Documenti full-text disponibili:
      
    
  
  
    
      Abstract
      The absence of in-domain labeled data hinders the applicability of powerful deep neural networks. Unsupervised Domain Adaptation (UDA) methods have emerged to exploit such models even when labeled data is not available in the target domain. All these techniques aim to reduce the distribution shift problem that afflicts these models when trained on one dataset and tested in a different one. However, most of the works, do not consider relationships among tasks to further boost performances. In this thesis, we study a recent method called AT/DT (Across Tasks Domain Transfer), that seeks to apply Domain Adaptation together with Task Adaptation, leveraging on the correlation of two popular Vision tasks such as Semantic Segmentation and Monocular Depth Estimation. Inspired by the Domain Adaptation literature, we propose many extensions to the original work and show how these enhance the framework performances. Our contributions are applied at different levels: we first study how different architectures affect the transferability of features across tasks. We further improve performances by deploying Adversarial training. Finally, we explore the possibility of replacing Depth Estimation with popular Self-supervised tasks, demonstrating that two tasks must be semantically connected to be able to transfer features among them.
     
    
      Abstract
      The absence of in-domain labeled data hinders the applicability of powerful deep neural networks. Unsupervised Domain Adaptation (UDA) methods have emerged to exploit such models even when labeled data is not available in the target domain. All these techniques aim to reduce the distribution shift problem that afflicts these models when trained on one dataset and tested in a different one. However, most of the works, do not consider relationships among tasks to further boost performances. In this thesis, we study a recent method called AT/DT (Across Tasks Domain Transfer), that seeks to apply Domain Adaptation together with Task Adaptation, leveraging on the correlation of two popular Vision tasks such as Semantic Segmentation and Monocular Depth Estimation. Inspired by the Domain Adaptation literature, we propose many extensions to the original work and show how these enhance the framework performances. Our contributions are applied at different levels: we first study how different architectures affect the transferability of features across tasks. We further improve performances by deploying Adversarial training. Finally, we explore the possibility of replacing Depth Estimation with popular Self-supervised tasks, demonstrating that two tasks must be semantically connected to be able to transfer features among them.
     
  
  
    
    
      Tipologia del documento
      Tesi di laurea
(Laurea magistrale)
      
      
      
      
        
      
        
          Autore della tesi
          Cardace, Adriano
          
        
      
        
          Relatore della tesi
          
          
        
      
        
          Correlatore della tesi
          
          
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          Domain Adaptation,Task Adaptation,Deep Learning,Computer Vision
          
        
      
        
          Data di discussione della Tesi
          12 Marzo 2020
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di laurea
(NON SPECIFICATO)
      
      
      
      
        
      
        
          Autore della tesi
          Cardace, Adriano
          
        
      
        
          Relatore della tesi
          
          
        
      
        
          Correlatore della tesi
          
          
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          Domain Adaptation,Task Adaptation,Deep Learning,Computer Vision
          
        
      
        
          Data di discussione della Tesi
          12 Marzo 2020
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: