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Abstract   

Supercapacitors are becoming very important in the automotive and energy and power industry due 

to their specially characteristics, in particular in the field of hybrid vehicles and hybrid energy 

storage systems. For this reason, having accurate models that can represent the behavior of such 

systems is necessary and the main important characteristics of supercapacitor are a high-power 

density and a long lifetime with low maintenance. This thesis focuses on modeling supercapacitors to 

the study of their behavior in a short time period. As, their operation often short intense power 

deliveries. The goal of this thesis is to compare the accuracy of equivalent-circuit models of 

supercapacitors together with their required execution time for real-time simulations. 

In the first chapter, the operation of the supercapacitor from the molecular point of view and the 

principal of storing energy in a supercapacitor is introduced. Common operation modes of 

supercapacitors are also introduced. Next, equivalent-circuit models of supercapacitors are 

introduced. The models are implemented in MATLAB/Simulink and their responses are compared 

with the experimental results. The parameter estimation results. The parameter estimation tool of 

MATLAB has been used to estimate the model parameters for each model. At the end, the models 

are compared in terms of inaccurately reproducing the experimental response of a supercapacitor. 

Lastly, the models are compared in terms of their required execution time for real-time simulations. 

The models are implemented in RT-LAB software and simulated on the Opal-RT’s OP4510 real-

time simulator. Here the execution times of the models compared with the goal of representing a 

large number of supercapacitor cells. 
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1 Chapter 1: Introduction to Supercapacitors 

1.1 Structure and Operation Principle 

The supercapacitor is a system composed by two metallic collectors in the extreme parts. These 

collect and distribute the current. Going toward the center there are porous carbon made electrodes 

(μm), then the electrolyte. In the mid of the electrolyte there is a separator, permeable for ions, in 

order to not have a short circuit among electrodes. The schematic of a supercapacitor cell is shown in 

Figure 1.1 [1].  

 

 

 

The structure is similar to that one of a battery, but it has not reacting materials. 

In the batteries there is a plate charging negatively because there is a natural oxidation reaction: some 

atoms lose their electrons leaving them in the electrode. They are now available for the conduction 

and take part to the adjacent solution. In the cathode occurs the opposite reaction: some atoms 

1.1.1 Molecular point of view 

Figure 1.1 Schematic of a supercapacitor cell 
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acquire the electrons. This charge configuration will create its own potential configuration. There is a 

potential gradient; in the middle the potential remains constant being the electrolyte an inert 

conductor and finally there is another gradient. The voltage on the system is the no-load voltage 

across the electrochemical battery (∆V). 

In the building of a supercapacitor, cause the use of inert materials, positive and negative ions remain 

randomly located. There is not charge thickening and so there is not a voltage across terminals. 

However, applying a voltage across the component a current is generated and some electrons leave 

an electrode going toward the other. This is a physical charge shifting. A plate is charging positively, 

and negative ions thickening around occurs. Electrons carried by the electromotive force in the other 

plate charge it negatively. Close to this electrode positive ions are attracted. A double charge layer is 

created, like a capacitor. It is like to have the positive charges distribution (being part of the electrode 

structure), the negative charges distribution in the electrolyte made by anions and cations with 

absorbed molecules. A negative ion has around solvent polar molecules. This molecule has both 

positive and negative parts, but it is globally neutral but with different barycenter for positive and 

negative charge. This is an electric dipole interacting with the cation surrounding it. 

This set of surrounded particles go close to the electrode staying yet at a distance of a molecular 

layer called “Double Layer” (≈10−10𝑚). In the detail, this can tell us that being the distance very 

low, the capacitance will be high. The surface is also affecting the capacitance. In fact, the surface is 

very huge due to porous carbon.  Its surface is full of irregularities. These make the final value much 

greater. 
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This structure is called “Helmholtz Double Layer”. This is represented by a series of a capacitor, a 

resistance and finally another capacitor. There are also two parallel resistances in parallel with the 

two capacitors, representing the self-discharge behavior on those interfaces. 

The equivalent circuit is summed up to a capacitance with a parallel resistance, and an equivalent 

series resistance playing a basic role in the efficiency of the component. This simplification is since 

the two RC parallels are almost similar, so the current splitting can be represented in a unique 

parallel. Every capacitance is given by: 

𝐶 =
ɛ ∙ 𝑠

𝑑
 

1.1 

 

1.1.2 Energy storage 

Figure 1.2 Helmholtz Double Layer model (left), Model of the Supercapacitor (right) 
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Where is it ‘ɛ’ is the permittivity of the dielectric, ‘s’ is the surface and ‘d’ is the distance. So, the 

capacitance will be high having a very low distance (≈ μm) and a very high surface given by the 

porous carbon, into which the liquid conductor leaches. There are lot of holes in the powder that is 

enough compact to create an electric continuity and at the same time to increase the surface by 

means of the great deal of holes (𝑆 ≈ 3000 𝑚2/𝑐𝑒𝑙𝑙 ). 

For example, a Maxwell BCAP (Cn=3000F, Vn=2.7V, ESR=0.29mΩ) has 

𝑊𝑛 =
1

2
𝐶𝑉2 = 10,9𝑘𝐽 ≈ 3𝑊ℎ 

This value is the rated energy stored in the capacitor. 

A capacitor can be used till his voltage is remaining higher than a threshold value, which usually is 

the half of the rated voltage 

𝑉𝑚𝑖𝑛 =
1

2
𝑉𝑛 

 

 1.2 

So, the available energy is  

 

∆𝑊 =
1

2
𝐶𝑉𝑛

2
- 

1

2
𝐶𝑉𝑚𝑖𝑛

2 = 75% 𝑊𝑛  1.3 

  

 

1.2 Applications of Supercapacitor Energy Storage Systems 

Large applications for supercapacitors can be found in microgrids. Renewable sources are in great 

expansion due to the environmental impact which is one of the issues to which many countries pay 

close attention. The production targets with renewable sources are of great importance and the 

management of these systems goes hand in hand with their expansion. The problem with renewable 

sources is that they do not guarantee constant energy production over time. This in turn is a source of 
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great problems for electricity grids because it is the cause of continuous electricity quality 

disturbances. Moreover, it affects the stability and reliability of the systems. Microgrids, in 

particular, are small systems that can be connected directly to the network or operate in an islanded 

manner. They often integrate large amounts of ESS. These networks need both great energy and 

great power density: this is why often just one ESS is not enough, so we get to use more than one of 

these systems together. This gives rise to HESSs (Hybrid Energy Storage Systems).  

Figure 1.3 shows four configurations of ESS. Figure 1.3a)[2] and Figure 1.3b)[3] represent simpler 

topologies, while Figure 1.3c) and Figure 1.3d) represent more complex systems [4]. In particular, 

hybrid storage systems constituted of Vanadium Redox Batteries (VRB) and supercapacitors, 

connected to energy production systems with Permanent Magnets Synchronous Machine (PMSM). 

The contribution of supercapacitors is very important as they are sources of high-power density in a 

short time, while other systems deal with the amount of energy in longer times. Energy management 

is very important in these microgrids. There are converters, which require particular attention in the 

Figure 1.3 Examples of topologies using supercapacitors to have a more performant ESS: a) Series topology; b) Parallel passive 
topology; c) Parallel active topology (direct connection of ESS to the DC bus); d) Parallel active topology (both ESS with a PCS) .  
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construction choices, and an energy optimization system is always needed in order to better 

coordinate the microgrid. This gives the possibility to better meet the requirements of stability and 

good functioning of the network [5]. 

SCs are also used in UPSs because they offer performance that batteries cannot achieve. Often the 

two are used together. Indeed, SCs can provide energy during short outages better than batteries. In 

addition, this will extend the life of the batteries. Sometimes UPSs also have only supercapacitors, 

because with sensitive loads they are sufficient and have lower maintenance costs. 

The SCs can be used as energy recovery means for elevators and cranes. In fact, in these cases the 

energy can be recovered in the downward phases. The supercapacitors are therefore adequate 

because they allow energy recovery in a short time and are able to supply large currents which is 

what is needed in these applications. 

The automotive industry is also an area in which SC are increasingly taking hold. Here too, as in the 

previous cases, it is possible to combine the use with batteries. Their use varies from low energy 

consumption applications to applications with a higher energy level. Their combination with 

batteries offers numerous advantages, including greater power, greater energy recovery and longer 

battery life thanks to the leveling of charge cycles. This is a leading sector for the use of 

supercapacitors as a booming sector [6].  
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1.3 Common operation modes of supercapacitors 

The voltage response of the supercapacitor is analyzed using the equivalent circuit with a capacitance 

and series resistance shown in Figure 1.4. The parallel resistance is neglected, because it is taking into 

account the self-discharge phenomena acting in a very long-time scale (𝑅𝑝 ≈ Ω  →   = 𝑅𝑝 ∙ 𝐶 ≈

3000𝑠). Other supercapacitor models will be discussed in the next chapter. 

 

 

Here the supercapacitor is subjected to constant current charge-discharge cycles. The current i will 

be a square wave, with set both amplitude and duty-cycle. The component receives the current and 

what interesting is the voltage response across the supercapacitor. The initial voltage is the minimum 

voltage of such component, that typically is  
𝑉𝑛

2
 . This is the voltage allowing the correct performing 

of the converter linked to the supercapacitor. Where there is no input current, the voltage remains 

constant. The component would be affected by the self-discharge phenomena but, as already said, 

that phenomena will be neglected. 

Once a positive pulse of current is applied, the voltage value is immediately observable.  

1.3.1 Constant current 

Figure 1.4 RC series equivalent circuit of a supercapacitor cell 
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It is a vertical increment due to the series resistor, and the voltage has a value  𝑅𝑠 ∙ 𝑖 , as it can be 

seen in Figure 1.5. 

 

 

When the current is applied the voltage of the supercapacitor increases. Input current pulses and 

voltage response are shown in Figure 1.6. The law governing this part is 𝑖𝑐 = 𝐶 ∙
𝑑

𝑑𝑡
𝑉𝑐  and the voltage 

across the supercapacitor is  

  

Figure 1.5 ESR is responsible for the voltage step that occurs across the SC 

Figure 1.6 Voltage response  of the supercapacitor with the shown input current pulses 
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𝑉 = 𝑣𝑐𝑜 + 𝑅𝑠 ∙ 𝑖 +
1

𝐶
∙ ∫ 𝑖𝑐𝑑𝑡 

1.4 

 

The current pulse continues at the high value. Once arrived at the rated voltage value the current turn 

down to 0A. Now is shown a vertical step. This is still due to the voltage drop of the series resistor. 

Now the voltage tends to remain constant. This happens because no energy is released out of the 

supercapacitor and the charge inside remains constant (self-discharge neglected). Length of pulses is 

not known a priori because it is something depending on the application. Now starting to inject a 

negative current pulse, equal and opposite to the positive first one; now it is like to have the circuit in 

Figure 1.7 (discharge phase): 

 

The value of the current is given by the total voltage across the supercapacitor. During charge, 

starting from 
𝑉𝑛

2
, a constant current i is injected till the voltage arrives at  𝑉𝑛, and here the current turn 

off;  during the discharge, the input current is provided with the same amplitude and opposite sign. 

The voltage begins to drop with the same slope with which it previously went up. In fact, assuming 

constant capacitor, the slope will always be the same. In the discharge phase current stops once 

reached  
𝑉𝑛

2
 . At the moment when current is imposed, there is a small jump due to the resistance. The 

Figure 1.7 Equivalent circuit for the discharging phase 



 
 

16 
 

voltage drop due to resistance occurs every time the current will be applied. Being the constant 

current, the power will vary linearly as the voltage. Analyzing in detail a single period (i.e. including 

a charge and a discharge) we can see that the areas determined by the performance of the power are 

not equal: in fact, the area described by the SC discharge will be smaller. This is due to the fact that 

part of the energy is lost due to internal resistance.  

It is possible to analyze the effect of the ESR from the efficiency point of view. 

By assuming the equivalent circuit of Figure 1.7 

𝑉 = 𝑉𝑐 + 𝑅𝑠 ∙ 𝑖 

 

1.5 

𝑉 ∙ 𝑖 = 𝑉𝑐 ∙ 𝑖𝑐 + 𝑅𝑠 ∙ 𝑖2 

 

1.6 

𝑉 ∙ 𝑖 = 𝑉𝑐 ∙ 𝐶 ∙
𝑑𝑉𝑐

𝑑𝑡
+ 𝑅𝑠 ∙ 𝑖2 

1.7 

𝑡𝑎 < 𝑡 < 𝑡0 → 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 

𝑡𝑏 < 𝑡 < 𝑡𝑐 → 𝑐ℎ𝑎𝑟𝑔𝑒 

 

1.8 

1.9 

Energy injected in the supercapacitor in the charge time: 

𝐸𝑖𝑛 =
1

2
𝐶(𝑉𝑐𝑏

2 −  𝑉𝑐𝑎
2) + 𝑅𝑠 ∙ 𝑖2(𝑡𝑏 − 𝑡𝑎) 

1.10 

The second term of the equation represents the energy lost cause of the series resistance. 

Estimation of charge and discharge times: 

∆𝑡 = 𝐶∆𝑉𝑐 = 𝐶 (
𝑉𝑛 − 𝑅𝑠 ∙ 𝑖 − (

𝑉𝑛

2 + 𝑅𝑠 ∙ 𝑖)

𝑖
) = 𝐶

(
𝑉𝑛

2 + 2𝑅𝑠 ∙ 𝑖)

𝑖
 

 

1.11 
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Efficiency: 

𝜂 =
𝐸𝑜𝑢𝑡

𝐸𝑖𝑛
=

∆𝑊𝑐 − 𝑅𝑠 ∙ 𝑖2 ∙ ∆𝑡𝑠𝑐𝑎𝑟𝑖𝑐𝑎

∆𝑊𝑐 + 𝑅𝑠 ∙ 𝑖2 ∙ ∆𝑡𝑠𝑐𝑎𝑟𝑖𝑐𝑎
< 1 

 

1.12 

∆𝑊= supercapacitor internal energy variation 

 

𝑅𝑠 ∙ 𝑖2 ∙ ∆𝑡= Joule losses 

 

What it is injected in the supercapacitor during the charge, is then extracted during the discharge. 

The difference is the voltage across the resistance. An energy that is never extracted is dissipated. 

With higher power, the efficiency will result to be lower, due to the higher current over a constant 

series resistance. In Figure 1.7 is shown the efficiency variation as function of the current. Equation 

1.12 shows that the efficiency is dependent on the current and on the ESR. In fact, increasing the 

current particularly, the term ∆𝑅𝑠 ∙ 𝑖2 ∙ ∆𝑡𝑠𝑐𝑎𝑟𝑖𝑐𝑎 increases, and the efficiency decreases. The voltage 

and the current affect the power. Increasing the current the power increases. In Figure 1.8 are shown 

two power curves as function of voltage and current. 

 Efficiency 

 

        η (𝑅𝑠, 𝑖)                         𝑃𝑚𝑎𝑥 = 𝑖 ∙ 𝑉𝑚𝑎𝑥 = 𝑖 ∙ 𝑉𝑛  

 

 

          

          𝑃𝑚𝑖𝑛 = 𝑖 ∙ 𝑉𝑚𝑖𝑛 = 𝑖 ∙
𝑉𝑛

2
 

 

    INCREASING CURRENT    Current 

 

 

Figure 1.8 Supercapacitor efficiency in a constant current operation 
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So, it is possible to see that working at higher powers the efficiency decreases because the current 

required is greater and the drop on the ESR increases. Exploiting cells in terms of power forces you 

to give up something from the point of view of performance.  

 

 

 
A constant power charge-discharge cycle is analyzed. Here are applied two initial conditions: both 

series and parallel resistances are neglected. 

The control regulates the current to have a constant power. The power is positive when it is injected 

and negative when it is extracted from the SC. In the initial instant there is the minimum voltage 

(half of the rated voltage). Also, in this case the voltage never drops below half the rated voltage. 

The current of the supercapacitor is controlled in order to obtain the constant power operation. 

𝑝 = 𝑣 ∙ 𝑖 = 𝑣𝑐 ∙ 𝑖 1.13 

𝑖 = 𝐶
𝑑𝑣𝑐

𝑑𝑡
 

1.14 

So, from these two equations: 

𝑝 = 𝐶𝑣𝑐

𝑑𝑣𝑐

𝑑𝑡
 

1.15 

Now integrating and supposing a constant applied from t=0, it is obtained 

Before the injection there is zero power and so zero current. Then it started to be injected a constant 

power. The injected power is positive and the extracted one is negative as shown in Figure 1.10. 

At the initial moment it is 𝑉0 = 𝑉𝑚𝑖𝑛  and it is possible to continue inserting power in the 

supercapacitor till the maximum voltage. In the same way it is possible to pick out power from the 

supercapacitor until half the rated voltage. Figure 1.9 shows the voltage trend, starting from half the 

rated voltage and increasing as long as current is injected.  

1.3.2 Constant power 

1

2
𝐶(𝑉2 − 𝑉0

2) = ± 𝑝(𝑡 − 𝑡0) 
1.16 
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The voltage across the component ideally follow the below relation 

𝑉 = √𝑉0
2 ±

2𝑝

𝐶
(𝑡 − 𝑡0) 

1.17 

 

The positive for the charge, the negative during the discharge. Now the voltage is varying, and the 

power is constant. A constant power means that the current has to vary because the product of 

Figure 1.10 Constant power injection and extraction 

Figure 1.9 Voltage behaviour with constant power neglecting the ESR 
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current and voltage must supply a constant quantity. This means that the current has to decrease to 

maintain the power constant. The current trend is shown in Figure 1.11. It can be seen that the voltage 

varies with the square root of time and so the current decrease with the same trend, as shown in 

Figure 1.11. When the maximum voltage is reached, the injection will no longer take place. And the 

same goes for the minimum voltage. Once the extraction is reached, it must be blocked so as not to 

drop below the threshold (this is to allow the converter to adequately control the power exchanged). 

 

It can be seen that by inserting and extracting power in the SC the voltage will increase and decrease. 

But being the power constant, it means that the current will vary because the product of current and 

voltage. 

So, starting from the initial instant, the required power is zero therefore the current will also have a 

zero value. Then the charging phase starts then, the injected current starts from the value 𝑖 =
𝑝

𝑉𝑚𝑖𝑛
 .  

At the beginning of the charge the voltage is equal to the minimum voltage value (nominal voltage) 

therefore the current will start from the value 𝑖 =
𝑝

𝑉𝑚𝑖𝑛
 . During the charging phase then the voltage 

Figure 1.11 Current behaviour with constant power 
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will rise, and consequently the current will have to decrease to keep the power constant. Once the 

charging phase is over, the current will have a value of 𝑖 =
𝑝

𝑉𝑚𝑎𝑥
 , a non-linear increase of the current 

from the initial to the final value is obtained. This is due to the fact that the voltage, grows with the 

square root of time (see Figure 1.12). The same thing happens for the discharge phase. The current 

starts from a minimum value and then increases to the maximum value when the voltage is half the 

nominal. 

This is the operation neglecting the serious resistance, but its effect cannot be overlooked. 

Now let's see the behavior considering also the series resistance. 

In the same way we start with zero power and zero current. Once the power injection has started, 

having the voltage at the minimum value (half of the rated voltage) we will have the maximum 

current. Here the voltage drop on the resistance will therefore be maximum, as shown in Figure 1.14. 

 

Figure 1.12 Power and Current in the first cycle 
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As you can see, in the first case the voltage drop is just over 0.012V, while in the second case it is 

around 0.01V. 

In Figure 1.13 can be observed that the voltage rises with the same trend until it reaches the maximum 

voltage. Once the maximum value is reached, the power injection will stop and therefore the current 

will also stop. Here again I have a voltage drop which, however, will be less due to the fact that 

Figure 1.13 Voltage response taking into account the ESR 

Figure 1.14 ESR voltage drop difference: on the left the drop at minimum voltage is represented instead on the right that one at the 
maximum voltage 
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when the voltage is maximum the current is minimum therefore the voltage drop will be smaller than 

that experienced when the charging phase began. 

  

    Efficiency 

        η (𝑅𝑠, 𝑖) 

   90% 

    80% 

 

 

 

 

      200A      300A          1000A          1500A  Current 

 

The performance trend shows that a reasonable operating regime for the cell is around 100W. 

For high powers the efficiency decreases, and the use of multiple cells must be considered. 

  

Figure 1.15 Efficiency as function of the current 
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2 Chapter 2: Modeling of Supercapacitor Cells 

For modeling of a supercapacitors, we start by model of single cell.  In the literature, there are two 

main types of cell models, i.e. the physics-based models and equivalent circuit model. The focus of 

this work is on the equivalent circuit models that are approximations voltage-current characteristic of 

the cell. These models do not necessarily reflect the chemical actions inside the cell, but their can 

replicate the cells response with high accuracy. The cell model should have the following 

characteristics:  

• Accurate enough to represent a real supercapacitor cell, in particular in transient behavior 

• Simple enough for real-time simulations. 

• Suitable for the time scale of the study (seconds to minutes) 

2.1 Equivalent-circuit Modeling of Supercapacitors 

In this chapter, some of the most famous models of supercapacitors are introduced. The modeling of 

the component is addressed from different points of view, starting from the molecular aspect up to 

what concerns its most macroscopic behavior. The latter is the one on which the thesis will be 

focused and therefore models that develop the molecular aspect of the component will not be 

considered. In literature, several models for supercapacitors are introduced, from which four models 

have been identified for the purpose of this work. These are  

 The RC series model 

 The Two-Branch model 

 The Zubieta model  

 The Series model  
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Excluding the RC model which only gives a simplified representation of the component’s behavior, 

the other models are more accurate due to the fact that they present a breakdown of the time constant 

within a cell, dividing its representation into several branches. Note that the value of the capacitance 

of the models may in general depend on the voltage. This aspect is fundamental to a better 

representation of the behavior of the supercapacitor cell. In fact, the capacitance value tends to vary 

as voltage varies.  

 

 

The first model to be examined is the RC series model shown in Figure 2.1. This is the simplest 

model, widely used for the approximate analysis of the cell behavior as in the previous chapter.  The 

RC series model only introduce one time constant governing the dynamic of the cell which is simply 

given by the product of the resistance and the capacitance of the cell, i.e.  = 𝑅 ∙ 𝐶 

This model is used to have a general overview of the component's behavior. It should be noted that 

this model does not take into account the self-discharge phenomenon as there is only one resistance 

in the model. This is one of the disadvantages of this model. It also cannot accurately represent 

2.1.1 The RC series model 

Figure 2.1 RC model 
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charging and discharging cycles with accuracy. In the latter there are voltage variations increasing 

and decreasing of the voltage that cannot be adequately represented with this model. On the other 

hand, however, this model has a great advantage which is its simplicity [7]. 

 

 

This model is more complex than the previous one. In fact, the Two Branch model, shown in Figure 

2.2, is a model in which a subdivision of the time constant takes place [8]. The circuit consists of 

several branches in which the representation of the component dynamics is divided. 

Note that the first branch is composed of a resistance and a variable capacitor. This capacitor is the 

sum of two terms: a constant one and a voltage dependent one. The capacitance of this branch is the 

main accumulation component while the resistance of this branch is the one that acts as Equivalent 

Series Resistance (ESR). This branch is the one with the fastest dynamics. The second branch 

represents the medium-long term and is in the order of magnitude of minutes. The second branch 

does not contain variable terms. The third and final branch is that which represents the phenomenon 

2.1.2 The Two-Branch model 

Figure 2.2 The Two-Branch model 
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of self-discharge. This term is actually relevant for the complete representation of the component. 

However, this model is used for representations of a generally shorter period and, as in the case in 

question, it will not be considered. In this work, we simplify this model by eliminating the third 

branch and obtaining the model of Figure 2.3 . 

Increasing capacitor as voltage increases means that the stored energy also increases. 

 

 

 

The third model is the Zubieta model shown in Figure 2.4 [9]. This model is very similar to the 

previous (Two-Branch model). In fact, also this model, we have a subdivision of the various 

dynamics of the component through multiple branches and the first branch has a variable capacitor. 

In particular, it can be seen that the first branch is composed of a series resistor (R1), which 

2.1.3 The Zubieta model 

Figure 2.3 Simplified Two-Branch model 
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represents the ESR. In series with the resistance there is the main capacitor consisting of two terms 

(C10, k*V) just like for the Two-Branch model. The first term will be constant and the second will 

depend on the voltage across the capacitor. The two components are in parallel, so the two capacitor 

values are added together. This branch defines the behavior of the circuit in the first few seconds. 

The second branch is composed of a resistance and a series capacitor (R2, C2). This branch has a 

time constant in the order of a few minutes. The third branch consisting of resistance and capacitor 

(R3, C3) has a time constant of over tens of minutes. Finally, the last branch represents the 

phenomenon of self-discharge. In this model the last branch is considered because, being a model 

with a greater distribution of the dynamics of the system for our purpose it should be made up of all 

its branches. In fact, this model should represent the behavior of the supercapacitor in a span of 30 

minutes.  

The timing is therefore longer than the two-branch model which should be based on fewer minutes. 

Figure 2.4 The Zubieta model 
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The series model is the most complex of the four taken into consideration. It is shown in Figure 2.5. It 

is made up of a large amount of components, many of which are variable with time [10]. This makes 

it a heavy and difficult model to implement. Also, reliable and robust identification of parameters is 

very complex. The peculiarity of this model is linked to the first branch. In fact, here we find a large 

subdivision of the time constant through parallels of resistance and capacitor. Each block of a 

parallel of resistance and capacitor, we call a block. In this work, five blocks are used to get a good 

model accuracy. Remember that the first branch deals with the faster dynamics of the system. It can 

be noted that in the first branch only the series resistance (equivalent of the ESR of the component) is 

a constant parameter while all the others are variable parameters. In series with the above-mentioned 

resistance we find a capacitor which is the main storage component. This is composed of a fixed part 

and a variable part. 

2.1.4 The Series model 

Figure 2.5 The Series model 
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The variable part of each capacitance is obtained multiplying the voltage by a constant (k). In each 

block, is inserted half the value of the total capacitance given by summing fix and variable part.  

The lookup table is a component used in Simulink to have voltage dependent components. In the 

case in question, it is calculated from 0 to the rated voltage (2.7V) as shown in Figure 2.6. 

An interpolation is also made for the resistance placed parallel to the capacitor of each block. The 

resistance value of each block descends with  
1

𝑛𝑏𝑙𝑜𝑐𝑘
 , in which 𝑛𝑏𝑙𝑜𝑐𝑘  is the number of the block, 

following Equation 2.1. In that equation can be seen how every block has a different resistance. The 

time constant of each block decreases for each subsequent block. This is in order to accurately 

represent the fast dynamics of the system. 

The equation of the parallel resistance of the blocks follows. In the blocks the reference resistor 

value is scaled for every block. Note that it decreases with the square of the block number (n).  

𝑅𝑝𝑛 =
2 ∙  (𝑉)

𝑛2𝜋2𝐶(𝑉)
 

2.1 

Figure 2.6 Example of Lookup-table 
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So, once the behavior of the first branch has been defined, we find three other branches: now there is 

a lot of similarity with the Zubieta model in that each branch defines a time constant. Each parameter 

has a constant value just like the previous model. The last branch takes into account the self-

discharge phenomenon. 
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2.2 Model Validation 

 

 

The supercapacitor cell that is considered for modeling is a Maxwell supercapacitor. All the cell data 

are shown below, directly from the data sheet provided by the manufacturer. 

Table 2.1 Main characteristics of the supercapacitor cell considered 

ELECTRICAL BCAP3000 

Rated Capacitance 3000F 

Minimum Capacitance, initial 3000F 

Maximum Capacitance, initial 3600F 

Maximum ESRDC, initial 0.29mΩ 

Test Current for Capacitance and ESRDC 100 A 

Rated Voltage 2.70 V 

Absolute Maximum Voltage 2.85 V 

Absolute Maximum Current 1900 A 

Leakage Current at 25° C, maximum 5.2 mA 

 

TEMPERATURE  

Operating temperature (Cell case temperature)  

Minimum -40° C 

Maximum 65° C 

Storage Temperature (Stored uncharged)  

Minimum -40° C 

Maximum 70° C 

 

PHYSICAL  

Mass, typical 510g 

Terminals Threaded or Weldable 

2.2.1 Description of Supercapacitor 
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Maximum Terminal Torque (K04) 14 Nm 

Vibration Specification ISO 16750, Table 14 

Shock Specification SAE J2464 

 

POWER & ENERGY BCAP3000 

Usable Specific Power, Pd  5,900 W/kg 

Impedance Match Specific Power, Pmax 12,000 W/kg 

Specific Energy, Emax 6.0 Wh/kg 

Stored Energy, Estored 3.04 Wh 

 

SAFETY  

Short Circuit Current, typical (Current possible with 

short circuit from rated voltage. Do not use as an operating current.) 

9,300 A 

Certifications UL810a, RoHS 

 

TYPICAL CHARACTERISTICS 

 

THERMAL CHARACTERISTICS  

Thermal Resistance (Rca, Case to Ambient), 

typical8 

3.2o C/W 

Thermal Capacitance (Cth), typical 600 J/o C 

Maximum Continuous Current (ΔT = 15° C) 130 ARMS 

Maximum Continuous Current (ΔT = 40° C) 210 ARMS 

 

LIFE  

DC Life at High Temperature (held continuously at 

Rated Voltage and Maximum Operating Temperature) 

1,500 hours 

Capacitance Change (% decrease from minimum initial 

value) 

20% 

ESR Change (% increase from maximum initial value) 100% 
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Projected DC Life at 25° C (held continuously at Rated 

Voltage) 

10 years 

Capacitance Change (% decrease from minimum initial 

value) 

20% 

ESR Change (% increase from maximum initial value) 100% 

Projected Cycle Life at 25°C 1000000cycles 

Capacitance Change (% decrease from minimum initial 

value) 

20% 

 

LIFE  

ESR Change (% increase from maximum initial value) 100% 

Test Current 100A 

Shelf Life (Stored uncharged at 25° C) 4 years 

Table 2.1 Product specifications 

Figure 2.7 shows the capacitance behavior as function of the temperature: 

it can be noted that optimal operation can be obtained between about 0 ° C and an ambient 

temperature of around 25 ° C. In this range it is possible to obtain the maximum capacitor and have 

an ESR that varies around the minimum value as shown in Figure 2.7. This is something that is 

Figure 2.7 ESR and Capacitance as function of the temperature. Courtesy of picture: 
Maxwell Technologies 
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important from the point of view of performance as it is this resistance value that particularly 

influences it. The structure of the supercapacitor cell is described in Figure 2.8 and Figure 2.9. 

Dimensions are shown in Table 2.2. 

 

 

 

 

 

 

Dimensions (mm) 

Part description L (±0.3mm) D1 (±0.2mm) D2 (±0.7mm) Package Quantity 

BCAP3000 P270 K04/05  138 60.4 60.7 15 

Table 2.2 Dimensions of the supercapacitor cell 

Figure 2.9 Cell structure from data-sheet(2). Courtesy of picture: Maxwell 
Technologies 

Figure 2.8 Cell structure from data-sheet. Courtesy of picture: Maxwell 
Technologies 
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Here, the experimental setup and procedure of the supercapacitor cell is explained. Two-quadrant 

operation of the supercapacitor has been made possible by: 

 One-quadrant TDK Lambda GEN8 (400A – 8V), current source, and dump resistor 

 Power MOSFET inverters 

 Labview management system 

Feedback control of source current allowing the two important operation modes: 

 Constant current cycling 

 Constant power cycling 

2.2.2 Experimental Setup 

Figure 2.10 Experiment setup  



 
 

37 
 

The component is tested by carrying out charging and discharging cycles at constant current on it. 

The start is from half of its rated voltage, so in this case it is 1.35V as shown in Figure 2.11. The test 

will take place symmetrically with positive and negative current pulses in a periodic way (see Figure 

2.12). The first cycle has an asymmetry due to ESR which causes an increase in voltage from the 

second cycle onwards. This occurs because what controls the insertion of current into the component 

is its voltage level. By starting to inject a positive current, the charging phase of the first cycle will 

end when the rated voltage is reached (2.7V in the case under consideration). Once at nominal 

voltage the current value will go to zero. before the discharge phase there are 10s of waiting. Then 

the discharge phase begins, and the voltage begins to decrease. It is important to note that the 

sequence of moments in which ESR influences causes the initial voltage of each cycle following the 

first to be greater than the initial voltage at the instant t =0. There is a 20s off period before the next 

positive impulse. This process is repeated up to having four charge-discharge cycles. Thus we note 

that our component is kept cyclically charged for 10s. The voltage then decreases until it reaches half 

Figure 2.11 Shift got after the first cycle. 
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the rated voltage where the current returns to 0. Four charge and discharge cycles are applied. There 

is a 20s off period before the new positive impulse. And so, on up to having four charge-discharge 

cycles. Thus, we note that our component is kept cyclically charged for 10s. So what we get is the 

live response shown in Figure 2.13.  

 

Figure 2.12 Input current pulses sequence. 

Figure 2.13 Voltage measured across the component during the experiment 
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Now, knowing the response of the component, we will proceed with the estimation of the parameters 

of the models that have been introduced. The supercapacitor models are (apart from the RC model) 

quite complex, in particular the series model. To obtain all the parameters of each model, the 

MATLAB/Simulink parameter estimation tool was used to estimate the parameters. This tool allows, 

with the input and output data, to estimate each parameter of the circuit. The circuits are 

implemented in MATLAB/Simulink. The experimental data are voltage and current values. These 

are inserted into the tool. In the toolbox it is also possible to define a range, so that the parameters 

can vary but in a limited way (i.e. within the range). Once the conditions in which the parameters 

will be estimation are set, the estimate is carried out. During the estimation it will be possible to 

monitor the execution of the model as, at each variation the model runs to verify the actual accuracy 

of the variation.  

2.2.3 Parameter Estimation Procedure 

Figure 2.14 Simulink model of the Zubieta model 
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We then proceed with the estimation of the parameters of each model. This process involves 

different computation times for each model depending on its complexity. What may also affect the 

starting conditions of the estimate. Obviously if the entered parameters from which the estimate is 

already close to the final values, the estimation process will be faster because it will require less 

iteration to arrive at the solution. In fact, the achievement of a correct estimation depends on the 

value of the parameters at the beginning of the estimate. The more complex the model, the more 

local optimums can be found during the estimation process. This can lead to an incorrect estimate of 

the parameters which therefore will not allow the model to respond better. 

 

 

The first model analyzed is the RC model. It is the lightest cause made up of only two parameters. 

 

 

Parameter Value 

R 0.41407 mΩ 

C 3139.3 F 
 

Table 2.3 The estimated parameters for the RC model 

2.2.4 Comparison between Models 

Figure 2.15 The RC model 



 
 

41 
 

It can be noted that the estimated parameters are not too different from those reported by the 

manufacturer. Now, to verify the actual quality of the parameter estimation of the model, the output 

of the model will be compared with the measurement. The comparison is shown in Figure 2.16 In this 

way it is possible to see if the model answers correctly.  

What we can see in Figure 2.15 representing the voltage is that there is a clear mismatch between the 

two. We can therefore conclude that the model is too poor to provide a correct representation of the 

behavior of a supercapacitor. In fact, although at the beginning the trends are very close, the 

difference increases with time. Figure 2.16 shows is the absolute error calculated through the 

following equation. 

 

𝐸𝑎𝑏𝑠 = 𝑉𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 − 𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  2.2 

 

The absolute error is shown in Figure 2.17 

Figure 2.16 RC series model voltage comparison 
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We then move on to a more specific point of view looking at the relative percentage error. The 

model clearly cannot represent the component. Now the following equation is used to calculate the 

relative percentage error. 

 

𝐸𝑟% =
𝑉si𝑚 − 𝑉meas

𝑉meas
× 100 

2.5 

 

Subsequently the data are displayed from the probabilistic point of view in Figure 2.19. The error is 

inserted into a fitting function, to find the probability density function of the error. In this way it is 

possible to see precisely the density for each error value, showing more clearly where the error is 

concentrated. For this model, note that the distribution range is quite wide: in fact, the error increases 

with time and 

Figure 2.17 RC series  model absolute error 
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this determines a wide range and a lower density value for each relative percentage error value. 

 

 

Figure 2.18 RC series model percentage relative error 

Figure 2.19 Percentage relative error density distribution 
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The next model analyzed is the Two-Branch model. For the reasons already explained, the entire 

analysis process will be carried out with the simplified Two-Branch model. 

There are five parameters that will be estimated in the model. The model is not yet excessively 

complex, therefore, starting from not too random values, the estimation procedure does not take a 

long time. 

Parameter Estimate Standard Error 

μ 2.06856 0.00210682 

σ 1.29873 0.000148975 

Table 2.4 Parameters of the distribution function of the RC series model 

Figure 2.20 Two-Branch model 
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We can see from the estimated values that R1 is the parameter that represents what would be the 

series resistance of the component and C10 is the main capacitor of the model with a value really 

Parameter Value  

C10 2968.96 F 

R1 0.334e-3 Ω 

k 121.129 F/V 

C2 487.8 F 

R2 0.4672 Ω 

Table 2.5 Two-Branch model estimated parameters 

Figure 2.21 Two-Branch voltage comparison 
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close to what is declared by the manufacturer. It can be seen that the time constants of the two 

branches are different. 

 

 

Figure 2.23 Peak of the second peak 

Figure 2.22 Second positive peak 
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Looking at the voltage response of the model, it can be seen that it is close to the measured value. 

Figure 2.25 Two-Branch absolute error and percentage relative error 

Figure 2.24 Second negative peak 



 
 

48 
 

Leaving aside the first cycle for the above-mentioned reasons, one can better observe the critical 

points of the representation. 

 From Figure 2.26 it can be seen that the difference is minimal since the absolute error is around 

0.005. To better see the accuracy of the model, after looking at the negative peak to see that there are 

no big differences between positive and negative, the errors are shown. In fact, we see that the error 

is minimal and acceptable. It is below 1% and has a periodical trend. This means that, in a longer test 

period 

 

 

 

 

Parameters Estimate Standard Error 

μ 0.0479518 0.00017131 

σ 0.211205 0.000121135 

Table 2.6 Parameters of the Two-Branch relative error density distyribution 

Figure 2.26 Two-Branch density distribution 
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there would be the possibility that this error always remains within a certain range. Which does not 

happen for the RC model for example, where an error increasing with time is observed. What is 

interesting to see is that the error is around 0. But this can be seen better by the density distribution 

function, where the density for each error value is highlighted.  

The next model that will be analyzed is the Zubieta model, which is very similar to the previous one.  

Parameter Value 

C10 2934.7 F 

R1 0.32232 mΩ 

k 130.81 

C2 76.841 

R2 0.38065 Ω 

C3 1518.8 

R3 1.3284 Ω 

Rleak 59436 Ω 

Table 2.7 Estimated parameters of the Zubieta model 

The value of the main storage component is 2937.7 F, and it is close to the declared value in the data 

sheet. The value of R1 is also close to the value of the equivalent series resistance.  

Figure 2.27 Zubieta model 
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In this case all parameters are estimated for a total of eight. Again, we have the main capacitor C10 

and a factor k that multiplies the voltage across it. As can be seen, the time constants of each branch 

are different, and vary from the fraction of a second to tens of minutes, covering a period of about 

thirty minutes fairly evenly. The graph of the voltage across the model during its execution, however, 

the model accuracy is not better than the two-branch model. It can be seen that the error is 

Figure 2.29 Percentage relative error of the Zubieta model 

Figure 2.28 Density distribution of the percentage relative error of the Zubieta model 
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increasing. Error values are higher than the Two-Branch model although they are very similar. The 

error distribution is not centered in zero: this means that on average the error is not zero. 

 

 

 

 

The last model analyzed is the Series Model. This, due to its complexity, requires some precautions 

in estimating the parameters. In the parameters estimation it results difficult to estimate many 

parameters cause of the risk of find local minimums. To avoid this, some parameters are set to 

reduce the number of estimated parameters. Particularly, to implement the model on 

MATLAB/Simulink lookup tables are used. 

 

Parameters Estimate Standard Error 

μ 0.705316 0.000239882 

σ 0.295746 0.000169622 

Table 2.8 Parameters of the percentage relative error density distribution of the Zubieta model 

Figure 2.30 Series model 
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Parameter Value 

R2 55.9 mΩ 

C2 95.11 F 

R3 676 mΩ 

C2 453.27 F 

Rleak 63186 Ω 

Rps 49799e-05 Ω 

C+k*V 3250F 

Ri 0.32232 mΩ 
 

Table 2.9 Estimated parameters of the series model 

The lookup-table receives as input a voltage value and two arrays: one with the voltage values and 

one with the resistance/capacitance value. The two arrays (Equation2.3/Equation2.5 and 

Equation2.6)are used to do an interpolation of the value of resistance/capacitance as function of the 

voltage. So, once have received the input voltage, the lookup-table block gives as output the value of 

the variable component at that voltage.  

So, setting the values of the coefficients and estimating the reference values of the arrays (Rps, Cest) 

for which they will be multiplied, we arrive at the implementation of the whole model.  Table 2.10 

contains fixed values used for the interpolation. Table 2.9 is instead containing reference values (Rps, 

Cest), that have been estimated. 

 

 

 

Resistance Capacitance 

rp1(0V) rp2(1.35V) rp3(2.7V) cr1(0V) cr2(1.35V) cr3(2.7V) 

0.965 0.97 0.98 0.88 0.92 0.95 

Table 2.10 Coefficients values for the construction of the lookup tables 
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𝐿𝑜𝑜𝑘𝑢𝑝 − 𝑡𝑎𝑏𝑙𝑒𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟 = 𝑅𝑝𝑠 ∙ [𝑟𝑝1   𝑟𝑝2   𝑟𝑝3] 2.3 

𝐶𝑒𝑠𝑡 = 𝐶 + 𝑘 ∙ 𝑉 2.4 

𝐿𝑜𝑜𝑘𝑢𝑝 − 𝑡𝑎𝑏𝑙𝑒𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟 = 𝐶𝑒𝑠𝑡 ∙ [𝑐𝑟1   𝑐𝑟2   𝑐𝑟3] 2.5 

𝑉 = [0    1.35    2.7] 2.6 

 

The condition of the starting voltage is 1.35V for all models (Figure 2.34). Figure 2.31 shows the 

voltage response of the Series model.  

Figure 2.31 Voltage comparison with Series model output and experimental voltage 
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Note that at a glance the behavior seems satisfactory (see Figure 2.32), even giving observing the 

progress of the error it is. In fact, we can note that the error has a periodic trend, which means that 

the model has good stability. The percentage relative error tends to remain around 0 as shown in 

Figure 2.33, so it could be defined as stable. 

Figure 2.33 Percentage relative error of the series model 

Figure 2.32 Density distribution of percentage relative error of the Series model 
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Parameter Estimate Standard Error 

μ -0.0240044 0.000796805 

σ 0.490988 0.000563427 

   

Table 2.11 Parameters of the density distribution of the percentage relative error of the Series model 

To get an idea of which model is actually having the best performance it would be necessary to see 

their comparison. We start with the visualization of the voltages generated by each model. All the 

voltage responses are compared in Figure 2.34.They will be compared and analyzed in the critical 

points. 

In addition, the voltage measured experimentally is also showed, as a reference. It is interesting to 

see closely at the behavior of the model in the critical points, which in this case are mainly the 

voltage peaks. In fact, in them there is the greatest mismatch for each model.  

Figure 2.34 Voltages comparison of all the models 
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Starting from the first voltage peak we note that the voltages are all very close apart from the voltage 

of the RC model which is already slightly higher. While Zubieta and Series models exhibit equal 

voltage as shown in Figure 2.35. The Two-Branch model is the closest to the experimentally 

Figure 2.35 Detail of voltages in the first two peaks 

Figure 2.36 Detail of voltage in the third peak 
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measured voltage. Note that before the peak the voltage is rising when the voltage reaches 2.7V and 

therefore the injected current becomes zero, the series resistance contributes by slightly lowering the 

voltage value. It is important to note that the difference in amplitude that exists at this instant, i.e. 

after the voltage has been affected by the drop on the series resistance, is approximately the same as 

in the phase in which the voltage rose. So, this difference should not be associated with the abrupt 

variation because in fact it was present even before. In the second peak we can see how the voltage 

of the RC model moves away from the reference while that of the Two-Branch model goes slightly 

below the measured voltage. The Series and Two-Branch models are closest to the measured voltage, 

the Two-Branch model in particular. In the third peak in Figure 2.36 it is easy to see the voltage 

simulated by the RC model at a clearly unacceptable value while the Series and Two-Branch models 

remain close to the experimental value. 
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A comparison between the relative errors of the models is also shown in Figure 2.37 to compare their 

progress. 

Figure 2.38 shows a comparison of the density distributions of all models. 

The error of the RC model brings it shows that it is not suitable for representation. Its error grows 

over time and the density distribution with a wide range and low peak value highlight the 

inappropriate use. The trend of the error of the Zubieta model instead indicates that the trend is 

unstable as the error tends to increase. The density distribution is not very close to 0 but is still quite 

concentrated. However, the fact that the error increases makes it unsatisfactory. So, it is not good for 

Figure 2.37 Relative error comparison of all the models 
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the representation of the component. The remaining two models have already proved to be good 

enough for representation. The trend of their error is therefore also satisfactory. In fact, they are both 

periodic cycle after cycle remaining in a fairly small range and around 0. However, the range of the 

Two-Branch model is smaller, and its peak density is therefore considered the best of the two. The 

basis of the consideration is obviously the influence of the complexity factor of the model: in fact, 

the Series model is more difficult to implement, with many parameters. Also, from this point of view 

therefore the Two-Branch model would be preferable. 

 

 

Figure 2.38 Density distributions comparison 
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Model Parameter Estimate Standard Error 

RC series model μ 2.06856 0.00210682 

σ 1.29873 0.000148975 

Two-Branch model μ 0.0479518 0.00017131 

σ 0.211205 0.000121135 

Zubieta model μ 0.705316 0.000239882 

σ 0.295746 0.000169622 

Series model μ -0.0240044 0.000796805 

σ 0.490988 0.000563427 

Table 2.12 Parameters of the density distributions of all the models 

  



 
 

61 
 

3 Chapter 3: Real-Time simulation of Supercapacitor 

3.1 Real-Time simulation and its applications 

In this chapter, the concept of real-time simulation is introduced, and a new tool to analysis and 

design of components and power systems is explained. In particular, we start with the introduction of 

DRTS (digital real-time simulation) as a tool for the representation of power systems in a real way, 

reproducing their behavior in real-time. The systems are first represented through particular software 

with user graphic interfaces and are then simulated in particular platforms. For real-time simulations 

time, in order to have a correct data acquisition it has to be 

EXECUTION TIME (Te) ≤ TIME STEP (Ts)  

The execution time is the sum of time needed for measurement, computation and command. This 

sum has to be smaller than the set step time. Otherwise, an overrun will occur and an increase of the 

time step will be necessary. Overrun is when the time of these three parts exceeds the given 

simulation step. If this problem occurs, it is necessary to modify the simulation step time 

Real-time simulations enable Hardware-in-the-Loop (HIL) testing, in which parts of the simulated 

system are replaced by physical components using input-output interfaces. Here the hardware under 

(HuT) test may be controllers that regulate switches or the connections and disconnections of some 

components. If controllers are tasted it is called CHIL (Control Hardware in the Loop). In these 

systems there are no real power flows and the whole system is modeled as something virtual that is 

inside the simulator.  
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[11] 

When there is a real hardware under test, we talk of Power Hardware in the Loop (PHIL), as in Figure 

3.1. In the PHIL there is a power interface that can both absorb and generate power, allowing bi-

directionally of the power flow. So, in PHIL it presents a power transfer to or from the Hardware 

under Test (HuT). Both in CHIL and PHIL is present the human machine interface (HMI). There is a 

simulated system part and an externally connected part. The power source can supply or generate 

power. Then, the system is solved and the signals that are generated go to the HuT. First, they are 

sent to an amplifier that supplies voltage or current to be applied to the HuT.  

The first simulators were based on a digital signal processor. There was an expansion of general-

purpose processors because they were cheap, and their development cycle was fast. RTDS 

Technologies Inc. launched the first digital real-time simulator on the market in 1991[11]. It has 

combined analog and digital parts. The OPAL-RT Technologies Inc. simulator was introduced 

around the year 2000. ARENE (from Électricitè de France), NEOTOMAC (from Siemens) were 

Figure 3.1 Controller Hardware-in-the-Loop (CHIL) and Power Hardware-in-the-
Loop (PHIL). 



 
 

63 
 

introduced in the same years. OPAL-RT is the only one using MATLAB / Simulink as a simulation 

modeling tool. 

A real-time simulator must be able to solve the model under 50μs, this in order to have a good 

accuracy of power system phenomena. If instead one needs analyze something faster like a 

microcontroller where there are higher frequencies, the time can be around 1μs or even 10ns. 

However, it can happen that there are very fast internal dynamics, but it is not necessary to use a very 

small time-step. Figure 3.2 ([11]) shows the relationship between computing nodes and time-step 

requirements for different systems. The simulation of the power system simulation can be carried out 

with comparatively larger time-step, and for a constant computing power, it allows a larger system, 

whereas for power electronics simulation, smaller time-steps are necessary, resulting in a smaller 

system for the same computation power. It is possible to increase the calculation power of the 

simulator as the parallel operation unit, but a delay for communication is added. Communication is 

Figure 3.2 Capability requirements (a) and time-step requirements for different systems 
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optimized by exploiting the properties of the transmission lines separate the network subsystems 

with an adequate length, consistent with the simulation steps.  

Most simulators have the following characteristics:  

 multiple processors working in parallel that form the platform where the real-time simulation 

is performed 

 an external computer on which the model previously created offline, built online, uploaded 

and executed (using the same computer to monitor the simulation) 

 input-output terminals for the hardware interface 

 a communication network in case the model is divided into several subsystems 

An example of hardware of type A is shown in Figure 3.3.  

Figure 3.3 Example of hardware type A 



 
 

65 
 

Now we move on to a hardware description starting with the description of type A [11]. This is made 

up of various units called racks that contain various processor boards. Each processor board contains 

two processors that work in parallel. They make up the main calculation engine. Each rack is 

therefore made up of twelve processors or six boards. The maximum number of nodes of the power 

network that can be simulated is 72. There is a network solution for each processor. Each simulator 

also contains a workstation network interface: this allows communication and synchronization with 

real-time operation of the components. Through the use of some cards it is possible to switch to a 

synchronization that can also facilitate the connection with the outside. By combining processors, 

more effective results were also obtained. 

The type B simulators ( architecture shown in Figure 3.4 [11]) have undergone rapid development of 

communication techniques and protocols for sharing. All this thanks to the rapid development of 

network and communication technologies. Type B is the multi-CPU simulator. This can be extended 

to multicore with each core modeling a subsystem. The shows how the various hardware components 

Figure 3.4 Hardware architecture of eMEGASIM real-time simulator 
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are connected. There are reconfigurable FPGA (field programmable gate array). The input-output 

signals are conditioned by these FPGAs. This type of simulator, which can also use different 

toolboxes, personalizes the system by orienting itself towards the integration of FPGA components, 

graphics processing unit (GPUs) or in any case sets of hardware components.  

The type B is of interest for this work. Particularly Figure 3.4 shows the structure of the simulated 

used in this analysis. In fact, eMEGASIM is the software used. It is compatible with Simulink and 

Simscape Power Systems MATLAB tools. 

From the point of view of software, simulators can generally request two categories of software: 

operating system or application software. In general, the simulators work both on Windows and on 

Linux operating system, however, if necessary, in some cases particular operating systems may be 

necessary. Generally, in these cases the systems are supplied together with the hardware. Software 

applications in general can have particular interfaces and system configuration platforms in which 

the model can be adapted so that it is correctly read by the simulator and executed. 

As for the interface and communication, type A connections are available for all racks to facilitate 

communication. In addition, fiber optic connections are used. In the event that there are more than 

seven racks, an inter rack communication is carried out with a point-to-point methodology. All this 

using Ethernet. On the other hand, for types B, thanks to the rapid technological advancement, there 

are various communication techniques and protocols used for the transfer of information. These 

include inter CPU communication signal wire, InfiniBand and others. 

The modeling tools for type A simulators are available GUI libraries as an integral part that allow the 

construction of power system models with the necessary controls and protections. As far as the time-

step is concerned, there is a time between 1-4 microseconds, therefore small, for the subsystems but 
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which can be easily adapted to interfaces with models operating at 50 microseconds times through 

various types of interfaces. The methodology followed for the interfaces is similar to that for the 

division of the various racks. If you want to interface systems with further lower time-steps, you can 

do it thanks to an FPGA modeling that allows a modeling at the desired frequency and an adaptation 

in every range. For type B variants there are MATLAB / Simulink type development environments. 

If you want to write in a high-level language such as C ++ or FORTRAN, they can still be inserted in 

the MATLAB/Simulink interface. There are also expansion types of the MATLAB / Simulink 

environment. The methodology for solving the model equations in two type of simulators varies. For 

type A, the whole circuit and every component is discretized. Then it proceeds with a matrix 

subdivision in which the impedance matrix is subdivided as the various impedance sequence 

components. For type B, an admissions matrix resolution system is used. In this case, models are 

built on particular platforms with solution algorithms such as backward Euler available in MATLAB 

/ Simulink for discrete solutions. However, these solvers are not suitable for this type of simulation 

as the solution time can vary. ARTEMIS-SSN is a solver that provides a good analysis of the 

switching events and a fairly fast resolution. The I/O is generally located inside the simulator and 

then connected through an optical fiber. However, it can also be placed under wire and connected by 

cable. For type B, multichannel modules may be present. Having scalable terminals, they have a 

good resolution and a very precise timing. Outside the market there are some simulators that are 

developed for specific purposes. One of these was developed in the University of South Carolina. A 

new process has been developed in Aachen University in Germany [12]. 

Applications of real-time simulations were first oriented towards transmission lines, the control of 

protection systems and the validation of controls. Then as time went on, analyzes began to be 

required for more difficult components such as synchronous machines. In fact, their control, their 
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implementation, were something more complicated. Today, real-time simulations participate in the 

analysis of distribution networks due to the presence of smart grids and microgrids. In addition, there 

is designed electronic power converters which have a much more complex implementation. In fact, 

they have a much higher operating frequency and a huge number of inputs / outputs. There are 

therefore various applications for these simulators that concern product design as well as prototyping 

and testing of the same component.  

 Real-time supercapacitor simulation model applications are required prior to the PHIL test of 

supercapacitors, for the PHIL test of DC-DC converters for supercapacitor energy storage systems 

and for the CHIL test of controllers for supercapacitor energy storage systems. 

The simulation models are implemented in RT-LAB. The models are simulated on Opal-RT's 

OP4510 real-time simulator. 

Figure 3.5 Inverter power analysis inside a photovoltaic system with power hardware in the loop 
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3.2 Real Time implementation and setup 

In this work, the models were implemented in MATLAB/Simulink and subsequently adapted for the 

RT-Lab platform. The model blocks are grouped and divided into sub-systems, as requires by RT-

Lab. In particular, a splitting by groups was performed. Figure 3.6 is an example of blocks splitting. 

In this example is shown how the computational blocks are grouped together in the computation 

subsystem, while all those input or display blocks are inserted in the GUI subsystem. The two 

subsystems are linked as in Figure 3.7. 

 The computation block is executed in a CPU core of the real-time target. The GUI subsystem will be 

shown on the host PC. The data of the two subsystems are executed asynchronously. 

 

Figure 3.7 Example of Computation and GUI blocks. Picture courtesy of: Opal-RT Technologies 

Figure 3.6 Example of blocks division for RT-Lab. Picture courtesy of: Opal-RT Technologies 
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It is possible to create multiple computation blocks which would then be executed synchronously in 

two CPU cores, but this is not required for our case. ‘OpComm’ blocks will be inserted in both the 

Computation and GUI blocks, which will have the function of receiving the signals from the other 

real-time subsystems. 

The model must first be run offline to verify its effective operation. Once it can be done offline, it is 

possible to start building the model with RT-Lab. When the project has been created in RT-Lab and 

the model has been loaded, the program will create a C code. At the end of the procedure has been 

Figure 3.8 Grouping into subsystems. Picture courtesy of: Opal-RT Technologies 

Figure 3.9 Monitor window. Picture courtesy of: Opal-RT Technologies 
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completed, the code can be created, which can obviously be longer or shorter depending on the 

model, there will be loading on the platform and finally the execution. Once the model is run it is 

possible to monitor it. For each model, a fixed step-size and time must be specified (in this case 5e-

05). 

For monitoring the real-time execution of the model, RT-LAB extracts 100 consecutive simulation 

time steps and calculated average and maximum model execution time within these 100 time-steps. 

In fact, it may turn out that the time-step is not adequate, and this leads to an incorrect acquisition of 

values. In particular, what is called an overrun occurs. In practice, a time is set for the system within 

which measurement, computation and command must take place as shown in Figure 3.10.  

 

Overrun is when the time of these three parts exceeds the given simulation step. If this problem 

occurs (as shown in Figure 3.11), it is necessary to modify the simulation step time. 

 

Figure 3.10 Correct time step. Picture courtesy of: Opal-RT Technologies 

Figure 3.11 Overrun occurring. Picture courtesy of: Opal-RT Technologies 
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The implementation of the model for the RT-Lab platform is shown in Figure 3.12. 

The implementation is done grouping blocks in subsystems. Before running the model on the 

platform is necessary to set both a discrete simulation type and the step time. In this case, the starting 

step time is 5e-05 seconds for every model. In the Model Initialization block are given all the input 

parameters of the model. So, once parameters have been estimated, they are given to the model as 

input in this way. The Model Initialization block receives as input the ‘file.m’ containing all 

parameters. Figure 3.13 shows a computation block. It is possible to see that in this example three 

parallel branches are analyzed.   

Figure 3.12 Two-Branch model implementation for the RT-Lab platform 

Figure 3.13 Example of the computation block of the Two-Branch model with three parallel branches with two series 
supercapacitor models each one 
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The simulations are performed on Opal-RT’s OP4510 real-time simulation. 

Here are the data of the used hardware. 

OP4510 

 Compact and powerful 2U real-time target with QuadCore processor @3.3 GHz 

 Real-time operating system: Linux REDHAT 

 Xilinx KINTEX-7 FPGA 

 Total of 4 I/O boards 

 16 Ain, 16 Aout, 32 Dout and 32 Din 

 Rear DB37 connectors 

 4 optional 5-Gbps SFP optical interfaces 

 Synchronization connectors 

 

 

 

 

 

Figure 3.14 OP4510. Picture courtesy of: Opal-RT Technologies 
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3.3 Real-Time Simulation of a Single cell 

Each model is implemented in MATLAB/Simulink is the representation of a supercapacitor cell. In 

RT-LAB, 100 simulation steps are analyzed and minimum, maximum and the mean of the model 

execution time are compared with each other. Remember that each model will have different 

execution times due to its structure and complexity. 

 Model execution in real-time simulation Model error (compared to 

experiments) 

Model Min [μs] Max [μs] Mean [μs] μ [%] 𝜎 [%] 

RC 0.47 0.54 0.49 2.06856 1.29873 

Two-Branch 0.49 0.58 0.50 0,31608 0,18905 

Zubieta 0.48 0.62 0.52 0.70531 0.29574 

Series 0.50 19.06 1.44 0.80347 2.76186 

Table 3.1 Real-time model execution time for single cells of supercapacitor models 

Execution times are shown in the table above. Note that the table is made up of three columns 

indicating minimum, maximum and average time. For real-time simulation the maximum execution 

time is the most important parameter, as a single overrun can lead to inaccurate results. Starting from 

the RC model, the model execution time is very much below 1μs, this model is a very low 

computation time for real-time simulations. The Two-Branch and Zubieta models also have a good 

run time, slightly higher than the RC model but still abundantly below 1μs.  As for the Series model, 

it is possible to note that the maximum time is much higher than that of the other models. This model 

is the most complex with the largest number of parameters, therefore the execution time must be 

higher. But what influences this value is mainly the fact that look-up tables and interpolation are 

present within the model. In fact, the presence of lookup tables that require an internal process to the 



 
 

75 
 

model greatly increase the execution time. As you can see, the average time is not excessively high 

considering that the maximum one is about 40 times the minimum one. This means that the 

maximum occurs not very often (only when interpolation is needed) which does not allow an 

excessive increase in the average execution time. So, summing up the general behavior we see that 

the models have execution times in line with expectations and coincide with the results of the offline 

times. Particular attention should be paid to the Series model which circuit is more complex. All 

models where simulated with a 50 microseconds simulation steps, as the models will need to be 

added to a power system model later on. 

Simulation step time ≥ Maximum model execution time 
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3.4 Real-Time Simulation of Supercapacitors Stacks 

In practice supercapacitor cells are used in stacks. However, cells can behave differently in reality. In 

particular, it is possible to see differences after a number of deep discharge/charge cycles. This 

difference leads to the need to analyze the results with multiple cells. Such models are required 

testing stacks management systems. To simulate the possible combinations, several tests were carried 

out. Several cells have been inserted in series and several branches in parallel. Then a combination of 

the two by inserting cells in series and in parallel. Table 3.2 shows the results of the RC series model.  

 

 

 

 

 

 

 

 

 

 

 

Table 3.2 The model execution times for supercapacitors stacks using the RC series model 

 

In the following table, the maximum model execution time is showed for different number of cells in 

series and parallel branches. Where the model could be simulated with simulation steps of under 50 
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microseconds, the table cell is showed in green. Otherwise, the cell in yellow, indicating a large 

model simulation step is required.  

 

From Figure 3.15 RC series model maximum execution times we can see that model execution times 

remains very low up to about 36 cells. and the values do not change significantly with the increasing 

number of cells, up to 36 cells. It is only the case of the 12x12 stack, the model requires a very much 

higher simulation step time. However, it must be remined that the RC series model has a very low 

model accuracy. The tables show three values for each test. ‘m’ represents the minimum execution 

time of the cycle, ‘M’ the maximum execution time of the cycle, and ‘mean’ the mean execution 

time. 

 

Figure 3.15 RC series model maximum execution times 
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Now let's move on to the analysis of the Two-Branch model. 
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Table 3.3 The model execution times for supercapacitors stacks using the Two-Branch model. 

Figure 3.16 Two-Branch model maximum execution times 
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For the Two-Branch model the times are slightly higher than the RC model, as the model is more 

complex and contains parameters that vary with the voltage. Note that up to 6x12 cells, model 

execution time remains below the 50-microsecond threshold and is around 27μs. It is not possible to 

represent as many cells as with the RC model; however, the accuracy of this model is much better. 

Generally, in industrial applications 6x12 cells is sufficient so it can be said that the model is 

adequate for most applications. In this way, from Equation 1.3 and assuming 6 cells in series, 12 

parallel branches, Vn=2.7V and C=3000F: 

∆𝑊 =
1

2
𝐶𝑉𝑛

2
- 

1

2
𝐶𝑉𝑚𝑖𝑛

2 ≈ 590 𝑘𝐽 3.1 

The  total power calculated assuming P≈300W for every cell is 

𝑃𝑡𝑜𝑡𝑎𝑙 ≈ 21.6 𝑘𝑊 3.2 

 

Note that in Figure 3.16 the value grows beyond 500μs for a 24x12 stack, that is 10 times the 

threshold. The difference with the previous model is clear. It is possible to observe from Figure 3.16 

that there is a sort of symmetry in the results. In fact, what affecting the response of the models is the 

number of cells. The structure of the stack is not affecting the results.  

The Table 3.4 Zubieta model real-time simulation valuescontains the values of the Zubieta model. The 

two models are not very different so similar values are expected. As previously mentioned, the 

values of the times increase with increasing number of cells. In fact, it is possible to notice a sort of 

symmetry in the table: moving from the bottom left corner to the upper right corner the times always 

increase. 
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It can be seen at a glance that the difference between the two models are not significant. The 

representation possible with the Zubieta model is possible up to a lower number of cells. In fact, at 

36 cells, the execution time begins to exceed ten microseconds, and at 6x12 cells it exceeds (even if 

  m 

M 

mean 

m 

M 

mean 

m 

M 

mean 

m 

M 

mean 

m 

M 

mean 

m 

M 

mean 

N
u
m

b
er

 o
f 

p
ar

al
le

l 
b
ra

n
ch

es
 

12 1.53 

1.65 

1.57 

5.43 

5.61 

5.51 

13.65 

13.77 

13.69 

56.51 

56.71 

56.59 

254.51 

255.12 

254.85 

>500 

>500 

>500 

6 0.73 

0.83 

0.78 

1.48 

1.61 

1.52 

2.98 

3.11 

3.02 

13.62 

17.62 

13.71 

56.46 

60.62 

56.70 

254.51 

255.08 

254.78 

3 0.54 

0.66 

0.6 

0.72 

0.83 

0.75 

1.12 

1.25 

1.16 

2.96 

3.22 

3.01 

13.66 

18.65 

13.71 

56.5 

60.54 

56.7 

2 0.57 

0.69 

0.61 

0.59 

0.69 

0.62 

0.74 

0.88 

0.78 

1.50 

1.64 

1.55 

5.53 

5.54 

5.52 

24.03 

28.16 

24.14 

1 0.48 

0.65 

0.52 

0.56 

0.65 

0.59 

0.57 

0.70 

0.60 

0.73 

0.82 

0.75 

1.49 

1.60 

1.53 

5.49 

5.64 

5.54 

  1 2 3 6 12 24 
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Table 3.4 Zubieta model real-time simulation values 

Figure 3.17 Zubieta model maximum execution times 



 
 

81 
 

only slightly) the threshold of 50μs. The value then rises to around 250μs with 144 cells. However, 

one must keep in mind that our analysis showed that the Zubieta model does not necessarily increase 

the model accuracy, when compared to the Two-Branch model. 

Table 3.5 shows results for the Series model. 
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 Number of cells in series 

Table 3.5 The Series model execution times for supercapacitors stacks using the series model 
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Here it is obvious that the model execution time is higher than 50 microseconds from 4 cells 

onwards. Clearly, this model is too heavy for a real-time simulation of a supercapacitor stacks. The 

step-times of the models have been adapted, as simulations were performed as time grew and values 

created. For the latest simulations of this model the value was in the order of milliseconds which is 

an unacceptable value, in terms of model accuracy.  

  

Figure 3.18 Series model maximum execution times 
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4 Chapter 4:  Summary and Conclusions 

 

In this thesis, various supercapacitor models have been compared according to their accuracy and 

their required execution time for real-time simulations. It has been shown the the behavior of the 

supercapacitor can be represented accurately by some specific models, but not all models are suitable 

for real-time simulations.  

The RC model proved itself to be extremely light for real-time simulations, but also extremely 

inaccurate with increasing error in time. In fact, after each cycle the error between the simulation 

model and the actual supercapacitor response increases drastically, leading to a very inaccurate 

result. The simplicity of the model allows for real-time representation of a very large number of 

cells, but its inaccuracy makes it unusable. 

The Two-Branch model has been shown to be have highest accuracy together with an acceptable 

execution time for real-time simulations. There are other models that can represent the 

supercapacitor in more detail but, as far as the real-time representation of the component is 

concerned, it is the most performing one. In fact, the model has several advantages such as high 

accuracy, good response times and relatively simple implementation. The model therefore proves to 

be optimal in both terms of accuracy and execution time. In terms of accuracy, if subject to charge / 

discharge cycles in the order of tens of seconds, the model can accurately replicate the real behavior 

of a supercapacitor. 

The model is not the only one to have correctly represented the voltage across the component 

therefore it must be said that different configurations can also be used as long as all the 

characteristics are taken on. 
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Among the analyzed models the series model has been proved to be the most accurate one, but also 

the most complex from the point of view of implementation as well as required execution time 

during real time simulations. Therefore, despite the fact that model can represent the fast dynamics 

of the circuit, remains extremely complex and therefore not suitable for real-time simulations. 

The Zubieta model, which is just a variation of the Two-ranch model, has greater complexity and 

does not bring particular benefits from the point of view of accuracy. Although this model can also 

represent the supercapacitor response, it is slightly heavier than the Two-Branch model for real-time 

simulations, which increases in execution times. 

In conclusion, the two-branch model is the best model for real-time simulation of large number of 

supercapacitor cells and it can represent such systems with a high accuracy and acceptable execution 

time. 
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