
Alma Mater Studiorum · Università di Bologna
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Abstract

Italian version

Al giorno d’oggi il reinforcement learning ha dimostrato di essere davvero

molto efficace nel machine learning in svariati campi, come ad esempio i giochi,

il riconoscimento vocale e molti altri. Perciò, abbiamo deciso di applicare il

reinforcement learning ai problemi di allocazione, in quanto sono un campo

di ricerca non ancora studiato con questa tecnica e perchè questi problemi

racchiudono nella loro formulazione un vasto insieme di sotto-problemi con

simili caratteristiche, per cui una soluzione per uno di essi si estende ad

ognuno di questi sotto-problemi.

In questo progetto abbiamo realizzato un applicativo chiamato Service

Broker, il quale, attraverso il reinforcement learning, apprende come distribuire

l’esecuzione di tasks su dei lavoratori asincroni e distribuiti. L’analogia è quella

di un cloud data center, il quale possiede delle risorse interne - possibilmente

distribuite nella server farm -, riceve dei tasks dai suoi clienti e li esegue su

queste risorse. L’obiettivo dell’applicativo, e quindi del data center, è quello

di allocare questi tasks in maniera da minimizzare il costo di esecuzione.

Inoltre, al fine di testare gli agenti del reinforcement learning sviluppati è

stato creato un environment, un simulatore, che permettesse di concentrarsi

nello sviluppo dei componenti necessari agli agenti, invece che doversi anche

occupare di eventuali aspetti implementativi necessari in un vero data center,

come ad esempio la comunicazione con i vari nodi e i tempi di latenza di

quest’ultima.

I risultati ottenuti hanno dunque confermato la teoria studiata, riuscendo a
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ii Abstract

ottenere prestazioni migliori di alcuni dei metodi classici per il task allocation.

English version

Nowadays reinforcement learning has demonstrated to be very effective

in machine learning in several fields, such as games, speech recognition and

many others. Therefore, we have decided to apply reinforcement learning

to allocation problems, because they are a research field which has not been

studied yet with reinforcement learning and because these problems in their

formulation contain a wide set of sub-problems with similar characteristics;

thus a solution for one of them is extended to all these sub-problems.

In this project we have created an application called Service Broker, which,

through reinforcement learning, learns how to distribute the execution of

tasks on asynchronous and distributed workers. The analogy is that of a cloud

data center, which owns internal resources - possibly distributed in the server

farm -, receives tasks from its clients and executes them on those resources.

The objective of the application, thus of the data center, is to allocate those

tasks in a way to minimize the cost of execution.

Moreover, with the aim of testing the reinforcement learning agents de-

veloped, has been created an environment, a simulator, which allows to

concentrate on the development of the components necessary to the agents,

instead of having to concentrate on additional implementation aspects neces-

sary in a real data center, such as the communication between the nodes and

the latency caused by it.

The results obtained have confirmed the theory studied, since we have

obtained better performances than those achieved with the classic methods

used for task allocation.



Introduction

Nowadays reinforcement learning has demonstrated to be very effective

in learning how to solve several different kinds of problems, such as games,

speech recognition, web service personalization and many others. Therefore,

the promising results obtained by such learning techiniques have motivated

many other researchers to apply it to new types of problems with the aim of

finding new methods which solve them with better results.

Thus, we have decided to apply reinforcement learning to a family of

problems, allocation problems, in particular to distributed task allocation,

which, at the best of our knowledge, has never been studied through this

learning technique. The reasons for studying such a problem are manifolds.

Firtsly, it is a promising research field because nobody is working on it.

Secondly, it is a challenging case study because it can be generalized to a

plethora of real world scenarios, such as the allocation of deliveries in a carrier

delivery service, or the assignment of goods for manufacturing products, just

to name a few.

The following work has been structured in four chapters, which are aggre-

gated in two main parts. In the former, we will start from the definition of

allocation problems with all its variants. Subsequently, we will give an overall

introduction on reinforcement learning and its typical solution methods. Fi-

nally, we will present the state of the art related to both, allocation problems

and reinforcement learning, describing the main solutions and the main results

which have been obtained. In the latter we will describe the actual work

proposed; we will start formulating a specific allocation problem, which will
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iv INTRODUCTION

be addressed during the whole project. Afterwards, we will present how we

map the case study in the field of reiforcement learning, deeply showing all

the aspects which have guaranteed to solve the problem through reiforcement

learning. Subsequently, we will introduce firstly the environment that we

have developed to allow us to simulate the reinforcement learning solution

proposed, then we will present the implementation details related to both the

environment and the reinforcement learning agents. Finally, we will show the

results obtained by our solution, demonstrating how the reiforcement learning

proposal behaves better than the typical allocation problems techniques.

The contribution which we would like to give to the research with this work

consists of two different aspects. Firstly, we have developed an environment

which can be used for simulating this kind of problems. Thus, it allows

the research community to continue working on allocation problems through

reinforcement learning, improving the results obtained. Secondly, an initial

contribution is given by the solution proposed, in which several different

reinforcement learning methods have been applied to the problem showing the

huge potentiality of reinforcement learning as the main solution for solving

allocation problems.
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Chapter 1

Problem presentation and

relevance reasons

In this chapter, we firstly present allocation problems with their variants,

their main applications and the challenges encountered when we try to solve

it in a distributed environment or we have to allocate tasks in a decoupled

and asynchronous system. Moreover, we present possible applications in

scenarions which are completely different from computing systems, such as

the carrier delivery services or the market allocation of investments, just to

cite a few.

Secondly, we deal with reinforcement learning, illustrating the reasons for

its sucess and the reasons for which we consider it as a possible solution for task

allocation problems. Moreover, we present the reinforcement learning problem

formulation passing through the simplified multi-armed bandit problem, and

then through the contextual bandit problem to finally arrive at the full

reinforcement learning problem definition.

Finally, in this chapter, we illustrate the methodology used to study, ap-

proach and evaluate the allocation task problem using reinforcement learning.

1



2 1. Problem presentation and relevance reasons

1.1 Allocation problem

The allocation problem, which is a fundamental combinatorial optimization

problem, involves distributing the available resources between different tasks,

or jobs, in order to minimize total costs or maximize the total return. In such

a problem we have the following components: a set of resources available in a

given amount; a set of tasks to be done, each requiring a specified amount

of resources; a cost or return associated to the execution of a task using a

resource. The problem is to determine how much of each resource has to be

allocated to each task.

If the amount of jobs is lower than the amount of resources, the solution

of the allocation problem indicates which resources are to be used, taking

into account the cost associated to its use. Correspondingly, if the amount of

jobs is greater than the available resources, the solution indicates which jobs

are not to be executed, again taking into account the cost related to it.

If each task needs exactly one resource and each resource can be used on

only one task, the resulting problem is referred to as an assignment problem.

Otherwise, if the resources are divisible, and if both tasks and resources are

expressed with the same scale, the problem is referred to as transportation

or distribution. If the scale of jobs and resources is different it is a general

allocation problem.

In the allocation problem exists also another classification, which depends

on the number of tasks and resources to be allocated. In particular, if the

number of tasks to be allocated is the same as the number of resources

available the problem is called balanced assignment. Otherwise, if the number

of tasks and the number of resources are different, independently of which is

greater and which is lower, the problem is called unbalanced assignment.

The spectrum of applications for allocation problems is very ample and

heterogeneous. For example we can consider the case in which we own a

carrier delivery service and our resources are the means of transport that we

own. Our task is to deliver the goods from our customers to the destinations

that they provide to us, while our objective is to deliver as many goods as
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possible minimizing both the time and the cost for delivering those goods

to the destinations. Another example can be a trade company which has to

allocate investments in the market. In this case the resources are the money

to invest and the jobs are the different markets in which to invest the money.

The objective is to maximize the return of those investments with respect to

the rate of interest and the time it takes to obtain them. Otherwise, we can

consider a manufacturing factory with several product chains, our resources,

and the different types of products that can be realized by those product

chains, our tasks. The objective is to maximize the return from the selling of

those products with respect to the cost and time of production, where cost

and time vary depending on which product chain produces the item.

Allocation problem fits very well also in many scenarios of computing

systems. For instance exists a specific case of allocation problems, which is

called load balancing : it is used to improve the distribution of the workload, our

tasks, across multiple computing resources, our resources. In load balancing

the objective is to maximize throughput, to minimize response time and to

avoid the overload of a single resource. Another example in computing systems

is scheduling, which is the method used to assign tasks to the resources of a

computer. Tasks can be a process, a thread or a data flow, while resources

can be processors and network links. The objective in scheduling algorithms

is to keep all computer resources busy, and to allow users to share system

resources among them or to achieve a target quality of service.

1.1.1 Case study

As we have seen so far, the applications of the allocation problem are

numerous and this proves the importance and the relevance of this field

of study. Therefore, we have decided to study the allocation problem, in

particular what we want to try to solve is the following problem: we are a

data center and we have a set of internal resources, such as server machines,

then we have a flow of tasks that comes from our clients, each of these tasks

may have different requirements in terms of time of execution and resources
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necessary to be executed. Our objective is to assign each task to one of

our machines and minimize a function that takes as arguments the time of

execution and the cost for the execution of that task on a specific machine.

The problem described so far represents an unbounded allocation problem,

in which the number of tasks is much greater than the number of resources and,

in particular, this number is unknown at the beginning of the allocation and

to complete the problem all the tasks have to be executed in a distributed and

asynchronous environment. This kind of problem can be seen as a simplified

version of the job shop scheduling problem or job-shop problem (JSP), in

which each job is executed in parallel on the available resources, or machines,

instead of requiring to be executed sequentially on all the machines, or a

subset of them, as it is in the complete job shop scheduling problem.

JSP problems have been studied a lot in the literature. Firstly, it is

widely known that the problem is NP-hard 1 [16]. Secondly, plenty have

studied algorithms and heuristics for sub optimal solution of the problem,

among the others Conway et al. (1967) [7], who wrote the first book on

scheduling theory, B lażewicz et al. (1996) [5], who described conventional

solution techniques for solving the problem, Glover et al. (1989) [19] and

Dell’Amico et al. (1993) [12], who solved the JSP combinatorial optimization

problem using tabu search, and Pezzella et al. (2008) [41], who proposed a

solution that uses genetics algorithms.

1.1.2 Formal definition

The formal definition of the assignment problem is the following: given

two sets J and R, the jobs and the resources sets respectively, both with a

cost function C : J ×R → R, where R represents the real numbers set, the

1In computational complexity theory, NP-hardness non-deterministic polynomial-time

hardness is the name of a class of problems that are informally ”at least as hard as the

hardest problems in NP”
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objective is to find a bijection function f : J → R such as the cost function

f∗ =
∑
j∈J

C(j, f(j)) (1.1)

is minimized.

1.1.3 Classic solutions

A naive solution for the assignment problem is to check all the possible

allocations, then to calculate the cost of each of these allocations and choose

the ones that minimize the equation 1.1. This may be very inefficient since,

with n resources and n tasks, there are n! (factorial of n) different assignments.

Since the assignment problem is a special case of the transportation problem,

which in turn is a special case of a linear program, it is possible to solve it

using the simplex algorithm [11]. This algorithm has a complexity in the

worst case not polynomial. However, it has been shown [52] that - in typical

cases of use of the simplex algorithm - it performs polynomially, resulting one

of the most used algorithms in linear programming.

Additionally, for the specific assignment problem, better algorithms have

been found which solve an instance more efficiently than the simplex algorithm

using the specific structure of the problem. Indeed, the Hungarian method

[31] has been proved to solve the problem in time strictly polynomial O(n4),

which can be reduced to O(n3) using the variants proposed by Munkres in

1957 [38].

Load Balancing algorithms

As we have described so far, load balancing is used to spread workloads

among available resources. Therefore, it is widely used to provide internet

services from a pool of servers, which replicate their instances for purposes

of reliability and scalability, also known as server farm. In this specific case,

the aim of the load balancer is to redirect the client request to one of the

available servers in the farm, in order to reduce the response time for the
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client and to maintain the load - the tasks that have to be executed - as much

as possible similar across the resource, the servers.

One of the simplest and most efficient methods for load balancing is

round robin. All the resources are considered to be the same with the same

capabilities, while tasks are assigned, or, better, requests are redirected to one

server in a rotating sequential manner. In such a way, all resources receive

the same amount assignment. This simple method ensures good allocation

of the workloads if the tasks to be executed are all almost the same, with

the same requirements in terms of resources. Nevertheless, if the tasks to be

executed are different or if the resources have different capabilities and cost,

round robin results in being no good because, in its simplicity, it does not

take into account the current load of the server farms, even the type of tasks

that have to be executed.

A different solution to round robin, which takes into account the current

server farm load, is least connection. This algorithm redirects requests to the

server that has the least number of active sessions, in such a way that it can

consider the current load and avoid overloading a server. Still, this algorithm

does not take into account the type of tasks to be executed, assuming that

they are all the same.

Despite that, in real applications - such as balancing the workloads in

a cloud data centre - it is infeasible to apply the techniques described so

far because all those solutions are centralized and thus they represent a

bottleneck for the system. Therefore, many distributed solutions have been

proposed, with the aim of balancing the workloads without degrading the

overall performances. Among those who studied distributed load balancing

solutions, it is worth mentioning the study done by Randles et al. (2010) [43],

who investigated and analyzed three possible distributed solutions. Firstly,

they studied the honeybee self forager allocation proposed by Nakrani et al.

(2004) [40], which takes its name from the analogy with a colony of honeybees

foraging and harvesting food. Secondly, they examined the solution presented

by Rahmeh et al. (2008) [42], who proposed to randomly sample the grid
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network, which is a parallel and distributed computing network system that

has the ability to achieve higher throughput [15]. Thirdly, they investigated

the solution proposed by Saffre et al. (2009) [45], who proposed an active

clustering algorithm able to self aggregate and rewire the network grouping,

or clustering, together similar instances.

Scheduling algorithms

As already pointed out, scheduling algorithms are used to distribute

resources among parties which request them. In particular, these algorithms

are used in routers for packet traffic handling, as well as in operating systems,

disk drivers and most embedded systems. The main purpose of the scheduler,

name used to call the entity which performs the scheduling, is to minimize

resource starvation, which is caused by a process which is continuously waiting

for the resources that it needs to execute its operations.

The simplest algorithm that we can develop for scheduling is FIFO first

in, first out, also known as FCFS first come, first served. This algorithm

queues tasks to be executed, or processes, in the order in which they arrive

at the ready queue. Thus, when a new task is required, the one that has

arrived first is taken. Despite its simplicity, this algorithm does not guarantee

fairness and can lead to starvation, because when a task gets control of the

resources it could keep it for a long time causing starvation.

An alternative solution for a scheduling algorithm is fixed priority pre-

emptive scheduling, in which the operating system assigns a fixed priority to

every task to be executed, then the scheduler orders these tasks by their rank,

by their priority. This solution guarantees no starvation for processes with

high priority, but can easily lead to starvation for those processes with lower

priority.

Even for scheduling, a possible algorithm is round robin. In this case the

resources, or the cpus, are assigned to a task for a fixed amount of time and

then they are cycled through them. Therefore, if a task completes in its time

unit, it is terminated, otherwise it is rescheduled after giving a time unit to
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all the other tasks. This method is considered to be fair because in absence

of priority it is starvation free. Nevertheless, if a task needs to use a lot of

resources for a long period of time it would happen that the task will never

end.

Although the solutions proposed are widely used because of their simplicity

and efficacy, in complex scenarios, such as audio or video streaming applica-

tions, more sophisticated algorithms are needed to ensure the various levels

of Quality of Service QoS. From the literature many algorithms have been

proposed. Among those it is worth pointing out the weighted fair queueing

WFQ proposed by Demers et al. (1989) [13], who presented a scheduling

algorithm for controlling congestion in datagram newtorks. WFQ has been

developed to emulate the hypothetical bit-by-bit weighted round robin in

which the amount of bits of a flow served in a round is proportional to the

weight of the flow. Afterwards, Goyal et al. (1996) proposed an updated

version of WFQ, which is called start-time fair queueing [20]. This solution

aims to achieve fairness, high throughput and efficiency regardless of variation

in a server capacity.

1.2 Reinforcement Learning

The idea that we learn from the interaction with our environment is

probably the primary belief on the manner by which nature learns. Indeed,

if we think of an infant trying to stand and walk, or looking around, he

has no explicit teacher who tells him how to behave. He is alone with his

world, which reacts to his actions. This interaction between the world (or the

environment) and the infant creates a knowledge used to perform these tasks

in the future.

The computational approach to learning through interaction is known

to us as Reinforcement Learning (RL). In reinforcement learning we map

the interaction between the environment and the learner, or agent. During

this interaction, the learner is not told which action to take and, when it
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takes one, it observes a change on the environment, or state, and a given

numerical reward signal associated to that action, (figure 1.1). Thus, the main

objective of the agent is to maximize the whole reward during its execution.

In most of the challenging and interesting cases, the actions affect not only

the immediate reward, but also the next states and consequently the future

reward [53].

Figure 1.1: Reinforcement learning interaction: the agent takes an action and

then the environment retruns a reward and an observation of the environment

resulted from the effect of the action taken.

One of the most delicate and crucial challenges in reinforcement learning

is the trade-off between exploitation and exploration. The former is the case

in which the agent tends to follow - and thus to repeat - actions that it has

already tried in the past and for which it found to be effective in producing

reward. The latter instead is the case in which the agent selects actions that

have not been selected before and which can result in better rewards in the

following states. The dilemma is that neither exploitation nor exploration can

be seeked exclusively without failing at the learning task. The agent must try

all the actions, if possible, and progressively favour those that appear to give

the best reward. Mathematicians have studied intensively for decades the

exploration–exploitation dilemma and yet it remains unresolved. In control

engineering the dilemma is kwnown as identification (or estimation) and

control (Witten et al. 1976 [61]), while Holland et al. (1975) emphasized the

importance of this conflict in genetics algorithms referring to it as the conflict
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between the need to exploit and the need for new information [24].

Reinforcement learning belongs to the family of machine learning, in

particular it is different from supervised learning because in supervised learning

an external supervisor provides explicit knowledge for the learner through the

specification of the proper label for each situation. This kind of learning has

been proved to be effective and for this it is widley used, but for the task of

learning through interaction it is infeasible, because it is often impractical to

retrieve examples of desired behavior that are both representative and correct

of all the situations in which the agent has to act.

Moreover, reinforcement learning is also different from unsupervised learn-

ing, which is typically about finding hidden structures in collections of unla-

belled data.

Another important feature of reinforcement learning is that it explicitly

considers the whole problem of a goal-directed agent interacting with an un-

certain environment, in which the agent can sense aspects of this environment,

choose actions that affect it and have a specific goal.

For all these reasons, reinforcement learning represents a very promising

and challenging field of research that effectively can lead to model the learning

process in a way more similar to the one used by animals and humans.

1.2.1 History of Reinforcement Learning

Reinforcement learning history comes from two main threads, on the

one hand psychology has deeply studied trial and errors in animal learning

since the end of the nineteenth century, in which many psychologists argued

trial-and-error learning as essence of learning [58]. On the other hand, opti-

mization control problem and its solution using value functions and dynamic

programming represent the mathematical basis of the modern reinforcement

learning. It is worth mentioning the mathematician Richard Bellman, who

developed the so called ”optimal return function”, also known as Bellman

equation, which is a necessary condition for optimality associated with the

dynamic programming [4]. Moreover, Bellman also introduced the discrete
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stochastic version of the optimal control problem known as Markovian de-

cision processes (MDPs) [3]. Those two threads came together in the late

1980s to produce the modern field of reinforcement learning.

However, for the reinforcement learning to be well known and applied,

we need to wait until the last two decades. The reasons for such a delay

in its applications come from two main reasons. Firstly, the increase of the

computational power of today’s computers, which allows processing tasks that

yesterday’s computers struggled with. Secondly, the recent success of machine

learning and in particular deep learning in fields such as computer vision [33]

and natural language processing [6]- just to name a few - has motivated many

to study and apply both machine learning and reinforcement learning to a

plethora of applications.

1.2.2 State of the art

The motivation for studying and applying reinforcement learning derives

from the many examples of hugely successful applications which develop

reinforcement learning agents capable of solving hard problems, of different

nature, with results comparable, or even better, to those achieved by humans.

A common path in all the Artificial Intelligence (AI) fields is to start

studying and applying those techiniques to problems of relative simplicity,

such as games. Reinforcement learning is not an exception; in fact between

the end of the twentieth century and the beginning of the twenty-first century

Gerald Tesauro (1992, 1994, 1995, 2002) published several works in which

he demonstrates how to develop a reinforcement learning agent capable of

playing the game of backgammon [54, 56, 57, 55]. Tesauro’s programme,

TD-Gammon, required little backgammon knowledge, yet learned to play

extremely well, near the level of the world’s strongest grandmasters.

Subsequently, in 2013 and 2015 a Google DeepMind team led by Mnih

([37, 36]) developed a reinforcement learning solution, which, starting from

the principles derived by Tesauro’s works, was able to reach human-level

capabilities, sometimes even more, in the video games of the well known Atari
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console. They demonstrated that it was possible to reach such a high level

on those games without any knowledge and without any need to define any

domain specific features. In fact, they developed an algorithm, called Deep

Q-Network, by which they were able to master all the 49 video games of the

Atari console using the same architecture and the same features.

Following the work done by Mnih et al., in 2016 and 2017, another group

of researchers from Google DeepMind led by David Silver made the history of

reinforcement learning and consequently of artificial intelligence beating the

world champion of the ancient game of Go [49, 50, 48], developing the well

famous AlphaGo agent. This event was considered so disruptive for two main

reasons, firstly the game of Go has a search space significantly larger than

other board games such as chess and thus an exhaustive search would result

infeasible. Secondly, in any Go programme it is difficult to define an adequate

position evaluation function, which would allow to truncate the search at a

feasible depth. Therefore, the game of Go, before AlphaGo, was considered by

everyone a game where artificial interaction would have failed on solving it.

In addition to the results obtained applying reinforcement learning on

games, it is worth mentioning, among many, the work done by Li et al. (2010),

who developed a personalized web service for recommending news articles

from the Yahoo! Front Page Today webpage (one of the most visited pages

on the Internet at the time of their research). Their goal was to maximize

the click-through rate (CTR), which is the ratio of the total number of clicks

all users make on a webpage to the total number of visits to the page. The

novelty of the solution provided by Li et al. comes from the development of

an algorithm called LinUCB [34], which uses contextual-bandit for serving

the recommended article to the users.

Therefore, the results obtained by the examples discussed so far have had

the effect of motivating many others to study reinforcement learning and

thus to increase the number of successful results achieved by this learning

framework and solutions.
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1.2.3 Elements of Reinforcement Learning

We have discussed so far reinforcement learning talking about the inter-

action between the agent and the environment to learn how to perform a

task. Beyond these main elements, we can identify four main subelements of

a reinforcement learning system:

1. a policy, it defines the learning agent’s way of behaving at a given

time. Roughly speaking, a policy maps the action taken from two

consecutive states of the environment. Generally, policies may be

stochastic, specifying a probability for each action.

2. a reward signal, it defines the goal of a reinforcement learning problem.

The agent, at each time step, receives from the environment a reward

in response to an action. Thus, the goal of the agent is to maximize

the total reward. Therefore, the reward signal defines what actions are

good or bad, in the immediate, for the agent.

3. a value function, it specifies what is good in the long run. Roughly

speaking, a state value is the total amount of reward an agent can

expect to accumulate over the future, starting from that state.

4. optionally a model of the environment, it is something that mimics the

behavior of the environment. Typically, we use a model in planning

problems and in these cases the reinforcement learning problem is known

as model-based method. On the contrary, those cases without a model

are known as model-free methods, which are explicitly trial-and-error

learners.

To arrive at a complete definition of the reinforcement learning problem

we have to firstly define some intermediate problems that represent a sort of

simplified version of the complete reinforcement learning problem. Thus, in

the following sections we will define the multi-armed bandit problem, then

we will define the contextual bandit problem, to finally define the markov
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decision process, which gives us the complete definition of the reinforcement

learning problem.

1.3 Multi-armed Bandit

Multi-armed bandit allows us to study the evaluative aspect of reinforce-

ment learning in a simplified setting, one that does not involve learning how

to act in more than one situation. In particular, multi-armed bandit problems

were introduced in 1952 by Robbins [44] and they are primarily used to

model, in automated agents, the trade-off between gaining new knowledge

by exploring the agent’s environment and exploiting its current, reliable

knowledge.

1.3.1 A k-armed Bandit Problem

Multi-armed bandit is considered to represent the following learning

problem. You are faced repeatedly with the decision of selecting among

k different options, or actions. After each selection a numerical reward is

received, chosen from a stationary probability distribution that depends on

the action selected. Your objective is to maximize the expected total reward

over a period of time, or time steps.

This is the original form of the k-armed bandit problem, so called by

analogy to a slot machine, or ”one-armed bandit”, except that it has k arms,

or levers, instead of one. Each action choice represents a play of one of the slot

machine levers, and the reward is the payoff for hitting the jackpot. When

repeating the arm selection you are trying to maximize your winnings by

concentrating your actions on the best levers.

In the k-armed problem so far described, each of the k actions has an

expected or mean reward given if the action is selected; let us call this the

value of an action a. We then denote as At the action selected at time step t

and its corresponding reward as Rt. Thus, the value of an arbitrary action a,

denoted as q∗(a), is the expected reward given that a is selected:
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q∗(a)
.
= E[Rt|At = a] (1.2)

We then assume that we do not know the action value with certainty, although

you may have estimates. We call the estimated value of action a at time step

t as Qt(a) and we would like that Qt(a) will be close to q∗(a).

Therefore, the easiest way to solve the k -armed bandit problem is to

always select the action with the highest estimated value. We call these the

greedy actions. More generally greedy methods.

To use the greedy methods we have to estimate the action value. One

natural way to estimate it is

Qt(a)
.
=

∑t−1
i=1Ri · 1Ai=a∑t−1
i=1 1Ai=a

(1.3)

where 1predicate denotes the random variable that is 1 if predicate is true and

0 if it is not. We call rule (1.3) the sample-average method for estimating

action values. Therefore, the greedy method selects the action At as

At
.
= argmax

a
Qt(a) (1.4)

The equation (1.3), already presented, from the computational point of view

is inefficient because at each step they require additional memory to store

the reward and additional computation to compute the sum. We can instead

use an incremental implementation to reduce the amount of space and time

necessary to compute the estimated value of an action, as follows

Qn+1 = Qn +
1

n
[Rn −Qn] (1.5)

where Qn denotes the estimate of its action value after it has been selected n

- 1 times and Rn denotes the reward received after n selections of the action

a. This implementation requires memory only for Qn and n, and only a small

computation for each new reward.

There is an alternative method to the greedy methods, in which it behaves

greedily most of the time, but every once in a while, with a small probability ε,
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instead of selecting randomly from among all the actions with equal probability,

independently of the action-value estimates. We call this method ε-greedy

method and we present the pseudocode for this algorithm in the box below

1, where the function bandit(a) is assumed to take an action and return a

corresponding reward.

Algorithm 1: ε-greedy for k-armed bandit

Initialize, for a = 1 to k:

Q(a)← 0

N(a)← 0

while true do

if probability is 1− ε then
A← argmaxaQ(a)

else
A← a random action

end if

R← bandit(A)

N(A)← N(A) + 1

Q(A)← Q(A) + 1
N(A)

[R−Q(A)]

end while

1.4 Contextual Bandit

Contextual Bandit or Associative Search represents a step towards the

full reinforcement learning problem. Indeed, so far we have considered, in the

Multi-armed bandit, only nonassociative tasks, where actions do not need to

be associated with different situations.

In more realistic scenarios we may have that the action which we are

going to execute is related to the specific situation in which we are. For

example, we may consider the case in which we have several different k-armed

bandit tasks and that on each step we face one of them randomly. Using the
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k-armed bandit algorithms defined so far, but causing that the true action

values change slowly, this method will not work well.

The case already described is an example of associative search task or

contextual-bandit, because as in the k-armed bandit it involves trial-and-error

learning to search the best actions, but it also involves the association of these

actions with the situation in which they perform the best. This association is

usally called context because context is a way of referring to the situation in

which the action has been selected.

Therefore, contextual-bandit represents a problem in the middle between

the k-armed bandit and the reinforcement learning, because it uses the

context to better associate the action to the current situation, as we do in the

reinforcement learning problem using the state of the environment. However,

it does not look forward in the action selection, and it tries to maximize

only the current action selection. On the contrary, in the full reinforcement

learning problem we try to maximize the total reward of the entire execution.

It is worth mentioning that the definition of contextual bandit was firstly

formulated by Langford et al. (2007) [32] and consequently the first algorithm

was developed by Li et al. (2010) [34].

1.5 Finite Markov Decision Process

Finite Markov Decision Processes or MDPs are the last steps for the full

formulation of the reinforcement learning problem. They involve evaluative

feedback, as in bandits, but also associative aspects, in which they have to

choose different actions in different situations. In MDPs, actions influence

not only immediate rewards, but also subsequent situations, or states, and as

a result the future rewards.

Finite MDPs problem can be formalized by a learner, usually called agent,

who has to learn and take decisions. This learner interacts with everything

outside of it, which is called environment. The agent and the environment

iteract continually, the former selecting actions and the latter responding to
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them and presenting new situations to the agent. Moreover, the environment

also gives rise to rewards which the agent seeks to maximize over time through

its actions selection (fig. 1.2).

Figure 1.2: The agent-environment interaction in a Markov decision process,

courtesy of [53].

MDP formalism was used to refer to and describe reinforcement learning

firstly by Andreae et al. (1969) [1] and subsequently by Witten et al. (1977)

[60], who experimented with a reinforcement learning system which was

analyzed using the MDP formalism.

1.5.1 Mathematical formulation

More specifically, at each time step t, the agent receives some represen-

tations of the environment, called state St ∈ S, and, on the basis of that, it

selects an action, At ∈ A(s). One step later, as a consequence of its actions,

the agent receives a numerical reward, Rt+1 ∈ R ⊂ R, and finds itself in a

new state, St+1.

In the finite MDP , which we have been describing so far, the sets of

states, actions and rewards (S, A, and R) all have a finite number of elements.

Therefore, considering the random variables, s′ ∈ S and r ∈ R, there is a

probability of those values occuring at time t, given particular values of the

preceding state and action:

p(s′, r|s, a)
.
= Pr {St = s′, Rt = r|St−1 = s, At−1 = a} (1.6)
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for all s′, s ∈ S, r ∈ R, and a ∈ A(s). Function p, rule 1.6, defines the

dynamics of the MDP.

As we have discussed so far, the agent’s goal is to maximize the cumu-

lative reward it receives in the long run. Therefore, it can be formalized in

maximizing the expected return, denoted as Gt and defined as some specific

function of the reward sequence. In the simplest case the return is the sum

of the rewards:

Gt
.
= Rt+1 +Rt+2 +Rt+3 + · · ·+RT , (1.7)

where T is a final time step. This approach is reasonable when there is a

natural notion of final step, which can be expressed in terms of subsequences

that we call episodes or trials. Each episode ends in a special state called

terminal state followed by a reset to a standard starting state. These tasks

are called episodic tasks. In this type of tasks sometimes we distinguish the

set of all nonterminal states, denoted as S, from the set S+ which contains

all the states plus the terminal state.

On the contrary, in many cases the agent-environment interaction does

not break naturally into episodes, but goes continually without any limit.

This type of cases are called continuing tasks, where the rule (1.7) should be

reformulated because in such a case the final step would be T =∞ and thus

also the expected reward would be infinite. The additional concept that we

need is discounting. In particular, it chooses At to maximize the expected

discounted return:

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + · · · =

∞∑
k=0

γkRt+k+1, (1.8)

where γ is a parameter, 0 ≤ γ ≤ 1, called discount rate.

If γ < 1, the infinite sum in (1.8) has a finite value as long as the reward

sequence {Rk} is bounded. If γ = 0, the agent is ”myopic” in being concerned

only with maximizing immediate rewards. As γ approaches to 1, the return

objective takes future rewards into account more strongly.

Moreover, considering the majority of reinforcement learning algorithms,

they involve estimating value functions, which are functions of states that
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estimate how good it is for the agent to be in a given state.

Accordingly, value functions are defined with respect to particular ways of

acting, called policies. Formally, a policy, is denoted as π and it is a mapping

from states to probabilities of selecting each possible action. Therefore, we

define state-value function for policy π, denoted as υπ(s), the expected return

when starting in s and following π thereafter. For MDPs, we define υπ by

υπ(s)
.
= Eπ[Gt|St = s] = Eπ

[
∞∑
k=0

γkRt+k+1

∣∣∣St = s

]
, for alls ∈ S (1.9)

Similarly, we define action-value function for policy π, denoted as qπ(s, a),

the expected return starting from s, taking action a, and thereafter following

policy π:

qπ(s, a)
.
= Eπ[Gt|St = a,At = a] = Eπ

[
∞∑
k=0

γkRt+k+1

∣∣∣St = s, At = a

]
(1.10)

For any policy π and any state s, we can consider the following consistency

condition

vπ(s)
.
=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvk(s
′)] , for all s ∈ S (1.11)

which expresses a relationship between the value of a state and the values of

its successor states, which indeed is the Bellman equation [4].

Finally, to solve a reinforcement learning task we need to find a policy

that achieves a lot of rewards over the long run. A policy π is defined to be

better or equal to a policy π′ if its expected return is greater than or equal

to that of π′ for all states. More formally, π ≥ π′ if and only if vπ(s) ≥ v′π

for all s ∈ S. The optimal policy, denoted as π∗, is the policy that is always

better or equal to all the other policies. We define the optimal state-value

function, denoted as v∗, and defined as

v∗(s)
.
= max

π
vπ(s), (1.12)
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Moreover, optimal policies also share the same optimal action-value function,

denoted as q∗ and defined as

q∗(s, a)
.
= max

π
qπ(s, a), (1.13)

for all s ∈ S and a ∈ A(s).

Because v∗ is the value function for a policy, it must satisfy the self-

consistency condition given by the Bellman equation for state values, rule

1.11. Therefore, the Bellman optimality equation is defined as

v∗(s) = max
a

∑
s′,r

p(s′, r|s, a) [r + γv∗(s
′)] (1.14)

while the Bellman optimality equation for q∗ is

q∗(s) =
∑
s′,r

p(s′, r|s, a)
[
r + γmax

a′
q∗(s

′, a′)
]

(1.15)

Intuitively, the Bellman optimality equation reveals the fact that the value

of a state under an optimal policy must be equal to the expected return for

the best action from that state.

1.5.2 Solutions

Through the Markov Decision Process we have defined the complete

reinforcement learning problem and now we are going to illustrate temporal-

differences (TD) learning which provides a solution to MDPs problem. In

particular, TD learning is the union of Monte Carlo ideas and Dynamic

Programming ideas. From the former, TD methods learn directly through

raw experience without a model of the environment’s dynamics, while, from

the latter, TD methods update its estimates based in part on other learned

estimates, without waiting for a final outcome, in other words they bootstrap.

Q-learning: Off-policy TD Control

One of the major breakthroughs in reinforcement learning was the devel-

opment of an off-policy TD algorithm called Q-learning, which was designed

by Waltking in 1989 [59].
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The definition of this algorithm follows the generalized policy iteration

(GPI) pattern [53], the main idea of which is that of letting the policy

evaluation and the policy improvement processes interact and, in particular,

all have identifiable policies and value functions, fig. 1.3, where the policy

is always being improved with respect to the value function and the value

function is always being driven toward the value function for the policy. Thus,

both processes stabilize only when a policy has been found that is greedy

with respect to its own evaluation function. Therefore, this implies that the

Bellman optimality equations holds (rules: 1.14, 1.15), and thus that the

policy and the value function are optimal.

Figure 1.3: Generalized policy iteraction: Value and policy functions interact

continuously until they are optimal and thus consistent with each other, courtesy

of [53].

The first step is to learn an action-value function, through the function

Q, which directly approximates q∗, the optimal action-value function. In

particular, the policy determines which state-action pairs are visited and

updated, but for a correct convergence it is only required that all pairs continue

to be updated. Consequently, the learning is conveyed by the following update

of the Q function

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
(1.16)



1.5 Finite Markov Decision Process 23

which has been shown that Q converges with probability 1 to q∗. The

complete pseudocode of the Q-learning algorithm is shown below 2, where

yt+1 represents the target of the update from the equation 1.16.

Algorithm 2: Q-learning: off-policy TD control

algorithm parameters: step size α ∈ (0, 1], small ε > 0

Initialize Q(s, a), for all s ∈ S+, a ∈ A(s), arbitrary except that

Q(terminal, ·) = 0

foreach episode do
Initialize S

foreach step of episode until S is terminal do
Choose A from S using policy derived from Q (e.g. ε-greedy)

Take action A, observe R, S ′

yt+1 ← Rt+1 + γmaxaQ(St+1, a)

Q(St, At)← Q(St, At) + α [yt+1 −Q(St, At)]

S ← S ′

end foreach

end foreach

Value-function Approximation

TD methods described so far have been demonstrated to converge under

the finite Markov Decision Processes assumption. They rely on representing

and storing value-functions and/or policies in an exhaustive representation

by lookup table. Unfortunately, using such a table requires the state set to

be finite and small enough, but in many real-world cases the dimension of

the state set is really large, or sometimes it could be even unbounded, to

allow the adoption of classic TD methods, such as Q-learning. Consequently,

value-function approximation methods have been developed.

The main idea in value-function approximation is that of using a param-

eterized function with weight vector w ∈ Rd, instead of a lookup table, for

representing the value-functions. Thus, we have v̂(s, w) ≈ vπ(s) which approx-
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imates the value of the state s given a weight vector w. The approximator,

often called function approximation, takes examples from a desidered function,

such as a value-function, and attempts to generalize from them to build an

approximation of the whole function. This function can be both linear and

nonlinear and typically we can use all the function approximators that we use

in supervised learning for machine learning, artificial neural networks, pattern

recognition, and statistical curve fitting.

Notwithstanding, some function approximators have been demonstrated

to be more effective than others. Nonlinear approximators through Artificial

Neural Networks (ANNs) represent one of those with the highest success. In

particular, a group of researchers at Google DeepMind developed an impressive

demonstration that a deep multi-layer ANN can automate the feature design

process and thus approximate the value-function for achieving exceptional

results (Mnih et al., 2013, 2015 [37, 36]).

1.6 Summary

In this chapter, we have firstly presented what an allocation problem is

and which are the main variants, illustrating how this problem can be seen

from a high-level point of view, such as the case of a carrier delivery service

described so far, but also showing how this problem is crucial in computing

as it is in the case of load balancing and scheduling.

Secondly, we have illustrated the first informal formulation of the problem

which we are going to study and to solve in the following chapters, which

indeed is a simplified variant of the well known Job Shop Scheduling problem

and for which we are going to give a more detailed and formal description in

the third chapter.

Finally, in this chapter we have presented an overview on Reinforcement

Learning, starting from its definition - both formal and informal - and then

introducing some examples of great applications of reinforcement learning,

which therefore represent the state of the art in this field. Subsequently,
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we have walked through the steps to define the full reinforcement learning

problem, from Multi-armed Bandit, through Contextual Bandit and finally

Markov Decision Processes. These concepts about RL form the basis for the

algorithms which will be used to solve our problem.

The motivations for choosing and studying this field are manifold. Firstly,

as we have demonstrated in this chapter, allocation problems are fundamental

combinatorial optimization problems which can be applied to many different

scenarios; therefore, researching and finding new solutions for those kinds

of tasks have extreme relevance for the research society, but also for many

companies which have in their business some kind of allocation problems.

Secondly, the problem, as it has been formulated, represents a reinforcement

learning instance, in which the agent selects actions that are executed by

distributed and asynchronous workers, because the main goal remains that

of being as fast and efficient as possible and, therefore, the agent observes

the rewards resulting in its actions lagging behind the moment in which

it took those actions. These particular reinforcement learning instances,

sometimes referred as reinforcement learning with delayed reward, are a kind

of RL problems highly promising because they have not been studied much

yet and thus there are many opportunities to contribute and to discover

new novel solutions. Thirdly, the field of low level computing has not been

associated frequently to reinforcement learning, mainly because systems in

those situations require prompt replies, such as in the case of scheduling

algorithms; therefore applying classic reinforcement learning represents a

bottleneck that can not be allowed. Thus, following the novel work done

by Jay et al. (2019), who proposes a congestion control solution which uses

reinforcement learning with delayed action [25], and then following the novel

approach shown by Sivakumar et al. (2019), who extended the solution

proposed by Jay developing a framework for congestion control with delayed

actions [51], we want to introduce a new example of application which relies

on such reinforcement learning with delayed reward. Moreover, to the best

of our knowledge, nobody is applying reinforcement learning on the kind of
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allocation problem that we have presented.

In the following chapters we are going to firstly illustrate, in the second

chapter, those works which represent the state of the art in both allocation

problems and reinforcement learning and that are the basis for the work

proposed. Subsequently, in the third chapter, we will present our novel

solution for solving distributed and asynchronous task allocation problems

using many reinforcement learning techiniques, emphasizing advantages and

disadvantages of those proposals. Finally, in the fourth and last chapter, we

will present the implementation details of the solutions proposed, showing

the noteworthy aspects that have been developed to realize it and we will

also exhibit the results that those solutions have achieved on allocating tasks,

comparing their outcomes with those of some baselines algorithms.



Chapter 2

State of the art

In this second chapter, we illustrate some of those works realized in task

allocation and reinforcement learning which represent the state of the art in

those fields and the basis, the starting point, for the work that we are trying

to solve with this project.

Moreover, we are intent to describe the technique and the algorithms,

used in those projects, that have been used to obtain the best results in such

fields. Without neglecting any aspects which have not been covered by those

solutions, which indeed are relevant to obtain the results that we expect from

the study we are proposing with this work.

In particular, our aim here is to firstly introduce those solutions which

constitute, in general terms, the state of the art in task allocation problems.

Secondly, we describe the works that are considered relevant in the reinforce-

ment learning community. Finally, we present some works which try in some

way to use the state of the art in reinforcement learning to solve some kinds

of allocation problems.

2.1 Assignment problem

Assignment problems, as described so far in the first chapter, are a fun-

damental combinatorial optimization problem which requires to assign tasks

27
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to the available resources in order to minimize total costs or maximize the

total return. Moreover, with the objective of better describing the allocation

problem which we are willing to solve, we have also presented the Job Shop

Scheduling (JSP) problem, which is a specific combinatorial problem, where

to complete a task it is required to sequentially execute it on several of the

available resources with the aim of minimizing the makespan, which represents

the distance in time that elapses from the start of a work to its end.

Therefore, combinatorial problems have been studied since the late 1950s

because of their relevance and importance in many fields, such as logistic

management, supply chain optimization and the travelling salesman problem,

just to name a few. Regarding assignment problems, one of the principal

solutions for solving any instances of the general balanced and unbalanced

assignment problem, among the others, is the Hungarian method proposed by

Kuhn in 1955 [31]. For job shop scheduling problems in the years are many

the solutions that have been proposed by researchers, among those it is worth

mentioning the metaheuristic search method known as Tabu search, which has

been firstly created and formalized by Glover et al. in 1989 [19] and secondly

was applied to solve JSP by Dell’Amico et al. in 1993 [12]. Regarding job

shop scheduling instances there have been attempts to resolve them using

genetic algorithms as in the work proposed by Pezzella et al. in 2008 [41].

Hungarian method for assignment problem

The Hungarian method proposed by Kuhn (1955) [31] takes its name

because the author based his intuition on the works done more than 15 years

before by two Hungarian mathematicians: D. König [27] and E. Egerváy [14].

The former gives a theoretical laid basis of the algorithm in the case in which

the cost, or the return, of a resource associated to a job is indicated by 1 or 0,

indicating if the resource is applicable or not to the job. The latter shows and

proves how it is possible to reduce the general case to the previous laid case.

The Hungarian method in his original formulation solves the assignment

problem with polynomial complexity O(n4), which is significantly better
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to the exhaustive solution where each possible assignment is generated to

find the maximum, or the minimum, considering that the number of possible

assignments is n!. Subsequently to Kuhn, James Munkres in 1957 proposed an

improvement of the Hungarian method, which allows to solve the assignment

problem with polynomial complexity O(n3) [38]. Thus, the algorithm is also

known as the Kuhn–Munkres algorithm or Munkres assignment algorithm.

The algorithm proposed, in the case of n resources and n jobs, thus

balanced instance, can be described by the following procedural steps:

1. create a matrix M n × n, where each row represents one available

resource, each column one job that has to be executed and each value

of the matrix is the cost of the return corresponding to the assignment

r(i, j), with i and j = 1, ..., n

2. for each row i of the matrix, find the smallest element and subtract it

from every element in its row

3. for each coloumn j of the matrix, find the smallest element and subtract

it from every element in its column

4. cover all zeros in the matrix using minimum number of horizontal and

vertical lines

5. if the number of lines covering all zeros is equal to n, then the algorithms

terminate and the optimal assignment corresponds to the zeros found.

Otherwise go to the following step

6. determine the smallest entry not covered by any line. Subtract this

entry from each uncovered row, and then add it to each covered column.

Finally repeat step 4.

When we have an unbalanced instance of assignment problem, whereby

we have n resources, m jobs and n < m (or vice versa), we can always reduce

the problem to the previous case, adding d = m− n dummies variables, thus

columns or rows, to the matrix M with high values if we are minimizing the

cost or low values if we are maximizing the return.
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Tabu search for JSP

An instance of Job Shop Scheduling (JSP) problem is formalized as follows.

A set M of m machines and a set J of n jobs are given. Each job i consists

of a chain of mi operations and each of these operations has to be processed

on a machine µi for di consecutive time instants. The problem is to assign

operations to machines in a way as to respect the chain of operations required

by each jobs, to perform in each machine at most one operation for time

instant and to minimize the makespan, the completion time necessary to

execute all n jobs. JSP problems are well known to be NP-hard problems

[16] and one of the most used method to find a solution is tabu search [12].

Tabu Search (TS) is a metaheuristic strategy for solving combinatorial

optimization problems. It has the ability to make use of many other methods

which are used to overcome the limitations of local optimality, therefore it is

considered an adaptive procedure. The origin of the algorithm comes from

the combinatorial procedures applied to nonlinear covering problems by Fred

Glover (1977) [17], who also wrote in 1989 and 1990 two papers [19, 18]: in

the former he describes the fundamental principles of tabu search, while in

the latter he examines more advanced considerations.

Tabu search has been applied to a diverse collection of problems ranging

from computer channel balancing, scheduling, integrated circuit design and

job shop scheduling, just to name a few. The name tabu comes from the

Tongan word to indicate something that cannot be touched because it is

sacred.

TS procedure tries to find a solution to a combinatorial optimization

problem through a local search in the neighbourhood of an initial feasible

solution (e.g. a random solution), then the search moves from one solution

to another, choosing the best not forbidden, or tabu, element in the neigh-

bourhood. The aim of forbidding some solutions is to prevent cycling and to

guide the search toward unexplored regions. Therefore, during the execution

of the search a tabu list is stored with the forbidden solutions. A solution s′

is to be considered forbidden if the current solution s can be transformed ino
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s′ by applying one of the moves in the tabu list, while a move is considered

admissible if it satisfies an aspiration criterion which is associated to each

move.

Genetic algorithm for JSP

A genetic algorithm (GA) is a higher-level procedure designed to find a

sufficiently good solution to an optimization problem, it is inspired by the

process of natural selection and belongs to the class of evolutionary algorithms

(EA). GA algorithms were firstly introduced by John Holland [24], who based

his theory on the concepts of Darwin’s theory of evolution.

Genetic algorithms fit the spectrum of JSP because in GA we start from

an initial population, an initial solution as it is in tabu search, then applying

genetic operators offsprings are produced, which correspond to exploring

the neighbourhood. Then, at each generation of new offsprings, every new

individual, referred to as chromosome, corresponds to a solution, thus to a

schedule for the JSP problem.

The strength of genetic algorithms with respect to other local search

methods is due to the fact that in GA it is possible to apply together more

strategies on the generation of the offsprings, thus at each algorithm step a

bigger portion of solution space is explored resulting in an easier convergence

to an acceptable solution for the problem. An example of solution for job shop

scheduling problems by means of genetic algorithms is proposed by Pezzella

et al. (2008) [41].

2.1.1 Load Balancing

Nowadays, in cloud computing load balancer represents a key factor for

success and for delivering the best service. Indeed, in the research community

load balancing is a very hot topic and there are many noteworthy works.

Among those, the comparative study done by Randles et al. (2010) represents

a valid source for describing and comparing several solutions which nowadays

compose the state of the art in load balancing for cloud computing [43]. Thus,
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in Randles’s paper is provided an exhaustive analysis of Honeybee dynamic

server allocation approaches, as well as Grid networks and Active clusting

approaches.

Honeybee dynamic server allocation

One of the solutions analyzed by Randles in his paper is a distributed

load balancing technique inspired by the believed behaviour of a colony of

honeybees foraging and harvesting food, which was proposed by Nakrani et al.

(2004) [40]. The algorithm proposed in Nakrani’s work follows the analogy

with the honeybees, where Forager bees are in charge of finding suitable

sources of foodand when they find it they advertise this exploration to the

Honey bees in the hive through a waggle dance, which indicates the suitability

of the source found. Honey bees are in charge of exploiting those sources of

food.

In a load balancing algorithm based on such honeybees behaviour, each

server takes a particular bee role with probabilities px or py, where px repre-

sents the foraging bee that has to explore new resources, while py represents

those bees that have to exploit the existing resources. In addition, a dis-

tributed share space, called advert board, is kept and it is used to post server

requests that are successfully fulfilled - this board is the equivalent of the

waggle dance and contains the profit associated with completed requests.

Thus, a group of servers are arranged into virtual servers and they are serving

a virtual service queue of requests, then a server will randomly pick a virtual

server’s queue, thus the server would explore with probability px, otherwise

the server checks the advert board and serves the requests.

Dynamic random sampling for grid networks

In computing, one technique to achieve high throughput is to take advan-

tage of many computing resources which are allocated in a network in a way

to collaborate in the environment, composing the so called Grid Network [15].

Those systems to be scalable and reliable need to distribute efficiently the
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resources accessible on the network.

Therefore, a distributed load balancer for Grid networks which use biased

random sampling has been proposed by Rahmeh et al. (2008) [42]. In their

proposal, an initial network is constructed with virtual nodes to represent the

server’s ones. Each of those nodes is mapped with a number of inward edges,

which determines the number of available resources in the node. Every time

a job is assigned to a node the number of inward edges is decreased, while at

each job execution termination this number is increased. Hence, this number

of internal edges is used to increase or decrease the probability to assign a

job to a node.

Active clustering

The last distributed load balancer method analyzed by Randles in his

paper is the Active Clustering algorithm, in which the topology of a network

is modified to aggregate similar services together for creating virtual clusters,

exploiting the well known principle by which load balancer performs better

when nodes are aware of similar instances and can delegate to them [9] some

specific jobs.

An algorithm who exploits such a principle was proposed and studied by

Saffre et al. (2009) [45]. In particular, the method he proposes follows three

simple steps:

1. an initiator is randomly selected among the nodes and randomly selects

a matchmaker node from its current neighbours, with the only condition

of being of a different type

2. then, the matchmaker creates a link between one of its neighbours that

has the same type of the initiator node

3. finally, the matchmaker removes the link between itself and the initiator.

Those steps are then iteratively executed by the nodes of a network with

the aim of creating links, clusters among similar nodes.



34 2. State of the art

2.1.2 Scheduling

In computing scenarios are plenty the cases in which a scheduling algorithm

has to be used to distribute resources among parties which request them.

As we have described in chapter one, solutions for implementing a scheduler

are several and they have different behaviours, but they also share the main

objective of reducing starvation as much as possible trying to be fair among

the involved entities who need the shared resources.

Scheduling algorithm is a very hot topic in the research community, as

evidence of that a large number of works have been proposed in the literature

in such a field. Among those it is worth pointing out the weighted fair queueing

WFQ proposed by Demers et al. (1989) [13] and improved by Goyal et al.

(1996) with the proposal of start-time fair queueing [20].

Weighted fair queueing

Scheduling algorithms when applied in process and network scheduling

are also referred to us as queueing algorithms, because typically there are

sets of entities waiting, in a queue, to use a shared resource and when the

main objective in those schedulers is fairness we call this family of algorithms

as fair queuing. The principle of fair queueing is to use one queue for packet

flow and to serve them in rotation, in a way that each flow can obtain an

equal fraction of the resources [39]. The advantage of fair queueing compared

to other common solutions, such as FIFO and priority queueing, consists on

not allowing large packets to take more of its fair share of the total capacity.

Moreover, it is sometimes necessary to divide the shared resources not

in equal subparts, therefore we use the weighted fair queueing designed by

Demers et al. In this variant of fair queueing for each packet i a weight wi

is defined, with i = 1, ..., N and N the number of flows. Subsequently, each

flow i will receive an average data rate given by the following rule 2.1

wi
(w1 + w2 + ...+ wN)

R (2.1)
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where R is the link rate.

This scheduling algorithm is also known as Packet-by-Packet Generalized

Processor Sharing (PGPS) because it was designed to reproduce the behaviour

of the hypothetical bit-by-bit weighted round robin server, where each bit of

a packet is sent separatly from the others in a round robin way. Of course a

bit-by-bit scheduler is in practice infeasible because packets have to be sent

undivided.

Start-time fair queueing

Nowadays, in scenarios where integrated network services require to sup-

port a variety of different applications, such as video streaming, audio stream-

ing, file transferring and many others - each of which with different require-

ments in terms of Quality of Service (QoS), with respect to bandwidth and

packet delay for audio and video, while for file transferring intense throughput

is required - a proper scheduler able to adapt itself to the specific service is

crucial.

Therefore, Goyal et al. in 1996 propose a variant of weighted fair queueing

called start-time fair queueing (SFQ) [20], which is able to adapt depending

on the service, keeping the scheduling of the resources fair among variation

in the server capacity.

In Goyal’s algorithm, two tags are associated to each packet, a start and

a finish tag. Initially, a server virtual time is defined equal to 0, while during

a busy period t, this virtual time becomes equal to the start tag of the packet

in service at time t. At the end of the busy period, the virtual time is set to

the highest finish tag belonging to any packets that have been serviced by

time t. Thus, during the execution of the algorithm, packets are served in

increasing order of the start tags.

This advanced scheduling algorithm is capable of providing fairness even

in case of variation of the server capacity. Moreover, it is also efficient because

the virtual time depends only on the starting tag of the packet in service.

Hence, the computational complexity of SFQ is the same of WFQ, which is
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O(logN) per packet, where N is the number of flows at the server.

2.2 Reinforcement Learning

As discussed in the first chapter, Reinforcement Learning (RL) is a frame-

work for learning from experience which demonstrates to be extremely effective

in the learning task. RL discipline is relatively young: late 1980s for the first

formulation and the end of the twentieth century for the first remarkable

results. But notwithstanding its short history are plenty the works which are

relevant in the research community and thus they are worth mentioning.

In the following sections, we are going to present some of those works

which represent the state of the art of reinforcement learning. Firstly, we will

illustrate the impressive results which have been obtained by RL in games.

Secondly, we will describe how the results achieved in games settings can be

used for real-world applications. Finally, we will present some examples of

reinforcement learning applied to system level applications. Among those

outstanding works there are some which also have represented a baseline for

the project under analysis.

2.2.1 Playing games at human level

In reinforcement learning and in general for Artificial Intelligence (AI),

games represent a typical first testbed in which to evaluate the efficacy of

an AI technique. The reasons for using games as initial testing system are

manyfold, typically games are easy to reproduce, easy to emulate and easy to

run for many episodes, but they are also hard to be solved, in particular board

games such as chess, backgammon and many others. Thus, a game seems

a suitable testbed. Moreover, games can be easily generalized to real-world

scenarios, hence a result obtained on a game can be reapplied to many other

scenarios.

Among those who have applied RL to games it is worth mentioning

the series of papers published by Gerald Tesauro at the end the twentieth
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century (1992, 1994, 1995, 2002), where he proposed a reinforcement learning

agent capable of mastering the game of backgammon. Subsequently, two

different research groups at Google DeepMind presented some outstanding

reinforcement learning solution applied to games. The former, led by Mnih in

2013 and 2015, developed a novel algorithm which allowed to play at human

level a series of video games called Atari. The latter, leb by David Silver,

succeeded in developing an agent who beat the world champion of the game

of Go in 2016 and 2017.

TD-Gammon

The reinforcement learning application proposed by Gerald Tesauro in

his series of papers (1992 [54], 1994 [56], 1995 [57], 2002 [55]) and called

TD-Gammon, is to date considered one of the most impressive solutions, in

which it was able to learn playing at a level near to the greatest human world

players, even requiring little knowledge of the backgammon game.

The learning procedure was a straighforward composition of the Temporal

Difference TD(λ) algorithm and nonlinear function approximation using an

Artificial Neural Network (ANN) trained using backpropagation of TD errors.

Backgammon game is well known for its complexity, which makes in-

effective to use classic heuristic search methods that have been proved to

be so powerful for games such as chess. Indeed, the branching factor 1 of

backgammon is about 400.

Despite the complexity of the game, it is always possible to have a complete

description of game’s state, as it is highly stochastic. Moreover, there is a

clear evidence of episodes because the game evolves following a sequence of

moves and then one of the players wins while the other loses. Therefore, such

a game represents a good match to the capabilities of TD learning algorithms.

As we have discussed so far, because of its complexity, the number of

possible states is too large to fit in memory and to allow a tabular solution,

1In tree data structures and game theory, the branching factor corresponds to the

number of children at each node.
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such as Q-learning. Hence, the author proposes using a nonlinear form

of TD(λ) where the estimated value, v̂(s, w), of any state s is designed to

estimate the probability of winning starting from that state s. To realize this

estimation the reward was defined as zero for all the time steps except for

those in which the game is won.

The implementation of the value function required the use of a standard

multilayer Artificial Neural Network, where the input layer was represented

by 198 units used by Tesauro for representing the state board of the game,

while the output layer was a single unit representing the estimate of the value

of that position. Thus, the agent selects a move accordingly to the position

with the highest estimation.

The training of such application was performed making two agents, as

described so far, playing against each others. They started from random

weights for the ANN which led to random moves, but after having played

more than 300 thousands of games the application succeeded in beating the

previous best backgammon computer programme. The application was called

TD-Gammon 0.0 because almost zero knowledge of the game was applied. In

the following versions of TD-Gammon Tesauro improved the agent adding

some specific knowledge of the game, and the results allowed the proposed

solution to play at the level of the best human players of backgammon.

Human level in Atari video games

In reinforcement learning, one of the main challenges is to decide how

to store and represent the action value function and/or the policy. As we

have discussed for TD-Gammon, in real world application the state can

not be mapped on all its space, therefore typically we rely on function

approximation. Whether linear or nonlinear, function approximation should

map the characteristics of the environment in such a way to convey the proper

information to the learning system for skilled performance. Hence, applications

for being successful still require human knowledge to carefully handcraft

domain specific features which dramatically improve the performance.
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A team of researchers at Google DeepMind led by Mnih, firstly in 2013

and then in 2015, developed an application which uses reinforcement learning,

but without any human specific knowledge, and succeeded in mastering all

the 49 video games of the Atari 2600 console. One of the main reasons why

this work is considered impressive is because for the first time also the design

of the features was automated by a deep multilayer ANN.

The process of features selections was realized taking advantage of the

impressive results obtained using deep learning, which at the time of this work

has led to breakthroughs in the field of computer vision [30, 47] and speech

recognition [10, 21]. In particular, they used a special class of ANN called

Convolutional Neural Network (CNN), which applies the theory proposed

by Zhang Wei et al. (1988) called shift-invariant [62], typically for image

recognition [33].

Deep CNNs have been used by Mnih et al. for extracting the features

necessary for the learning algorithm directly from the frame of the video game.

Each raw pixel, after a stage of preprocessing, has been fed into a deep CNN,

whose output represented the value function which estimates future rewards.

Moreover, this work proposed also a novel agent for reinforcement learning

called Deep Q-Networks (DQN), which learns using the following pipeline,

described by fig 2.1. The images captured, once preprocessed are fed into the

three convolutional layers, which extract the main features of the image, then

those features are propagated to two fully connected layers, which estimate

the value function, finally the output corresponds to each valid action and

its estimated reward. This type of network has been called by the authors

Q-Network.

In the first of the two papers published by Mnih et al. [37], they used their

DQN agent on seven different games of the Atari console, without changing

any aspect of the architecture described so far and they outperformed all the

previous approaches on six of those games and surpassed the score of a human

expert on three of them. Instead, in their second approach [36], they used

a modified version of the DQN algorithm which uses two Q-Networks, one
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Figure 2.1: DQN architecture: the input is the image from the Atari 2600 console,

which is processed through several convolutional layers and fully connected layers,

finally there is one output for each valid action. Courtesy of [36].

for estimating the value function and one for computing the target used in

the backpropagation step of the first network. Using this improved version of

DQN they have succeeded in mastering all the 49 games of the Atari console

and in the majority of them outperforming human experts, using the same

architecture and the same hyperparameters.

Mastering the game of Go

One of the greatest performance achieved by reinforcement learning was

the one developed by another group of research from Google DeepMind led by

David Silver, who in 2016 and in 2017 succeeded in beating the world champion

of the ancient game of Go, through the so called AlphaGo application. Such

success derives from two main reasons, as we have already discussed in

chapter one. Firstly the game of Go has a search space significantly larger

than other board games such as chess and thus an exhaustive search would

result infeasible. Secondly, in any Go programme it is difficult to define an

adequate position evaluation function, which would allow to truncate the
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search at a feasible depth.

The solution proposed by Silver et al. was particularly inspired by both

the works described so far. From Tesauro’s TD-Gammon approach, AlphaGo

included reinforcement learning over simulated games of self-play. From the

work performed by Mnih et al. with the Atari console, Sivler et al. built its

solution on top of the progress of DQN. Another main feature of AlphaGo was

the combination of the Monte Carlo Tree Search (MCTS) with reinforcement

learning and Deep Q-Networks. MCTS is a search method which uses Monte

Carlo rollout to estimate the value of each state in a search tree. It was

proposed by Coulom [8] and Szepesvári [29] in 2006. Its main characteristic

is to be the more accurate the more the search tree grows, but because of the

huge search space of the game of Go, it needs some techniques to reduce the

dimension of the tree.

AlphaGo has been trained through a complex pipeline consisting of several

stages of machine learning, figure 2.2 left side. Firstly, using a dataset of

positions, a fast rollout policy pπ and a supervised learning (SL) policy pσ are

trained to predict human expert moves. Secondly, a reinforcement learning

(RL) policy pρ is initialized using the SL policy and then improved through

policy gradient learning to maximize the number of winning games against

the previous version itself. Finally, the expected outcome, that is winning or

losing, is predicted through a value network vθ.

Figure 2.2: AlphaGo pipeline on the left and neural network architecture used in

AlphaGo on the right. Courtesy of [49].
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Figure 2.2 on the right side shows a schematic representation of the neural

network architecture used in AlphaGo, where the policy network takes as

input the representation of the board position s; it applies many convolutional

layers on it with parameters σ, for the SL policy network or ρ, for the RL

policy network, finally the output is a probability distribution pσ(a|s) or

pρ(a|s) over all the legal moves a. The other network, value network, uses

as well many convolutional layers with parameters θ, but the output is the

prediction of the expected output in position s′, represented by the scalar

vθ(s
′).

The architecture described so far uses instensively human knowledge to

build impressive playing skills for the game of Go and was presented by Silver

et al. in 2016 [49]. This solution succeeded in beating all the previous best

Go programmes, and on March 2016 it won four games of the five played

against the 18-time world champion Lee Sedol. Subsequently, based on the

progress of AlphaGo, Silver et al. in 2017 presented a new version of the

programme, which used no human knowledge, hence called AlphaGo Zero

[50], which learns to play exclusively from self-play reinforcement learning

and which used MCTS to select moves throughout during learning and not for

live play after learning as it was for AlphaGo. AlphaGo Zero demonstrated to

be a better solution than its ancestor; in fact it beats AlphaGo for 100 games

in a match of 100 games.

Finally, based on the straordinary results obtained by AlphaGo Zero

without human knowledge, Silver et al. in 2017 presented another version,

called AlphaZero, which has the same approach as AlphaGo Zero and by

using self-play reinforcement learning succeeded in mastering diverse board

games, such as Go, chess and shogi [48].

2.2.2 Personalized web service

We have discussed so far the many impressive results that have been

obtained through the application of deep learning and reinforcement learning.

Now, instead, we present a different approach, which has been used in a real
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world application. This solution is impressive not only for its outcome, but

also because, compared to the complex architecture used for Atari and Go, it

is relatively simple.

A Yahoo research group, composed by Li, Chu, Langford and Schapire in

2010, proposed a personalized web service for the recommended news articles

to the users that every day visit the well known Yahoo! Front Page Today

webpage and they formalized the subject as a Contextual Bandit problem.

The principal approach of the solution proposed was a learning algorithm

which sequentially delivers articles to users based on contextual information

about the users and the articles, while simultaneously adapts its strategy for

article-selection in order to maximize the user feedback, which is computed

through the click-through rate (CTR), which is the ratio of the total number

of clicks all users make on a webpage to the total number of visits to the

page.

Typical approaches for recommendation systems rely on the history of the

users, which provides information about what they did in the past and so it

gives the possibility to define a common behaviour among them. In addition,

the items to recommend are usually similar to those previously taken by the

user, as it is in an e-commerce for example. Therefore, in such a case it is

common to use a technique called Collaborative filtering, which recognizes

similarities among the users, based on their history, and provides a good

recommendation solution [46].

However, in an application such the Yahoo! Front Page Today webpage,

users are often new to the application, without any history; this is known as

cold-start. Moreover, the articles to serve are different every day. Therefore,

common recommendation solutions are not suitable and this is why Li et al.

proposed their solution which also included a contextual bandit algorithm

called LinUCB [34].

LinUCB algorithm is based on the previous work done by Langford et al.

(2007) [32] and can be formalized by the following steps:

1. the algorithm observes a set At of actions, the articles to recommend,



44 2. State of the art

and the current user ut. Additionally, a feature vector xt,a for a ∈ At is

given, which summarizes information of both the user ut and the action

a and it is referred to as the context ;

2. based on previous trials observed payoffs, the algorithm chooses an

action a ∈ At and receives a payoff rt,at , the reward, which depends on

the expectation on both user ut and action at;

3. the algorithm improves its arm-selection strategy with the new observa-

tion, composed of the context xt,a, the action taken at and the payoff

rt,at .

These steps are then repeated for each time step t, in order to maximize the

total expected payoffs.

In the paper of Li et al., the payoff is computed to be 1 when a presented

article is clicked, otherwise 0. This payoff represents the click-through rate

(CTR) and the objective of the algorithms is to choose the article with the

highest CTR, which indeed is equivalent to maximizing the expected number

of clicks from users.

2.2.3 System level application of reinforcement learn-

ing

Another field in which reinforcement learning has been recently proposed

is system level application, such as congestion control. This specific field

involves the necessity to dynamically adapt the transmission rates of different

traffic sources to utilize the network resources efficiently and to provide a

good user experience. Hence, congestion control has a huge impact on user

experience for video streaming, voice-over-IP as well as augmented reality,

iternet of things, edge computing and many others.

In a congestion control scenario, each node in the network is composed of

a traffic sender and a traffic receiver. The former sends packets to another

node receiver, while the latter sends special packets called acknowledgements
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(ACKs) to senders for notifing to have received a packet intended for its node.

Then the goal of protocol is to dynamically regulate the rate of data sent to

each node to maximize the total throughput and minimize queuing delay and

packet loss.

Typically, network strategies for congestion control rely on hand-crafted

heuristic that are reactive rather than predictive, but recently, favoured by

the impressive results of reinforcement learning, someone has started to apply

those techniques to the problem of congestion control.

One work on congestion control with RL was published by Jay et al. in 2019

[25], who proposed a congestion control with reinforcement learning which

takes advantage of deep network policies to capture patterns in data traffic

and network conditions. Then using the expectation of the policy it adapts

the network rates in order to avoid congestions. In their RL formulation,

actions are translated to actual changes in the sending rates, while states

are represented by a set of features that are measured in a time window

of length d and each state is a statistics vector which contains information

about the network in the last d time steps, such as the the ratio between

the number of packet receivers and those lost and many others. Finally, the

reward is a linear function which gives different weights to three different

measures, throughput, latency and packet loss, and depending on the value

of those weights the congestion control algorithm adapts to satisfy different

requirements specific to the application in which it is used.

Another congestion control protocol which uses reinforcement learning was

proposed by a group of research of Facebook, led by Sivakumar in 2019 [51].

In their work they proposed an improved version of the congestion control

proposed by Jay et al., in which they used an asynchronous reinforcement

learning training. The key point is that, in scenarios such as congestion

control, promptness is crucial, therefore the system can not be waiting for an

agent which is performing its observation and then take an action; instead

the system should continue to operate and when the agent has some valid

observations it can change the behaviour. Thus, in their paper Sivakumar et
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al. introduced a framework called MVFST-RL, which creates an environment

for reinforcement learning with delayed rewards for congestion control and

they evaluated this system against typical congestion protocol and the results

obtained demonstrated that RL is a promising direction for improving such

real-world systems.

2.3 Summary

In this chapter we have illustrated some of the most impressive applications

of reinforcement learning, showing how those solutions have been applied and

which are the main design principles they have used.

More precisely, we have described the evolution of the strategies used

by those solutions. We have emphasized which are the crucial aspects of

a successful reinforcement learning application, such as features selection

for representing the state, reward functions for mapping different cases of

use and delayed reward for asynchronous reinforcement learning frameworks.

Moreover, we have outlined the main training techniques used in these solu-

tions, such as self-playing for TD-Gammon and AlphaGO. Finally, we have

described the architecture that they have used, such as deep Artificial Neural

Networks (deep ANNs), Convolutional Neural Networs (CNNs) and Deep

Q-Networks (DQN).

In the following chapters, we are going to use and apply many of the

ideas examined in the previous chapters, but we will also try to fill the

gap between classic reinforcement learning and reinforcement learning with

delayed reward in distributed environments. Thus, we are going to present

an environment for this particular case of RL and simultaneously we will

propose some implementations of agents, which are capable of solving task

allocation problems with distributed and asynchronous workers, on top of

this environment. We will also display the outcome obtained by comparing

those solutions against some common baseline algorithms.
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Service Broker

In this chapter, we present a novel system Service Broker, which is capable

of solving a modified version of unbalanced assignment problem, where the

number of tasks exceed the number of resources, the resources are distributed

in the system, thus they execute those tasks asynchronously and all the

tasks have to been assigned for completing the allocation problem. This task

allocator takes advantages of Reinforcement Learning to find the best policy

for spreading those tasks across the distributed environment.

Thus, in this work we present a novel approach that tries to solve the

allocation problem using a reinforcement learning agent to discover a policy

capable of assigning tasks to the available resources minimizing a reward

function which considers time and cost for the execution.

The following sections are logically divided into two different main topics

related to the problem under analysis. In the former we will deeply illustrate

its mathematical formulation, its variants and its formulation in terms of

reinforcement learning problem. In the latter we will present the main aspects

of the solution that we have developed for such a problem, considering the

type of reinforcement learning algorithms used and the architecture created

for Service Broker.

Finally, we will leave the presentation of some implementation details and

of the results to the final chapter.

47
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3.1 Problem Description

In the first chapters, we have introduced the main characteristics and the

main results of allocation problems and reinforcement learning, moreover we

have given the first overview of the problem under analysis.

We may think of this problem as if we were a cloud data center with a set

of proprietary machines, each of which has different capabilities in terms of

speed, cost, memory and so on. We may also have the possibility of using

external machines with an increased cost, for example if the current load

exceeds our possible load, instead of waiting for some resources to be freed,

we can delegate the execution of the exceeding load to an external data

center, of course with a higher cost. Then we may have several different types

of tasks, or jobs, which have to be executed on those machines; each task

may have a different time of execution depending on the machine where it is

executed and it may have different requirements in terms of time of execution.

Finally, we may have a logically centralized entity, our Service Broker, that

receives these tasks and has to allocate them to our resources, called workers.

Those workers may be distributed and localized in different areas of the data

center and, therefore, they are considered fully asynchronous, decoupled and

decentralized. The aim of the Service Broker is to minimize a function which

takes as parameters the time and the cost of execution of a task in a worker.

This problem represents an unbalanced assignment problem, in which

the number of tasks is much greater than the number of resources, and,

in particular, this number is unknown at the beginning of the allocation.

Moreover, as opposed to the classic unbalanced problem, here to complete

the problem all the tasks have to be executed in the system. As we have

seen in the first chapter, this kind of problem can also be seen as a simplified

version of the job-shop problem (JSP), in which each job is executed in parallel

on the available resources, or machines, instead of requiring to be executed

sequentially on all the machines, or a subset of them, as it is in the complete

job shop scheduling problem.

Service Broker is a solution to this problem, which uses reinforcement



3.1 Problem Description 49

learning (RL) to find the best allocation strategy, or policy, for the jobs in

the workers. Therefore, it can be seen as a RL agent which, every time a

task has to be executed, uses its knowledge to assign this task to one of the

available workers, or to an external one. Thus, its actions are represented by

the type of workers present in its resource pool. Later, as effect of the action

that it selects, the agent would observe a numerical signal, the reward, which

has been computed using a function which considers both the total time of

execution and the cost for unit of execution. Based on this reward Service

Broker will adapt its action-selection criterion to maximize this reward, hence

to minimize the time of execution.

The problem that we have described so far does not suit only the specific

case of the data center that we mentioned when explaining Service Broker.

In fact, like all the assignment problems it can be seen under different points

of view and usability. Therefore, all the examples that we illustrated in the

first chapter match the problem definition that we have specified so far, such

as the case of the carrier delivery service or the manufacturing factory.

3.1.1 Problem Formulation

The problem described so far, in its base case, can be formulated as

follows: we have an initial set of resources P, called worker pool, of size d.

Each worker, w, of the pool can simultaneously execute only one task at a

time and belongs to a worker class cw ∈ Cw = {cw1 , ..., cwn}. Moreover, each

worker class cw is described by a scalar value κexec ∈ R, which represents the

cost per execution time step.

Furthermore, at each time step t the system receives b tasks, each of

which has to be assigned to a worker w. Each task u belongs to a task class

cu ∈ Cu = {cu1 , ..., cum}. Each task class cu and worker class cw characterise

a Gaussian distribution Pcu,cw = N (µ, σ2), which gives the execution time

of tasks of class cu on workers of class cw. In addition, each task class cu is

also characterised by a scalar value κwait ∈ R, which represents the cost for

waiting time step.
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The cost function φ : R→ R, associated to each execution of a task uj on

a worker wi, is given by:

φ(τwait, τexec) = κwaitτwait + κexecτexec (3.1)

where τwait ∈ R is the total time which task ut has waited before being

assigned, while τexec ∼ Pcu,cw is the total time of execution of the task.

The goal is to find the best assignment, f : cu → cw, such that the cost

function φ is minimized for each task uj:

f∗ = argmin
f

∑
τwait

∑
τexec

φi(τwait, τexec) (3.2)

The formulation just provided describes the base case of the allocation

problem under analysis and it is referred to as fixed pool case, because the

initial pool P remains fixed for the whole execution and it can not use

an external provider for getting additional resources to complete the tasks

quickly at the expense of the cost. Instead, in this case the system sacrifices

promptness in order to reduce the cost.

Extended case

The problem formulated so far can be extended to also consider the

possibility of using external resources when all the internal ones are busy, in

a way to sacrifice the cost, because of course it would be more expensive, but

gaining in promptness.

Therefore, the formulation of the problem, in this case referred to as

expandable pool, needs to be adapted to also match this possibility. In

particular, the cost per execution time step κexec of each worker class cw ∈ Cw
is now described by two scalar values ν, µ ∈ R. The former represents the cost

per execution time step using a worker in P , while the latter is the cost per

execution time step using an external worker (not in P). We also constrain

µ > ν for all cwj . Moreover, in this case if a worker is external it is temporally

instantiated, but then when it finishes its execution it is released. Indeed,
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considering the data center analogy, after having finished using an external

provider, we stop paying for its additional cost in accordance with the pay-per

use pricing model typical of cloud providers.

Finally, in this case cost function φ (rule 3.1) becomes

φ(τwait, τexec) = κwaitτwait + κexecτexec where κexec =

ν if wk ∈ P
µ otherwise

(3.3)

Here in the second term of the sum, the cost per execution time step κexec

has value µ or ν whether the worker class cwi relative to the worker wi in

which the task has been assigned is internal or external to P .

In the subsequent sections, we will give a detailed analysis on how we map

this problem in the reinforcement learning setting and on how we approach

it, distinguishing between the two variants described so far.

3.2 MDP formulation

The aim of this work is to solve the problem described so far using

reinforcement learning techniques. Therefore, the first step is to give a

formulation which matches the Markov Decision Process (MDP) formulation.

Recalling the first chapter, a Markovian system is described by a sequence

of discrete time steps t and at each of them the agent observes a representation

of the environment, the state st ∈ S, and, on the basis of that, it selects

an action at ∈ A(s). One step later, as a consequence of its actions, the

agent receives a numerical reward, rt+1 ∈ R ⊂ R, and finds itself in a new

state, st+1. Finally, in a finite MDP the random variables st and rt have a

discrete probability distribution which depends only on the preceeding state

and action. Therefore, the dynamics of the MDP (rule 1.6) gives an indication

of the possible next state and reward, which depends only on the previous

state and action.

Typically, MDPs’ dynamics is described by a stochastic or deterministic
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probability distribution, in the former case accordingly to the previous state

and action we can only estimate, based on its probability, which would be

the following state, while in the latter case, given the couple previous state

and action, we can predict the next state.

In the case under analysis the dynamics is stochastic, because, at each

time step t, some of the features which describe the next state depend on the

current task ut, which in turn depends on the task generation distribution.

Furthermore, for the study of the problem we have defined as b, the number

of tasks received at each time step t equals to 1, while for the expandable pool

case we have constrained the external cost µ to be the double of the internal

cost ν. Thus µ = 2ν for each worker class w ∈ Cw.

In the following section we are going to describe in details how we map

the components of the problem described so far with the MDP formulation.

Action space

In the MDP formulation, one of the main components is represented by

the action space A. It contains the set of action a, which at each time step t

the agent has to select to perform some changes in the environment. In an

assignment problem, a change in the environment is given by the assignment of

a job to a resource. Thus we can consider as action space A all the resources

of the system and then the agent, when at time t it would select an action

at ∈ A for assigning a task ut, would assign the task to the resource selected.

In our Service Broker application, the action space is given by the following

set:

A = {Cw ∪ wait} (3.4)

where Cw is the worker classes set and wait is the wait action, relatively to

the base case with fixed pool, while in the case with expandable pool the action

space A is

A = {Cw ∪ wait ∪ Cwexternal} (3.5)
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where Cwexternal = {cw1 , ..., cwn} is the set of the external worker classes, in

which each worker class cwi is external to the pool P .

The wait action is included in the action space, because we want to allow

the Service Broker ’s agent to have complete control of the system, and, thus,

to be able to decide when it is better to wait instead of immediately assigning

a task. For example, at time step t the agent may want to assign a task to a

particular worker class cwt , because it is considered the best assignment. But,

in the pool there may not be any available workers for that class, because

they are all busy. Therefore, instead of choosing another worker class cw
′

t

which may result in a worse performance, the agent should be able to decide

to wait for an available worker of class cwt . Action wait influences the cost

function φ(τwait, τexec) of a task ut (rule 3.1). Indeed, τwait is given by the

amount of time steps occurred between the instant t in which a task arrives

in the system and the instant t+ τwait in which the task is effectively assigned

to a worker and, thus, it starts its execution.

The external worker classes set, for the expandable case, belongs to the

action space A, because we want to allow the agent to be fast at the expense

of the cost. For example, at time step t there may be the case in which the

best assignment for a task ut would not be available, because all the workers

of that class are busy. Therefore, the agent should be able to choose if it is

better to wait, to assign to another class or to use the class that it has chosen,

going however externally to the pool P .

Typically, action space A, in scenarios like board games, such as chess or

Go, is composed of all the possible movements allowed in the game. Certainly,

based on the current state, so accordingly to the current situation of the

environment, the action space should update itself to include only those

movements that are allowed for that particular placement on the board.

The necessity of shrinking or expanding the action space depending on

the current state s is not exclusive of games, but usually the reinforcement

learning real world application requires this skill. Service Broker is no

exception, because as we have described so far, depending on the current state
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s some workers of P may be busy and, therefore, the action space should

dinamically change the set of available actions accordingly to the worker

currently available. Hence, the actual action space A, for the fixed pool case,

at time step t, for the current state s is given by:

A(st) = {Cw ∪ wait | ∀cwt 6= ∅} (3.6)

where cwt 6= ∅ represents a worker class cw for which exists at time t at least

one worker w not busy, in this case it may happen that all the workers are busy

and, therefore, the agent would have to choose the wait action. Considering,

instead, the expandable pool case, A(st) is given by:

A(st) = {Cw ∪ wait ∪ Cwexternal | ∀cwt 6= ∅} (3.7)

The initial dimension of the action space is |A| = n + 1, recalling that

n is the number of worker classes, while in the more complex case with the

possibility of using external workers the dimension is |A| = 2n+ 1.

Reward function

Another crucial component, which allows to describe the allocation prob-

lem through the Markov Decision Process, is the reward function R ∈ R,

which should return a numerical signal used by the agent to convey the

learning. In fact, at time step t a reinforcement learning agent would use the

value Rt of the reward function, received in response to action at−1 and state

st−1, as an indicator for having taken a good action, if the reward is high, or

a bad action, if the reward is low. Indeed, the main objective of the agent is

to maximize the expected return Gt, (rule 1.8), which is the expected total

reward it can obtain following the current policy π.

Assignment problems have as main objective to minimize the total cost or

to maximize the total return, which indeed represents a perfect candidate for

defining a reward for MDPs and in general of reinforcement learning. We can

consider as reward function the return function of an assignment problem
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and then we can try to obtain its maximum total value during the whole

execution.

Therefore, for the reward function to be used in Service Broker, recalling

the cost function associated to the execution, at time t, of a task ut ∈ cut in

the worker wt ∈ cwt , rule 3.1, we consider as reward:

Rt =
1

φ(τwait, τexec)

=
1

κwaitτwait + κexecτexec

(3.8)

where κwait is the cost associated to the task class cu relative to the waiting

time τwait of a task u, while kexec is the cost per execution time step associated

to the worker class cw in which u has been assigned, which in the fixed pool

case has value ν, while in the expandable pool case can have value ν or µ

respectively if the worker is internal or if the worker is external to the pool P .

The reward just described differs from the rule 3.1 for the fact that we are

computing the inverse of the cost φ; this is due to the fact that in the MDP

formulation the agent always tries to maximize the total reward. Therefore,

we have inverted the cost function, thus to have that the higher the cost

the smaller the reward, while with a lower cost the reward will result higher.

With this procedure the agent would try to terminate the tasks as soon as

possible, with the smallest cost possible, and to make the task wait as little

as possible.

In figures 3.1 and 3.2 we can observe the evolution of the reward function

used by Service Broker. In particular, in 3.1a and 3.1b the values of the

reward function is shown to vary with the values of cost, κwait and κexec, or

to vary with the values of time, τwait and τexec. As illustrated in the figures,

a higher reward is obtained only if both cost and times are low, otherwise

the reward drops to lower values.

In figure 3.2a, it is shown how the reward function varies with different

values of τwait and κwait, in this case it is evident how the cost per time step in

which a task waits to be assigned has a huge impact on the reward obtained.
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Therefore, the parameter κwait of each task class cu can be used to give a

priority to a particular task type, because as shown in the figure even if the

value of τwait is high but the cost κwait is low the final reward obtained is

relatively greater.

Finally, in figure 3.2b it is shown how the reward function varies with

different values of τexec and κexec, also in this case the lowest reward is obtained

(a) Reward function for different values of κwait and κexec.

(b) Reward function for different values of τwait and τexec.

Figure 3.1: Reward function with different values of cost or time of execution.
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only when both τexec and κexec are high, otherwise the reward increases and

reaches the maximum when the two parameters have their minimum values.

It is worth pointing out that the range values for τ and κ, used to

generate figures 3.1 and 3.2, have been chosen accordingly to the minimum

and maximum average value obtained during the evaluation execution of the

system.

(a) Reward function for different values of τwait and κwait.

(b) Reward function for different values of τexec and κexec.

Figure 3.2: Reward function with different values of waiting or execution relative

to time and cost.
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MDP with delayed feedback

Another aspect to take into account for Service Broker application is

the fact that workers are asynchronous and distributed in the data center.

Therefore, the typical behaviour of an MDP problem can not be respected,

because usually the MDP problem is described by a sequence, or trajectory,

that begins like this: 〈s0, a0, r1, s1, a1, r2, s2, a2, r3, ...〉, where, at each step t

accordingly to the current state st and action at, a reward rt+1 and a new

state st+1 are received.

However, in the case under analysis, this is not feasible due to the workers’

asynchrony, which causes to receive the reward associated with an assignment

only after τ time steps, because in the meanwhile the agent can not stop its

execution and it has to continue assigning tasks. Thus, the agent would not

observe the reward immediately at the next time step t + 1, but, instead,

later on when the task would finish its execution, at time t+ τ .

Therefore, an extended definition which holds this case, typically referred

to as delayed feedback or delayed reward, is necessary. Joulani et al. (2013)

proposed a general framework, supported by a mathematical proof, for MDP

with delayed feedback [26]. In their formulation of the MDP with delayed

feedback, Joulani et al. posed the use of a feedback function h : X×A×R → H,

where X is the side information set given by the environment, in our problem

the type of the task to assign. Subsequently, at time t the agent would take

an action at ∈ A, but it would not observe its outcome at time t+ 1, rather

the reward associated to the action would be scheduled to be revealed after

τt ≥ 1 time instants. Therefore, at each time step t, the agent would receive

a set Ht, which contains all the outcomes scheduled to be revealed at time

t and it would update its action selection strategy accordingly to all those

outcomes.

In the case of Service Broker, the set of the outcomes Ht is given by all

the tasks which terminate their execution at time t and, because the time of

execution of each task class cui depends on the worker class cwj in which it is

executed, it could be that more than one outcome is observed at the same
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time instant.

3.2.1 Single state MDP

A Markov Decision Process (MDP) can be simplified if we consider a single

state for the whole duration of the problem. Thus, the agents in this setting

would choose actions according to a general observation of the environment

which never changes, the trajectory in this case will be described as a sequence

of action at and observed reward rt. This type of MDP is referred to as single

state MDP.

MDPs with single state are an alternative way of describing Multi-armed

bandit and Contextual Bandit problems. Recalling the first chapter, we

introduced the Multi-armed bandit problem as a case in which the learning

agent has not to learn how to act in more than one situation.

This setting has a lower learning ability due to the fact that the envi-

ronment situation is not considered while an action is selected, but, on the

other hand, it is a simplified case which allows to easily apply reinforcement

learning to complex problems.

Therefore, in Service Broker multiple agents have been created and tested

on the environment, among those some apply the Multi-armed bandit or the

Contextual bandit formulation.

The former setting does not involve any variation to what we have described

so far, because in this formulation the learning agent considers only its history

on how it has assigned tasks, without taking into account their class or

any observation from the environment and without looking forward to the

expected total outcome. Therefore, this type of agents, at each type step t,

would take an action at ∈ At and would observe, when available at time t+ τ ,

the reward rt ∈ R. Thus, it would receive a task ut, it would assign it to a

worker cwt and when the task completes its execution it would observe its cost

φt.

The latter setting requires to consider, every time the agent wants to

select an action at, the context xt,a for each a ∈ At. The context is a features
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vector which summarizes the information of the task class cut and the action

at, the worker class cwt . Thus, Contextual bandit uses a description of the

current situation, the context, to create an association among actions and

context. This association will be used later to better map similar situations

and increases its learning ability.

Context features

The key point of a Contextual bandit agent is the set of features which

compose the context xt,a. To use such agent in Service Broker we need to

define the features which have been used to summarize the context of our

assignment problem.

In particular, at each time step t, for each available action a ∈ At, two

features compose the context:

• task class type: the class cu of the task ut which has to be assigned

to a worker

• action: the worker class cwi , where the i-th index refers to the action a

for which the particular context xt,a is built.

Therefore, in the fixed pool formulation of the problem, at each time step

t, at most n + 1 contexts are built, one for each action of the action space

At, which contains only the available actions for that time instant. For the

expandable pool case, at most 2n+ 1 contexts are generated.

In both formulations of the assignment problem, the size of the context is

given by the number of task classes and the number of actions of the system,

because, in both features, for each element which composes the respective

set, a dummy variable1 is used to represent the current task class cut and the

current worker class cwi . Therefore, each context has size |xt,a| = m + |At|,
while the time complexity for computing one single context is O(m + |A|),

1A dummy variable is one which takes as value only 0 or 1 to indicate the absence or

presence of some categorical effect.
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where |A| is the whole action space, because in the worst case all the actions

are available and because for setting the dummy variables it is necessary to

iterate over all the m task classes and the |A| actions. Thus, at each time step

t a context is computed for each action a ∈ At, therefore the time complexity

necessary for creating all the contexts used to choose an action at at time t is

O(|At|(m+ |A|)).

3.2.2 Multi state MDP

In the previous section we have described a simplified MDP formulation in

which there is a single observation of the environment for the whole duration

of the learning. Instead, in the full Markov Decision Process we have a

trajectory which evolves also through new states that describe the changes

resulting from the actions taken. Then these new states are fed to the learner

for mapping similar behaviours to the outcomes that it receives in response.

Finally, it tries to maximize the total expected return, which is given by

the total reward which the agent would get following the current policy, the

current action selection criterion, from the current time step onwards.

Thus, the state is crucial for any reinforcement learning application because

it guides the agent through the learning, hence its representation has to be

complete and exhaustive, in a way to include all the relevant aspects of the

environment which can be used for properly choosing the actions. On the

other hand, because it is continuously queried by the agent during the action

selection, it has to be as small as possible to not affect the efficiency.

In order to get the best performances in Service Broker, the state rep-

resentation has been deeply investigated. The result is a contained set of

features, represented through a vector, composed of:

• task class type: it is the class cu of the task ut which has to be

assigned to a worker, where each class cu ∈ Cu is represented by a

dummy variable, which is set to 1 only if the ut ∈ cui . This feature has

been added to the state because the agent needs to map good and bad

actions to similar situations, thus to tasks belonging to the same class.
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• task waiting time: it is the total time τwait since the agent chooses

action wait for task ut, at time instant t+ τwait. This waiting time is

used to compute the reward. The total waiting time τwait enormously in-

fluences the reward obtained by one execution (recall rule 3.8), therefore

it is crucial for the agent to have this information.

• pool availability: this feature represents the current image of the

internal resources of the system, the worker pool P, in particular it

encodes the number of workers available of each class cw ∈ Cw at time

step t. Using this feature the agent maps an action with the environment

internal pool status.

• pool load: this feature considers the workloads of all the internal

workers in a time window of x time steps, thus it represents the number

of available workers in the time window, normalized by the total. Using

this feature the agent can estimate when it would have some workers

available for a certain class cw.

• task frequency: this feature provides the frequency of the load of the

system, because in the same time window x, used by the feature pool

load, it considers the number of tasks arrived in the system, grouped by

their task class cu and normalized by the total number of tasks received

in the time window. Through the task frequency the learning agent can

forecast the next task it would receive with a certain probability which

depends on the distribution of tasks arrivals.

The state st ∈ S, as represented by the features here described, is computed

at each time step t by the environment and it is used by the agent for choosing

the action at. The size of this vectorial state is given by the number of task

classes m multiplied by 2 for the features task class type and task frequency,

by the size of the action space A multiplied by 2 for the pool availability

and the pool load features and plus one for the task waiting time feature.

Therefore, |st| = 2m + 1 + 2|A|, recalling that |A| is equal to n + 1 in the
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base version of the assingment problem, while it is equal to 2n + 1 in the

extended case. The time complexity for computing the state at time step t is

given by O(2n+ 2m) ∼ O(n+m), because for computing all the features it

is necessary to iterate twice over all the task classes or the workers classes.

It is worth mentioning that in practice the values of the pool load and task

frequency features are updated at each time step t instead of computing them

every time, therefore the complexity becomes exactly O(n+m).

It is worth pointing out that the solutions proposed, both single state and

multi state MDPs, do not imply any type of cost in terms of communication

or in terms of coordination, because all the costs necessary to perform an

assignment are local to the agents and they are related mainly to the cost

for computing the context features or the state features where used by the

learning technique.

3.3 Algorithms considered

With this section we start the description of the solution developed,

specifically we describe the type of reinforcement learning agents that we have

decided to use in Service Broker application, explaining the motivation for

their selection and analyzing their main aspects in terms of solution proposed,

algorithms used and learning abilities.

3.3.1 For the single state MDP

Regarding the MDP with a single state for the whole execution, the agents

developed are two. The former implements the simplest learner agent available

in reinforcement learning, thus the Multi-armed bandit agent, and for this

type of agent two different policy strategies have been used (a policy strategy

characterizes the way in which actions are selected). The latter implements

the other type of learner described in the previous section, the Contextual

bandit agent; for this type of agent a single algorithm has been developed and

tested on Service Broker environment.
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ε-greedy

The first type of policy implemented for the Multi-armed bandit agent is

the ε-greedy policy. This straightforward solution has already been presented

in the first chapter (algorithm 1), when the bandit problem has been described,

and represents a base solution typically implemented for analyzing the tradeoff

between exploration and exploitation, which is one of the most challenging

dilemmas of reinforcement learning.

In ε-greedy the selection of the action, at each time step t, is performed

acting as a random agent, which takes a random action among those available,

with probability ε, while with probability 1− ε the selection is done using

the agent past experience, which means that it takes the action from which it

has received the highest reward since the beginning. This type of behaviour

is typically referred to as greedy.

Therefore, simply changing the value of ε, it is possible to change the

behaviour of the agent. If the probability ε has value near to 0, the agent

would perform most of the times greedily and thus it would favour exploitation

to exploration. Otherwise, when the probability ε approaches values near to

1, the agent would perform most of the times randomly, favouring exploration.

Thus, choosing a proper value for ε is crucial to allow the agent to look around

for new best actions, but also to continue selecting accordingly to the best

already found.

A Multi-armed bandit which implements the ε-greedy policy is trivial,

because it only needs to store the value estimate Q associated to each action

a ∈ A and at each time step t if the probability is 1− ε the action at selected

is the one for which the value estimate Qt(a) is max, (rule 1.4). After τ time

steps the agent would observe the reward associated to the action at and it

would update the value estimate for that action accordingly to the rule 1.5.

UCB

The second policy implemented for the Multi-armed bandit agent is a more

sophisticated technique, where the criterion for exploring new best actions is
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not random, rather it is selected accordingly to their potentiality for actually

being optimal. This kind of policy is typically referred to as Upper Confidence

Bound (UCB) and it was firstly proposed by Auer, Cesa-Bianchi and Fisher

(2002).

Therefore, in UCB policy, at each time step t the action at is selected

accordingly to

at
.
= argmax

a

[
Qt(a) + c

√
ln t

Nt(a)

]
(3.9)

where the second added is the upper bound associated to the action a and

it is composed by the square root of the natural logarithm of t divided by

Nt(a), which is the number of time action a has been selected prior to time

t; then the square root is multiplied by a costant c > 0 which controls the

degree of exploration.

The denominator of the upper bound (rule 3.9) can be zero if action a

has never been selected, therefore in the practice to use this action selection

criterion all the actions a ∈ A must have been selected at least once.

The idea behind UCB is that the square root term measures the uncertainty

or variance in the estimate of a value, while c determines the confidence level.

The more we select a, the more the uncertainty is presumably reduced. On

the other hand, the more the agent selects actions different from a, the more

t would increase, but Nt(a) would remain fixed and thus the uncertainty

estimate of a would increase. This version of UCB was called UCB1 by Auer

et al in their work [2] in 2002.

The only difference between UCB and ε-greedy is on the action selection,

which has already been described, while the update of the value estimate

remains the same.

LinUCB

Considering the Contextual bandit agent, in Service Broker was imple-

mented the LinUCB algorithm presented by Li et al. in 2010, in their work on
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personalized news article recommendation for the Yahoo! Front Page Today

webpage.

The main idea and the main workflow of LinUCB for Contextual bandit

have already been described in the previous chapters. Here we want to

highlight some details on how the algorithm chooses actions and improves its

selection criterion.

This algorithm is called LinUCB because, as it happens for UCB, it tries

to compute an upper bound to control the exploration degree in a non random

way, contrary to how it would be for ε-greedy technique. As we have already

described so far, UCB methods choose the action a accordingly to the general

criterion at = argmaxa(µ̂t,a + ct,a), where µ̂t,a is the value estimate of action

a at time t and ct,a is the confidence interval (the upper bound).

Therefore, LinUCB is a mapping of the UCB concepts on the Contextual

bandit, indeed at each time step t, action a is selected accordingly to

at
.
= argmax

a∈At

[
θ̂ᵀaxt,a + α

√
xᵀt,aA

−1
a xt,a

]
(3.10)

where xt,a represents the context of the action a at time t with size d, α =

1 +

√
ln( 2

δ
)

2
is a constant which for any δ > 0 controls the degree of exploration

and θ̂ᵀa = A−1a ba is a matrix obtained applying ridge regression to the training

data A and b, with A being an identity matrix of dimension d and b being a

zero vector of size d.

Subsequently, in response to action at the agent receives a reward rt, in

Service Broker it is received after τ time steps, and the update of the training

variable A and b is performed as follows

Aat ← Aat + xt,atx
ᵀ
t,at and bat ← bat + rtxt,at (3.11)

This action selection criterion and reward update of the training variables

compose the LinUCB algorithm proposed by Li et al. in [34]; they have also

proved that the complexity is linear in the number of arms and at most cubic

in the number of features d, therefore O(d3).
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3.3.2 For the multi state MDP

Regarding the full MDP problem, where at each time instant a new state

of the environment is provided, in Service Broker application 2 agents have

been implemented, both of which use value-function approximation through

deep Neural Networks (NNs) for estimating the value of a state s.

The reason for not using a tabular method, such as Q-learning presented

in the first chapter, is mainly because for a tabular method to learn it is

necessary to have a finite set of possible states and because the same state

needs to be analyzed by the agent several times. In Service Broker application

this is not possible, because some of the features used for representing the

state of the environment, such the pool load and the task frequency, are strictly

related to the flow of task received and so the agent may see such state for a

few number of times which make the learning ineffective.

Therefore, thanks to the advantages demonstrated by Mnih et al at

Google Deep Mind in 2013 on using their particular version of Q-learning

with function approximation, called Deep Q-network (DQN) agent, we have

decided to apply this type of agent to our assignment problem.

DQN

The first DQN agent implemented uses the same structure proposed by

Mnih et al. in their papers [37, 36]; the only difference is on the type NN

used, because in their case the state was represented by the image of the

Atari game console, the features of which are typically approximated using

Convolutional Neural Networks (CNNs), while, in the case of Service Broker,

the state is represented as a vector of features, therefore it is approximated

through a fully connected neural network.

To allow the training of large neural networks without diverting, Mnih et

al. proposed two main changes to the basic Q-learning.

Firstly, they used the concept of experience replay, which was studied for

the first time by Lin et al. (1993) [35]. Through the experience replay the

agent stores experience at each time step in a replay memory that is accessed
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to perform the weight updates of the NN. Each entry of this experience

buffer is composed by the tuple (st, at, rt+1, st+1) and every update of the

action-value function weights is perfomed using a sample of size D, which is

randomly drawn from the buffer. The use of experience replay improves the

training, because if we use consecutive samples the learning is inefficient due

to the strong correlation between the samples, thus randomizing the samples

breaks these correlations and therefore reduces the variance of the updates.

Secondly, they have modified the basic Q-learning, adding the use of a

second neural network, called target network Q̂, aimed at further improving

the stability of the method. This second NN is used by the agent for generating

the targets used to compute the optimization step of the action-value function

network Q. Moreover, every C updates of Q the set of weights used by Q

is copied into the target network Q̂. This modification makes the algorithm

more stable compared to the standard Q-learning.

In the DQN algorithm proposed by Mnih et al. the agent uses also a ε-

greedy policy for balancing the trade-off between exploitation and exploration,

therefore the agent with probability ε would perform randomly, while with

probability 1− ε would use its action-value function Q to choose the action.

The full algorithm for training deep Q-networks is presented in the box below

(algorithm 3).

It is worth pointing out that in this version used by Service Broker action

selection and reward observation are not performed at the following time

step, rather after τ time steps. Consequently, action selection and reward

observation must be non blocking for the other allowing the normal execution

of the system.

Double DQN

The second DQN agent implemented is a variant of the previous one

which was proposed by Hasselt et al. in 2015 as an improvement of the DQN

algorithm proposed by Mnih et al. This variant is called Double-DQN because

it combines the DQN method with an already known version of Q-learning
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Algorithm 3: deep Q-learning in Service Broker environment

Initialize replay memory D to capacity N

Initialize action-value function Q with random weights θ

Initialize target action-value function Q̂ with weights θ̄ = θ

while true do

if probability is 1− ε then
at ← argmaxaQ(st, a; θ)

else
A← a random action

end if

Execute action at and then observe next state st+1

After τ time steps receive reward rt+τ associated to at and st

Store transition (st, at, rt+τ , st+1) in D

Sample random minibatch of transitions (sj, aj, rj+τ , sj+1) from D

yj ← rj+τ + γmaxa′ Q̂(sj+1, a
′; θ̄)

Perform a gradient descent step on (yj −Q(sj, aj; θ))
2 with

respect to the network parameters θ Every C steps reset Q̂ = Q

end while

called Double Q-learning, which in the tabular case was proposed by Hasselt

in 2010 [22] and which is typically used in a very noisy environment because

it is able to overcome the noise.

Moreover, the reason for such a noise in Q-learning is due to the fact that

the optimization step includes a maximization over estimated action values,

which tends to prefer overestimated values rather than underestimated ones.

The overestimation, if not uniformly distributed on the states, can lead to a

negative effect on the learning. Therefore, based on the tabular version of

Double Q-learning, Hasselt et al. proposed Double-DQN and demonstrated

that it was able to overcome noisy environments and surprisingly, even in

cases without any noise, this method perfomed better than the normal DQN.

Thus, considering that the environment of Service Broker has to be

considered noisy due to the variability of the task types, their distribution
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and their time of execution, trying a solution like Double-DQN aiming to

overcome this noise seems a natural consequence.

Double-DQN differs from DQN only in the computation of the target yj

which is used to calculate the error on the action-value function network Q

and, thus, it is used to perform an optimization step over Q weights. The

target of the update in Double-DQN is given by

yDoubleDQNt = rt+τ + γQ(st+1, argmax
a

Q(st+1, a; θt); θ̄t) (3.12)

Therefore, the target yDoubleDQN is computed using the value of the target

network Q̂, which is fed using the action for which the best estimated action-

value is obtained from the action-value function network Q.

All the other aspects of the DQN method are kept the same by the Double-

DQN, indeed it uses the experience replay for keeping the variance of the

updates as small as possible and it updates the weights of the target network

every C time steps copying them from the action-value function network.

3.4 The Environment

In this section we focus on a different aspect of Service Broker application,

the environment. So far we have described the mathematical formulation of

the assignment problem under analysis and the aspects related to it which

maps it into the reinforcement learning setting. However, an RL application,

to be able to learn, needs an environment with which to interact during the

learning process.

An environment such as the one required for a scenario like a data center is

a complex system, composed of many components: some logically centralized

and others fully distributed. Moreover, this kind of environment needs a

mechanism by which it communicates and collaborates with the reinforcement

learning agent.

Therefore, with the objective of creating a system for simulating the data

center environment, we have created from scratch a new system capable of
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generating tasks, interacting with the agent and assigning those tasks to

workers, all maintaining the system completely decoupled and as fast as

possible.

3.4.1 The architecture

The environment created is a complex system composed of several entities

which interact and exhange information to provide the agents with all the

knowledge they need about the system.

The architecture of the environment, described in figure 3.3, is composed

of four main entities: a Task Generator, which at each time step t generates b

tasks, a Task Broker, which at each time step t takes one of the tasks ut from

the queue and interacting with the agent it assigns the task to a worker wi in

the internal pool P , a Task abstraction, which simulates a real task, and a set

of n Workers, where each worker wi ∈ P waits for receiving tasks to execute.

In the following sections we will describe more in details this entities from

a functional point of view, while in the fourth chapter we will also describe

some implementation details.

Figure 3.3: Environment architecture. Task Generator feeds the task queue of

the TaskBroker, which uses the agent for assigning tasks to its n workers.
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3.4.2 Task

The Task entity represents a single unit of execution for the Service Broker

application. Thus, in the environment created, a task is the abstraction of a

real task to execute, where each task belongs to a class cu ∈ Cu and each class

cu is characterised by the cost for waiting time step κwait and by n gaussian

distributions N (µ, σ2), one for each worker class cw ∈ Cw.

Therefore, when at time instant t a task is started - inside one worker

w ∈ cw - it would execute for τexec time steps, where τexec is drawn from the

gaussian distribution Pcu,cw which characterises this assignment. Through

this behaviour the execution of a real task is simulated, allowing the system

to better learn thecharacteristics of each class task for the best assignment

on the proper worker.

3.4.3 Task Generator

Taking into account the architecture described in figure 3.3, the first entity

on the left is the Task Generator. This component has the aim of generating

tasks for the system, in Service Broker application we have considered the

Task Generator as a single entity, but in a real scenario, such as a data center,

this logically centralized component would certainly be a set of sources which

provides the tasks that the environment would have to assign.

More precisely, the Task Generator, at each time step t, would produce b

tasks, recalling that for our simulation b = 1, and then those b tasks are sent

to the task queue of the Task Broker for being subsequently assigned to a

worker. The class cu of the tasks generated by the Task Generator is given

by a certain probability ρ which can be either uniformly or non-uniformly

distributed.

3.4.4 Task Broker

The main entity in the environment used in the simulation is the Task

Broker. This logically centralized entity is in charge of two crucial jobs:
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firstly it interacts directly with the agent and secondly, based on the agent’s

decisions, it assigns tasks to the workers.

This entity is internally composed of other two sub entities, task queue

and agent, which allow the Task Broker to operate. The former is a standard

FIFO queue, which stores tasks from the Task Generator and from which

tasks are taken for then being assigned. The latter is the reinforcement

learning agent, which is logically inside the Task Broker, because the agent

needs to interact with the TaskBroker every time step and with the purpose

of reducing the latency necessary for their interaction.

Therefore, the internal flow of the Task Broker at each time instant t is

given by the following steps:

1. it dequeues (it takes from the queue) the next task ut from the task

queue

2. it updates its representation of the environment, thus it computes the

current values for all the features of the state st that we have described

so far, and it adapts the action space A(st) to contain only the available

actions, to contain the worker classes for which at least one worker

wt ∈ cw is not busy and the action wait

3. if at least one task, started at time t − τexec, finishes its execution,

the environment, in particular the Task Broker, will also compute the

reward rt related to the assignment already completed, through the rule

3.8

4. it would feed into the agent the current state st and if available all the

rewards Rt related to the tasks which terminate their execution in the

current time step

5. finally, based on the action chosen by the agent, Task Broker would

assign one of the available worker wt ∈ P the task ut, where wt ∈ cw
and cw = at. If we consider the expandable pool version of the problem,
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the Task Broker would instantiate a new worker wt of class cwexternal if

the agent chooses an action to assign to an external worker.

3.4.5 Worker

The last main entity of the environment is the Worker, which is an

abstraction of a real decoupled and asynchronous server worker in a data

center, thus it represents one of the n resources, be it internal or external, of

the worker pool P .

The aim of a Worker is to check at each time step t its internal queue,

implemented as a FIFO queue as the one of the Task Broker, when a task

ut has been assigned by the agent through the broker to its queue, it would

start the execution of that task and it would set ts internal status to busy

until ut terminates, at time step t+ τexec.

When a Worker sets its internal status to busy, the environment would

not be able to assign any tasks to it. Additionally, the internal queue of any

worker is set to be of size one, hence any worker can execute only one task at

a time.

Finally, when task ut finishes its execution, at time instant t+ τexec, the

Worker communicates to the Task Broker the end of the execution of the

task, sending the total time of execution τ and its cost per time of execution

κexec, which in the expandable pool case may have value ν or µ if the worker

is internal or external to the pool P respectively.

3.4.6 Clue component

The environment just described makes also use of another entity which

is used by all the others to keep a logical time between all the components

necessary for synchronizing them and for following the classic trajectory of a

reinforcement learning application. Therefore, a Global Timestep has been

introduced.

This global clock is increased by the Task Broker after a full cycle of
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its internal flow, which starts from taking a task from its task queue and

finishes assigning the task to a worker. The reason for introducing the Global

Timestep is because the system needs a sort of agreement between all the

components for respecting the flow.

Thus, each entity in the environment can communicate with the Global

Timestep for asking the current time step t and accordingly to its value they

act as described so far.

3.5 Summary

In this chapter we have deeply described all the relevant aspects of Service

Broker application. Thus, in the first part of the chapter we have started

describing the problem, we have then formulated it, both as assignment

problem and more in detail as reinforcement learning problem. In this latter

case, we have illustrated precisely how we map any component of the system

on the Markov Decision Process setting, showing the action space, the reward

function and the state used for Service Broker.

In the second part of the chapter, we have concentrated on the description

of the type of agents used, showing some of their strengths and eventually

some of their weaknesses. We have also introduced the main entities and the

architecture used by the environment, which has been created from scratch

with the purpose of allowing a simulation of the allocation problem studied.

In the fourth and final chapter, we are going to present some of the

implementation details which are worth mentioning, relatively on how we

have created the system, on how we have ensured the correct behaviour of

the system and on how we have put together all its components.

Finally, in this last chapter we will show the results obtained applying

reinforcement learning on the assignment problem addressed so far, describing

also the method used to obtain those results.
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Chapter 4

Implementation and results

In this last chapter, we present the implementation of the system described

so far, Service Broker. We will illusstrate, in the first part of the chapter,

some implementation details regardless the creation of the environment that

we have developed from scratch for simulating the task allocation problem

addressed. Subsequently, we will present some implementation details of the

agents used and also how they interact with environment provided.

In the second part of the chapter, we will show the results obtained,

describing firstly the method and the setting used for training the agents on

top of the environment and secondly, showing the actual results derivated

by the training performed, comparing also those results with some baselines

algorithms to prove the effective value of the solution proposed.

The description of the training and of the evaluation we will be performed

on both the application cases, the fixed pool and the expandable pool ones.

4.1 Implementation

In this first section of the last chapter we are going to describe the

Implementation details that we consider relevant for the creation of an

application such as Service Broker.

The application has been written using python programming language,

77
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because of its wide support from the community for statistics, machine

learning and neaural networks, with packages such as numpy, pandas, pytorch

and many others.

4.1.1 The environment

The environment of the application written represents one of the core

point developed for realizing and testing Service Broker, because for being

able to concentrate only on the reinforcement learning perspective we needed

an environment from scratch, which allowed to analyze the application of

reinforcement learning to such a task allocation problem, without the necessity

of considering any other aspect of the system.

Moreover, any RL application needs to be trained - needs to perform the

learning procedure - a huge number of time for converging to the optimal

solution. Thus, using a real data center scenario could lead to problems of

speed during the training process, because in a real distributed environment

the communication between the entities, the servers, has to go through the

network. Hence, due to the huge difference in terms of performance between

network communication and inter-process communication (IPC) through

shared memory in a local machine, we have decided to create our environment

in a way that it simulates all the behaviour of a data center, being non

blocking and asynchronous, but that it could be executed on a single machine

and take all the advantages in terms of speed and promptness of IPC through

shared memory.

On the other hand, IPC through shared memory arises issues in terms of

concurrency, because in this communication model, we have several entities,

the processes, which have to read or write on the same piece of memory, thus

some concurrency primitives are necessary to avoid more than one process at

a time to interact with the shared resource.

Therefore, it is clear that the natural way of implementing a simulator

for distributed systems is through processes. In fact, the main entities of the

environment described in the previous chapter are implemented as processes
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which are isolated in terms of memory, thus they simulate to be distributed

in the data center, are fully asynchronous due to their isolation and are able

to communicate with other processes using shared memory, which is faster

then IPC through the network.

The three main components of the environment’s architecture are im-

plemented as processes. Indeed, the Task Generator has been implemented

as a process because it has to simulate an external flow which, when it has

some tasks, sends them to the environment without the need to block other

components or without the necessity of waiting for other components. Task

Broker entity is as well implemented as a process, because to operate it

needs its own internal state to be isolated and, moreover, because logically it

represents an individual entity of the system which is not tied to any others,

which has its own internal flow of execution that allows it to communicate

and interact with the reinforcement learning agents. Finally, the last entity

of the system to be implemented as a process is the Worker, which has to

simulate a distributed node of a data center, therefore its natural behaviour

is to be completely independent and to concentrate only on the execution of

the eventual tasks received.

Finally, the environment has to execute the external flow - which is

receiving, assigning and executing tasks in an asynchronous way - but, on the

other hand, it needs to have an internal flow which is somehow synchronized

among the entities, to respect the trajectory and the requirements of a

reinforcement learning application, which needs a global time t and accordingly

to this time it needs to receive the current state, to take the current action

and, when available, to observe the reward. Hence, a component such as the

Global Timestep is required and it is used in combination with other process

synchronization techniques to coordinate the internal flow. Another reason

for having this internal synchronized flow is that we want the system and the

simulation to be reproducible, thus we can not rely on the timings of context

switches of the processes, which can lead to unpredictable results.
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Inter-process communication

In the environment created for Service Broker application, entities need to

communicate for sharing tasks and information about tasks execution. Hence,

we need some primitives for inter-process communication (IPC) and, as we

have already discussed, in our case the best solution is to use shared memory.

Therefore, we have implemented two objects which take advantages of python

primitives for shared memory and on top of that we have developed a Shared

Queue and a Shared Table, which are used to communicate information with

other processes.

The former, Shared Queue, implements the classic behaviour of a FIFO

queue, with the difference that this queue is stored in slots of the memory

shared by the processes of the environment. Therefore, this queue needs to

use some lock mechanisms to avoid more than one process, at a time, to write

or read from it, thus to avoid that the so called critical section is executed by

more than one process at a time. The Shared Queue implemented has been

used for sharing tasks between Task Generator and Task Broker, sharing

tasks between Task Broker and Workers and by the Workers to let the Task

Broker know when a task completes its execution.

The latter, Shared Table, implements a shared memory version of the

python implementation of a hashtable, which is called dictionary. This table,

as the Shared Queue, uses locks for controlling the access to the critical

section. Moreover, the reason for implementing such a table is to allow the

environment to share information of any type among the processes. In fact,

an instance of this table is created by the Task Broker and then is used by the

Task Generator to create a record for each task generated, which will then be

populated by the Task Broker and the Workers putting information about

the time of execution, the cost of execution, the reward and many others.

Synchronization techniques

As we have discussed so far, some synchronization techniques are re-

quired to make the Service Broker ’s environment work properly with the
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reinforcement learning. In python it is possible to use classic system processes

primitives, such as locks, barriers and semaphores, but there are also some

high level constructs built on top of those primitives which are more expressive

and powerful. Thus, we have decided to use:

• Event Objects: it is a straightforward mechanism for communication

between processes, where one signals an event and the others wait for it.

Thus, it allows to make a process wait for the occurrence of a certain

event and then to take an action only after the event’s occurrence.

• Condition Objects: it is a mechanism shared by several processes

which allows a process to acquire a critical section through the use of

locks, causing the other processes to wait releasing the acquired resource.

The difference between this object and a classic lock is that in Condition

Objects it is possible to notify all the processes of the releasing of the

critical section.

These two synchronization objects have been widely used in the environ-

ment. The former is used by the Workers to notify when they are busy or

not and it is also used by the Task Broker to communicate to both Task

Generator and Workers when they have to terminate their execution. The

latter is used by the Task Broker to notify the other entities of the end of one

time step t, which corresponds also to the increment of the Global Timestep.

In addition to Event and Condition objects for synchronizing the environ-

ment we needed also to create an additional synchronization object, which

allows to register several processes and to keep an additional process waiting

until all the other processes registered notify him. This component is not by

default implemented in python and it is typically called Count Down Latch.

We have implemented it using an internal counter which is set equal to the

number of processes registered; then, using a lock, each process registered can

decrease the counter by one. In the meanwhile, the additional process, which

is waiting, would continue to wait until the counter reaches zero and only

when it does the lock is released and the process can continue its execution.
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Count Down Latch has been used to keep the Task Broker waiting, while

it finishes the execution of a time step t, and to allow the Task Generator and

all the Workers to perform their cycle of execution for the following time step

t+ 1, notifing and decreasing the counter by one, only when they complete

their turn.

Task

Tasks used in Service Broker ’s environment are a simulation of a real task

which requires τexec time step to be executed. Thus, tasks are implemented as

normal python objects, even if in a real data center a task would be a process

which executes isolated inside one of the Workers, but for the purpose of

the simulation this behaviour is obtained thanks to the fact that tasks are

executed inside a Worker, which is implemented as a process, and thanks to

the fact that each Worker can execute only one task at a time.

Therefore, in the task implementation what is crucial is the time of

execution τexec, which is drawn from a normal distribution Pcu,cw = N (µ, σ2),

which depends on the class of the task cu and the class of the worker cw.

To obtain this distribution each task class configuration has been generated

defining a mean µ and a standard deviation σ2. In particular, σ2 has been fixed

to have value equal to 2, while µ is randomly drawn from a uniform distribution

in a range between 10 and 40. The actual time of execution obtained by this

configuration is shown in figure 4.1 where is shown, accordingly to different

Figure 4.1: Probability density function of the Gaussian distribution Pcu,cw =

N (µ, 2) with µ ∈ [10, 40].
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values of µ, the time of execution τexec in which a task u ∈ cu would have

to complete its execution on a worker w ∈ cw. In addition to the time of

execution τexec, the Task class has also in internal parameter which gives the

cost per time step which the task wait before being assigned, κwait, this value

is important because it can be used to give higher priority to a task class cu,

giving an higher κwait.

Internal flow

Now that we have described all the components used to communicate, to

synchronize and to the get the actual time of execution of a task u, we can

finally illustrate the internal flow of the environment.

The iternal execution of the environment begins with the initialization

of the three main entities and their communication and synchronization

components. Subsequently, the Global Timestep is initialized and set to time

step t = 0.

Figure 4.2: Internal execution flow of the Task Generator.
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Following the initialization phase, starts the real execution, in which Task

Generator and all the Workers perform their first execution cycle.

The former, described in figure 4.2, during each time step t would firstly

check if Task Broker has set its internal stop Event and in such a case it would

stop its execution. Otherwise, the Task Generator would generate a new task

ut which belongs to a task class cu accordingly to the generation probability ρ,

which during the simulation performed was drawn from a uniform distribution.

Finally, Task Generator would put task ut inside the Task Broker ’s task queue

Figure 4.3: Internal execution flow of a Worker.
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and it would start waiting for time step t+ 1.

The latter, described in figure 4.3, at each time step t checks if it has to

stop its execution, which is the case only when the Task Broker has set its

internal stop Event, the Worker is not busy, which means that no execution

is running and when the Worker ’s queue is empty. Otherwise, the Worker

would perform three different checks - with a predefined level of priority - and

accordingly to their results it would behave differently. The checks performed

are:

1. is task u executing? in such a case the Worker would not perform any

other operation.

2. has task ut−τ completed its execution? if a task started at time step

t− τ has completed its execution, the Worker will update the Shared

Table, shared among itself and the Task Broker, inserting the total time

of execution τexec and its cost for time step execution κexec. Then, it

will clear the busy Event and it will complete its execution cycle.

3. is Worker queue empty? in case the queue is empty the Worker would

not perform any other operation. Otherwise, it would get the first task

ut from the queue, it would start ut execution and it would set its own

busy Event.

The Worker before completing the execution cycle will always decrease

the Count Down Latch and it will start waiting for next time step t+ 1.

Subsequently to Task Generator and Workers execution cycle, at time

step t also Task Broker performs its own execution cycle, which is described

in figure 4.4.

At each time step t, the Task Broker checks if it has to stop the whole

execution of the environment. This control is carried out on multiple factors

which have to be satisfied to stop the environment. The controls are: the

check on the current time step if it has reached the value requested for the

simulation, the control on the Task queue if it is empty, otherwise we have
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to firstly execute all the tasks, and, finally, the control on the workers busy

Event, because to stop the environment all the workers need to finish their

executions. Moreover, there is an additional Event which can be set externally

to force the environment to stop, but also in this case only if all the Workers

are not busy.

If the stop condition is not met the Task Broker would continue to perform

Figure 4.4: Internal execution flow of the Task Broker.
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its execution cycle, which begins waiting for the counter of the Count Down

Latch to reach zero. Subsequently, it would check the Shared Queue used by

the Workers to communicate the end of the execution of tasks. Thus, if some

tasks have completed their execution at time t, Task Broker would compute

the reward for each of them and it would send the agents these rewards to

allow the agent to update its action-selection criterion.

After the control on the workers’ Shared Queue, Task Broker checks the

Task Queue, if it is not empty it would get task ut from it. It would firstly

adapt the action At to contain only actions for which at least one worker

is available in the pool P, secondly it would compute the current state st,

accordingly to all the state’s features updated to the current time step t.

Finally, it would ask the agent the action at relatively to task ut, accordingly

to A(st). The agent would use its knowledge to choose its action and the

Task Broker would assign ut to a worker of class cw equal to action selected

at.

Finally, after having controlled both Task Queue and the workers’ Shared

Queue, Task Broker would increase the current time step to t+ 1, it would

reset the Count Down Latch counter and it would notify all the workers and

the Task Generator of the beginning of the new time step t+ 1 and therefore

the beginning of a new internal flow cycle of execution.

It is worth pointing out that the internal flow just described is relative

to the fixed pool case of the problem, while in the expandable pool case there

are few differences in the Task Broker flow. In particular, when the agent

chooses an action at, if the action belongs to Cwexternal , the Task Broker would

initialize a new external worker w ∈ cw with class equal to the class chosen by

the agent. Moreover, in the expandable pool case when a worker completes the

execution of a task, the Task Broker would check if it is an external worker

and, if it is, the broker would set its stop Event causing the removal of this

external worker.
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4.1.2 Agents

In Service Broker we have implemented several different types of reinforce-

ment learning agents that we have illustrated and described in the previous

chapter. For their implementation we have applied classic concepts of Object

Oriented Programming (OOP) paradigm, because all the agents share the

same main structure which allows to cooperate with the environment in a

complete transparent way, without the need to change any part of the internal

flow just described.

Thus, we have created an Abstract Agent class, which has some utility

methods already implemented, such as methods for saving, loading and

initializing the model - which represents the knowledge of the agent - or

methods for adapting the action space accordingly to the available workers in

the internal pool P . On the other hand, this Abstract Agent has the signature

of other methods but not their implementation, which is left to the real agent

that will extend this base version.

To be more precise, among the methods not implemented in the Abstract

Agent there are:

• choose action: it is used by the environment to ask an action at time

step t. This method takes as arguments three parameters that are task

ut, which has to be assigned, the current state st and the current time

step t. As a result, it returns the action at, which has to be executed

by the environment.

• observe delayed reward : it is used by the environment to provide the

reward rt−τ to the agent, relatively to a task ut−τ , which completed its

execution at time step t. This method takes as arguments the action

at−τ , which is the action used to assign the task already completed,

the reward rt−τ and the state st−τ relative to the observation of the

environment at the moment of the action selection at−τ .

The Abstract Agent class is then extended and an Agent class is created for

each of the agents used in Service Broker application. Moreover, considering
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that for Multi-armed Bandit and for DQN we have used two different variants

of those agents we have some additional behaviour for these two types of

agents.

Multi-armed bandit

The ε-greedy and UCB Multi-armed bandit agents share most of their

behaviour, because both do not consider the current situation, the current

state st, when they choose an action and because both update their action-

values estimates using the same update technique. Thus, the only difference

in these kinds of agents is in the action selection, in choose action method.

Therefore, we have decided to implement another object, called Policy,

which is used by Multi-armed bandit agents to define their action selection

criterion. This policy object will be used in the method for choosing the

action and we have implemented two different policies. The former chooses

an action accordingly to ε-greedy method. The latter chooses an action based

on UCB criterion.

DQN

The Deep Q-Network (DQN) agent and its improvement variant, Double-

DQN, as described in the third chapter share all the behaviour, with the only

exception of the computation of the target yt (recalling algorithm 3 and rule

3.12).

Therefore, the implementation of the DQN agents has been done, firstly

creating a DQN Agent class which extends the Abstract Agent. In this agent

class we implement all the methods, with the behaviour of the classic DQN

algorithm (algorithm 3). Subsequently, for the Double-DQN agent class, we

have extended the DQN Agent class overriding only the method relative to

the computation of the target update yt, inheriting the rest of the behaviour

from its parent class.

Moreover, both DQN implementations required the creation of some addi-

tional components necessary for the execution of this complex reinforcement
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Figure 4.5: Illustration of the three hidden layers neural network used by DQN

agents.

learning solution, which are the Neural Network model used by the DQN

agent to approximate the action-value function Q and the experience replay

used to reduce the variants of the updates breaking the samples correlations.

The Neural Network (NN) used in Service Broker is a simple and small fully

connected NN, which is shown in figure 4.5. This NN has been implemented

using pytorch1 python library, which provides utilities for building and running

Neural Networks.

In the NN implemented the input layers are composed by a neuron for

each feature of the state st, which in figure 4.5 is represented as a single unit

for simplicity. Then the network is composed by several hidden layers, where

each layer takes as input a number of neurons equal to the output of the

previous one and its output is a number of nodes smaller than the number of

1https://pytorch.org/
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nodes received in input. Finally, the output layer is composed by a neuron

for each action a ∈ A.

Therefore, DQN agents, at each time step t, would feed current state st

into the action-value function, the NN described so far; the result that it

would obtain is a probability for each action a, given by the value in the

output layer, then accordingly to current action space A(st) ∈ A, restricted

to the only actions available, the agent would peek as action at the action

with the highest probability in A(st).

The reason for such a tiny network is due to the size of the state s which

is limited to 2m+ 1 + 2|A|, where m is the number of task classes. Therefore,

to prevent the neural network from overfitting, thus to prevent the agent

from adapting the weights of the network closely or exactly to the particular

structure of the data used during the training, which indeed can cause worse

results on fresh data, we have decided to not have a huge Neural Network.

In Service Broker application the experience replay has been implemented

creating an ad-hoc object which offer some methods for interacting with it.

Thus, the Experience Replay class has been implemented using as data

structure for keeping experience entries a list of fixed size N , which is the

capacity of the memory buffer set when the DQN algorithm is initialized.

Each entry of this list is then forced to be a tuple of four elements: current

state st, action at, reward rt+τ and next state st+1.

Moreover, the class provides two methods for interacting with the memory

buffer:

• push: it is used to add a new entry in the replay buffer. If the actual

size of the buffer is lower than the capacity N , then the entry is inserted

in the buffer directly. Otherwise, one of the previous entries has to be

removed to make place for the new one. Typically, this replacement

operation is performed following a FIFO criterion or a random one; in

our Experience Replay class the replacement is random, thus an entry

chosen randomly is removed when the size of the internal list reaches

the capacity N .
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• sample: it is used to get from the experience replay buffer n entries,

the selection of the entries is performed randomly on those present in

the buffer.

During the execution of the internal flow, the environment, more precisely

the Task Broker, has to fill the experience replay when a DQN agent is in use.

However, in a scenario such the one of Service Broker in which we observe

the reward after τ time steps, the operation of feeding the experience buffer

is not trivial. Therefore, in such a case Task Broker uses an internal table

to store partial entry of the memory replay and only when it has the whole

entry it can perform the push operation on the buffer.

Thus, at each time step t when an action at is selected by the agent, the

Task Broker would store in a partial entry the current state st and the action

at; in the next time step, t + 1, after having computed the next state st+1

it is added to the partial entry. Finally, at time step t + τ , when also the

reward rt+τ is received, the entry is completed and inserted in the experience

replay buffer.

Finally, the implementation of DQN agents required also to choose an

optimizer and an ε decay method. The former is used to control the learning

rate, thus to control how much to change the model in response to the

estimated error each time the model weights are updated. Learning rate is

crucial because if it is too small the learning would be slow with probability

of remaining stucked in a local minimum, while if it is too big it can lead

to a model which approximates too much and thus is unstable. Therefore,

in our DQN class we have decided to use the pytorch implementation of the

adaptive optimizer Adam, which adapts the learning rate during the training

and was proposed by Kingma et al (2014) [28].

The latter is necessary because it is important at the beginning of the

training to allow the DQN agent to explore very often, thus to have an ε

higher, while the more we have trained the more it is necessary to exploit the

knowledge built, thus to have a smaller ε. Therefore, in our implementation

of DQN we have integrated an adaptive ε parameter which linearly decays
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from an εstart to an εend and this decay is performed in x time steps. Hence,

at the beginning the agent would act randomly with probability εstart and

after x time steps it would be random with probability εend, meanwhile it

would decrease at each time step linearly.

4.2 Results

In this section we are going to illustrate the results obtained running

Service Broker simulator with the diverse type of reinforcement learning

agents studied and developed, with the aim of providing a proof to support

the theory explained so far regarding the assignment problem addressed.

We will start describing the method used, thus how we have trained the

models, for whose agent’s parameters we have tested several different values,

how we have evaluated the agents and with which environment settings we

have run it.

Subsequently, we will present two baselines algorithms that have been

used to compare the agents developed, with the aim of demonstrating that

the proposed solution outperforms those baselines.

Finally, we will display the actual results, for both cases of the problem

taken under analysis, fixed pool case and expandable pool case.

4.2.1 The method

To evaluate the agents proposed we have performed a two step pipeline, in

which we have first trained the agents and secondly we have evaluated their

assignment skill. This kind of evaluation procedure is typical of reinforcement

learning and more generally of deep learning, because when neaural networks

are used they require to be trained, due to the random initialization of the

weights.

For Multi-armed bandit and Contextual bandit agents a training phase is

not theoretically necessary, because they are fully online and typically training

and evaluation coincide with a single long run. However, to be completely
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fair among all the agents and to put them in exactly the same situation we

have applied the same two step pipeline with the same amount of time steps

also to Multi-armed bandit and Contextual bandit agents.

During the training step, the first phase of our evaluation pipeline, we

have run for N time steps each agent with different values for their learning

parameters, performing the so called hyperparameter tuning, or optimization,

which is a typical problem in machine learning used to find the optimal set

of hyperparameters for a learning algorithm. Furthermore, to give a greater

statistical validity to the training phase, we have run each agent with each

hyperparameters combination for several times, using different initial random

seeds. Using this approach with different initial random seeds we are able

to better cover the domain of the problem and, more importantly, the best

combination found would result to be more resilient to eventual noise caused

by the environment.

To be more precise, in the environment developed three random seeds are

necessary. The first is used by the Task Generator and it is responsible for

the task class sampling from the uniform distribution which characterizes the

class of the tasks generated and has to be kept fixed among all the training

executions, because we want the agents to receive always the same training

set. The second is used by the Tasks and it is in charge of the normal

distribution Pcu,cw = N (µ, σ2), which gives the time of execution for a task

class cu in a worker class cw accordingly to mean µ and standard deviation σ2

of cu. This seed can be kept fixed across all the training executions because

we want the agents to face always the same situation. The last random

seed is used by the Agents and it regulates the initial starting point of the

agent; for example in DQN agents it determines the initial random weights

of the network. Therefore, this last random seed is the one which has been

changed during the training because we want to find the best combination of

hyperparameters across different agent initializations.

In Service Broker ’s environment, because of the asynchrony in the execu-

tion of the tasks, when we refer to the number of time steps executed, which
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is N for the training step, we actually refer to the number of tasks that the

system will generate and thus simulate. In fact, the agent may decide to wait

several times and the time of execution of a task may cause a task to finish

its execution after time step N . Thus, stopping the execution at time step N

will result in not respecting one of the main points of the assignment problem

proposed, which is to allocate all the tasks.

The second phase of the evaluation pipeline, called evaluation step, consists

in performing an execution of M time steps, hence a generation of M tasks,

over all the agents, but only using the combinations of hyperparameters which

have obtained the best results from the previous training step. It is worth

pointing out that also in this phase we run each agent’s best combination

across all the agents’ seeds of the training, because we want to give greater

statistical validity also to the process of finding the best performance across

the agents proposed and the baselines. Furthermore, because we are in a

reinforcement learning setting the evaluation step is executed for M time

steps, but the system restarts from time step N , from the training, because

in a reinforcement learning application typically we consider the first N time

steps as bootstrapping, or training, and the remaining M as actual execution.

Finally, for the evaluation of the system we have set N = 10000 and

M = 5000, while we have configured the environment to generate tasks

among 10 different task classes cu ∈ Cu and we have set the number of worker

classes cw ∈ Cw to 5. Moreover, the environment in both cases, fixed pool and

expandable pool, starts with a pool P in which for each class cw five workers

are initialized; this is due to the fact that the mean time of execution of a

task is 25 time steps, recalling 4.1, hence this allows the system to rarely be

in a situation in which it doesn’t have any workers w available in P .

Hyperparameter trained

For the training step the set of hyperparameters that we have compared

was:

• ε-greedy: we have trained ε-greedy agent over different values of ε,
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thus varying the level of randomness of the agent. The parameters were

trained in the set ε ∈ {0.1, 0.25, 0.4, 0.5, 0.55}.

• UCB: UCB agent has been training over different values of the costant

c which regulates the degree of exploration (recall3.9). The value of the

parameter has been trained in the set c ∈ {0.001, 0.01, 0.1, 2, 3, 4}.

• LinUCB: for LinUCB agent we have trained changing values of the

costant δ which is used to control the degree of exploration (recall 3.10).

To be precise, δ is used to compute α = 1 +

√
ln( 2

δ
)

2
, thus δ has to be

bound to be lower than 2, otherwise α goes in the complex domain,

because the natural logarithm would take a value lower than 1, which

causes a negative value inside the square root. Therefore the parameter

was trained in the set δ ∈ {0.01, 0.1, 1, 1.5, 2}.

• DQN/Double-DQN: both DQN agents require the same learning

hyperparameters, hence we consider them together. They have been

trained changing the values of initial learning rate, of εstart and of the

number of hidden layers. The former represents the starting learning

rate that would be used by Adam optimizer and has been trained in the

set {0.1, 0.01, 0.001}. The second is the starting ε used by the agent in

the linear decay ε implemented; εend and the time steps necessary to

reach it have been kept fixed to 0.1 and 5000 time steps respectively,

while εstart has been trained in the set {0.6, 0.9}. The latter represents

the number of hidden layers to generate in the NN used in 4.5 and has

been trained in the set {3, 4}.

DQN validation

The DQN agents to perform their training require also to use the concept

of validation set, typical of supervised learning with NN, where the agent is

trained over a training set, but during the training the correctness of the

training is obtained through a different set of the same distribution called

validation set. This technique is used to avoid overfitting in the NN.
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For the case of reinforcement learning through DQN we do a similar

procedure: during the training every x time steps a validation run is executed

in parallel using the current model, the same seed for the agent, but a different

seed for the Task Generator and the Tasks, due to have a different population

of tasks generated. At the end of the validation run, if the total reward

obtained is the biggest obtained until that moment, the model used for the

validation is kept and considered the actual best. Therefore, at the end of the

training the best model among all the validations is the model that would be

used for the evaluation step.

In Service Broker ’s environment, implementing the validation procedure -

as we have described - required the introduction of an additional component

called Validator, which has to be ready to start those validations in parallel,

while the main training execution is running.

Therefore, we needed to decouple the validator from the main environment

execution and we needed to introduce another inter-process communication

procedure. In this case, because of the low number of interactions between

the main execution and the Validator, we have introduced an IPC at a

higher level, which uses an event broker to exhange messages for starting

and communicating the results of the validations. We implemented the event

broker using a MQTT event broker, which is typically used for lightweight

communication in Internet of Things (IoT) scenarios.

The validation procedure is described in figure 4.6 and it is composed of

the following steps:

1. at the beginning of the entire execution, main environment and Validator

subscribe to receive messages on the MQTT End validation and Start

validation topic respectively.

2. at time step x the main environment execution decides to start a

validation run; therefore it publishes a message on the topic Start

validation, requiring to start a validation, attaching in the payload of

the message the configuration to be used for the validation and saving

the configuration internally.
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Figure 4.6: Validation run mechanism through the MQTT Event broker.

3. the MQTT broker receives the message and forwards it to the Validator.

4. the Validator receives the starting message and starts on a sub-process

an execution of the environment using the configuration specified in the

payload of the message. The validation runs in a sub-process because

the validator should be able to start other validations in parallel.

5. the validation run terminates its execution and communicates the Val-

idator the total reward obtained with the configuration requested.

6. the Validator receives the total reward of the validation completed and

publishes a message on the topic End validation attaching the total

reward.
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7. finally, the MQTT broker receives the message and forwards it to the

main environment execution, which would compare the total reward

received with the previous best and, if this value is greater, then a new

best model is saved with the configurations used to start the validation

at time step x

In the simulation performed each validation run has been executed for 400

time steps and a new validation run has been started every 500 time steps.

4.2.2 Baselines

The evaluation of the solution proposed has been performed not only over

the agents described so far, but also over two baselines algorithms used to

compare the results obtained by the reinforcement learning agents against

some techniques typically used to address the problem studied.

In practice, those baselines used have been implemented like the other

agents, extending the Abstract Agent class and implementing the choose

action method, while the observe delayed reward has been left unimplemented

because both baselines do not need to observe the reward to improve their

action selection criterion.

Random baseline

The former baseline introduced for the evaluation is the easiest possible,

available in every type of problems: it is a Random Agent, which does not

have any knowledge or any criterion for selecting an action. Thus, in Service

Broker the Random Agent at each time step t would randomly choose an

action at among those available at time t, hence at ∈ A(st).

LRU baseline

The second baseline introduced in the evaluation procedure is the Least

Recently Used (LRU) baseline, which is a straightforward technique, but even

that is typically used in real task allocation application, and it is similar
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to the one described by Service Broker for two main reasons. Firstly it is

extremely simple to implement, thus it allows fast developing, while on the

other hand it results to be particularly effective in those kinds of problems.

LRU solution is based on the principle by which if a resource is the least

recently used, with high probability it would be free to execute new tasks

and, since this method is applied, it is guaranteed that all the resources are

going to be used; thus it is also a fair solution.

To implement LRU baseline we have used a list of size equal to the size of

the action space |A| to store the number of time steps in which each action

has not been taken. In this list each index corresponds to the index of one of

the actions a ∈ A and at the beginning each index is associated to a value

of zero. Subsequently, when at time step t an action at is selected all the

elements of the list are updated adding one to their correspondent values

except for the value of the action selected which is set to 0. The selection of

the action is then performed choosing the maximum in the list. If more than

one action has the same maximum value a random action is selected among

those with the highest value in the list, which means that they are the least

recently used.

4.2.3 Fixed pool case results

Following the method described so far, we have run the training step

and the evaluation step for 10000 and 5000 time steps respectively, using 5

different random seeds for the agent’s initialization. Moreover, the evaluation

has been performed over both the cases addressed in this work, that is fixed

pool and expandable pool.

We will start presenting the results for the simpler case, dividing the

hyperparameter training from the actual comparison among the agents and,

subsequently, we will present the results of the more complex case.
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Training results

In figure 4.7 is shown the exploration of the hyperparameters space, the

training, for the Multi-armed bandit and Contextual bandit agents in Service

Broker fixed pool case, while in table 4.1 is shown the hyperparameters

exploration for the Double-DQN agent in the same settings of the other

agents.

Moreover, the training has not been performed for the DQN agent, because

it has been proven by Hasselt et al. (2015) [23] that Double-DQN always

outperforms DQN due to its ability to better deal with noise; therefore we

have concentrated only on the Double-DQN.

For ε-greedy agent it is displayed in figure 4.7a, on the y-axis, how the

total reward changes in function of different values of ε, x-axis. The figure

shows average total reward for each hyperparameter value trained and its

confidence interval over the different runs executed with different agent’s

(a) ε-greedy (b) UCB

(c) Lin-UCB

Figure 4.7: Hyperparameters exploration for Multi-armed bandit and Contextual

bandit agents for Service Broker fixed pool case, where the total reward, y-axis, is

in function of the training hyperparameter, x-axis.
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random seeds. It is noticeable that the best value for the total reward is

obtained with a value of ε = 0.1; it is also evident that the confidence interval

of the hyperparameters trained tends to overlap.

For UCB agent the same graph with total reward in function of the

hyperparameter trained, in this case c, is presented in figure 4.7b. In this

context the best value has been obtained with value of c = 3, for this agent the

range of confidence intervals for values lower than 2 is infinitesimal, meaning

that for those values of c the total reward obtained is stabler to noise, instead

for values bigger than the confidence interval it is bigger.

The reason why in both ε-greedy and UCB we obtain noticeable confidence

intervals, even if we have executed them with different hyperparameters, is

due to the nature of Multi-armed bandit, which is not able to associate the

action taken to the current situation and therefore it is not able to generalize.

lr εstart layers µ count σ CIhigh CIlow

0.001 0.9 4.0 71.059 5.0 5.572 75.944 66.175

0.001 0.6 3.0 70.857 5.0 3.981 74.347 67.368

0.001 0.9 3.0 70.664 5.0 4.029 74.196 67.133

0.001 0.6 4.0 70.265 5.0 5.278 74.891 65.638

0.01 0.9 4.0 68.846 5.0 3.815 72.191 65.502

0.01 0.9 3.0 68.499 5.0 1.73 70.015 66.983

0.01 0.6 3.0 68.284 5.0 1.688 69.763 66.804

0.01 0.6 4.0 68.246 5.0 2.122 70.106 66.386

0.1 0.6 4.0 67.745 5.0 1.892 69.404 66.086

0.1 0.9 4.0 66.212 5.0 2.296 68.224 64.2

0.1 0.9 3.0 65.521 5.0 2.871 68.037 63.005

0.1 0.6 3.0 65.379 5.0 1.164 66.399 64.359

Table 4.1: Hyperparameters exploration for Double-DQN agent for Service Broker

fixed pool case.

Finally, in figure 4.7c it is shown how the total reward changes in function
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of the hyperparameter δ for the LinUCB agent. For this type of agent it is

evident that the lower δ is, the lower the total reward is. This is due to the

impact that δ has, which is used to compute the parameter α used as upper

bound for controlling the exploration, thus the smaller δ is, the bigger α

would be (recall rule 3.10), causing exploring too much and thus performing

worse.

Regarding Double-DQN, in table 4.1 are represented all the combinations

of hyperparameters trained over the different seeds. For each combination is

reported the average of the max validation reward over the different seeds

µ, where the max validation reward is the maximum total reward obtained

by the validation on each different execution. In addition to that average

value are reported the following: the number of different seeds used, count,

the standard deviation σ and the confidence interval, both high and low CI.

The results in the table are sorted for the average of max validation reward

and it is evident how the learning rate is the major factor which causes

different values of µ. In particular, from this training it has resulted that a

smaller learning leads to a better learning. Thus, the best combination of

hyperparameters is given by: lr = 0.001, εstart = 0.9 and layers = 4.

Evaluation results

Following the results obtained in the previous training step, we have taken

the best model of each agent and we have performed the evaluation for other

5000 time steps, restarting from the end of training, thus 10000.

To be more precise, for each agent’s random seed we have taken the model

resulted from the training related to the best hyperparameters combination,

thanks to the possibility of the Agent class to save and load its learned

knowledge. Moreover, we have set the random seed for the Task Generator

and the Task like the same of the training, because we have evaluated

continuing the training, thus restarting from the end time step of the training.

For the agent’s seed instead we have set the seed to be the same as the one

used to train that model, thus also the evaluation has been performed for
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each agent for 5 times. The evaluation has been performed not only on the 4

agents trained but also over the two baselines presented so far, thus Random

and LRU agents. The results are presented in figure 4.8 and table 4.2.

Figure 4.8: Fixed pool valuation results, total reward obtained with the best

combination of hyperparameters for each agent and comparison with Random and

LRU baselines.

agent µreward count σ CIhigh CIlow

Random 761.562 5.0 1.351 762.747 760.377

LRU 747.386 5.0 7.387 753.861 740.912

ε-greedy 810.486 5.0 7.366 816.943 804.029

UCB 812.681 5.0 2.514 814.885 810.478

LinUCB 836.827 5.0 0.0 836.827 836.827

Double-DQN 853.429 5.0 53.595 900.407 806.451

Table 4.2: Fixed pool evaluation results.

In both hisogram and table, the results are grouped by the agents over

the different seeds and the confidence interval is shown. Additionally, in the

table are reported also the values of how many different seeds have been used,

count, the standard deviation σ and the confidence interval, both high and
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low CI.

Overall, from the evaluation it has emerged that all the agents have

performed in a relatively close range of mean total reward, which goes from

747.386 to 853.429 and the best agent was Double-DQN, even if its confidence

interval is higher than the other greatest agents, while the worst is LRU. For

the Multi-armed bandit and Contextual bandit agents the confidence intervals

are very small, suggesting that their results are strongly resilient to random

noise, while this does not happen for Double-DQN.

4.2.4 Expandable pool case results

Now that we have described the results of the fixed pool case we can

illustrate the results obtained in the expandable pool case, trying to give a

general understanding of the overall behaviour. As we did for the previous

case, we will start displaying the training results and then the evaluation

(a) ε-greedy (b) UCB

(c) Lin-UCB

Figure 4.9: Hyperparameters exploration for Multi-armed bandit and Contextual

bandit agents for Service Broker expandable pool case, where the total reward,

y-axis, is in function of the training hyperparameter, x-axis.
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results. The training results are displayed in figure 4.9 and in table 4.3, while

the evaluation results are presented in figure 4.10 and in table 4.4.

Training results

As for the fixed pool case, also in the expandable pool case the training

has been performed using the same method.

Therefore, in figure 4.9 is presented the hyperparameters exploration of

the Multi-armed bandit agents and the Contextual bandit agent. For ε-greedy

from the exploration of over different values of ε it is evident that the smaller

the better and thus, an ε = 0.1 represents the best hyperparameter (figure

4.9a).

For UCB it is evident that a value of the hyperparameter c bigger than 2

causes the agent to learn worse, while better results are obtained for smaller

lr εstart layers µ count σ CIhigh CIlow

0.001 0.6 3.0 50.564 5.0 28.171 75.256 25.871

0.001 0.9 3.0 47.146 5.0 22.583 66.94 27.351

0.01 0.9 3.0 41.999 5.0 33.306 71.193 12.805

0.001 0.9 4.0 41.662 5.0 19.685 58.916 24.407

0.1 0.9 4.0 41.369 5.0 31.779 69.225 13.514

0.01 0.9 4.0 37.593 5.0 20.719 55.754 19.432

0.001 0.6 4.0 31.321 5.0 6.636 37.138 25.504

0.01 0.6 3.0 30.977 5.0 27.572 55.145 6.809

0.01 0.6 4.0 26.368 5.0 9.752 34.916 17.82

0.1 0.6 4.0 20.807 5.0 4.74 24.962 16.652

0.1 0.9 3.0 15.742 5.0 4.645 19.814 11.671

0.1 0.6 3.0 13.663 5.0 0.013 13.674 13.651

Table 4.3: Hyperparameters exploration for Double-DQN agent for Service Broker

expandable pool case.
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c, with the best performance obtained for c = 0.01 (figure 4.9b).

From LinUCB hyperparameters exploration emerged that, as well as for

the fixed pool case, the best performances are obtained when δ approaches

the value of 2 (figure 4.9c).

The results of the training of Double-DQN are presented in table 4.3,

which reports the same metrics of the fixed pool case. By analyzing the

table it emerges that, again, the parameter which effects the training the

most is the learning rate and, in particular, a lower value ensures the best

performances. The best average maximum validation µ has been obtained

with a combination of hyperparameters composed of lr = 0.001, εstart = 0.6

and a NN of 3 hidden layers, but the results of this combination have a very

high standard deviation and confidence interval; this could be due to noise

and to a small number of different seeds trained.

Evaluation results

The evaluation of the expandable pool case, as for the other case, has been

performed over the same random seeds used for the training and restarting

from the end of the training, that is restarting from time step 10000 and

Figure 4.10: Expandable pool valuation results, total reward obtained with the

best combination of hyperparameters for each agent and comparison with Random

and LRU baselines.
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running for 5000 time steps. For each agent we have used the hyperparameters

combinations discovered after the fisrt step. The results are shown in figure

4.10 and in table 4.4.

The evaluation in this case resulted with a different best agent, which

is UCB, immediately followed by the ε-greedy and LinUCB agents. Overall,

all the agents drastically outperform the two baselines proposed, except for

Double-DQN, which suffers for the lack of a longer training, because as it is for

the fixed pool case, its confidence interval is very high, causing, in this more

complex case, the impossibility of learning a proper assignment knowledge.

From both the table 4.4 and the figure 4.10 it is also evident that for Multi-

armed bandit and Contextual bandit agents the learnt assignment criterion is

resilient to random noise, due to the very small confidence intervals.

agent µreward count σ CIhigh CIlow

Random 616.921 5.0 10.517 626.139 607.702

LRU 627.039 5.0 48.75 669.771 584.308

ε-greedy 1120.633 5.0 3.528 1123.725 1117.541

UCB 1164.853 5.0 0.051 1164.898 1164.808

LinUCB 1079.211 5.0 23.462 1099.777 1058.646

Double-DQN 481.601 5.0 323.797 765.422 197.78

Table 4.4: Expandable pool evaluation results.

4.3 Summary

The overall results obtained, for the Service Broker allocation problem,

by the agents proposed are to be considered very promising. In fact, in both

fixed pool and expandable pool case the agents have always outperformed the

baselines proposed. The only exception is Double-DQN in the expandalbe

case, which results can be seen as inconsistent in the first place, because



4.3 Summary 109

Double-DQN has been the best on the base case, while it has been even

worse than the baselines in the advanced case. In reality, if we consider the

confidence intervals on both cases we can notice that this agent always has the

biggest range, meaning that the results are less resilient to noise. Therefore,

in the simpler case, the fixed pool case, even if there is noise it is able to

generalize a valid allocation technique, while in the more complex case it is

not able to do so. Hence, these results suggest for Double-DQN a longer

training to allow it to capture all the aspects of the assignment problem to

succeed in both cases.

Moreover, from the results on the expandable pool case it emerges that

LinUCB ’s context features are not sufficient to outperform the Multi-armed

bandit agents, as it happens instead in the fixed pool case. Therefore, it

suggests adding other features in a way to better match all the aspects of the

allocation problem in both its variants.





Conclusion

In this project we have demonstrated how an allocation problem, such as

distributed task allocation, can be addressed through reinforcement learn-

ing, obtaining better results than those gained using typical task allocation

techniques, such as Least Recently Used. Moreover, with the necessity of

fast simulation we have also created from scratch an environment capable of

simulating the behaviour of a real distributed task allocator, which can be

used by the research community to continue studying such a learning field.

Overall, from our study on Service Broker task allocation it has emerged

that all the agents developed are able to learn how to assign tasks and the

policy learnt outperforms the results of a Random agent and also of a Least

Recently Used agent. This result gives a proof of the initial intuition in which

we hypothesized that it is possible to find a correlation between task classes

and worker classes with the aim of a better assignment.

Notwithstanding the promising results obtained with our Service Broker

application, the research on reinforcement learning applied to distributed task

allocation is far from being completed. In fact, several future improvements

can be done on top of our solution. Firstly, to increase the statistical validity

of our results would be opportune to perform both training and evaluation

of the agents for a bigger number of agent’s random seeds to reduce the

confidence intervals obtained and have results more resilient to random noise.

Secondly, for an agent such as DQN or Double-DQN a training of 10000

time steps is considered too short, resulting in poor performances if compared

to the other agents and to the potentiality of this technique. Therefore, we
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believe that with a proper training the neural network of the DQN agent

would be able to properly approximate the allocation problem resulting in

better results. Thirdly, the solution proposed has been tested on top of our

environment, which simulates all the aspects of a real task allocator system,

but it remains a simulator. Hence, the next step of this project would be

to develop and to evaluate the agents on a real task allocator. We believe

that the results would be the same, indeed allowing those kinds of system to

improve their assignment performances.

To conclude, the study performed on this kind of distributed task allocation

is very promising, not only because it represents a valid solution for the specific

problem addressed, but also because it can be generalized to different types

of allocation problems, even those not strictly related to computing systems,

such as the examples provided in the first chapter as the carrier delivery

service or the manufacturing factory. Therefore, the solution proposed can

be used as baseline method also for these types of high level task allocation

problems providing a guideline for approaching them and to obtain the best

results.
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