes.

(a) Repeatability vs angle. (b) Repeatability vs overlap percentage.

Figure 5.28: Scatter plots of the benchmark performances of FLARE on point
clouds.
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5.3 ETH

The dataset we refer to as “ETH” has been produced by Pomerleau et al. for
their work on registration [23]. We used 4 real-world outdoor scenes from their
work, recorded with a 3D scanner and saved as point clouds: as a consequence,
FLARE will work by computing normals with Open3D, as for 3DMatch, and
without optimizing its parameters, just as the network. The scenes we used in this
dataset are, namely: Gazebo Summer, Gazebo Winter, Wood Summer and Wood
Autumn. Figure 5.29 shows an example from Gazebo Summer.

Figure 5.29: A view of Gazebo summer. On the right it is possible to see a tree, in
the center a light post, and on the left a gazebo with 3 people sitting on a bench.

This dataset has not been tested extensively: it has been mainly used to assess
the generalization capabilities of the network to outdoor scenes. Moreover, since
these point clouds are outdoor and involve higher distances than 3DMatch and
StanfordViews, the support radius has been set to a higher value: 1 meter.
The rest of the parameters is the same as for 3DMatch. As for StanfordViews,
instead, this dataset has no training-test split, and thus is not suitable for unsu-
pervised of weakly supervised learning. Consequently, we are bound to transfer
learning and full-fledged adaptation, choosing the checkpoints as in StanfordViews.

5.3.1 Overall results

We tried a transfer learning from 3DMatch7 by keeping the same radius, 30 cm; a
transfer learning with an increased radius, 1 meter; and a full-fledged adaptation

7Using the usual reference network: unsupervised learning on the whole training set, random
sampling on.
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from scratch with a radius of 1 meter as well. These methods are compared to
FLARE, as usual, which has been executed with the same radius of 1 meter, in
figure 5.30 and table 5.9.

Table 5.9: Benchmark repeatability of the network, with different training meth-
ods, compared to FLARE. best result on each column in bold.

Gazebo Summer Gazebo Winter Wood Summer Wood Autumn Mean

TL (30 cm) 0.140186 0.111601 0.102966 0.120231 0.118746
TL (1 m) 0.180929 0.156678 0.154393 0.16935 0.1653375
FF (1 m) 0.3142 0.3236 0.3414 0.3708 0.3375

FLARE (1 m) 0.345 0.268 0.210 0.236 0.265

Figure 5.30: Benchmark repeatability chart comparing the network, with different
training methods, to FLARE.

As we can see, the best method overall is the full-fledged network, that is
able to easily surpass FLARE with the exception of Gazebo Summer; the transfer
learning approach appears to perform much worse, both maintaining its original
radius and expanding it to 1 meter. As a side note, though, FLARE executed on
a 30 cm radius performs slightly worse than the network in transfer learning.
For the transfer learning approaches, we can infer the same considerations as for
StanfordViews, and so that a change in the support radius is not detrimental: it
is, in fact, beneficial. The lower performances of transfer learning when compared
to the full-fledged approach are likely related to intrinsic differences between ETH
and 3DMatch, and not to the different support radius.
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For the following analysis we consider the full-fledged (1 m) method as the
reference network.

5.3.2 Result analysis

Theta histograms. The network still presents a slightly bimodal histogram in
this dataset as well, but it is much better than for 3DMatch. Skipping over training
histograms, which are analogous to what we have already shown for the previous
datasets, in figure 5.31a we can see the benchmark histogram of the network on
Gazebo Winter, which is a good indicator of the average performance for both the
full-fledged network and FLARE, and we can see that the right peak is smaller
than usual and that the trail is lower in height. The histograms for the Wood
scenes are even better than this. Figure 5.31b, instead, shows Gazebo Winter for
FLARE: it is bimodal as well, the left peak is lower than the one of the network,
and it appears to be thicker in width; the right peak, instead, is narrower than
the one of the network, but it is slightly taller (mind the scale). The other scenes
show a very similar behavior, for both methods.

(a) Network. (b) FLARE.

Figure 5.31: Theta histograms on Gazebo Winter.

Repeatability vs angle and overlap. Figure 5.32 shows the repeatability of
the network, whereas 5.33 shows the same plots for FLARE. As for 3DMatch,
overlap information is computed by the benchmark.
Contrary to the previous datasets, this time the repeatability of the network does
not go to 0 even for very low overlaps or very high angles, and this is a good
indicator of performances. Moreover, we can see that the correlation between
repeatability and overlap has a higher steepness for the network when compared
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to FLARE, but they both start from similar values for low overlaps, meaning that
the network is able to deliver substantially better performances as soon as the
overlap increases.
Analogous considerations can be applied to the correlation between repeatability
and angle.

(a) Repeatability vs angle. (b) Repeatability vs overlap percentage.

Figure 5.32: Scatter plots of the benchmark performances of the network.

(a) Repeatability vs angle. (b) Repeatability vs overlap percentage.

Figure 5.33: Scatter plots of the benchmark performances of FLARE.
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Conclusions and future
developments

In this thesis, we provided insights into how existing Local Reference Frames work,
showing that the vast majority of them are still based on a hand-crafted approach
to algorithm design, with the only partial exception of LRF-Net [37], which how-
ever processes with a data-driven approach a highly-engineered representation of
the input data. After providing the mathematical background to spherical and
SO(3) convolutions, we showed how they can be used to shift the CNN paradigm
from 2D translation-equivariance to 3D rotation-equivariance, as done in [35] and
[26], by using a Spherical Convolutional Neural Network with rotation-equivariance
properties, meaning that it can produce rotated outputs in the face of rotated
inputs: the key property of Local Reference Frames. Afterwards, we defined
three training methodologies (unsupervised, full-fledged adaptation and weakly
supervised), as well as a benchmarking framework. We tested the proposed net-
work, trained by means of these methodologies, on three different datasets, namely
3DMatch, StanfordViews and ETH, and we have compared them to the current
state of the art, represented by FLARE [21], and to SHOT [29], a very popular
LRF. Our results are promising, and show that: we easily beat SHOT; we are
on par with FLARE on 3DMatch, having a small lead when we use the weakly
supervised training protocol; and we are consistently superior on ETH by using
the full-fledged approach, which proved to be very effective for smaller datasets
that do not have a training-test split. The situation in StanfordViews is different,
because it is made of meshes instead of point clouds. In this dataset, FLARE can
use mesh information but our network is constrained to convert it to a point cloud,
and FLARE performs better. It is worth noticing that its parameters have been
explicitly optimized for StanfordViews. However, when they are both constrained
to work on the point cloud version of StanfordViews, the network beats FLARE
by a clear margin.

77
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Overall, our method implements end-to-end learning on Local Reference Frames
and fills the existing gap on learned LRFs with results that can be compared to,
or can improve, the current state of the art, while enjoying the benefits of be-
ing an end-to-end learning approach, i.e. no need to be tuned on each specific
scene/dataset.

Yet, there is still room for improvements and optimizations of the proposed
architecture. The following list contains the most interesting future directions
that have arisen during this work.

• Test the performances of the network in other tasks, e.g. descriptor matching,
for example by using it as the LRF for descriptors such as Spezialetti et al.
[26] (whicih leverages Spherical CNNs as well), TOLDI [34], SHOT [29], CGF
[16], and others.

• Test higher bandwidths, because our tests indicate that they may be able to
provide better results, and test a higher number of layers, using for example
a decreasing bandwidth towards the soft-argmax layer.

• Create additional input channels when processing meshes, e.g. by accumulat-
ing in the input spherical signal the total mesh area in each bin or the mean
orientation of the normals to input triangles, to increase the performance of
the network on these input formats.

• Introduce a better data augmentation process that simulates the nuisances
of the weakly supervised training, for example by deleting some portions of
the support or by adding noise, in order to achieve higher performances with
the unsupervised training, since the ground truth necessary for the weakly
supervised training is not always available.

• Substitute the Parzen window with a more principled operation and, simul-
taneously, introduce different loss functions that can help the network to
also produce similar feature maps for corresponding keypoints, instead of
just concentrating on repeatable maxima. These losses can be, for example,
the KL divergence, the JS divergence or the Wasserstein distance between
feature maps of corresponding keypoints. It’s also possible to apply these
losses to a feature map and a Gaussian curve, thus helping the network to
uniformly peak its output around the maximum without using the Parzen
window.

• Avoid the use of a manually-defined function for the soft-argmax layer, and
employ fully connected layers instead. Spezialetti et al. [26] have shown that
an MLP can produce equivariant outputs in the face of equivariant inputs:
their Spherical CNN produces a compact equivariant descriptor, and their
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MLP Decoder is able to reconstruct the input from this descriptor. The use
of some fully connected layers at the end of our network may let it learn how
to convert the SO(3) feature maps into LRFs more effectively.

• Study the Theta histogram in order to understand why it is bimodal, whether
the rotation axis is always the same, and what is the common property of
the keypoints that end up in its right-most peak.

• Study the view pairs to understand why some of them (even in the same
scene) have higher repeatabilities than other pairs with the same overlap or
angle.
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