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Abstract

The large-scale structure of the Universe provides a key probe to test the cosmological
framework. To describe the spatial properties and dynamics of cosmic structures a stati-
stical approach is required, to exploit the main observable statistics of the cosmic density
field, like the power spectrum and bispectrum, which directly depend on the cosmological
parameters. Current and upcoming projects, such as DESI, Euclid, LSST, PFS, SKA
and WFIRST, will reconstruct the main properties of the Cosmic Web, at increasingly
large volumes. These ground-based and space missions will provide a spectacularly large
amount of data that will be used to discriminate among different cosmological scenarios.
The standard way to exploit astronomical datasets is through statistical inference analay-
ses that require huge computational resources and the assumption of a likelihood model
for the considered statistics. An alternative, groundbreaking approach to the problem is
to exploit Machine Learning algorithms and, in particular, the so-called Artificial Neural
Networks. This represents a novel data analysis approach in Cosmology, that shall beco-
me increasingly attractive in the near future to fully exploit the huge amount of observed
and simulated datasets that will become available soon. In fact, Artificial Neural Net-
works can approximate any continuous functions and can be used to represent complex
connections between input data and model parameters, after a proper training phase.

The main goal of this Thesis work is to test Machine Learning techniques for cosmo-
logical analyses. We develop and validate new methods and numerical algorithms to
constrain the main parameters of the standard cosmological model, that is €2,,, £, h,
ns, og, exploiting a likelihood-free inference analysis. The training dataset considered
in this work consists of a huge set of second-order and third-order statistics of the dark
matter density field, measured from the Quijote N-body simulations |

, |. These are one of the largest sets of dark matter N-body simulations curren-
tly available, that span a significant range of the cosmological parameters of the standard
model. We implement and train new Neural Networks that can take in input measure-
ments of two-point correlation functions, power spectra and bispectra, and provide in
output constraints on the main cosmological parameters. After the training and vali-
dation phases, we test the accuracy of our implemented Machine Learning algorithms
by processing never-seen-before input datasets generated with cosmological parameters
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comparable with Planckl8 ones | : ]. We find that this
statistical procedure can provide robust constraints on some of the aforementioned pa-
rameters, in particular €2,,.

This Thesis work demonstrates that the considered deep learning techniques based on
state-of-the-art Artificial Neural Networks can be effectively employed in cosmological
studies, in particular to constrain the main parameters of the cosmological framework
by exploiting the statistics of the large-scale structure of the Universe.



Sommario

La struttura a grande scala dell’Universo ¢ un fondamentale strumento di indagine per
testare lo scenario cosmologico. Per descrivere la distribuzione spaziale e le proprieta
dinamiche delle strutture cosmiche e necessario un approccio statistico, in grado di sfrut-
tare le principali statistiche osservabili del campo di densita cosmico, come la funzione
di correlazione a due punti, lo spettro di potenza e il bispettro, che dipendono diretta-
mente dai parametri cosmologici. Attuali e futuri progetti, come DESI, Euclid, LSST,
PSF, SKA e WFIRST, ricostruiranno le principali proprieta della cosiddetta Ragnatela
Cosmica, su volumi sempre piu grandi. Queste missioni, da terra e dallo spazio, produr-
ranno un numero incredibilmente alto di dati che saranno utilizzati per discriminare i
diversi scenari cosmologici. Il metodo standard per sfruttare questi dataset e attraverso
un’analisi di inferenza statistica che richiede enormi risorse computazionali e necessita
dell’assunzione di un modello di [tkelihood per la statistica considerata. Un alternativo e
innovativo approccio al problema consiste nell’utilizzare algoritmi di Machine Learning
e, in particolare, le cosiddette Reti Neurali Artificiali. Questo rappresenta un nuovo
metodo di analisi dei dati in Cosmologia, che potrebbe esercitare una sempre maggiore
attrattiva nel prossimo futuro per sfruttare al massimo I’enorme afflusso di dati, osservati
e simulati, che diventeranno presto disponibili. Infatti, le Reti Neurali Artificiali possono
approssimare ogni funzione continua e, dopo un’opportuna fase di allenamento, possono
essere utilizzate per rappresentare complesse connesioni tra dati in input e parametri del
modello.

Il principale scopo di questa Tesi e testare tecniche di Machine Learning per analisi
cosmologiche. Abbiamo sviluppato e validato nuovi metodi e algoritmi numerici per vin-
colare i maggiori parametri del modello cosmologico standard, ovvero €2,,, {2, h, ng e o,
sfruttando un’inferenza likelthood-free. 11 dataset di allenamento considerato in questo
lavoro consiste nell’enorme set di statistiche di secondo e terzo ordine del campo di den-
sita della materia oscura, misurate dalle simulazioni N-body Quijote. Queste ultime sono
uno dei piu grandi set di simulazioni N-body di materia oscura attualmente disponibili,
e considerano un intervallo significativo di parametri cosmologici del modello standard.
Abbiamo implementato e allenato nuove Reti Neurali che prendono in input misure della
funzione di correlazione a due punti, dello spettro di potenza e del bispettro e produ-

7
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cono in output vincoli sui principali parametri cosmologici. Dopo le fasi di allenamento
e validazione, abbiamo testato 'accuratezza dei nostri algoritmi di Machine Learning
processando nuovi dataset, mai visti prima dalle Reti, generati con parametri cosmo-
logici comparabili con quelli di Planck18 | , ]. Abbiamo
verificato che questa procedura statistica e in grado di produrre robusti vincoli su alcuni
dei suddetti parametri, in particolare §2,,.

Questo lavoro di Tesi dimostra come le tecniche di deep learning, basate sullo stato del-
I’arte delle Reti Neurali Artificiali, siano utilizzabili per studi cosmologici, in particolare
per vincolare i principali parametri dello scenario cosmologico, sfruttando le statistiche
a grande scala dell’Universo.



Introduction

The concordance cosmological model, that up to now has exceeded all the main obser-
vational tests, is the so-called A-cold dark matter (ACDM) model. According to this
framework, the Universe is dominated by two dark components, the Dark Energy, pa-
rameterised by the cosmological constant A, and the CDM. Within the ACDM model,
we can describe the large-scale structures of the Universe following the evolution of the
density perturbations. Indeed, the large-scale structure properties of the Cosmic Web
provide a fundamental tool to constrain model parameters, and can be exploited with
a statistical approach. Second-order and higher-order statistics of the matter density
field contain crucial information about the dark component of the Universe (e.g.

[ ]). In particular, the two-point correlation function and power spectrum of
extra-galactic sources are key statistics to infer the primary clustering properties of the
underlying density field (see e.g. [2003], [1969],

[ | and many others). Higher-order statistics, such as the three-point correlation
function and the bispectrum (see [20006]), are the lowest-order statistical
tools to probe the non-Gaussian properties of the perturbations’ field (e.g.

[ |). These functions depend on the parameters of the cosmological model, and
can be estimated from observations and simulations using proper statistical estimators

(e.g- [1974], [1993], [1993] and many
others). Exploiting the information content of these statistcs, it is possible to constrain
model parameters with likelihood inference methods (e.g. [2020] and

[ ]). Besides this approach, a novel data-driven technique that seems particular-
ly convenient, especially to analyse large datasets, consists of performing likelihood-free
inference making use of Machine Learning (ML) techniques. In brief, standard cosmo-
logical analyses require a customized likelihood for any statistics to be analysed, which
involves assumptions from an underlying model. Then the inference method consists
of finding the optimal parameters for that particular likelihood. Conversely, the ML
approach starts from the most generic likelihood, that is the Artificial Neural Network,
whose parameters are fixed to the best values without any assumptions, via the training
and validation phases.

In this Thesis work we implement and validate deep Artificial Neural Networks for co-
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smological inference, that we train on second-order and third-order statistics of the dark
matter density field, measured from the Quijote CDM N-body simulations |
, ]. ML techniques, especially the deep learning algorithms based on
Neural Networks, shall become the mainstream toolkit to model the complex relation-
ship between large-scale structure datasets and the underlying cosmology framework.
Recently, ML techniques have been applied to many fields of Cosmology, including weak
gravitational lensing (i.e. [2017], [2019], [2019)),
the cosmic microwave background (i.e. [ 1,
[2019], [2019]), the large-scale structure (i.e.
[2019], [2019], [2020]), gravitational waves (i.e.
[2019], [2019]), cosmic reionization (i.e.
[2019], [2019]) and supernovae (i.e. [2019],

This Thesis work is organized as follows:

e in Chapter 1, we give a general introduction to Cosmology, describing the theore-
tical basics of the standard ACDM cosmological model.

e in Chapter 2, we analyze the growth of density perturbations, from the primordial
Universe to the non-linear regime.

e in Chapter 3, we describe the clustering properties of collapsed perturbations,
introducing the fundamental statistical functions to probe the large-scale structure
of the Universe.

e in Chapter 4, we give some basic concepts of ML, introducing the Artificial Neural
Network properties.

e in Chapter 5, we present the analyzed Quijote N-body simulations and, in par-
ticular, their byproducts that will be used as training datasets for our Neural
Networks.

e in Chapter 6, we exploit the Neural Networks training and validation phases,
describing the data pre-processing and the Neural Network architectures.

e in Chapter 7, we summarize the Neural Networks outcomes for both training and
testing datasets.

e in Chapter 8, we compare the outcomes of the ML approach implemented in this
Thesis work to literature results and, finally, we suggest future improvements.



Capitolo 1

Basics of Cosmology

Cosmology is the branch of astrophysics that aims at describing the origin and the
evolution of our Universe. The starting points of the investigation of the Universe, as a
whole, are three fundamental principles:

e Cosmological Principle: The spatial mass distribution of the Universe is homo-
geneous and isotropic on large scales (> 100 Mpc).

e Fair Sample Principle: If we measure the variance of a quantity by averaging
over a sufficiently large volume, the results approach the true ensemble variance.
In other words the average of a quantity over sufficiently large and independent
volumes is equal to the average over different realizations of the Universe.

e Copernican Principle: Human observers do not rest in a privileged or special
reference frame in the Universe.

The Fair Sample principle will be used for making statistical considerations over the
Universe even if it is a unique and not reproducible object. The Cosmological principle
can be furthermore simplified noting that, assuming the Copernican principle, isotropy
implies homogeneity. In fact, since we observe an isotropic distribution of matter it means
that every physical quantity, like, for example, the velocity field, can not have a preferred
axis. For instance, the strain velocity tensor 37”;'_ can be decomposed into symmetric and
anti-symmetric parts. The anti-symmetric part corresponds to a rotation, so the velocity

field, ¥, can be written to the first order in 7 as follows:

T=X-T+QVT, (1.1)
where ¥ and € are two tensors that account for radial and rotational contributions
respectively. For isotropy, {2 must vanish because rotation would violate the hypoThesis,

and every component of ¥ must be equal. So there will not be a preferred axis. Thus
the previous equation can be rewritten as:

7= HF, (1.2)

11



12 CAPITOLO 1. BASICS OF COSMOLOGY

where H is the value of each non-null components in . This fundamental equation, that
will be discussed in Section 1.4, states that the only motion that can preserve isotropy
on a local scale is an expansion (or contraction).

The expansion of the Universe, mathematically derived by Friedmann and Lemaitre in
the 1920s, was experimentally verified by Hubble in 1929.

1.1 Principles of General Relativity

If we consider the Universe as a whole, and especially at the largest scales, we can in-
deed assert that it is dominated by gravity. The best description of gravitational field in
modern Physics is the general theory of relativity (GR), published by Albert Einstein in
1915 | , ]. This theory was introduced to conciliate Special Relativity (SR)
and Newtonian Gravity and to solve empirical problems, such as anomalies of Mercury
orbit, deflection of light and gravitational redshift.

Up to now, GR satisfied every experimental test and is able to predict and explain
phenomena like gravitational waves, gravitational lensing and black holes that scientists
discovered many decades after the Einstein’s publication. GR is based on a set of physical
and geometrical principles:

e Spacetime structure: The spacetime is a four-dimensional differentiable mani-
fold of Lorentzian signature.

e Principle of General Covariance: It is possible to extend the laws of Special
Relativity to a general reference frame using quantities expressed by a tensor of
the spacetime manifold, instead of a Lorentz group tensor.

e Equivalence principle: The outcome of any local experiment in a free falling
laboratory is independent of the location and velocity of the laboratory.

Starting from these three principles it is possible to build the equation of motion of GR.
In what follows, Greek indices indicate spacetime and run from 0 to 3. The summation
convention on repeated indices is also assumed.

If we consider a free falling observer, and we assume the Fquivalence principle, the local
metric in its reference frame & is the canonical Minkowski metric | , ],
valid for the defined spacetime, at least in a small neighbourhood. It follows that a
test particle subject only to gravity must move on a straight line given by the following
equation (see | , D:

d2er
S0 e = (o). (13)
dr?
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where 7 is the invariant proper time. Therefore the test particle does not have any
acceleration. This results can be also read saying that test particles will follow geodetics
of a given spacetime metric.

In the Minkovski framework, the spacetime interval ds reads:

ds? = dr? = 1,p dE“dEP, (1.4)

where 7,4 is a diagonal matrix with the signature (1,—1,—1,—1). It is possible to
perform a transformation to some other coordinates x*:
oEH
d¢r = —=—dx". 1.5
e = 0 (15
We can insert this transformation in Eqs. (1.3) and (1.4) to derive the equations of
dynamics in GR.

P, da® da?
——— =0 1.6
dr? s dr dr (1.6)
cdr?® = g, dz"dz”, (1.7)
where the new quantities are:

"o E_(Pfy (1.8)

B 5ev Sxedal’ '

5¢ 668

L= =5 1.9
g# (537'”‘ 5xl,77 B ( )

The first one is the Christoffel symbol. The second one is the metric tensor which is
symmetric and contains at most 10 independent components. The Christoffel symbols
can be defined only in terms of the metric tensor, which is a crucial object that can
define the structure of the spacetime and the motion of particles.

In order to find a covariant field equation, according to the principle of General Covarian-
ce, we have to construct a tensor starting from g,, up to its second partial derivatives.
The simplest choice is the Einstein tensor G, that contains the contractions of the
Riemann tensor, the Ricci tensor R, and the Ricci scalar R:

1
G = R — éRgW. (1.10)
This tensor is symmetric and covariantly conserved, thus it contains only 6 independent

components. If the Einstein tensor determines the metric and how the particle moves,
we have to find a tensor with the same mathematical properties that links the amount



14 CAPITOLO 1. BASICS OF COSMOLOGY

of energy and mass to the gravitational field. One such tensor is the Energy-momentum
tensor, which for a perfect fluid with four-velocity u*, density p and pressure p (measured
by an observer comoving with the fluid) is given by

™ = (p+ p)u'u” + pg". (1.11)
Now, equalizing Eqs. (1.10) and (1.11), we can finally write the Einstein field equation.

1 GG

R, — 2Rgu,, =

” . (1.12)
The above fundamental equation provides an interpretation of gravity as the geometry of
the spacetime. Matter and energy are accounted into the right hand side of the equation
and determine the curvature of the spacetime via the solutions of the metric tensor
included into the Riemann tensor contractions on the left side.

1.2 Friedmann—Lemaitre-Robertson—Walker metric

If one tries to model the whole Universe within the GR framework, then will immediately
face the problem of spacetime topology and boundary conditions.

In 1917 Albert Einstein | , ] opted for a Universe with a R x S* closed spa-
tial topology with constant positive curvature. This topology was introduced to model
a spatially finite Universe without a border, and thus to avoid the problem of unknown
boundary conditions.

However to solve the Einstein field equation one has to define the metric of the Univer-
se, the simplest way to do that is to start from the Minkovski metric and impose the
Cosmological Principle.

Starting from Eq. (1.4) with the Minkovski signature, we can define the global time, ¢, as
the time measured by different observers at rest with respect to their surrounding matter
distribution. The metric matrix can be diagonalized if we take in consideration the iso-
tropy. Furthermore we can decompose the spatial components into radial and transverse
parts using the new coordinates (7,6, ¢) with the convention d¥? = d#? + sin? fd¢>.
Finally, we can write distances as the product of a time-dependent function a(t) and a
time-independent comoving coordinate r.

ds® = 2dr? = Adt* — a(t)?[ f(r)?dr? + g(r)?d¥?], (1.13)

where f(r) and g(r) are arbitrary functions. If we consider the metric on the surface
with constant curvature, like Einstein suggested, we can get a very elegant functional
form of the previous equation. Because the curvature must be constant, only three dif-
ferent geometries are possible: Fuclidean if there is no curvature, elliptical for positive
curvature, hyperbolic otherwise.
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We can generalize this argumentation on a higher-dimensions space, for instance a 3-
sphere. Furthermore we can write a functional form which embeds the three different geo-
metries using a parameter k. This metric is known as the Friedmann Lemaitre Robertson

Walker metric (FLRW).

dr?
ds* = Adt* — a(t)? 242 1.14
S C a( ) 1 — l{ﬂ"2 + r ) ( )
where k£ = +1 is for positive curvature, £ = —1 for negative one, k = 0 for flat geometry

and a(t) is the scale factor that accounts for the expansion of the Universe.

1.3 Distances

In Cosmology there are many ways to define the distance between two points. This is due
to the expansion of the Universe, because of which the distance between any two objects
is constantly changing. Every kind of cosmological distance measures the separation
between events on trajectories of photons which terminate at the observer. The most
intuitive distance definition, called the proper distance, can be derived starting from Eq.
(1.14), setting a global proper time so that dt = 0 and a reference frame with d¥ = 0:

" " dr
dpr = /0 ds = a(t)/o iy =a(t)f(r), (1.15)

where the function f(r) depends on the parameter k. More specifically:

sintr,  ifk=+1
f(ry=x<mn, iftk=0 (1.16)
sinh™'r, ifk=—1

This kind of distance refers to the global proper time, thus it does not account for the
expansion of the Universe and changes over time following the evolution of the scale
parameter. If we carry off the scale factor, we can define another kind of distance, the
comoving distance. This measure does not change, if we neglect the object peculiar
velocities, i.e. it takes into account the Universe expansion. The comoving distance can
be derived by calculating the proper distance at the present time ¢, (or the present scale
factor a(tg) = ag) *.

de = alto) f(r) = aof (r) = %d% (1.17)

The comoving distance is time-dependent. It is possible to compute its variation in time
as follows:
d(dc)

dt

= VR = a(t)f(r)— = @dp}g. (118)

'Tn what follows, the subscript 0 refers to present time
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This important result states that the expansion of the Universe is such that the proper
distance between any two points changes with a rate that depends on the scale factor.
Every object moves away from all the others on the so-called Hubble flow.

1.4 Redshift and the Hubble-Lemaitre law

Let us consider an electromagnetic waves emitted with a certain wavelength \. Its sour-
ce will radially move with respect to the observer, following the Hubble flow. Thus an
observer measures a wavelength g that is different than the original one due to the
distortion of spacetime.

The relative difference between the original and the observed wavelengths is called
redshift (or blueshift if the receiving wavelength is shorter than the emitting one):

Ao — A
N

If the source emitted the photon at t.,,, and it reaches the observer at the time ¢, moving
along a geodetic (ds? = 0), then we can use the FLRW metric to derive the connection
between redshift and the scale factor. Without loss of generality, we can again set the
reference frame in order to remove angular parameters:

ds? = 2dt* — a(t)? N\ g (1.20)
1 — kr2 ‘ '
Integrating along the photon path, r, and over the time, ¢, and using Eq. (1.15) we get:

o " dr’
[ agt= [ =1 oo

If the source sends a second photon right after the first one, at t.,, + dt.,,, that reaches
the observer at ty + dty, we can rewrite the previous equation as follows:

/tomo Cat = f(r). (1.22)

We can also assume that a(to + 0tg) = a(to) and a(ten + 0tem) = a(tem), which holds for
small time intervals.

Now, we can equal the left side of the last two equations. Then using the relations
between time, frequency and wavelength, we obtain the redshift definition that depends
only on the scale factor:

(1.19)

= (1.23)

~ 1. (1.24)
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In the first decade of 900 many astronomers measured the redshift of close galaxies.
They found that almost all the extragalactic objects are moving away from Earth. Thus
all photons that reach our telescopes have a larger wavelength with respect to the time
at which they were emitted. This was the first hint of an expanding Universe. In fact
the scale factor in Eq. (1.24) grows with ¢, thus the Universe is expanding. It was
also possible to constrain the velocity of this expansion, starting from the comoving
distance definition given by Eq. (1.18). The expansion of the Universe is described by
the well-known Hubble-Lemdaitre Law | : .

v=H(t)r, (1.25)

where

alt
20 (1.26)

~—

H(t)

~—

is known as the Hubble parameter or, for t = ty, the Hubble constant, Hy. This law tells
us that the expansion of the Universe is such that every object is moving away from a
generic observer with a velocity proportional to its distance.
The value of the Hubble constant is not yet precisely known, and there are discrepancies
from the results coming from different independent methods as it can be seen in Fig.
1.1. One of the last empirical results, coming from the ESA Planck mission 2018 |

, |, measured the following value of the Hubble constant from
the cosmic microwave background radiation:

_ -1 -1
0= . . . .
Hy=674£0.5km s Mpc (1.27)

The value of the Hubble constant can also be expressed using the dimensionless parameter
h:

Hy =100 h km s~ Mpc™*. (1.28)

Hj has units of s7!. Assuming that the Universe had always the same expansion rate we
can use the inverse of the Hubble constant as an estimator of the age of the Universe.
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Figura 1.1: Comparison of H, constraints for early-Universe and late-Universe probes in
a flat ACDM cosmology [Wong et al.; 2019]. The early-Universe probes shown are from
CMB [Planck Collaboration et al.; 2018] and a combination of clustering, weak lensing
data, BAO, and big bang nucleosynThesis [Abbott et al., 2018]. The late-Universe
probes shown are the latest results from SHOES [Riess et al., 2019], obtained from Large
Magellanic Cloud Cepheid standards, and HOLICOW [Wong et al.; 2019] from lensed
quasar. When combining the late-Universe probes (purple), we find a 5.30 tension with
Planck [Wong et al.; 2019].

1.5 Friedmann equations

Under the assumption that the Universe is a perfect fluid of matter and energy, it is
possible to use the isotropic and homogeneous metric (1.14) into the equation of GR
(1.12). The results are two non-null equations called Friedmann equations [Friedmann,

1922].
. 4r G 3p
a(t)? + ke* = %p a(t)?. (1.30)

These two differential equations describe the time evolution of the scale factor as a
function of the density and pressure of the cosmic fluid and the curvature parameter



1.6. COSMIC FLUIDS 19

k. The Universe is indeed a closed system, thus it is expanding without energy loss.
Therefore, it is possible to impose the adiabatic condition, that can also be used to
derive one Friedmann equation starting from the other:

dU = —pdV — d(pc*a(t)®) = —pd°a. (1.31)

From the Friedmann equations, two useful quantities can be defined:

=— OE deceleration parameter, (1.32)
8rG
0= SI;T(t)Qp = ﬁ density parameter, (1.33)
where p, is called the critical density.
3H (t)?
= _ 1.34
Pe= g (1.34)
Thus the second Friedmann equation (1.30) can be rewritten as:
k
Q—1=—-+—— 1.35
H(ial0? 139

where the fraction sign depends on the ratio between the density of the Universe and
the critical density (1.34). Using the last two equations and recalling the only three
geometries of our Universe, the following cases are possible:

p>pe, 2>1, k=41 Spherical/Closed Universe
p=pe, =1 k=0  Euclidean/Flat Universe (1.36)
p<pe <1, k=—-1 Hyperbolic/Open Universe

1.6 Cosmic fluids

The Friedmann equations have been obtained under the assumption that the mat-
ter/energy content of our Universe can be approximated as a perfect fluid. Let us assume
that this fluid is composed of different components, each of them satisfies the equation
of state

p = wpc*, (1.37)

where w is a constant that is specific for every different components. This fluid must
obviously satisfies the adiabatic condition (1.31). Hence, using the equation of state, we
get:

D gl o (a0}
p‘3“+)ww_*m‘(wm) | (1.38)
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Thus if there are different components in the cosmic fluid, their densities will evolve with
the scale factor in different ways, namely:

(1.39)

{w =0, matter p(t) oc a(t)™
1 —4
3

w = radiation p(t) o< a(t)
The evolution of matter and radiation densities can be easily understood if we notice
that for the matter component the density scales with the volume element, while for the
radiation component the density scales with volume and with redshift.

1.7 Cosmological constant

We have seen that the Cosmological principle is the starting point of all cosmological
studies. However, to a few scientists it seemed that this principle was incomplete. In fact
it allowed the Universe to be invariant under observer position changes, but it does not
say anything about the temporal dimension. Thus Bondi, Gold and Hoyle |

, | proposed a Universe homogeneous and isotropic both in space
and tlme as the basic principle of their steady-state theory. This principle, called Perfect
Cosmological principle, has been proved to be wrong. However it had a lot of attraction
on scientists who did not want to abandon the idea of a static Universe. According to
this principle the large scale structure of the Universe must essentially be the same for
all observers, regardless of their spacetime location. In mathematical terms, the first
application of the Perfect cosmological principle was that the scale factor a(t) must be
constant with time, so d(t) = a(t) = 0.
If these equivalences hold, then the Friedmann equations can be used to derive the
physical quantities (pressure and density) of the fluid that composes this static Universe.
Using Eq. (1.29) it can be easily seen that the static hypoThesis leads to a non physical

condition:
3p

PZ—C—Q-

(1.40)

In order to solve this problem, and save the steady-state theory Albert Einstein changed
his General Relativity field equation (1.12) in the simplest possible way. He added a
constant term, A, called the Cosmological Constant | , |:

87TG

1 4
R, — ERQ’W +Agu = T . (1.41)
This energy term is a source of repulsive gravity and can be seen as the curvature of
empty space. If we move the Cosmological Constant on the right, inside the energy-
momentum tensor, is it possible to give another interpretation of this component as
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representation of the vacuum matter/energy content. Therefore it can be derived the
contribution of this constant to pressure and density of the cosmic fluid:

_ Act
bp=p— %; (142)
. Ac?
p:p+87TG. (1.43)

From these equations the value of w in the equation of state can be carried out:
p=—cp—w=—1. (1.44)

Hence the Cosmological Constant can be seen as a new component of the Universe, called
Dark Energy. Recalling Eq. (1.39), for Dark Energy holds:

w = —1— p(t) x const (1.45)

1.7.1 The Einstein’ Universe

With the new description of the gravitational field, Einstein proposed a model for Uni-
verse filled only with matter, i.e. w =0 and p = — é\ﬂcé Let us insert the new definitions
of pressure and density into Eq. (1.40) that describes a static Universe:

. 3p  3Ac
— = _ . 1.46
P 2 8@ (1.46)
Now we can use the second Friedmann Eq. (1.30) setting a(t) = 0:
_ Ac? kc?
F=pt o ‘ (1.47)

87G 8rGal(t)?

The density of ordinary matter must be positive for definition, thus £ = +1 in this model,
the so-called Einstein Universe with the topology described in Section (1.2). Finally,
applying the equation of state, we get:

P=5eG T nGar P (148)
k 2
A= =l (1.49)

This elegant and simple model has been abandoned after the Hubble’s discovery of the
expansion of the Universe. After that, Einstein changes his point of view, declaring that
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the Cosmological Constant was no longer necessary and theoretically unsatisfactory. Ne-
vertheless the Cosmological Constant did not disappear and was reintroduced in modern
cosmological theories after the discover of the accelerated expansion of the Universe ma-
de with observation of supernovae la as standard candles (see [1998] and

[ ]). In fact, its one of fundamental building blocks of the ACDM
model that is named for its main component, Dark Energy, A, and Cold Dark Matter,
CDM.

1.7.2 De Sitter Universe

To better understand the contribute of the Cosmological Constant to the expansion of
the Universe, it can be useful to derive the scale factor behaviour in a flat and empty
Universe | ) ,ie. k=0,p=0— p= 5. So, again, let us start from the
second Friedmann equation, Eq. (1. 30) with the above hypotheses:

A
alt +}€4§j %pa = —a(t)c. (1.50)

We can solve this differential equation, obtaining:

a(t) = Aexp (\/éd). (1.51)

Therefore, if the Universe was empty and flat, it will still experience an exponential
expansion driven by the Cosmological Constant and its repulsive action.

1.8 Friedmann model

The term Friedmann model is used to indicate a cosmological model for a matter-only
Universe, through its equations can be easily extended for multi-components Universes.
In order to solve the Friedmann equations, let us combine the Hubble law and Eq.
(1.30). Then we can generalize the density parameter as the sum of different components
contributions:

H(t)? = H? (Z(é“)))z [1 - Z Qi + Z Q0. (Z%ff)mwi] , (1.52)

where the sum is performed over the different components, each one with a state equation
parameter w;. The term 1 — ). Q; = Q, is known as the curvature density parameter.
From Eq. (1.35) it is possible to see that the sign of the curvature density parameter
is concordant with the one of k. Eq. (1.52) is a crucial equation that links redshift,
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comoving distances and densities of the different components of the Universe.
Now, using Eq. (1.35) we can derive the redshift dependence of the density parameters.
Let us assume a single component for simplicity:

Ol —1
Q) —1= —2v

w A 25w (1.53)

This equation tells us that, since z grows from now back to the Big Bang, the density
parameter will tend to unity regardless of its actual value, thus the geometry of early
the Universe is fixed.

This statement is not valid for density of dark energy, that does not change during the
Universe evolution.

1.8.1 Einstein-de Sitter Universe

By the early 1930s, after the Hubble’s discovery, it has been established that the static
models of cosmos were not able to reproduce the observations. At the same time de
Sitter investigated a model of an empty, hence not physical, Universe.

The starting point for building a model of the Universe consistent with Hubble law
and with a physical meaning is through Eq. (1.52), that can be solved analytically in
a few cases. The most simple case is the so-called Finstein-de Sitter Universe (EdS)
[ , | that was proposed in 1932. This model is valid for a Euclidean
Universe (k = 0, thus for 2 = 1) with a mono-component cosmic fluid, a flat geometry
(€ = 1) and without the Cosmological Constant. Under these assumptions, we can use
Egs. (1.52) and (1.30) to get the following equation:

a(t) = ag (i> I (1.54)
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Starting from this calculation, it is possible to derive the other cosmological quantities

that depend only on the w factor:

Radiation w =1/3 Matter w = 0
alt) o (%) 1/2 o <%)2/3
p(t) e L
H{(t) Hy(1 + 2)? Ho(1 + 2)%/2
13 to(1 +2)72 to(1+ 2)73/2
to - 2z
q 1 %

Ry 2ct 3ct

Tabella 1.1: Physical quantity trends for EAS Universe

The Einstein-de Sitter model is a fundamental framework as it can accurately describe
the Universe in its first phases. Using Eq. (1.53) we can deduce that the early Universe
was almost flat. At the same time, the density trend with scale factor, described in
Eq. (1.38), and the currently known values of the density pg for each components of the
Universe can be linked together to obtain the plot shown in Fig 1.2.
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Mass-cnergy density p

Py o< 2
P, = constant

Cosmic scale factor «

Figura 1.2: The density trend of all the cosmic fluid components, as a function of the
scale factor (credits to https://jila.colorado.edu/~ajsh /courses/astr3740-19 /evol.html).

Thus the primordial flat Universe was dominated by radiation and can be approxi-
mated as a mono-component Universe like the one described by the Einstein-de Sitter

model.

1.8.2 Open and Closed Universes

The Friedmann model can be solved also for Open or Closed mono-component Universes.
Let start from Eq. (1.52), that can be written in a most compact form as follows:

. 2
i B 9 @ (143w)
(ao) — {Q,tho (a> . (1.55)

The evolution of the scale parameter depends on the competition between the two terms
inside the square parenThesis. Let us compare these two terms for a generic scale factor
a*, or redshift z*:

(143w) 1 - O tH3w)
Q= Q <@> —>@:1+Z*: ( 0> . (156)
a* * QO

We have already seen that for z > 2* the Universe is well described by an EdS model.
On the other hand, for z < z*, the curvature parameter €2, determines the evolution
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of the scale factor in Eq. (1.55) and the other term inside the parenThesis can be
neglected. Thus two different cases are possible, one for Open Universes and one for
Closed Universes. For Open Universes, (g < 1 and so 2, = 1 — €y > 0, asymptotically

we obtain: )
(ﬁ) = HiQ — a = agHg\/1 — Qo = const. (1.57)
Qo

Thus the Universe will experience a constant expansion with:
a(t)ct, Hot ¢q—0. (1.58)

For Closed Universes, 29 > 1 and {2, < 0, hence the previous differential equation
admits an undulatory solution. Therefore for Closed Universes the scale factor will reach
a maximum at t,,,, and then will return to initial condition after 2¢,,,.. The evolution
of the scale parameter in Flat, Open and Closed models are summarized in Fig. 1.3.
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Figura 1.3: Scale factor evolution as a function of time from Big Bang for different co-
smological models (credits to https://jila.colorado.edu/~ajsh /courses/astr3740 19 /evol.
html).

1.9 The concordance cosmological model

The standard model in modern cosmology is the ACDM model. Up to now, this model
has fulfilled every observational tests, with some tensions (see Sec. 1.4 and Fig. 1.1)
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and it was also able to predict and describe a wide variety of cosmic phenomena, such as
the Cosmic microwave background (CMB). The CMB is a relict of low-energy photons
generated after the recombination epoch that permeate the observable Universe with a
temperature today of 2.726 4+ 0.005 K. The starting point of ACDM model is the well
accepted Big Bang theory which predicts that the Universe starts from a singularity on
the Planck scale, that rapidly inflated (see | : ]). During the first ~ 10737s,
the matter/energy content of the Universe was so high that all the fundamental forces
were fused together. As soon as the Universe expanded, it cools down so that the forces
separated from each other during the so-called phase transitions. Phase transitions are
crucial moments of the Universe evolution, as they allowed temporary violations of con-
servations. For instance, during the first of these phases, at ~ 10737s, the Universe could
form baryons breaking the baryon number conservation law. The seeds of baryons are
generated at the end of the Inflationary epoch | , | from the decay of a hypo-
thetical particle called Inflaton with a stochastic process. The early Universe was indeed
radiation-dominated, hence the radiation drove the thermalization, and the cosmic fluid
was relativistic. Particles with a certain mass m, could become non-relativistic as soon
as the temperature of the Universe reached a value given by the following relation:

kT = myc?. (1.59)

Thus, since the temperature decreased, the lightest particles could detach from the rela-
tivistic fluid. One fundamental cosmic time, called the equivalence time ¢, is reached
when the radiation density equals the matter density. However, at ¢.,, the Universe ther-
malization is still driven by radiation. Hence another fundamental time could be defined,
called the decoupling time t4.., at which matter and radiation temperature evolution be-
came unbounded. Within this framework, the ACDM model specifies the qualities and
quantities of the components of the Universe. According to this model, the Universe
is made up of three main components, radiation, matter and Dark Energy. Radiation,
which consists of photons and the other relativistic particles such as neutrinos, was do-
minant during the first phases but nowadays is negligible. Its actual density could be
calculated using CMB observation (see | , |). Using the
black-body laws and the density trend for an EAS model we get a value of Qq, ~ 107°.
Another fundamental component of the Universe is matter, which can be divided into
two different classes, ordinary matter and Dark Matter. The density parameter of or-
dinary matter, made up of baryons, can be estimated in various ways. One estimation
comes from galaxies luminosity function which can be used to constrain €2, assuming a
certain M/L and p,/pga ratios. Ordinary matter is not the dominant matter compo-
nent. In fact, starting from the Zwicky seminal work | , |, astrophysics found
out evidence for a new collisionless kind of matter, called Dark Matter (DM). DM is a
hypothetical typology of matter that interacts only through gravity and weak nuclear
force. Thus it can only be detected with dynamical probes, such as galaxies light curves
or gravitational lensing | , , , , ,



28 CAPITOLO 1. BASICS OF COSMOLOGY

|. Up to now there are several theories that try to describe the constituents and the
nature of DM. Overall there are two theoretical classes for the hypothetical DM particles:

e Cold Dark Matter, CDM DM particles that decoupled from radiation when
they were no longer relativistic. An example of this class are the so called weakly
interactive massive particles (WIMPs) | , ]

e Hot Dark Matter, HDM DM particles that became non relativistic after tg..
Examples of this class are neutrinos | : ].

The total matter density parameter can be estimated from CMB data, that suggest
a value of €2, ~ 0.3. Finally, the main component of the ACDM model is the Dark
Energy that can be parametrized by the Cosmological Constant. Observational evidences
for Dark Energy could be found by standard candle, like SN1a | , ],
magnitude-redshift relation. Furthermore, other evidences can be found, for instance, by
CMB acoustic peaks, | , ], and X-ray gas fraction in clusters, | ,

|. The effects of this kind of energy are embedded into Eq. (1.29) that, using the
equation of state for a mono-component fluid, reads:

i— —%WG(l + 3w)a (1.60)

Therefore for w < —% the Universe will experience a positive acceleration. According
to the most recent CMB studies (combining Planck temperature and polarization data
with Planck lensing and baryon acoustic oscillation measurements,

[ ]), our Universe has a flat geometry:

Q, = 0.0007 = 0.0019. (1.61)

Thus, o = Qo + Qo + 204 = 1, hence we have Qp ~ 0.7.
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History of cosmic structure
formation

2.1 Introduction to the Jeans theory

The global properties of our Universe are well described by the ACDM model with a
flat FLRW metric. Within this framework, the presence of large-scale structures can be
explained as the end product of the evolution of small gravitational perturbations.

The first perturbations could start their growth after the decoupling between matter
and radiation. Due to its non-collisional nature, CDM first detached from radiation and
thus formed seeds inside which baryons fell after decoupling.

The growth of perturbations from matter clouds could be described as the struggle
between gravitational collapse and internal pressure (or velocity dispersion) repulsive
action. This kind of studies has its roots in the so-called Jeans theory, proposed by Sir
James Jeans in 1902. The aim of this model is to predict when a cloud of gas collapses,
and how the density contrast between the perturbation and the background distribution
of matter and energy evolves in time.

The density contrast, or density perturbation field, can be defined as follows:

3(x) = ”(5"1—%. (2.1)

Thus 6(x) runs from —1 to +00. The linear regime is for § < 1.

The Jeans theory can be applied to non-relativistic matter, on scales smaller than the
horizon one (described in the following Section) and in the linear regime. Moreover this
theory can be generalized to an expanding Universe and, under some assumptions, in
the quasi-linear regime. Before starting with the proper perturbations’ theory, we have
to introduce two fundamental scales that will be used in the following discussion:

29
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o Cosmic horizon, Ry

e Jeans scale length, \;.

2.1.1 Cosmic horizon

The cosmic horizon, Ry(t), is defined as the comoving scale length of the region in causal
connection with an observer at the given time or, in other words, the path length of the
photon emitted immediately after the Big Bang that reaches the observer at a certain
time ¢. Its mathematically formulation can be derived from comoving geodetics of FLRW

metric:
toedt! R 2 < @,
Rh(t):a(t)/ ‘ :{ ROCE TGS Ga (2.2)
t

sg a(t’) Ry, o a®/? for a > aeq .

This equation tells us that above a certain scale Ry, it is possible to neglect every micro-
physics effect since there were no time for two different regions of the Universe to be in
causal connection. Therefore, over the cosmic horizon, the only relevant force is gravity
which leads every perturbation of the dominant component to collapse.
It is possible to derive the previous statement handling a given perturbation like a clo-
sed Universe inside a flat one. The two Universes must satisfy the second Friedmann
equation:
, 8 .
H, + poi gWGpp =0 perturbation, k=-+1, (2.3)

H} — gﬂ'pr =0 background, k=0. (2.4)

The Hubble parameter in the two equations must be the same. Hence, from the density
evolution for the background one, Eq. (1.38), it is possible to derive the following relation:

=0, t>tpy 0oxa??
5o<a1+3w—>{w ’ BQ 00 d (2.5)

w:%, t <tpg §oxa® .

Beyond the cosmic horizon, micro-physics effects are negligible, thus all the components
will follow the dominant one. So it can be concluded that every perturbation will grow.

2.1.2 Jeans scale length

The second fundamental scale in Jeans theory is the so-called Jeans length. It is defined

as the scale length beyond which a generic perturbation can collapse. Let us consider a

perturbation with a scale A\, pressure P and mean density p. The internal pressure will

act against the gravity of the perturbation, with an acceleration given by:
PN w2

ap = ——

N—S 2.
o~ (26)
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where v, is the sound velocity, calculated under the assumption of constant entropy:

P
V2~ — 2.7
; (2.7)

At the same time, the gravitational force will compress the cloud and trigger the
collapse, with the following acceleration:

GM
\2

(lg:

= GpA. (2.8)

If we equalized the two accelerations, we get an estimator of the Jeans length:

vs
VGp

When X > \;, gravity wins the competition against internal pressure and the perturba-
tion collapses. On the other hand, for A < A; the internal pressure causes the evaporation
of the perturbation. For DM, the process that lead to evaporation is, instead, the velocity
dispersion.

Ay = (2.9)

2.1.3 Growth of perturbations in an expanding Universe

The evolution of cosmological perturbations is described starting from the fundamental
equations governing non relativistic and adiabatic fluid motion:

D
Ff = —pV - v Continuity equation, (2.10)
D
D_: = —¥ — V& Euler equation, (2.11)
V2® = 47Gp Poisson equation, (2.12)

where the first two equations describe the density and momentum conservation, while
the Poisson equation links gravitational potential, ®, and density. D/Dt is the con-
vective derivate. These equations will be treated within the small perturbation linear
theory. Let us assume a known steady state solution, s, = (ps, pp, Pp, vy = 0), to which
we apply a small perturbation, ds = (dp, dp, 0P, Jv). We can put both the solution and
the perturbation in Egs. (2.10), (2.11), (2.12). Under the assumption of small pertur-
bations, |ds| < 1, we can neglect the second-order, and higher, terms. The results are
conventionally expressed in wave form in Fourier space, and using Eq. (2.1) instead of
density:

S(a,t) = 8(k,t)exp (ikz). (2.13)
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To take into account the expansion of the Universe, we have to set the unperturbed
velocity, to the Hubble flow, dv = Hr, and change the coordinate space, from proper
coordinates to comoving ones. After some calculations, a single equation can be obtained:

5(k) + 5(/@%@ +3(k) (’“;’2 _ 47er1,> 0. (2.14)

This second-order differential equation holds for every kind of perturbation with scale
length below the cosmic horizon, and takes into consideration the Hubble flow. The
first-order time derivative terms represent the tidal cosmological effect, while the terms
inside parentheses are linked to pressure, via v2, and to the background density gravita-
tional field. Eq. (2.14) is a fundamental relation to derive to evolution of every kind of
perturbations in different cosmological epochs.

2.1.4 Dissipation processes

Beyond the cosmic horizon the perturbations will always grow. Below the horizon scale
their evolution is given by Eq. (2.14), which does not take into account the micro-physics
processes that tend to spread the over-densities. For baryons, the dissipation process is
called the diffusion damping, and it is originated when photons decoupled from matter.
Photons diffuse from overdense to underdense regions, carrying baryons with them and
thus leading to a dissipation process. If the mean free path of photons is higher than
the perturbation scale length then the photons can carry away baryons and then the
overdensity will not grow. In terms of mass, the so called Silk mass [Silk, | can be
defined which reaches a maximum at the decoupling time where Mg (tgee) ~ 10*2 M),
while the Jeans mass at the same time is Mj(tge.) ~ 1019M,. Thus every perturbation
with a mass between these values will oscillate and can not grow until decoupling. While,
on scale smaller than Mgy (t4.) the perturbations are completely cancelled.

For DM particles there is a similar process, which however is not a dissipation, due to

the non-collisionally nature of DM, called free streaming. DM overdensities are damped

up to a length scale Ay,:

v(t)dt’
a(t’)

Ars(t) = aft) / . (2.15)

BB

The functional form of Ay, is very similar to the cosmic horizon definition, where v(t) is
the velocity of the perturbation oscillations. In term of mass, the free streaming mass
reaches a maximum at the equivalence time, that is comparable with the Jeans mass for
DM at the same time, thus every perturbation greater than these values will grow freely,
while perturbations on smaller scales are cancelled.
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2.1.5 Jeans theory solutions

In order to describe the growth of perturbations, we have to modify and solve Eq. (2.14)
for the different components of the Universe.

Radiation

First of all we consider radiation, which is the dominant components for ¢ < t.,, thus
every other element follows its evolution. If we assume an EdS model, that is a perfect
assumption for early epochs (see Eq. (1.53)), we can compare the cosmic horizon with
the Jeans scale length using Eqgs. (2.2) and 1.1.

Vg 321w
Ry, ct Ay ,—Gp 9 ct ( 6)

Hence,
A; > Ry, (217)

Therefore only perturbations with scales larger than the cosmic horizon can collapse and
grow. Hence every radiation perturbation inside the cosmic horizon can only oscillate
and due to the high velocity, on the average we have § ~ 0.

Dark matter

Dark matter perturbations start growing before ¢4, in a radiation dominated Universe.
Solving Eq. (2.14) before the equivalence time inside the horizon, we get the following
results:

3 a

opm(k) =1+ = .
(%) 2 a(teq)
This result can be better understood if we compare the density constant parameter of
the DM perturbations at the equivalence time with the same parameter calculated when

the perturbation crosses the cosmic horizon:

(2.18)

1
otn) 1+ (219)

Therefore DM perturbations can grow by a factor g at most since they entered into the
cosmic horizon. This effect is called stagnation, or Meszaros effect | , ].

Baryonic matter

Baryonic matter perturbations can grow only after t4.. Thus they found gravitational
holes already generated by DM particles. The solution of the Jeans equation for this
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phase takes into account these phenomena, thus baryonic perturbations will follow DM
perturbations. This process is known as baryon catch-up. Solving Eq. (2.14) in a EdS
Universe, we get the following:

a

S(k) = dpm (k) (1 - M) . (2.20)

Total matter

When baryons and DM perturbations are bounded together in the same potential holes,
we can describe the evolution of total matter perturbation assuming an EdS model, at
least for high redshift, and solving Eq. (2.14) looking for functional forms as §(k) = t*.
There will be different set of solutions for perturbations scale length larger or smaller
than the Jeans one. For smaller scales the overdensities cannot grow, and thus oscillate
(cv is a complex number). For scale A > \; there are two solutions, one increasing and
one decreasing in time:

3/2

b_oxttoca~ decreasing

5(k) = Ad, + B6_ — { (2.21)

5y x t?? x a increasing ,

where A and B are integration constants. Since the decaying solution does not lead to
growth of gravitational instabilities, the only relevant solution is the increasing one. For
a generic Universe, the functional form of the increasing solution is given by the following

integral:
B (14 2)de
oy = H(z)/z () (2.22)

2.2 Non-linear models

The previous Section focused on the evolution of perturbations in linear regime, § < 1.
At the present time, the Universe is filled with perturbations with § ~ 10 and higher:
thus to properly describe the evolution of the cosmic structure at late times we have to
develop a non-linear evolution theory of density perturbations. A significant step in this
direction was done by Yakov Zeldovich, who proposed a kinematic approach to extend
linear theory in a quasi-linear regime. In his work, Zeldovich assumed that particles
move along the Hubble flow, with some perturbations consisting of a time-independent
displacement field scaled with a time-dependent function. Thus, using linear theory, he
linked this displacement field with the so-called Strain tensor:

p(r ) = =L 21 G )1 = 6 he) (1 — By hg) (2.23)

a3
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where ); are the eigenvalues of the strain tensor, and ¢ is the time-dependent factor that
scales the displacement field found within the linear theory model. The Zeldovich model
is exact in one dimension, and it is a very important tool to generate initial conditions of
N-body simulations. Another fundamental theory to describe the non-linear evolution is
the so-called Spherical model, that describes an overdense sphere, with initial comoving
velocity v; = 0, as a closed Universe inside a flat one. Within this framework, the
perturbation size reaches a maximum at t,,,, with a contrast density of §(¢,,4.) ~ 4.6,
that is obviously different from the value that would be obtained in the linear regime
Oin(tmaz) ~ 1.07. The time-dependent value of p, is given by (see | ,

):
3

~ 32G12

max

Pp(tmaz) (2.24)
Then, after this phase called turnaround, the perturbation continues its evolution. In
linear theory, this sphere will collapse in t, = 2t,,,4., neglecting the effect of pressure that
acts against gravity. Using the virial theorem, it is possible to derive that the collapsing
sphere virialized at t,;, = 3t,,4. after an oscillating phase with a radius R,; = %Rmax,
thus p,(te) = 8pp(tmaz). Then, from the linear theory we would get the following contrast
density value, calculated for convention at t.:

£\ 3
Stin(te) = Suin (traas) (t ¢ ) — 1.686, (2.25)

max

while from the spherical collapse theory, we get:

d(te) = polle) _ 1= 8p”(te) ( = )2 —1~179. (2.26)

2.2.1 N-body simulations

The exact solution of the equations of non-linear perturbations can not be obtained ana-
lytically. Thus scientists implemented numerical algorithms to follow the evolution of
simulated perturbations. Usually the density field is decomposed into a set of discrete
particles, so that these simulations are known as N-body simulations. During the pa-
st decades the calculators evolved dramatically, and many different implementations of
N-body simulations have been proposed and evaluate. In what follows, some different
N-body simulation algorithms will be presented, that takes into account only gravitatio-
nal interactions.

The simplest approach is called direct gravitational N-body simulations. Within this
method at every time-step the gravitational field of all the particles is solved, exactly.
Then, using the equation of motion, the positions and velocities of all particles, at the
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following time-step, are calculated. This approach has a computational complexity of
O(N?) because for each particles must be evaluated the value of the gravitational acce-
leration produced by the other (N — 1) particles.

The problem of solving the Poisson’s equation can be alternatively addressed using a
different, faster method, called particle mesh(PM) | : |. This
method decomposes the density field on a regular grid in Fourier space using Fast Fourier
transform techniques and then calculates the k-space gravitational potential on the grid.
Finally, the inverse Fourier transform is performed on the gravitational potential mode
0P}, to obtain the real space components of the gravitational force. The main advantage
of the Fourier space analysis is that it is possible to solve the Poisson’s equation locally,
without integrating on the whole real space. In fact the integration is hidden in the
Fourier space transform 6(k) o< [ d(z) exp(ikx)d®x. The computational complexity of
the particle mesh algorithm is O(N log(/N)). This method can be further improved using
an adaptive grid instead of a regular one, enhancing the resolution where the density is
higher (see | : ])- The resolution of the PM code is indeed related
to the number of particles and the size of the mesh. Increasing the latters makes the
algorithm more computationally expensive. In order to alleviate this issue, variations of
PM algorithms have been proposed. For example, the so-called particle-particle-particle
mesh (P3M) | , ] algorithm provides an intermediate approach
between PM and direct gravitational methods. In the P3M algorithm the gravitational
forces are calculated exactly for near particles, while for distant ones the forces are esti-
mated on a grid using the PM scheme. Another similar method is the so-called tree
code (TreePM) | , ], which implements a grid where neighbouring
cells are considered individually while distant ones are treated like a single particle. The
computational complexity of the two last methods is still O(Nlog(NN)). The starting
point of every N-body simulations is usually provided assuming the Zeldovich approxi-
mation in quasi-linear regime, starting from Gaussian initial conditions at high redshift.
Another important feature of all the N-body codes is the softening length e, introduced
to prevent infinity forces when the distance between two particles approach zero, defined
as F o< (r+¢e)72 (see | : ).
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Clustering

3.1 Statistical analysis of the density field

As described in the previous Sections, the gravitational instabilities generated during the
inflation are the building blocks of the large-scale structure that we observe nowadays.
Thus a fundamental parameter to model the gravitational perturbations is the dimen-
sionless density contrast defined in Eq. (2.1). In order to describe the current matter
distribution a statistical approach is necessary. The first issue in this kind of analysis is
the uniqueness and the non-reproducibile nature of the Universe. To solve this problem,
let us assume the Fair Sample principle which states that it is possible to consider inde-
pendent and sufficiently large volumes as different realizations of the Universe.

Furthermore, it is convenient to study the statistical properties of the Universe in Fourier
space, as it was done for the Jeans model.

3.1.1 Properties of the initial perturbation field

The seeds of the first gravitational perturbations arise at the end of the inflationary
epoch. Due to the stochastic nature of quantum fluctuations, the phases of the Fourier
modes of the gravitational potential, d®,, associated via Poisson equation to the per-
turbations of the density field, d;, are independent one of the other. Hence, they had
a random and uniform distribution in the interval [0,27]. The density perturbations,
d(z), are the inverse Fourier transform of §(k), so they are a superposition of Fourier
modes with independent random phases. Therefore, from the central limit theorem of
statistics, it follows that the density probability distribution P(d) at any point in space
is Gaussian (truncated below —1) with a zero mean value:

P(S) = — exp( 52). (3.1)

27102 202
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Hence, the fundamental statistical quantity of perturbations’ field is the variance
0% =< 6(x)? >, which is the average of the mean values computed in large and indepen-
dent volumes.

3.1.2 Mass variance

As said, the statistical properties of the initial Gaussian density contrast field d(z) are
fully described by the variance o?. However, it can be very difficult to define the punctual
variance for two main reasons. First of all §(z) can not be calculated in each point in the
Universe because there is a lack of observational probes to define the density in every
point. Furthermore, any extragalactic sources, such as galaxies, are biased tracers of
the underlying density field. Due to these issues it is convenient to introduce a different
quantity, oy, called mass variance, given by:

o3 =< 63, >, (3.2)

where 0, is the density contrast filtered on a given scale R, in real space, that corresponds
to the mode k in Fourier space. Starting from the mass variance, it is also possible to
define the variance of the perturbations’ field related to observable probes, like galaxies,
dgai, or DM haloes:

Pgal(T)— < Pgar >

Ogat () < poat >
ga

(3.3)

We consider galaxies for clarity, but the following discussion can be equally applies to
other probes. We can assume that the ratio between the galaxy contrast field and the
total mass perturbations’ field can be described with a linear function of §(x) that is
independent of the length scale (as a first approximation). This ratio is known as the
bias factor:

J

5gal

bgal = (34)

Another important quantity, linked to the variance, is the two point auto-correlation
function of the density field, (r).

E(r)y =< o(z)o(x +r) >, (3.5)

where the angle brackets indicate two averaging operations, one over the normalization
volume V', thus at every point x, and the other over each point with distance r from
x. Assuming the Cosmological principle, this function depends only on the module of 7.
Let us translate this definition into the Fourier space:

£(r) = (21)~ / / < 8(k)S(K) > exp (ik(x + 1) + ik'z)dkdk . (3.6)
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Therefore, using the properties of the three-dimensional Dirac delta function, we get the
following result:

E(r) = (2m) / P(k) exp (ikr)d®k, (3.7)

where P(k) is known as Power Spectrum. The last result, that comes from the Wie-
ner—Khinchin theorem, states that the power spectrum is the Fourier transform of the
correlation function. Hence, these two functions share the same information, one in real
space and the other in Fourier space. From the last two equations it is possible to relate
the power spectrum with the decomposition of the density perturbations’ field:

P(k) oc< [6(k)|* > . (3.8)

Using the Parseval theorem, we can connect the previous definition to the variance of
the density perturbations’ field in real space:
2 1 2
o — [ k*P(k)dk. (3.9)

o2

With these results we can implement the aforementioned filtering operation on §(z) to
get the mass variance. This operation does not change the statistical properties of d(x),

A

and it is usually performed convolving ¢ with a filter W (R)(W (k, R) in Fourier space):
o2 = (2m) 73 / P(k)W?(k, R)d*k, (3.10)

where the original variance definition, Eq. (3.9), can be recovered if the filtering scale
tends to zero. In conclusion, if we assume an initial Gaussian density probability distri-
bution with zero mean for the perturbation field, the only relevant statical quantity is
the variance of the field, which is linked via Fourier transform to the power spectrum
and its anti-transform, the correlation function. These two fundamental functions pro-
vide powerful probes for discriminating among different cosmological models and will be
analysed in details in the next Sections.

3.1.3 Primordial power spectrum

In the previous Section we showed that the power spectrum is one of the central quantities
in cosmology. For decades scientists tried to model its functional form with increasing
accuracy. According to standard inflationary scenarios, the initial power spectrum must
not contain any preferred length scale, thus we can assume a featureless power law as a
functional form:

P(k) = Ak", (3.11)
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where n is known as the spectral index and gives information about the balance between
large and small scale power, and A is a normalization constant. Let us insert this
functional form into Eq. (3.9):
2 A 2+4n n+3
0" =— | ET"dk oc K" (3.12)
272

One hint about the initial value of the spectral index comes from the inflationary epoch.
At the end of this phase, there were stochastic perturbations of the metric, so d®; must
be a white noise, equals on every length scale, d®; o k°. Hence, using Eq. (3.12), we

get:
GdM

Ay o == o dpR* x o R* o k"~V/2, (3.13)
Then, the initial spectral index must be close to 1. This functional form of the primordial
power spectrum is known as the Zeldovich spectrum, and it is the best choice to represent
the initial power spectrum of DM, or the power spectrum of every perturbation that is
outside the cosmic horizon. Furthermore, when a density perturbation crosses the horizon
it has always the same amplitude because the mass variance at the cosmic horizon is
not time-dependent for the Zeldovich spectrum. At the same time, if an overdensity of
DM crosses the horizon before the equivalence time, it will experience the stagnation
process, described is Sec. 2.1.5. Thus, if we want to model the DM power spectrum
at the equivalence time ¢.,, we have to consider that for scale lengths larger (or smaller
wavenumber if we are in Fourier space, recalling that k oc R™!) than the cosmic horizon
scale, the initial power spectrum is preserved. For scales smaller than Ry, (t.,), the DM
particles had experienced the stagnation until ¢.,, while the free streaming process erases
perturbations up to a time-dependent scale Apg, as described in Sec. 2.1.4. This effect
can be parametrized by the so-called Transfer function, T'(k), that takes into account
the previous assertions. The amplitude at the equivalence time of the perturbations that
suffer from stagnation depends on the ratio between the time of entry in the horizon ¢,
and initial time t;,. At tj, recalling Eq. (2.2), the following relation holds:

a(ty) « R;L/Q — a(ty)? o< k™2 (3.14)

Then,
a(ty) *

so the power spectrum P(k) oc §2, at the equivalence time, reads:

Sk teg) = 6(k, tin) x k72, (3.15)

P(k,teg) o< P(k,tin)T(k)?, (3.16)

where

—4
T(k)? = k=t for k> kp(tey) (3.17)
KO for k< kp(te,) -
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3.1.4 Correlation function

If the power spectrum has a fundamental role in cosmology, its Fourier anti-transform,
the correlation function, shares the same importance. In Sec. 3.1.2 we defined the auto-
correlation function of the perturbations’ density field, see Eq. (3.5). An alternative
definition of the two-point correlation function for a discrete sample of objects was given
by [ |. This function gives the excess probability, with respect to
a random distribution, of finding two objects, such as galaxies, voids or DM haloes, in
two comoving volumes dV; dV5, at distance 7:

dP = n2dVidVa(1 + £(r)). (3.18)
The two-point correlation function can be easily extended to a larger number of points:
dPY =nlY (1 +&N(r))dVi...dVy (3.19)

where ¢V is the so-called N-point correlation function. From the definition of the corre-
lation function in terms of probability, Eq. (3.5), it is clear that £ must be greater than
—1. The N-point correlation function contains more information than the two-point one.
Let us consider for instance the three-point correlation function, that can be written in
terms of the two-point correlation function in the following way:

& =E&(r12) + &(r1s) + E(ras) + <(r1,m2,73), (3.20)

where ¢(r1,72,73) is the reduced three-point correlation function, that contains only the
excess of probability with respect to the two-point function. The above description of
the correlation function can also be extended for continuous density fields of equal mass
particles p(x) = mn(x). Following this assumption we can rewrite Eq. (3.18) in terms
of density field. Then it is possible to calculate the expected number of objects within a
certain radius r from a given one:

N(<r) = /V dP(2|1) = /V %d%nL /V E(r)dv, = Ao | Amp(a) /O (.

3m m
(3.21)
The correlation function can also be declined for specific observed objects, such as ga-
laxies, clusters or DM haloes, recalling the bias definition in Eq. (3.4). Let us consider
e.g. galaxies, then the following relation holds:

Egat (1) =< Ogar (1) 0 gar(x + 1) >= 2, < 6(2)d(z + 1) >= bzalﬁ(r). (3.22)

gal

At scales 10 < r[MTpC] < 50, the observed functional form of the galaxy correlation

function is the following:
-
r
0= (1) (3.23)



42 CAPITOLO 3. CLUSTERING

where the values of the correlation slope is set to v ~ 1.8 , and of the correlation length,
19, depend on the selected cosmic tracers (i.e. for galaxies 7o ~ 5Mpc/h). This functional
form is not valid in all the scale range [0, +00] because, if we consider the total volume
of the Universe, then the second term in Eq. (3.21) must tend to zero, so the correlation
function must be negative somewhere.

3.2 Observational Cosmology

The theoretical framework built in the previous Section is a powerful tool to constrain
model parameters with observations. In particular, power spectrum and correlation
functions can be measured from extragalactic surveys and compared with theoretical
expectations to test the assumed cosmological model. To solve this task it is essential to
take into account empirical effects that modify the observed features, such as redshift-
space effects or geometrical distortions.

3.2.1 Geometrical distortions

Let us consider the comoving separation, r, between two objects at cosmological distan-
ces. It can be decomposed into two orthogonal components with respect to the line of
sight, r; and rj. The perpendicular distance r; can be computed using the angular
diameter distance definition | , |:

dic:
142’

rl=dy = (3.24)

where dy¢ is the transverse comoving distance that is related to the comoving distance
de (see Eq. (1.17)) by:

e st (oo T=T) for Q> 1
dtC = dC fOI' QO _ 1 (325>
msm (c—ldCHO 11— QOD for Qp < 1
04/ [1—340

We can notice that, for flat Universes, there is no difference between the angular diameter
distance and the proper distance, Eq. (1.15). However, from the previous equations we
see that r is linked to the assumed cosmological model. Therefore, if we assume two
different cosmological models, referred to the subscripts 1 and 2, the following relation
holds:

das

ri1=——"r12. (3.26)
da
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Analogous calculation can be done for the parallel distance 7, which depends on the
cosmological model through the Hubble parameter, namely:

Hy(z)
Hi(2)

T”’Q. (327)

1=

Hence, the assumption of a wrong cosmology modifies the measured distance between
two objects, or the shape of a resolved celestial body. This effect, called geometrical
distorsion, can also be used as an empirical test to constrain the geometry of the Universe.
In fact, if the real shape is known, it is possible to fine-tuning the cosmological parameters
in order to obtain the expected form. This procedure is known as Alcock-Paczynski test

[ , 1979).

3.2.2 Redshift space distortions

If we want to map the three-dimensional distribution of cosmic objects we have to take
into consideration also the so-called redshift space distortions (RSDs). This kind of
distortions arise from the difference between cosmological /real and observed redshift.
Specifically, the observed redshift is related to the real one by the radial velocity v of
the object with respect to the observer, and its empirical random error o:

Ll

0z
Zobs = Zcosm T ?(1 + Zcosm) + ? (328)

RSDs arise when we measure distances with the observed redshift instead of the cosmo-

logical one, that is often unknown. The peculiar velocity v that caused the difference
between 2.5 and ze,sn is due to different phenomena. On small spatial scales, < 1 Mpc,
peculiar velocities are due to the virialized motion of galaxies within DM halos. There-
fore, groups and clusters appear stretched along the line of sight, forming the so-called
Fingers of God. On larger scales, peculiar velocities are due to the streaming of galaxies
toward the higher density regions. Hence, the density field becomes squashed along the
line of sight. This phenomenon is known as Kaiser effect. The RSDs can be theoreti-
cally modelled in both linear and non-linear regimes. In linear regime, RSD effects on
perturbations’ density field are given by the Kaiser formula | , ].

0(k)rsp = (1 + fri?)a(k), (3.29)

where f is the logarithmic derivative of the growth factor with respect to the scale factor

(f = d;?rf?;’))) and g is the cosine of the angle to the line of sight.
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Using Eq. (3.8), the RSD effect on the power spectrum reads:

P(k)rsp = (1+ f1?)2P(k). (3.30)

3.2.3 Observed power spectrum and bispectrum

The power spectrum provides a fundamental tool to describe the evolution of perturba-
tions’ field, and can be used to constrain cosmological parameter values. The primordial
power spectrum, which refers to DM since it is the first component that can collapse, has
been described in Sec. 3.1.3 and can be expressed with the following functional form:

P(k) = AT (k)2k". (3.31)

The normalization constant A can be expressed using the mass variance og on a fixed

scale of 8 M}; <, which is another essential parameter of the cosmological model:

ol = / P(k)W?*(kR = 8 Mpc/h)d*k. (3.32)

To compare the initial, theoretical, power spectrum with the observed one, we have to
describe how it evolves with cosmic time. The power spectrum, calculated at t.,, will
evolve differently at different scale lengths. For every scale k, lower than the scale of the
cosmic horizon at the equivalence time ky(t.,), the perturbations can grow freely and
their evolution is described by the linear theory. Thus, we expect a self-similar growth
governed by the parameter §, presented in Eq. (2.21). On the other hand, Fourier
scales larger than ky(t.,) can grow inside the cosmic horizon, then they will reach the
non-linear regime and the evolution of the power spectrum can be computed with the
methods introduced in Sec. 2.2. Finally, the turning point of the spectrum, which is
linked to the cosmic horizon scale, evolves according to Eq. (2.2), hence it will rigidly
moves toward lower Fourier scales.
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Figura 3.1: Redshift evolution of the matter power spectrum between z = 0 (top most
line in lower plot) and z = 4 (bottom most line in lower plot) [Pratten et al. 2016].

The observed power spectrum will also suffer from RSDs and for selection bias. The
RSDs modify the shape of the spectrum according to Eq. (3.30), in linear regime. To
study the effects of RSDs, it can be useful to decompose the power spectrum in Legendre
polynomial bases. Using the Legendre polynomials, L;, and starting from Eq. (3.30) we
get:

241 !

P™(k) >/,

P(k, i) Li(p)dp. (3.33)
The shape of the observed power spectrum depends on many factors. For instance, the
amplitude A of the spectrum is linked to og, via Eq. (3.32), and the selection bias b,
via Eq. (3.4). The evolution of the amplitude is instead linked to the growing factor f,
within the linear regime. Hence, some cosmological parameters cannot be constrained
from the observed power spectrum, as their effects are degenerate. One way to overcome
this issue is to consider also the so-called bispectrum B(ki, k2), defined as follows:

B(k1, k2) o< 8(k1)0(ka)d(ks) > . (3.34)

The bispectrum is the Fourier anti-transformation of the three-point correlation function
and contains information about both the primordial and gravitationally induced non-
Gaussianity features. As it was done for the power spectrum, also the bispectrum can be
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decomposed using spherical harmonics for the multipoles’ expansion |

|:

oo m=l

By(kuks) =Y > B (k1 ko) Yim(w, ), (3.35)

1=0 m=—1

where Y} ,,(w, ¢) are the spherical harmonics that depends on the polar, w, and azimu-
thal, ¢, angles with respect to the line of sight. Furthermore, from the bispectrum two
terms can be derived, the reduced bispectrum and the shot noise correction. The redu-
ced bispectrum is the analogue of the reduced three-point correlation function, see Eq.
(3.20). Thus it is a term that contains only the information in excess with respect to the
power spectrum. Assuming a Poisson sampling, then the shot noise term modifies both
the power spectrum and the bispectrum, in two different ways. It adds a white noise
component proportional to % and, moreover, it increases statistical uncertainties.
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Introduction to machine learning

In this Chapter a brief introduction to machine learning (ML) will be given, for fur-
ther details we recommend [2014], [2014] and
https://developers.google.com /machine-learning/crash-course/ml-intro. For an intro-
duction of ML techniques for cosmological applications see [ ],

[ ] and https://github.com/georgestein /ml-in-cosmology.

The term ML refers to the automated detection of meaningful patterns in data, commonly
implemented using computing systems called Artificial Neural Networks (or, more sim-
ply Neural Networks) and inspired by the animals brain functioning. In the past couple
of decades, ML has become a common tool in almost any task that requires information
extraction from large data sets. ML algorithms have been introduced to solve various
tasks, when human expertise does not exist or when we are unable to find a model behind
some empirical results. For these features ML algorithms are widely used in astrophy-
sical studies. The main advantage of these techniques is the capability of dealing with
huge dataset finding non-linear relations between input features. Aside from this, ML
can also reduce the need for computational power. For instance it can substitutes the
standard likelihood inference for constraining cosmological parameters. In what follows
we will present the building blocks of the multi-layer perceptron Neural Network (MLP),
which is one of the simplest ML architecture. MLP can be used for regression tasks,
such as to constrain cosmological parameters starting from N-body simulations, which
is the primary focus of this Thesis work. Beside MLP, there are many ML architectures
that can be used for analysing N-body simulations results. For instance, we may cite
Convolutional Neural Network (CNN). CNN are networks, typically exploited for image
recognition /classification, that use filter kernels to analyse patterns at different scales on
2D or 3D images, for further details see [2019] and [2019].
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The main topics of a ML algorithm that will be analyzed in this Chapter are:
e The dataset

The Neural Network architecture

The training phase

The validation phase

The test phase

4.1 The dataset

The starting point of every ML algorithm is the dataset. The learning technique depends
on the input dataset. More specifically the learning can be supervised or unsupervised.
Unsupervised Neural Networks search for patterns in the input data without a known
output value. In the supervised case, like the MLP one, the input data is split into
the training dataset and the wvalidation dataset. The training dataset contains input
features and labels. The Neural Network can improve its performances comparing its
outputs with the labels, i.e. the expected results. The output data of MLP can be
numerical values, for regression tasks, or classes, for classification problems. The training
dataset will be used during the so-called training phases, when it will be processed by
the Neural Network to compare the outputs with the expected labels. The parameters
of the network will change according to the difference between outputs and labels within
a certain metric. The test dataset is, instead, used after the training process to evaluate
the precision of the Neural Network on data it has never processed. Conventionally the
ratio between training and validation datasets is 4 : 1. Starting from the training data
another set may be created, called the validation dataset, which is used among training
phases to estimate how the network generalizes the results during training epochs. In
fact a common problem that can arise in ML analyses is the so-called overfitting, when
the network excellently connects training data to training labels, but it is not able to
achieve the same precision when it is applied on the validation set. Using test sets, one
can stop the training phase when the network begins to overfit, or when it reaches the
desired accuracy.

4.2 The Neural Network architecture

From the operational point of view, ML is commonly implemented with Neural Networks,
one of whose is the aforementioned MLP. Like other Neural Networks, the MLP is made
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up of different layers (at least three) of neurons. The neuron, the atom of a Neural
Network, is a component which performs the following linear operation.

j=f(W-Z+B), (4.1)

where 7 is the input vector and ¥ the output one. W and B , which are the weight and bias
vectors, respectively, are two learnable parameters of the neuron, i.e. they will be changed
during the training phases to improve the network precision. The function f(z) is called
activation function. This function was introduced to mirror the human neuron behaviour,
and for MLP is usually non-linear. The choice of a non-linear activation function, except
for the last layer one, makes the network able to distinguish data non-linearly separable.
This fundamental feature could be explained in terms of the universal approximation
theorem | ) ]. This theorem states that a multilayer feed-forward network can
potentially approximate every continuous functions. Up to now, the most frequently used
activation function for MPL is the Leaky Rectified Linear activation (leaky-relu), first
introduced in acoustic models | ) ]. Tts functional form is the following:

f(l’):{f forxz >0 (4.2)

z for x <0 |,

where ¢ is a fixed arbitrary parameter greater than +1, that was introduced to solve
the null gradient problem for inputs close to zero. Stacking up a certain number of
neurons, with the same activation function, forms one layer. There are three types of
layers: input, hidden and output ones. The input layer is connected to the input data,
thus it must have the number of neurons equal to the number of input features. The
data are then processed by the hidden layers until the output layer, that must have a
number of neurons equal to the number of output labels. In the MLP architecture, the
layers are fully connected, thus every neuron of hidden layers is linked to all neurons of
the previous and following layers. The MLP is a feed-forward artificial Neural Network,
hence connections between the nodes do not form a cycle. Summing up, in a MPL input
data are linked to input layer, then are passed to hidden layers and finally to the output
one. Each neuron implements a linear operation, with two free parameter vectors, to
which an activation function, like the one described in Eq. (4.2), is applied. Therefore
every layer contains two learnable matrices of weight and bias values.
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Figura 4.1: Tipical architecture for a MLP. The N input data, consistent of four ele-
ments, pass through the net until the output layer that returns 3 values for each in-
put element. The weight matrix for each layer, except the input one, are indica-
tes with the letter W (credits to https://www.datasciencecentral.com/profiles/blogs/
how-to-configure-the-number-of-layers-and-nodes-in-a-neural).

4.3 The training phase

During the so-called training phase the network processes the input, and then compares
the output with the expected labels. The results are then used to change the network
parameters leading to better predictions with a technique called backpropagation [Ru-
melhart et al.; 1986]. The training phase is determined by two fundamental functions,
the loss function and the optimizer. The loss function is used as an estimator of the
network precision and depends on the specific problem. In what follow we will consider
only regression tasks. The standard loss function is the mean squared error (MSE), also
known as squared L2 norm, which, for output o and label [ over N input data, reads:

MSE(o,l) = % Z(li —0;)%. (4.3)

Other suitable choices are the L1 norm (mean absolute error) or the Smooth L1 loss,
which computes the L1 loss if the mean absolute error is below 1 and the L2 loss otherwise.
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As states above, the loss function is an estimator of the network precision. Then we need
one more component that modifies the free parameters of the MLP according to the loss
function results. This component is known as the optimizer, or optimization algorithm.
Its purpose is to refresh the learnable parameters in order to minimize the loss function.
The standard optimization algorithm for MLP is the stochastic gradient descent (SGD)
method. Within this algorithm the gradient calculated from the data is replaced with
a stochastic approximation (derivated from a random subsample of the training data)
in order to converge faster to the desired solution. The iterative method, starting from
a loss function of the i-th input expressed in term of the free parameters L;(w), can be
described with the following equation:

Whnew = Wold — UVL’L (wold)a (44)

where the algorithm iterates over a random subsample of the input data. The parameter n
in known as the learning rate, and is a fundamental hyperparameter of Neural Networks
that determines the step size toward the direction of the loss function minimum. In
order to optimally train a Neural Network this parameter has to be carefully fine-tuned,
because the value of the learning rate is a trade-off between the convergence speed and
the achievement of the absolute minimum. Another optimizer, that will be used in the
following, is the adaptive moment estimation algorithm (ADAM) | , ]
which only involves first-order gradients with little memory requirement.

4.4 The validation phase

At the end of each training epoch, the network provides the loss function evaluated on
the training and validation dataset. Comparing validation and training datasets is useful
to finetuning the network hyperparameters, such as the learning rate or the number of
layers/neurons. Three different cases, summarized in Fig 4.2, are possible:

e High train and validation loss: This case is called underfitting. The network
is not able to properly adjust its learnable parameters and the predictions are not
improving.

e High validation loss and low train loss: This case is called overfitting. The
network is good at predicting labels for the training data, but it is not able to
generalize.

e Low training and validation loss, of comparable values: This is the optimal
result and tells us that the network has adequately learned.

By analysing the validation and training loss evolution during epochs it is possible to find
fluctuating trend due to the stochastic nature of the optimization algorithm or caused
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by wrong tuned parameters. For instance a large learning rate could lead to oscillation
around the absolute minimum of the parameter space.
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Figura 4.2: Possible training outcome for a regression Neural Network (credits to https://
towardsdatascience.com/how-to-increase-the-accuracy-of-a-neural-network-9f5d 1c6f407d).

4.5 The test phase

However the test bench for the network is the validation set. Thus we expect that the
test loss is a little bit higher than the validation one since the validation set could be
a random subsample of the training data while the test set has been never seen by the

network
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Capitolo 5

The Quijote N-body simulations

In order to fully describe the large-scale structure of the Universe, from linear to non-
linear scales, we need to analyze numerical simulations. The test bench for the statical
analysis of the density field described in Sec. 3 are the 3-dimensional surveys of cosmo-
logical probes. Unfortunately, surveys are limited to quasi-linear or non-linear scales by
observational bias and represent amazing but difficult scientific and engineering chal-
lenges. One way to tackle this problem is to generate and study numerical simulations
that can provide a large dataset to constrain cosmological parameters via statistical
and /or numerical approaches. This motivation lead Francisco Villaescusa-Navarro and
his team to develop one of the largest set of N-body simulations, the Quijote simulations

[ , 2019].

5.1 Simulation features

The full set of Quijote N-body simulations of DM particles contains 43100 realizations,
spanning on 7000 different cosmological models. The full dataset, consisting of simulation
snapshots and cosmological statistics occupies more than 1 Petabyte and was assembled
in more than 3.5 - 10" CPU hours. The Quijote simulations have been generated using
GADGET III, an improved version of GADGET-II | : ] TreePM code (see
Sec. 2.2.1). All the simulations have a cosmological volume of 1 (Gpc/h)?. Most of them
are filled with 512 CDM particles, while there are also low- (256®) and high- (1024?)
resolution simulations. The particles started on a regular three-dimensional grid. The
softening length for the gravitational force is 100, 50 and 25 kpc/h for low-, fiducial-
and high- resolution simulations, respectively . For every simulation snapshots at red-
shift z = 0, 0.5, 1, 2 and 3 are available. The initial conditions have been generated at
redshift 127 in different ways: in most cases with second-order perturbation theory (see
Sec. 2.1.3) with the code provided at https://cosmo.nyu.edu/roman/2LPT/, while in
few cases with the Zeldovich approximation (see Sec. 2.2).
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| Name O , h ns o8 My (eV) w realizations | simulations 1Cs Nr}-*'“ NP
15000 standard 2LPT 512 0
Fid 0.3175 0.049 0.6711 0.9624 0.834 0 -1 500 standard | Zeldovich | 512 0
500 paired fixed | 2LPT 512 0
1000 standard 2LPT 256 0
100 standard 2LPT | 1024 | ©
ot 0.3275 0.049 0.6711 0.9624 0.834 0 -1 500 standard ILPT 512 0
" - 500 paired fixed
0. 0.3075 0.049 0.6711 | 0.9624 0.834 0 -1 500 standard ALPT | 512 0
500 paired fixed
ot 0.3175 0.051 0.6711 0.9624 0.834 0 -1 500 standard IALPT 512 0
b 500 paired fixed
o 0.3175 0.050 0.6711 0.9624 0.834 0 -1 500 paired fixed | 2LPT 512 0
o 0.3175 0.048 0.6711 0.9624 0.834 0 -1 500 paired fixed | 2LPT 512 0
0-- 0.3175 0.047 0.6711 0.9624 0.834 0 1 500 standard LPT 512 0
b — 500 paired fixed
ht 0.3175 0.049 06911 | 09624 0.834 0 -1 500 standard 2LPT | 512 0
500 paired fixed
h- 0.3175 0.049 0.6511 0.9624 0.834 0 1 500 standard 2LPT 512 0
500 paired fixed
nt 0.3175 0.049 0.6711 0.9824 0.834 0 -1 500 standard 2LPT 512 0
" 500 paired fixed
nt 0.3175 0.049 0.6711 0.9424 0.834 0 1 500 standard ILPT 512 0
" 500 paired fixed
ot 0.3175 0.049 0.6711 0.9624 0.849 0 -1 500 standard 2LPT 512 0
L — 500 paired fixed
= - ;
- 0.3175 0.049 0.6711 0.9624 0.819 0 -1 500 standard 2LPT 512 0
78 " M ’ — 500 paired fixed ’
2000 standard 512
LH || [0.1,05] | [0.03,007 | [0.5,09] | [0.8,1.2] | [0.6, 1.0] 0 -1 2000 Hixed WPT | 51 0

Tabella 5.1: Cosmological model parameters of the Quijote set of N-body simulations.
The underlined value refers to the fiducial cosmology. The parameters n, is the spectral
index of the power spectrum (see Eq. (3.11)) [Villacscusa-Navarro et al.; 2019]

Let us consider the initial perturbation density field in Fourier space d(k) = Ae'. Re-
calling the discussion on the Gaussian properties of the density field, provided in Sec.
3.1.1, it can be demonstrated that ¢ has a random uniform distribution in the [0, 27]
interval while the amplitude A is extracted from a Rayleigh distribution related to the
value of P(k). This is the standard way to generate initial conditions. We will define
fized simulations the sub-set of simulations in which the amplitude A is fixed to the
square root of the variance of the Rayleigh distribution, while two fixed simulations with
density fields 6(k); = Aet and §(k)y = Ae'?? with |¢; — ¢o| = 7 are called pair-fived
simulations (see [Angulo and Pontzen, 2016] and [Villaescusa-Navarro et al.; 2018]).

5.1.1 Cosmological models

The Quijote simulations set contains simulations with different values of the following
parameters: €2,,, ., h, ng, og, wpg and M,. In this Thesis work we will not consider si-
mulations with massive neutrinous or with wpg # —1 (see Eq. (1.37)) because they were
not enough in number, and so the Neural Network cannot reach an acceptable accuracy.
The parameters of the cosmological models that will be analysed in the following Sec-
tions are summed up in the Table 5.1: The values of the cosmological parameters of the

fiducial model are consistent to Planck 2018 results [’lanck Collaboration et al., 2018].
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The fundamental sub-set of Quijote simulations that will be used as training data for the
following Neural Network analysis is the one called latin hypercube . The name of this
set refers to latin hypercube sampling (LHS) a sampling method parameter space that
attempts to distribute samples evenly | , ]. Hence, for the number of
simulations and for the finely sampling of the parameter space, the latin hypercube is an
optimal training dataset for the Neural Network algorithms discussed in this Thesis work.

To study the impact of cosmological parameters on the main statistical functions, S ,
such as power spectrum and the two-point correlation function, it may be also useful
to calculate the partial derivatives of these functions with respect to each parameter, 6,
namely:

—

05  S(0+df) — S(— db)
90 240 ’

(5.1)

In order to calculate the partial derivatives, many simulations have been generated by
Villaescusa-Navarro and his team. More specifically, the simulations with superscripts
74”7 and ”-” in Fig. 5.1, share all the cosmological parameters of the fiducial simula-
tions except one, which is slightly larger or smaller. The difference between the fiducial
parameter and the modified one are lower than 5%, to guarantee enough accuracy in
approximating the derivative with Eq. (5.1), and higher than 1.8% to keep numerical
noise contribution low.

5.2 Data products

The full dataset of the Quijote simulations is stored in the Gordon cluster of the San
Diego Supercomputer Center, and it can be accessed through the web service globus
(https://www.globus.org/). The simulation snapshots contain positions and velocities
of DM particles at redshifts 0, 0.5, 1, 2, 3. Initial conditions at z = 127 are also
provided. To read the snapshots and calculate many cosmological functions the Pylians
library (https://github.com/franciscovillaescusa/Pylians) can be used. However, due to
the huge size of the simulation snapshots, we focus only on subproducts generated by
Villaescusa-Navarro and his team and stored in the San Diego Supercomputer. So, in
what follows, we will consider three products, namely, the two-point correlation function,
the power spectrum and the bispectrum, both in real and redshift space. There are other
important byproducts, such as density fields (see in Fig. 5.1), halo and void catalogues,
marked power spectrum and probability density functions, that have not been considered
in this Thesis work, and will be exploited in a future work.


https://www.globus.org/
https://github.com/franciscovillaescusa/Pylians
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Figura 5.1: Contrast density field for the fiducial simulations at z = 0 generated with
the Pylians library [ ) ].

The two-point correlation function

To measure the two-point correlation function of the Quijote simulation snapshots,
the Pylians library used by Villaescusa-Navarro and his team performs the following
procedure:

e First, a regular grid was created with N? cells (where N? is the total number of
particles). Then, every particle has been assigned to the closest grid points using
the Cloud-in-Cell (CIC) algorithm | : .

e The density field has been calculated, as defined in Eq. (2.1).

e The Fourier transform of the density field has been performed, then the modules of
each Fourier mode have been computed. The resulting |§(k)?| provide an estimate
of the power spectrum.

e Finally, the power spectrum is anti-transformed, obtaining the two-point correla-
tion function.
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This procedure holds for real and redshift space. In redshift space, RSDs have been
introduced along one Cartesian axis, and the correlation function monopole (v = 0),
quadrupole (v = 2) and hexadecapole (v = 4) have been calculated as follows (see

[ , 2018]):

) = — /OookZP(k)jl(kT)dk, (5.2)

"~ on?

where j;(kr) are the Bessels functions. An example of two-point correlation function
monopole extracted from the same simulation at different redshifts is shown in Fig. 5.2.
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Figura 5.2: Two-point correlation function monopole in real space for the fidu-
cial cosmological model at high resolution (1024® particles) and different redshifts.

[ , 2019].

Power spectrum and bispectrum

The power spectrum is calculated following the same procedure as for the correlation
function, negletcting the last step and normalizing |§(k)?|. As for the two-point corre-
lation function, the power spectrum has been measured in both real and redshift space.
In redshift space, RSDs have been introduced along the three Cartesian axis, and po-
wer spectra monopole, quadrupole and hexadecapole have been derived. An example of
power spectrum monopole extracted from the same simulation at different redshifts is
shown in Fig. 5.3.
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The bispectrum monopole is measured as follows:
1
Bo(ky, ko, k3) = V/ ds(h/ Pqy [ (a1, a2, 43)6(q1)8(q2)0(gs)d>qs — BN, (5.3)
B Jk ko k3

where dp is the Dirac delta function, Vp is a normalization factor and B%Y is the cor-
rection for Poisson shot noise. Specifically, the bispectra are calculated using the code
publicly available at https://github.com/changhoonhahn/pySpectrum. The perturba-
tion field 6(z) is decomposed on a grid with Ny,,4 = 360 and triangle configurations with
bins of width Ak = 0.01885 h Mpc ™!, with kpee = 0.5 h Mpc™!. As for the previous
two statistical functions, bispectrum is computed both in real and redshift space.
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Figura 5.3: Matter power spectrum in real space for the fiducial cosmological model
at the fiducial resolution. Color code indicates different redshifts. [Villacscusa-Navarro
et al., 2019].
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Figura 5.4: Unreduced bispectrum in real space for the fiducial cosmological model at the
fiducial resolution. Color code indicates different redshifts. | :

).

5.3 Statistical results

The Quijote N-body simulations provide an optimal dataset for statistical analyses to
constrain cosmological parameters emulating the main summary statistics of the density
field. These kind of analyses have been implemented by Villaescusa-Navarro and his
team. Their results will be used to pre-process the input data of our ML algorithms and
compared with the output of our Neural Networks One way to quantlfy the information
content of a set of cosmological parameters, 9 given a statistics S is by using the Fisher
matrix F":

05,053 4
F ZE 7 4
“ " 00; 00; Cas: (5.4)

where S; is the i-th element of the statistics S and C is the covariance matrix:
Cag =< (Sa — §a>(SB — S_g) > . (55)

The Quijote simulations provide all elements to calculate Egs. (5.4) and (5.5). In
particular, one set of simulated data has been used to compute the covariance matrix,
while the other simulations have been used to estimate the derivative of the statistics
with respect to cosmological parameters as described in Sec. 5.1.1. The creators of the
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Quijote simulations used this approach to forecast the uncertainties of the main ACDM
cosmological parameters from the matter power spectrum in real space at z = 0, assuming
the fiducial cosmological model, for different values of the maximum Fourier mode, k4.
The results of this analysis are presented in Fig. 5.5, that shows the constraints of the
ACDM cosmological parameters coming from the Fisher’s analysis of the matter power
spectrum as a function of the maximum wavenumber considered, k,,... It is evident how,
moving towards higher scales in Fourier space, the constraints improve.
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Figura 5.5: Constraints on the values of ACDM cosmological parameters from the matter
power spectrum in real space, at z = 0, for different k,,,,. The ellipses indicate 1o and
20 constraints. The last panels in each row show the marginalized posterior probability
function for each cosmological parameter [Villacscusa-Navarro et al., 2019].

A powerful way to search for new statistics, starting from the Fisher matrix, is via
Information Maximising Neural Networks (IMNN) [Charnock et al., 2018]. The goal of
IMNN is to maximize the Fisher matrix using latin-hypercube simulated data. Besides
this approach, the Quijote simulations and, in particular, its latin-hypercube dataset
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can be used to train machine learning algorithms. Thus Villaescusa-Navarro and his
team develop a random decision forest algorithm [[1o, 1995]. The inputs for this ma-
chine learning algorithm are the probability density functions, while the labels are five
cosmological parameters, €2,,, €2, h, n,, o0g. The input dataset has been split in train
and test datasets (see Sec. 4.1), with 1600 simulations for the first dataset and 400 for
the second one. For this purpose the one-dimensional probability density functions have
been smoothed on a scale of 5 Mpc/h using a top hat filter at z = 0. The result of the
random forest is a function f that maps inputs, paf , into labels 0

0= f(pdf(1+9)) (5.6)

The machine learning approach does not need any template likelihood. As it can be seen
in Fig. 5.6, it is only able to accurately predict the value of og and, poorly, €2,,. For the
other parameters the code always predicts the mean value of the considered parameter
on the training set.
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Figura 5.6: Results of the random decision forest algorithm on the test set of 400 pro-
bability density functions calculated starting from latin-hypercube simulations for five
cosmological parameters, as labeled is each panel [Villacscusa-Navarro et al., 2019].

Another possible approach to the problem, which can improve the previous results, is
the one that uses CNN, introduced in Sec. 4, to identify feature directly from the three-
dimensional density field. However this method needs a more accurate hyperparameter
fine-tuning, more training data and a higher computation power during the training
phase, thus it is slow for this kind of datasets.
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Capitolo 6

Machine learning analysis of Quijote
simulations

The Quijote simulations presented in the previous Section, and more specifically the
latin-hypercube dataset, are an exceptional test bench for ML algorithms that aim to
constrain the cosmological parameters starting from N-body simulation results, such as
two-point correlation functions, power spectra and bispectra. In this Chapter we will
describe the implementation of new ML algorithms, trained on these data, that is able
to derive satisfactory constraints on five fundamental ACDM cosmological parameters.

6.1 Machine learning framework

The ML algorithms developed in this Thesis work has been built within the Pytorch
framework | , |. PyTorch is an open source machine learning library
based on the Torch library | , | that provides an imperative and
Pythonic programming style, focused on usability and speed. PyTorch is written in
Python and supports hardware accelerators such as graphics processing unit (GPU).
The PyTorch package provides two high-level features:

e Tensor computation with strong GPU acceleration

e Deep Neural Networks based on automatic differentiation, i.e. an automatic system
for gradients computation

The GPU acceleration is implemented with the CUDA parallel computing platform
(https://developernvidia.com/cuda-zone) that allows to speed up the training phase
up to a factor 100 with respect to standard CPUs. The fundamental modules of the
Pytorch library that have been used in this Thesis work are:
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e The Autograd module : Autograd is a reverse automatic differentiation system
that records on a graph all the operations applied on data. In this graph, leaves
are input tensors and roots are output tensors. By tracing the graph from roots
to leaves, Autograd automatically computes the gradients using the chain rule.
Hence, this module is a fundamental tool to save time during the training phase.

e The Optim module : The Optim module implements optimization algorithms.
Within this module, the optimization codes described in Sec. 4.3 and tools to
adjust net’s hyperparameters between training epochs, such as the learning rate
schedulers (see | ) |), can be found.

e The nn module : The nn module contains every building blocks that we need in
order to implement a Neural Network architecture, such as layers and loss functions.
This module depends on the Autograd one to define models and differentiate them,
and on Optim module to adjust the parameters during the training phase.

Finally, all the algorithms have been implemented on the Google Colaboratory (Colab)
notebook (https://colab.research.google.com/) | a Jupyter-like notebook that allows the
user to write and execute Python programs on the cloud. Colab also gives free access to
GPUs and TPUs with no configuration required.

6.2 Analysed dataset

The training dataset of the Neural Network analysis presented in this Section is the
set of two-point correlation functions, power spectra and bispectra calculated from the
latin-hypercube sub-set of the Quijote N-body simulations. All the input data have been
normalized in the [0, 1] range. The normalizing operation on the data generally speeds
up the learning, and leading to faster convergence (see [ , ). The
latin-hypercube dataset has been split into training and validation datasets, according
to the rule described in section 4.3. The test dataset, instead, comes from 500 fiducial
simulations, and, again, all the data have been normalized in the [0, 1] range. For the
analyses of this Thesis work, we have used data at redshift 0, 0.5 and 1 calculated in
redshift space. For each of the aforementioned statistics, we have considered all the three
different realizations, where the RSDs have been placed on the three different spatial
axes. In summary, for the training and validation phases we use, in total, 2000 different
simulations coming from the latin hypercube dataset, each one at z = 0, z = 0.5 and
z = 1 with 3 different realizations of RSDs. So, the total number of input data is 36000,
of which 27000 have been used for training phase, while a random subsample (changed
after every training epochs) of 9000 data have been used for the validation phase. The
five cosmological parameters €2,,, €2, h, ns and og have been used as labels.
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As reported in the Fig 5.1, the labels lie in the following intervals:
¢ 01<Q, <05,

0.03 <, <0.07,

0.5 <h <0.9,

0.8 <n, <1.2,

0.6 <og<1.

6.2.1 Power spectrum

The redshift-space power spectrum monopole, quadrupole and hexadecapole moments
have been measured by [2019] from the latin-hypercube simu-
lations, using the Pylians library. An example of power spectra dataset member used as
Neural Networks training data in this Thesis work are shown in Fig. 6.1.
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Figura 6.1: Power spectrum monopole, quadrupole and hexadecapole at z = 0 with
RSDs placed on the x axis. normalized in the [0, 1] range. The power spectrum has been
calculated from the first realization of the latin-hypercube simulations with cosmological
parameters €2, = 0.1755, 0, = 0.06681, h = 0.7737, ns = 0.8849, oz = 0.6641.
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The maximum value of k considered in the training phase, k..., has been choosen by
comparing the relative difference between the real-space power spectrum of the Quijote
simulations at the fiducial cosmology and the power spectrum calculated with the CAMB
non-linear code | , |. As illustrative case, Fig. 6.2, shows the
result at z = 0. Another possible way to chose the value of k,,,, comes from the original

Matter power in real space at z=0
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Figura 6.2: Comparison between the real-space power spectrum monopole of the Quijote
simulations, at z = 0, at the fiducial cosmology and the corresponding power spectrum
estimated with CAMB.

analysis of [2019], described in Sec. 5.3, who provided k-
dependent constrains on the cosmological parameters as a function of k.., as shown in
Fig. 6.3.
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Figura 6.3: Marginalized 1o constraints on the value of the cosmological parameters
from the analysis of the matter power spectrum in real space at z = 0 presented in Sec.
5.3 as a function of kg, [Villacscusa-Navarro et al.) 2019].

Considering the two methods, we decided to cut the power spectrum multipoles at k., =
0.5h/Mpc to limit the analysis at large enough scales where the simulations’ results are
reliable. The resulting power spectrum consists of 80 linear bin from k& = 0 to k = k4, for
each power spectrum multipole. Finally, the different multipoles have been concatenated
into a single vector, with 240 elements. This vector, without the k mode that are the
same for every spectrum, is one of the input of the Neural Network algorithm.

6.2.2 Bispectrum

The bispectra of the latin-hypercube dataset of the Quijote simulations has been cal-
culated by Villaescusa-Navarro et al. [2019] using the Pylians library. The measured
bispectra are store in files with 10 columns. The first three columns refer to the length
of the triangle sides, while the following three are the power spectrum calculated at these
values of k. The 7-th, 8-th and 9-th columns are, respectively, the bispectrum monopole
By(k1, ko) (see. (3.35)), already shot-noise corrected, the reduced bispectrum Q(kq, ko),
the analogue of the reduced three-point correlation function, and the shot noise correc-
tion Bgn(k1, ko). The last column refers to the number of triangles in the bin. For the
Neural Network analysis of this Thesis work, we considered only the columns with the
bispectrum monopole and the reduced bispectrum. The values of k, the shot-noise cor-
rection and the number of triangles in the bin have been neglected. An example of the
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bispectrum monopole and of the reduced bispectrum monopole is shown in Fig. 6.4. The
considered £ range goes from —%~ 1000 ?ég’g h/Mpc with a bin interval of -0 To0o 0/ Mpe. Thus
there are 6350 triangle configurations. Hence, the input vector for the Neural Network

generated from the bispectrum is made of 12700 elements.
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Figura 6.4: Equilateral (k; = ko = k3) and normalized bispectrum and reduced bispec-
trum at z = 0 with RSDs placed on the x axis. The bispectrum has been calculated
from the first realization of the latin-hypercube simulations with cosmological parameters
Q= 0.1755, Q, = 0.06681, h = 0.7737, ns = 0.8849, g = 0.6641.

6.2.3 Two-point correlation function

As for the power spectrum and the bispectrum, the two-point correlation function mo-
nopole, quadrupole and hexadecapole have been computed with the Pylians library in
redshift space. All multipoles have been cut at r,,,, corresponding to the k,,,, of the
power spectrum. An example of the two-point correlation function multipoles is shown
in Fig. 6.5. The resulting input vector used for the training of the Neural Network is
made of 240 elements.
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Figura 6.5: Normalized two-point correlation function monopole, quadrupole and he-
xadecapole at z = 0 with RSDs placed on the x axis. The two-point correlation func-
tion has been calculated from the first realization of the latin-hypercube simulations
with cosmological parameters €2, = 0.1755, , = 0.06681, h = 0.7737, ns = 0.8849,
gg — 0.6641.

6.2.4 Test

A subset of the simulations at the fiducial cosmology have been used for the test phase.
Specifically, for every statistical function in input, the test is performed with 500 data
coming from the fiducial simulation for every redshifts, thus 1500 data in total. Once the
network is trained, it predicts a value for the five parameters that are hopefully close to
the true values. Hence, after a Gaussian fit of the prediction occurrences, it is possible
to use the mean value as a guess for the true value of each parameter, and the variance
as an estimator of the error. Recalling that the network has never seen the test dataset
before the end of the training phase, we expect an higher value for the loss function on
this dataset.
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6.3 Neural Network architecture

The Neural Networks that we implement in this Thesis work take in input one cosmo-
logical function, and predict the 5 output labels, i.e. the 5 cosmological parameters.
Specifically, we have chosen MLP Neural Networks that perform regression task. Since
there are three different input functions, i.e. the power spectrum, bispectrum and the
two-point correlation function, we created three different Neural Networks that share
most of the features. In order to build a general model for all the three input types, an
accurate hyperparameters search was performed, to be able to predict accurate values
for the output labels with the same net architecture from the three different inputs. To
achieve this, only the first layer has been changed according to the number of input
features. The main features of this net architecture are the following:

e Input layer : The input layer contains a number of neurons equal to the number
of input features, thus 240 for the correlation function and power spectrum, and
12700 for the bispectrum.

e Hidden layers : There are three hidden layers with 1024, 2048 and 1024 units.
These values have been accurately fine-tuned. A deeper network may achieve a
better accuracy, because it has a larger number of learnable parameters, but this
increases the risk of overfitting.

e Dropout layer : This kind of layer was applied only on the last hidden layer.
The dropout layer is a particular type of layer, active only during training phase
that neglects the values coming from a given percentage (50% for our networks)
of the previous layer’s neurons, in order to reduce the overfitting (see |

, 2014]).

e Output layer : The output layer consists of 5 units, one for each cosmological
parameter that we want to constrain.

e Batch normalization layers : The batch normalizations (bn) layer have been
applied onto all the layers, except the output one. This special kind of layer
normalizes the input data of each neuron with an operation that introduces two
more learnable parameters. The aim of the bn layers is to speed up the training
process and to reduce the overfitting (see | , ).

e Activation functions : For every layers, except the output one, we choose the
leaky ReLu activation function described in Eq. (4.2).
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e Batch-size : The batch size, i.e. the number of input data that will be propagated
together through the network within each epochs, is set to 256. This value is a
good trade-off between convergence speed and accuracy (see | ,

-

e Optimizer : After testing with all the optimizers implemented in the pytorch
library, we choose the ADAM optimizer, described in Sec. 4.3, that gives the best
results with low computational time requirement.

e Learning rate : The learning rate choose for this Thesis analysis is set to 0.005.
This value, accurately fine-tuned after many tests, is a good choice for the first
training epochs. Then, after few epochs, it has to be changed to find the absolute
minimum in the gradient space rather than a relative one. To perform this opera-
tion a learning rate scheduler has been used, implemented in the Optim module,
that multiplies the learning rate for a constant v at the given epochs. The optimal
values found for 7 is 0.6, while the scheduler has been triggered after 50, 200 and
400 epochs, regardless of the input data.

e Loss function : As we perform a typical regression task, we choose the standard
MSE loss function, described in Eq. (4.3). However, we also tried with other loss
functions, such as the mean absolute error, but the final results did non improved.

e Training epochs : The Neural Network has been trained for 500 epochs, since
we found that this value is large enought to reach stable results.

The resulting architecture is shown in Fig 6.6. The full codes used for this Thesis
work and the training, validation and test dataset are available at https://drive.google.
com/open?id=1dGu2Wn6zBpkP73m4 Dmal0InS3JiUWEX The results of the training,
validation and test phases on this kind of Neural Network architecture will be presented
and described in the following Chapter.


https://drive.google.com/open?id=1dGu2Wn6zBpkP73m4_DmaE0InS3JiUWEX
https://drive.google.com/open?id=1dGu2Wn6zBpkP73m4_DmaE0InS3JiUWEX
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Figura 6.6: Schematic rappresentation of the Neural Network architecture used for this

Thesis work. This figure has been generated with http://alexlenail.me/NN-SVG /index.
html
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Capitolo 7

Results and conclusions

In the previous Chapter, we have described the training and validation datasets that have
been given as input for presented Neural Networks presented in this Thesis work. The aim
of this analysis is to investigate the capability of our ML infrastructure in constraining
the ACDM cosmological parameters from the two-point correlation functions, the power
spectra and the bispectra of CDM particles catalogues in redshift space. In this Chapter,
we will analyze the outcomes of the training and validation phases, such as loss trends
and predicted labels. Then, we will apply the trained net on the test dataset, made
up of a subset of the fiducial simulations, to assess the performances in constraining
the values of the five cosmological parameters considered. Finally, we will examine
the results, comparing with the ones of recent literature works, and we will discuss
future improvements, applications and perspectives for Neural Network analyses of the
large-scale structures of the Universe.

7.1 Training and validation outcomes

To analyze the training and validation phases, we have to look at their MSE loss trends
as a function of the training epochs, as shown in Fig. 7.1. Hence, recalling the discussion
in Sec. 4.3, we may expect a validation MSE loss slightly higher than the training one.
Fig. 7.1 represents the losses for the considered input functions over all the 500 training
epochs. However, for the following analysis we only keep the weights relative to the best
epoch, i.e. the epoch where the minimum values of training and validation loss have
been achieved. In Fig. 7.1 we can also notice the effects of the learning rate scheduler,
described in Sec. 6.3. The scheduler is triggered after 50, 200 and 400 epochs, in fact we
can observe a small change in loss trends. After the aforementioned epochs the learning
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rate, from its initial value of 0.005, changes to 0.003, 0.0018 and 0.00108 respectively.
Furthermore, we can see that the validation loss oscillates more than the training loss.
This is due to the lower number of samples in the validation datasets, with respect to the
training one. The losses plotted in Fig. 7.1 are the mean MSE losses calculated above
each output, thus every the prediction error weights more on the validation loss than on
the training one.
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Figura 7.1: The validation and train MSE loss trends as a function of training epochs
for two-point correlation functions (a), power spectra (b) and bispectra (c¢) inputs. The
epochs with the lowest values of train and validation loss are the 446-th (a), 446-th (b)
and 489-th (c), respectively.
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The saved weights for the three different input datasets refer to the following epochs:

e 446-th epoch with train loss~ 0.00040 and validation loss~ 0.00239 for two-point
correlation functions.

e 446-th epoch with train loss~ 0.00049 and validation loss~ 0.00557 for power
spectra.

e 489-th epoch with train loss~ 0.00034 and validation loss~ 0.00273 for bispectra.

Theoretically, we have to save weight that refer to epochs at which the training and
validation loss where comparable. We decide to continue training process until a mini-
mum in both, training and validation loss, is reached. At that epoch the network suffers,
a little, from overfitting. However, the resulting accuracy is higher than the case with
comparable train and validation loss. In summary, looking at loss trends, we can con-
clude that the Neural Networks have been properly trained. In the next Section we will
analyze the predictions made over the training datasets. These investigations are made
as a sanity check before the test phase.

7.2 Network predictions over the training data

To visualize how the Neural Networks implemented in this Thesis work predict the labels
for each training input, we plot the target labels with respect to the guess ones. The
results are shown in Fig. 7.2. In this Figure we can notice the networks capabilities
in linking each input with the corresponding label values. We also perform a linear
fit on the predicted labels that, ideally, have to correspond to the bisector of the first
quadrant. Fig. 7.2 provides an indicator of which labels the network predicts correctly,
corresponding to the relations with small scatter and with a fit close to the bisector.
From the results shown in Fig. 7.2, and the loss values described in the previous Section,
we observe that the better predictions comes from the two-point correlation functions,
while the worse results come from the power spectra. These two statistics have been
calculated with the Pylians library as described in Sec. 5.2. Specifically, the two-point
correlation functions are directly extracted from the power spectra, with the inverse
Fourier transform. Hence we did not expect to find any difference in network predictions
for these functions, in contrast to what is evident in the losses’ plot and in Fig. 7.2;
the network find clear links between two-point correlation functions and cosmological
parameters, while this statement is not valid for power spectra. This unexpected founding
deserves further investigations, that we postpone for a future dedicate work. As regard
the bispectra, the prediction are, in general, noisier than the ones coming from the other
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two cosmological functions. To quantify the accuracy over training labels recognition,
we can look at the linear fit coefficients m and ¢ shown in Tab 7.1, from which we can
conclude that the networks are good at predicting only certain label values for each
training input. Specifically, €2, is accurately assessed by all the three different networks,
that have linear fit coefficients comparable with the bisector ones. The outcomes for og
and ng labels is, instead, fairly reliable only in networks that takes as input two-point
correlation functions and bispectra. As regards h and €2, the three networks are not
able to properly assess these labels. This result is due to the fact that the considered
statistics do not strongly depend on these parameters. To summarize, we can conclude
that the networks developed in this Thesis work are able to assess the values of €, and,

less accurately, ngy and og from the training datasets.

Label | Two-point correlation function
m q
Qm 0.964 4+ 0.008 | 0.002 + 0.002
Q 0.119 +£0.013 | 0.0411 +£ 0.0007
h 0.462 £0.016 | 0.377 £0.012
N 0.856 +0.013 | 0.144 +0.013
loF 0.942 4+ 0.005 | 0.039 £ 0.004
Power Spectrum
m q
Qi 0.994 £0.009 | 0.014 £ 0.003
Q 0.380 +0.016 | 0.0307 £ 0.0008
h 0.714 4 0.014 | 0.200 = 0.009
N 0.633 +0.013 | 0.372+0.013
o 0.661 +0.013 | 0.276 £+ 0.011
Bispectrum
m q
Qm 0.937 +0.009 | 0.026 £ 0.003
Q 0.220 +0.019 | 0.036 £ 0.001
h 0.48 £0.02 0.356 +0.016
N 0.805 4+ 0.015 | 0.157 £+ 0.015
loF 0.830 £0.012 | 0.117 £ 0.009

Tabella 7.1: The linear fit coefficients for the predictions over the training datasets.
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Figura 7.2: Cosmological parameters predicted by the Neural Network on the training set
compared to the true parameters of the Quijote simulations (from left to right: two-point
correlation functions, power spectra and bispectra).

7.3 The predictions on the test set

In the previous Section, we showed the results of the training and validation phases, where
the input data come from the latin-hypercube subsample of the Quijote simulations. We
may conclude that the three networks are well trained and able to predicts label values
close to the real ones, for what concerns €,,, ns and og. However, the real proving
ground for our ML algorithms is the test phases, that will be analyzed in this Section.
In particular, we want to investigate how the networks predict labels for data that they
have never seen. The test dataset is made of 1500 samples for each considered functions,
extracted from 500 simulation runs at the fiducial cosmology, for the three different
redshifts considered. For each label we built an histogram with the occurrences of the



7.3. THE PREDICTIONS ON THE TEST SET 79

predicted values, in 100 linear bins. The resulting histograms, one for each label and for
each network, are shown in Fig 7.3. In order to assess the five cosmological parameters
of the fiducial simulations, we perform a Gaussian fit on these histograms. The two
fitting parameters, the mean, p, and the variance, o, will be used as estimators for the
predicted value and the absolute error of each cosmological parameters. The fit results
are shown in Tab 7.2.

Label | Two-point correlation function
1 o
Qum 0.305 0.011
973 0.045 0.002
h 0.685 0.066
N 0.968 0.047
os 0.826 0.007
Power Spectrum
1 o
Qm 0.333 0.041
Q 0.047 0.005
h 0.662 0.062
N 0.977 0.059
oF 0.828 0.051
Bispectrum
14 o
Qun 0.252 0.084
973 0.051 0.015
h 0.725 0.109
N 1.051 0.109
oF 0.877 0.077

Tabella 7.2: The Guassian fit coefficients for the predictions over the test datasets.

Label £(r) P(k) B(ky, k2) Planck18

Qn 0.305 £0.011 | 0.33£0.04 0.25 £ 0.08 0.315 £ 0.007
Q 0.045 4+ 0.002 | 0.047 £ 0.005 | 0.051 £ 0.016 | 0.04934 £ 0.0008
h 0.69 £ 0.07 0.66 = 0.06 0.72+£0.11 0.674 £ 0.005
N 0.97 + 0.05 0.98 £ 0.06 1.01 £0.11 0.965 £ 0.004
os 0.826 £ 0.007 | 0.83 4+ 0.05 0.88 £ 0.08 0.811 £ 0.006

Tabella 7.3: Comparison between our network results and Planck18 constrains.
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Figura 7.3: Histograms with the prediction for the test labels. The blue triangles in-
dicate the expected values of the labels while the squares define the intervals of each
cosmological parameters for the latin-hypercube simulations (from left to right: two-
point correlation functions, power spectra and bispectra). The bi-modal trend of some
histograms is an unexpected features that has to be investigated in future works.

Finally, we compare the 1o constrains derived from the ML analysis of the fiducial subset
of the Quijote simulations with the Planck18 results [Planck Collaboration et al.; 2018].
The comparison is shown in Tab 7.3.
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Capitolo 8

Conclusions

In this Thesis work we developed ML techniques to assess cosmological parameters from
two-point correlation functions, power spectra and bispectra of the DM density field, trai-
ned on the snapshots of the Quijote N-body simulations. This kind of analysis represents
a novel tool in the cosmological field, that aims to constrain cosmological parameters with
a data-driven likelihood-free inference analysis. Here we summarize the main outcomes
of this Thesis work. Then, we will give suggestions for possible future improvements that
will pave the way for applications on real datasets.

The Neural Networks results, summarized in Table 7.3, are the final outcomes of
our ML analysis of the Quijote N-body simulations. Almost all the presented results
are fully consistent with expectations, that is with the cosmological parameters of the
fiducial subset used as test dataset. However, the constraints depend on the statistics
used to train and validate the Network. In particular, the Neural Network trained on
the two-point correlation functions provides accurate constraints on most of the cosmo-
logical parameters, while the Neural Network trained with the power spectra provides
constraints with larger confidence intervals, in particular for €2, and og. This unexpec-
ted issue, also discussed in the previous Section, deserves further investigations. Finally,
the Neural Network that has been trained with the bispectrum measurements, provides
constraints on €, and ng that are much larger than in the other cases. This is due to
the larger number of input features and the sparsity of the binning. We can assume that,
with a larger number of training samples, and with a deeper Network, the results coming
from this analysis could be tighter.

Summing up, the best results of the Neural Network analyses presented in this Thesis
work are the outcomes of the Networks trained with the two-point correlation functions.
For comparison, the resulting 1o constraints on the €2, parameter of the ACDM model
are a factor ~ 1.6 larger than the outcome of Planckl8 collaboration. In Fig. 8.1, we
show the comparison between the constraints on 2, derived in this Thesis work and
some literature results. We recall that our result was obtained with a Neural Network
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trained and validated over 36000 two-point correlation function monopoles, quadrupoles,
hexadecapoles in redshift space, at z = 0, 0.5 and 1, measured from mock DM catalogues

in V = 1(Gpc/h)3.

P
—+ Our results with &(r), &2(r) and &4(r) _
= Schellenberger et al 2017
—+++ Alam et al 2017
=+ Planck 2018
—+= Kitching et al 2015
Simha et al 2018 A
S —
e
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Qm

Figura 8.1: Constraints on €, coming from our Neural Network compared to the latest

literature outcomes. Specifically, [2017] and [2013] derived
constraints from the galaxy clustering of the SDSS survey, [ | from
weak lensing shear maps and [ ] from galaxy clusters in
X-ray band.

8.1 Future perspectives

The statistical approach consisting of exploiting ML algorithms to constrain the cosmo-
logical parameters of our Universe represents a newborn field in Cosmology. This branch
became relevant only in the last few years and, up to now, it is in constant growth. The
analysis presented in this Thesis work should be considered as a preliminary attempt
to pave the way for a full ML exploitation of real cosmological datasets. In fact, our
Neural Network analysis can be improved in several ways. First, if we train the Networks
with larger datasets, spanning over more cosmological models, we will be able to extract
tighter constaints on the cosmological parameters. Moreover, larger training datasets
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can make the Networks able to predict values for more labels, thus extending the num-
ber of cosmological parameters that the Network can constrain. Furthermore, with more
computational power, it will be possible to exploit deeper Neural Networks. Recalling
the overfitting problem, described in Sec. 4.4, if we want to work with larger Networks
we have to accurately fine-tune the hyperparameters. This problem can be solved using
algorithms that automate the search for optimal values in the hyperparameters space.

Other possible improvements can be obtained trying different Neural Networks ar-
chitectures and training data. About the Network architecture, one of the spearheads
of ML are the so-called Convolutional Neural Networks (see | , ]). This
kind of Networks, usually employed for image recognition, can be trained directly over
simulation snapshots, bypassing the issue of finding statistical functions and estimators
that contain enough information to train the Network. However, with this approach the
number of input features, i.e. the computational power for Neural Networks training
and exploitation, is extremely high. Thus, the alternative approach considered in this
Thesis, which exploits statistical functions that can embed information on the large-scale
structure of the Universe with a limited number of features, seems more convenient.

Finally, the training dataset should be as close as possible to real datasets. Indeed,
we plan to extend the current analysis by training our Neural Networks with realistic
mock galaxy catalogues. To investigate if the outcomes of the ML analysis are indepen-
dent of the algorithms used for populating DM haloes with galaxies, we aim to train
the Networks with datasets coming from different mock galaxy catalogues, constructued
with different galaxy formation and evolution algorithms, with distinct initial conditions,
different resolutions and considering different observables.

We would like to comment that the primary goal of ML techniques applied to cosmo-
logical studies should be to provide tools in support of the standard statistical analyses
for a deeper understanding of our Universe and, in particular, of its large-scale structu-
res. The ML approach has not to be used as a heuristic process that always gives the
best answer without an understandable, logical procedure. Instead, this tool should be
exploited within a theoretical framework, to support the discovery of general laws that
can properly describe our Universe.
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