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Abstract 

 

Settling phenomenon of solid particles immersed in a turbulent fluid has been investigated, 

in a condition of free-stream turbulence.  

Since structures formed onto this condition are complex, it is difficult to predict exactly how 

particles move. It is thus appropriate to conduct deepen studies of the phenomenon and carry 

out simulations to describe particles’ settling velocity. 

 

In order to define a new correlation for the evaluation of particles’ settling velocity, different 

literature correlations and parameters have been exploited. 

Langevin dynamics has been used to describe fluid’s motion, and by considering several 

forces acting on particles (buoyancy, drag, gravitational and virtual mass), it has been 

possible to evaluate their settling velocity, through a computational approach. Data have 

been obtained by varying characteristic properties, such as kinetic energy, its rate of 

dissipation, and physical properties of fluid and particles. 

 

Aiming to find a reliable correlation which best explains the settling phenomenon, results in 

output from simulations have been compared with that deriving from proposed correlation. 

Encouraging results have been obtained over the range of operating conditions examined. 

.  
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Introduction 
 

The modelling of sedimentation, suspension and fluidisation phenomenon of solid particles 

immersed in a turbulent fluid is of considerable importance for the chemical industry and 

environmental studies. 

Settling behaviour of particles in turbulence flow can be found in various natural processes, 

such as suspended particles in the atmosphere, sedimentation in rivers and turbidity currents 

on the coast. It also occurs in much industrial equipment of, among others, pharmaceutical, 

food industry, chemical and biochemical reactor. 

In the civil context, the study of dispersion and deposit of solid particles is used in designing 

some branches in sanitary systems useful for the treatment of drinking and purification 

water. While, common applications in environmental engineering aim to characterize the 

dispersion of particles, both in the atmosphere and in water bodies. 

One more example of solid particles dispersion and sedimentation in the environmental field 

is linked to the disaster that recently occurred in the forests of Australia, where 25.5 million 

acres have burned, thus pouring numerous solid particles into the atmosphere through the 

wind. This is an effective example of solid particles immersed in a turbulent fluid, that allows 

comprising the extremely importance of correct prediction of particles motion. 

The studying of settling phenomenon is widespread in chemical engineering; for this reason, 

it is a useful tool for investigating particles behaviour flowing into equipment applied in unit 

operations.  

Types of equipment involve solid particles, in granules, used as raw materials and/or 

industrial solutions. Typical examples of applications in chemical industry may be the 

catalytic fluidized bed cracking present in the refinery, sedimentation tanks and crystallises 

for the separation of suspensions, fluid beds used as reactors to promote contact between 

phases, more generally in all processes with solid catalysts. 

Since particles trajectory is influenced by turbulence flow, it is difficult to predict their exact 

path. Those random motion inspired many authors to conduct studies in this regard. 
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Turbulence was investigated experimentally since the end of the nineteenth century, thanks 

to Reynolds' researches. His experiment demonstrated the fundamental difference between 

the laminar and turbulent flow. Reynolds observed how the motion of the fluid was related 

to a dimensionless parameter, later to be known by its own name. 

In 1921 the English physicist G.I. Taylor proposed the concept of homogeneous and 

isotropic turbulence, valid only in the free space, which represents an ideal case of turbulent 

flow in which the dynamics of fluid motion is neither influenced by interactions with tank 

walls nor by any average velocity field. 

This concept has proved effective in the study of small turbulence scales, despite real 

turbulent flows are not homogeneous and isotropic. 

The turbulent flow, due to the mixing of the fluid particles, is characterized by a high 

diffusivity and levels of vorticity. The structures that are formed in this regime are defined 

vortices (or eddies), and these tend to join and separate, to rotate and stretch. 

L. Richardson in 1922 supposed the phenomenon of the cascade of energy, in which there 

are structures of different sizes, whereby non-linear interactions energy is transferred from 

the largest vortices to the gradually smaller ones, until the energy is dissipated by the effect 

of viscosity, as heat. 

Kolmogorov in 1941 honed the idea of L. Richardson giving it a quantitative form. He 

supposed that the cascade transfer takes place through an energy flow that defines the 

average rate of dissipated kinetic energy. 

The knowledge of turbulent flow and settling velocity of particles involves the study of 

forces acting on particles. It is important to underline that, referring to free-stream 

turbulence, drag coefficient contained into the equation of drag force doesn’t have a clear 

mathematical expression. 

For this reason, several experimental and computational studies were done to characterise 

the dynamics of particles in mechanically generated free-stream turbulence. However, there 

is still no universally accepted methodology that considers how random fluctuations of fluid 

phase influences solid particles. 
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Improving the fundamental knowledge of particle dynamics in turbulent flows is of 

considerable importance, for mainly, for the development of robust computational models 

for the design, optimisation and control of suspension and sedimentation processes. 

This study proposes to analyse dynamics’ particles in turbulent flow from a computational 

point of view and it has been developed thanks to a collaboration with the University of 

Manchester (UK). 

An overview of main studies on the subject carried out by Spelt and Biesheuvel, Lane et al., 

Brucato et al. and Magelli et al. are presented in Chapter 1. 

According to the current knowledge of the phenomenon, motivation and objectives of this 

study are explained in Chapter 2. 

The underlying methodology of this project, described in Chapter 3, illustrates the principles 

used to carry out simulations and obtain experimental data. 

In Chapter 4, a numerical model has been developed to simulate the trajectory of inertial 

particles in modelled turbulence, using Langevin dynamics, in § (3.2). 

A sensitive analysis has been made under different conditions, in order to verify the 

assumptions, described in Chapter 3, and to obtain the most suitable conditions for the 

computational environment. 

After this analysis, numerical simulations have been conducted to produce a data set of 

settling velocity.  

A new correlation, based on analysed principles and results obtained, has been proposed to 

explain the settling velocity of solid particles in turbulent flows. 

Eventually, project conclusions are presented in Chapter 5, while future works and 

exploitation purpose are illustrated in Chapter 6. 
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Chapter I − State of Art 
 

1.1 Background 

 

Since many types of equipment involved in process industry work with solid-fluid mixtures, 

understanding of how those two phases interact is of fundamental importance. 

When a particle falls in a still fluid it is subject to a force called Drag Force (𝐹𝐷), which acts 

in the direction of motion. Drag Force is a function of different factors, that for fluid at rest 

is expressed by the following relationship: 

 

𝐹𝐷 =
1

2
𝜌𝑓 𝑢𝑡

2 𝐶𝐷 𝐴𝑝 

 

 

(1.1) 

where 𝜌𝑓 is the fluid density, 𝐴𝑝 is the area projected by the particle on a plane normal to 

the relative velocity 𝑢𝑡, and 𝐶𝐷 is the Drag coefficient which is a dimensionless number that 

is determined experimentally.  

When the fluid phase is at rest, or in laminar motion, a great deal of experimental information 

is available for many-particle shapes and physical situation, whether or not the relative 

motion between the two is able to induce turbulence in the fluid phase in the proximity of 

the particle. In such cases, a reliable estimate of the relevant 𝐶𝐷 can be easily obtained [16].  

An example of the relationship between the particles’ Reynolds number (𝑅𝑒𝑝) and the 

experimental drag coefficients of spheres is shown in Fig. 1. 
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Fig. 1 – Plot of drag coefficient 𝐶𝐷 against particles’ Reynolds number for the fluid at rest. 

 

In this case, the particle drag coefficient 𝐶𝐷 depends only on the particles’ Reynolds number: 

 

𝑅𝑒𝑝 =
𝜌 𝑢𝑡 𝑑𝑝

𝜇
 

 

 

(1.2) 

where 𝜌, 𝑑𝑝, 𝜇 are density, diameter and viscosity’ particle, respectively. 

With reference to a spherical particle, the continuity and momentum balance equation can 

be analytically solved leading to the well-known Stokes law, which can be put in the form 

[14]: 

 

𝐶𝐷 =
24

𝑅𝑒𝑝
 

 

 

(1.3) 

That is not valid for higher Reynolds number, and drag coefficient referring to spherical 

shapes of the particle is correlated on a heuristic basis. 

At Reynolds numbers around 1000, the drag coefficient begins to level off and stays 

approximately constant. This range is known as Newton region. 

 𝐶𝐷 = 0.44 

 

(1.4) 

When the Reynolds number increases between 105 and 106, the drag coefficient rapidly 

decreases and then increases again, due to the changing of boundary layer region which 

modifies the pressure distribution around the particle. 
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Solid particle falls in still fluid by means of the gravitational field, and it undergoes to three 

forces, like gravity, hydrostatic and drag. After a transient field, velocity becomes steady 

and the force balance can be written as: 

 

𝐶𝐷

𝜋𝑑𝑝
2

4

1

2
𝜌𝑢𝑡

2 =
𝜋𝑑𝑝

3

4
(𝜌𝑠 − 𝜌) 

 

 

(1.2) 

Where ut is the terminal velocity, and it can be obtained from   

 

𝑢𝑡 = (
4𝑔𝑑𝑝 (𝜌𝑠 − 𝜌)

3 𝜌 𝐶𝐷
)

1/2

 

 

 

(1.3) 

However, many situations involving free-stream turbulence, which can be generated by 

various sources. In this case, the particle drag coefficient 𝐶𝐷 could be widely different with 

respect to the case of fluid at rest.  

Free-stream turbulence refers to a system, like stirred reactors, where the presence of non-

organised structures, as eddies, influences unpredictably fluid motion, therefore particles 

motion is complex to study. 

Unfortunately, relative few data are available on the effect of free-stream turbulence on 

particle drag coefficients, especially for the particle sizes typically involved in the equipment 

of process industry [14]. 

Several studies on the calculation of drag coefficient have been addressed over the years, 

and they have briefly reported through the next paragraphs. 

Most of them considered the hypothesis of homogeneous isotropic turbulence introduced by 

Taylor, thus they demonstrated that the settling velocity of heavy particles is enhanced by 

turbulence, due to the preferential sweeping phenomenon of particles along pathways 

between vortices. 

The fluid dynamics of multiphase stirred equipment is complex, and the effective particle 

settling velocity in diluted suspension was shown to be smaller than that in a still liquid [2]. 

Bec et al. investigated the effect of gravity stemming from the density difference between 

particles and fluids on the settling velocity and clustering behaviour of particles in 

turbulence, by Direct Numerical Simulation (DNS). This study confirmed the acceleration 

(1.5) 

(1.6) 

Eq.(1.6). 
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effect of particle inertia on the settling velocity and showed that the effect depends on the 

Stokes number and the Froude number [1]. 

Yang and Lei studied the behaviour of preferential sweeping in the low vorticity region, 

condition of homogeneous isotropic turbulent flows. They pointed out that preferential 

sweeping is controlled by small scales, as stated by Kolmogorov’ hypothesis (reported in 

§1.4), but large turbulent scales also affect the increasing movement of the settling particles. 

This study showed that the flow vorticity is minimized when the Stokes number is close to 

one, which corresponds to the maximum increase in the settling velocity [11]. 

Zhou and Cheng studied the falling in the turbulence of a single large-sized particle of a 

density slightly heavier than water. They found that the settling velocity cannot be related to 

turbulence intensity or to the Stokes number. However, the drag coefficient of particles 

coming out from their experiments is significantly larger than the standard values; this might 

lead to a decrease in settling velocity. The small particle density differences from the carrier 

fluid might also play an important role in this reduction [4].  

Magelli et al. [12] and Brucato et. al [3] have carried out studies taking into account the 

parameter 𝑑𝑝/𝜆. Brucato et al. obtained a direct measurement to calculate the drag 

coefficient, while Magelli et al. evaluated an average settling velocity by fitting the model 

predictions to experimental data. 

Spelt and Biesheuvel proposed an analysis using a dimensionless parameter 𝛽, that is the 

ratio between the turbulence intensity and the rise velocity of the bubbles in still fluid. After 

studying the phenomenon for bubbles, they extended those case to that of particles, showing 

how the 𝛽 value affects the settling rate of them [2]. 

Lane et al. [7] initially proposed a correlation involving Stokes number to explain turbulence 

effects on drag coefficient, by using available literature data. After some years, they noticed 

that the phenomenon is better explained also with the Richardson number.  

This study is based on the analysis conducted by Spelt and Biesheuvel (1997), Brucato et al. 

(1998), Lane et al. (2007), Magelli et al. (2008), that investigated the behaviour of solid 

particles immersed in a fluid in free-stream turbulence. 

Those studies are briefly reported in the following sections. 
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1.2 Previous studies conducted 

1.2.1 Spelt and Biesheuvel (1997) 

 

Spelt and Biesheuvel initially presented results of approximate analyses and numerical 

simulations of gas bubbles motion. After that, they adapted their previous study to that one 

related to solid particles motion, considering high Reynolds number under the hypothesis of 

homogeneous isotropic turbulence.  

In order to simulate turbulent self-diffusion, settling and dispersion of small rigid particles, 

studies were conducted involving many Fourier modes varying randomly in space and time.  

The forces exerted by the surrounding fluid on a settling particle are described by supposing 

that it acts on a rigid sphere in an inviscid unsteady non-uniform rotational flow (Auton, 

Hunt & Prud'homme 1988). This drag force lead particle to settling steadily at high values 

of Reynolds number in still fluid; a good approximation for drag force can be obtained by 

calculation based on viscous potential flow theory (Moore 1963). 

In these conditions, the dominant contribution to the statistics of the particle motion is 

associated to the autocorrelation function, with considering low-intensity turbulence and 

characteristics length scales of the same order of magnitude as those used for velocity 

relaxation of the particles. 

They have found a satisfactory agreement between the analyses and the simulations, with a 

small value of the ratio between the turbulence intensity (𝑢0) and the settling velocity of the 

particles in still fluid, 𝛽 (Eq. (1.9)). 

For larger values of 𝛽 it is conceivable that the instantaneous small-scale vorticity structure 

will become more important for statistics’ particle motion, where it is governed by 

acceleration reaction forces. 

Spelt and Biesheuvel used the Eq.(1.7) proposed by Thomas et al. (1984), that combines the 

expression of motion of small particles immersed in liquid, subjected to forces acting in an 

unsteady inviscid rotational flow, with that one typical of the drag force. 
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 𝑑𝑉

𝑑𝑡
= 3

𝐷𝑈

𝐷𝑡
− (𝑉 − 𝑈) × 𝛺 − 2𝑔 −

1

𝜏𝑏
(𝑉 − 𝑈) 

 

(1.7) 

Where 𝑉 is the particle’s velocity, 𝑈 is the fluid velocity, determined by Direct Numerical 

Simulations (DNS). Ω = ∇ × 𝑈 is the vorticity, while time constant 𝜏𝑏 is: 

 
𝜏𝑏 =

𝑎2

18𝜈
=

𝑉𝑇

2𝑔
 (1.8) 

where 𝑎 denoting the equivalent particles radius. 

Various dimensionless parameters were used to characterise the motion of the particles. 

 𝛽 =
𝑢0

𝑉𝑇
 (1.9) 

 
𝜇∗ =

𝐿11

𝜏𝑏𝑉𝑇
 

(1.10) 

 
𝜆∗ =

𝜆

𝜏𝑏𝑉𝑇
 

(1.11) 

𝜇∗ relates the relaxation time 𝜏𝑏 of the particle to the characteristic time scales of turbulence. 

The integral length scale 𝐿11 is a measure of the size of eddies in the flow, and thus of the 

spatial variation of the turbulence. 

𝜆∗ relates the Kolmogorov scale of dissipative eddies (𝜆), with the integral time scale 𝑇𝐿, 

which is a measure of time variation of turbulence, and with relaxation time 𝜏𝑏. 

They used a grid turbulence 𝑇𝐿/(𝐿11/𝑢0) approximately constant, without considering 

𝑇𝐿/𝜏𝑏 as an independent group*. It was specifically examined the case in which turbulent 

intensity is less than the particle settling velocity, i.e. 𝛽 ≪ 1. An increasing of 𝛽 leads to an 

increase in settling velocity, thus particles drift easily through eddies. The group considered, 

𝜆∗, was used to compared different energy spectrum functions, as showed in Fig. 2. 

By varying 𝛽, through variation of 𝑢0, changes in turbulence’ structure were studied, with 

fixed values of  𝜇∗, 𝜆∗, or both. 
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Fig. 2 – The difference between the mean velocity of the rise of a particle �̅� in isotropic turbulence and its 

value in still fluid 𝑉𝑇, as a function of 𝛽. (a) □,⸺, Kraichnan spectrum with λ* = 1 and 𝜇 ∗= (𝜋/2)1/2; ∆,⸺ 

⸺, von Karman-Pao spectrum with fixed Taylor microscale (λ* = 1); ○,- - - -, von Karman-Pao spectrum 

with fixed integral scale (𝜇 ∗= (𝜋/2)1/2). (b) As in (a) but with λ* = 4 and 𝜇 = 2(2𝜋)1/2 Curves show the 

analytical results for small 𝛽. [9] 

 

A higher value of the dimensionless group 𝑇𝐿/𝜏𝑏 indicates whether the particles quickly 

respond to the turbulent velocity fluctuations. 

In order to determinate correlation functions, fixed values for particles velocity and other 

parameters were considered. Simulations were carried out by involving a single particle 

released with a certain value of 𝑉𝑇, valid for a still fluid, with its trajectory calculated by a 

fourth-order version of the Bulirsch-Stoer scheme (Press et al. 1991) over a sufficiently long 

time, typically equal to 𝐿11 = 𝑢0. 

Referring to the case of free-stream turbulence, that takes place when 𝛽 increases its value 

from 0 to 1, the deviation of mean settling velocity 𝑉𝑆, from its value in still fluid decreases 

up to 50%, due to an increase of turbulence intensity. 

Therefore, from Fig. 2, it is possible to conclude that mean particle velocity gets lower with 

increasing turbulence intensity, in the range of 𝛽 =  0.3 ÷  0.5. For higher values of 

turbulence intensity, the particle velocity increases again or becomes approximately 

independent of 𝛽. 
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1.2.2 Lane et al. (2004 - 2007) 

 

G.L. Lane et al. (2004) developed a correlation relating the drag coefficient to fluid 

turbulence characteristics through dimensionless Stokes number. They studied the effects of 

dispersed phase density and size on the applied drag force under turbulent conditions, 

extending the much-needed experiment data on particle drag coefficient in free-stream 

turbulence, as a function of solid particle's characteristics [6]. 

Due to the limitation of existing correlations, Lane et al. decided to make use of available 

literature data to develop another correlation. Using Spelt and Biesheuvel dimensionless 

groups (Eq. (1.9), Eq. (1.10)), combining these two parameters and taking into account that 

in isotropic turbulence one can relate the integral length scale, 𝐿11, to the integral time scale, 

𝑇𝐿 , as 𝐿11 = 𝑇𝐿 𝑢0, it was possible to write: 

 𝛽

𝜇∗
 =  

𝑢0

𝑉𝑇
 

𝐿11

𝜏𝑏𝑉𝑇
 =  

𝜏𝑝

𝑇𝐿
 

(1.12) 

𝜏𝑝 is the particle relaxation time and 𝑇𝐿 is defined as 𝑇𝐿 = 𝐿/𝑢0, where 𝐿 is the integral 

length scale, and 𝑢0 is the r.m.s. (root mean square) the velocity of turbulence. 

The relaxation time of particles 𝜏𝑝 is given by:  

 

𝜏𝑝 =

𝜌𝑝

𝜌𝑓
+ 𝐶𝐴

(
3

4
) (

𝐶𝐷̅̅ ̅̅

𝑑𝑝
) 𝑈𝑇 

 

 

(1.13) 

where 𝐶𝐷
̅̅̅̅  is the normalised drag coefficient, 𝜌𝑝, 𝜌𝑓, are particle and fluid density, 

respectively, and 𝑑𝑝 is the particle size. 𝐶𝐴 is the added mass coefficient equal to 0.5 [6]. 

The resulting parameter is Stokes number, that is a measure of the time taken for a particle 

to respond to an interacting turbulent eddy, and hence defined as: 

 𝑆𝑡 =
𝜏𝑝

𝑇𝐿
 

(1.14) 
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The data from various sources were re-analysed and plotted as the ratio of turbulent to 

stagnant terminal velocity, correlating them with the Stokes number, as it is possible to see 

in Fig. 3. 

Although available data indicate a continual decrease in slip velocity with increasing 𝜏𝑝/𝑇𝐿, 

further consideration must be given to how the relationship extrapolates to higher values. If 

the ratio becomes very large, this means that either the particle has a very large relaxation 

time, or the time scale of the turbulence is much shorter than that of the particle. In such 

cases, the particle does not respond to turbulence. Therefore, the curve must have a minimum 

somewhere, and beyond that minimum, the effect diminishes, so as 𝜏𝑝/𝑇𝐿 → ∞, 𝑈𝑠/𝑈𝑡 → 1 

[7]. 

 
Fig. 3 – Literature data for 𝑈𝑠/𝑈𝑡 plotted against 𝜏𝑝/𝑇𝐿  for solid particles and bubbles, with fitted 

correlation for a bubble as used in the CFD model [11]. 

 

As it can be seen from Fig.3, this correlation is valid only for Stokes numbers up to 0.7. By 

using CFD simulations, Lane et al. proposed a possible trend of the full curve; however, the 

precise shape remains uncertain [7]. 

Lane et al. correlation proposed is reported below.   

 𝑈𝑠

𝑈𝑡
= 1 − 1.4 𝑆𝑡0.7 exp(−0.6 𝑆𝑡) (1.15) 
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This is expressed in terms of 𝒞𝒟
̅̅̅̅ /𝒞𝒟𝑜

, according to: 

 𝒞𝒟
̅̅̅̅

𝒞𝒟𝑜

= ( 
𝑈𝑠

𝑈𝑡
 )

−2

 
 

(1.16) 

With 𝒞𝒟𝑜
 drag coefficient valid for still liquid.  

Correlation proposed by Lane et al. captured the continual decrease in settling velocity of 

solid phase as Stokes number increases. When either the particle has large relaxation time 

or the time scale of turbulence is much shorter than that of the particle, the effect of the 

turbulence is considered to be negligible (i.e. as 𝜏𝑝/𝑇𝐿 → ∞, 𝑈𝑠/𝑈𝑡 → 1). This means that 

there will be a minimum in the plot corresponding to a maximum interaction between 

turbulence and particles [6]. 

In 2008 Lane et al. reviewed their previous work, dating it on how turbulence influences 

drag on particles, highlighting two points. Firstly, there was a clear advantage in using a 

stationary turbulence generator to eliminate any net mean flow effects; secondly, the 

dimensionless drag turbulence relationship proposed required experimental confirmation at 

higher Stokes numbers. 

Studies were carried out to extend the experimental data on particle drag coefficients in free-

stream turbulence, as a function of solid particles characteristics; in particular, the motion of 

different size particles made of Nylon and Teflon were examined in two different turbulent 

low fields, as shown in Fig.4. 

 
Fig. 4 – Effect of turbulence on the settling velocity of Nylon and Teflon particles generated at oscillating 

frequencies of (a) 8Hz and (b) 6Hz which corresponded to r.m.s. turbulence velocities of 19.2 and 14.4 mm/s, 

respectively. [8] 
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The results showed that the free-stream turbulence may lead to a significant reduction in 

settling velocity of solid particles, the function of particle characteristics as size and density.  

As Stokes number increases, 𝑈𝑠/𝑈𝑡 reduces, as it can be seen also from raising in particles’ 

diameter. 

For higher Stokes numbers, and for particle’s diameter greater than the integral length scale 

of turbulence, the ratio of velocity tends to return to values around unity, for both materials.  

This trend is probably related to the fact that no turbulent eddies of enough size or energy 

deflect the particle from its path.  

There was a considerable discrepancy between Lane’s correlation and the new experimental 

data obtained, as shown in Fig. 5(a). 

Considering the correlation related to Lane et al. first study, new experiments carried out 

suggested that besides 𝑆𝑡 number, both 𝑑𝑝/𝐿 and 𝑢0/𝑈𝑡 ratios needed to be considered as 

separate entities in developing a correlation for particle drag coefficient in turbulent flows. 

 

Fig. 5 – (a) Comparing the experiment data for settling velocity of solid particles in turbulent flows with the 

model prediction of Lane et al. [11]. The results are presented as a function of Stokes and Richardson 

numbers. (b) The effect of particle size relative to the integral length scale of turbulence on the particle 

settling velocity [8]. 

 

Fig. 5(b) suggests that the velocity curve starts to flatten as 𝑑𝑝/𝐿 reach the value of one. This 

behaviour was found to be irrespective of the particle density or turbulence intensity. 

Furthermore, in Fig. 5(b), it seemed that minimum value, (𝑈𝑠/𝑈𝑡)min, for 𝑈𝑠/𝑈𝑡 occurred 

around 𝑑𝑝/𝐿 = 1 for all experimental tests.  

b) a) 
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The most probable reason is that the maximum interaction between the particle and the 

turbulent vortices occur when particle size is approximately equal to the turbulence integral 

length scale. 

Authors suggested that inertial force due to turbulence, and the net effective weight of the 

particles, due to the gravity, play a key role in describing the dimensionless ratio between 

velocities. For this reason, was defined as a parameter called Richardson number. 

 
𝑅𝑖 =

𝑔 |𝜌𝑝 − 𝜌𝑓| 𝐿

𝜌𝑓 𝑢0
2 

 
 

(1.14) 

As shown in Fig. 6, a low value of Richardson number reflects the turbulence dominance. 

When Richardson number increases, the effect of turbulence on the settling velocity of 

particles reduces to negligible levels. Conversely, there appears to be a major effect on 

(𝑈𝑠/𝑈𝑡)min for low values of the Richardson number. 

 

Fig. 6 – The maximum interaction between solid particles and turbulent eddies as a function of the Richardson number [8]. 

 

Concluding, particle density and turbulent intensity are the key parameters affecting the 

settling velocity, and from this, Richardson number is used to correlate the minimum 

reduction in the ratio between settling and terminal velocity, (𝑈𝑠/𝑈𝑡)min. 

 

 

 

(1.17) 
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1.2.3 Brucato et al. (1998) - Magelli et al. (2008) 

 

Brucato et al. and Magelli et al. studied the behaviour of solid particles in the agitated 

system, by proposing a correlation to calculate the effective settling velocity. 

Initially, Magelli et al. (1990) proposed a correlation suggesting that the influence of 

turbulence on particle settling velocity, expressed in terms of the ratio between the settling 

velocity in the turbulent medium and that in still liquid, was a function of the ratio between 

particle diameter (𝑑𝑝) and Kolmogorov scale of dissipative eddies (𝜆). The latter is expressed 

by: 

 
𝜆 = (

𝜈3

𝜀
)

1/4

 
 

(1.18) 

where 𝜀 is the rate of kinetic energy dissipated per unit mass of fluid phase. 

Data obtained from Magelli et al. study were gathered to indicating that the correlating 

parameter 𝜆/𝑑𝑝 is related to the behaviour of the system. Unfortunately, those results did 

not fit well setting data used for the experiment, especially for the smallest glass beads, as it 

can be seen from Fig 7. 

 

 
Fig. 7 – Comparison of experimental data with Magelli et al. (1990) experimental data (dots) and 

correlation. Glass beads (∆) 63-71 μm, (□) 212-250 μm, (○) 425-500 μm, silica (▪) 180-212 μm, (●) 425-500 

μm. [1] 
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Correlation proposed by Brucato et al. (1998) taken into consideration the reverse ratio 

proposed by Magelli et al. (1990) (i.e. 𝑑𝑝/𝜆). This term was directly correlated to the 

normalized drag coefficient (𝐶𝐷) by a simple cube law. 

 𝒞𝒟 − 𝒞𝒟𝑜

𝒞𝒟𝑜

= 8.76 × 10−4 ( 
𝑑𝑝

𝜆
 )

3

 
 

(1.19) 

Subsequently, studies by Magelli et al. were based on the measurement of vertical solid 

concentration profiles at steady-state conditions, as well as of local concentration transients, 

and interpreting the data with a simple phenomenological model along the same lines 

followed in the past with settling solids from Nocentini et al. and Pinelli et al., and the 

particles settling velocity was determined. 

The study was performed in a high aspect ratio vessel agitated with multiple impellers; this 

configuration allows to magnify the vertical concentration gradients, and thus to make the 

analysis more reliable [8]. 

The solids distribution was usually characterised by limited radial concentration gradient; 

consequently, the vertical concentration profiles are their main distinctive feature, so this 

distribution in the stirred vessel was interpreted with a simple one-dimensional model.  

Using particles with density higher than the density of the fluid, by using non-dimensional 

coordinates for axis directed upwards, the dimensionless concentration under unsteady 

conditions, after an instantaneous injection at the base of the vessel, was calculated from a 

relationship, reported below. 

 𝐶∗(𝜁, 𝜃)  =  𝑓 (𝑃𝑒𝑠, 𝜁) (1.20) 

𝐶∗ = 𝐶/𝐶𝑎𝑣𝑔 𝑃𝑒𝑠 = 𝑈𝑠𝐻/𝐷𝑒𝑠 𝜃 = 𝑡𝐷𝑒𝑠/𝐻2 

Where 𝐶∗, the dimensionless concentration, is a function of 𝑃𝑒𝑠 and 𝜁. 𝐷𝑒𝑠 is the dispersion 

coefficient and 𝑃𝑒𝑠 is the Peclet number for the solids: its value is positive for the buoyant 

particles. 𝜁 is the dimensionless coordinate, while 𝐻 is vessel weight, and 𝜃 is the 

dimensionless time. 
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The particle rising velocity in the stirred tank was calculated from 𝑃𝑒𝑠 and dispersion 

coefficient for the solid phase, considered equal to that for liquid phase, under steady-state 

measurement, 𝑈𝑠 = 𝑃𝑒𝑠𝐷𝑒𝑠/𝐻. This was compared with terminal velocity (𝑈𝑡), calculate 

with the Turton and Levenspiel’s correlation. 

Settling velocity was found significantly lower than terminal velocity, as the influence of the 

turbulence on particle settling velocity was related to particles diameter (𝑑𝑝) and 

Kolmogorov scale of dissipative eddies (𝜆). 

The values of the ratio 𝑈𝑠/𝑈𝑡 of Magelli et al. obtained, were compared with empirical 

correlation established for solid settling in a dilute, turbulent medium, as stated by Pinelli et 

al. (2001) and showed in Eq. (1.21). 

 𝑈𝑠

𝑈𝑡
= 0.4 ∙ 𝑡𝑎𝑛ℎ [16

𝜆

𝑑𝑝
− 1] + 0.6 

 

(5) 

With the Kolmogorov scale of dissipative eddies (𝜆) given by the equation mentioned above. 

Studying the effects of particle inertia under conditions of isotropic turbulence, and by 

analysing bubble gas motion in a turbulent medium Oesterlè and Zaichik (2006), Doroodchi 

et al. (2008), Porte and Biesheuvel (2002) suggested considering particle-fluid interaction, 

in particular related to solid-to-liquid density.  

Afterwards, studies carried out by Scargiali (2007) shown that introducing ratio between 

solid and fluid density reduced the average error of about 20% of the previous correlation 

(Eq. 1.22). The optimal exponent value for this ratio is equal to 0.5. 

 𝑈𝑠

𝑈𝑡
= 0.32 ∙ 𝑡𝑎𝑛ℎ [19

𝜆

𝑑𝑝
(

𝜌𝑠 − 𝜌𝑓

𝜌𝑓
)

0.5

− 1] + 0.6 
 

(6) 

Eventually, Magelli et al. (2008) proposed a correlation to calculate 𝑈𝑠/𝑈𝑡, which contain 

these two dimensionless parameters. 

This correlation predicts solid distribution in processes where floating particles are dispersed 

in fluid, but it is possible to apply it also to describe gas-liquid systems, under idealised 

condition. 

 

(1.21) 

(1.22) 
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Eq. (1.22) is plotted in Fig. 8.  

 

Fig. 8 – The ratio of the settling/rising velocity, 𝑈𝑠, in stirred systems to the terminal value, 𝑈𝑡, ●; buoyant 

particles; other data points: settling particles (+××˖; Rushton turbines of three scales; ◊∆; PBT of two 

scales; □: A310 impellers) solid line: correlation for settling solids; dashed lines: ±30% of the correlation 

line. [2] 

 

According to Brucato et al. studies, one can see that as dimensionless terms on abscissa for 

the lowest and highest values date not converge. The ratio of the velocity 𝑈𝑠/𝑈𝑡 reaches a 

unitary value, as shown by the typical behaviour of a fluid at rest. 
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1.3 Analysis of correlations 

 

The analysis performed by different authors underlines the limitations in their proposed 

correlations. In order to improve knowledge of the phenomenon, further studies should be 

necessary. 

Spelt and Biesheuvel based their studies on investigating particles motion of equivalent 

diameter of about 1,0 mm, in isotropic turbulent flow and their data just covered range of 

𝛽 ≪ 1. Therefore, the applicability of the correlation of Spelt and Biesheuvel is questionable 

for the turbulence of high intensity at small length scales. 

Lane et al. in their studies considered Spelt and Biesheuvel dimensionless parameter 𝛽 and 

𝜇∗, and combining both they obtained Stokes number. 

Correlation proposed initially by Lane et al. was valid for 𝑆𝑡 < 0.7. By increasing Stokes 

number and particle diameter, 𝑈𝑠/𝑈𝑡 ratio decreases, reaching a minimum value for 𝑑𝑝/𝐿 

equal to one, corresponding to a maximum interaction between turbulence and particles. The 

𝑈𝑠/𝑈𝑡 increases as the Stokes number increase as well, returning to a unity value at ratios 

𝑑𝑝/𝐿 of more than 2.5. 

Lane et al. intuited that the difference in density between fluid and particle was an important 

parameter in describing settling velocity. They used this parameter, through Richardson 

number, in order to establish the greatest contribution between gravity force domains respect 

to turbulence.  

Magelli et al., according to Brucato et al., proposed a correlation by using a dimensionless 

parameter, 𝜆/𝑑𝑝. Unfortunately, the highest value of this reached a 𝑈𝑠/𝑈𝑡 unitary, as shown 

by the typical behaviour of a fluid at rest. 

In a second moment, Magelli et al. compared data with that of Pinelli et al., by concluding 

that the difference between particle and fluid density must be included in their correlation, 

with uncertainties regarding errors in measurement. 
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As suggested by Lane et al., the dimensionless parameters introduced by various authors 

should be considered as separate entities, in order to establish the exact relationship between 

them and particle settling velocity.  
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1.4 Kolmogorov Hypothesis 

 

The first hypothesis that the disturbances in small scales in a turbulent fluid are 

approximately isotropic was found in the literature (Richardson in 1922), considering 

turbulence constituted by a set of disordered disturbances (eddies) that differ from each other 

in terms of size and scale. 

Kolmogorov in 1941 stated that in the turbulent flow perturbations are characterized by the 

size of the vortex, and although it is a conceptual abstraction, its utility has greatly simplified 

the theoretical treatment and allows a better understanding of physics. 

The energy terms involved in the motion of the fluid are characterized by instability 

mechanisms, that is the generation of vortices that over time generate ever-smaller vortices 

until the dimensions are not so small that the viscosity dissipates the structures preventing 

any further transfer.  

Kolmogorov's hypothesis draws from the observation that the dynamics of turbulence 

depends on how quickly the energy is transferred from the large to the small scales and on 

the value of the viscosity that sets the wave number, to which the cut is made in the transfer 

of power. If the fluid dynamics phenomenon is statistically stationary, being the cascade 

from non-viscous energy, it is deduced that called the rate of turbulent kinetic energy (per 

unit of mass), (𝜀) produced in the unit of time transferred to the disturbances on a larger scale 

𝐿, this will also be the energy dissipated in the unit of time. 

Consequently, 𝜀 will be the characteristic of large scale of motions which will influence the 

statistical state of small scales fluctuations. The energy associated with them is of the order 

of 𝑢2 and that the rate of kinetic energy dissipated will be 𝜀 ~ 𝜈𝐿
3/𝐿, where 𝜈𝐿 is the 

characteristic velocity related to a larger scale. At high Reynolds numbers, the direct 

dissipation of energy by the medium motion of the fluid under the action of the molecular 

viscosity is negligible, therefore the components of the instantaneous motion with relative 

fluctuations are considered: 
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𝜀 =

1

2
𝜈 ∑ (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑖,𝑗

 
 

(7) 

𝑢𝑖 and 𝑢𝑗  are the components of the instantaneous motion, in the direction i and j. 

Kolmogorov claims that all the geometric information of the large vortices, determined by 

the average motion of the fluid, is lost. Consequently, the characteristics of small-scale 

motions must in a certain sense be universal, that is, similar for each high Reynolds number 

motion. 

Considering the disturbances that have lost the directional property (anisotropy) of the 

average motion and are substantially isotropic, these will still have considerable dimensions 

and will have a characteristic size of the order of 𝐿. The description is given by Pope (2003), 

for the length of the scale 𝐿𝐸 (of the order of 1/6 𝐿), was useful as a demarcation between 

the surely anisotropic vortices (𝑟 < 𝐿𝐸) and the small locally isotropic vortices (𝑟 < 𝐿𝐸). 

The properties of large-scale motions can influence the statistical properties of lower-scale 

disturbances only through the turbulent energy dissipation rate ε. 

Furthermore, these properties must also depend on the parameters that characterize the 

physical properties of the fluid, which can be described by the density ρ and the viscosity ν. 

Since, however, the relative speed values are independent of the choice of the mass unit, the 

statistical properties of the motion of the disturbances cannot depend on ρ. 

We can conclude that the statistical properties of disturbances on a sufficiently small scale 

will depend only on ε and ν. 

Kolmogorov's first hypothesis:  

In the case of disturbances in a sufficiently high Reynolds number field of motion, the 

probability distribution for velocities in a region of space-time where turbulence is locally 

isotropic is defined unambiguously by the values of 𝜀 and 𝜈. 

Using variables such as the energy that dissolves (𝜀) and the viscosity that dissipates (𝜈), 

length scale is constructed dimensionally 𝜆, that is the magnitudes of these vortices, and the 

corresponding velocity and time 𝜏𝜆 of these vortices, as: 

(1.23) 
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 𝜈𝜆 = (𝜈 𝜀)1/4 (84) 

 
𝜆 = (

𝜈3

𝜀
)

1/4

 
 

(918) 

 
𝜏𝜆 = (

𝜈

𝜀
)

1/2

 (1.25) 

With this observation we can understand Kolmogorov's first hypothesis which says:  

For sufficiently high Reynolds numbers, the characteristics of the small scales of all 

turbulent flows are universal and are determined by the viscosity and power dissipated.  

To quantify the dissipation scales was defined the Kolmogorov scales, that is the size, 

velocity and time, we define a Reynolds number equal to: 

 
𝑅𝑒 =

𝜈𝜆 𝜆

𝜈
= 1 

 

(1.26)  

Disturbances with a length of 𝜆 scale, characterized by a velocity 𝜈𝜆, have a number of 

Reynolds equal to 𝑅𝑒 = 𝜈𝜆 𝜆 /𝜈 = 1. 𝜆 is of the same order of magnitude as the scale length 

of higher-order disturbances on which viscosity still has an appreciable effect. Using the 

definition of 𝜆 it is possible to identify a dimensional range for the disturbances within which 

their main characteristic is local isotropy, in fact, all the disturbances with scale length 𝑟 

lower than L and higher than Lam are locally isotropic. 

The range 𝜆 − 𝐿𝐸  is called: Universal Equilibrium Range. 

Now consider the ratio between the scale length of the smallest motions 𝜆 and the scale 

length of the vertices of larger dimensions 𝐿 and the analogous ratios for the scale velocity 

and the characteristic scale time. These ratios are immediately determined by the definition 

of the Kolmogorov scale and by the fact that 𝜀 ~ 𝑈3/𝐿 in the following way: 

 𝜆

𝐿
= 𝑅𝑒−3/4 

 

(1.27) 

 𝜈𝜆

𝑈
= 𝑅𝑒−1/4  

(1.28) 

 𝜏𝜆

𝑇𝐿
= 𝑅𝑒−1/2  

(1.29) 

(1.24) 

(1.18) 

(1.25) 

(1.26) 
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Hence, the Kolmogorov length decreases with increasing Reynolds number which 

characterizes the motion of the fluid and as well as the scaling speed and the scaling time, 

but more slowly. Therefore, at high Re values, the velocity and the characteristic time of 

scale of the smaller vortices (𝜈𝜆 and 𝜏𝜆) are small when compared with those of the larger 

vortices (𝑈, 𝑇𝐿). 

In the case in which the Re value of the fluid motion is so high as to make 𝜆 assume a very 

small value if compared with 𝐿. In this type of turbulence, we can isolate a vast subset of 

disturbances of much smaller scale length 𝑟 of 𝐿 (and consequently homogeneous, isotropic 

and almost stationary) but a lot greater than the Kolmogorov length 𝜆. For these disturbances, 

the relative velocities 𝜈𝑟 will be much greater than 𝜈𝜆 and therefore the relative Reynolds 

number 𝑅𝑒 = 𝜈𝑟 𝑟 /𝜈 will be very high with respect to 𝑅𝑒 = 𝜈𝜆 𝜆 /𝜈 = 1. In other words, 

in this dimensional subinterval, the dominant process is the inertial transfer of energy to 

small-scale disturbances, without however any appreciable conversion of energy directly 

into heat by the viscous forces. The statistical properties corresponding to this sub-range of 

scale (known as Inertial Range) therefore do not depend on the viscosity 𝜈.  

This is Kolmogorov's Second Hypothesis: 

In the case of turbulence with a sufficiently high Reynolds Re number, the multidimensional 

probability distribution for the velocities in a sufficiently small space and in intervals 𝑟 ≪ 𝐿 

and 𝜏𝑘 ≪ 𝐿/𝑈 are determined, unambiguously, only by the value of the turbulent energy 

dissipation rate 𝜀 and are independent of the viscosity 𝜈. 

This description implies a cascade transfer through an energy flow that defines the average 

rate of kinetic energy dissipated (𝜀) from the largest scales of motion towards smaller and 

smaller ones up to the dissipative scales where viscosity transforms all energy into heat. This 

interval is called inertial because it does not depend on either forcing or dissipation (𝜈). 
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Fig. 9 – Kolmogorov hypothesis of the cascade of energy  

 

Where 𝑇𝐿 = 𝐿/𝑈 is the time scale of large scale of flow. 

Considering at this point an 𝐿𝐷 scale length (𝐿𝐷 = 60 𝜆) it is possible to divide the entire 

dimensional range in this way: 

• Universal Equilibrium Range: 𝑟 < 𝐿𝐸 

• Inertial Range: 𝐿𝐸  > 𝑟 > 𝐿𝐷  
• Dissipation Range: 𝑟 < 𝐿𝐸  

 

Fig. 10 – Division of dimensional range of turbulent disturbances 

 

These relationships allow us to estimate the relationships between the characteristics of the 

largest and smallest scales in a turbulent flow as a function of the Reynolds number only.  

The dynamics of intermediate structures with dimension 𝑟 such that 𝐿 ≫ 𝑟 ≫ 𝜆 (or in time 

using “𝑠” such as 𝑇𝐿 ≫ 𝑠 ≫ 𝜏𝜆), was considered by Kolmogorov's third hypothesis inspired 

by the observation that the dynamics of turbulence depends on how quickly energy is 

transferred from large to small scales and from the value of the viscosity that. 
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Introducing the wave number 𝑘 where the cut is made in the transfer of power, and 

considering that for sufficiently high Reynolds numbers the characteristics (the statistics) of 

the structures of dimension 𝑟 (with 𝐿 ≫ 𝑟 ≫ 𝜆) are universal and depend solely on 𝜀 (and 

therefore are independent of 𝜈), we can derive the famous power law (𝑘−5/3) for the energy 

spectrum: 

 
𝐾 = ∫ 𝐸(𝑘)𝑑𝑘

∞

0

 
 

(100) 

where 𝐾 is the kinetic energy per mass unit of the flow, from Kolmogorov's third hypothesis 

and from dimensional arguments we obtain: 

 𝐸(𝑘) = 𝒞 𝜀2/3𝑘−5/3 (1.31) 

where 𝒞 is a universal constant. 

Particularly, the power dissipated in the homogeneous and isotropic turbulence follows a 

power law of the type: 

 𝑃 ≈  𝑓5/3 (112) 

 

 

Fig. 11 – Kolmogorov hypothesis to the energy transferred from a bigger scale to a smaller one. 

 

 

 

(1.30) 

(1.32) 
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Chapter II − Motivation & Objectives 
 

In the chemical industry, most of the processes involve mixtures of solid and fluid. 

In these circumstances, the behaviour of solid particles in a turbulent fluid is not properly 

defined and further improvement would be necessary to the equipment design. 

Several fundamental studies were carried out on the effects of the continuous phase acting 

on dispersed particles, but inconclusive results were reported, probably due to the limited 

experiment range of physical and operating conditions examined [13]. 

The multiphase flows involving a suspension of particles in the liquid were carried out under 

turbulent conditions of varying intensity in processing vessels, such as loop reactors and 

mechanically agitated vessels. Often in these processes, uniform dispersion of particles is 

achieved due to the interaction between turbulent eddies and the disperse phases. A better 

understanding of such interaction is fundamental to the effective design, modelling and 

operation of multiphase systems [6]. 

The difficulty in the modelling of the sedimentation, suspension and fluidisation 

phenomenon is related to the complexity of the structure formed by free-stream turbulence, 

which does not allow to predict the exact particles’ motion. 

From a mathematical point of view, the detailed description of the transition from laminar 

to turbulent flow is a complex problem; as the Reynolds number increases, a laminar flow 

becomes unstable, consequently the possibility that small perturbations evolve in a chaotic 

manner giving rise to the turbulent motion.  

A fluid exerts a drag force on the particle that can be calculated by Stokes' law, in cases of a 

regime of motion with low values of Reynolds. When Reynolds increases, Stokes' law is no 

longer valid, and consequently, the relationship between drag coefficient (𝐶𝐷) and number 

of Reynolds is not linear. 

Due to the underlying non-linear nature of turbulent flows and the fact that a larger number 

of particles are present, an analytical solution to the problem cannot be expected. A possible 

way to investigate the problem, in case of industrial interest, is to considerer a statistical 
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description of turbulent motion, based on the solution of a mediated equation using a 

Stochastic Differential Equation (SDE).  

Langevin in 1908 proposed a Stochastic Differential Equation (SDE) to describe the 

homogeneous and isotropic turbulent flows. This has been used, in this works, to describe 

the fluid’ motion (§ 3.2). 

The aim of this work is to define a correlation to describe the phenomenon of the particles 

settling, able to provide settling velocity data to compare with experimental data obtained 

from simulations. 

The proposed correlation includes parameters that coming out from the previous studies 

mentioned above (§ 1.2). 

 𝑈𝑠

𝑈𝑡
= 𝑓 (

𝑑𝑝

𝜎 𝑇𝐿
,

𝜎

𝑈𝑡
,
Δ𝜌

𝜌𝑓
,
𝑡𝑟

𝑇𝐿
,
𝑔 Δ𝜌 𝐿

𝜌𝑓 𝜎
) 

 

(12.1) 

The final correlation will be better described in Chapter 4. 

 

 

 

 

 

 

 

 

 

 

(2.1) 
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Chapter III − Methodology 
 

3.1 Introduction 

 

Langevin dynamics has been used in this work to describe the random motion of the 

turbulent flow. This model is constituted by Stochastic Differential Equations (SDEs) that 

are differential equation in which one, or more, terms include a random variable. These terms 

represent stochastic processes or the probabilistic version of a dynamic system, allowing to 

quantify parameters varying in a causal manner over time.  

By carrying out multiple tests, the most probable value of a random variable is identified by 

considering its mean with a gaussian trend, which is characterized with a relative index of 

deviation or standard deviation from the expected value. 

In this work, homogeneous and isotropic turbulence with zero mean flow has been 

considered. 

The turbulent motion in these conditions can only occur in the absence of physical boundary 

limits or externally imposed mean flows; the structure of the velocity field, in terms of 

statistical quantities, is invariant under translation (homogeneity) and rotation (isotropy) of 

the reference system, with respect to which the motion of the fluid is being described. Only 

in these conditions, the chaotic motion of the fluid can develop freely, according to the 

dynamics imposed by the equations of motion. 

The conditions of homogeneous and isotropic turbulence are ideal, thus rarely occur in 

practical applications. It can be assumed that the structure formed in chaotic motion at 

sufficiently small scales, existing at high Reynolds number, in small regions of space and 

for short duration intervals, is practically homogeneous and isotropic. 

Fluid’s motion can be described decomposing its instantaneous velocity in two terms, an 

average value and a fluctuation one.  
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By imposing stationarity for velocity’s average value, the signal can be expressed as: 

 𝑢(𝑥, 𝑡) = 𝑈(𝑥) + 𝑢′(𝑥, 𝑡) (13.1) 

 

𝑈(𝑥) is the average value, while signal no-stationarity is given by fluctuation term 𝑢′(𝑥, 𝑡). 

Fig. 12 shows the decomposition of the signal in part medium and fluctuation. 

 

Fig. 12 – Reynolds decomposition of a statistically stationary signal in part medium and part floating [12]. 

 

 

Fig. 13 – Decomposition of a statistically non-stationary signal in part medium and part floating [12]. 

 

If the average velocity is also a function of time, then the average operation should not be 

carried out for an infinite time, but over a finite interval which is very large compared to the 

time scales of the fluctuations, but rather short if compared with the times of variation of the 

mean-field (Fig. 13). 

 

 

 

 

(3.1) 
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3.2 Langevin Equation 

 

In the case of homogeneous, isotropic and statistically stationary turbulence by artificial 

force, the values of 𝜅 (kinetic energy) and 𝜀 (average rate of dissipated kinetic energy) are 

constant, with zero mean velocity. These premises allow to consider the particles of fluids 

all with the same characteristics, and it is, therefore, sufficient to consider a component of 

the velocity of the fluid particle 𝑈+(𝑡), seen as the composing of velocity with a Lagrangian 

point of view. 

The Langevin equation considers the velocity of microscopic-sized fluid particles following 

a Brownian-like motion. The stochastic processes 𝑈∗(𝑡) obtained from the Langevin’ 

equation are called Ornstein-Unlenbeck (UO) processes, characterizing a Probability 

Density Function (PDF) [15]. 

Considering Eq.(3.2.1), the deviation 𝑢′ presents an irregular, unpredictable trend and can 

be considered a random variable. It is possible to associate a difference density function 

𝑝(𝑢′) to the gap such that the product 𝑝(𝑢′)𝑑𝑢 represents the probability that the random 

variable 𝑢′ assumes the value between 𝑢′ and 𝑢′ + 𝑑𝑢′.  

The probability 𝑃 that the random variable assumes a value within a finite range −𝑢0
′ ≤ 𝑢′ ≤

𝑢0
′  will, therefore, be given by: 

 
𝑃(𝑢′) = ∫ 𝑝(𝑢′)𝑑𝑢′

𝑈0
′

−𝑈0
′

 
 

(3.2.1) 

Referring to Fig.14, which shows a time course of a velocity difference, the interval of the 

values assumed by the difference must be divided into equal parts with an amplitude equal 

to ∆𝑢′. Subsequently, considering an interval of values of 𝑢′ prime between (𝑘 − 1)∆𝑢′ e 

𝑘∆𝑢′, it must quantify the interval of time during which the random variable assumes values 

included in that interval. Said 𝜏𝑘 this interval and 𝑇𝐿 the duration of the experiment or better 

the time interval for which the stochastic process 𝑋(𝑡) loses correlation with the value 

possessed at the initial instant, the ratio 𝜏𝑘/𝑇𝐿 provides an approximate estimate of the 

probability that the variable 𝑢′ prime takes values between (𝑘 − 1)∆𝑢′ e 𝑘∆𝑢′.  

(3.2.1) 
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Fig. 14 – Deviation of velocity during the time [9]. 

 

Consequently, the sum of all 𝜏𝑘 is equal to the total duration of the experiment. This 

condition can be expressed by referring to the probability density estimate: 

 ∑ (
𝜏𝑘

𝑇𝐿 ∆𝑢′ 
)𝑘 ∆𝑢′ = 1  (142) 

Knowing the probability density function (PDF) associated with the event in question, we 

can define the expected or average value of the random variable: 

 
〈𝑢′〉 = ∫ 𝑢′ 𝑝(𝑢′) 𝑑𝑢′

∞

−∞

 
 

(3.2.3) 

The expected value of the velocity difference is zero, in fact, by approximating the letter 

integral with a summation we have: 

 
∑ 𝑢𝑘

′

𝑘

 (
𝜏𝑘

𝑇𝐿 ∆𝑢′ 
) ∆𝑢′ =

1

𝑇𝐿
 ∑ 𝑢𝑘

′

𝑘

 𝜏𝑘 
 

(3.2.4) 

Where 𝑢𝑘
′  prime is the average value assumed by the velocity difference in the time interval 

𝜏𝑘. The sum is made up of positive and negative products, which when added together give 

zero results. 

The expected value of the velocity 𝑢 obviously coincides with the average value 𝑈, 

introduced above. 

(3.2.2) 

(3.2.3) 

(3.2.4) 
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𝜎2 = ∫ 𝑢′2 𝑝(𝑢′)𝑑𝑢′

∞

−∞

 
 

(155) 

The mean square deviation is defined as the quantity being diffusion processes not 

differentiable, the standard tools of differential calculus cannot be applied. Instead of 

differential calculus, the appropriate method is the Ito calculus; and, instead of being 

described by ordinary differential equations, diffusion processes are described by stochastic 

differential equations.  

The infinitesimal increment of the process 𝑈(𝑡) is defined by: 

 𝑑𝑈(𝑡)  =  𝑈(𝑡 +  𝑑𝑡)  −  𝑈(𝑡) (166) 

where 𝑑𝑡 is a positive infinitesimal time interval. 

For the Wiener process, in particular, it possible to consider: 

 
𝑑 𝑊(𝑡)  =  𝑊(𝑡 +  𝑑𝑡)  −  𝑊(𝑡) =⏞

𝐷

 𝒩(0, 𝑑𝑡) 
 (172.7) 

The symbol =⏞
𝐷

 is read as “is equal in distribution to”, and 𝒩(𝜇, 𝜎2) is the normal distribution, 

in particular, denotes the normal with mean 𝜇 and variance 𝜎2. 

Now consider the process 𝑈(𝑡) defined by the initial condition 𝑈(𝑡𝑜) = 𝑈𝑜 and by the 

increment: 

 𝑑𝑈(𝑡)  =  𝑎[𝑈(𝑡), 𝑡] 𝑑𝑡 + 𝑏[𝑈(𝑡), 𝑡] 𝑑𝑊(𝑡) (188) 

For given functions 𝑎(𝑉, 𝑡) and 𝑏(𝑉, 𝑡). It is readily verified that the process 𝑈(𝑡) defined 

by this stochastic differential equation is a diffusion process, and, as implied by the notation, 

the drift and diffusion coefficients are 𝑎(𝑉, 𝑡) and 𝑏(𝑉, 𝑡) [15]. 

A random variable is fully characterized by its probability density function (PDF), and two 

random variables with the same probability density function (PDF), are statistically identical. 

Similarly, a diffusion process is fully characterized by its drift and diffusion coefficients; 

and two diffusion processes with the same coefficients are statistically identical [15]. 

(3.2.5) 

(3.2.6) 

(3.2.7) 

(3.2.8) 
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Thus, the stochastic differential equation Eq. (3.2.9) provides a general expression for a 

diffusion process. It shows that the infinitesimal increment of a diffusion process is 

Gaussian, i.e., 

 𝑑𝑈(𝑡)  =  𝒩(𝑎[𝑈(𝑡), 𝑡]𝑑𝑡, 𝑏[𝑈(𝑡), 𝑡]2 𝑑𝑡) (199) 

This Gaussian is not a defining property of diffusion processes, but rather a deduction from 

their definition [15]. 

The Langevin equation denotes this velocity mentioned above as 𝑈∗(𝑡), thus obtaining: 

 

𝑑𝑈∗(𝑡) =  −𝑈∗(𝑡)
𝑑𝑡

𝑇𝐿
+ (

2𝜎2

𝑇𝐿
)

1

2

𝑑𝑊(𝑡) 

 

(2010)  

where 𝑇𝐿 is the Lagrangian integral time-scale e 𝜎2 is the variance, both constant. 

The Eq. 3.2.10 can be express through the finite-difference equation: 

 

𝑈∗(𝑡 + ∆𝑡) = 𝑈∗(𝑡) − 𝑈∗(𝑡)
∆𝑡

𝑇𝐿
+ (

2𝜎2 ∆𝑡

𝑇𝐿
)

1

2

 𝜉(𝑡) 

 

(2111)  

Where the first term is related to the dissipation coefficient which causes the velocity to relax 

towards zero on the timescale 𝑇𝐿, while the second term is called random coefficient and it 

is the statistical refers to a random increment to zero-mean of the standard deviation 𝜎2. The 

term 𝜉(𝑡) is the standardized Gaussian random variable, which is independent of itself at 

different times and which is independent of 𝑈∗(𝑡) at the last time. 

The constant diffusion coefficient: 

 
𝑎(𝑈∗, 𝑡) = −

𝑈∗ 

𝑇𝐿
 

(2212)  

Considering the random coefficient 𝑑𝑊(𝑡) = 0, and integrating the Langevin equation: 

 
∫ 𝑑𝑈∗

𝑡

0

= − ∫
𝑈∗

𝑇𝐿

𝑡

0

𝑑𝑡 
 

(2313)  

 
𝑙𝑛

𝑈𝑡
∗

𝑈0
∗ = −

𝑡 

𝑇𝐿
 →  𝑈𝑡

∗ = 𝑈0
∗ 𝑒𝑥𝑝 (−𝑡/𝑇𝐿) 

 

(2414)  

(3.2.9) 

(3.2.10) 

(3.2.11) 

(3.2.12) 

(3.2.13) 

(3.2.14) 
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Which means that the velocity would be totally dissipated during the time (back curve in 

Fig. 15). 

The constant diffusion coefficient: 

 

𝑏(𝑈∗, 𝑡) = (
2𝜎2

𝑇𝐿
)

1

2

 

 

(2515)  

The random coefficient implies that fluid has a random motion, with normal distribution 𝜎2. 

 

Fig. 15 – The right plot is the velocity of the fluid obtained by the Langevin equation, where the purple curve 

is due to the dissipation term and the blue curve is due to the random term. At left the Gaussian curve of 

distribution velocity. 

 

Plotting the Langevin equation is possible to evaluate that 𝑈∗ is a statistically stationary and 

a Gaussian process, that is characterized with an average at zero, with variance 𝜎2 and, in 

particular with an autocorrelation function given by: 

 𝜌(𝑠) = 𝑒−|𝑠|/𝑇𝐿 (2616)  

The autocorrelation function is the correlation of a signal with a delayed copy of itself as a 

function of delay. Informally, it is the similarity between observations as a function of the 

time lag between them. 

 

 

 

   (3.2.15) 

(3.2.16) 
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If this is the autocorrelation function of the Lagrangian velocity, its Lagrangian integral 

timescale is defined by: 

 
𝑇𝐿 =  ∫ 𝜌(𝑠)𝑑𝑠

∞

0

 
 

(2717)  

If the equation relatives at autocorrelation function are consistent with this definition the 𝑇𝐿 

the coefficient in the Langevin equation is indeed the integral timescale of the process. 

The Langevin equation is correct in yielding a Gaussian probability density function (PDF) 

of velocity. In isotropic turbulence, the one-time PDF of the Lagrangian velocity 𝑈+(𝑡) is 

identical to one-point, one-time Eulerian PDF as demonstrated from experiment and DNS 

(direct numeric simulation), where PDF’s are very close to Gaussian [15]. 

The correct variance is defined by: 

 
𝜎2 =

2

3
𝜅 

(2818)  

Considering high-Reynolds number of turbulence in which there is a large separation 

between the integral timescale 𝑇𝐿 and the Kolmogorov time scale 𝜏𝜂, it has been examined 

𝑈+(𝑡) on inertial-range timescales “𝑠”, 𝑇𝐿 ≫ 𝑠 ≫ 𝜏𝜆. This is best done through the second-

order Lagrangian Structure Function: 

 𝐷𝐿(𝑠) ≡ 〈 [𝑈+(𝑡 + 𝑠) − 𝑈+(𝑡)]2〉 (2919)  

With this function, which is just the variance of the increment over the time interval 𝑠 > 0, 

it is possible to express the autocorrelation of the velocity of a particle, and, particularly, 

being Lagrangian, it follows the trajectory of a particle taken individually. 

The second-order Lagrangian Structure Function 𝐷𝐿, for Kolmogorov's hypothesis, is 

proportional to “𝑠” in the inertial range, and also at the rate of dissipation of the turbulent 

kinetic energy as follows: 

 𝐷𝐿(𝑠) = 𝐶𝑜 𝜀 𝑠     per     𝑇𝐿 ≫ 𝑠 ≫ 𝜏𝜆 (3020)  

Where 𝐶𝑜 is the Kolmogorov constant, whereas the Langevin equation yields: 

 𝐷𝐿(𝑠) ≡ 〈 [𝑈∗(𝑡 + 𝑠) − 𝑈∗(𝑡)]2〉 (3121)  

(3.2.17) 

(3.2.18) 

(3.2.19) 

(3.2.20) 

(3.2.21) 



 

Modelling of the sedimentation phenomenon of a solid particle Immersed in a turbulent fluid 

 

 

43 

 

 =
2𝜎2

𝑇𝐿
𝑠     for     𝑠 ≪ 𝑇𝐿 (3222)  

Thus, the Langevin equation is consistent with the Kolmogorov hypothesis in yielding a 

linear dependence of 𝐷𝐿 on “𝑠” in the inertial range. 

In place of 𝜎2 e 𝑇𝐿, in the Langevin equation, it is possible to use the terms kinetic energy 

(𝜅) and an average rate of dissipated kinetic energy (𝜀) and introducing the Langevin-model 

constant 𝒞𝑜 through the relation:  

 2𝜎2

𝑇𝐿
= 𝒞𝑜 𝜀 

(3323)  

 
𝑇𝐿

−1 =
𝒞𝑜 𝜀

2 𝜎2
=

3

4
 𝒞𝑜  

𝜀

𝜅
 

(3424)  

 

Defined those constant, it has been used again to express the Langevin equation as: 

 
𝑑𝑈∗(𝑡) = −

3

4
 𝒞𝑜  

𝜀

𝜅
 𝑈∗(𝑡) 𝑑𝑡 + (𝒞𝑜 𝜀)

1

2 𝑑𝑊(𝑡) 
(3525)  

It is straightforward to incorporate Reynolds-number dependence in the Langevin model 

simply by making the model coefficient 𝒞𝑜 depend on 𝑅𝑒𝑇, therefore, 𝒞𝑜(𝑅𝑒𝑇). Consistency 

with the Kolmogorov hypotheses requires only: 

 𝑙𝑖𝑚
𝑅𝑒𝑇 → ∞

𝒞𝑜(𝑅𝑒𝑇) = 𝐶𝑜 
 

(3626)  

where now we distinguish between the Kolmogorov constant 𝐶𝑜 and the model coefficient 

𝒞𝑜(𝑅𝑒𝑇). Furthermore, 𝒞𝑜(𝑅𝑒𝑇) can be determined directly from DNS data by Eq.33, that 

can be reorganized as: 

 

𝒞𝑜 =
4 𝜅

3 𝜀 𝑇𝐿
 

 

(3727)  

(3.2.22) 

(3.2.23) 

(3.2.24) 

(3.2.25) 

(3.2.26) 

(3.2.27) 
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Fig. 16 – The Langevin-model constant 𝐶𝑜 against Reynolds number. Symbols (●) from Eq.2*; Empirical fit 

(▬) from Eq. 38. 

 

The values of 𝒞𝑜 were obtained from Direct Numerical Simulation (DNS), compared to the 

empirical fit, which is based on a suggestion by Sawford et al. [16]. 

 
𝒞𝑜(𝑅𝑒𝑇) =

6.5

(1 + 140 𝑅𝑒𝑇
−4/3)3/4

 
 

(3828)  

From Fig. 16, the fit represents the data which is consistent with the Kolmogorov hypotheses 

with 𝐶𝑜 = 6,5. 

 

𝜎 = √ 
2

3
𝑘 

 

(3929)  

 
𝑅𝑒𝑇 = √ 

15 𝜎
𝜀 𝜇

𝜌

 
 

(4030)  

𝑅𝑒𝑇 is the Taylor-Scale Reynolds number which is sometimes called the turbulence length 

scale, is a length scale used to characterize a turbulent fluid flow. The Taylor microscale is 

the intermediate length scale at which fluid viscosity significantly affects the dynamics of 

turbulent eddies in the flow.  

 
𝑇𝐿

−1 =
3

4
 𝒞𝑜  

𝜀

𝜅
 

 

(4131)  

(3.2.28) 

(3.2.29) 

(3.2.30) 

(3.2.31) 

https://en.wikipedia.org/wiki/Length_scale
https://en.wikipedia.org/wiki/Turbulence
https://en.wikipedia.org/wiki/Fluid_flow
https://en.wikipedia.org/wiki/Viscosity
https://en.wikipedia.org/wiki/Dynamics_(physics)
https://en.wikipedia.org/wiki/Eddy_(fluid_dynamics)
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𝑡𝑟 =

𝜌𝑝 

𝜌𝑝+0.5
𝑑𝑝

3

4
(

𝜌𝑓 𝑑𝑝 |𝑈𝑡|

𝜇
) |𝑈𝑡|

 

 

(4232) 

𝑡𝑟 is the particle relaxation time, that is, the constant time in the exponential decay of the 

velocity of the particle due to the drag. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.2.32) 
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3.3 Kinematic of Settling 

 

To describe the kinematic of the settling of particles with mass is necessary to consider all 

relevant forces acting on them. Furthermore, these particles will be equipped with motion 

with a trajectory that will surely depend on the motion of the fluid. 

In order to describe particles’ motion, a set of kinematic equations, involving forces balance, 

particle motion and Langevin equation were needed.   

Langevin equation describes the fluid motion as stated in § 3.2. 

 
𝑑𝑈∗(𝑡) = −

3

4
 𝒞𝑜  

𝜀

𝜅
 𝑈∗(𝑡) 𝑑𝑡 + (𝒞𝑜 𝜀)

1

2 𝑑𝑊(𝑡) 
 

(4325)  

A solid particle immersed in a fluid undergoes to different forces acting on it, expressed by 

a balance equation: 

 𝑑𝑉

𝑑𝑡
=

3

4

𝜌𝑓

𝜌𝑠

𝐶𝐷

𝑑𝑝
(𝑈 − 𝑉)|𝑈 − 𝑉| +

1

2

𝜌𝑓

𝜌𝑠
(

𝑑𝑈

𝑑𝑡
−

𝑑𝑉

𝑑𝑡
) + (

𝜌𝑠 − 𝜌𝑓

𝜌𝑠
) 𝑔 

 

(441)  

In the balance equation (3.3.1), forces acting on a single particle suspended in a turbulent 

fluid can be approximately evaluated from mean velocity fields of the fluid and the solid 

phases. Terms involved are drag force, virtual mass, and gravitational and buoyancy force, 

respectively. 

𝑈 and 𝑉 are fluid and particle velocity vectors, respectively, while 𝜌𝑠 and  𝜌𝑓 are particle 

and fluid densities. 𝑑𝑝 corresponds to the particle diameter, while 𝑔 is the gravitational 

constant. 

 𝐶𝐷 is the drag coefficient, given by following equations. 

 
𝐶𝐷 = { 

24

𝑅𝑒
 (1 + 0.15𝑅𝑒0.687)    for  𝑅𝑒 ≤ 1000

0.44    for  𝑅𝑒 > 1000

 
 

(452)  

   

 
𝑅𝑒 =

𝜌𝑓 𝑑𝑝 |𝑈 − 𝑉|

𝜇𝑓
 

 

(463) 

  (3.3.1) 

  (3.2.25) 

  (3.3.2) 

  (3.3.3) 
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Eventually, particle velocity is described by the variation of its trajectory during the time. 

 𝑑𝑋𝑝

𝑑𝑡
= 𝑉 

 

(474)  

These equations must be considered along with any cartesian coordinates (x, y, z). 

 

3.3.1. Basset Force 

 

In the balance equation, the terms relating to the Basset force has been neglected, following 

the observations proposed by Laurence Bergougnoux et al. (2014). 

The work carried out by Laurence Bergougnoux et al. have presented a jointed experimental 

and numerical studies of the settling of small solid spheres in a cellular flow field at low 

Stokes number.  

At low Stokes number (𝑆𝑡 < 0.01), using Stommel model, they were identified a Stokes 

regime for which the velocity of the particle was simply the sum of its Stokes velocity and 

the local fluid velocity given by the cellular flow.  

At larger Stokes number (but still 𝑆𝑡 < 0.1), the particle velocity is still described by the 

sum of the fluid velocity and the particle settling velocity. However, as the particle Reynolds 

number can be larger than unity, the drag is no longer the Stokes drag but becomes nonlinear 

and can be well reproduced by correlations such as that of Schiller-Naumann.  

The particle trajectories ware analysed in terms of velocity ratio, especially, when this 

velocity ratio is much larger than unity, the particle trajectories were straight lines and the 

particles experience only small modulations coming from the vertical flow. 

When this ratio is much smaller than unity, the particles are settling out but can become 

momentarily trapped in a cell. In between, the particle trajectories present more or less 

marked oscillations.  

From the simple Stommel model with a Stokes drag and the full Boussinesq-Basset-Oseen 

model derived in the Stokes regime both overestimate the settling velocity. 

  (3.3.4) 
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In the regimes of Stokes number that they have explored, it was seen that Basset's force had 

a much smaller contribution than others, therefore, drag and buoyancy forces prevailed. 

In this work, it has been decided to do not implement the Basset force in equation (3.3.1). 

It has been shown that this term has a limited impact on the kinematics of the particle, and 

it is not easy to implement numerally. 
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Chapter IV − Results 
 

4.1 Simulations 

 

Simulations, conducted on MATLABTM programming software, aim to obtain reliable data 

about particle’s settling velocity, to be compared to that deriving from correlation proposed. 

Several variables involved must be investigated in different assets, giving back accurate 

values of the term objective of this study. 

In the context of defining fluid’s motion, undergoing isotropic and homogeneous turbulence, 

Langevin stochastic differential equation has been involved.  

As we have seen in § 3.2, Langevin equation is characterised as follows: 

 𝑢(𝑡)̅̅ ̅̅ ̅̅ = 0 (48)  

 𝑉𝑎𝑟(𝑢(𝑡)) = 𝜎2 (49)  

The solution to this kind of equation is approximated by implementing in the programming 

software an iterative implicit method from literature. In this work, the Runge-Kutta’s has 

been adopted. 

 𝑑𝑈∗(𝑡) = 𝑎 𝑑𝑡 + 𝑏 𝑑𝑊(𝑡) (50)  

 
𝑎 = −

𝑈

𝑇𝐿
 

 

(51) 

 

𝑏 = (
2𝜎2

𝑇𝐿
)

1

2

 

 

(52)  

It has been necessary to fix values for σ and TL, namely variance and integral time scale, 

respectively. Tests conducted require boundary conditions, as the initial and final time of 

observation. Also, it is fundamental to determine the amplitude of time step of integration h 

that best fit values of the velocity signal. 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 
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𝑻𝑳 𝛔 𝒕𝒊 𝒕𝒇 𝒉 = ∆𝒕 

1 0.1 0 𝐺𝑡  𝑇𝐿 𝑇𝐿

𝑁𝑡
 

Table 1 – Fixed parameters. 

 

Gt is a multiplication factor that permits to test the phenomenon at different integral time 

scales, aiming to reach a reliable finale observation time, combined with a wide distribution 

of signal, useful to outline mean velocity trend. 

𝑁𝑡 is a variable that splits observation time into many spans, catching the best value of mean 

velocity acting on them by choosing carefully its magnitude.  

 

4.1.1 Tests set-up 

 

Researches on parameters which affect fluid’s velocity started from investigating velocity 

signal and probabilistic Gaussian distribution. The aim is to obtain a signal 𝑢(𝑡)̅̅ ̅̅ ̅̅  fluctuating 

around a single null value, giving back a distribution modelled on  𝜎 = 0.1. Also, the 

autocorrelation function must follow Eq. (3.2.16), and the power dissipated have to be in 

accordance with Kolmogorov’s third hypothesis. 

At first instance, in order to demonstrate fluid’s isotropic and homogeneous turbulence 

introduced by Taylor, various tests have been conducted, by varying 𝐺𝑡 and 𝑁𝑡. Assigning 

them random values, it is shown how signal and Gaussian trend are significantly affected.  

 

{
𝐺𝑡 = 1000

𝑁𝑡 = 10
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Fig. 17 – Plot mean velocity and standard deviation considering 1) condition 

 

Fig.17 depicts how plots’ shapes are not well-defined. In fact, applying the Langevin 

equation results obtained shows a slight deviation from the desired value. 

{ 𝑢(𝑡)̅̅ ̅̅ ̅̅ = −0.010438
𝜎 = 0,099197

 

In the optical of improving results, the value of 𝐺𝑡 has been increased, keeping constant 𝑁𝑡. 

{
𝐺𝑡 = 1000000

𝑁𝑡 = 10
 

 

 

Fig. 18 – Plot mean velocity and standard deviation considering 2) condition 
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In this case, it can be seen how resulting plots are more defined, with mean velocity and 

variance closely to fixed values. 

{ 𝑢(𝑡)̅̅ ̅̅ ̅̅ = 0.00016194
𝜎 = 0.099985

 

 

One can also choose to increase 𝑁𝑡, by imposing the same value for 𝐺𝑡, as done for the 

previous case. 

{
𝐺𝑡 = 1000000

𝑁𝑡 = 100
 

 

Fig. 19 – Plot mean velocity and standard deviation considering 3) condition 

 

Plots are now clearly defined, suggesting that an increase of these values leads to the best 

statistical description of fluid’s motion. 

{ 𝑢(𝑡)̅̅ ̅̅ ̅̅ = −0.00015476
𝜎 = 0.099992

 

 

Results obtained imply that the last values adopted for the variables 𝐺𝑡 and 𝑁𝑡 provide 

𝑢(𝑡)̅̅ ̅̅ ̅̅ ≅ 0 and 𝜎 ≅ 0.1, with shapes of the plots (Fig.19) showing a narrowband signal and a 

more definite Gaussian trend. 
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A second instance, according to the definition of the autocorrelation function, that is the 

correlation of a signal with a delayed copy of itself as a function of delay, the condition 

imposed by Eq. (3.2.16) has to be fulfilled. 

The trend of the autocorrelation function of velocity 𝑢(𝑡) against the dimensionless time 

(𝑡/𝑇𝐿) is plotted in (Fig. 20). 

 

Fig. 20 – Autocorrelation function 𝜌, obtained from Direct Numerical Simulation (DNS), compared to the 

Eq.20. 

 

It can be seen how the autocorrelation function curve of 𝑢(𝑡) (dotted red curve) follows 

perfectly the trend given by Eq. (3.2.16) for 𝜌 (blue curve): in fact, they are exactly 

overlapping. 

Eventually, according to Kolmogorov's third hypothesis, briefly described in § 1.4, the 

power dissipated’ trend in the homogeneous and isotropic turbulence, expressed by Eq. 

(1.32), has been investigated. 
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Fig. 21 – Plot of Power dissipated according to Kolmogorov third Hypothesis. 

 

Fig. 21 shows the signal of power dissipated against Frequency (blue trend). For values of 

Frequency over 10−1 Hz, the signal follows the same trend of a function 𝑓−5/3, given by 

Kolmogorov's hypothesis and depicted by a red line, reported for comparison. 

 

Analysing results deriving from tests reported above, it is possible to conclude that fluid’s 

turbulence behaviour is isotropic and homogeneous. 
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4.1.2 Particle without mass immersed in a homogeneous and            

 isotropic turbulent flow 

 

Once fluid’s behaviour has been explored, analysis proceeds by considering adding in it a 

particle without mass. 

It is fundamental to inquire how this particle interacts with fluid. 

As done for the fluid in simulations reported § 4.1.1, a particle must follow the condition of 

isotropic and homogeneous turbulence. 

Its motion over time and space has traced, by fixing the following boundary conditions: 

 

{

𝑥(𝑡)
𝑦(𝑡)
𝑧(𝑡)

            {

𝑑𝑋

𝑑𝑡
= 𝑢(𝑡)

𝑥(𝑡 = 0) = (0,0,0)
    

 

(53)  

X(t) considers all the contributes dictated from the three dimensions. 

At first instance, it has been studied if the particles follow the autocorrelation function, given 

by Eq. (3.2.16). 

By setting: 

𝑻𝑳 𝛔 𝒕𝒊 𝒕𝒇 𝒉 = ∆𝒕 

1 0.1 0 𝐺𝑡  𝑇𝐿 𝑇𝐿

𝑁𝑡
 

Table 2  – Fixed parameters. 

 

with 𝐺𝑡 = 1000, and 𝑁𝑡 = 100. 

The autocorrelation function of 𝑢(𝑡) has been studied for each cartesian direction, as shown 

in Fig. 22 and according to the condition imposed by Eq. (4.6). 

(4.6) 
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Fig. 22 – The three functions of autocorrelation function 𝜌, obtained from Direct Numerical Simulation 

(DNS), compared to the Eq.20. 

 

Curves obtained in Fig. 22 (blue x-direction, red y-direction and yellow z-direction line) do 

not overlap, but they are close to the theoretical one given by Eq. (3.2.16) (dotted curve). 

Results deriving from the simulation are here reported. 

{

𝜎(𝑥) = 0.10369
𝜎(𝑦) = 0.10203

𝜎(𝑧) = 0.09514

 

Values of variance are close to the fixed one of 𝜎 = 0.1. 

The statistical realisation of trajectory in turbulent flow has been traced in Fig. 23. 

Considering the statistical approach, another realisation would have a completely different 

trajectory, due to the randomness of the model. 
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Fig. 23 – Plot of the motion of particle without mass immersed in a turbulent fluid. 

 

The particles’ motion is irregular, due to its random motion, as clearly shown by Fig. 23. 
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4.1.3 Particle with mass immersed in a homogeneous and 

 isotropic turbulent flow 

 

The fluid dynamics of the system has been analysed by looking at the physical affection 

between fluid and solid particle. For this reason, in this section, the cases of a study presented 

consider adding a particle with mass, in the same fluid analysed in the previous paragraphs. 

Starting from the knowledge that a particle-with-mass velocity in the turbulent fluid could 

be different from that in the still fluid, it is essential to characterise its trend over time. 

In the end, the statistical motion of the particle and its position along time has been plotted. 

Aiming to reach the best statistical description of the phenomenon, two cases of study have 

been explored, differing from each other by particle’s number involved.  

Langevin equation, crucial to describe fluid’s field of motion, and force balance, written to 

explain what forces act on the particle (§ 3.3), are essential for these cases of study. 

Following conditions are shared for both cases. 

𝑻𝑳 𝛔 𝒕𝒊 𝒕𝒇 𝒉 = ∆𝒕 

1 0.1 0 𝐺𝑡  𝑇𝐿 𝑇𝐿

𝑁𝑡

 

Table 3 – Shared conditions for both cases of study. 
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4.1.4 Cases of study 

 

First Case 

Subsequent parameters have been set-up: 

𝒏𝒑 𝒌 𝜺 𝝁 𝒅𝒑 𝝆𝒑 𝝆𝒇 

1 0.1 10 1 × 10−3 0.5 ∙ 10−3 2000 1000 

Table 4 –Parameters set-up. 

All parameters are considered in S.I units. 

 

with different conditions imposed: 

1) {
𝐺𝑡  = 𝑚𝑎𝑥(1000 ∙ 𝑇𝐿 , 5 ∙ 𝑡𝑟)

 𝑁𝑡 = 𝑇𝐿/100
  

 

2) {
𝐺𝑡  = 𝑚𝑎𝑥(1000 ∙ 𝑇𝐿 , 5 ∙ 𝑡𝑟)

 𝑁𝑡 = 𝑇𝐿/50
  

Particle’s-with-mass velocity trend overt time, for the condition mentioned above, is 

reported in Fig. 24. 

 

Fig. 24 – Plot of the ratio of settling velocity and that in still fluid against the ratio of 𝑡/𝑇𝐿. Plot on the left 

refers to the first asset, while that one on the right refers to the second one. 
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In Fig. 24, the ratio between settling velocity in turbulent fluid and that in the still fluid 

presents uncertainty, dictated by the strong fluctuations that signal shows over time. This 

may limit future simulations; hence it leads to unclearly evaluations of velocity. 

Particle’s statistical settling among z-axis presents discrepancies, with respect to the two 

conditions. 

 

Fig. 25 – Plot of the statistical altitude change over time. The plot on the left is obtained by considering the 

first condition, instead, the plot on the right is considering the second one. 

 

From Fig. 25, it is possible to realize that the particle’s motion is uncertain. In fact, curves 

do not follow a comparable path, thus conceiving a statistical realistic settling through 

simulating only one particle is not credible.  

The typical particle’s statistical motion among three-dimensions is illustrated in Fig. 26. 

 

 



 

Modelling of the sedimentation phenomenon of a solid particle Immersed in a turbulent fluid 

 

 

61 

 

 

Fig. 26 – Plot of the statistical movement of the particle. 

 

 

Second Case 

 

The second case of study involves 1000 particles, with the same characteristics stated for 

the first one. 

Subsequent parameters have been set-up: 

𝒏𝒑 𝒌 𝜺 𝝁 𝒅𝒑 𝝆𝒑 𝝆𝒇 

1000 0.1 10 1 × 10−3 0.5 × 10−3 2000 1000 

Table 5 –Parameters set-up. 

All parameters are considered in S.I units. 

 

with following conditions considered. 

{
𝐺𝑡  = 𝑚𝑎𝑥(1000 ∙ 𝑇𝐿 , 5 ∙ 𝑡𝑟)

 𝑁𝑡 = 𝑇𝐿/100
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The ratio between the particle’s settling velocity in turbulent fluid and that in the still one 

has been plotted over time (Fig. 27). 

 

Fig. 27 – Plot of the ratio of settling velocity and that in still fluid obtained by simulation against the ratio of 

𝑡/𝑇𝐿. 

 

The trend of the ratio shows an asymptotic value of the signal; it means that one can 

extrapolate a constant statistical value, after an initial time. 

The statistical motion of 1000 particles among the z-axis is reported versus time in Fig. 28. 

 

Fig. 28 – Plot of the statistical altitude change over time. 
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Fig. 29 shows the average and the curves for +/− two times the standard deviation values 

of the previous plot. 

 

Fig. 29 – Plot of the statistical altitude change over time. Continuous line indicates the mean movement of 

the total particles. 

 

Velocity’s standard deviation of particles has been compared with the standard deviation 𝜎𝑢, 

characteristic of an isotropic behaviour, for each direction in physical space. 

 

Fig. 30 –Standard deviation of velocity for each direction in physical space against 𝑡/𝑇𝐿. 
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It can be seen how curves of velocity’s standard deviation are close to that one characteristic 

of isotropic behaviour. Over the value of 10 𝑇𝐿, the standard deviation of velocity reaches 

steadily conditions, with zero mean velocity of the particles 〈𝑈𝑠〉 = 0. 

Particle’s deviation from their mass centre at different altitudes (𝑍) has been illustrated (Fig. 

31). 

 

Fig. 31 – Mean movement of particles in altitude against 𝑡/𝑇𝐿. 

 

It is clear from Fig. 31 how particles require times greater than 10 𝑇𝐿 to get a steady value 

of apparent terminal velocity. 

Initially, when the particle’s movement starts, they are very close to each other; after a 

certain time, they move to another point 𝑍𝑖. At this point, an isotropic and homogeneous 

spherical diffusion verifies, with respect to the mass centre. Therefore, if the time increases, 

particle’s dispersion increases too, compared to the centre of mass in a homogeneous way.  

An average particle’s position could be expressed by an equation: 

 
〈𝑍〉 =  

1

𝑁
 ∑ 𝑍𝑖

1

𝑁

 

 

(54)  

 𝜎𝑧  = 〈(𝑍 −  〈𝑍〉)2〉 (55.8)  

(4.7) 

 

 (1.21) 

(4.8) 

 

 (1.21) 
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𝜎𝑧  =  
1

𝑁
 ∑(𝑍𝑖 − 〈𝑍𝑖〉)2

𝑁

1

 

 

(56)  

𝑁 is the number of particles involved. 

For time high enough (𝑡 > 10 𝑇𝐿): 

 〈𝑍〉 = 𝑉𝑠 𝑡 (570)  

 𝜎2  ≈  2 𝐷𝑡  𝑡 (581)  

where 𝐷𝑡 is the particles’ dispersion coefficient, and 𝜎𝑋
2/(𝜎𝑈

2 𝑇𝐿) explains how standard 

deviation changes in time, considering that particles disperse themselves in the fluid, during 

the time (t), in homogeneous directions respect to the centre of mass, as shown in Fig. 32. 

 

Fig. 32 – Dispersion of the particle respect to centre of mass in time.  

 

 

 

 

 

(4.9) 

(4.10) 

(4.11) 
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The possible statistical motion of all the particles considered is reported in Fig. 33. 

 

Fig. 33 – Random movement of single particles in free-stream turbulence. 

 

 

Comparison of the cases of study 

 

Comparison between results obtained from the two cases is plotted and reported in Fig. 34. 

 

Fig. 34 – Comparison between the ratio between settling velocity and that in the still fluid in the two different 

cases of study. 
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Since second’s case curve tends to an asymptotic value, giving the possibility to extrapolate 

a single constant value, an accurate estimation of the ratio of velocities could be reached. 

This tendency occurs because a greater number of particles provide a better statistical 

analysis.  

Also, the particle’s statistical settling among z-axis versus time has been compared (Fig. 35). 

 

Fig. 35 – Plot of the statistical altitude change over time in the two different cases of study. 

 

The second case of study allows predicting a more realistic field of motion. In fact, the right 

plot shows a +/− two times value, figured by dashed lines, and an average value. Therefore, 

simulation involving a single particle doesn’t allow to accurately predict the field of motion, 

because another realisation would have a completely different trajectory. 

Once, it can be understood that increasing the particles’ number lead to improve the 

description of their statistical behaviour. Thus, by considering the same characteristics stated 

before, one can conduct further simulations, by also acting on a time interval (𝑇𝐿/𝑁𝑡). 

Settling velocity and diffusion coefficient are evaluated (Table 6). 
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Np 𝑻𝑳/𝟏𝟎 𝑻𝑳/𝟐𝟎 𝑻𝑳/𝟓𝟎 

1000 

𝑉𝑠 = 0,4190  

𝐷𝑡 = 7,036 × 10−5 

𝑉𝑠 = 0,4179 

𝐷𝑡 = 7,4671 × 10−5 

𝑉𝑠 = 0,4196  

𝐷𝑡 = 7.2236 × 10−5 

2000 

𝑉𝑠 = 0,4129 

𝐷𝑡 = 7,3305 × 10−5 

𝑉𝑠 = 0,4238 

𝐷𝑡 = 7,2503 × 10−5 

𝑉𝑠 = 0,4232 

𝐷𝑡 = 7.3740 × 10−5 

5000 

𝑉𝑠 = 0,4206 

𝐷𝑡 = 7.1482 × 10−5 

𝑉𝑠 = 0,4195; 

𝐷𝑡 = 7.4529 × 10−5 

𝑉𝑠 = 0,4228 

𝐷𝑡 = 7,4055 × 10−5 

Table 6 – Simulation of the number of particles against time interval for diffusivity and settling velocity. 

 

Results suggest that by decreasing the interval time and increasing the number of the 

particles asymptotic values for 𝑉𝑠 and 𝐷𝑡 maybe reached.  

In this work, one thousand particles and an interval time equal to 𝑇𝐿/100 have been used to 

manage results; another increase of these parameters would require more time for 

simulations. This choice does not introduce any further significant increase in the final 

percentage error. 
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Chapter V − Correlation Proposed 
 

The scope of this thesis is to propose a correlation able to describe particles’ settling velocity 

immersed in a turbulent fluid.  

The starting point is calling into question dimensionless parameters proposed by Spelt and 

Biesheuvel (1994), Brucato et al. (1998), Lane et al. (2007) and Magelli et al. (2008) 

discussed in Chapter I and respectively reported below. 

 𝛽 =
𝑢0

𝑉𝑇
  

𝜆

𝑑𝑝
 

     𝑆𝑡 =
𝜏𝑝

𝑇𝐿
 

𝑅𝑖 =
𝑔 Δ𝜌 𝐿

𝜌𝑓 𝑢0
2 

 

 

(
𝜌𝑠 − 𝜌𝑓

𝜌𝑓
) 

Thus, following their suggestion, settling velocity is a function of those parameters: 

 𝑈𝑠 =  𝑓 (𝑈𝑡, 𝜌𝑠, 𝜌𝑓 , 𝑑𝑝, 𝑔, 𝑇𝐿 , 𝑢0) (591)  

The correlation has been written by using the Buckingham theorem (see Appendix I), and 

thanks to dimensional analysis, a single equation in which dimensionless terms appear has 

been proposed. 

 
𝑈𝑠

𝑈𝑡
= 𝑓 (

𝑑𝑝

𝜎 𝑇𝐿
,

𝜎

𝑈𝑡
,
Δ𝜌

𝜌𝑓
,
𝑡𝑟

𝑇𝐿
,
𝑔 Δ𝜌 𝐿

𝜌𝑓 𝜎
) 

 

(2.1)  

 
𝑈𝑠

𝑈𝑡
= 𝑓 (Ψ1, Ψ2, Ψ3, Ψ4, Ψ5) 

 

(602)  

(5.1) 

(2.1) 

(5.2) 
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Where: 

 Ψ1 =
𝑑𝑝

𝜎 𝑇𝐿
, with 𝜎 𝑇𝐿 =  𝐿 , where L is the Integral length scale. 

Many different assets have been tested by varying 𝜌𝑠 , 𝜌𝑓 , 𝑑𝑝, 𝜇, and 𝑘, 𝜀, according to 

Langevin equation (Eq. 3.2.25). 

𝒌 𝜺 𝒅𝒑 𝝆𝒔 𝝆𝒇 𝝁 

0,08 ÷ 0.2 2 ÷ 15 2,5 × 10−4

÷ 3,5 × 10−3 

1200 ÷ 4000 600 ÷ 1500 5 × 10−4

÷ 5 × 10−3 

Table 7 – Range of parameter considered for correlation proposed. 

All parameters are considered in S.I units. 

 

Correlation proposed is: 

 

𝑈𝑠

𝑈𝑡
=  𝑎 (

𝑑𝑝

𝐿
)

𝑏

 (
𝜎

𝑉𝑇
)

𝑐

 (
∆𝜌

𝜌𝑓
)

𝑑

 ( 
𝑡𝑟

𝑇𝐿
)

𝑒

 (
𝑔 Δ𝜌 𝐿

𝜌𝑓 𝜎
)

𝑓

 

 

 

(5.3)  

Constant values a, b, c, d, e, f  have been evaluated by tending to zero the root mean square 

of deviation between experimentally-obtained values of settling and terminal velocities ratio 

against those deriving from correlation (Eq.(5.3)). 

 

Fig. 39 – Plot where experimental values of 𝑈𝑠/𝑈𝑡  have been compared with 𝑈𝑠/𝑈𝑡 values from correlation. 

(5.3) 
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Experimental points obtained have been fitted linearly, as it can be seen from Fig.39.  

The correlation proposed explains solid particles’ settling velocity in turbulent flows, with 

a determination coefficient 𝑅2 = 0,979. 

Finally, constants have been determined: 

𝑹𝟐 𝒂 𝒃 𝒄 𝒅 𝒆 𝒇 

0,979 0,812 0,248 −0,007 0,201 −0,142 0,089 

Table 8 – Constants’ values of the proposed correlation and determination coefficient 𝑅2. 

 

therefore, Eq.(5.3) becomes: 

 𝑈𝑠

𝑈𝑡
= 0,812 (

𝑑𝑝

𝐿
)

0,248

(
𝜎

𝑈𝑡
)

−0,007

(
∆𝜌

𝜌
)

0,201

( 
𝑡𝑟

𝑇𝐿
)

−0,142

(
𝑔 Δ𝜌 𝐿

𝜌𝑓 𝜎
)

0,089

 

 

(614)  

 

 

 

 

 

 

 

 

 

 

 

(5.4) 
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Chapter VI − Conclusions 
 

The aim of this thesis’ work is to propose an effective correlation to express particles’ 

settling velocity immersed in a turbulent fluid, conducting simulations on MATLABTM 

programming software. 

Several literature studies have been analysed, extrapolating dimensionless groups from Spelt 

and Biesheuvel (1997), Brucato et al. (1998), Lane et al. (2007) and Magelli et al. (2008) 

that well fit in the correlation proposed. 

Langevin equation has been used in defining fluid’s flow in homogeneous isotropic 

turbulence and deployed on programming software by Runge-Kutta method. 

The trajectory’s simulations of inertial particles have been performed with some 

assumptions, a forces’ balance has been used, without involving Basset force, that is not easy 

to implement numerally and has a limited impact on particle’s kinematics. 

Furthermore, interactions between particles have not considered. As they might cause 

changes in their trajectory, consistency of data. 

A system composed of a fluid-filled with 1000 particles has been studied, considering adding 

them once per time. The software has been able to develop an average settling velocity value; 

this implies errors, due to the limited nature of the simulations carried out, even if small. 

In order to prove the correlation’s reliability, values of the ratio between particles settling 

velocity and that in still fluid have been compared with results of simulations. 

In conclusion, the comparison confirmed that data provided by correlation, fit the 

simulation’s data, on the range of physical properties of fluid and particles considered. 
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Chapter VII − Future Work 
 

Further studies may be conducted starting from this thesis work, by improving the proposed 

correlation. 

In this work, one thousand particles have been performed with an interval time equal to 

𝑇𝐿/100 and observation time of 𝑚𝑎𝑥(1000 ∙ 𝑇𝐿 , 50 ∙ 𝑡𝑟); to explore other assets, one could 

increase particles’ number involved, and the observation time as well, by decreasing 

amplitude of intervals time, simultaneously. 

Obviously, complicating simulation means longer time in obtaining results.  

In order to verify data truthfulness, they would have compared with those deriving from 

laboratory experiments. 

In conclusion, new studies and experiments may be carried out aiming to outline parameters 

which affect settling phenomenon. 
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Appendix 
 

Buckingham theorem 

 

The Buckingham theorem is based on the assumption that the relations used are 

dimensionally homogeneous, or that all the terms of an equation have the same dimensions. 

If this hypothesis is verified we can affirm that if a phenomenon is governed by 𝑁 parameters 

through a relation of the type 𝑓 (𝑃1, 𝑃2, . . . , 𝑃𝑁)  =  0, and these 𝑁 parameters can be 

described by K fundamental dimensions (K minimum number), it is then possible to study 

the phenomenon through 𝑁 − 𝐾 dimensionless groups Ψ𝑖 with a type relationship 

𝑔(Ψ1, Ψ2, . . . . . , Ψ𝑁 − 𝐾)  =  0. 

To pass from the function 𝑓 to the function 𝑔 we must identify a base of 𝐾 variables 𝑃𝑖 that 

are used to render the remainder unbalanced and the variable K must have the following 

characteristics: 

1. Contain all the basic 𝐾 dimensions. 

2. They are independent of each other, that is, they must not by themselves constitute a 

dimensionless group. 
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Simulation Code 

 

Sdesys Function 

 

− function [tp,yp] = sdesys(a,b,tspan,y0,h,varargin) 

 

− if nargin<4 

− error('at least 4 input arguments required') 

− end 

− if any(diff(tspan)<=0) 

− error('tspan not ascending order')  

− end 

− n = length(tspan); 

− ti = tspan(1); 

− tf = tspan(n); 

− if n == 2 

− t = (ti:h:tf)'; 

− n = length(t); 

− if t(n)<tf 

− t(n+1) = tf; 

− n = n+1; 

− end 

− else 

− t = tspan; 

− end 

 

− tt = ti; 

− y(1,:) = y0; 

− np = 1; 

− tp(np) = tt; 

− yp(np,:) = y(1,:); 

− i=1; 

 

− while(1) 

− tend = t(np+1); 

− hh = t(np+1) - t(np); 

 

− if hh>h 

− hh = h; 

− end 

− while(1) 



Modelling of the sedimentation phenomenon of a solid particle immersed in a turbulent fluid 

76 

 

− if tt+hh>tend 

o hh = tend-tt; 

− end 

 

− dW=randn(1,length(y0))*sqrt(hh); 

− S=(-1)^randi([0 1]); 

 

− k1 = hh*a(tt,y(i,:),varargin{:})'+(dW-S*sqrt(hh)).*b(tt,y(i,:),varargin{:})'; 

− k2 = 

hh*a(tt+hh,y(i,:)+k1,varargin{:})'+(dW+S*sqrt(hh)).*b(tt+hh,y(i,:)+k1,varargin{:}

)'; 

 

 

− y(i+1,:) = y(i,:) + 1/2*(k1+k2); 

 

− tt = tt+hh; 

− i=i+1; 

− if tt>=tend 

− break 

− end 

− end 

− np = np+1; 

− tp(np) = tt; 

− yp(np,:) = y(i,:); 

− if tt>=tf 

− break 

− end 

− end 
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Test Code 

 

− tic 

 

− k=0.1; 

− epsilon=10; 

 

− g=[0,0,-9.81]; 

− mu=1e-3; 

− dp=.5e-3; 

− rhop=2000; 

− rhof=1000; 

 

− sigma=sqrt(2/3*k); 

− ReT=sqrt(15*sigma/(epsilon*mu/rhof)); 

− C0=6.5/(1+140*ReT^(-4/3))^(3/4); 

− TL=1/(3/4*C0*epsilon/k); 

 

− vterm=-fzero(@(x) x^2-4/3*(rhop-rhof)/rhof*dp*9.81./cdsn(rhof*dp*x/mu),[0 

100]); 

 

− tr=(rhop/rhof+0.5)*dp/(3/4*cdsn(rhof*dp*abs(vterm)/mu)*abs(vterm)); 

 

− %tspan=[0 max(1000*TL,50*tr)]; 

− tspan=[0 1000*TL]; 

− y0=zeros(9,1); 

− h=TL/100; 

 

− np=1000; % Number of particles 

 

− %parfor i=1:np 

− for i=1:np 

− [tp(:,i),ypart(:,:,i)] = sdesys(@a,@b,tspan,y0,h,TL,sigma,mu,dp,rhop,rhof,g); 

 

− end 

 

− tp=tp(:,1)'; 

− yp=mean(ypart,3); 

 

− figure(1) 

− plot(tp/TL,yp(:,9)'./tp/vterm) 

− xlabel('t/T_L') 

− ylabel('U_S/U_T') 
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− usut=yp(length(tp),9)/tp(end)/vterm; 

− DT=var(ypart(length(tp),9,:),1,3)/(2*tp(end)); 

 

− lambdaK=((mu/rhof)^3/epsilon)^.25; 

 

− lambdadp=logspace(-4,0,100); 

− % New Correlation (2019) 

− usutE=((0.32*tanh(sqrt((rhop-rhof)/rhof)*19*lambdadp-1)+0.6))*(tr/TL); 

− % Brucato et al. (1998) 

− usutB=((1+8.76e-4*lambdadp.^(-3)).^(-0.5))*(tr/TL); 

 

− figure(2) 

− semilogx(lambdaK/dp*sqrt((rhop-rhof)/rhof),usut,'ok',lambdadp*sqrt((rhop-

rhof)/rhof),usutE,'--r',lambdadp*sqrt((rhop-rhof)/rhof),usutB,'--g') 

− axis([0.001,1,0,1]) 

− xlabel('\lambda/d_p (\Delta\rho/\rho_f)^{0.5}') 

− ylabel('U_S/U_T') 

 

− figure(3) 

− loglog((dp./lambdaK).^3,usut.^(-2)-1,'ok',lambdadp.^(-3),usutF.^(-2)-1,'--

r',lambdadp.^(-3),usutB.^(-2)-1,'--g') 

− axis([1,1e6,0.01,100]) 

− xlabel('(d_p/\lambda)^{3}') 

− ylabel('(C_D-C_{D0})/C_{D0}') 

 

− figure(4) 

− plot(tp/TL,yp(:,9),'b-',tp/TL,yp(:,9)+2*std(ypart(:,9,:),1,3),'b--',tp/TL,yp(:,9)-

2*std(ypart(:,9,:),1,3),'b--') 

− xlabel('t/T_L') 

− ylabel('z(m)') 

 

− figure(5) 

− loglog(tp/TL,var(ypart(:,7,:),1,3)/(sigma^2*TL),tp/TL,var(ypart(:,8,:),1,3)/(sigma^

2*TL),tp/TL,var(ypart(:,9,:),1,3)/(sigma^2*TL)) 

− xlabel('t/T_L') 

− ylabel('\sigma^2_X/(\sigma^2_U T_L)') 

 

− figure(6) 

− loglog(tp/TL,abs(yp(:,9))/(sigma*TL)) 

− xlabel('t/T_L') 

− ylabel('|z(m)|/(\sigma_U T_L)') 

 

− for i=1:np 

 

− figure(6) 

− hold on 



 

Modelling of the sedimentation phenomenon of a solid particle Immersed in a turbulent fluid 

 

 

79 

 

− plot(tp/TL,ypart(:,9,i)) 

− xlabel('t/T_L') 

− ylabel('z (m)') 

− hold off 

 

− figure(7) 

− hold on 

− plot3(ypart(:,7,i),ypart(:,8,i),ypart(:,9,i)) 

− xlabel('x (m)') 

− ylabel('y (m)') 

− zlabel('z (m)') 

− hold off 

 

− end 

 

− toc 

 

− function dydt = a(t,y,TL,sigma,mu,dp,rhop,rhof,g) 

 

− umag=sqrt((y(1)-y(4))^2+(y(2)-y(5))^2+(y(3)-y(6))^2); 

− re=rhof*dp*umag/mu; 

 

− dydt(1) = -y(1)/TL; 

− dydt(2) = -y(2)/TL; 

− dydt(3) = -y(3)/TL; 

− dydt(4) = 3/4*cdsn(re)/dp*rhof/(rhop+.5*rhof)*abs(y(1)-y(4))*(y(1)-

y(4))+rhof/(2*(rhop+.5*rhof))*dydt(1)+(rhop-rhof)/(rhop+.5*rhof)*g(1); 

− dydt(5) = 3/4*cdsn(re)/dp*rhof/(rhop+.5*rhof)*abs(y(2)-y(5))*(y(2)-

y(5))+rhof/(2*(rhop+.5*rhof))*dydt(2)+(rhop-rhof)/(rhop+.5*rhof)*g(2); 

− dydt(6) = 3/4*cdsn(re)/dp*rhof/(rhop+.5*rhof)*abs(y(3)-y(6))*(y(3)-

y(6))+rhof/(2*(rhop+.5*rhof))*dydt(3)+(rhop-rhof)/(rhop+.5*rhof)*g(3); 

− dydt(7) = y(4); 

− dydt(8) = y(5); 

− dydt(9) = y(6); 

 

− dydt=dydt'; 

− end 

 

− function dydt = b(t,y,TL,sigma,mu,dp,rhop,rhof,g) 

− dydt(1) = sqrt((2*sigma^2)/TL); 

− dydt(2) = sqrt((2*sigma^2)/TL); 

− dydt(3) = sqrt((2*sigma^2)/TL); 

− dydt(4) = rhof/(2*(rhop+.5*rhof))*dydt(1); 

− dydt(5) = rhof/(2*(rhop+.5*rhof))*dydt(2); 

− dydt(6) = rhof/(2*(rhop+.5*rhof))*dydt(3); 

− dydt(7) = 0; 
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− dydt(8) = 0; 

− dydt(9) = 0; 

 

− dydt=dydt'; 

− end 

 

 

− function cd=cdsn(re) 

− if re<=1000 

− cd=24./(re+1e-20).*(1+0.15*re.^0.687); 

− else 

− cd=0.44; 

− end 

− end 
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Figure Index 
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with λ* = 1 and 𝜇 ∗= 𝜋/21/2; ∆,⸺ ⸺, von Karman-Pao spectrum with fixed Taylor 

microscale (λ* = 1) ; ○,- - - -, von Karman-Pao spectrum with fixed integral scale (𝜇 ∗=
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