Deep neural networks to unveil the properties of the cosmic web

Neri, Jacopo (2020) Deep neural networks to unveil the properties of the cosmic web. [Laurea magistrale], Università di Bologna, Corso di Studio in Astrofisica e cosmologia [LM-DM270]
Documenti full-text disponibili:
[img] Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (6MB)

Abstract

The main goal of this Thesis work is to test Machine Learning techniques for cosmological analyses. We develop and validate new methods and numerical algorithms to constrain the main parameters of the standard cosmological model, that is Ωm, Ωb, h, ns, σ8, exploiting a likelihood-free inference analysis. The training dataset considered in this work consists of a huge set of second-order and third-order statistics of the dark matter density field, measured from the Quijote N-body simulations [Villaescusa-Navarroet al., 2019]. These are one of the largest sets of dark matter N-body simulations currently available, that span a significant range of the cosmological parameters of the standard model. We implement and train new Neural Networks that can take in input measurements of two-point correlation functions, power spectra and bispectra, and provide in output constraints on the main cosmological parameters. After the training and validation phases, we test the accuracy of our implemented Machine Learning algorithms by processing never-seen-before input datasets generated with cosmological parameters comparable with Planck18 ones [Planck Collaboration et al., 2018]. We find that this statistical procedure can provide robust constraints on some of the aforementioned parameters, in particular Ωm. This Thesis work demonstrates that the considered deep learning techniques based on state-of-the-art Artificial Neural Networks can be effectively employed in cosmological studies, in particular to constrain the main parameters of the cosmological framework by exploiting the statistics of the large-scale structure of the Universe.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Neri, Jacopo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Cosmology,Large-scale structure,Machine learning,Neural network,Cosmic web,Quijote N-body simulations,Deep Neural Network
Data di discussione della Tesi
13 Marzo 2020
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^