
Alma Mater Studiorum · Università di Bologna

SCHOOL OF ENGINEERING AND ARCHITECTURE

Second Cycle Degree in Computer Engineering

Learning Features Across Tasks and
Domains

Supervisor:

Chiar.mo Prof.

Luigi Di Stefano

Co-supervisors:

Pierluigi Zama Ramirez

Luca De Luigi

Samuele Salti

Luca Paganelli

Candidate:

Adriano Cardace

Session III

Academic Year 2018/2019

”Life can be seen as machine learning problem: Earth is the landscape of

your loss function and you move around all the time trying to optimize

your goal, happiness.”

Abstract

The absence of in-domain labeled data hinders the applicability of powerful deep

neural networks. Unsupervised Domain Adaptation (UDA) methods have emerged to

exploit such models even when labeled data is not available in the target domain. All

these techniques aim to reduce the distribution shift problem that afflicts these models

when trained on one dataset and tested in a different one. However, most of the works,

do not consider relationships among tasks to further boost performances. In this thesis,

we study a recent method called AT/DT (Across Tasks Domain Transfer), that seeks to

apply Domain Adaptation together with Task Adaptation, leveraging on the correlation

of two popular Vision tasks such as Semantic Segmentation and Monocular Depth Es-

timation. Inspired by the Domain Adaptation literature, we propose many extensions

to the original work and show how these enhance the framework performances. Our

contributions are applied at different levels: we first study how different architectures

affect the transferability of features across tasks. We further improve performances by

deploying Adversarial training. Finally, we explore the possibility of replacing Depth

Estimation with popular Self-supervised tasks, demonstrating that two tasks must be

semantically connected to be able to transfer features among them.

i

Sommario

L’assenza di dati annotati limita le applicazioni di potenti modelli come le reti neurali.

Tuttavia, grazie alle recenti tecniche di Unsupervised Domain Adaptation (UDA), risulta

possibile utilizzare questi strumenti anche quando non sia hanno a disposizione dati

labellati. Lo scopo di queste tecniche è quindi quello di ridurre il problema dello shift

tra distribuzioni quando un modello viene allenato su un determinato dataset e testato

in condizioni differenti. L’obiettivo di questa tesi consiste nello studiare ed estendere un

recente metodo chiamato AT/DT (Across Tasks Domain Transfer) che cerca di combinare

tecniche di Domain Adaptation e Task Adaptation sfruttando la correlazione che esiste

tra due tipici problemi della Computer Vision: Semantic Segmentation e Monocular

Depth Estimation. Prendendo ispirazione dalle strategie di Domanin Adaptation presenti

in letteratura, si propongono diverse estensioni che possono essere applicate al framework

originale per migliorarne le prestazioni. Le contribuzioni di questa tesi agiscono su

diversi aspetti. Come prima cosa, viene studiata l’importanza dell’architettura di base

dell’intero framework e come questa impatta sulla trasferibilità tra feature di task diversi.

Succesivamente, le prestazioni vengono ulteriormente migliorate sfruttando le recenti

tecniche di allenamento di tipo Adversarial. Infine, vengono esplorati diversi problemi di

tipo Self-supervised in alternativa alla Monocular Depth Estimation, mostrando che per

garantire il successo di AT/DT è di fondamentale importanza la presenza di una forte

connessione tra i task impiegati.

ii

Contents

Abstract i

List of Figures v

List of Tables vii

1 Introduction 1

2 Transfer Learning and Domain Adaptation 4

2.1 Notations and Definitions . 4

2.2 Approaches for solving Domain Adaptation 8

2.2.1 Discrepancy-Based Approaches 9

2.2.2 Adversarial-Based Approaches . 21

2.2.3 Reconstruction-Based Approaches 26

2.2.4 Self-supervised approaches for Domain Adaptation 34

2.3 Performances analysis . 37

3 Learning Features across Tasks and Domains: AT/DT 41

3.1 Setting . 42

3.2 Architecture . 44

3.3 Training and Evaluation protocol . 47

4 AT/DT Extended 49

4.1 Ablation study on the number of channels of the transfer network 51

4.2 Batch normalization in the transfer network 52

iii

Index iv

4.3 Deeplab vs UNET as backbone network 54

4.4 Flat transfer network . 56

4.5 Adversarial training . 58

4.5.1 Domain alignment through domains 58

4.5.2 Task mapping with adversarial training 59

4.6 Self-supervised learning . 59

4.6.1 Autoencoder . 60

4.6.2 Rotation prediction . 61

4.6.3 Image Colorization . 62

4.6.4 Edge detection . 63

5 Results 65

5.1 Results with different architectures . 65

5.2 Results with Adversarial training . 69

5.3 Results with Self-supervised tasks . 71

6 Technologies 73

6.1 Tensorflow . 74

6.2 GCP . 75

6.2.1 Compute Engine . 75

6.2.2 Google Cloud Storage . 76

6.2.3 Big Data Services . 76

7 Conclusions and future work 78

Bibliography 79

List of Figures

2.1 Distribution shift . 5

2.2 Different label space . 6

2.3 Transfer Learning classification . 7

2.4 Fragile co-adaptation and representation specificity 11

2.5 Using soft labels . 12

2.6 Computing soft labels through distillation 14

2.7 Ideal feature space . 15

2.8 DDC architecture . 17

2.9 Batch Normalization adaptation . 21

2.10 PixelDA . 22

2.11 CoGAN architecture . 23

2.12 Domain Adversarial Neural Network . 24

2.13 Adversarial Discriminative Domain Adaptation 26

2.14 Deep Reconstruction Classification Network 27

2.15 Domain Separation Network . 28

2.16 Domain adaptation through CycleGANs 29

2.17 Ablation study on the effect of the semantic and cycle consistency loss . 33

2.18 CyCADA architecture . 34

2.19 Alignment through weak supervision . 35

2.20 Weak supervised learning for Domain Adaptation 36

2.21 Weak supervised learning with adversarial training for Domain Adaptation 36

3.1 Cityscapes training data . 43

v

Index vi

3.2 Carla dataset . 43

3.3 AT/DT framework . 44

3.4 Decoder architecture . 46

3.5 Transfer architecture . 47

4.1 Results with different number of channels in G1→2 51

4.2 Visual effect of different batch size . 53

4.3 UNET . 55

4.4 DeepLab Architecture . 56

4.5 Flat transfer architecture . 57

4.6 Image reconstruction with an Autoencoder 61

4.7 Rotation Decoder . 62

4.8 Example of Image Colorization . 63

5.1 AT/DT qualitative examples . 67

5.2 AT/DT with ASPP module qualitative examples 67

5.3 AT/DT with skips connections qualitative examples 68

5.4 AT/DT Flat transfer qualitative examples 68

5.5 Segmentation maps obtained with adversarial training across domains . . 70

5.6 Segmentation maps obtained with adversarial training across tasks 70

6.1 Example of a Beam pipeline executed in Dataflow 77

List of Tables

2.1 Possible instances of Image to Image adaptation 31

2.2 Categorization of several DA methods . 38

2.3 Domain Adaptation on the Office dataset 39

2.4 Domain Adaptation on digits datasets 40

4.1 Batch Normalization effect on the transfer network 53

5.1 Experimental results with different architectures on the Cityscapes val-

idation set . 66

5.2 Experimental results with adversarial training on the Cityscapes valida-

tion set . 69

5.3 Experimental results on the Cityscapes validation set when mapping

different tasks to Semantic Segmentation. Best results highlighted in bold. 71

5.4 Experimental results on the Carla validation set when mapping different

tasks to Semantic Segmentation. Best results highlighted in bold. 72

vii

Chapter 1

Introduction

In recent years, Machine Learning, and Deep Learning in particular, has been exten-

sively used for solving Computer Vision related tasks. Since 2012, when AlexNet [22] was

introduced, striking results have been achieved. This progress is mostly due to the unde-

niable effectiveness of Convolutional Neural Networks (CNNs). CNNs achieve amazing

performances when trained with high-quality annotated training data. Considering that

many pre-trained models are publicly available, one can even reuse these networks and

solve complex tasks with almost zero effort. When solving a classification problem for

instance, we can use one of the standard network architectures (ResNet, VGG, etc.) and

train it using our dataset. This would likely lead to very good results if the data is

correctly annotated. Moreover, CNNs have been proved to be effective features extrac-

tors. These features can be used to solve many challenging tasks that require a complete

understanding of an image, such as semantic segmentation, depth estimation, etc. In

2014, [31] reached state-of-the-art results on several tasks by simply applying a linear

SVM classifier on top of a CNN. So far though, most of the approaches tackle each task

in an isolated way: collect the dataset, train the model and test it. What if we would

like to transfer the knowledge acquired from a previous task to a new one? Or train our

network in a specific domain and deploying it to another one? This is what humans do,

after all. We progressively learn new things thanks to what we learned in the past. In

a sense, our goal is to make these algorithms more human-like. Exploiting previously

acquired knowledge can be helpful in many ways. For example, it is well known that

1

2

collecting large dataset for challenging tasks such as segmentation is not practically fea-

sible, hence strategies able to reuse old datasets or synthetic ones could save us a lot of

time and money. In general, transferring knowledge is a tough task for computers, and

although more and more researchers are constantly trying to push the limits of Deep

Learning, we are still far from human capabilities. Typically, in the field of Machine

learning, the problem of transferring knowledge is referred to as Transfer Learning. It is

a broad and active field of research, although it was a well know problem in Computer

Vision even before the advent of Deep Learning. Before diving into Transfer Learning

and Domain Adaptation, which is a specific type of the former and the real focus of

this thesis together with task adaptation, it is important to briefly clarify some simple

concepts that will be used throughout this work. Depending on the available data, we

may have different flavors of machine learning problems. The most commons are the

following:

• Supervised Learning: under the supervised setting, we are given input-label pairs,

and the goal is to learn a mapping function between input and labels. A simple

example is image classification, in which the input is an image and the label is the

class it belongs to.

• Unsupervised Learning: in this scenario, labels are not available. The task here is

to learn a feature space that captures the characteristics of the input data while

maximizing an objective function without the need of any annotations. Common

tasks are clustering and anomaly detection.

• Semi-Supervised Learning: These algorithms seek to learn from both unlabeled

and labeled samples. The assumption is that both are sampled from the same or

similar distribution, therefore they can be used together to improve performances.

Indeed, on many real occasions, we have a small amount of data that is labeled,

while tons of data is not annotated, so it is fundamental to have techniques able

to exploit both kinds of data

• Self-Supervised Learning: this is a relatively recent learning technique where the

training data is autonomously labeled. It can be seen as a type of supervised

3

learning, although in this case the datasets are not manually labeled by humans,

but they are annotated automatically in a surrogate task. By designing a complex

task from which labels come for free, it is possible to learn good features to be

used in the target task. For example [14] proposed to rotate the input image and

to predict the degree of rotation. To solve this kind of tasks, a high-level semantic

understanding is required. As a result, the model learns representations that can

subsequently be used to solve the downstream problem. Self-Supervised Learning

can be also referred to as Weak-Supervised Learning.

Transfer Learning can be applied in all the previous settings since these concepts are

orthogonal, therefore it is important to have clear in mind all the possibilities to avoid

confusion. Let’s now clarify with an intuitive example the Transfer Learning problem.

In the following chapter instead, we will give a formal definition, analyzing in particular

detail the case of Domain Adaptation.

Let us assume, for instance, that we want to build a model able to solve the seman-

tic segmentation task, therefore the objective is to assign labels pixel-wise (buildings,

trees, cars, pedestrians, traffic light, etc.). To this purpose, we can use the Cityscapes

dataset [7]. After testing the model in the corresponding test set, we can achieve a high

score in terms of mIoU (the metric usually measured for Semantic Segmentation). Then

we test the same system in another dataset, Kitti [2], and things go very wrong: the

mIoU score drops badly. The reason why the model does not perform well is that the

domain changed. For example, and even though we test our model on street scenes,

the light conditions can vary across domains. This is where domain adaptation comes to

rescue. Domain adaptation is a sub-discipline of machine learning which deals with these

kind of scenarios. In general, domain adaptation uses labeled data of the source domains

to solve the same task in a target domain. Based on the amount of data that we have

on the target domain, we may be in one of the settings defined above, i.e. supervised,

unsupervised, etc.

Chapter 2

Transfer Learning and Domain

Adaptation

2.1 Notations and Definitions

We are now ready to give a formal definition of Transfer Learning and provide a

classification of all the possible sub-cases. Then, we will present several approaches that

can be found in the literature to alleviate this problem. The notions used in this thesis

is the same used in most of the surveys about Transfer Learning [29] [38]. A domain

D consists of a feature space X and a marginal probability distribution P(X), where

X = {x1, ..., xn} ∈ X . We may consider X as our training data. If the domain consists

of RGB images with size W ×H × C, we have a four dimensional feature space of size

W ×H × C × 256, i.e. all the three channels images that can be generated. A dataset

can be thought as a volume inside the whole feature space. For example all the natural

images, lie in a specific portion of the four dimensional feature space, and we are only

interested to model its marginal probability distribution P(X). For a given domain D =

{X , P (X)}, a task T is defined by two components, T = {Y , f(·)}, where Y is the label

space and f(·) an objective predictive function that under a probabilistic perspective can

be seen as the conditional probability distribution P (Y |X). In the classical supervised

setting, P (Y |X) can be learned directly from the labeled data {xi, yi}, where xi ∈ X
and yi ∈ Y . We can generalize to the situation in which we have two domains, the

4

2.1 Notations and Definitions 5

source domain with sufficient labeled data Ds = {Xs, P (X)s}, and the target one with

a small amount of labeled data or no annotated data Dt = {X t, P (X)t}. Dt can thereby

be decomposed in two sets: the labeled part, Dtl, and the unlabeled part, Dtu. The

entire target domain is Dt = Dtl ∪ Dtu. Each domain is coupled with its corresponding

task: the former is T s = {Ys, P (Y s|Xs)}, and the latter is T t = {Y t, P (Y t|X t)}. The

previous definition gives as a general framework that can be instantiated in different

settings to obtain several cases. For example, if we fix Ds = Dt and T s = T t, we are

in the traditional Machine Learning case. Since both domain and task are composed by

two elements, we have in total four possibilities:

1. The two dataset are different because the feature space is different: X s 6= X t. A

typical example can be digits recognition. The source domain only contains one

channel images, while in the test domain we have to classify colored digits.

2. The difference between the two dataset is caused by a distribution shift: P (Xs) 6=
P (X t). fig. 2.1 illustrates such scenario. In a simplistic two dimensional feature

space, we have images belonging to the same class (the digits 5) that are occupying

different portions of the feature space. Hence, training a classifier on domain A,

and applying it on domain B, would lead to very poor performances.

Figure 2.1: Distribution shift

3. Tasks divergence is caused by a label space discrepancy: Ys 6= Y t. A typical

2.1 Notations and Definitions 6

example of this case if face recognition, because in the source domain we may have

some faces, while in the target domain we would like to recognize other people.

Figure 2.2: Different label space

4. The conditional probability distribution of source and target tasks are different:

P (Y s|Xs) 6= P (Y t|X t). This case appears quite often in practice. This happens

for example when we train a model for image classification on a balanced dataset,

while the test set is strongly unbalanced.

We are now ready to introduce a formal definition of TL [29]:

Definition 1. Given a source domain Ds and a learning task T s, a target domain Dt

and a learning task T t, transfer learning aims to help to improve the learning of the

target predictive function ft(·) in Dt using the knowledge in Ds and T s, where Ds 6= Dt,
or T s 6= T t.

Based on this definition, Pan et al. proposed three sub-categories of TL to highlight

the possible situations that may occur: inductive, transductive and unsupervised TL.

fig. 2.3 outlines this three cases.

1. inductive TL In this scenario, the source and target domains can be the same

or not, while the source and target tasks are always different from each other.

We have at our disposal some labeled data in the target domain and we want to

improve the target task by exploiting somehow information on the source domain.

Depending upon whether the source domain contains labeled data or not, this can

2.1 Notations and Definitions 7

Figure 2.3: Transfer Learning classification [29]

be further divided into two subcategories, similar to multitask learning (but in this

case we are aiming to improve performance only on the target, not in both as in

multitask learning) and self-taught learning, which instead assumes that the label

space between source and target is different, yet related. Thus, it is directly related

to inductive learning when no labeled data is available in the source domain.

2. transductive TL Here, the source and target domain are different, while tasks

remain the same. In this situation, we have labeled data for the source domain, and

we would like to transfer this knowledge to the target task, for which we only have

unlabeled data or a small amount of annotated data. This is the category where

Domain Adaptation fell if we assume that the domains are different because of a

domain shift, i.e. P (Xs) 6= P (X t). In the literature, this is sometimes referred to

as homogeneous DA. In the case of domain difference caused by a different feature

space (X s 6= X t), we talk about co-variate shift or heterogeneous DA.

3. unsupervised TL In the case of unsupervised TL, although they vary, there are

similarities between the source and target tasks. Similarly to the inductive case,

2.2 Approaches for solving Domain Adaptation 8

the domains can be the same or not, but unsupervised TL focuses on solving

unsupervised learning tasks in the target domain when no labeled data is available

in both domains.

DA can be further categorized into supervised, semi-supervised and unsupervised.

These terms have the same semantic of the ones introduced in chapter 1, but applied to

the context of DA:

• In the supervised DA, a small amount of annotated data for the target task is

available (Dtl), yet not enough to tackle the problem in a common supervised way.

Therefore, we need to exploit Ds to obtain better performances in Dt.

• In the semi-supervised DA, in addition to (Dtl), we also have available unlabeled

data, Dtu, that can be used to gain knowledge for the target task.

• Finally, the unsupervised DA, is the most challenging case, since we only have un-

labeled data for the target domain. Most of the approaches introduced in the next

sections belong to this category. This reflects the interest of the research commu-

nity, which is putting more effort into this particular case due to its generality and

applicability.

2.2 Approaches for solving Domain Adaptation

Now that we understood where Domain Adaptation (abbreviated with just DA from

now on) fits in the general Transfer Learning problem, we will move on describing possible

solutions for the homogeneous DA, which is the real focus of this work. DA assumes that

the target task remains the same as the source, as well as the feature spaces. Therefore

the problem we have to face is a shift in the marginal probability distribution. As stated

before, this issue was popular in Computer Vision well ahead of the rise of Deep Learning.

For this reason, it is possible to find in literature many algorithms that try to reduce

the domain shift between source and target domain with techniques that don’t rely on

deep neural networks. Our goal instead, is to follow the recent trend in the research

community that heavily makes use of these powerful architectures. Intuitively, we want

2.2 Approaches for solving Domain Adaptation 9

to embed the process of DA in the training process of a neural network, in order to have

an end-to-end architecture that can be optimized via back-propagation. The important

question is then how do we extract good features that are meaningful and reusable across

domains using neural networks? Although many methods have been proposed in recent

years, we can identify two main categories. The first one is called domain-invariant

feature learning, while the second one is referred to as domain mapping. In the former

case, the domain adaptation methods try to align source and target distribution by

creating a domain invariant feature space, hence no matter the initial distribution, two

samples that belong to two different domains but share the same class, will look the same

in feature space. The idea is that if we have such representation that also preserves some

discriminative properties, then a classifier that works well for the source domain should

work reasonably well in the target domain too. An alternative to creating a domain

invariant feature space is mapping from one domain to the other. This mapping can be

learned at the pixel-level or at the feature-level, although the former is more popular.

In addition to this categorization, we can also give a more fine-grained classification

proposed in [38], which identifies three main categories: Discrepancy-Based Approaches,

Adversarial-Based Approaches, and Reconstruction-Based Approaches. In the following

sections we, analyze several methods belonging to these classes. Each of these algorithms

falls either in the domain-invariant feature learning or in the domain mapping category.

Then, a comparison in terms of performances is given. Finally, we present the general

framework called AT/DT [43] on which this work is built upon. As we will see, AT/DT

also makes use of task adaptation in order to boost performances for DA. We believe that

having a complete understanding and knowledge of all the previous techniques proposed

in the literature may be useful for developing new ideas. For this reason, even though

AT/DT is a general framework, we will treat it keeping in mind that our final goal is

DA.

2.2.1 Discrepancy-Based Approaches

Discrepancy-based methods are probably the most simple, yet effective. The require-

ment is that we have available some annotated data for the target domain, thus they

only work in the supervised or Semi-supervised setting. All the methods in this category

2.2 Approaches for solving Domain Adaptation 10

are based on fine-tuning, a technique that seeks to reduce domain shift by pretraining

a neural network with the source data and using these weights to initialize the model

for the target task. The underlying idea is that by pretraining on a similar but different

domain, we are still able to get close to a good solution, so we can start from this point

rather than from scratch. In a sense, we are guiding the network in the right direction.

The reason why this works is that the first layers are able to capture simple features

such as colors, lines, and shapes. Such first-layers features appear not to be specific to a

particular dataset or task, but they eventually transition from general to going towards

the final layers of the network. Yosinski et al [41], studied extensively the transferability

of features learned by CNNs, and discovered that features learned by deep networks and

used without fine-tuning have limitations due to fragile-coadaptation and representation

specificity. Their conclusion was that fine-tuning is in general a good idea since it allows

the network to adapt the weights on the target domain. The way we perform fine-tuning

though depends on some aspects. Typically, there are two possible scenarios assuming

that source and target domains are similar:

1. A small dataset is available in the target domain. In this case, it might not be

convenient to fine-tune the whole network. If the two domains are similar, we can

expect that even high-level features are well transferable. Moreover, since only

little annotated data is available, there is a high risk of overfitting. This suggests

to attach and train some new randomly initialized fully-connected layers to the

pre-trained network keeping fixed the first layers.

2. The target domain is large. In this case, it is suggested to fine-tune the whole ar-

chitecture. Doing this way, we are able to exploit the source domain by pretraining

and to generalize better in the target domain.

Discrepancy-based approaches can be divided into three major sub-categories: Class

Criterion, Architecture Criterion and Statistic Criterion. We will analyze each of these

categories and provide some examples.

2.2 Approaches for solving Domain Adaptation 11

Figure 2.4: Results from [41] when training a neural network on dataset A and B. 1) The

dotted line represents the baseline: accuracy of the network on dataset B. 2) A network

trained on dataset B, suffers of fragile co-adaptation when freezing some of the layers

and training in B again. 3) Fine-tuning the whole architecture allows to recover from

fragile co-adaptation. 4)A network trained on A is directly used in B. The higher is the

layer at which we chop, the lower is the accuracy because of representation specificity.

5) Transfer features from domain A and fine-tuning all layers performs better than the

baseline.

2.2.1.1 Class Criterion

Class Criterion techniques directly use the labels of the target domain to minimize

the objective function for the target task, as in a classical fine-tuning strategy. Several

losses can be used to do this. The most popular is cross entropy, but other variations

have been proposed. For example, [35] used a softer version of cross entropy introduced

originally by Hinton et al. [16]:

qi =
exp (zi/T)∑
j (exp (zj/T))

2.2 Approaches for solving Domain Adaptation 12

Figure 2.5: architecture from [35] that uses soft labels

where zi is the logit computed by the last layer. T is a parameter called Temperature,

that when it is set to 1, gives the standard cross entropy, while when increased, it has the

effect of softening the final probability distribution. This allows us to reduce spikes and

to preserve information between classes. By using these distributions as labels rather

than the classical one hot encoding representation, we are teaching the network not only

which is the correct class, but also how the classes are related between each other. This

trick can be extremely helpful when little data is available and it is called distillation.

The full architecture proposed in [35] that makes use of this idea is depicted in fig. 2.5.

Source data (xs, ys) is initially fed to the CNN (from conv1 to fc7) to find a good latent

representation. The parameters of this CNN are denoted with θrepr. On top of these

layers, a final layer θC (fc8), considered as the classifier, is used to solve the classification

task on source data. The loss function, in this case, is the standard cross entropy:

LC (x, y; θrepr, θC) = −
∑
k

1[y = k] log pk

Then, the model is augmented with a domain classifier, namely fcD, that tries to recog-

nize to which domain the input vector belongs. These vectors are computed again with

the same base CNN, but feeding images from both domains. On the other hand, the

CNN is trained to fool the discriminator. By doing this, if a classifier works well on the

source domain, it should work reasonably well on the target domain too. This goal can

2.2 Approaches for solving Domain Adaptation 13

be obtained by training θrepr to minimize the cross entropy error between the output pre-

dicted domain labels and a uniform distribution over domain labels. This is equivalent

to maximize domain confusion since we are forcing the output of the discriminator to be

uniform (i.e. each class with the same probability):

Lconf (xs, xt, θD; θrepr) = −
∑
d

1

D
log qd

On the other hand, θD is updated so that domain confusion is minimized:

LD (xs, xt, θrep; θD) = −
∑
d

1 [yD = d] log qd

with q corresponding to the softmax activations of the domain classifier. Through these

loss functions, the model confuses the discriminator to align the marginal distributions

of the two domains while solving the source task. This step can be thought of as the

initialization step of the whole architecture. Afterward, the whole model is fine-tuned

with soft-labels computed using the pre-trained architecture. To explain why fine-tuning

is done with soft-labels rather than hard-labels, it is useful to remind the reader that

although some annotated data is at our disposal in the target domain, this data is still

limited. Moreover, sometimes this data is available only for a subset of the categories.

For these reasons, training on hard labels is not satisfactory, while using soft labels,

maximizes the impact of a single training target example because we are also exploiting

the relationship between classes. The soft labels are computed by averaging the output

distributions of source examples for each class. To make it crystal clear let us analyze

an example. Let assume that in the source domain one of the classes is bottle. Then

we collect all the outputs distributions when instances of such classes are provided to

the CNN using a Softmax layer with temperature T > 1. Finally, by averaging these

activations, we obtain a K-dimensional vector that represents the soft label for the class

bottle. fig. 2.6 illustrates the whole process. Hence the loss function for a single sample

drawn from the target domain becomes:

Lsoft (xt, yt; θrepr, θC) = −
∑
i

l
(yt)
i log pi

where l
(yt)
i is the soft label for class y (computed after the initialization step and before

fine-tuning) and pi denotes the activation of the target image computed again with a

2.2 Approaches for solving Domain Adaptation 14

Figure 2.6: Computing soft labels through distillation [35]

softer version of softmax. The full loss function is a weighted sum of the previous:

L (xs, ys, xt, yt, θD; θrepr , θC) =

LC (xs, ys, xt, yt; θrepr , θC)

+ λLconf (xs, xt, θD; θrepr)

+ LD (xs, xt, θrep; θD)

+ νLsoft (xt, yt; θrepr , θC)

2.2.1.2 Statistic Criterion

Rather than using a softmax layer in combination with cross entropy, other tech-

niques rely on statistical approaches to formulate a loss function to minimize. Moreover,

differently from class criterion approaches, statistic criterion do not usually require la-

bels and work under a unsupervised setting. An example of such methods is DTML [19]

(Deep Transfer Metric Learning), which uses the MMD (Maximum Mean Discrepancy)

criterion to align the distributions of the two domains. MMD is a measure of the dif-

ference between two probability distributions and it can be approximated by sampling

from the two distributions without explicitly knowing their density function. Thanks to

the kernel trick in fact, we are able to compare all the orders of statistic moments of

the two distributions. In particular, if φ is a function in the unit ball in a Reproducing

Kernel Hilbert Space (RKHS), it was shown that the MMD between two distributions

s and t is 0 if and only if the two are identical. The formal definition of MMD is the

2.2 Approaches for solving Domain Adaptation 15

Figure 2.7: Ideal feature space [19]

following:

MMD(s, t) = sup
‖φ‖H≤1

∥∥Exs∼s [φ (xs)]− Ext∼t
[
φ
(
xt
)]∥∥

H

DTML also uses the marginal Fisher analysis to enforce minimization between intra-class

variations and maximization of the inter-class variations relying on annotated data only

in the source domain. This is done in order to help a neural network to find a common

space for the two domains, but also to make sure that similar classes of the two domains

lie close in feature space. fig. 2.7 shows an example of such ideal latent space. The

optimization process seeks to minimize two metrics. First, images from both domains

are passed through a M -layers network, in order to obtain an N -dimensional vector

representation. Then, the MMD criterion is approximated using the representation given

by the neural network and minimizing the following constraint:

D
(m)
ts (Xt,Xs) =

∥∥∥ 1
Nt

∑Nt

i=1 f
(m) (xti)− 1

Ns

∑Ns

i=1 f
(m) (xsi)

∥∥∥2
2

with f (m) (xti) and f (m) (xsi) denoting the activations of the mth layer of the neural net-

work with target and source domain data respectively. Finally, Fisher analysis criterion

is applied by minimizing the following equation:

min
f(M)

J = S(M)
c − αS(M)

b + γ
M∑
m=1

(∥∥W(m)
∥∥2
F

+
∥∥b(m)

∥∥2
F

)

2.2 Approaches for solving Domain Adaptation 16

with S
(m)
c and S

(m)
b defined as:

S(m)
c =

1

Nk1

N∑
i=1

N∑
j=1

Pijd
2
f(m) (xi,xj)

S
(m)
b =

1

Nk2

N∑
i=1

N∑
j=1

Qijd
2
f (m) (xi,xj)

where Pij is set to one if xj is one of the k1-intra-class nearest neighbors of xi, and zero

otherwise; and Qij is set to one if xj is one of the k2-inter-class nearest neighbors of

xi, and zero otherwise. To build the k1-intra-class and k2-inter-class graphs, labels for

the source domain are required. k1 and k2 are usually empirically selected. d2
f (m) is

simply the Euclidean distance between the feature vectors obtained by passing the two

inputs up to the mth layer of the neural network. The third component is instead a

regularization term. By minimizing this function, we are basically asking the network to

put similar examples close in feature space, while examples from different classes should

be drifted apart. By combining the two previous losses, we obtain:

min
f (M)

J = S(M)
c − αS(M)

b + βD
(M)
ts (Xt,Xs) + γ

M∑
m=1

(∥∥W(m)
∥∥2
F

+
∥∥b(m)

∥∥2
2

)
After the training process, we have at our disposal a neural network capable of extracting

deep hierarchical features that should be domain invariant. These feature vectors can

then be used directly by a common classifier to actually solve the classification problem.

MMD can also be deployed as a regularizer term together with cross entropy to for-

mulate a loss function as done in DaNN[12] (Domain adaptive Neural Networks). This

technique is different from DTML since it does not only learn a good latent space, but it

also perform classification. More precisely, the optimization process is done in two steps.

First, a mini-batch of data from the source domain is used to update all the parameters

of the network such that the cross entropy error for classification in the source domain

is minimized. Then, a batch containing data belonging to both domains is provided

to minimize MMD. Thanks to the regularization term, the network is trained to mini-

mize the classification error and at the same time, the hidden layer representations are

encouraged to be invariant across different domains. By assuming Ds and Dt vectors

drawn from distributions s and t respectively, and deploying the kernel trick, MMD is

2.2 Approaches for solving Domain Adaptation 17

estimated as:

MMDe (Ds, Dt) =

∥∥∥∥∥ 1

M

M∑
i=1

φ (xsi)−
1

N

N∑
j=1

φ
(
xtj
)∥∥∥∥∥

H

=

(
1

n2
s

ns∑
i=1

ns∑
j=1

k
(
x(i)
s ,x

(j)
s

)
+

1

n2
t

nt∑
i=1

nt∑
j=1

k
(
x
(i)
t ,x

(j)
t

)

− 2

nsnt

ns∑
i=1

ns∑
j=1

k
(
x(i)
s ,x

(j)
t

)) 1
2

Subsequently, this idea has been extended and applied together with CNNs in DDC [37]

(Deep Domain Confusion) and achieved great success at the time. The idea is basically

the same, i.e. minimize the classification error and at the same time reduce representation

discrepancy via MMD, but they used a more powerful architecture, a CNN rather than

a 2 layers feed-forward neural network (see fig. 2.8).

Figure 2.8: DDC Architecture [37]

Although MMD is a great metric to minimize domain discrepancy, it neglects class

information, and this may lead to poor generalization. For this reason, [21] recently

proposed a Contrastive Domain Discrepancy (CDD) metric built upon MMD that tries

2.2 Approaches for solving Domain Adaptation 18

to address this issue. The key idea of this new network called CAN (Contrastive Adap-

tation Network) is to explicitly model intra-class domain discrepancy and inter-class

domain discrepancy by estimating proxy labels for the target domain through clustering

techniques. CAN shows state-of-the-art performances and is able to obtain a latent space

more similar to the one depicted in fig. 2.7. These gains come at a cost though, since it

is considerably more complex than other methods. Starting from the MMD estimation

formula, and taking in account class information (i.e. ys1:ns
and ŷt1:nt

), the CDD for class

c1 and c2 given the current parameters of the networks and the current estimation for

target samples is defined as

D̂c1c2
(
ŷt1, ŷ

t
2, · · · , ŷtnt

, φ
)

= e1 + e2 − 2e3

e1 =
ns∑
i=1

ns∑
j=1

µc1c1
(
ysi , y

s
j

)
k
(
φ (xsi) , φ

(
xsj
))∑ns

i=1

∑ns

j=1 µc1c1
(
ysi , y

s
j

)
e2 =

nt∑
i=1

nt∑
j=1

µc2c2
(
ŷti , ŷ

t
j

)
k
(
φ (xti) , φ

(
xtj
))∑nt

i=1

∑nt

j=1 µc2c2
(
ŷti , ŷ

t
j

)
e3 =

ns∑
i=1

nt∑
j=1

µc1c2
(
ysi , ŷ

t
j

)
k
(
φ (xsi) , φ

(
xtj
))∑ns

i=1

∑nt

j=1 µc1c2
(
ysi , ŷ

t
j

)
The previous equation measures intra-class domain discrepancy when c1 = c2 and inter-

class discrepancy when c1 6= c2. µcc′ is a mask indicating whether yi = c, yj = c′. To

compute the masks µc1c2 and µc2c2 the target labels are required. The authors provided

ablation studies that estimating these labels through clustering techniques is more ef-

fective than simply using the prediction of the network as noisy labeler. The details on

how this is done will be provided later. φ and k simply denote the mapping defined by

the neural network and the selected kernel respectively. Finally, by computing D̂c1c2 for

all possible pairs of classes, we obtain:

D̂cdd =
1

M

M∑
c=1

D̂cc
(
ŷt1:nt

, φ
)

︸ ︷︷ ︸
intra

− 1

M(M − 1)

M∑
c=1

M∑
c′=1
c′ 6=c

D̂cc′
(
ŷt1:nt

, φ
)

︸ ︷︷ ︸
inter

2.2 Approaches for solving Domain Adaptation 19

The backbone network is a ResNet50, that is optimized minimizing the classical cross-

entropy on labeled source data. The last FC layers are used to extract compact fea-

ture representations of samples. At each training loop, the current configuration of the

network is used to estimate the underlying label hypothesis of target samples through

clustering. In particular, these proxy labels, together with the available source labels,

are used to compute CCD and finally update the parameters of the network. The overall

objective function is formalized as follows:

min
θ
` = `ce + βD̂cddL

Where lce indicates the standard cross-entropy error and D̂cddL is the CDD metric com-

puted for all the L FC layers. Regarding the target label estimation, spherical K-means

with K equal to the number of classes is adopted: first, each target cluster center is

initialized with the corresponding source class center, then it proceeds iteratively by

attaching each sample to the class the minimizes the cosine similarity between the sam-

ple itself and the cluster centers, that are subsequently updated with the new attached

samples. Two more important details that are essential in order to reduce domain shift

between distributions. First, to partially reduce noise during the label estimation pro-

cess, only classes with a certain amount of target samples assigned are considered during

iteration Te, i.e. points from the ruled out classed will not be sampled. Finally, to be

able to compute CCD at each mini-beach, some precautions need to be made, because

for any class C there should be points from both distributions, otherwise the inter-class

term could not be estimated. To this purpose, class-aware sampling is deployed, which

means that a random subset of classes is selected among the preserved C ′Te , and then

samples from these set of classes are taken to compose a mini-batch. The mini-batch for

minimizing the cross-entropy error is instead drawn randomly as usual.

2.2.1.3 Architecture Criterion

Another possibility for reducing domain shift is to optimize the architecture of the

network. These adaptation techniques are complementary with the others, hence they

can be used in most deep DA models, in both supervised and unsupervised settings.

A simple architectural adjustment was suggested by [33]. The intuition is that weights

2.2 Approaches for solving Domain Adaptation 20

associated with the source model and the task model are related, but shouldn’t be forced

to be equal (i.e. shared). For example, we can use two identical models, one for each

domain, and add the following regularization term to the loss function:

Ω =
L∑
i=1

(∥∥∥W (l)
S −W

(l)
T

∥∥∥2
F

+
∥∥∥b(l)S − b(l)T ∥∥∥2

F

)
where W

(l)
S , b

(l)
S and W

(l)
T , b

(l)
T are the parameters of the lth layer in the source and target

domain. F denotes the Frobenius norm. Another simple idea is revisiting the batch

normalization layer in the target model such that each layer receives data from a similar

distribution independently of the domain. Formally, batch normalization applies the

following transformation:

x̂j =
xj − E [X.j]√

Var [X.j]

yj = γjx̂j + βj

where x and y are the input and output of the layer, X corresponds to the current mini-

batch and γ and β are learnable parameters. The scaling of each input data is done for

each dimension j, and it guarantees that the input distribution of each layer remains un-

changed across different mini-batches. A stable input distribution facilitates the model

convergence and accelerates the training process. The authors of [24] suggest that class

related knowledge is stored in the weight matrix of each layer, whereas domain related

knowledge is represented by the statistics of the batch normalization. To demonstrate

this, they used two different (but with same classes) datasets. Then, for each mini-batch

sampled from one dataset, they concatenated the mean and variance of all neurons from

one layer to form a feature vector. Using a linear SVM, they were able to almost per-

fectly classify to which domain the feature vector it belongs to. This is an evidence that

the batch normalization parameters for each layer are domain related. They proposed

thereby AdaBN, which aims to perform domain adaptation by modulating all the batch

norm layers’ statistics from the source to target domain. fig. 2.9 shows calibration algo-

rithm. Basically, the target data is not used to learn the network weights but only for

adjusting the statistics of each batch normalization. Hence, it is still an unsupervised

method. Given a pre-trained neural network on the source domain, the adaptive BN

algorithm estimates the mean and the variance of each neuron activation using target

2.2 Approaches for solving Domain Adaptation 21

Figure 2.9: Batch Normalization adaptation [24]

data only. Then, at test time, the scaling is performed by using the same parameters λ

and β learned during training, but instead of using the pre-computed running mean and

running variance the source domain, it normalizes with the new adapted parameters.

This domain-aware normalization ensures that each layer receives data from a similar

distribution, no matter it comes from the source domain or the target domain.

2.2.2 Adversarial-Based Approaches

Thanks to the great success of GANs [15], a lot of researchers took inspiration from

their adversarial nature to approach DA. In particular, many models exploit the adver-

sarial losses to maximize domain confusion or to generate real-looking images that can

be used to boost the target task. Based on the fact that we may have a generator or

not, two sub-categories can be defined: generative models and non generative models.

2.2.2.1 Generative Models

By using GANs, we are able to generate high-quality images. In particular, one can

use the source data to generate synthetic yet real looking data similar to the target

ones. Moreover, if the newly generated images appear as if they were sampled from the

target distribution and preserve the label information of the source images they have

been generated on, we can train a classifier in a classical supervised fashion. The big

2.2 Approaches for solving Domain Adaptation 22

advantage is that this transformation can be done with no labels. PixelDA [3] does

exactly this. An advantage of this strategy is that the DA process is decoupled from the

target task, hence it is easily extendable. PixelDA generates target images conditioned

on both noise and source images such that the new synthetic data has the style of

the target domain and preserves the label of the conditioning image. In this sense the

process of DA is decoupled from the objective task. This simple architecture is depicted

in fig. 2.10. It is important to note that this model works under the assumption that

the gap between the two domains is not too wide: only simple variations such as noise

and illumination changes are allowed, while geometric differences are not. Conditioned

on both noise and source data, the generator G aims to generate data belonging to the

target domain. The Discriminator D is in charge to check whether this is true or not.

Figure 2.10: PixelDA

Next, the model is augmented with a classifier, responsible

for classifying both source images and the fake ones that

are synthesized. The idea is that even though the fake data

should belong to the other domain, it must have the same

semantic of the image on which it has been conditioned,

hence the classifier T should be able to determine the cor-

rect class. This trick facilitates the generation of coupled

images. An important detail is that if we only use the fake

images as input for T, the generator would still be able to

generate images with a correct label associated, but then it

may exhibit the shift class problem (i.e. class 0 assigned to

class 1, class 2 to class 0, etc.) A slightly different idea is

CoGAN [25]. While the previous generative approach fells

in the category of the methods that try to learn a mapping

from one domain to the other (in pixel space), CoGAN learns a domain-invariant feature

space. As the name suggests, a CoGAN consists of a pair of GANs, each one responsible

for synthesizing images in the corresponding domain. During training, some layers (see

fig. 2.11) are shared. This results in a model capable of mapping the same noise vector

into images belonging to two different domains but still preserving some information (i.e.

the high level content). Note how also this approach does not rely on coupled images.

2.2 Approaches for solving Domain Adaptation 23

Figure 2.11: CoGAN architecture from [25]

Since the generator maps noise to image, its first layers decode high-level features, while

the last layers capture low-level and domain specific details. This is different from what

happens in a general CNN or in the discriminator itself, in which the flow is quite the op-

posite. This behavior suggests that by sharing the first layers, the semantic of the image

is preserved, while domain-specific characteristics may change so that the corresponding

discriminator is fooled. In addition, this aspect helps in aligning the high level features

of the two domains. The weight sharing in the discriminators instead, is not essential for

the generation task (even though it is useful for reducing the number of parameters), but

it becomes very important when deploying this architecture for DA. In order to do so,

a Softamx layer (the classifier) must be attached to the last layer shared discriminator.

By embedding the model with such layer, we can jointly train the architecture to solve

the classification problem, which uses images and labels form the source domain, and

the generation learning problem, which instead utilizes the images from both domains.

After training, thanks to weight sharing, the discriminator for the target domain can be

used together with the classification layer to predict the class of target data.

2.2.2.2 Non-Generative Models

Differently from the previous approaches, non-generative models exploit the adver-

sarial loss but without the need for a generator. The idea is similar to the one adopted

in the first model of subsubsection 2.2.1.1: maximize domain confusion without the

need for annotated data in the target domain. This can be done by training a discrim-

inator to decide whether the feature vector comes from the source or target domain.

2.2 Approaches for solving Domain Adaptation 24

Figure 2.12: Domain Adversarial Neural Network [11]

Being able to fool the discriminator, implies that the model has learned a common and

indistinguishable feature space. One of the most popular proposed approaches is the

Domain-Adversarial Neural Network [11] illustrated in fig. 2.12.

The architecture consists of a CNN acting as a feature extractor and two attached

heads: the label classifier (blue part) and a domain classifier (purple layers). The flow

is the following: source data is used to train the main CNN to extract relevant features

for the label classifier. The domain classifier is trained jointly to decide whether the

features are obtained from the source domain or the target domain. Hence, the purple

part aims to minimize domain confusion while the green part tries to maximize it. To

accomplish this, a gradient reversal layer is placed between the last layer of the CNN

and the first of the domain classifier. The consequence is that during the forward pass

nothing changes, i.e. the features are extracted from the input image and passed directly

to the domain classifier. Things are different instead in the backward pass. The purple

layers are updated as usual to minimize the confusion loss, while the green layers are

optimized so that the same loss is maximized, because of the gradient reversal layer

that inverts the sign of the back flowing gradient (and amplifies it by a factor of λ).

The idea of maximizing domain confusion is used in another popular architecture, called

ADDA [36] (Adversarial Discriminative Domain Adaptation). The novelty of this model

2.2 Approaches for solving Domain Adaptation 25

relies on the fact that the weights of the backbone CNN are not shared anymore. This

gives more flexibility since it allows us to learn more domain-specific aspects, improving

thereby performances on the target task. A source CNN is firstly trained with the source

domain data with the corresponding labels; in this way we are able to learn discriminative

features by simply minimizing cross entropy error:

min
Ms,C
Lcls (Xs, Ys) = −E(xs,ys)∼(Xs,Ys)

K∑
k=1

1[k=y0] logC (Ms (xs))

Where C denotes the classifier and Ms is the source CNN. This step can be seen as

a pre-training phase. Afterward, an identical CNN, namely the target CNN (Mt), is

initialized with the same weights and fine-tuned in an adversarial fashion with the domain

discriminator (D).

min
D
LadvD (Xs,Xt,Ms,Mt) =

− Exs∼Xs [logD (Ms (xs))]

− Ext∼Xt [log (1−D (Mt (xt)))]

min
Mt

LadvM (Xt,Xt, D) =

− Ext∼Xt [logD (Mt (xt))]

The parameters of the discriminator D are updated so that LadvD is minimized, while Mt

is updated to minimize LadvM . Note that one could have also defined LadvM = −LadvD ,

that corresponds to minimizing the probability of the discriminator being correct. But

this formulation causes the gradient to vanish at the beginning of the training process

since the discriminator converges more quickly. This is the step that tries to alleviate

the domain shift. It is important to note that the parameters of the source CNN are

kept fixed, hence we are pushing the target model to find a similar mapping learned by

the source CNN while using data from the target domain. This is sometimes referred to

as asymmetric mapping, because we learn a transformation so that it matches the other

distribution, rather than trying to learn jointly two similar distributions (symmetric

mapping). This behavior reflects the GAN training, in which only one distribution is

allowed to change while the other (real images) remains unchanged. The initialization of

the target CNN is required because we don’t have labels for the target domain (we are

2.2 Approaches for solving Domain Adaptation 26

Figure 2.13: Adversarial Discriminative Domain Adaptation [36]

in the unsupervised scenario). If we don’t do that, the feature extractor may learn to

fool the discriminator, but without being able to capture relevant features for the target

task. The hope is that by initializing with the source weights that are good for class

discrimination, and by reducing the difference between the two distributions, the target

CNN can perform well on the target task. The message suggested by this model is that

we don’t actually need to learn to generate images belonging to the target domain to

be able to capture meaningful features without labels (as done with CoGAN), but we

should rather focus on learning discriminative features as they are more useful for the

final task.

2.2.3 Reconstruction-Based Approaches

The third and last category that we analyze is reconstruction-based approaches. In

this case, the basic idea is to use the reconstruction through an encoder-decoder architec-

ture or a GAN in order to learn useful features that can be used to boost performances

for the target task.

2.2.3.1 Encoder-Decoder reconstruction

One of the most simple architectures that uses an encoder-decoder structure is DRCN,

short for Deep Reconstruction Classification Network [13]. The whole architecture can

be described with few words: a shared encoder receives in input data from both do-

mains; in the case of source data, the labels are used directly to minimize the cross

entropy error for classification, while when target images are fed, the decoder tries to

2.2 Approaches for solving Domain Adaptation 27

Figure 2.14: Deep Reconstruction Classification Network [13]

reconstruct them. This simple mechanism allows us to capture features relevant to the

target domain (thanks to the reconstruction component) but at the same time useful

for the classification task. The same author of PixelDA proposed another interesting

architecture called DSN [4]. Although the performances are slightly worse compared to

PixelDA, it is still worthy to show this encoder-decoder architecture due to the novelty

of the approach. The intuition, in this case, consists of learning a shared latent space

by forcing the network to use exclusively common characteristics. This is done by using

a shared-weight encoder Ec(x) that learns to capture the common representation com-

ponents among the two domains. Two private encoder Ep(x) are instead responsible

of learning to capture domain-specific components. A shared decoder learns then to

reconstruct the input samples by using both the private and source features. In order

to encourage such orthogonality (the feature learned by the private encoder should not

be used by the shared encoder and vice versa), the private and shared representation

components are pushed away with a contrasting loss, whereas the shared representation

components are kept similar with a similarity loss. A classifier G is finally trained on

the shared representation using the available labels for the source domain.

2.2 Approaches for solving Domain Adaptation 28

Figure 2.15: Domain Separation Network [4]

2.2.3.2 Adversarial reconstruction

Instead of using the feature learned by an encoder-decoder architecture, one can also

use GANs as a proxy task to capture meaningful features for the target domain. An

example of such approach is based on the CycleGANs, a variation of the original GANs

that can lean to translate images across domains without paired training examples. A

framework that directly uses a CycleGAN was introduced in [27]. This model summarizes

many of the ideas explained so far and uses many losses trained jointly; for this reason,

it may seem a bit complex. It is based on three intuitions:

1. Good features that can work on different domains should be domain agnostic (as

suggested by DSN). This can be motivated by the following example. Let us say

that we are working to build a system able to solve the semantic segmentation

task for autonomous vehicles. At our disposal, we have a dataset containing street

scenes in sunny days and a dataset in which are collected street scenes again but

only in rainy days. Of course, the system should be able to correctly classify pixels

belonging to the class street, independently from the weather conditions. We can

thereby think of the weather as domain-specific information, whereas the street as

domain agnostic content. By using this kinds of features, we are able to learn a

2.2 Approaches for solving Domain Adaptation 29

Figure 2.16: Domain adaptation through CycleGANs [27]

common feature space that can be adapted to different domains.

2. If the feature space is general enough to be shared among domains, we should be

able to map images belonging to one domain into feature space, and then convert

them into an image belonging to the other domain.

3. Finding a common feature space is not enough, because we also have to make sure

that similar classes among domains lie close, while different classes should be far

in latent space. This can be done through a cycle consistency loss, or through a

semantic loss as done with PixelDA, where both the translated images and the

original source image should share the same label. Another option is to do this

by means of statistical methods as seen in section 2.2.1.2, although they are more

difficult to apply in the semantic segmentation case.

Again, these ideas have been already used on several strategies, but here they are pro-

posed altogether. fig. 2.16 summarize the model. The whole model is based on several

components. Two encoders, fx and fy, learn a mapping from source and target do-

main to a common feature space denoted with Z. The objective is to learn a classifier

2.2 Approaches for solving Domain Adaptation 30

h : Z −→ C, with C representing the label space. First, we need to make sure that some

discriminative features are learned. As usual, this is done using the annotated source

data:

Qc =
∑
i

lc (h (fx (xi)) , ci)

lc denotes a suitable classification loss as cross entropy. To learn a common feature space

Z for both domains, several losses and architectures are applied. Following the intuitions

listed before, Z should retain only domain agnostic aspects. In order to accomplish this,

two decoders gx and gy learn to generate images for source and target domain respectively

starting from Z. The idea is that fx and fy should learn to remove private domain

information, while gx and gy should add back this content. Basically, by applying first

fx and then gx, we are obtaining the identity function:

Qid =
∑
i

lid (gx (fx (xi)) , xi) +∑
j

lid (gy (fy (yj)) , yj)

lid is any pixel-wise loss such as L2. Afterward, a discriminator dz tries the recognize

the starting domain given a feature vector. This is again the idea of using a domain

confusion loss:
Qz =

∑
i

lα (dz (fx (xi)) , cx) +∑
j

la (dz (fy (yj)) , cy)

la is an appropriate loss for classification such as binary cross entropy, while cx and cy

are binary labels (i.e. 0 for source domain and 1 for target domain). The discriminator is

trained to minimize domain confusion and consequently Qz. On the contrary, fx and fy

are updated so that it is maximized. To further ensure this common representation and

avoid the typical problem of model collapse, they also define a translation adversarial loss

that mimics the image-to-image translation task. The idea is that it should be possible

to first map an image belonging to one domain to the latent space Z and then decode

it back to the other domain to generate a ’fake’ (translated) image. Two discriminators

dx : X −→ cx, cy and dy : Y −→ cx, cy are trained to determine whether the fake translated

2.2 Approaches for solving Domain Adaptation 31

images are real or not. This ensures that different images can be generated from the

latent space and consequently the model does not collapse:

Qtr =
∑
i

la (dy (gy (fx (xi))) , cx) +∑
j

la (dx (gx (fy (yj)) , cy)

As suggested by the last intuition, we need to ensure that the semantically similar images

in both domains are projected into close vicinity in the latent space. To force this

behavior, a cycle consistency loss is added as in the classical architecture of a CycleGAN:

Qcyc =
∑
i

lid (gx (fy (gy (fx (xi)))) , xi) +∑
j

lid (gy (fx (gx (fy (yj)))) , yj)

A final trick that allows the target encoder to be trained to capture discriminative fea-

tures useful for the target task (this is after all our initial goal) is to map into Z a source

image, translate into the target domain space, map it back to z and then classify it with

the original source label:

Qtrc =
∑
i

lc (h (fy (gy (fx (xi)))) , ci)

Finally, the loss is a weighted average of all the previous:

Q = λcQc + λzQz + λtrQtr + λidQid + λcycQcyc + λtrcQtrc

As explained before, this framework can be seen as a generalization of some of the

Method λc λz λtr λidA λidB λcyc λtrc

ADDA [36] X X

DRCN [13] X X

I2I X X X X X X X

Table 2.1: Possible instances of Image to Image adaptation

previously presented techniques. table 2.1 highlights some of the models that can be

2.2 Approaches for solving Domain Adaptation 32

obtained as a particular instance of this. By training only fx on the source domain and

then freezing it and training the target encoder fy and setting λid = λcyc = λtr = 0

we obtain [36]. By setting instead λidA = λcyc = λtr = λz = 0 we recover [13]. λidA

denotes the first term of Qid. Another popular and successful method that uses cycle

consistency is CyCADA [18]. The approach is very similar to the one just exposed, but

in addition it adapts representations at both the pixel-level and feature-level. The key

point of CyCADA is that alignment at higher levels of a deep representation can fail

to model aspects of low-level details, which are instead crucial for many visual tasks.

Also in PixelDA there was this intuition, but here adaptation is performed at both level,

rather than pixel-level only. Moreover, CyCADA uses cycle consistency together with a

semantic loss to force even more the network to preserve the content of an image during

translation. The first step is to solve the source task simply using the source annotated

data and minimizing the cross entropy error as usually done for classification:

Ltask (fS, XS, YS) = −E(xs,ys)∼(XS ,YS)

K∑
k=1

1[k=ys] log
(
σ
(
f
(k)
S (xs)

))
fS represents the source encoder, while σ is a softmax layer. After this pre-training step,

several losses are applied to compensate the domain shift. First the image-to-image

translation loss is optimized by using two generators GS→T and GT→S (one for each

direction). For simplicity we report only the loss in one direction, from source to target:

LGAN (GS→T , DT , XT , XS) = Ext∼XT
[logDT (xt)] + Exs∼XS

[log (1−DT (GS→T (xs)))]

This GAN loss is the one that performs adaptation by mapping one domain to the other

at a pixel-level (green portion in fig. 2.18). By doing this we can also train the target

encoder ft, that is the real objective of the whole model, on the fake target images

generated from source images (purple portion): Ltask

(
fT , GS→T

(
X̄S

)
, YS
)
. Note that

the labels of the source images are used, hence it is fundamental to respect the semantic

of the source image while translating domain. Cycle consistency loss and a semantic loss

are both added to this purpose:

Lcyc (GS→T , GT→S, XS, XT) = Exs∼XS
[‖GT→S (GS→T (xs))− xs‖1]

+ Ext∼XT
[‖GS→T (GT→S (xt))− xt‖1]

2.2 Approaches for solving Domain Adaptation 33

Lsem (GS→T , GT→S, XS, XT , fS) = Ltask (fS, GT→S (XT) , p (fS, XT))

+ Ltask (fS, GS→T (XS) , p (fS, XS))

Lcyc ensures that GT→S (GS→T (xs)) ≈ xs and GS→T (GT→S (xt)) ≈ xt, while Lsem forces

the same classification before and after the translation. The classification is done with

the encoder fs that was pre-trained on the previous step with source data only (fs is

freezed). p(fS, XT) and p(fS, XS) denote the predictions obtained with fs on the target

and source sample respectively. It is important to note that these are just noisy labels,

although they are still sufficient to maintain content information after translation. The

authors motivated the choice of using both these losses with an ablation study using

SVHN [28] as source domain and MNIST [23] as tareget domain. In particular, they

showed that without the semantic loss, both the GAN and cycle constraints are satisfied

(image generation and image reconstruction), but the semantic content is lost during

translation. This behaviour is depicted in fig. 2.17(a), where the translated digits do not

correspond to the original one. On the other hand, without cycle loss, the reconstruction

fails and the semantic consistency alone is successful only in some cases.

Figure 2.17: Ablation study on the effect of the semantic and cycle consistency loss [18]

A third and fine-tuning step is done to ensure domain adaptation at the feature-level

(orange portion): LGAN (fT , Dfeat , fS (GS→T (XS)) , XT). Overall, the full loss function

2.2 Approaches for solving Domain Adaptation 34

is
LCyCADA (fT , XS, XT , YS, GS→T , GT→S, DS, DT)

= Ltask (fT , GS→T (XS) , YS)

+LGAN (GS→T , DT , XT , XS) + LGAN (GT→S, DS, XS, XT)

+LGAN (fT , Dfeat , fS (GS→T (XS)) , XT)

+Lcyc (GS→T , GT→S, XS, XT) + Lsem (GS→T , GT→S, XS, XT , fS)

Figure 2.18: Cycle-consistent adversarial adaptation architecture [18]. Target cycle omit-

ted

2.2.4 Self-supervised approaches for Domain Adaptation

The recent success of Self-supervised learning (or equivalently Weak-supervised) that

makes use of auxiliary tasks to boost classification performances, has also gained at-

tention in the Domain Adaptation setting. The great advantages of such tasks (i.e.

the possibility to obtain free labels for abundant data), make them particularly attrac-

tive in situations in which data is only limited or not available at all as in the case of

UDA. Although the potential benefit of Self-supervised tasks has not been thoroughly

explored yet, some recent works try to exploit tasks such as rotation prediction, col-

orization and the jigsaw puzzle to reduce domain shift. On this line [40], seeks to align

the two distributions by relying on weak-supervision. Self-supervised learning allows to

generate synthetic labels automatically by applying simple transformations on the orig-

inal dataset. The idea of this work is to accomplish the alignment by solving auxiliary

2.2 Approaches for solving Domain Adaptation 35

weak-supervised task(s) on both domains jointly with the main downstream task. Each

self-supervised task brings the two domains closer along the direction relevant to that

task:

Figure 2.19: Alignment through weak supervision [40]

Both the architecture and the optimization process are simpler than the previous

methods, as no GANs and discriminative losses are involved. A shared feature encoder φ

learns to map images from different domains to a common feature space. The extracted

features are then used by a classifier that solves the source task (optimized using only

source images). Moreover, these features are also used by several heads, each one associ-

ated to its corresponding proxy task. These heads are composed of just one single layer

so that only the features provided by the encoder are used. In this case, the optimiza-

tion is performed with batches containing images from both domains. The architecture

is summarized in fig. 2.20. By denoting with L0 the loss function computed by the first

head (h0) that solves the source task, and with Lk the objective function for kth auxiliary

task, we can formalize the whole objective as follows:

min
φ,hk,k=1...K

L0 (s;φ, h0) +
K∑
k=1

Lk (s, t;φ, hk)

The proxy tasks should be carefully selected. The purpose of solving them is to learn

general features that are shared across domains. Indeed, if we select a task that fo-

cuses too much on low-level details, we may have the risk to separate even more the

two domains rather than aligning them, since we are not capturing the high-level and

shared features. Particularly unsuitable tasks for unsupervised domain adaptation are

for example colorization and denoising autoencoder, while examples of tasks that can

2.2 Approaches for solving Domain Adaptation 36

Figure 2.20: Weak supervised learning for Domain Adaptation [40]

be used successfully are predicting the degree of a random rotation or flip prediction.

One may even apply domain knowledge to design a custom auxiliary task and boost the

domain adaptation process. A similar idea that deploys rotation as pretext task has also

been used in [39]. In this case, the architecture is enhanced with adversarial training for

domain alignment in feature space rather than using multiple auxiliary tasks as before

(see fig. 2.21) and batch normalization calibration, that consists in recomputing the

statistics of each batch normalization, which is very similar to AdaBN, but instead of

recomputing the statistics of each BN layer with a specific algorithm, it directly updates

the common moving average and variance by feeding once all the target images.

Figure 2.21: Weak supervised learning with adversarial training for Domain Adapta-

tion [39]

2.3 Performances analysis 37

2.3 Performances analysis

Due to the different settings in which all the previous method are tested is quite

difficult to provide an objective evaluation. For instance, one model can be carefully

fine-tuned and achieve a higher score even though in practice its performances are worse

compared to another strategy. Moreover, one method can outperform the other in one

specific task, while vice-versa the situation can be reversed for a different one. Another

important aspect is the base architecture: some of the presented domain adaptation

techniques make use of powerful backbones such as ResNet or Inception, while others

just use a simple fully connected neural network. We thereby just report the official

results reported on several datasets, highlighting which are the most successful methods,

even though these may not be the best ones overall. Some hints are also given to

explain why some architectures work or not in particular scenarios. To compare the DA

algorithms explained in previous sections, we rely on two standard benchmarks:

• The Office [34] dataset includes 4652 images of the same 31 objects collected

from three different domains: 2,817 images from the Amazon website, 498 high-

resolution images taken with a DSRL camera and 795 low-resolution pictures taken

by a web camera. Any DA method can be tested in all six pairs of domains:

A→ W , D → W , W → D, A→ D, D → A, W → A.

• Digits recognition is another popular benchmark for evaluating DA. Typical datasets

are in this case MNIST, SVHN, and USPS [8]. The MNIST includes 60000 training

pictures and 10000 test pictures. The USPS includes 7291 training pictures and

2007 test pictures. Finally, SVHN has 73257 digits in the training set and 26032

digits for testing. Although this can be seen as a simple adaptation process at a

first glance, in some cases this is not true. For instance, SVHN contains significant

variations (in scale, background color, etc..) while MNIST contains only gray-scale

images. For this reason, adaptation performed from MNIST to SVHN is quite a

difficult task. On the other hand, as table 2.4 confirms, reducing the domain shift

between MNIST and USPS in much more easier.

Let us start firstly by summarizing all the previous models by indicating whether the

method is trying to find a domain invariant feature space or is learning a mapping

2.3 Performances analysis 38

Method Generator Adversarial Loss Share weights Setting

Soft Labels [35] DI no feature-level yes Supervised

DTML [19] DI no no yes Unsupervised

DaNN [35] DI no no yes Unsupervised

DDC [37] DI no no yes Unsupervised

Rozantsev et al [33] DI no no no Unsupervised

AdaBN [24] N no no no Unsupervised

PixelDA [3] DM yes pixel-level yes Unsupervised

CoGAN [25] DI yes pixel-level partially Unsupervised

DANN [11] DI no feature-level yes Unsupervised

ADDA [36] DI no feature-level partially Unsupervised

DRCN [13] DI no feature-level yes Unsupervised

DSN [4] DI no feature-level partially Unsupervised

I2I [27] DI, DM yes feature-level partially Unsupervised

CyCADA [18] DI, DM yes feature-level and pixel-level no Unsupervised

Sun et al[40] DI no no yes Unsupervised

CAN [21] DI no no no BN Unsupervised

Table 2.2: Categorization of several DA methods

between domains, if a generator is required, if the losses are adversarial based or not and

finally whether some weights are shared or not. As can be seen from table 2.2, most of

the recently proposed methods work under the unsupervised setting. This highlights the

importance and the attention of the research community towards unlabeled data. It is

also clear that most of the ideas can be combined together to obtain architectures even

more robust to domain shift. For example, recent works use adversarial losses both at

the feature-level and pixel-level, or they perform domain mapping while trying to find a

domain invariant feature alignment. table 2.3 summarizes the results of various methods

on the Office dataset. In this case, by learning a domain-invariant feature space and

minimizing a contrastive domain discrepancy loss, CAN seems to be the clear winner

since it outperforms all the other DA techniques in all settings. However, we should

keep in mind that CAN uses ResNet50 as backbone, while most of the approaches in

table 2.3 use less powerful networks. These outstanding results are probably due to the

intrinsic nature of the contrastive loss, that is able to enhance the model’s generalization

ability for classification problems by performing class-aware alignment across domains.

2.3 Performances analysis 39

DA A→ W D → W W → D A→ D D → A W → A

No DAa 62.6 96.1 98.6

DDC [37] 59.4 92.5 91.7

AdaBNc [24] 74.2 95.7 99.8 73.1 59.8 57.5

Soft Labels [35] 59.3 90.0 97.5 68.0 43.1 40.5

I2IAb [27] 75.3 96.5 99.6 71.1 50.1 52.1

DRCN [13] 68.7 96.4 99.0 66.8 56.0 54.9

DANNa [11] 72.6 96.4 99.2 67.1 54.5 57.7

ADDAa [36] 75.1 97.0 99.6

Xu et al.a [39] 90.1 98.1 100.0 88.6 65.1 65.0

CANa [21] 94.5 99.1 99.8 95.0 78.0 77.0

Table 2.3: Domain Adaptation on the Office dataset

(a) with ResNet50

(b) with ResNet34

(c) with Inception

The gain introduced with this kind of discriminative loss is clearly visible where other

methods fail to generalize (e.g. A → D, D → A, W → A). For other scenarios in

which adaptation in slightly easier, even a simple approach such as the one based on

rotation prediction as an auxiliary task (Xu et al.) is able to improve consistently the

baseline. It is also important to note that some of these architectures are complementary.

For example, one can use soft labels to fine-tune ADDA to boost performances on the

target domain. CAN indeed suggests that using somehow proxy labels can be helpful.

Regarding digits classification, there is no clear winner. There are however methods

that outperform the ones listed in table 2.4, but they are not reported since they often

require problem-specific data augmentation or hyperparameter tuning. As evidenced by

table 2.4, in scenarios in which the two domains are not too far (i.e. digits classification)

adversarial methods that use a generator to perform DA at pixel-level such as I2IA,

PixelDA, COGAN and CyCADA seem to be effective. Again, for digit classification,

even a simple method that exploits rotation as an auxiliary task is able to outperform

more complex methods, at least for M → U . This may not be true for tasks that require

2.3 Performances analysis 40

MNIST/USPS SVHN/MNIST

M → U U →M S →M M → S

COGAN [25] 91.2 89.1

I2Ib [27] 92.1 87.2 80.3

PixelDA [3] 95.9

DTML [19] 81.1 71.1

DSN [4] 91.3 82.7

CyCADA [18] 95.6 96.5 90.4

DRCN [13] 91.8 73.6 81.9 40.1

Sunc[40] 96.5 90.2 85.8 61.3

ADDAa [36] 89.4 90.1 76.0

Table 2.4: Domain Adaptation on digits datasets

(a) with ResNet50

(b) with ResNet34

(c) with ResNet26

a pixel-level understanding as in semantic segmentation. The result of CyCADA in

S →M advises that when mapping from a simpler dataset to a complex one pixel-level

adaption may help in reducing domain shift.

Chapter 3

Learning Features across Tasks and

Domains: AT/DT

After a broad overview of popular DA methods, we are ready to provide a plausible

answer to the initial question we posed: is it possible to learn features from different

domains and tasks simultaneously? All the previous techniques are suitable for learning

features across different domains, but would it be helpful as well embedding these meth-

ods with features coming from different tasks? Recent works have proven that many

relevant visual tasks are closely related one to another. A recent study referred to as

Taskonomy [44], provides useful insights on this topic and brings to light the existence

of a structure among visual tasks. For example, surface normals and depth estimation

are related tasks, and solving the former can be directly useful for solving the latter. In

general, a complete understanding of correlations between tasks is a valuable thing, since

it allows to reduce the need for supervised training in many scenarios: Domain Adap-

tation, Unsupervised Learning, Self-supervised Learning, Multi-task learning, etc... Yet,

only few methods are aware of these relationships and exploit this underlying structure.

A novel adaptation framework that aims to do so is AT/DT [30] (Across Tasks Domain

Transfer). This general framework is able to transfer features learned across tasks within

a source domain in a supervised fashion, and then apply this mapping to a target do-

main, where only supervision is available. The key point is that the source domain can

be synthetic, hence easy and cheap to generate, even with labels for complex tasks. This

41

3.1 Setting 42

framework has proven to be effective on two challenging tasks, (i.e. monocular depth es-

timation and semantic segmentation) and four different domains (Synthia [20], Carla [9],

Kitti, and Cityscapes), although performances are not sensational. The objective of this

thesis is thereby to study in detail this framework, and consequently extend the original

architecture to improve performances. Although one of the strengths of AT/DT is its gen-

erality, we will focus on learning features useful for the semantic segmentation problem,

starting form monocular depth estimation. This decision reflects the great attention that

the research community has towards unsupervised or semi-supervised techniques able to

solve semantic segmentation. In the next sections, a thorough explanation of AT/DT is

provided, while the next chapter is dedicated to the proposed extensions. Finally, some

effort has been done to replace monocular depth estimation with popular Self-supervised

tasks.

3.1 Setting

As we already know, DA is a particular case of Transfer Learning. Since AT/DT

involves both domain and task adaptation, it can be collocated in the intersection of the

two categories. The setting in which this framework works is composed by two domains,

A and B, and two tasks, T1 and T2. For simplicity, we can fix A as the synthetic domain

(i.e. Carla) and B as Cityscapes. The Carla dataset is slightly different from the one

used in the original work. Again it has been generated thanks to the Carla simulator,

but some parameters in the simulation have been changed to reduce the gap between

synthetic and real scenes. As the original one, it contains 3500 training images in total

and 500 scenes for evaluation. The Cityscapes dataset contains instead 2975 and 500

images for training and evaluation respectively. In both datasets, the image resolution

is 1024 × 2048. From now on, T1 will be interpreted as monocular depth estimation,

that is a regression problem where for each pixel we must estimate the distance from the

camera, while T2 is set to be semantic segmentation, in which the objective is to classify

each pixel in one of the possible category (street, pedestrian, vehicle, etc..). Again this is

not the only possible configuration: tasks can be switched and domains can vary. It is

intuitively clear though, that these two tasks are correlated. First of all, for both of them,

3.1 Setting 43

a complete pixel-wise understanding of the scene is required. Second, depth information

can be extremely helpful for detecting the category of an object. For example, it is

likely that a point that is far from the camera belongs to the sky category. Moreover, we

assume to have complete supervision in the source domain, while only partial supervision

is available for the target one. Again, thinking about our setting, it means that labels for

both depth estimation and semantic segmentation are available in Carla, while only depth

maps can be used in Cityscapes. One may question the utility of this framework since

obtaining pixel-wise depth maps for real street images is already a complex problem by

itself. The answer is that in the case of depth estimation, noisy labels can be obtained by

means of off-the-shelf algorithms. For example, depth maps can be obtained by filtering

SGM [17] disparities through confidence measures (left-right check). Although these

algorithms are far from being optimal, they can still provide useful information from

which the model can learn insightful features.

Figure 3.1: Cityscapes training data. Left side RGB input, right side proxy label.

Figure 3.2: Carla dataset. For each image both semantic depth map (middle) and

segmentation map (right) are given.

3.2 Architecture 44

𝑥𝐵

𝑥𝐴
𝑥𝐴 ො𝑦2

𝐴

𝑥𝐴

𝑥𝐵

ො𝑦2
𝐵

1 – Solve 𝑻𝟏 on domain 𝑨 and 𝑩 2 – Solve 𝑻𝟐 on domain 𝑨

3 – Train Transfer network 𝑮𝟏→𝟐 on domain 𝑨 4 – Apply 𝑮𝟏→𝟐 to solve 𝑻𝟐 on domain 𝑩

𝑦1
𝐵

𝑦2
𝐴

ො𝑦1
𝐴

ො𝑦1
𝐵

𝑦1
𝐴

𝐿𝑇𝑟

𝑬𝟏
𝑨∪𝑩

𝑮𝟏→𝟐
𝑨

𝑮𝟏→𝟐
𝑨

𝑬𝟏
𝑨∪𝑩

𝑬𝟏
𝑨∪𝑩

𝑫𝟏
𝑨∪𝑩

𝑬𝟐
𝑨

𝑫𝟐
𝑨

𝑫𝟐
𝑨

𝑬𝟐
𝑨

Figure 3.3: AT/DT framework [30]

3.2 Architecture

The whole idea consists in learning a mapping function G1→2 (colored in yellow in

fig. 3.3) in feature space between two tasks in a given domain, so that the same mapping

can be applied as it is in another domain. More precisely, the architecture foresees a

classical encoder-decoder architecture that is used to solve independently T1 and T2.
These two networks are referred as to N1 = D1(E1(x)) (red network in fig. 3.3) and

N2 = D2(E2(x)) (green network in fig. 3.3) respectively. Since we assumed to have

complete supervision for T1, N1 is trained with images belonging to both domains. N2 is

of course only trained with synthetic images since we don’t have labels for B in T2. Up

to this point, we obtained an encoder E1(x) capable of extracting depth features given

both real and synthetics images, and an encoder E2(x) able of encoding deep semantic

features. The final step is thereby to train the transfer network G1→2 to map depth

features into semantic segmentation features: G1→2 : E1(x) → E2(x). Considering that

N2 is trained on B, and due to the domain shift, E2(x) can only works reasonably well

on the domain it has been trained on. Hence, G1→2 is optimized on B as well. To solve

3.2 Architecture 45

T2, we can now extract depth features from a natural image, convert them in features for

the downstream task and feed them to the corresponding decoder. The whole protocol

can be summarized in the following steps:

1. Learn to solve task T1 on domains A and B.

2. Learn to solve task T2 on domain A.

3. Train G1→2 on domain A.

4. Apply G1→2 to solve T2 on domain B.

In the original version, each encoder is a dilated ResNet50 [42] that shrinks the input

image by 1/16. The decoder is implemented as a stack of bilinear up-sample and con-

volutional layers to return to the original resolution and get the final prediction map.

The same backbone architecture can be shared among tasks thanks to their similarity.

The only difference is in fact the final prediction layer, which is task dependent. The

transfer network (G1→2) is instead a simple encoder-decoder architecture that reduces

the input feature map to 1/4 of the original resolution before getting back to the original

scale. An important detail is that although G1→2 is the simplest among the networks, it

is also the heavier in terms of memory requirements and parameters. N1 and N2 have

less than 30M parameters, while G1→2 requires about 226M parameters. The reason lies

in the high number of channels in which each encoder encodes the input image: 2048.

Therefore, even a small architecture composed of 6 convolutional layers with kernel size

3 × 3 such as the transfer network, requires a lot of parameters. The impact of the

number of channels in which G1→2 operates will also be experimented and reported in

the following chapter. fig. 3.4 illustrates in detail the architecture of the decoder, while

fig. 3.5 shows G1→2. The encoder is omitted due to its length.

3.2 Architecture 46

Layer (type) Output Shape Param #

===

InputLayer [(None, 32, 32, 2048)] 0

UpSampling2D (None, 64, 64, 2048) 0

Conv2D (None, 64, 64, 128) 2359424

BatchNormalization (None, 64, 64, 128) 512

Activation(Elu) (None, 64, 64, 128) 0

Conv2D (None, 64, 64, 128) 147584

BatchNormalization (None, 64, 64, 128) 512

Activation(Elu) (None, 64, 64, 128) 0

UpSampling2D (None, 128, 128, 128) 0

Conv2D (None, 128, 128, 64) 73792

BatchNormalization (None, 128, 128, 64) 256

Activation(Elu) (None, 128, 128, 64) 0

Conv2D (None, 128, 128, 64) 36928

BatchNormalization (None, 128, 128, 64) 256

Activation(Elu) (None, 128, 128, 64) 0

UpSampling2D (None, 256, 256, 64) 0

Conv2D (None, 256, 256, 32) 18464

BatchNormalization (None, 256, 256, 32) 128

Activation(Elu) (None, 256, 256, 32) 0

Conv2D (None, 256, 256, 32) 9248

BatchNormalization (None, 256, 256, 32) 128

Activation(Elu) (None, 256, 256, 32) 0

UpSampling2D (None, 512, 512, 32) 0

Conv2D (None, 512, 512, 11) 3179

BatchNormalization (None, 512, 512, 11) 44

Activation(Elu) (None, 512, 512, 11) 0

Conv2D (None, 512, 512, 11) 1100

===

Total params: 2,651,555

Trainable params: 2,650,637

Non-trainable params: 918

Figure 3.4: Decoder architecture assuming cropped images of size 512× 512

3.3 Training and Evaluation protocol 47

Layer (type) Output Shape Param #

===

InputLayer [(None, 32, 32, 2048)] 0

Conv2D (None, 16, 16, 2048) 37750784

Conv2D (None, 8, 8, 2048) 37750784

UpSampling2D (None, 16, 16, 2048) 0

Conv2D (None, 16, 16, 2048) 37750784

Conv2D (None, 16, 16, 2048) 37750784

UpSampling2D (None, 32, 32, 2048) 0

Conv2D (None, 32, 32, 2048) 37750784

Conv2D (None, 16, 16, 2048) 37750784

===

Total params: 226,504,704

Trainable params: 226,504,704

Non-trainable params: 0

Figure 3.5: Transfer architecture assuming cropped images of size 512× 512

3.3 Training and Evaluation protocol

Regarding the single training steps, N1 is optimized by minimizing a standard L1 loss,

while N2 is trained using the cross entropy error. The weights of the transfer network

are optimized by minimizing the reconstruction error (L2 loss) between transformed and

target features:

LTr = ||G1→2(E
A∪B
1 (xA))− EA

2 (xA)||2,

N1 is trained for 100k steps with batch size 8 (each mini-batch contains random images

from both domains), while N2 is trained for 45k iterations with batch size 8. In both

cases, the optimizer is Adam with initial learning rate 1e−4 and β1 = 0.9. For a more

effective training, also exponential decay with decay steps 3000 and decay rate 0.96 is

applied. The transfer network is instead trained for 100k steps with batch size 1 and

initial learning rate 1e−5. All three networks are trained with random crops of size 512×
512. In order to asses objectively performances, we must establish a precise evaluation

protocol. N1 can be evaluated on both domains in the validation set using the standard

3.3 Training and Evaluation protocol 48

metrics described in [10]: Absolute Relative Error (Abs Rel), Square Relative Error (Sq

Rel), Root Mean Square Error (RMSE), logarithmic RMSE (lower is better) and three δa

accuracy scores computed as the percentage of pixels such that the maximum between the

ratio and inverse ratio with respect to the ground truth is lower than 1.25α. To evaluate

semantic segmentation two popular global metrics are used: pixel accuracy, shortened

Acc. (i.e the percentage of pixels with a correct label) and Mean Intersection Over Union,

shortened mIoU (as defined in [7]). The latter can also be reported per class to give a

complete measurement of AT/DT performances. To make this metric compatible among

datasets, we solve semantic segmentation on the 10 shared classes (Road, Sidewalk,

Walls, Fence, Person, Poles, Vegetation, Vehicles, Traffic Signs, Building) plus the ’Sky’

category defined as the set of points with infinite depth. Some of the Cityscapes classes

are collapsed into one class: car and bicycle collapse into vehicle and traffic signs and

traffic light into traffic sign. The remaining categories for Cityscapes are instead ignored.

Computing mIoU and Acc is not only important when evaluating the performances of

the whole framework in the real domain, but is also fundamental as a sanity check during

training of N2 on A. It is sensible that the more effective is N2 on the downstream task,

the higher are the general performances of AT/DT. The same reasoning can be applied

on N1 when trained on A and B: better results lead to a superior DA method. During

the training phase of the transfer network, the model is evaluated on the validation set

of Carla. Of course, it is possible the global optimum for Carla may not be a global

optimum for Cityscapes. Yet, we believe that it is important not to use data from

the target domain neither for hyper-parameters tuning or early stopping, because this

information would not be available in a real case scenario. The Cityscapes validation set

is only used at test time to measure the real performances of the adaptation method.

Chapter 4

AT/DT Extended

In this chapter, we propose and analyze some extensions to AT/DT, motivating each

of them. The problem can be tackled from several perspectives. For example, we can

introduce architectural improvements or changes in the training protocol. To be able to

actually implement these extensions, it is necessary to have a complete understanding

of the framework, so that upgrades can be done at any level. Moreover, due to the high

complexity of the project, we decided to implement everything with new powerful tools

such as Tensorflow 2.0, which gives the possibility to quickly prototype complex neural

networks in a short period of time (AT/DT was originally implemented in Tensorflow

1.12). Tensorflow 2.0. makes a huge step towards a simpler and cleaner deep learning

framework compared to the 1.12 version. For this reason, we think that it is worthy to

spend some time upgrading the existent code. This is not a trivial step since there are

relevant differences between these two framework versions. Indeed, only marginal parts

of the original implementation were taken, such as the data augmentation pipeline to

be applied to all images before feeding them to the model. Still, using a newer version

of Tensorflow, reduces substantially the time required for implementing the same archi-

tecture, considering that using another framework such as Pytorch would have required

to rewrite everything from scratch. More details on Tensorflow 2.0 and other impor-

tant tools used for this work are given in the following dedicated chapter. To improve

AT/DT we propose a list of extensions that can be applied to the architecture. The

order in which we propose them is not casual but carefully programmed. We firstly

49

50

tackle the main problems of the original version and perform many tests that serve as

hyper-parameters tuning. Once we obtained some important insights on these, we go

deeper and we try to understand whether more powerful architectures can be deployed

for our purpose. Finally, we use some of the most common Self-supervised tasks to re-

place monocular depth estimation to test whether simpler tasks can be used to learn

features. The outline of our work can be summarized with the following steps:

1. Ablation study on the number of channels of the transfer network. The

first characteristic one may notice about the transfer network is its huge number

of parameters. In this section, we study the impact of the number of channels and

to which extent is possible to reduce this number.

2. Batch normalization in the transfer network. The original version does not

include batch normalization layers in the transfer network. Here, we study several

options such as including it or not and the effect of the batch size.

3. Deeplab [6] vs UNET [32] as backbone network. A classical encoder-decoder

architecture may not be the best choice for complex tasks such as monocular depth

estimation and semantic segmentation. For this reason, we propose different back-

bones.

4. Flat transfer network. In addition to batch normalization, other structural

changes can be done in G1→2. Avoiding to shrink and consequently up-sample

deep features when mapping one task to another one may be highly beneficial.

5. Adversarial training. The transfer network is optimized by minimizing a L2

loss. This may not be optimal given the high dimensionality of the feature space.

One plausible solution is to deploy adversarial training.

6. Self-supervised learning. Even though there are off-the-shelf algorithms able to

estimate a depth map given a scene, these labels are far optimal. In this section, we

study the possibility to train N1 with the help of Self-supervised learning. Tasks

such as Autoencoder, Colorization, Edge Detection, and Rotation prediction are

investigated.

4.1 Ablation study on the number of channels of the transfer network 51

We now analyze thoroughly each of the previous point. From now on, we work under

the default setting: Dep. → Sem. and evaluation performed on the validation set of B
(i.e. Cityscapes).

4.1 Ablation study on the number of channels of the

transfer network

64 128 256 512 1024 2048

36

38

40

42

44

Number of channels

mIoU

64 128 256 512 1024 2048
79

80

81

82

Number of channels

Acc

Figure 4.1: Results with different number of channels in G1→2 (left side mIoU, right side

Acc). Results obtained from the Cityscapes validation set.

We start by studying the most important component of the framework: G1→2. As

stated before, it consists of a simple CNN where each layer has 2048 input channels

and 2048 output channels with a kernel of size 3. Hence, by assuming a three-channel

input image with resolution 512 × 512, the input and output map of G1→2 have size

32×32×2048. The number of parameters for each layer is thereby 3×3×2048×2048 =

37.748.736. This huge number of parameters is probably not needed. Being able to

reduce these channels has two benefits. First of all, it reduces training time. Secondly,

by cutting the number of parameters we are allowed to modify the structure of G1→2.

For example, by saving some memory, one can use a deeper architecture or simply avoid

to shrink the activation maps. This is an important step that will be considered again

4.2 Batch normalization in the transfer network 52

later. As an ablation study, we tested the same architecture, varying only the number

of channels from 2048 to 256. As fig. 4.1 shows, there is a proportional correlation

between both mIoU and Acc and the number of channels. Although results are noisy

due to the choice of validating the model on source data only, the differences when using

512, 1024 or 2048 channels are not large. We can thereby select 1024 as it is a good

compromise between memory requirements and performances. A transfer network with

1024 channels for each layer has about 96M parameters against the 226M required by

the original implementation.

4.2 Batch normalization in the transfer network

Batch normalization is a popular technique for improving the speed, performance,

and stability of a neural network. AT/DT original implementation does not include this

type of layer in G1→2. It is thereby sensible to apply one batch normalization layer for

each convoluational layer together with several batch sizes to study its effect during the

transfer process. This layer was not utilized in the original version possibly because

of the side effect that can be intruded in the DA setting by batch normalization. As

explained in section 2.2.1.3, and well documented in [24], BN parameters are largely

influenced by the input data. This may cause a performance drop when testing a model

since, after the training phase, each layer of the network expects data belonging to a

certain distribution (the one learned from the source domain), that could differ from the

distribution of the target domain. Table table 4.1 summarizes results for several possible

configurations. There are no evident differences introduced by batch normalization, and

from our experiments it does not seem to hurt performances. It is clear though that

increasing batch size is harmful. A possible explanation may be that when learning a

mapping between tasks, if more than one image is used for each iteration, the network

tries to learn an average mapping that works well for all of them. fig. 4.2 confirms this

intuitive explanation: the higher is the batch size, the worse are small or rare objects

correctly transferred among domains. For instance, when batch size is 1, the model is

able to correctly classify some of the traffic signs, while this does not happen with larger

batch sizes. On the other hand, when using batch size 1, the output map is noisier

4.2 Batch normalization in the transfer network 53

(see bottom part of the top right prediction in fig. 4.2). This also explains the slight

improvement in terms of Acc when using larger mini-batches. Given these findings, in

the following extensions, we will always assume to train G1→2 with batch size 1 and using

batch normalization layers.

Figure 4.2: Visual effect of a different batch size. From top left to bottom right: RGB

input, prediction with BS = 1, BS = 8, BS = 16. All predictions are obtained without

batch normalization layers.

mIoU Acc

bs=1, BN=no 43.46 81.42

bs=1, BN=yes 43.65 82.46

bs=8, BN=no 42.1 82.6

bs=8, BN=yes 41.3 83.7

bs=16, BN=no 37.2 80.0

bs=16, BN=yes 38.1 82.1

Table 4.1: Batch Normalization effect on the transfer network

4.3 Deeplab vs UNET as backbone network 54

4.3 Deeplab vs UNET as backbone network

When a pixel level understanding is required, it essential to maintain as much as

possible low-level details. In the down sampling path of an encoder, although rich features

at different scales are captured by the network, the low-level characteristics of an image

are lost due to the aggressive shrink of the input resolution. Thereby, commonly used

networks such as a ResNet50 that reduces the input to be 1/32 of the original size, are

not ideal in the semantic segmentation case. This is also the reason why the encoder of

AT/DT is a DRN (Dilated Residual Network), which increases the resolution of output

feature maps without reducing the receptive field of individual neurons. This is done

by replacing the striding in the last two convolutional groups of a ResNet with dilated

convolutions. This allows to shrink by only a factor of 1/16 the input image. In addition

to a DRN, two more common architectures can be used to retain as much as possible

low-level details, and consequently to obtain more fine-grained prediction maps. These

are DeepLab and UNET. The UNET was originally developed for Bio Medical Image

Segmentation but it quickly became used in many different scenarios. The architecture

contains two paths. The first one is the contraction path (the encoder), which is used to

extract rich features from the image, while the second one is the symmetric expanding

path (the decoder) which is used to up sample the encoded features to the original input

size so that a probability distribution for each pixel can be estimated. The up-sampling

operation can be done with transposed convolutional layers or simply by bilinear up-

sampling. The model is then augmented with skip connections between the encoder and

the decoder: at each down sampling operation in the encoder, the activation maps are

stored and given in input to the corresponding layer of the decoder. This has two benefits.

Firstly, the skip connections allow a better flow of the gradient during back propagation.

Then, thanks to these connections, at each layer of the decoder low-level details captured

by the encoder can be directly integrated with the rich features modeled by the decoder,

resulting in more fine-grained predictions. fig. 4.3 shows the UNET architecture.

4.3 Deeplab vs UNET as backbone network 55

Figure 4.3: UNET architecture [32]

This architectural modification not only changes the structure of N1 and N2, which

are now two identical UNET (the only difference is in the last layer), but also requires

an update to the transfer network. This is due to the fact that by using a UNET, the

decoder D2 now expects for each layer two inputs (i.e. the output of the previous layer

and the output from the layer with the same spatial resolution in E2). This means that a

transfer network must be applied to every skip connections so that the mapping between

the two tasks can be learned at different scales. During training, G1→2 is optimized by

minimizing again the L2, that is now computed at each skip connection level:

LTr =
n∑
i

LTri

LTri = ||G1→2(E
A∪B
1i

(xA))− EA
2i

(xA)))||2,

with i denoting the i− th down sampling layer of each encoder and n the total number

of skip connections. The objective of Deeplab is essentially the same, although it relays

on a different idea. Instead of using skip connections between encoder and decoder, it

uses the so called ASPP module(Atrous Spatial Pyramid Pooling). fig. 4.4 represents the

DeepLab architecture. It is very similar to the DRN architectures but enhanced with the

ASPP module, which applies to the output of the encoder one 1× 1 convolution, three

4.4 Flat transfer network 56

3 × 3 convolutions with rates = (6, 12, 18) and an image pooling to capture the global

context. Each convolution has 256 filters and batch normalization. The outputs are then

concatenated and convolved again with a 1× 1 filter to reduce depth. In the context of

AT/DT, both E1 and E2 are replaced with the architecture depicted in fig. 4.4, while

the decoders remain unvaried. The mapping between tasks is thereby applied after the

ASPP module, with the hope that multiple-scale features can be transferred. The L2

loss is minimized as usual.

Figure 4.4: DeepLab Architecture [6]

4.4 Flat transfer network

Since the transfer network is trained on A, it is reasonable to assume that if G1→2 has

effectively learned to map depth features into semantic features, when applying AT/DT

(i.e. D2(G1→2(E1(x)))) to an input image belonging to the Carla dataset, results should

not change. Of course, this is only an ideal situation since it is not possible to perfectly

convert features between tasks; still, a good result is expected. With this observation

in mind, after the training process, one can test G1→2 on the Carla validation set, and

compare this result with the one obtained by N2. By doing this simple test, we can

check the effectiveness of the transfer network in the following way: if a large gap in

performances is present when applying G1→2 in A, we can conclude that the learned

mapping is unsatisfactory. With this observation in mind, we propose to an architectural

upgrade to limit as much as possible the side effect of the transfer network, even when

applied inside the domain it has been trained on. We thereby propose a transfer network

composed of 6 convolutional layers with no striding and bilinear up sampling, each

4.4 Flat transfer network 57

followed by a batch normalization layer, so that G1→2 does not perform any shrinking

or up sampling operation. It is important to note that performing convolution without

striding increases significantly memory usage since we are not using more parameters,

but we are keeping in memory bigger tensors. This solution can be applied thanks to

the change done in section 4.2, which allows us to reduce the required memory to train

our model. fig. 4.5 details this new architecture:

Layer (type) Output Shape Param #

===

InputLayer (None, 32, 32, 2048) 0

Conv2D (None, 32, 32, 1024) 18875392

BatchNormalization (None, 32, 32, 1024) 4096

Activation(Elu) (None, 32, 32, 1024) 0

Conv2D (None, 32, 32, 1024) 9438208

BatchNormalization (None, 32, 32, 1024) 4096

Activation(Elu) (None, 32, 32, 1024) 0

Conv2D (None, 32, 32, 1024) 9438208

BatchNormalization (None, 32, 32, 1024) 4096

Activation(Elu) (None, 32, 32, 1024) 0

Conv2D (None, 32, 32, 1024) 9438208

BatchNormalization (None, 32, 32, 1024) 4096

Activation(Elu) (None, 32, 32, 1024) 0

Conv2D (None, 32, 32, 1024) 9438208

BatchNormalization (None, 32, 32, 1024) 4096

Activation(Elu) (None, 32, 32, 1024) 0

Conv2D (None, 32, 32, 2048) 18876416

BatchNormalization (None, 32, 32, 2048) 8192

Activation(Elu) (None, 32, 32, 2048) 0

===

Total params: 75,533,312

Trainable params: 75,518,976

Non-trainable params: 14,336

Figure 4.5: Flat transfer architecture

4.5 Adversarial training 58

4.5 Adversarial training

Adversarial training is widely used in many different scenarios, and it is particularly

suitable in situations where the loss function to minimize is not clear, as in the case

of Domain Adaptation. For example, when solving semantic segmentation on a target

domain, minimizing directly the cross entropy error using source data, is likely not the

best possible option. As seen in section section 2.2.2.2 in fact, Adversarial training can be

used to alleviate domain shift by simply exploiting alternative loss functions. Therefore,

we propose two ways of using adversarial training to train G1→2, which aim to perform

domain alignment on the output space of the transfer network.

4.5.1 Domain alignment through domains

The idea of performing domain alignment on the transfer network is to help G1→2

to generalize better on B. Considering that this mapping is learned using only images

from A, G1→2 may also suffer of bad generalization due to domain shift. Moreover,

since G1→2 makes use of batch normalization, it is also important that the statistics and

the parameters of each BN layer are updated taking into account images belonging do

both domains. For this reason, we embed the model with a simple discriminator C that

is trained to recognize whether the features obtained by applying the transfer network

come from A or B. On the other hand, G1→2 should be able to fool the discriminator

and to minimize the L2 loss to learn an effective mapping among tasks:

min
C
LadvC (XA,XB) =− Ex∼XA

[logC (G (E1(x)))]

− Ex∼XB
[log (1− C (G (E1(x))))]

min
G
LadvTr

(XB) =− Ex∼XB
[logC (G (E1(x))]

min
G
LTr (XA) =||G1→2(E1(x))− E2(x)||2

By weighting the previous terms with appropriate weights (λ1 = 1, λ2 = 0.0001, λ3 =

0.0001) we obtain the total objective function:

L = λ1LTr + λ2LadvTr
+ λ3LadvD

4.6 Self-supervised learning 59

4.5.2 Task mapping with adversarial training

Alternatively, adversarial training can be deployed to learn a better mapping between

tasks. We can, in fact, use a discriminator to make features produced from G1→2 even

more similar to the one obtained by the target encoder. More precisely, the discriminator

has to determine whether the input feature maps come from E2 or the transfer network,

while G1→2 is trained with the usual L2 loss and to fool the discriminator:

min
C
LadvC (XA) =− Ex∼XA

[logC (E2(x))]

− Ex∼XA
[log (1− C (G (E1(x))))]

min
G
LadvTr

(XA) =− Ex∼XA
[logC (G (E1(x))]

min
G
LTr (XA) =||G1→2(E1 − E2(x)||2

Again, we can set λ1 = 1, λ2 = 0.0001, λ3 = 0.0001 and obtain the final loss:

L = λ1LTr + λ2LadvTr
+ λ3LadvD

In both cases, the architecture of the discriminator consists of 4 convolutional layers that

shrink the input activation map to a 4× 4× 1 map, where for each patch the output is

a value between 0 and 1 (i.e. the probability of the patch to belong to domain A or B).

For a more stable training, we embed the discriminator with Spectral Normalization [26],

which has been shown to improve the stability of GANs.

4.6 Self-supervised learning

So far we exploited the fact that monocular depth estimation and semantic seg-

mentation are correlated. We also know by now that in order to run AT/DT partial

supervision is required on B, hence a strategy for obtaining such labels is needed. In

the case of monocular depth estimation, proxy labels can be obtained by filtering SGM

disparities through confidence measures. Doing this is not that simple since it requires

some expertise in the specific topic: it would be much easier to deploy other general

4.6 Self-supervised learning 60

tasks. For this reason, we study here the possibility to replace depth estimation with

Self-supervised tasks. In particular, we focus on four such tasks: Autoencoder, Rota-

tion prediction, Colorization, and Edge detection. We provide now details on how these

tasks are solved since they require some adjustments to the architecture and we discuss

results in the following chapter. All these tasks are trained in the same way as done for

monocular depth estimation (i.e. on both A and B).

4.6.1 Autoencoder

An Autoencoder is a neural network that learns to efficiently compress data and to

reconstruct it back from the encoded representation. The task is unsupervised, in the

sense that the label is the input itself. To reconstruct the input, the network must

learn how to reduce data dimension ignoring noise and redundant information, retaining

thereby only important features from the data. The decoding process is lossy, since some

information is usually lost, but for our purposes this is not a problem. What we would

really like to know, is instead whether the features captured by a simple autoencoder, can

be transferred to another task. To change as little as possible, the autoencoder uses the

same backbone deployed for monocular depth estimation, namely a DRN as encoder that

reduces the input by 1/16, and a stack of convolutional and bi-linear up-sample layers as

decoder. The only difference is the final prediction layer, that has to produce a 3-channel

activation map. The Autoencoder is optimized by minimizing the L2 loss between RGB

input image and the 3-channel output logits. Afterward, G1→2 is trained as usual to

map features produced by the autoencoder into semantic segmentation features. fig. 4.6

shows a reconstruction of images belonging to both domains.

4.6 Self-supervised learning 61

Figure 4.6: Image reconstruction with an Autoencoder. Top row input images (and

ground truths), bottom row reconstructed images.

4.6.2 Rotation prediction

Rotation prediction is a Self-supervised task that has already been explored in the

context of object classification, while for semantic segmentation only few works have

used it (see section 2.2.4). In this case, the objective of the networks is to predict the

degree of rotation in which the original image has been rotated. Only four angles of

rotations are admitted (0, 90, 180, 270). In order to solve this problem, a neural network

must capture complex features such as the shape of an object. Moreover, also a semantic

understanding of the scene is required since in some case the shapes are not enough; for

example, the degree of rotation of a vertical symmetric object can be ambiguous). These

complex features can also be useful for the downstream task. Again we maintain fixed

the encoder, while the decoder is only composed by a convolutional layer, an average

pooling layer and a final dense layer with a softmax activation (see details in fig. 4.7).

We chose such a light decoder so that the encoder is the one responsible for capturing

rich features, and the decoder prediction is only based on the encoder representation.

4.6 Self-supervised learning 62

Layer (type) Output Shape Param #

===

InputLayer (None, 32, 32, 2048) 0

Conv2D (None, 16, 16, 128) 2359424

GlobalAveragePooling2d (None, 128) 0

Dense (None, 4) 516

Activation(Softmax) (None, 4) 0

===

Total params: 2,359,940

Trainable params: 2,359,940

Non-trainable params: 0

Figure 4.7: Rotation Decoder

4.6.3 Image Colorization

Colorization is another simple task that has been used as a Self-supervised task.

The objective in this case is to reproduce a colored image starting from its gray-scale

representation. The problem is conceptually similar to an autoencoder, although in this

case we are not performing data compression, but rather we ask to the network to add

information such that the color is restored. There are several way to implement a network

capable of solving such task, and in this work we chose the most simple one, that consists

in treating it as a regression problem: from a gray scale image the network must predict 3

float numbers between 0 and 1 (as done for the autoencoder). The network is optimized

my minimizing the L2 loss between the predicted output and the original RGB image.

The consequence of this choice is that the restored images will appear more grayish since

an object can have different colors, and the optimal solution for a L2 is roughly the

mean value. Although this is not the best way to solve Image Colorization, our concern

is to capture useful features for the target task, rather than obtaining sharp and brilliant

colors. A more suitable way of tackling this problem would be to see the problem as

a classification task, and predict a probability distribution for each pixel. This better

represent the multimodal nature of the problem. fig. 4.8 illustrates two examples of

Image Colorization performed by our network.

4.6 Self-supervised learning 63

Figure 4.8: Example of Image Colorization. From Top to bottom: gray-scale image,

prediction, colored ground truth.

4.6.4 Edge detection

Edge detection is a common and old vision problem that aims to identify pixels at

which the image brightness changes sharply. Many works have been proposed to solve

this task, most of them without the need for neural networks. The most simple way

of computing edges is the 1D Step-Edge, which consists of computing the derivative of

the signal in a point and apply a threshold; if in fact, the value is above the desired

threshold, it means that a sharp change is present. However, in this work, we compute

edges using one of the most advanced algorithms: Canny’s Edge Detector [5]. This

detector is based on the idea that edges can be detected by finding local extrema of the

convolution of the signal by a first order Gaussian derivative. We rely on the OpenCV

4.6 Self-supervised learning 64

implementation to compute edges for both domains (edges in A are computed starting

from the semantic segmentation map rather than the RGB image itself to reduce noise),

and then we use the typical encoder-decoder architecture to learn to extract edges using

the output of Canny as proxy labels. We treat the task as a regression problem, hence

the decoder output is a gray-scale image with values between 0 and 1 (edges are identified

with white pixels). The encoder output is then mapped again into features for semantic

segmentation minimizing the L2 loss.

Chapter 5

Results

We report in this chapter all the results obtained with the proposed extensions. We

start analyzing performances comparing the changes done at the architectural level. This

will serve as model selection for the following tests. Then we report results obtained with

adversarial training and compare it with the best result obtained without it. Finally,

some thoughts and considerations are provided when replacing monocular depth estima-

tion with several Self-supervised tasks.

5.1 Results with different architectures

To check the effectiveness of any DA method it is essential to establish a proper

Baseline and an Oracle. Comparing a model with the former, allows us to determine

the success or the failure of a solution, while the latter gives us the best possible results

since we assume that target data is available. Our Baseline, consists of the network

N2 trained on A and directly tested on B. The Oracle corresponds to the network N2

trained and tested on B. To set a more realistic goal, we also define a second Oracle

AT/DT Flat Oracle, which refers to training both G1→2 and N2 using target images

only (normally they are instead trained using source images only). AT/DT Flat Oracle

can be considered our real upper bound, as its score represent the best possible results

achievable when mapping depth features into semantic segmentation features assuming

to have labels on B. Interestingly, the best results have been obtained with the Flat

65

5.1 Results with different architectures 66

transfer network (mIoU 48.04 and Acc 85.90), which is the simplest update we proposed.

In fact, by simply avoiding to reduce the spatial dimension of the input features we are

able to obtain a gain of +9.18 in terms of mIoU over the baseline. Also transferring

features at different scales gives a noticeable gain, although not as much as the flat

version. On the other hand, multi-scale features extracted with the ASPP module are

less transferable. This suggests that rather than mixing information at different scales,

it is better to learn a mapping among the corresponding levels of the two encoders. This

may be conuter intuitive at a first glance since architectures based on DeepLab usually

outperform simple encoder-decoder on the semantic segmentation task. However, our

case is very different, because performances of AT/DT on the downstream task highly

depends on the transferability of features extracted by E1 and E2, and the ones learned

when embedding the ASPP module are probably too complex to be mapped with a

simple L2 loss. fig. 5.1, fig. 5.2, fig. 5.3, and fig. 5.4 illustrate qualitative examples. The

superiority of the Flat architecture is clearly visible. For example, all the other models

fail to capture small objects such as traffic signs and persons. Although transferring

features at multiple levels as done with the skip connections version produces overall

better results compared to the original version (which is only able to detect large blobs),

it is also interesting to show that some noise is introduced (see pedestrians colored in

red). It is also important to notice how our plain implementation of AT/DT obtains

a gain of 3.94% in mIoU over the original version. This suggests that using a more

real-looking synthetics dataset can noticeably improve any DA method.

Architecture R
oa

d

S
id

ew
al

k

W
al

ls

F
en

ce

P
er

so
n

P
ol

es

V
eg

et
at

io
n

V
eh

ic
le

s

T
r.

S
ig

n
s

B
u

il
d

in
g

S
k
y

mIoU Acc

Baseline 78.99 38.81 1.34 5.80 24.02 24.47 71.98 52.23 5.57 65.17 59.10 38.86 78.58

AT/DT [30] 76.44 32.24 4.75 5.58 24.49 24.95 68.98 40.49 10.78 69.38 78.19 39.66 76.37

AT/DT (ours) 84.66 38.52 3.95 9.19 26.99 14.09 75.72 68.35 10.49 73.90 73.71 43.60 82.86

AT/DT DeepLab 86.98 45.67 5.08 7.72 27.40 12.81 74.34 56.36 05.25 71.94 71.65 42.29 82.62

AT/DT Skips connections 89.95 49.01 4.98 11.43 32.91 18.64 74.15 66.86 10.18 72.08 79.90 46.37 84.60

AT/DT Flat 89.95 46.77 5.16 10.21 28.93 28.92 77.50 71.37 19.24 75.29 75.12 48.04 85.90

AT/DT Flat Oracle 89.69 48.05 11.46 29.58 59.68 35.84 85.83 85.57 34.03 78.17 85.54 58.50 88.84

Oracle 96.74 78.28 29.26 40.78 72.39 51.28 90.69 91.94 58.92 86.33 89.23 71.44 93.90

Table 5.1: Experimental results with different architectures on the Cityscapes valida-

tion set

5.1 Results with different architectures 67

Figure 5.1: AT/DT qualitative examples. From left to right: RGB image, prediction,

ground truth.

Figure 5.2: AT/DT with ASPP module qualitative examples. From left to right: RGB

image, prediction, ground truth.

5.1 Results with different architectures 68

Figure 5.3: AT/DT with skips connections qualitative examples. From left to right:

RGB image, prediction, ground truth.

Figure 5.4: AT/DT Flat transfer qualitative examples. From left to right: RGB image,

prediction, ground truth.

5.2 Results with Adversarial training 69

5.2 Results with Adversarial training

In the previous section we saw how a simple change at the architectural level was

able to give us an important boost. Now we show results when deploying adversarial

training together with the previous upgrade. In table 5.2 we compare AT/DT Flat with

the two adversarial strategies we proposed in section 4.5. In the Domain Adversarial

strategy G1→2 has to minimize the L2 loss and to fool a discriminator that determines

whether the output of the transfer network is computed starting from an image belonging

to A or B. In this case, we are thereby aligning the two domains. On the other hand,

the second adversarial technique aims to improve the mapping among the two encoders

by discriminating the outputs of G1→2 from outputs of E2. Both solutions seem to be

effective since we obtained a gain of +1.28 and (+1.47) respectively. We also combined

the two strategies using two different discriminators, but it did not seem to further boost

performances. By comparing these numbers with the scores obtained in table 5.1, we

realized that our performances are not too far from the ones obtained by the Oracle

AT/DT Flat Oracle. This highlights the effectiveness of our solutions, but at the same

time, it suggests that more effort should be put to improve the oracle itself: improving

performances when training both the transfer network and N2 in the target domain

may lead to better results in the standard setting. In fig. 5.5 and fig. 5.6 we report

some qualitative samples although for humans is quite hard to appreciate such small

improvements.

Strategy R
oa

d

S
id

ew
al

k

W
al

ls

F
en

ce

P
er

so
n

P
ol

es

V
eg

et
at

io
n

V
eh

ic
le

s

T
r.

S
ig

n
s

B
u
il
d
in

g

S
k
y

mIoU Acc

AT/DT Flat 89.95 46.77 5.16 10.21 28.93 28.92 77.50 71.37 19.24 75.29 75.12 48.04 85.90

AT/DT Domain Adv. 90.80 48.91 6.16 11.84 35.32 30.29 78.78 71.17 18.51 75.66 75.03 49.32 86.43

AT/DT Task Adv. 90.22 46.71 4.45 12.35 37.86 30.73 78.58 73.07 20.21 76.06 74.40 49.51 86.63

Table 5.2: Experimental results with adversarial training on the Cityscapes validation

set

5.2 Results with Adversarial training 70

Figure 5.5: Segmentation maps obtained with Adversarial training across domains.

Figure 5.6: Segmentation maps obtained with Adversarial training across tasks.

5.3 Results with Self-supervised tasks 71

5.3 Results with Self-supervised tasks

So far we focused our attention on the depth to semantic segmentation setting. How-

ever, as stated before, monocular depth estimation requires some task related knowledge

since proxy labels must be generated somehow for the target domain. For this reason,

we investigated different Self-supervised tasks to verify whether it is possible to transfer

knowledge from a simpler task to a complex one such as semantic segmentation. From

our experiments summarized in table 5.3, it seems that it is not possible (at least with

these tasks and with our specific implementations) to boost performances of semantic

segmentation by simply mapping features. To further confirm this hypothesis, we also

reports results of AT/DT in A (see table 5.4). The large gaps between all the Self-

supervised tasks and monocular depth estimation without even changing domain when

testing suggests indeed the inadequacy of these settings. Among these, Rotation pre-

diction seems to be the most effective when testing on the target domain. It is also the

only task that requires some semantic understanding of a scene since the others (Au-

toencoder, Colorization, Edge detection) work with low-level details. However, we do

not exclude that by combining somehow several tasks we can achieve similar results to

depth estimation, even though it is not straightforward how to do it.

T1 R
oa

d

S
id

ew
al

k

W
al

ls

F
en

ce

P
er

so
n

P
ol

es

V
eg

et
at

io
n

V
eh

ic
le

s

T
r.

S
ig

n
s

B
u

il
d

in
g

S
k
y

mIoU Acc

Autoencoder 60.24 19.33 1.67 1.67 4.12 8.00 33.15 10.49 0.69 17.89 62.66 19.99 52.91

Colorization 71.40 22.50 0.80 1.67 3.48 10.25 35.80 18.23 1.27 40.38 56.61 23.85 62.28

Rotation 78.46 24.83 3.21 5.08 9.13 14.36 64.64 26.24 0.27 50.92 70.13 31.57 71.93

Edge detection 63.82 16.60 0.67 1.37 6.55 10.26 47.62 4.42 0.11 33.90 38.87 20.38 58.33

Depth 89.95 46.77 5.16 10.21 28.93 28.92 77.50 71.37 19.24 75.29 75.12 48.04 85.90

Table 5.3: Experimental results on the Cityscapes validation set when mapping different

tasks to Semantic Segmentation. Best results highlighted in bold.

5.3 Results with Self-supervised tasks 72

T1 R
oa

d

S
id

ew
al

k

W
al

ls

F
en

ce

P
er

so
n

P
ol

es

V
eg

et
at

io
n

V
eh

ic
le

s

T
r.

S
ig

n
s

B
u

il
d

in
g

S
k
y

mIoU Acc

Autoencoder 80.50 65.79 33.66 31.74 10.19 35.35 82.45 59.16 09.36 53.98 78.80 49.18 84.35

Colorization 90.87 68.93 34.82 36.95 12.60 38.81 82.50 60.45 32.29 62.71 94.18 55.92 88.89

Rotation 88.87 66.05 28.75 29.86 7.24 39.02 79.92 44.79 05.31 58.75 93.04 49.24 87.05

Edge detection 91.55 72.98 39.59 45.67 2.01 49.50 85.07 63.03 16.92 68.77 93.67 58.81 90.36

Depth 92.76 76.55 72.67 55.78 35.13 65.45 88.57 79.64 61.22 83.65 94.12 73.23 93.20

Table 5.4: Experimental results on the Carla validation set when mapping different

tasks to Semantic Segmentation. Best results highlighted in bold.

Chapter 6

Technologies

Many frameworks are available in the Deep Learning world. The most common are

probably Tensorflow, Keras and Pytorch. Each of them has its own advantages and

disadvantages. For this thesis, we decided to use Tensorflow 2.0, since this new version

was released right before the start of this project. Google’s white paper [1] introduced

TensorFlow in 2015, and it was the first choice for many Deep Learning practitioners and

researchers, although it wasn’t really user-friendly. Over the years, thanks to the great

community behind Tensorflow, the framework has been greatly improved and recently

merged with Keras, which is a high-level API that can sit on top of other Deep Learning

frameworks. Essentially, Keras has become the high-level API for Tensorflow 2.0. The

beauty of Keras lies in its ease of use. Defining neural networks is intuitive, simple and

it provides full expressiveness. Last but not least, we have Pytorch. Pytorch is a Deep

Learning framework developed by Facebook’s AI research group and released in 2016.

Pytorch received immediately great attention from the research community thanks to its

native integration with Python. Writing code in Pytorch is essentially the same as using

Python, while this is not true for Tensorflow (at least until version 2.0). In terms of

coding style, we can say that Pytorch lies somewhere in between Keras and TensorFlow,

even though differences have narrowed with the introduction of Tensorflow 2.0.

73

6.1 Tensorflow 74

6.1 Tensorflow

As stated before, in this work we used Tensorflow 2.0. The are many reasons why

we made this choice. Firstly, the last release allows defining very complex architectures

with few lines of code, thanks to its new high-level API. Keras has been adopted for this

purpose, hence all its advantages have been included in Tensorflow 2.0, together with

all the tools that were already available in Tensorflow 1.x, such as tf.data (a library for

creating efficient input pipeline). Another good feature is eager execution by default.

Differently from the previous version in fact, Tensorflow 2.0 executes all operations ea-

gerly (like Python normally does). This behavior simplifies the debugging process since

it gives the possibility to execute operations and get the result immediately. However,

this new features comes at cost: performances are considerably worse compared to the

Tensorflow 1.x graph-based execution. However, TF 2.0. makes available graph mode

execution too by simply using the tf.function decorator. The suggested pattern is thereby

to implement and debug with eager execution, and use graph mode for long trainings to

exploit the benefits of graph mode. Lastly, great improvements have also been done to

support distributed training and easier deployment. The following snippet of code taken

from the Tensorflow official documentation, shows how easy is to define a convolutional

neural netowrk to solve digit classification on the MNIST dataset.

import tensorflow as tf

mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()

x_train, x_test = x_train / 255.0, x_test / 255.0

model = models.Sequential()

model.add(layers.Conv2D(32, (3, 3), activation=’relu’, stride=2,

input_shape=(32, 32, 3)))

model.add(layers.Conv2D(64, (3, 3), activation=’relu’, stride=2))

model.add(layers.Conv2D(64, (3, 3), activation=’relu’))

model.add(layers.Flatten())

6.2 GCP 75

model.add(layers.Dense(64, activation=’relu’))

model.add(layers.Dense(10, activation=’softmax’))

model.compile(optimizer=’adam’,

loss=’sparse_categorical_crossentropy’,

metrics=[’accuracy’])

model.fit(x_train, y_train, epochs=5)

model.evaluate(x_test, y_test)

6.2 GCP

The GCP (Google Cloud Platform) is a cloud service that consists of a set of physical

resources distributed in Google’s data centers and offered as virtual resources to the

final user. Among the available resources, there are Computing and hosting capabilities,

Storage and Networks Infrastructure, and more importantly for this project Big Data

and Machine Learning services. We chose to relay on the GCP ecosystem thanks to its

great compatibility with Tensorflow and the wide support for Deep Learning applications.

Like other public cloud platforms, most of the Google Cloud Platform services follow a

pay-as-you-go model in which there are no upfront payments, and users only pay for the

cloud resources they consume.

6.2.1 Compute Engine

Compute Engine can be thought as an infrastructure as a service (IaaS), and is one

of the main services provide by Google thanks to its flexibility and utility. With regard

to this thesis, it has been mainly used to instantiate and run fully customizable virtual

machines. Thanks to Compute Engine in fact, one can quickly spin up a machine with all

the required hardware and package configuration. This is done through a simple menu

in which it is possible to select the desired options among the available solutions. For

6.2 GCP 76

example, in our case, we used a virtual machine with 16GB of RAM and a NVIDIA T4

GPU to run our trainings.

6.2.2 Google Cloud Storage

Google Cloud Storage is a flexible, scalable, and durable storage service. It provides

a storage option for all the instanced virtual machine instances, so that the same data

can be accessed by any instance. This is very handy in Deep Learning projects. For

example, in our context, we used Google Cloud Storage to store our datasets, and run

many virtual machines at the same to train different models completely in parallel. To

use such storage service, it is sufficient to define a global object, called Bucket. There is

a single global namespace shared by all buckets, hence the name must be unique. Once

a bucket is defined, it provides a hierarchical structure in which is possible to create,

store, read and write folders and files.

6.2.3 Big Data Services

The GCP offerse many Big Data Services, such as Google BigQuery, AI Platform,

Google Cloud Dataproc and Dataflow. We briefly present Dataflow, since it is the only

service in this category that we used for this project. Dataflow provides a managed

service and set of SDKs to perform batch and streaming data processing tasks. For

example, it can be used to run pipelines written using the Apache Beam library. Once

a job is started, Cloud Dataflow automatically spins up a cluster of virtual machines,

distributes the tasks among them, and dynamically scales the cluster based on how the

pipeline is performing. These characteristics makes it very attractive for high-volume

computation, especially when the processing tasks can clearly and easily be divided into

parallel workloads. This is the case of data pre-processing for instance. As every data

scientist knows, one of the most difficult phase of an end-to-end project is the data

preparation step, that consists in understanding and modelling data to make it suitable

for machine learning models. To this purpose, we used Dataflow to run a pipeline to

convert our datasets in TFRecords files. A TFRecord is a binary file optimized for use

with Tensorflow, and it helps in improving training time performances. Files converted

6.2 GCP 77

into this format can be efficiently read from disk and thereby constantly fed to the GPU

without wasting time. Most of the times in fact, the input pipeline is the bottleneck

of the training. fig. 6.1 shows a successful execution of a pipeline in Dataflow used to

generate TFRecords from the Carla dataset. Each block shows the amount of time that

would have been necessary to execute it without horizontal scaling. In total, to convert

the Carla dataset into TFRecords, about 6 hours are needed, while using Dataflow we

accomplished this in less than 30 minutes.

Figure 6.1: Example of a Beam pipeline executed in Dataflow

Chapter 7

Conclusions and future work

In this work we first introduced some of the most important techniques to perform

domain adaptation. Then, we analyzed thoroughly a recent general framework called

AT/DT, that aims to explicitly use the correlation between visual tasks to perform

domain adaptation. This method learns to transfer knowledge across tasks in a fully

supervised domain and exploits this mapping on a different domain where only par-

tial supervision is available. Inspired by the domain adaptation literature, we proposed

some effective upgrades that can be applied to the framework, and evaluated them using

monocular depth estimation as source task and semantic segmentation as target task.

We started with two ablation studies to find a good compromise between performances

and memory requirements. These allowed us to modify the architecture of the transfer

network, which highly affects the transferability of features among tasks. In particular,

the most important factor is to maintain spatial information when learning such map-

ping. Afterward, by exploiting adversarial training, we were able to further improve

performances. Lastly, we studied the possibility to transfer features from popular Self-

supervised tasks to semantic segmentation, showing that an effective mapping is learned

only when the two tasks are strongly connected. In future work, we plan to apply our

augmented framework on other popular datasets to make a comparison with advanced

domain adaptation techniques. Finally, we would like to test our framework with other

important vision tasks.

78

Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-

ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,

S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,

K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-

den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale

machine learning on heterogeneous systems, 2015. Software available from tensor-

flow.org.

[2] H. Alhaija, S. Mustikovela, L. Mescheder, A. Geiger, and C. Rother. Augmented

reality meets computer vision: Efficient data generation for urban driving scenes.

International Journal of Computer Vision (IJCV), 2018.

[3] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan. Unsuper-

vised pixel-level domain adaptation with generative adversarial networks. CoRR,

abs/1612.05424, 2016.

[4] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan. Domain

separation networks. CoRR, abs/1608.06019, 2016.

[5] J. Canny. A computational approach to edge-detection. Ieee transactions on pattern

analysis and machine intelligence, 8(6):679–698, Nov 1986.

[6] L. Chen, G. Papandreou, F. Schroff, and H. Adam. Rethinking atrous convolution

for semantic image segmentation. CoRR, abs/1706.05587, 2017.

79

BIBLIOGRAPHY 80

[7] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,

S. Roth, and B. Schiele. The cityscapes dataset for semantic urban scene under-

standing. CoRR, abs/1604.01685, 2016.

[8] J. S. Denker, W. R. Gardner, H. P. Graf, D. Henderson, R. E. Howard, W. Hubbard,

L. D. Jackel, H. S. Baird, and I. Guyon. Neural network recognizer for hand-

written zip code digits. In D. S. Touretzky, editor, Advances in Neural Information

Processing Systems 1, pages 323–331. Morgan-Kaufmann, 1989.

[9] A. Dosovitskiy, G. Ros, F. Codevilla, A. López, and V. Koltun. CARLA: an open

urban driving simulator. CoRR, abs/1711.03938, 2017.

[10] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single im-

age using a multi-scale deep network. In Z. Ghahramani, M. Welling, C. Cortes,

N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information

Processing Systems 27, pages 2366–2374. Curran Associates, Inc., 2014.

[11] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette,

M. Marchand, and V. Lempitsky. Domain-adversarial training of neural networks.

J. Mach. Learn. Res., 17(1):2096–2030, Jan. 2016.

[12] M. Ghifary, W. B. Kleijn, and M. Zhang. Domain adaptive neural networks for

object recognition. CoRR, abs/1409.6041, 2014.

[13] M. Ghifary, W. B. Kleijn, M. Zhang, D. Balduzzi, and W. Li. Deep reconstruction-

classification networks for unsupervised domain adaptation. CoRR, abs/1607.03516,

2016.

[14] S. Gidaris, P. Singh, and N. Komodakis. Unsupervised representation learning by

predicting image rotations. CoRR, abs/1803.07728, 2018.

[15] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio. Generative adversarial nets. In Proceedings of the

27th International Conference on Neural Information Processing Systems - Volume

2, NIPS’14, pages 2672–2680, Cambridge, MA, USA, 2014. MIT Press.

BIBLIOGRAPHY 81

[16] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network.

In NIPS Deep Learning and Representation Learning Workshop, 2015.

[17] H. HirschmÃ1
4
ller. Stereo processing by semi-global matching and mutual informa-

tion. in IEEE Transactions on Pattern Analysis and Machine Intelligence, 30:328–

341, 02 2008.

[18] J. Hoffman, E. Tzeng, T. Park, J. Zhu, P. Isola, K. Saenko, A. A. Efros, and

T. Darrell. Cycada: Cycle-consistent adversarial domain adaptation. CoRR,

abs/1711.03213, 2017.

[19] J. Hu, J. Lu, Y.-P. Tan, and J. Zhou. Deep transfer metric learning. Trans. Img.

Proc., 25(12):5576–5588, Dec. 2016.

[20] D. H. Juárez, L. Schneider, A. Espinosa, D. Vázquez, A. M. López, U. Franke,

M. Pollefeys, and J. C. Moure. Slanted stixels: Representing san francisco’s steepest

streets. CoRR, abs/1707.05397, 2017.

[21] G. Kang, L. Jiang, Y. Yang, and A. G. Hauptmann. Contrastive adaptation network

for unsupervised domain adaptation. CoRR, abs/1901.00976, 2019.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.

Weinberger, editors, Advances in Neural Information Processing Systems 25, pages

1097–1105. Curran Associates, Inc., 2012.

[23] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied

to document recognition. In Proceedings of the IEEE, volume 86, pages 2278–2324,

1998.

[24] Y. Li, N. Wang, J. Shi, J. Liu, and X. Hou. Revisiting batch normalization for

practical domain adaptation. CoRR, abs/1603.04779, 2016.

[25] M. Liu and O. Tuzel. Coupled generative adversarial networks. CoRR,

abs/1606.07536, 2016.

BIBLIOGRAPHY 82

[26] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for

generative adversarial networks. CoRR, abs/1802.05957, 2018.

[27] Z. Murez, S. Kolouri, D. J. Kriegman, R. Ramamoorthi, and K. Kim. Image to

image translation for domain adaptation. CoRR, abs/1712.00479, 2017.

[28] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits

in natural images with unsupervised feature learning. In NIPS Workshop on Deep

Learning and Unsupervised Feature Learning 2011, 2011.

[29] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Trans. on Knowl. and

Data Eng., 22(10):1345–1359, Oct. 2010.

[30] P. Z. Ramirez, A. Tonioni, S. Salti, and L. di Stefano. Learning across tasks and

domains. CoRR, abs/1904.04744, 2019.

[31] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. CNN features off-the-

shelf: an astounding baseline for recognition. CoRR, abs/1403.6382, 2014.

[32] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomed-

ical image segmentation. CoRR, abs/1505.04597, 2015.

[33] A. Rozantsev, M. Salzmann, and P. Fua. Beyond sharing weights for deep domain

adaptation. CoRR, abs/1603.06432, 2016.

[34] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to

new domains. In K. Daniilidis, P. Maragos, and N. Paragios, editors, ECCV (4),

volume 6314 of Lecture Notes in Computer Science, pages 213–226. Springer, 2010.

[35] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko. Simultaneous deep transfer across

domains and tasks. CoRR, abs/1510.02192, 2015.

[36] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial discriminative domain

adaptation. CoRR, abs/1702.05464, 2017.

[37] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell. Deep domain confusion:

Maximizing for domain invariance. CoRR, abs/1412.3474, 2014.

BIBLIOGRAPHY 83

[38] M. Wang and W. Deng. Deep visual domain adaptation: A survey. CoRR,

abs/1802.03601, 2018.

[39] J. Xu, L. Xiao, and A. M. López. Self-supervised domain adaptation for computer

vision tasks. CoRR, abs/1907.10915, 2019.

[40] Y. yan Sun, E. Tzeng, T. Darrell, and A. A. Efros. Unsupervised domain adaptation

through self-supervision. ArXiv, abs/1909.11825, 2019.

[41] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in

deep neural networks? CoRR, abs/1411.1792, 2014.

[42] F. Yu, V. Koltun, and T. A. Funkhouser. Dilated residual networks. CoRR,

abs/1705.09914, 2017.

[43] P. Zama Ramirez, A. Tonioni, S. Salti, and L. Di Stefano. Learning across and

domains. In International Conference on Computer Vision (ICCV), 2019.

[44] A. R. Zamir, A. Sax, W. B. Shen, L. J. Guibas, J. Malik, and S. Savarese. Taskon-

omy: Disentangling task transfer learning. CoRR, abs/1804.08328, 2018.

	Abstract
	List of Figures
	List of Tables
	Introduction
	Transfer Learning and Domain Adaptation
	Notations and Definitions
	Approaches for solving Domain Adaptation
	Discrepancy-Based Approaches
	Adversarial-Based Approaches
	Reconstruction-Based Approaches
	Self-supervised approaches for Domain Adaptation

	Performances analysis

	Learning Features across Tasks and Domains: AT/DT
	Setting
	Architecture
	Training and Evaluation protocol

	AT/DT Extended
	Ablation study on the number of channels of the transfer network
	Batch normalization in the transfer network
	Deeplab vs UNET as backbone network
	Flat transfer network
	Adversarial training
	Domain alignment through domains
	Task mapping with adversarial training

	Self-supervised learning
	Autoencoder
	Rotation prediction
	Image Colorization
	Edge detection

	Results
	Results with different architectures
	Results with Adversarial training
	Results with Self-supervised tasks

	Technologies
	Tensorflow
	GCP
	Compute Engine
	Google Cloud Storage
	Big Data Services

	Conclusions and future work
	Bibliography

