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Abstract

The 21 cm line is one of the most promising probes of the intergalactic medium
(IGM), especially of its thermal and ionization history, from the Cosmic Dawn
(z ≈ 30) until the end of the Epoch of Reionization (EoR, z ≈ 6). The biggest
challenge to 21 cm observations is the presence of Galactic and extragalactic
foreground emission that is a few orders of magnitude brighter than the cosmological
signal everywhere in the sky. Foreground and 21 cm emission can, however, be
separated spectrally, as foreground emission is spectrally smooth on scales of tens
of MHz, whereas the 21 cm emission significantly evolves on MHz scales.

In this Thesis work, we analyse observations taken with the Precision Array to
Probe the Epoch of Reionization (PAPER; Parsons et al. 2010) in the 120−180 MHz
range (i.e., 6 < z < 10). In particular, we focus on the power spectrum estimate of
the EoR signal at four different redshift intervals (z = 7.48, 8.13, 8.85, 9.93) from a
subset of ∼ 8 hours of data. The analysis of PAPER data is rather unconventional:
the array is constituted by 128 dipoles arranged in a highly redundant configuration
in order to maximize the power spectrum sensitivity on a limited number of k-
modes. For this very reason, PAPER observations are not ideal to image and model
foreground emission: we instead adopted a strategy that relies on avoidance, i.e.
isolating the power spectrum region where the foreground emission is expected to
be fainter than the cosmological signal. Given the high redundancy, we estimated
the power spectrum from PAPER observations using only 30 m baselines, the most
numerous one, that also enable comparison with previous works (e.g., Kolopanis
et al. 2019).

After an initial data selection, we developed a pipeline to estimate the power
spectrum of the 21 cm signal. The pipeline averages calibrated data over the
duration of the observation, Fourier (“delay”) transforms them along the frequency
axis and then calculate cross-products between different baselines of the same
length. The resulting cross-spectra are averaged to obtain a final estimate for
each redshift interval. The delay transform separates the foregrounds, that are
confined to the k < 0.2hMpc−1 region. Higher k-modes are consistent with the
noise power spectrum that we derived from the data themselves. We therefore
estimated upper limits on the 21 cm power spectrum at 0.2 < k < 0.5hMpc−1 to
be (35 000 mK)2, (11 000 mK)2, (51 000 mK)2 and (3200 mK)2 at z = 9.93 , 8.84,
8.13 and 7.48, respectively. Using a simple, analytic model of the 21 cm signal
(Parsons et al. 2014) and assuming an average neutral fraction xHI = 0.3 (Greig
and Mesinger 2017), we calculated a 70mK lower limit on the IGM temperature
at z = 7.48, in agreement with existing models.





Sommario

La riga a 21 cm è una delle più promettenti sonde del mezzo intergalattico (IGM),
specialmente per quanto riguarda la sua storia termica e di ionizzazione, dalla
Cosmic Dawn (z ≈ 30) fino alla fine dell’Epoca della Reionizzazione (EoR, z ≈ 6).
La più grande sfida per le osservazioni della 21 cm è la presenza dell’emissione
Galattica ed extragalattica di foreground, la quale è qualche ordine di grandezza
più brillante del segnale cosmologico ovunque nel cielo. Il foreground e l’emissione
della 21 cm possono comunque essere separati spettralmente, dato che l’emissione
di foreground è spettralmente piatta su scale di decine di MHz, mentre l’emissione
della 21 cm evolve significativamente su scale dell’ordine del MHz.

In questo lavoro di Tesi, abbiamo analizzato osservazioni prese con il Precision
Array to Probe the Epoch of Reionization (PAPER; Parsons et al. 2010) nel range
120− 180 MHz (cioè 6 < z < 10). In particolare, ci concentriamo sulla stima dello
spettro di potenza del segnale dalla EoR in quattro diversi intervalli di redshift
(z = 7.48, 8.13, 8.85, 9.93) da un sottoinsieme di ∼ 8 ore di dati. L’analisi dei dati
di PAPER è piuttosto non convenzionale: l’array è costituito da 128 dipoli disposti
in una configurazione altamente ridondante, in modo da massimizzare la sensibilità
dello spettro di potenza su un numero limitato di modi k. Per questo motivo, le
osservazioni di PAPER non sono ideali per fare immagini e modelli dell’emissione
di foregroud: adottiamo invece una strategia basata sull’avoidance, cioè l’isolare la
regione dello spettro di potenza in cui l’emissione di foreground dovrebbe essere
più debole del segnale cosmologico. Data l’elevata ridondanza, stimiamo lo spettro
di potenza dalle osservazioni di PAPER usando solo le baseline di 30 m, le più
numerose, che ci permettono anche di fare un confronto con i precedenti lavori
(e.g., Kolopanis et al. 2019).

Dopo un’iniziale selezione dei dati, abbiamo sviluppato una pipeline per stimare
lo spettro di potenza del segnale della 21 cm. La pipeline media i dati calibrati
sulla durata dell’osservazione, ne fa la trasformata di Fourier (“delay” transform)
lungo le frequenze e poi calcola il cross-prodotto tra le diverse baseline della stessa
lunghezza. I risultanti cross-spettri vengono mediati in modo da ottenere una
stima finale per ogni intervallo di redshift. La delay transform separa i foreground,
i quali sono confinati nella regione con k < 0.2hMpc−1. I modi k più alti sono
consistenti con lo spettro di potenza del rumore che abbiamo derivato dai dati
stessi. Abbiamo inoltre stimato che i limiti superiori dello spettro di potenza della
21 cm per 0.2 < k < 0.5hMpc−1 sono (35 000 mK)2, (11 000 mK)2, (51 000 mK)2

e (3200 mK)2, rispettivamente a z = 9.93 , 8.84, 8.13 e 7.48. Usando un semplice
modello analitico del segnale della 21 cm (Parsons et al. 2014) e assumendo una
frazione neutra media xHI = 0.3 (Greig e Mesinger 2017), abbiamo calcolato un
limite inferiore di 70mK per la temperature dell’IGM a z = 7.48, in accordo con
gli attuali modelli.





Introduction

Our understanding of cosmology has had a remarkable development in the last few decades,
in which a concordance model has been reached, i.e., the ΛCDM model. According to this,
our Universe is made up of cold dark matter (CDM), baryonic matter, radiation, and dark
energy (well represented by the cosmological constant Λ). The model is supported by many
independent observational probes, such as the primordial nucleosynthesis (Beringer et al. 2012),
the cosmic microwave background (CMB; Planck Collaboration et al. 2018a) and the power
spectrum of large scale structure (Tegmark et al. 2006). Despite this progress, we know very
little, observationally speaking, about the first billion years of the Universe, a fundamental
period for the formation of first stars and galaxies.

After the cosmological recombination, all the gas in the Universe is in a neutral state.
First luminous sources begin to form within dense clouds and start heating and ionizing the
surrounding intergalactic medium (IGM) (e.g., Barkana and Loeb 2001). This is the beginning
of the Epoch of Reionization (EoR) which is observationally constrained in the redshift range
12 < z < 6. Thanks to the presence of neutral hydrogen, the 21 cm line emitted from hydrogen
hyperfine transition is a powerful probe of the cosmic evolution during this epoch (Furlanetto
et al. 2006). That line is emitted at 1420 MHz, but it is observed from Earth redshifted into
the ∼ 100 MHz radio band. Each frequency maps a certain redshift, so that is possible to
reconstruct 3D pictures of the evolution of IGM and, hence, of cosmic structures. Such maps
require high angular resolutions and sensitivities to be achieved, thus current experiments are
focusing on statistical measurements of the cosmological signal, through the power spectrum
estimator.

There are two complementary approaches to measure the 21 cm signal: global experiments
measuring the sky-averaged brightness temperature of the line relative to the CMB background
(e.g., EDGES; Bowman et al. 2008; Bowman et al. 2018, SARAS; Patra et al. 2013, LEDA;
Bernardi et al. 2015), and interferometers targeting spatial fluctuations caused by heating,
collapse and ionization (e.g., LOFAR; van Haarlem et al. 2013, MWA; Tingay et al. 2013,
PAPER; (Parsons et al. 2010)).

The biggest challenge to all 21 cm observations is the contamination from Galactic and
extragalactic foregrounds, whose emission is few orders of magnitudes brighter than the
cosmological signal everywhere in the sky. However, foregrounds and 21 cm emissions can
be separated because of the different spectral behaviours: the former are generally spectrally
smooth, whereas the latter fluctuate significantly with frequencies. We can mitigate foreground
contamination by subtracting the emission with some form of fitting or avoiding it with a delay
transform of visibilities, i.e., a Fourier transform along the frequency axis (Parsons et al. 2012a).
PAPER was the first instrument to apply the avoidance method in order to estimate the power
spectrum. With the delay transform approach, data from each interferometric baseline can
be analysed separately, without requiring foreground imaging and modelling. Thus, PAPER
baselines were deployed in a highly redundant configuration, i.e., on a regular grid where same
baseline length and orientation are repeated several times. This boosts the power spectrum
sensitivity on a given k-mode corresponding to the baseline length (Parsons et al. 2012b).

In view of the ongoing and next-generation large interferometric arrays, such as HERA
(DeBoer et al. 2017) and SKA (Mellema et al. 2013), that will explore the Epoch of Reionization
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in great details, it is crucial to accurately define a strong analysis method to obtain a power
spectrum estimator foreground free.

This Thesis work is organized as follows.

• In Chapter 1 we introduce the current cosmological scenario, focusing on the ΛCDM
model, the cosmic microwave background and the structure formation theory.

• In Chapter 2 we briefly review the theory of the 21 cm line and its cosmological
applications, discussing both the global signal and the spatially fluctuating one.

• In Chapter 3 we describe the fundamentals of interferometry, in order to define the
delay transform. We then provide information about main Galactic and extragalactic
foregrounds, and current methods to mitigate their contamination. We place great
emphasis on the avoidance technique.

• In Chapter 4 we present PAPER and the data set used in our analysis, evaluating their
noise level. Then, we describe the method used to estimate the 21 cm power spectrum
and validate it with sky simulations.

• In Chapter 5 we show the results of this Thesis work. Upper limits to EoR power
spectrum are estimated and compared to previous works. We then use these values to
calculate lower limits to the IGM temperature during the EoR.

• In Chapter 5.2 we summarize the results of this Thesis work and discuss future perspec-
tives.



Chapter 1

The cosmological context

In this chapter, our aim is to provide a summary of the current cosmological scenario on which
this dissertation is based. More details on the modern cosmology can be found, for instance,
in Coles and Lucchin (2002) and Mukhanov (2005).

1.1 Fundamentals of Cosmology

Cosmology is the study of origin and evolution of our Universe. The fundamental assumption
at the base of all cosmological models is the cosmological principle, introduced by Einstein
(1917) in order to find exact solutions of the equations of his General Theory of Relativity
(Einstein 1916). According to the principle, the Universe is spatially homogeneous (it is the
same at any position) and isotropic (it looks the same in any direction) on large scales. A
principle cannot be proved, but there are observational evidences both in the local universe,
where the distribution of galaxies is homogeneous and isotropic on scales larger than about
100Mpc, and at very high-redshift, where the distribution of the cosmic microwave background
(CMB) anisotropies has a high degree of isotropy (Planck Collaboration et al. 2019).

1.1.1 Kinematics of the Universe

as the Universe is expanding and is a homogeneous and isotropic fluid of matter and energy
(see §1.1.3), we can define the unique cosmic time t as the time at which the density of
that fluid has a particular value. The expansion is described by the dimensionless function
a(t), known as scale factor, which is normalized such that a(t0) = 1 at the present cosmic
time t0 (0 < a(t) ≤ 1 in case of expansion). In the cosmological context there are two sets
of coordinates: the comoving coordinates, that follow the expansion of the Universe, and
the proper coordinates, that are the physical ones. Thus, the proper distance between two
comoving observers at the time t is r(t) = r(t0)a(t), where r(t0) is the distance at the time
t0. Instead, the comoving distance between these observers is x = r(t)/a(t) and hence is
constant during the expansion (see §1.1.2). It follows that the comoving observer sees the
Universe homogeneous and isotropic, because his motion is not influenced by the local matter
distribution.

The relative speed of two comoving observers separated by r(t) is

v(t) = ṙ(t) = xȧ(t) = r(t)
ȧ(t)

a(t)
= r(t)H(t), (1.1)

where H(t) is the Hubble parameter. At the present time, H(t0) ≡ H0 is the Hubble constant
and Eq. (1.1) becomes v = H0r, that is known as the Hubble-Lemaître law (Lemaître 1927;
Hubble 1929). The value of H0 is found to be positive, so, on large scales, the galaxies move
away from each other with a speed proportional to their relative distance. This motion is due
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to the expansion of the Universe, that sets ȧ > 0, and is known as Hubble flow. The value of
H0 is not known with great accuracy and a tension between different methods occurs today:
Riess et al. (2019) estimated a value of H0 = 74.24 ± 1.82 km s−1 Mpc−1 from long-period
Cepheids in the Large Magellanic Cloud, whereas Planck Collaboration et al. (2018b) measured
H0 = 67.4± 0.5 km s−1 Mpc−1 observing the CMB with the Planck1 space mission. For this
reason, a value of H0 ≈ 70 km s−1 Mpc−1 is generally taken into account.

As a consequence of the Hubble flow, at the Hubble time tH = H−1
0 the distance between

galaxies was zero, then tH provides an approximate estimate of the age of the Universe. In
particular, we find tH ≈ 13.7 Gyr. The precise value of the age of the Universe is obtained
considering the evolution of H(t) and hence is model-dependent (see §1.1.3). Furthermore, on
small scales the Universe is not homogeneous and isotropic, and the gravitational attraction
between galaxies can lead to a decrease in their relative speeds. Indeed, in these cases the
Hubble flow is negligible, because the dynamics between galaxies dominates the effect of
expansion and adds a peculiar velocity term to Eq. (1.1). Thus, two galaxies can approach
each other rather than recede.

The relative motion between a source and an observer changes the radiation wavelength
according to the Doppler effect. The consequently redshift is defined as

z ≡ λobs − λem

λem
, (1.2)

where λem is the wavelength of a photon emitted by the source at time tem and λobs is the
wavelength of the same photon received by the distant comoving observer at time tobs > tem.
In the cosmological context, there is no Doppler effect due to the motion of the source, but
the photon wavelength changes because the Universe has expanded between tem and tobs by a
factor a(tobs)/a(tem):

λobs =
a(tobs)

a(tem)
λem. (1.3)

If we consider the case in which tobs = t0, we have a(tobs) = 1 and Eq. (1.2) can be written as

z =
1

a(t)
− 1, (1.4)

where tem has become a generic cosmic time t. As the Universe is expanding, a(t) ≤ 1 and
hence z ≥ 0, with z = 0 at the present time, that is why today quantities are indicated
with a subscript zero. The name “redshift” is due to the fact that in this case the observed
wavelength is higher than the emitted one and hence shifted toward the red. Eq. (1.4) connects
an observable quantity, i.e., z, to the expansion of the Universe, which can then be directly
measured. Furthermore, the scale factor can be expressed as a ≡ (1 + z)−1: the redshift can
be used to describe the cosmic time similar to the scale factor, taking into account that z
increases when a decreases.

1.1.2 Cosmological distances

In order to calculate the distance between two points in the Universe, we have to define a
metric. In particular, a good example of metric that takes into account the cosmological
principle is the Friedmann-Lemaître-Robertson-Walker metric, in which the interval in the
spacetime between two events at (t, x1, x2, x3) and (t + dt, x1 + dx1, x2 + dx2, x3 + dx3) is
defined as

ds2 = c2dt2 − dr2 = c2dt2 − a2(t)

[
dx2

1−Kx2
+ x2

(
dθ2 + sin2 θ dϕ2

)]
, (1.5)

1http://www.esa.int/Planck

http://www.esa.int/Planck
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where we have used the comoving spherical coordinates x, θ and ϕ instead of the generic x1,
x2 and x3, K is the curvature parameter, that could be only +1, 0 or −1, and c is the light
speed. Thus, the term in square brackets describes the geometry of the spacetime:

• when K = +1 the spacetime is a sphere, which represents a closed Universe;

• when K = 0 the spacetime is an Euclidean space, which represents a flat Universe;

• when K = −1 the spacetime is a 3D hyperboloid, which represents an open Universe.

Instead, the value of ds2 tells us if the interval is light-like (ds2 = 0), time-like (ds2 > 0) or
space-like (ds2 < 0). In the cosmological context we are interested in the light-like intervals,
which are the photon paths in a given geometry.

We define the proper distance as the physical distance measured between two points by an
observer at the time t. For simplicity, we suppose that the observer is on the origin of the
polar coordinate system, which is oriented so that θ and ϕ are constant along the path. Thus,
from Eq. (1.5), the observer measures a proper distance between the origin and x given by:

r(t) =

∫ x

0

a(t) dx′

(1−Kx′2)1/2
= a(t)f(x), (1.6)

where values of f(x) depend on the spacetime geometry:

f(x) =


sin−1 x, for K = +1

x, for K = 0

sinh−1 x, for K = −1

.

The proper distance is an increasing function of time, as a(t) increases as the expansion
proceeds.

The comoving distance is instead the proper distance measured by the observer at a time
tobs with the comoving coordinates, which follow the Hubble flow and hence do not change
while the Universe is expanding:

x = a(tobs)f(x) =
a(tobs)

a(t)
r(t). (1.7)

This distance does not change with time, as both r(t) and a(t) increase with time. Furthermore,
if tobs = t0, the comoving distance is x = r(t)/a(t), expression that we already seen in the
previous section.

Consider a photon emitted by a comoving source at the time t, placed in the origin of the
coordinate system, and observed by a comoving observer at time tobs, placed at a distance x.
As photons travel along a path given by light-like intervals (ds2 = 0), from Eq. (1.6) we can
write

f(x) =

∫ x

0

dx′

(1−Kx′2)1/2
=

∫ tobs

t

cdt′

a(t′)
. (1.8)

In a flat Universe, the comoving distance between the source and the observer is then given by

x =

∫ tobs

t

cdt′

a(t′)
. (1.9)

From this expression, it can be shown that the comoving distance in terms of redshift is

x(z) = c

∫ z

zobs

dz′

H(z′)
, (1.10)
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which is of practical usefulness, as we will see in §3.1.2.
Finally, we define the horizon distance as the (proper) distance that describes a region in

causal connection with an observer at a given time t:

RH(t) = a(t)

∫ t

0

cdt′

a(t′)
, (1.11)

where two observers are in casual connection when they can exchange photons. So, the horizon
distance defines the size of the observable Universe, that at the present time is RH(t0) ≈ 14 Gpc.

1.1.3 Dynamics of the Universe

The cosmology is based on the General Theory of Relativity, in which the Universe is described
as a perfect fluid, homogeneous and isotropic in order to find solutions for the Einstein’s
equations. These solutions are known as Friedmann equations (Friedmann 1922) and describe
the expansion of the Universe in terms of the scale factor a = a(t):

ȧ2 =
8πGρ

3
a2 −Kc2 (1.12a)

ä = −4πG

3

(
ρ+

3p

c2

)
a, (1.12b)

where G is the gravitational constant, ρ and p are, respectively, the energy density and pressure
of the fluid, and K is the curvature parameter. As the Universe is a closed system, it is
expanding without energy loss. So, the Friedmann equations above are linked by the adiabatic
condition

d
(
ρc2a3

)
= p da3. (1.13)

If we introduce the critical density of the Universe, defined as

ρcr(t) ≡
3H2(t)

8πG
, (1.14)

and the density parameter, defined as

Ω(t) ≡ ρ(t)

ρcr(t)
, (1.15)

the Friedmann equation (1.12a) can be written as

H2(1− Ω)a2 = −Kc2. (1.16)

as the right-hand side is a constant, we can calculate the left-hand side at t0, so that
H2

0 (1 − Ω0) = −Kc2, where Ω0 = Ω(t0). Thus, the value of Ω0, and hence the value of
ρ0 = ρ(t0), determines the geometry of the Universe at all times:

• if Ω0 = 1, i.e., ρ0 = ρ0,cr, we have K = 0, that means a flat Universe;

• if Ω0 > 1, i.e., ρ0 > ρ0,cr, we have K = 1, that means a closed Universe;

• if Ω0 < 1, i.e., ρ0 < ρ0,cr, we have K = −1, that means an open Universe.

The critical density is then the density that the Universe must have to be geometrically flat.
At the present time, it has value given by

ρ0,cr = ρcr(t0) =
3H2

0

8πG
≈ 1.9 · 10−29h2 g cm−3, (1.17)
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where h is the dimensionless Hubble constant that parameterises the Hubble constant as
H0 = 100h km s−1 Mpc−1. Assuming H0 ≈ 70 km s−1 Mpc−1, we have h ≈ 0.7 and hence
ρ0,cr ≈ 10−29 g cm−3.

In ordinary condition, in which ρ and p are both non-negative, Eq. (1.12b) tells us that
the Universe is decelerating, because ä < 0. Furthermore, we know that the Universe is
expanding, i.e., ȧ > 0, so a(t) is an increasing monotone and concave down function. As a
consequence, there is a time at which a(t) = 0 and it must be t = 0. This point sets the origin
of the Universe and is known as the Big Bang. This name is a misnomer, because the Big
Bang is not an explosion: the higher the pressure, the greater the deceleration, as opposed to
an explosion. The expansion is due only to the initial conditions describing a homogeneous
and isotropic Universe. All models based on the Friedmann equations (and hence on the
cosmological principle and the perfect fluid) intrinsically include the Big Bang.

The perfect fluid within the Friedmann equations is a mixture of different components,
having each one its particular mass density and pressure. In cosmology a general equation of
state is used to describe such fluid:

p = wρc2, (1.18)

where w is a dimensionless parameter that assumes different values for different components.
In general w is a function of redshift z, but for simplicity we assume it as a constant. If we
substitute the the equation of state (Eq. 1.18) in the adiabatic condition (Eq. 1.13), we obtain

ρw = ρ0 a
−3(1+w) = ρ0(1 + z)3(1+w), (1.19)

which describes the density evolution of each component through the cosmic history. In
particular, the perfect fluid is made up of three main components:

• Matter It is a non-relativistic fluid with p� ρc2, made of baryonic matter and non-
baryonic dark matter (DM; see §1.3). Assuming p ≈ 0, the equation of state of this
component has w = 0, so its density evolves as

ρm = ρ0,m a
−3 = ρ0,m(1 + z)3. (1.20)

• Radiation It is a relativistic fluid made of non-degenerate particles, such as photons
or neutrinos, with a pressure given by

pγ =
1

3
ργc

2, (1.21)

where w = 1/3. Thus, the density of the radiation component evolves as

ργ = ρ0,γ a
−4 = ρ0,γ(1 + z)4. (1.22)

• Dark Energy It is an exotic fluid associated with the cosmological constant Λ (i.e.,
the vacuum energy), which has a pressure given by

pΛ = −ρΛc
2, (1.23)

where w = −1. This means that its pressure is negative and could produce an accelerated
expansion of the Universe, as we have ä > 0 from Eq. (1.12b). The density of the dark
energy component is constant with time:

ρΛ = ρ0,Λ = const. (1.24)
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Figure 1.1 The density of the perfect fluid as a function of time. The three different colored lines
show the evolution of the density for radiation (blue), matter (red) and dark energy (green). In the
early Universe the radiation is the dominant component, until the time of matter-radiation equivalence
after which matter becomes the dominant one. The equivalence time between matter and dark energy
is at a time close to t0, after which the latter becomes the dominant component until today. From
https://pages.uoregon.edu/jimbrau/BrauImNew/Chap27, credits to 2011 Pearson Education.

The evolution of these densities as a function of the cosmic time is shown in Figure 1.1.
The density parameters of matter, radiation and dark energy are respectively defined as
Ωm ≡ ρm/ρcr, Ωγ ≡ ργ/ρcr and ΩΛ ≡ ρΛ/ρcr, then Ω0 = Ω0,Λ + Ω0,m + Ω0,γ .

Using the definition of critical density (Eq. 1.14) and Eq. (1.19), we can write Eq. (1.16)
as

H2 = H2
0 E

2(z) = H2
0

[
Ω0,Λ + Ω0,K(1 + z)2 + Ω0,m(1 + z)3 + Ω0,γ(1 + z)4

]
, (1.25)

where Ω0,K = 1 − Ω0 is a sort of density parameter that describes the contribution of the
space curvature of the Universe, similarly to K. Thus, the evolution of the Hubble parameter
is model-dependent.

1.2 The ΛCDM model

From the Friedmann model, we know how the components of the Universe evolve through the
cosmic history, but there is no information about the value of the density parameters. So,
in order to put constraints on the different cosmological models (flat, open, closed), we need
observations. In particular, the most accurate estimates come from the analysis and modelling
of the CMB (see §1.2.3) and from its weak gravitational lensing, both probed by the Planck
satellite (Planck Collaboration et al. 2018b; 2019). The main values of these parameters,
measured at the present time, are reported in Table 1.1, where we introduced the baryon and
the cold dark matter (CDM) density parameters, respectively Ω0,b and Ω0,c. The cold DM is
necessary to explain the hierarchical structure formation (see §1.3.1), that in the presence of a
dominant hot DM component can not take place. As Ω0,K ≈ 0, we can safely say that the
Universe is flat. A cosmological model in which the Universe is geometrically flat, follows the
Friedmann equations, has a dark energy component associated to Λ and in which the DM is
cold, is known as ΛCDM model. This is the currently accepted and most used cosmological

https://pages.uoregon.edu/jimbrau/BrauImNew/Chap27
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Ω0,Λ Ω0,m Ω0,γ · 105 Ω0,ch
2 Ω0,bh

2 Ω0,K

0.685± 0.007 0.315± 0.007 9.3± 0.2 0.120± 0.001 0.0224± 0.0002 −0.009± 0.006

Table 1.1 Density parameters from Planck Collaboration et al. (2018a) for the ΛCDM model. All
values are given at a confidence level of 68%, except the last one which is at 95%. The radiation
density parameter Ω0,γ is calculated from Eq. (1.30) using zeq = 3402± 26.

model – the concordance model – as it is supported by many independent observational probes,
such as the primordial nucleosynthesis (Beringer et al. 2012), the power spectrum of large
scale structure (Tegmark et al. 2006) and, as we already said, the CMB.

1.2.1 Radiation, matter and dark energy eras

Knowing the values of the today matter, radiation and dark energy density parameters and
the relative slopes of the curves described by Eq. (1.19), it is possible to follow the evolution
of these three components through the cosmic history.

We have seen that the Friedmann equations predict a decelerating and expanding Universe.
However, there are observational evidence, such as those from Type Ia Supernovae (SNIa)
(Perlmutter et al. 1999), that the expansion rate is currently accelerating due to the presence
of the dark energy. In order to quantify the time variation of the expansion of the Universe,
we introduce the deceleration parameter :

q(t) ≡ − äa
ȧ2
, (1.26)

which is positive when the Universe decelerates (ä < 0) and negative when accelerates (ä < 0).
In a model in which matter and dark energy dominate, this parameter can be written as

q =
Ωm

2
− ΩΛ, (1.27)

which is q0 ≈ −0.55 in the ΛCDM model. Thus, there must have been a time in the history
of the Universe after which the repulsive effect of the dark energy, whose density is a fixed
constant, begins to dominate over the attractive effect of matter and radiation, whose densities,
on the other hand, decrease as the expansion proceeds. At that time, that we indicate as
zflex, the function a(t) has a flex and q = 0, so from Eq (1.27) we have Ωm(zflex) = 2ΩΛ(zflex).
Using Eq. (1.24) for ΩΛ(zflex) and Eq. (1.20) for Ωm(zflex), we obtain

Ω0,m(1 + zflex)3 = 2Ω0,Λ, (1.28)

from which zflex ≈ 0.6. Thus, for z > zflex the expansion of the Universe is decelerating, while
for z < zflex it is accelerating.

The flex is not, however, the time at which the dark energy density becomes dominant
over the matter density. This time, indicated with zeq,Λ, is known as Λ-matter equivalence and
occurs when ρΛ = ρm. Using Eq. (1.24) for ΩΛ(zeq,Λ) and Eq. (1.20) for Ωm(zeq,Λ), we obtain

Ω0,Λ = Ω0,m(1 + zeq,Λ)3, (1.29)

from which zeq,Λ ≈ 0.3. For z > zeq,Λ the matter is the dominating component. However,
its density evolves with redshift slower than the radiation density, so there is a point where
ρm = ργ . This occurs at the time of matter-radiation equivalence, often referred as time of
equivalence, as it is more important than teq,Λ as we will see in §1.4.3, and indicated with zeq.
Using Eq. (1.20) for Ωm(zeq) and Eq. (1.22) for Ωγ(zeq), we obtain

Ω0,m = Ω0,γ(1 + zeq), (1.30)
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Generic EdS (w) Matter EdS (w = 0) Radiation EdS (w = 1/3)

a = (t/t0)
2

3(1+w) a ∝ t2/3 a ∝ t1/3
t = t0(1 + z)−3(1+w)/2 t ∝ (1 + z)−3/2 t ∝ (1 + z)−2

H = H0(1 + z)3(1+w)/2 H = H0(1 + z)3/2 H = H0(1 + z)2

ρw = 1
6πG(1+w)2t2 ρm = 1

6πGt2 ργ = 3
32πGt2

Table 1.2 Main cosmological quantities for the EdS models.

from which zeq ≈ 3400. An accurate value of zeq = 3402 ± 26 was estimated by Planck
Collaboration et al. (2018a). Thus, we can identify three major epochs in the ΛCDM Universe,
also shown in Figure 1.1: between the Big Bang and zeq there has been a radiation-dominated
era, after which there has been a matter-dominated era until zeq,Λ, which marks the beginning
of the dark energy-dominated era.

The present time is quite near the Λ-matter equivalence, so the dark energy dominates over
the matter component but the latter is not negligible, as it is about 30% of the total density
of the Universe. However, far enough from the time of equivalence we can approximate the
Universe as a one-component model, i.e., a radiation-only Universe in the radiation era and a
matter-only Universe in the matter era. A flat Universe with Ωw = 1 and only one component
with densityρw is known as Einstein-de Sitter (EdS) model (Einstein and de Sitter 1932). In
Table 1.2 are summarized the main relations for a generic EdS Universe with equation of state
parameter w, for a matter-only Universe with w = 0, and for a radiation-only Universe with
w = 1/3.

1.2.2 Thermal history of the early Universe

In the early Universe the dominant component is the radiation, whose temperature can be
used as a cosmic clock, as well as time and redshift, since it decreases as the Universe expands:

Tγ(z) = T0,γ(1 + z), (1.31)

where T0,γ ≈ 2.73 K is the today temperature (see §1.2.3). Furthermore, Thomson scattering
between photons and electrons in the hot primordial plasma keeps coupled the matter to the
radiation fluid, and hence Tγ = Tm. Thus, we can describe the thermal history of the Universe
following the evolution of the radiation temperature until the matter-radiation decoupling,
that occurred during the recombination.

The Big Bang is the point at which the Universe has been originated, but we can not
investigate the times before tP ≈ 10−43 s, known as Planck time, as we can not apply the
General Relativity to describe the Universe in that epoch. Indeed, the quantum effects are not
negligible, but actually we do not have a solid quantum-gravity theory that can help us to
include them. However, near tP the General Relativity and hence the Friedmann equations are
valid and the Universe has a temperature of about 1032 K. At that energy, all four interactions
(gravitational, electromagnetic, weak and strong) are combined as one “super force” (Bennett
et al. 2009). When the temperature drops below 1032 K, gravity separates from the other three
forces, which remain united according to the Grand Unified Theory (GUT; Buras et al. 1978)
until the temperature is about 1029 K. That temperature is reached 10−38 s after the Big
Bang. The separation of the electroweak from the strong nuclear interaction releases an
enormous amount of energy in only 10−36 s, causing a sudden acceleration, known as inflation,
in the expansion of the Universe, which grows by a factor 1060 (Linde 2008). According to
Sakharov (1967), this is also the only time during which conservation of baryons number can
be violated and baryogenesis may occur, that is the generation of an asymmetry between
particles and antiparticles. In the Standard Model of particle physics, however, according to
Shaposhnikov (1987), the baryogenesis takes place during the electroweak era. This period
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lasts until the temperature drops to 1015 K, approximately 10−10 s after the Big Bang, when
the electromagnetic force separates from the weak nuclear interaction and elementary particles,
such as photons, gluons and quarks, are formed.

At the age of 10−5 s, the Universe has a temperature of 1012 K, which is low enough to
allow the formation of hadrons. Protons and neutrons start to fuse, forming heavier nuclei
and initiating the primordial nucleosynthesis (Fuller et al. 1988). When the fusion ceases,
approximately 300 s after the Big Bang and at a temperature of 109 K, the Universe is still
made up of 75% protons, while the other 25% was helium nuclei with trace of lithium and
deuterium. This hot plasma is also formed by electrons, which constantly scatter photons.
The coupling between baryons and radiation prevents the formation of neutral atoms until
the temperature is about 3000 K and the Universe is 380 000 years old, corresponding to
zrec ≈ 1100 (Kamionkowski 2007; Bennett et al. 2009). At that moment the recombination
begins and electrons bind to protons in order to form neutral hydrogen atoms (Peebles 1968;
Zeldovich et al. 1968). As a consequence, the decoupling between matter and radiation occurs
at zdec ≈ 200 and the photons are finally able to propagate, making the Universe transparent.
We can see that relic radiation today as the cosmic microwave background. The gas constituted
by the newly formed neutral atoms starts to cool faster than the radiation fluid, so that its
kinetic temperature evolves as

Tk(z) ≈ Tm(z) ∝ (1 + z)2. (1.32)

1.2.3 The Cosmic Microwave Background

The existence of a cosmic microwave background radiation (CMB) was predicted at the end
of 1940s (Gamow 1946; Alpher and Herman 1949) and it was effectively observed in 1965
(Penzias and Wilson 1965; Dicke et al. 1965). The CMB spectrum is the best black-body
known in nature (Fixsen 2009), with a today temperature T0,γ ≈ 2.73 K, and it is almost
isotropic, according to the cosmological principle. Thus, the CMB has a cosmological origin,
as its photons are the components of the radiation fluid that, due to the expansion of the
Universe, has cooled from 1032 K at the Planck time to 2.73 K at z = 0.

When we observe the CMB, we have to take into account that we are not comoving
observers, as the Solar System has a motion with respect to the Hubble flow. Thus, there is a
dipole anisotropy along the direction of the motion (i.e., on an angular scales of 180◦) with
a temperature fluctuation ∆Tγ/Tγ ≈ 1.3 · 10−3. Subtracting this anisotropy, we find other
small temperature fluctuations over the sky with values ∆Tγ/Tγ ≈ 10−5 due to three main
processes:

• Gravity. As we will see in §1.3, at the time of decoupling the Universe is not homogeneous
and isotropic on small scales, but there are density fluctuations in the DM component.
Indeed, the DM particles are collisionless, so they decouple from photons before baryons
and have the time to grow, forming potential wells and peaks. Thus, a CMB photon
is subject to redshift (i.e., it loses energy) if at the decoupling time it is in a potential
well, while, on the other hand, it is subject to blueshift (i.e., it gains energy) if it is in a
potential peak.

• Density. Assuming adiabatic fluctuations, if photons are in a overdense region at the
decoupling time, they can be more energetic than those photons coming from less dense
region. This process is in competition with the gravity.

• Velocity. The (peculiar) velocity field generates a Doppler effect on photons: if they
are receding from us, they are redshifted, while if they are approaching us, they are
blueshifted.
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Thus, the CMB temperature anisotropies are due to the fact that photons do not move in
an empty space. Studying these fluctuations, we can get valuable information about the
matter distribution in the primordial Universe and hence improve our understanding on galaxy
formation.

Figure 1.2 shows the observed map of the CMB fluctuations ∆Tγ(θ, ϕ)/Tγ , where θ and ϕ
are the spherical angular coordinates on the sky, as we assume that the CMB is distributed
on a spherical surface. Thus, the temperature fluctuations can be decomposed in spherical
harmonics using the Fourier-Legendre series:

∆Tγ
Tγ

(θ, ϕ) =
∞∑
`=0

∑̀
m=−`

a`mY`m(θ, ϕ), (1.33)

where ` ∝ 1/θ is the multipole index, m is associated to the direction of observation ϕ (for a
given `, there are 2`+ 1 possible directions), and Y`m are the spherical harmonics that include
the Lagrange polynomials Pm` (cos θ). The term a`m is generally complex and is defined such
as 〈a`m a∗`′m′〉 = C` δ``′δmm′ , where the average is done over an ensemble of realisations, δ``′
and δmm′ are the Kronecker delta, and C` is the CMB angular power spectrum:

C` = 〈|a`m|2〉 =
1

2`+ 1

∑̀
m=−`

a2
`m. (1.34)

For ` = 0 we have the monopole term, which is zero because it describes the temperature
variation on scales θ = 360◦, i.e., the mean value. The dipole term ` = 1, instead, correspond
to θ = 180◦, the quadrupole term ` = 2 to θ = 90◦, and so on.

Figure 1.3 shows the CMB power spectrum observed by Planck Collaboration et al. (2018a),
where there are several peaks, due to the harmonic oscillations of baryons. Indeed, before the
decoupling, baryons can not collapse within the DM potential well because of the radiation
pressure of photons. These oscillations occurred at the sound speed, so they are known as
baryon acoustic oscillations (BAO). The physical interpretation of the first two peaks is the
following:

• The first peak corresponds to `H ≈ 220, i.e., to a scale θH ≈ 1◦, and it is due to the
first maximum compression of acoustic oscillations, that occurs when baryons are at
the bottom of the DM potential well and on the horizon scale at the decoupling time.
The position of this peak is a measure of the geometry of the Universe, i.e., of Ω0, as
the angular scale under which we observe the horizon changes as the curvature changes
(`H < 220 if the Universe is closed, `H > 220 if the Universe is open).

• The second peak corresponds to ` ≈ 500, i.e., to a scale θ ≈ 0.4◦, and it is due to the first
maximum rarefaction of acoustic oscillations. The baryons are near the edge of the DM
potential well and the higher the baryons density ρb, the greater the difference between
first and second peak. Thus, we can measure that difference in order to constrain the
baryon density parameter Ωb ≡ ρb/ρcr.

All the odd peaks are due to compression, while all the even peaks are due to rarefaction. At
the smaller angular scale, i.e., largest `, dissipation effects become important and the acoustic
peaks are dampened.

1.3 Cosmological structure formation

The currently accepted model of structure formation is based on the collapse of baryonic
matter within dark matter halos, which are generated from the growth of small perturbations
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Figure 1.2 CMB temperature map obtained from Planck Collaboration et al. (2018a) after removal
of the dipole component and average over frequencies. From http://pla.esac.esa.int/pla/#maps.

Figure 1.3 In the top panel the observed angular power spectrum of CMB temperature anisotropies
is shown with red points, whereas the ΛCDM theoretical best fit is plotted as light blue curve. In
the lower panel residual between the model and the data are shown. The error bars are given at a
confidence level of 68%. Note that DTT` = `(` + 1)C`/(2π), where C` is given by Eq. (1.34). From
Planck Collaboration et al. (2018b).

http://pla.esac.esa.int/pla/#maps
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in the primordial matter density distribution of the Universe (see §1.3.1). The dark matter is so
called because its particles do not interact electromagnetically, neither with other DM particles
nor with the baryonic ones. Thus, we can probe its existence only through gravitational effects.
The first evidence of DM was inferred by Zwicky (1933) through dynamical studies on the
Coma galaxy cluster.2 After that, the evidence of the DM presence was found studying the
velocity dispersion in elliptical galaxies (Loewenstein and White 1998) and the rotation curves
of spiral galaxies (Fuchs 2001), in the gravitational lensing (Li et al. 2016), and in the X-ray
emitting gas (Buote and Canizares 1994).

The real difficulty concerning the DM is about its nature. The currently accepted model
distinguishes between hot dark matter (HDM) and cold dark matter (CDM) depending on the
thermal speed of particles at the decoupling time, which is much before the baryon-photon
decoupling zdec. Indeed, in the early Universe all particles are coupled to the radiation fluid
and hence are relativistic. The time at which a particle with mass mX becomes non-relativistic
is given by the equilibrium between thermal and rest energies:

kBTγ = mXc
2, (1.35)

where kB is the Boltzmann constant. Thus, more massive particles become non-relativistic
before less massive ones, because Tγ ∝ z. This is the case of CDM, whose particles are more
massive than HDM and hence become non-relativistic well before the DM-radiation decoupling.
On the other hand, the HDM is made up of low-mass particles, such as neutrinos, that are
still relativistic at the decoupling. Note that any decoupling is determined by the collisional
timescale between a given particle and radiation. In the case of DM, the interaction with
photons is really small, so the collisional timescale is much higher than the Hubble time and
the DM-radiation decoupling occurs well before the matter-radiation equivalence.

1.3.1 Evolution of density perturbations

In order to form cosmic structures, the Universe can not be homogeneous, but there must be
small perturbations that grow and then collapse into galaxies. These primordial perturbations
are generated when the inflation ends (see §1.2.2) and we describe them with a dimensionless
quantity known as density contrast :

δ ≡ δρ

ρ
=
ρ− ρ
ρ

, (1.36)

where ρ = ρ(t) is the mean density of the Universe at the time t. As ρ ≥ 0, the density
contrast interval is −1 ≤ δ ≤ +∞, so there are both overdense and underdense regions in
the Universe, but only the overdense ones can grow and form cosmic structures. Originally
the perturbations are small, such that |δ| � 1, and they evolve in a linear regime. Let us
consider an overdense region, i.e., with δ > 0, that expands in a EdS Universe, for simplicity.
Because of its self-gravity, the perturbation expands slower than the Universe and the density
contrast increases as the time passes. When the perturbation reaches δ ≈ 1, it enters the
non-linear regime, in which the evolution of δ can not more be described analytically, and starts
to recollapse as a consequence of its gravity. Finally, the perturbation becomes a virialised
system, i.e., a bound structure known as dark matter halo. These halos start forming before
the baryon-radiation decoupling and so, at zdec, the baryon density perturbations catch up
the DM ones and after a certain time they grow with the same rate.

However, it is not enough to have an overdense region to form structures, but its mass
must be also higher than the Jeans mass, which is defined as

MJ =
4π

3
ρmλ

3
J, (1.37)

2Zwicky was the first to refer to this non-baryonic component as dark matter.
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where λJ is the Jeans length, defined as λJ ∝ v/
√
Gρ, where v is the thermal velocity of

particles constituting the dominant component of the matter distribution with density ρ. As
CDM and HDM have different velocities, i.e., vCDM � vHDM, we expect λJ,HDM � λJ,CDM

and hence MJ,HDM �MJ,CDM. Thus, there are two possible formation scenarios depending
on which component dominates:

• Bottom-up scenario. The CDM component dominates on the HDM. The Jeans mass
is MJ ≈ 105 M�, similar to today globular cluster mass, which means that low-mass
structures form first and then they aggregate into more massive ones. This scenario is
also known as hierarchical structure formation.

• Top-down scenario. The HDM component dominates on the CDM. The Jeans mass
is MJ ≈ 1016 M�, which is larger then today galaxy clusters mass. This means that very
high-mass structures, like large pancakes, form first and then generate less massive ones
through fragmentation.

The top-down scenario is not supported by observations, as the most distant galaxy cluster is
observed at z ≈ 2 (Wang et al. 2016). Thus, the CDM scenario is the preferred one to explain
the structure formation, as there are observed galaxies up to z ≈ 11 (Oesch et al. 2016).

1.4 Statistical properties of cosmological perturbations

The density perturbation δ is a stochastic field generated by random processes at the end of
inflation. Thus, we can study the statistical properties of this field. However, in cosmology
there is the problem that the Universe is only one and hence we can not repeat measures
several times. For this purpose, we take into account the ergodic principle: the average over
several realisations of a universe is equivalent to the average over separate volumes of a single
Universe. This principle is also known as fair sample. The volumes must be enough large,
that means V � l3str, where lstr is the maximum scale at which we can find a structure due
to perturbation growth. Thus, the volume dimension is a function of time and non-linearity
level. For example, today V 1/3 � 500 Mpc. We can apply the ergodic principle because of the
cosmological principle, i.e., the stochastic processes that affect a region of the Universe are on
average similar to those affecting a different region, but they are a different random realisation
of the same process.

Inside a volume V the density perturbation δ(x), defined in comoving coordinates x, can
be decomposed as

δ(x) =
1

(2π)3

∫
δ̃(k) eik·x d3k, (1.38)

where k is the Fourier conjugate of x and δ̃(k) is the perturbation density expressed in the
Fourier space, such that

δ̃(k) =

∫
δ(x) e−ik·x d3x. (1.39)

Note that, as δ(x) is a real number, we have δ̃∗(k) = δ̃(−k). Perturbations are generated by
random processes, so δ̃(k) has random imaginary part. This means that there is no correlation
between phases of different δ̃(k). Thus, the distribution of these complex values is Gaussian:

P(δ) =
1

2πσ2
exp

[
−(δ − δ)2

2σ2

]
, (1.40)

where δ = 0 as it is the fluctuation mean. Thus, the only quantity defining the density field
is the variance σ2. If we consider several realisations, we expect the values of δ̃(k) to be
distributed around a quantity known as power spectrum.
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1.4.1 Correlation function and power spectrum

The statistical properties of the perturbation field δ(x) can be described by the correlation
function:

ξ(x) = 〈δ(x′) δ(x′ + x)〉, (1.41)

where x = |x| and the average is done over x′. The correlation function describes the
(auto)correlation of the field δ with itself in positions that are distant x from a given x′. As
the average is done over all directions, ξ is only function of the magnitude of x.

Eq. (1.41) can be written as Fourier transform:

ξ(x) =
1

(2π)6

∫
d3k

∫
〈δ̃(k) δ̃(k′)〉 eik·(x′+x)+ik′·x′ d3k′, (1.42)

where
〈δ̃(k) δ̃(k′)〉 = (2π)3 P (k) δD(k + k′), (1.43)

in which the average is done over different realisations of the perturbation field, δD is the
Dirac delta function and P (k) is the power spectrum of density fluctuations at the wavenumber
k = |k|. As δD(k + k′) 6= 0 if and only if k = −k, Eq. (1.42) can be rewritten as

ξ(x) =
1

(2π)3

∫
P (k) eik·x d3k (1.44)

and, as a consequence, we have

P (k) =

∫
ξ(x) e−ik·x d3x. (1.45)

Thus, P (k) and ξ(x) are a Fourier transform pair. From Eq. (1.43), the power spectrum can
be defined as

P (k) = V 〈|δ̃(k)|2〉 (1.46)

and then it measures the amount of perturbations on scale R = 2π/k. The power spectrum is
a fundamental quantity because its volume integral is the variance of the perturbation field:

σ2 =
1

2π2

∫ ∞
0

P (k)k2 dk (1.47)

which is only function of time, as the amplitude of the perturbation evolves as the Universe
expands.

1.4.2 The mass variance

The density field δ(x) is a continuous quantity and measuring it is difficult, because we can
only get discrete information from luminous sources which form in the overdense regions. Thus,
we have no direct information about voids and dark matter regions. To study the density field,
we have to count the number of galaxies (or galaxy clusters) within a given volume V , which
plays the role of a filter. The density contrast of galaxies is defined as

δgal =
Ngal(V )−Ngal(V )

Ngal(V )
. (1.48)

Similarly, we can define the density contrast of matter as

δM =
M(V )−M(V )

M(V )
. (1.49)
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As we know very little about galaxy formation processes, we parametrize this ignorance with
a bias b, such that δgal ≡ δM . Assuming b = const – i.e., a linear relation between the
galaxies number and the total mass within a volume – we can obtain δ(x) from δM through a
convolution with a window function W (R) within a radius R ∝ V 1/3:

δM (x) = δ(x) ∗W (R). (1.50)

Filtering δ(x) with W (R) means smoothing it on scales smaller than R, because an
averaging is done. The mass variance of δM is then defined as

σ2
M =

1

2π2

∫ ∞
0

P (k)W̃ 2(k,R)k2 dk, (1.51)

where W̃ (k,R) is the Fourier transform of W (R). Note that σ2
M ≤ σ2:

• if R→ 0, we have δM (x) = δ(x), that means σ2
M → σ2;

• if R→∞, we have δM (x)→ 0, that means σ2
M → 0.

The variance is expected to decrease for increasing R, as the filter averages down small scales
fluctuations.

1.4.3 Evolution of power spectrum

The primordial power spectrum can be described as a power-law:

Pprim(k) = Ask
ns , (1.52)

where As is the scalar amplitude and ns is the scalar spectral index. If perturbations are
originated by inflation, it is expected ns ≈ 1 (Harrison 1970; Zeldovich 1972), which as
been confirmed by the Planck satellite observing ns = 0.965± 0.004 (Planck Collaboration
et al. 2018c). This is a consequence of the fact that at the time of inflation there are no
privileged scales for the fluctuations. The value of the amplitude, however, is not predicted by
theory but can only be constrained by observations. From the CMB a primordial amplitude
As = (2.10± 0.03) · 10−9 is estimated at k = 0.05 Mpc−1 (Planck Collaboration et al. 2018b).

The growth of perturbations is strictly related to the horizon scale (Eq. 1.11) at a given
time: outside the horizon the fluctuations always grow, as the only force at work is gravity,
while inside the horizon the growth is influenced by micro-physics effects, such as radiation
pressure before the decoupling. In particular, the CDM perturbations that enter the horizon
before the equivalence zeq undergo a stagnation effect (Meszaros 1974) and do not grow until
z < zeq. This is due to the fact that the expansion timescale of the Universe, given by
τexp ∝ ρ−1/2

tot with ρtot = ργ in the radiation era, is much smaller than the CDM free-fall (or
collapse) timescale, given by τff ∝ ρ

−1/2
c where ρc is the CDM density (see Table 1.1). After

the equivalence, ρtot ≈ ρm and the CDM perturbations can grow again. Thus, it is possible to
describe the power spectrum at the equivalence as

P (k, zeq) =

{
Pprim(k) k−4, for k � keq

Pprim(k), for k � keq

(1.53)

where keq = 0.0105± 0.0001 Mpc−1 (Planck Collaboration et al. 2018a) in the ΛCDM model.
After the time of equivalence, the micro-physics effects are negligible and the power spectrum
grows in a self-similar way in the linear regime.

Substituting Eq. (1.52) into Eq. (1.51), it can be shown that the smaller the scale, the
higher the variance:

σ2
M ∝

∫
kns+2 dk ∝ kns+3 ∝ R−(ns+3) (1.54)
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Figure 1.4 The linear theory matter power spectrum at z = 0, indicated as Pm, obtained from
different cosmological probes. The black line is the model from the ΛCDM model, that fits very well
with such different data. From Planck Collaboration et al. (2018a).

This means that small scales enter the non-linear regime earlier than large ones and begin to
grow faster respect to the linear regime.3

Figure 1.4 shows the linear theory power spectrum at present day. At k ≈ 0.01hMpc−1

we note the peak corresponding to the horizon scale at the time of equivalence. Thus, the peak
position is a function of Ω0,m, which can be directly measured from the observed matter power
spectrum. Finally, note that in Figure 1.4 the error bars increase in magnitude toward large
scales. This is due to the cosmic variance: at small k-modes correspond large volumes, so the
considered realisations are few (the maximum volume is the Universe one) and the average
over these can not reduces the error. On the other hand, at smaller scales we can sample the
Universe with several small volumes, and the average over these reduces the final error.

3The perturbations at the time of equivalence are still linear, because at the baryon-radiation decoupling
the CMB fluctuations are δγ ≈ 10−5 (see §1.2.3) and zeq > zdec.



Chapter 2

Cosmology with the 21 cm line

In this chapter, we will review the theory of the 21 cm line in a cosmological context, in
particular during the epoch of reionization (EoR). A detailed discussion can be find in
Furlanetto et al. (2006).

2.1 From the Dark Ages to the Epoch of Reionization

The evolution of the Universe after recombination can be marked with three distinct phases.
The first is called Dark Ages, which begins right after recombination and ends at z ≈ 30.

As shown in §1.3, DM halos begin to accrete baryons at z ≈ zdec and density perturbations
grow, becoming non-linear at z ≈ 30. By then, baryon overdensities are expected to collapse
into the first luminous objects (e.g., Barkana and Loeb 2001; O’Leary and McQuinn 2012).
In this respect, the physics of the Dark Ages is fairly simple as it is driven by gravity and
expansion of the Universe only.

The formation of the first stars at z = 20− 30 marks the beginning of the Cosmic Dawn.
We will see in the next sections that the formation of the first structures leaves a footprint on
the intergalactic medium (IGM): initially galaxies heat the IGM and, as their star formation
progresses, they will ionize the IGM, beginning the Epoch of Reionization (EoR). Before
describing the potential of the 21 cm line as cosmic probe, we will review the observational
evidences of cosmic reionization in the next section.

2.1.1 Observational probes of the Epoch of Reionization

Cosmic reionization is supported by several observational evidences.

• Gunn-Peterson (GP) effect. It is related to the absorption against high-redshift
quasars. Gunn and Peterson (1965) first pointed out that, given the large Lyman-alpha
(Lyα) cross section, even a small HI fraction xHI (i.e., xHI > 10−4) in the IGM would
completely absorb the UV radiation of a background source. This can be seen defining
the GP optical depth (e.g., Becker et al. 2001):

τGP = 1.8 · 105 xHI h
−1Ω

−1/2
0,m

(
Ω0,bh

2

0.02

)(
1 + z

7

)3/2

, (2.1)

where Ω0,m and Ω0,b are the matter and baryon density parameters (see Table 1.1). The
GP effect was first observed by Schmidt (1965) on quasars at z ≈ 2. As observations
become capable to reach higher redshifts, Becker et al. (2001) observed the absorption
against three quasars at z = 5.82, 5.99 and 6.28. They found no detection of emission
immediately blueward of the Lyα line (rest-frame wavelength λα = 1215.67Å), a two
orders of magnitude drop compared with the observation of z = 5.3 quasars, implying
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an optical depth of the GP effect τGP > 20. This was interpreted as a clear detection of
a complete GP trough and the fact the Universe is approaching reionization at z ≈ 6.
Evidence of z ≈ 6 reionization was further confirmed by the analysis of a sample of
5.7 < z < 6.5 quasars by Fan et al. (2006). Finding increasingly higher redshift quasars
is, however, challenging and fewer are known at z > 6. The current record holder is
ULAS J1120+0641 at z = 7.08 (Mortlock 2016). Thus, the actual scenario is that the
reionization ends at z ≈ 6, where τGP > 0.038 (Venemans et al. 2013). The problem of
observations based on the GP effect is that they can probe only the tail of the reionization,
as if the HI fraction of the IGM is higher than ∼ 10% there is no transmission. Thus, it
is insensitive to the reionization history. To do that, other techniques are needed, such
as dark gaps (Croft 1998; Songaila and Cowie 2002) or dark pixels (McGreer et al. 2011;
McGreer et al. 2015) methods.

• CMB optical depth. In the presence of free electrons, CMB photons are Thomson
scattered, with an optical depth τth defined as

τth =

∫
neσth dl, (2.2)

where ne is the electron density, such that xi = ne/nHI is the ionization fraction, σth

is the Thomson scattering cross-section and the integral is over the line of sight. We
therefore expect that, after recombination, CMB photons are further scattered during
reionization. In particular, Thomson scattering produces an additional peak in the CMB
polarization power spectrum on very large scales, known as reionization bump (e.g.,
Rees 1968). The magnitude and position of that bump depend upon the optical depth
and the redshift of reionization respectively. The latest measurements from the Planck
experiment constrained the optical depth to be τth = 0.058±0.012 (Planck Collaboration
et al. 2016b; 2016c). Measurements of the evolution of the HI neutral fraction can
be derived from the CMB optical depth by assuming a model for the evolution of the
ionization fraction (Kogut et al. 2003; Hinshaw et al. 2013). A standard assumption is
to use a tanh model (Lewis 2008):

xi(z) =
f

2

[
1 + tanh

(
y − yre

∆y

)]
, (2.3)

where f = 1 + nHe/nHI, with nHe the number density of helium atoms, y = (1 + z)3/2,
∆y = 3(1 + z)1/2∆z/2 and zre is the mid-point redshift of the reionization, i.e. the
redshift at which xHI = 0.5. Based on the Planck data alone, Planck Collaboration
et al. (2016c) found zre = 8.5± 0.9. Assuming that the reionization end was constrained
by observations of the GP effect in high-redshift quasars to be z = 6, this implies that
reionization began at z ≈ 11. As the GP effect, the CMB optical depth is not sensitive
to the reionization history, because it is an integrated quantity.

• Kinetic Sunyaev-Zeldovich (kSZ) effect. Theoretically developed by Sunyaev and
Zeldovich (1980), it is due to the bulk velocity of free electrons relative to the CMB
photons, which introduces a Doppler shift to the scattered photons (Reichardt 2016).
The scales at work are small, comparable to the ionized bubbles around the ionizing
sources, so the effect is observed at ` ≈ 3000. Planck Collaboration et al. (2016c) is
insensitive to these high `, so their estimates are obtained combining measurements
from other experiments, finding zre = 7.8± 0.9. Finally, they combine this result with
that obtained by the CMB optical depth, in order to estimate a reionization mid-point
zre = 8.2± 1.1. All the errors are given by the cosmic variance at large-scales and by
foregrounds and systematic effects at small-scales (Planck Collaboration et al. 2016c).
These values suggest that there is probably no reionization at z > 15, according to the
results obtained from high-redshift IGM simulations (e.g., Mesinger et al. 2011).
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• Demographics of Lyα emitters. Lyα emitters (LAE) are star forming galaxies at
high-redshift (McQuinn et al. 2007). Similar to the GP effect, the neutral IGM absorbs
the Lyα emission, leading to a rapid decrease in the LAE luminosity function beyond
z ≈ 6 (Kashikawa et al. 2006; Ouchi et al. 2010; Konno et al. 2014). Indeed, the Lyα line
can be observed only if the surrounding environment of an emitting galaxy is ionized and
large enough to redshift the line out of resonance before being absorbed by HI. Thus, the
decline in the fraction of LAE observed at high-redshift is attributed to the absorption of
neutral IGM, which has a neutral fraction xHI ≈ 0.70 at z ≈ 7 (Tilvi et al. 2014; Faisst
et al. 2014). This method, similarly to that related to the GP effect and to the CMB
optical depth, constrains the neutral fraction but does not provide more information
about the reionization history. In order to do that, in particular about the redshift
evolution of the IGM temperature and the distribution of the ionized bubbles, the 21 cm
line is potentially the best probe, as we will see in next sections.

2.2 The 21 cm hydrogen line

The 21 cm line is emitted from the hyperfine spin-flip transition of neutral hydrogen, which
occurs when the electron and proton spins are in the parallel configuration – rather than the
anti-parallel configuration in the fundamental state. The energy associated to the hyperfine
transition 1S1/2 is 5.9 · 10−6 eV, much smaller than the 13.6 eV corresponding to the funda-
mental level. The two hyperfine levels are 1 0S1/2 and 1 1S1/2 according to the Hund notation
FLJ , where L and J are the orbital and angular momentum of the electron, and F is the total
angular momenta of the atom, which could be 1 if electron and proton spins are parallel or 0
if they are antiparallel.1 In this section, we summarize the physics of the 21 cm line in order
to better understand its high-redshift applications, following the detailed review of Furlanetto
et al. (2006).

2.2.1 The 21 cm brightness temperature

The 21 cm line emitted by a hydrogen cloud at high-redshift can be described by the radiative
transfer equation, assuming equilibrium along the line of sight through the cloud. The specific
intensity Iν of the 21 cm line can be written using the Rayleigh-Jeans approximation:

Tb(ν) ≈ c2

2kBν2
Iν , (2.4)

where Tb(ν) is the brightness temperature – i.e., the temperature that a black-body should have
to emit the observed radiation –, c is the speed of light and kB is the Boltzmann’s constant.
Eq. (2.4) describes the brightness observed from Earth at the frequency ν = ν0(1 + z)−1,
where ν0 is the rest frequency, that is ν0 = 1420 MHz for the 21 cm line. Thus, the brightness
measured in the cloud comoving frame at redshift z is T ′b(ν0) = Tb(ν)(1 + z), similarly to
Eq. (1.31) for the CMB.

Using the brightness temperature, the radiative transfer equation can be written as

T ′b(ν) = Ts(1− e−τν ) + T ′r(ν) e−τν , (2.5)

where Ts is the cloud excitation or spin temperature, τν is the optical depth and T ′r is
the brightness temperature of the background radiation. In the cosmological context, the
background is represented by the CMB temperature, i.e. T ′r = Tγ . The first term on the
right-hand side of Eq. (2.5) describes the radiation emitted from the cloud and absorbed by
the cloud itself, whereas the second term describes the absorption of the background radiation
when it passes through the cloud.

1F is the sum of the electron and the proton/nucleus spins, which take values ±1/2 such that F = 0 or 1.
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The spin temperature describes the population ratio between the hyperfine and the
fundamental energy levels in a cloud in thermodynamic equilibrium:

n1

n0
=
g1

g0
exp

(
− E10

kBTs

)
, (2.6)

where n1 and n0 are the number of atoms in the hyperfine and fundamental states, respectively,
g1 and g0 their statistical weights, and E10 = 5.9 · 10−6 eV is the energy difference between
the two levels that correspond to a temperature T?:

T? ≡
E10

kB
= 0.0681 K. (2.7)

As the lower state of the hyperfine structure is a singlet and the upper is a triplet, the statistical
weights are g0 = 1 and g1 = 3 respectively, and Eq. (2.6) becomes

n1

n0
= 3 e−T?/Ts . (2.8)

In essentially all the cosmological cases Ts � T?, implying that only 1/4 of the total number
of atoms is in the hyperfine ground state, while the remaining 3/4 are in the excited state.
The spin temperature is therefore a convenient quantity to describe the relative population of
the singlet and the triplet in a population of HI atoms (Field 1958).

The observed brightness contrast δTb ≡ Tb − Tγ between the radiation emitted by the HI
cloud and the CMB is (e.g., Ciardi and Madau 2003)

δTb(z) =
T ′b(ν)− Tγ(z)

1 + z
=
Ts − Tγ(z)

1 + z
(1− eτν0 ) ≈ Ts − Tγ(z)

1 + z
τν0 , (2.9)

where we have substituted Eq. (2.5) in the second step, and the last approximation follows
from the fact that the 21 cm optical depth is small. Using the expression for τν0 derived by
Madau et al. (1997), the 21 cm brightness temperature becomes (Mesinger et al. 2015)

δTb(z) = 27xHI(1 + δ)

[
1 + z

10

0.15

Ω0,mh2

]1/2[Ω0,bh
2

0.023

][
1− Yp

0.75

][
1− Tγ

Ts

][
H(z)/(1 + z)

dv‖/dr‖

]
mK,

(2.10)
where xHI is the HI neutral fraction, δ is the density contrast (see §1.3.1), H(z) is the Hubble
parameter, Yp is the helium mass fraction, and dv‖/dr‖ is the gradient of the proper velocity
along the line of sight (see Kaiser 1987). The last term in brackets takes into account the
redshift-space distortion effect, which is generally a second-order effect.

The evolution of the brightness temperature is essentially determined by xHI, δ and Ts, all
quantities that vary spatially. In particular, Eq. (2.10) formalizes the concept that the 21 cm
emission is always observed against the CMB background: δTb is observed in absorption (i.e.,
is negative) if Ts < Tγ , and in emission (i.e., is positive) if Ts > Tγ . We describe below which
processes set the spin temperature.

2.2.2 The spin temperature

As we have seen in the previous section, the 21 cm line is observable if the spin temperature is
different than the CMB temperature, in other words if the spin temperature is driven towards
(i.e., coupled to) the only other physical temperature at play, the gas temperature Tk. There
three such competing mechanisms:

• absorption of CMB photons sets the spin temperature to the CMB temperature (Ts →
Tγ);
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Figure 2.1 Hyperfine splitting of the 1S and 2P levels of the neutral hydrogen atom, according to
the Hund notation. The solid lines represent transitions relevant for the Wouthuysen-Field effect,
since they mix the population of the ground state hyperfine levels, while the dashed lines represent
transitions that do not lead to a mixing of populations. From Pritchard and Furlanetto (2006).

• collisions with other HI atoms set the spin temperature to the gas temperature (Ts → Tk).
Collisions are the main coupling mechanism at high-redshift (z > 30), when the gas
density is high and no other astrophysical sources exist (Furlanetto 2016);

• resonant scattering of UV photons (Wouthuysen-Field effect; Wouthuysen 1952; Field
1959) sets the spin temperature to the CMB temperature (Ts → Tγ). Figure 2.1 visually
shows the Wouthuysen-Field (WF) effect: when a Lyα photon is absorbed by a HI atom
in the ground state 1S, the electron can jump to either of the 2P states, following
the quantum selection rules. At this point, the electron can decay from the 2P state
to the fundamental triplet rather than the singlet, allowing for a 21 cm photon to be
emitted. In other words, the WF effect allows the hyperfine state to be populated in the
presence of a UV background radiation. In most models, the first stars form at z ≈ 30
and emit a background of UV photons. From that moment onward, the WF effect is the
main coupling mechanism. As the IGM is extremely optically thick at high-redshift, the
large number of scattering produces a black-body shape in the Lyα spectrum around the
resonance frequency, driving Ts → Tk.

Mathematically, the spin temperature can be described as a weighted mean of these three
processes and here we present a pedagogical derivation of this result based on the seminal
Field (1958) paper.

Collisions and UV scattering are described by the excitation (de-excitation) rates per atom
C01 (C10) and P01 (P10), respectively. Since timescales of the above processes are much shorter
than the Universe expansion time, statistical thermal equilibrium can be used to determine the
spin temperature (e.g., Furlanetto et al. 2006):

n1(C10 + P10 +A10 +B10Iγ) = n0(C01 + P01 +B01Iγ), (2.11)

where A10, B01 and B10 are the Einstein coefficients of spontaneous emission, absorption and
stimulated emission of the 21 cm transition, respectively. It can be shown that B01 and B10

are functions of A10 (Rybicki and Lightman 1979), whose value is ∼ 2.85 · 10−15 s−1:

B01 = 3B10 =
3c2

2hν3
A10, (2.12)
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where the first equality follows from the Einstein relation g0B01 = g1B10, with g0 = 1 and
g1 = 3. Using Eq. (2.4) and (2.7), we can write

B01Iγ =
3λ2Iγ
2hν0

A10 = 3A10
Tγ
T?
. (2.13)

Furthermore, the ratios between the transition rates due to collisions and photon scattering
are respectively (Field 1958)

C01

C10
≈ 3

(
1− T?

Tk

)
;

P01

P10
≈ 3

(
1− T?

Tα

)
, (2.14)

where Tα is the color temperature of the UV radiation field. Thus, replacing Eq. (2.13) and
Eq. (2.14) in Eq. (2.11), we have

n1

n0
= 3

(
1− T?

Ts

)
=

C01 + P01 +B01Iγ
C10 + P10 +A10 +B10Iγ

= 3

(
1− T?

Tk

)
C10 +

(
1− T?

Tα

)
P10 +

Tγ
T?
A10

C10 + P10 +
(

1 +
Tγ
T?

)
A10

.

(2.15)

Isolating T−1
s and dividing numerator and denominator by A10Tγ , we finally obtain

T−1
s =

C10
A10

T?
Tγ
T−1

k + P10
A10

T?
Tγ
T−1
α + T−1

γ

C10
A10

T?
Tγ

+ P10
A10

T?
Tγ

+
(

1 + T?
Tγ

) =
xcT

−1
k + xαT

−1
α + T−1

γ

xc + xα + 1
, (2.16)

where in the last step we have assumed Tγ � T? at any z > 0, and we have introduced
the coupling coefficients for collisions and photon scattering, xc and xα respectively. Thus,
Ts → Tγ when there are only CMB photons and no other astrophysical process. When the
first luminous sources are formed, xα begins to couple Ts to Tα which is, in turn, coupled to
the gas temperature due to the high optical depth of the IGM.

Figure 2.2 shows the evolution of Ts, Tk and Tγ for a fiducial model (Mesinger et al. 2011),
averaged over the cosmological volume. Right after thermal decoupling, the gas temperature
starts to cool faster than the CMB, and collisions couple the spin temperature to the gas
temperature. Around z ≈ 35, the Universe has expanded sufficiently that collisions are no
longer efficient to couple the spin temperature to the gas temperature (i.e., xc → 0) and the
spin temperature is again driven towards the CMB temperature. Around z ≈ 30, however, the
WF effect starts again to couple Ts to Tk, due to the UV radiation background emitted by the
first stars. The coupling is complete in a few tens of million of years (z ≈ 25) and, from that
moment onward, Ts remains coupled to Tk.

The last transition of the thermal history of the IGM occurs later (z ≈ 20 in the model
shown here): the radiation emitted by the first sources eventually heats the IGM above the
CMB, until Tk � Tγ at z ≈ 15. This transition is often referred to as the spin temperature
saturation, as the evolution of the 21 cm brightness essentially no longer depends upon Ts (see
Eq. 2.10) from that moment onward.

2.3 The 21 cm Global Signal

After the thermal history of the IGM, the 21 cm signal is determined by the evolution of its
ionization state. Before the formation of astrophysical sources, the IGM is fully neutral and
its evolution is essentially driven by the evolution of the spin temperature. The average HI
neutral fraction begins to evolve when the first galaxies emit sufficient UV radiation to begin
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Figure 2.2 Redshift evolution of volume averaged temperatures T s (red solid line), T k (green dashed
line) and T γ (blue dotetd line) in a fiducial model. From Mesinger et al. (2011).

Figure 2.3 Redshift evolution of the volume averaged HI fraction xHI (top panel), together with the
average mean temperatures (bottom panel): T s (thick line), T k (thin line) and T γ (black dotted line).
Faint Galaxies (red) and a Bright Galaxies scenario (blue) models are shown – see text for more details.
From Mesinger et al. (2016).
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to ionize the surrounding IGM. The evolution of the HI neutral fraction depends upon the
formation and evolution of ionizing sources. Figure 2.3 displays the evolution of the volume
averaged quantities for two models where the reionization is driven by either faint or bright
galaxies (Mesinger et al. 2016). The difference between the two scenarios resides in the star
formation efficiency: in §1.3 we have seen that stars and galaxies form inside DM halos, but
in order to collapse into stars, the gas has to cool down to ∼ 100 K. If the gas is heated
or expelled from the DM halo, for instance due to supernovae (SNe) explosions, the star
formation efficiency decreases (e.g., Barkana and Loeb 2001; Springel and Hernquist 2003).
Suppression of star formation occurs more easily in low-mass DM halos – which are more
numerous than high-mass halos. The Mesinger et al. (2016) Bright Galaxies model assumes an
extremely efficient SNe feedback, which suppresses star formation in small halos, leaving only
the rare ones with masses above 1010 M� to drive reionization. On the other hand, in the Faint
Galaxies scenario the SNe feedback is inefficient and reionization is driven by the abundant
halos with ∼ 109 M� mass. As we have seen in §1.3.1, in a CDM-dominated Universe, small
structures form first, thus in the Bright Galaxies scenario reionization starts later than in the
Faint Galaxies one, but it is faster because the ionizing UV background is produced much
more efficiently. The mid point of reionization is the same by construction in both scenarios.

In both models, the IGM temperature evolves with redshift in a similar fashion, as described
in §1.2.2, although shifted at lower redshifts for the Bright Galaxies model. Specifically, in the
Faint Galaxies model the onset of reionization occurs when Ts is coupled to Tk and higher
than Tγ , whereas in the Bright Galaxies model it occurs when Ts is colder than Tγ . As a
consequence, in the Bright Galaxy model, the gas is still colder than the CMB at the mid-point
of reionization and becomes heated well above the CMB only when reionization is essentially
complete.

The Bright Galaxies model is a flavour or cold reionization scenario, i.e. a scenario where the
gas temperature is never heated above the CMB temperature before reionization is complete.
Fialkov et al. (2014) suggested that if the spectrum of the X-ray emission produced in the
first galaxies (for instance, form X-ray binaries) is hard, the IGM heating is less efficient and
is, therefore, delayed, as hard X-ray photons have a longer mean free path compared to soft
X-ray photons.

In the next section we well discuss the details of the evolution of the global signal.

2.3.1 Evolution of the Global Signal

The sky-averaged 21 cm brightness temperature is known as the global signal :

δT b(z) =

∫
Ω δTb(Ω

′, z) dΩ′∫
dΩ′

, (2.17)

where Ω is the sky solid angle. Similarly, we can define the globally-averaged temperature and
HI fraction, indicated with overbars. A fiducial model of δT b(z) is shown in Figure 2.4. As
we have seen in §2.2.2, the evolution of the signal is driven by the coupling between the spin
temperature and the CMB or the gas temperature through the different cosmic epochs (see
also Figure 2.2). Following the thermal history outlined in §2.1, there are a few landmarks in
the evolution of the global signal.

• z > 200. Compton scattering between CMB photons and free electrons keeps the gas
temperature coupled to the CMB temperature, thus we do not expect a 21 cm signal
since Ts = Tγ .

• 200 > z > 80. The average ionized fraction xi = 1− xHI drops to ∼ 10−4 (Furlanetto
et al. 2006) and Compton scattering is no longer efficient to couple Tk and Tγ . The
Universe enters in the Dark Ages and the gas begins to adiabatically cool faster than
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Figure 2.4 Evolution of the 21 cm signal. The top panel is a simulation slice representing the redshift
evolution of the brightness temperature fluctuations δTb. The middle panel shows the fiducial model
of the sky-averaged brightness (i.e., global signal, solid line). The most relevant cosmic epochs are
highlighted. The bottom panel represents the evolution of the dimensionless power spectrum amplitude
(Eq. 2.22) at k = 0.1 Mpc−1 (solid line) and k = 0.5 Mpc−1 (dotted line). From Mesinger et al. (2016).

the CMB. In particular, from Eq. (1.32), we can normalize the gas temperature to the
redshift zdec of the baryon-radiation decoupling:

Tk(z) = Tk(zdec)
(1 + z)2

(1 + zdec)2
= Tγ,0

(1 + z)2

1 + zdec
, (2.18)

where in the last step we have used Eq. (1.31) and the fact that Tγ(zdec) ≡ Tk(zdec).
Assuming zdec ≈ 200 (Furlanetto et al. 2006) and Tγ,0 ≈ 2.73 K, we can write Eq. (2.18)
as

Tk(z) ≈ 0.014(1 + z)2 K. (2.19)

At these redshifts, the density of the IGM is high enough that collisional coupling keeps
Ts = Tk, thus, from zdec the signal appears in absorption.

• 80 > z > 30. Collisional coupling is no longer effective as a result of the expansion of
the Universe, so Ts → Tγ . At z ≈ 30 the spin temperature equals the CMB temperature
and the 21 cm signal disappears.

• 30 > z > 20 (Cosmic Dawn). In most structure formation models, first stars form
here, and begin to emit a Lyα radiation background that couples the spin temperature to
the gas temperature through the WF effect. Using Eq. (2.19), we know that the gas has
Tk ≈ 6 K at z ≈ 20, while the CMB has Tγ ≈ 60 K, then Tk � Tγ and the absorption in
the 21 cm signal can be very strong. Indeed, the Cosmic Dawn signature is the more
prominent feature in δT b and hence the main target of global 21 cm experiments, as we
will see in §2.5.
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• 20 > z > 12. As star formation continues, more massive stars die as Type II supernovae
(SNII), leaving black holes that can form binary systems with other stars and emit X-ray
radiation through accretion (Pritchard and Furlanetto 2007). X-ray photons heat large
volumes of the IGM, eventually leading the gas temperature above the CMB temperature.
From this moment on, the 21 cm signal appears in emission.

• 12 > z > 6 (EoR). At z ≈ 12 the 21 cm signal saturates, because Ts � Tγ . In this
period first galaxies form and, when enough ionizing UV radiation escapes from them,
the IGM begins to be ionized (e.g., Ciardi and Ferrara 2005). At z ≈ 6 the gas is
essentially fully ionized, then xHI ≈ 0 and from Eq. (2.10) we no longer expect any signal
from the 21 cm.

2.4 Spatial fluctuations of the signal

We have seen that δTb is a direction dependent quantity (Eq. 2.10) as δ, xHI and Ts, i.e. evolve
spatially with cosmic time. Though observations of the 21 cm line we can obtain tomographic
images that encode the three dimensional evolution of the physics of the IGM and structure
formation (Furlanetto 2016). Obtaining detailed 21 cm images is extremely demanding in
terms of signal-to-noise ratio (SNR) and foreground subtraction (see §3). Therefore, spatial
fluctuations are more easily characterized statistically, i.e. via their power spectrum. If we
define the fractional brightness temperature contrast as

δ21(x) ≡ δTb(x)− δT b
δT b

(2.20)

and indicate with δ̃21(k) its Fourier transform, the 21 cm power spectrum is given by (Furlanetto
et al. 2006)

〈δ̃21(k) δ̃21(k′)〉 ≡ (2π)3δD(k + k′)P21(k), (2.21)

that it the same definition of Eq. (1.43), replacing the matter density perturbation δ with
the 21 cm intensity fluctuations δ21. The 21 cm power spectrum generally has dimensions of
temperature squared times volume, i.e. mK2 (h−1 Mpc)3. The dimensionless power spectrum2

∆2
21(k) is often used in literature:

∆2
21(k) ≡ k3

2π2
P21(k), (2.22)

which quantifies the space variance of δ21 and depends only on the wavenumber k = |k|, and
not on its orientation.

The bottom panel of Figure 2.4 shows the redshift evolution of two power spectrum modes
from the Faint Galaxies scenario (see §2.3, Mesinger et al. 2016) at k = 0.1 Mpc−1 and
k = 0.5 Mpc−1, corresponding to ∼ 60 Mpc and ∼ 10 Mpc, respectively.

Simulations of 21 cm fluctuation together with their corresponding power spectra (Mesinger
et al. 2011) are shown in Figure 2.5. Following Furlanetto (2016), we summarize the main
phases similarly to what we did for the global signal.

• z ≈ 30. The IGM is colder than CMB and the first luminous sources just begin to couple
Ts to Tk through the WF effect. Thus, the fluctuations in the 21 cm signal are driven by
the fluctuations in the Lyα radiation field, i.e. by Ts. In the top panel of Figure 2.5 most
of the IGM is transparent to the CMB, while δTb < 0 in small regions around the first
sources.

2In the 21 cm cosmology it is a misnomer, since it has dimensions of temperature squared.
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Figure 2.5 Left panels show slices from a semi-numerical simulation of the 21 cm signal (Mesinger
et al. 2011) at z = 30.1, 21.2, 17.9 and 10.0 (top to bottom). Boxes are 1Gpc wide and 3.3Mpc
deep. Black regions correspond to ionized regions, where δb = 0 due to xHI = 0 (bottom left panel).
Right panels illustrate the corresponding power spectra. The reported redshifts are the landmarks
of the IGM evolution: from top to bottom we have the onset of the coupling between Ts and Tk by
Lyα scattering, the beginning of X-ray heating, the 21 cm signal saturation due to Ts � Tγ , and the
mid-point of reionization. From Mesinger et al. (2011).
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Figure 2.6 Redshift evolution of the dimensionless power spectrum as a function of wavenumber k and
average ionization fraction 〈xi〉 = xi. In particular, the ionization fraction acts as a time coordinate,
as xi = 0.02, 0.15, 0.21, 0.54, 0.71, 0.82, 0.96 correspond to z = 11.46, 8.76, 8.34, 7.32, 7.03, 6.90, 6.77.
From Lidz et al. (2008).

• z ≈ 20. The appearance of the first X-ray sources starts to heat the surrounding gas,
driving Tk, and hence Ts, above Tγ in discrete regions, which are seen in emission.
The rest of the IGM is still cold and, therefore, appears in absorption against the
CMB, as the Lyα radiation field had the time to couple Ts to Tk nearly everywhere.
Fluctuations in the 21 cm signal are driven by the gas temperature, which generates a
strong contrast between emitting and absorbing regions (second panel of Figure 2.5).
The power spectrum amplitude is approximately one order of magnitude larger than at
z ≈ 30.

• z ≈ 15. The X-ray heating has saturated the 21 cm signal, with Ts � Tγ nearly
everywhere in the IGM (third panel of Figure 2.5). Fluctuations are driven by the
large-scale density field (Barkana and Loeb 2007), as variations in the gas temperature
no longer contribute to δTb. The amplitude of the power spectrum decreases by one
order of magnitude.

• z ≈ 10. In this model, this is the mid-point of reionization. In the bottom panel of
Figure 2.5 we see a net contrast between the ionized bubbles around galaxies, where
δTb = 0, and the fully neutral IGM, where the ionized photons have not yet penetrated.
The ionized bubbles are a key feature of the EoR, since their properties depend largely
on the nature of the ionizing sources (Zaldarriaga et al. 2004; Lidz et al. 2007). Thus,
the 21 cm fluctuations in this epoch are driven by fluctuations in the neutral fraction
xHI.

Figure 2.6 summarizes the power spectrum evolution across the EoR (albeit from a different
model, Lidz et al. 2008) as a function of the average ionization fraction xi, which acts as time
coordinate. When the IGM is still largely neutral, i.e. xi = 0.02, the power spectrum is still
driven by the density fluctuations and peaks at small scales (k > 1hMpc−1), which correspond
to the densest regions where ionized regions form first. As reionization continues, there is a
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brief phase between xi = 0.15 and 0.21 in which the dimensionless power spectrum drops and
steepens in slope at large-scales. This is due to the fact that we are plotting ∆2

21 ∝ k3P21(k)
and in this period P21(k) is nearly constant at all scales: the overdense (small) regions initially
contain more neutral hydrogen than underdense (large) regions, but their early ionization
lowers the 21 cm signal power, while the rest of the IGM remains neutral and xHI dominates
the large-scale power spectrum (Furlanetto et al. 2004). After that phase, from xi = 0.21 to
xi = 0.54, the power increases on large-scale as a consequence of the fast growth of the ionized
bubbles (e.g., Zahn et al. 2007). In the range 0.1 < k < 1hMpc−1, the power spectrum
reaches its maximum at the mid-point of reionization and, from this moment on, begins to
flatten out. As xi increases, the amplitude of ∆2

21 decreases to zero. In the standard scenario,
this happens at z ≈ 6, when the only neutral hydrogen in the Universe can be found within
galaxies and the IGM is completely ionized.

2.4.1 Reionization sources: Galaxies vs AGN

Currently there is no general consensus on the sources driving the reionization. A long standing
debate is related to the relative contribution to reionization from AGNs and galaxies. It is
generally accepted that galaxies emit enough photon to reionize the Universe (Barkana and
Loeb 2001; Robertson et al. 2010), as the AGN abundance decreases at z > 3 (e.g., Micheva
et al. 2017). Willott et al. (2010) estimated that at z = 6 the ionizing background emitted by
AGN can be two orders of magnitude lower than required for reionization. However, recent
deep observations identified faint AGNs at z > 4 (Giallongo et al. 2015) and, if their high
emissivity persists up to z ≈ 10, Madau and Haardt (2015) suggested that faint AGNs can
drive reionization, with a little contribution from star-forming galaxies. Both scenarios satisfy
the optical depth measured from the CMB.

Observations of the 21 cm signal may be conclusive in discriminating between the two
scenarios. If reionization is AGN-driven, the 21 cm power spectrum is one order of magnitude
brighter on large-scales (Kulkarni et al. 2017), as AGNs form inside the most massive DM
halos, i.e. the density and ionization fields are correlated. The evolution of the 21 cm power
spectrum could also help disentangling the two scenarios as in an AGN dominated reionization,
ionizing sources form later and reionization is delayed (Kulkarni et al. 2017). The most likely
scenario is that ANG plays a role during reionization, which, however, remains driven by
galaxies (Hassan et al. 2018).

2.5 Current status of observations

The number of instruments that attempt to detect the 21 cm cosmological signal has increased
in the last ten years. In particular, interferometric arrays have been developed to study the
spatial fluctuations, whereas the global signal is probed by single dipoles. In both cases, the
target epochs are the EoR and the Cosmic Dawn.

With regard to fluctuations, the Giant Metrewave Radio Telescope3 (GMRT; Kapahi
and Ananthakrishnan 1995) was the first instrument to provide an upper limit of the power
spectrum during the EoR (Paciga et al. 2011; Paciga et al. 2013). After that, the Precision
Array for Probing the Epoch of Reionization4 (PAPER; Parsons et al. 2010) was developed
as an EoR power spectrum experiment (see §4), providing several upper limits during the
cosmic reionization (Pober et al. 2013; Parsons et al. 2014; Ali et al. 2015; Jacobs et al. 2015;
Kolopanis et al. 2019). The Murchison Widefield Array5 (MWA; Tingay et al. 2013) has
provided the best upper limits at z = 7 (Barry et al. 2019) and z = 6.5 (Trott et al. 2020),

3http://www.gmrt.ncra.tifr.res.in/
4http://eor.berkeley.edu/
5http://www.mwatelescope.org/

http://www.gmrt.ncra.tifr.res.in/
http://eor.berkeley.edu/
http://www.mwatelescope.org/
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Figure 2.7 Current upper limits on EoR and Cosmic Dawn power spectrum measurements (Eq. 2.22).
Values are from different k modes for each instrument, but still in the range 0.1 < k < 1hMpc−1 the
theoretical dimensionless power spectrum is relatively spatially flat. The dashed line represents the
simulated fiducial model from Mesinger et al. (2011). From Liu and Shaw (2019).

preceded by earlier results (Dillon et al. 2014; Dillon et al. 2015; Beardsley et al. 2016),
including at the Cosmic Dawn (Ewall-Wice et al. 2016). In the last years, the LOw Frequency
ARray6 (LOFAR; van Haarlem et al. 2013) probed the Cosmic Dawn at the currently highest
redshift (20 < z < 25) (Gehlot et al. 2019) and provided the best results on the EoR in the
redshift range z = 8− 10.5 (Patil et al. 2017; Mertens et al. 2020). At the lowest frequencies,
the new Owens Valley Radio Observatory Long Wavelength Array7 (OVRO-LWA) gave the
first power spectrum limit at z ≈ 18 (Eastwood et al. 2019), All these results are shown in
Figure 2.7, where they are compared with the simulated model of Mesinger et al. (2011).

Global signal experiments provide an alternative path to the measurement of the 21 cm
signal. The Shaped Antenna measurement of background RAdio Spectrum8 (SARAS; Patra
et al. 2013) constrained the EoR duration in the range z = 6−10, disfavoring rapid reionization
models with d

(
δT b
)
/dz ≥ 120 mK (Singh et al. 2017; 2018). Their results were confirmed by

the Experiment to Detect the Global EoR Signature9 (EDGES; Bowman et al. 2008), which
rejected at 2σ significance all models with a reionization duration ∆z ≤ 0.4 if the mid-point
is in the z = 6.7 − 11.7 range and all scenarios with ∆z ≤ 1 if the mid-point is z = 8.5
(Monsalve et al. 2017). These results assume a hot reionization scenario, i.e. where Ts � Tγ .
Monsalve et al. (2017) relaxed this assumption and considered also the cold reionization model
(see §2.3), where the IGM is not heated by X-ray sources before reionization (Ts = Tk < Tγ).
They rejected at high significance (i.e., more than 2σ) all models with duration ∆z < 2 if
the mid-point is in the range z = 6.5− 11. These later results are somewhat in tension with
constraints on the duration of reionization from CMB anisotropy measurements ∆z < 3 at 1σ
significance (George et al. 2015), implying that the cold reionization scenario is disfavoured.

Bowman et al. (2018) reported the first 21 cm detection as an absorption profile centered at
78 MHz, i.e. z ≈ 18, with a width at half-maximum of approximately 19 MHz and an amplitude
of about 500 mK. This result is still very controversial. Indeed, the amplitude is a factor of
two larger than expected (Cohen et al. 2017), which can be explained if the baryon-photon
decoupling occurs at z > zdec or with undetected high-redshift radio sources which increase
the CMB temperature (Fialkov and Barkana 2019). Also exotic scenarios has been proposed,
such as interactions between baryons and little charged DM particles (Barkana 2018) or DM
annihilation (Cheung et al. 2019). Recently, Natwariya and Bhatt (2020) try to explain the
excess in the amplitude with the α-effect (Sur et al. 2008; Brandenburg and Subramanian
2007) due to the gas turbulence, which twists and enhance magnetic field lines at the cost of

6http://www.lofar.org/
7http://www.tauceti.caltech.edu/LWA/
8http://www.rri.res.in/DISTORTION/saras.html/
9https://www.haystack.mit.edu/ast/arrays/Edges/

http://www.lofar.org/
http://www.tauceti.caltech.edu/LWA/
http://www.rri.res.in/DISTORTION/saras.html/
https://www.haystack.mit.edu/ast/arrays/Edges/
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gas energy. With this mechanism, the gas temperature can be lowered to 3.2K at z ≈ 17,
explaining the observed absorption feature with no requirement of new physics. Furthermore,
the duration of the absorption feature is so narrow to require a star formation rate higher than
expected (Mirocha and Furlanetto 2019). Thus, there are many open questions about the
EDGES results and how they were obtained. Indeed, Singh and Subrahmanyan (2019) used
a different data analysis method and found results consistent with the standard cosmology
and astrophysics. Future experiments, such as the Large-Aperture to Detect the Dark Ages10

(LEDA; Bernardi et al. 2015; Price et al. 2018) and the Probing Radio Intensity at high-Z
from Marion (PRIZM; Philip et al. 2019), will need to confirm their findings.

10http://www.tauceti.caltech.edu/leda/

http://www.tauceti.caltech.edu/leda/




Chapter 3

Foregrounds

This chapter aims to provide an overview of the observational challenges of the 21 cm ex-
periments, in particular those concerning the foreground emission. We summarize the basic
concepts of interferometry, the different foreground components relevant to 21 cm observations
and, finally, the current methods used for their mitigation.

3.1 Fundamentals of radio interferometry

The 21 cm line emitted from HI during the EoR is redshifted from 1420MHz to frequencies
below 200MHz (which correspond to z = 6, see §2.2.1). Celestial radio signals can be
observed from the Earth surface as the atmosphere is transparent in the radio window. At
cm-wavelengths, parabolic dishes are generally built to collect celestial radio waves and focus
them in the focal plane where it is placed a feed, a device that converts radio waves into
electrical signals.

The angular resolution θb of a single dish with a diameter D is given by λ/D, where λ
is the wavelength of the observed radiation. The bigger the dish, the higher the resolution
power (defined as the inverse of the angular resolution). The construction of very large single
dish telescopes is, however, limited by engineering and economic perspectives. Higher angular
resolutions are achieved with interferometric arrays, where many antennas are connected
together to “synthesize” an aperture of diameter equivalent to the maximum separation between
antennas b:

θb ≈
λ

b
, (3.1)

where b is also known as the maximum baseline of the array. Orders of magnitude improvement
in the angular resolution can be achieved using this method.In next section we summarize the
formalism needed to understand interferometric measurements.

3.1.1 Interferometry

The simplest interferometric array is the two-element interferometer (Figure 3.1a): an array of
N antennas is simply N(N − 1)/2 independent two-element arrays. Let us, therefore, consider
a two-element interferometer that consists of two identical antennas separated by a baseline
length b = |b| and observing along the direction ŝ. Any sky source is sufficiently distant that
its incoming radiation can be safely approximated as a plane wave. If the antennas observe the
source at an angle θ respect to zenith, the wavefront received by the left antenna experiences
an extra delay τ with respect to the right one:

τ =
b · ŝ
c

=
b sin θ

c
, (3.2)
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(a) (b)

Figure 3.1 (a) Geometry of a two-element interferometer, where b is the baseline length and ŝ is the
observing direction with an angle θ with respect to zenith. (b) Relationship between sky coordinates
(l,m, n), where the source has a brightness distribution Iν(l,m), and the uv-plane. The interferometer
is pointing in the direction ŝ0 and observing a source with solid angle dΩ in the direction ŝ = ŝ0 + σ.
Cardinal points are reported.

where τ is often referred to as the geometric time delay. The two signals are combined by
the correlator. In particular, the voltage induced at the right antenna can be written as
V(t) = V cos(2πνt) and the correlator performs the time average between the signals of the
two antennas (e.g., Thompson et al. 2017):

r = 〈Vi(t)Vj(t)〉 = 〈V2 cos[2πν(t− τ)] cos(2πνt)〉

=
V2

2
〈cos(4πνt− 2πντ) + cos(2πντ)〉

=
V2

2
〈cos(2πνt) cos(4πντ) + sin(2πνt) sin(4πντ) + cos(2πντ)〉,

(3.3)

where 〈〉 indicates the time average, i and j are the left and right antennas, respectively, t is
the time, ν the observing frequency and the geometrical delay was added to the signal received
by the left antenna. For any observing frequency ν, the quantity νt varies faster than ντ and,
if the correlator averages over a period � 1/ν, 〈cos(2πνt)〉 = 〈sin(2πνt)〉 = 0 and Eq. 3.3 can
be written as (e.g., Thompson et al. 2017)

r(τ) ≈ V
2

2
cos(2πντ) =

V2

2
cos

(
2πν

b · ŝ
c

)
. (3.4)

The correlator output is therefore a square voltage that varies sinusoidally with time, known
as fringe pattern. Eq. (3.4) is valid for a point source, but also describes the contribution from
a source element of solid angle dΩ in the direction ŝ = ŝ0 + σ as shown in Figure 3.1b, where
ŝ0 is the reference position on the sky, known as phase center, where the visibility phase is
zero by construction (i.e., b · ŝ0 = 0). Thus, the fringe phase can be defined as

φf = 2πν
b · σ
c

, (3.5)

such that a source observed at the phase center has φf = 0, and, therefore, a constant
amplitude r = V2/2.
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The visibility expression for an extended source can be obtained by integrating r(τ) over
the source size Ω (e.g., Bernardi 2019):

R(b, ν) =

∫
Ω

V2

2

[
cos

(
2πν

b · ŝ
c

)
− i sin

(
2πν

b · ŝ
c

)]
dΩ =

∫
Ω

V2

2
e−2πiν b·̂s

c dΩ, (3.6)

where an odd (sine) function is added to the even cosine component in order to describe any
general, complex-value function. Indeed, the source signal is a real function that generally
has both even and odd parts, then to sample it completely the complex correlator adds
a 90◦ phase shift to one of the signal paths before cross-multiplication, obtaining the sine
component of Eq. (3.6). Furthermore, the signal amplitude V2/2 is proportional to the source
brightness Iν(σ), which is a direction dependent quantity. Thus, Eq. (3.6) can be written as
(e.g., Bernardi 2019)

R(b, ν) = e−2πiν
b·̂s0
c

∫
Ω
Aν(σ)Iν(σ) e−2πiν b·σ

c dΩ, (3.7)

where we substituted ŝ = ŝ0 +σ and added the primary beam response Aν(σ), which takes into
account the fact that the antenna sensitivity decreases away from the pointing direction. The
exponential term outside the integral in Eq. (3.7) varies with time and is generally canceled
out adding a time delay equal and opposite to the exponent. The additional delay can be
applied on the correlator itself in tracking telescopes or on the measured visibilities in drift
scan telescopes, in order to combine observations made at different times. This operation
is known as fringe stopping or delay tracking: for a given set of observations, we choose a
reference time, fixing the phase center, and re-phase all data to that with a rotation of the
fringes phase (more details in Thompson et al. 2017).

Eq. (3.7) defines the complex visibility V , i.e. the fundamental quantity measured by an
interferometer (van Cittert 1934; Zernike 1938):

Vij(b, ν) = |Vij |eiφv =

∫
Ω
Aν(σ)Iν(σ) e−2πiν b·σ

c dΩ, (3.8)

where ij is the baseline between antenna i and j, |Vij | and φv are the visibility amplitude and
phase respectively, given by

|Vij | =
√

Re{Vij}2 + Im{Vij}2 ; φv = tan−1

(
Im{Vij}
Re{Vij}

)
(3.9)

and correspond to the fringe amplitude and phase (Eq. 3.5), the latter measured relative to
the fringe phase at ŝ0. Eq. 3.8 is also known as the Van Cittert-Zernike theorem.

Visibilities are often defined in a different coordinate system, where the baseline vector b
has components (u, v, w) as shown in Figure 3.1b: the uv-plane is normal to the phase center
direction, such that w is measured in the direction ŝ0. In particular, u is measured toward
North and v toward East. Similarly, a coordinate system for imaging can be defined by taking
the unit vector ŝ with components (l,m, n): the lm-plane is tangent to celestial sphere, its
origin (l = m = 0) is at the phase center, and n is along the w direction. The coordinates
(l,m) are called direction cosines because they are defined as

l = sin θx ; m = sin θy, (3.10)

where θx and θy are the sky coordinates, and hence they are the cosines of angles with respect
to the u and v directions. Both (l,m, n) and (u, v, w) are dimensionless coordinates, as the
latter are defined as u = b/λ = bν/c, where u = (u, v, w).

In these new systems, we can write (e.g., Thompson et al. 2017)

νb · ŝ0

c
= w ;

νb · ŝ
c

= ul + vm+ wn ; dΩ =
dl dm

n
=

dl dm√
1− l2 −m2

(3.11)
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and Eq. (3.8) becomes

Vij(u, v, w, ν) =

∫
Ω
Aν(l,m)Iν(l,m) e−2πi[ul+vm+w(

√
1−l2−m2−1)] dl dm√

1− l2 −m2
, (3.12)

where we have taken into account that b · σ = b · ŝ− b · ŝ0. Note that if the source is in the
phase center the argument of the exponential term is zero, the visibility phase is also zero,
that means that the imaginary part is zero, and hence the amplitude of the signal, i.e. the flux
density, corresponds to the real part of the visibility.

If we consider a small region of the sky such that the flat-sky approximation holds and
w = 0, Eq. (3.12) can be rewritten as

Vij(u, v, ν) =

∫
Ω
Aν(l,m)Iν(l,m) e−2πi(ul+vm) dl dm, (3.13)

which is the two dimensional Fourier transform of the spatial brightness distribution of the sky,
where l ≈ θx and m ≈ θy1. The sky brightness can be obtained by inverse Fourier transform
of Eq. (3.13):

Aν(l,m)Iν(l,m) =

∫
Vij(u, v, ν) e2πi(ul+vm) dudv. (3.14)

We note that, in the flat-sky approximation, the sky coordinates are the Fourier conjugate of
the (u, v) coordinates. Each projected baseline samples one point in the uv-plane: in order to
fill the uv-plane, one can either increase the number of unique baselines, i.e. baselines that
have different lengths and orientations than any other baseline, or take advantage of the Earth
rotation, which changes the (u, v) coordinates with time – a technique known as rotation
synthesis (Ryle and Hewish 1960).

In real applications, however, it is impossible to completely reconstruct the sky brightness
distribution, the uv-plane has inevitable gaps2. The sky brightness distribution reconstructed
with a limited number of uv-modes is referred to as a dirty image:

ID(l,m, ν) ≈
∫
S(u, v, ν)Vij(u, v, ν) e2πi(ul+vm) dudv, (3.15)

where S(u, v, ν) is the sampling function in the uv-plane, i.e. the uv-coverage.
Using the convolution theorem, Eq. 3.15 can be rewritten as

ID(l,m, ν) = S̃(u, v, ν) ∗ Ṽij(u, v, ν) = PSF(l,m, ν) ∗ Iν(l,m), (3.16)

where the tilde indicates the Fourier transform and PSF is the Point Spread Function, and,
essentially, describes the response of the interferometer to a point source. As S(u, v, ν) is
a discrete, non continuous function, the PSF shows sidelobes that extend over the whole
uv-plane. Deconvolution techniques are needed to remove the sidelobe contamination from
the dirty image (e.g., Högbom 1974; Clark 1980).

3.1.2 From visibilities to power spectra

As we have seen in §2.5, current arrays do not have enough sensitivity to obtain images of
the spatial distribution of the cosmological 21 cm signal, which may be achieved by HERA
and the SKA. Current experiments aim to perform a statistical detection by measuring the

1This Fourier transform convention is different than the definition given in §1.4, but both are standard. In
particular, the expression with the 2π factor in the complex exponential is generally used in radio astronomy,
whereas the expression without the 2π factor is used in the cosmological context.

2For example, the minimum baseline cannot be shorter than the antenna size, thus modes corresponding to
u < D/λ, i.e. large-scale sky emission, cannot be probed. This means, for instance, that an interferometer can
not observe an isotropic emission.
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Figure 3.2 Interferometers measure visibilities in the uv-plane as a function of the frequency ν
(Eq. 3.13). Power spectra can be obtained in two ways: a spatial, two dimensional Fourier transform of
visibilities generate a “standard” image cube with (θx, θy, ν) coordinates. A three dimensional Fourier
transform converts the image plane coordinates to power spectrum coordinates (kx, ky, k‖). Alterna-
tively, a Fourier transform along the frequency axis takes the visibilities to the (u, v, τ) coordinates,
which are simply proportional to the power spectrum coordinates (see text for details).

21 cm power spectrum. Here we describe how power spectra are related to interferometric
measurements.

Figure 3.2 describes two approaches to achieve power spectra. Visibilities are measured
by interferometers in the (u, v, ν) space and can be Fourier transformed along the (u, v)
coordinates (Eq. 3.14) to obtain an image cube. The specific intensity Iν can be expressed as
a brightness temperature T (θx, θy, ν) according to Eq. (2.4). If we define x = (θx, θy, ν), the
power spectrum can be obtained from the image cube first with a three dimensional Fourier
transform,

T̃ (k) ≡
∫ ∞
−∞

T (x) e−ik·x d3x, (3.17)

and then by averaging over k-modes of the same length (Eq. (2.21)):

〈T̃ (k) T̃ ∗(k′)〉 = (2π)3δD(k− k′)P (k), (3.18)

where ∗ indicates the complex conjugate operator.
On the other hand, the 21 cm power spectrum can be directly obtain from visibilities,

as different baselines sample different k-modes. It can be noted from Eq. (3.13) that an
interferometer already performs a spatial, two dimensional Fourier transform of the brightness
distribution T (x). Visibilities can further Fourier transformed along the frequency axis into a
delay transform (Parsons and Backer 2009; Parsons et al. 2012a):

Ṽij(u, v, τ) =

∫
B
Vij(u, v, ν) e−2πiντ dν, (3.19)

where B is the bandwidth of the observation and τ is the Fourier conjugate of the frequency
ν. The bandwidth B is generally taken to be 8− 10 MHz, over which there is no significant
cosmological evolution of the 21 cm signal (e.g., Santos et al. 2005). We note that as visibilities
have units of Jy, delay transformed visibilities have units of JyHz. Substituting Eq. (3.13)
into Eq. (3.19) we obtain

Ṽij(u, v, τ) =
2kB

λ2

∫
Aν(l,m)T (l,m, ν) e−2πi(ul+vm+ντ) dl dm dν, (3.20)
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where we have expressed the specific intensity Iν as the brightness temperature T (l,m, ν) and
λ is the observing wavelength.

It can be shown that the (u, v, τ) coordinate system maps into (kx, ky, k‖) and, therefore,
the delay transform Ṽ is essentially equivalent to T̃ (k). Let us consider the narrow-field, flat-
sky approximation, such that l ≈ θx and m ≈ θy, and neglect the variation of (u, v) coordinates
with delay (i.e., u = bν/c), an approximation that is valid for baselines shorter than 300m
(Parsons et al. 2012a). The observational quantities (θx, θy, ν) can now be related to the
cosmological x = (x⊥, x‖), where x⊥ and x‖ are the comoving position vectors perpendicular
and parallel to the line of sight, respectively. Eq. (1.10) describes the comoving distance
between the present time (i.e., zobs = 0) and the redshift z, and can be rewritten as

x(z) =
c

H0

∫ z

0

dz′

E(z′)
, (3.21)

where in the ΛCDM model E(z) =
√

Ω0,m(1 + z)3 + Ω0,Λ since both Ω0,K and Ω0,γ are
negligible (see §1.2). In the small-angle approximation, the comoving transverse distance is
then defined as x⊥ = x(z)θ, where θ = (θx, θy). Supposing θx = θy = θ, the components
of the vector x⊥ are Dc = x(z) θ and have units of h−1Mpc rad. Eq. (3.21) is also useful to
express the radial comoving distance corresponding to a redshift interval ∆z centered at z:

∆x‖ = ∆x(z) =
c∆z

H0E(z)
=
c∆ν(1 + z)2

ν21H0E(z)
, (3.22)

where ∆z was derived as a function of ∆ν from the relation ν = ν21(1+z)−1. As the frequency
and the radial distance are measured relative to the central value of the observational band,
we can replace ∆x‖ and ∆ν with x‖ and ν, respectively. Similarly to the transverse comoving
distance, we can indicate with ∆Dc the radial distance ∆x‖, which has units of h−1Mpc. At
this point, we can relate the Fourier mode k = (k⊥, k‖) to the position vector x = (Dc, Dc, x‖):

k⊥ =
2πν

cDc
b ; k‖ =

2πν21H0E(z)

c(1 + z)2
τ. (3.23)

Finally, the power spectrum can be expressed related to the the delay transformed visibilities
(Parsons et al. 2012a; Thyagarajan et al. 2015):

P (k) = |Ṽb(τ)|2
(
λ2

2kB

)2(
D2
c ∆Dc

B

)(
1

ΩB

)
, (3.24)

where λ is the center wavelength of the observing bandwidth, Ω ≈ λ2/Aeff is the field of view
(FOV) solid angle, with Aeff the effective area of the antenna. The units of Eq. (3.24) are
mK2(h−1Mpc)3.

3.2 Foreground emission

At low radio frequencies, the sky emission is dominated by Galactic and extragalactic fore-
grounds, which are three to four orders of magnitude brighter than the redshifted 21 cm signal,
(Figure 3.3a, Shaver et al. 1999; Jelić et al. 2008). The Galactic emission is associated with
diffuse synchrotron and free-free radiations from the Milky Way, whereas the extragalactic
one is mainly due to point sources, such as radio AGNs and galaxy clusters. In Figure 3.3b
the angular power spectrum of the 21 cm signal (solid blue line) is compared with the various
foreground emission components at 150MHz: the Galactic component dominates at large
angular scales and accounts for about 70% of the total power, while the extragalactic one dom-
inates at small angular scales and accounts for the remaining ∼ 30% (Santos et al. 2005). The
contribution of the CMB anisotropies is negligible. A deep knowledge of foreground emission is
then fundamental for 21 cm observations, in order to separate it from the cosmological signal.
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(a) (b)

Figure 3.3 (a) Illustration of the various foreground components affecting observations of the cosmo-
logical 21 cm signal (Jelić et al. 2008). Typical brightness temperatures of Galactic and extragalactic
foregrounds and EoR signal are reported. From https://www.researchgate.net/profile/Sarod_
Yatawatta. (b) The angular power spectrum at 140 MHz (z ≈ 9.2) of the 21 cm signal (solid blue line),
extragalactic free-free (dashed red line), Galactic free-free (long-dashed red line), point sources (solid
red line), Galactic synchrotron (dotted red line) and the CMB (dot-dashed curve). Note that EoR
signal is dominated by foreground emission at all scales. From Santos et al. (2005).

Figure 3.4 Spectra of the various foreground components: Galactic synchrotron, free-free, spinning
dust grains and thermal dust. Over the whole frequency range of the Cosmic Dawn and EoR frequencies
(dark grey area) the Galactic synchrotron emission is few orders of magnitude brighter than the 21 cm
signal. The dotted curve represents the CMB anisotropy spectrum, which is the brightest component
in the 30− 100GHz range, after which there is the transition from a synchrotron-dominated foreground
to a thermal dust-dominated one. From Chapman and Jelić (2019).

https://www.researchgate.net/profile/Sarod_Yatawatta
https://www.researchgate.net/profile/Sarod_Yatawatta
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Figure 3.5 All sky maps in brightness temperature of Galactic synchrotron emission at 150MHz (left,
Landecker and Wielebinski 1970) and at 408MHz (right, Haslam et al. 1982).

3.2.1 Galactic foreground

Galactic synchrotron emission is the dominant component in the EoR frequency range, whereas
the free-free emission due to the ionized gas is about three orders of magnitude fainter
(Figure 3.4). Free-free is also mostly concentrated in the Galactic plane, with HII regions (e.g.,
Planck Collaboration et al. 2016a).

Non-thermal synchrotron radiation is emitted when charged particles, essentially cosmic-ray
electrons, are accelerated in a magnetic field. The radiation power (energy per unit of time)
emitted by a single electron is (e.g., Rybicki and Lightman 1979):

dE

dt
∝ γ2H2 sin2(θp). (3.25)

where γ is the Lorentz factor, H is the magnetic field strength and θp is the pitch angle between
the electron velocity and the magnetic field. Thus, in the electron rest frame the synchrotron
radiation is distributed with a dipole pattern, while it is beamed along the direction of motion
in the observer reference frame because of relativistic effects. As the electron spirals around
magnetic field lines, it emits radiation over a range of frequencies, peaking at the critical
frequency νcr ∝ γ2H. This means that the more energetic the electrons the higher frequency
of the emitted radiation.

In the Milky Way, relativistic electrons with γ ≈ 104 are essentially produced by SNe in
the Galactic plane and spiral around the Galactic magnetic field, which has a strength of about
10 µG (e.g., Haverkorn 2015). Their synchrotron emission therefore peaks at radio frequencies,
between 10 MHz and 100 GHz. The superposition of broad synchrotron spectra with different
critical frequencies leads to an observed power law for the flux density Sν :

Sν = S0

(
ν

ν0

)−α
, (3.26)

where S0 is the flux density at the reference frequency ν0 and α is the spectral index. The
spectral index changes with observing frequencies: at ν > 1 GHz 0.8 < α < 1 (Reich and
Reich 1988; Platania et al. 1998), whereas at ν < 500 MHz the spectral index is flatter, with
0.1 < α < 0.7 (Guzmán et al. 2011). The difference between low and high frequencies is due
to radiative losses: Eq. (3.25) shows that more energetic particles, whose spectrum peaks
at higher frequencies, loose energy more quickly. A population of old particles is therefore
expected to have a spectrum that steepens at higher frequencies (e.g., Strong et al. 2007). The
most accurate measurements of the synchrotron spectral index at low frequencies are from
Mozdzen et al. (2017), which found 0.60 < α < 0.62 in the ν = 90− 190 MHz range.

Galactic synchrotron emission also shows a high degree of spatial variations, more concen-
trated in the Galactic plane but with spurs and structures extending well beyond it (Figure 3.5).
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Figure 3.6 Normalized 1.4 GHz differential source counts. Colored symbols indicate different surveys
(see Prandoni 2018, for more details). Dotted and dashed lines represent predicted counts from different
models (Wilman et al. 2008; Wilman et al. 2010), where colours indicate different populations: SFG
(blue), RL AGN (red), RQ AGN (green), and their sum in black. From Prandoni (2018).

This is due to fluctuations in the cosmic-ray density and magnetic field strength across the
Galaxy (Chapman and Jelić 2019). At high Galactic latitudes, the synchrotron emission varies
between 150 and 250K at 150MHz (Landecker and Wielebinski 1970).

3.2.2 Extragalactic foreground

Extragalactic sources are mainly AGNs and star forming galaxies (SFGs). The radio emission
in AGNs, known in this case as radio-loud (RL) AGNs, is due to relativistic jets produced
by the central accretion disk and extending up to Mpc scales (e.g., Urry and Padovani 1995;
Heckman and Best 2014). These jets generate a diffuse plasma of electrons, which emits
synchrotron radiation because of the high magnetic field strength in the AGN nucleus. RL
AGNs are typically at the center of elliptical galaxies, whereas radio-quiet (RQ) AGNs3, i.e.
AGNs with no large-scale radio jets, can be found also in spiral ones (e.g., Kormendy and
Ho 2013). Indeed, SFGs have an high infrared luminosity, that is generally associated to the
star-formation rate (Jarvis et al. 2010).

Normalized differential source counts at 1.4 GHz are shown in Figure 3.6 for different flux
density thresholds. SFGs dominate the extragalactic emission below approximately 100 µJy,
whereas RL AGNs contribute the most at flux densities greater than 1 mJy. Deep surveys
in the frequency range of the redshifted 21 cm line are important to understand the spatial
distribution of foreground sources and their spectra.

Indeed, source clustering can affect the detection of the cosmological signal on large
angular scales, i.e. at k < 0.6hMpc−1 (Murray et al. 2017; 2018). The knowledge of radio
spectra is instead fundamental in the foreground separation methods (see §3.3), which are
based on the assumption of spectral smoothness (Bernardi et al. 2015). Deviations from the
spectral smoothness of extragalactic sources are expected at low-frequencies as a consequence

3An AGN is defined radio-loud when the ratio between the radio luminosity at 5GHz and the optical
luminosity in the blue filter is greater than 10, otherwise it is defined radio-quiet AGN (Kellermann et al. 1989).
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of synchrotron self-absorption, that leads to a spectral index α ≈ −0.5 below a turnover
frequency that generally is between 10MHz and 1GHz (Kellermann and Pauliny-Toth 1969;
Pacholczyk 1970). Current surveys, however, do not show strong evidence for spectral curvature.
Callingham et al. (2017) studied sources in the the Galactic and Extragalactic All-sky MWA
(GLEAM; Hurley-Walker et al. 2017) survey, finding that only ∼ 4.5% of them have a
turnover between 72MHz and 1.4GHz. Also the spectrum of Fornax A (RA = 3h22m41.72s,
Dec = −37◦12′29.62′′; Shaya et al. 1996), which is one of the brightest source in the Southern
sky, is very smooth, as Bernardi et al. (2013) measured a spectral index α = −0.88 ± 0.05
in the range 30 − 400 MHz. Thus, deviations from smooth power-law spectra seem to be
insignificant for the foreground mitigation, which we will describe in the next section.

3.3 Foreground Mitigation

In the previous section we have seen that Galactic and extragalactic foregrounds are mainly
due to synchrotron emission, whose spectrum is expected to be smooth over tens of MHz.
Conversely, the coherence scale of the 21 cm signal is of the order of a few MHz (Di Matteo
et al. 2002; Santos et al. 2005). This different spectral behaviour allows us to separate the
foreground emission from the cosmological signal. Specifically, foregrounds can either be
modeled and subtracted, or avoided.

3.3.1 Foreground Subtraction

The foreground subtraction approach relies on modeling the foreground emission and fitting
it to the observed data. The best fit is then removed from the data. The first step is the
subtraction of bright compact sources. Generally, this is done in the visibility space (Yatawatta
et al. 2013; Carroll et al. 2016), often including a correction for the instrumental corruptions
(e.g., Smirnov 2011). Conversely, LOFAR and MWA may apply the subtraction also in the
image plane, fitting a smooth spectral model to each pixel to remove sources in each line of
sight (e.g., Morales et al. 2006; Wang et al. 2006). Some of the brightest sources, however,
can have complicated, extended morphologies: failures in accurate modeling and, therefore,
subtracting these sources leaves residual foreground contamination that may prevent the 21 cm
detection (e.g., Procopio et al. 2017).

After bright source subtraction, the sky brightness is dominated by the diffuse foreground
emission (e.g., Bernardi et al. 2010; Bernardi et al. 2013). Modeling and subtraction of diffuse
synchrotron emission is performed via two main spectral fitting methods:

• Parametric Fitting. This method assumes a foreground spectral model whose co-
efficients are fitted to the data on an image pixel basis (Wang et al. 2006; Bowman
et al. 2009; Liu et al. 2009). The most used parametric method is fitting a polynomial
function to the foreground spectrum for every pixel of the observed image cube (McQuinn
et al. 2006; Bowman et al. 2009). Removal methods may, however, lead to overfit and
loose a fraction of the 21 cm signal (Cheng et al. 2018; Wang et al. 2013).

• Non-parametric Fitting. In this case, the functional form used to model foregrounds
is not fixed a priori, but general assumptions of foreground properties and their statistics
are assumed (e.g., Harker et al. 2009; Paciga et al. 2013; Mertens et al. 2018). Although
non parametric methods are generally more flexible and robust, they are still vulnerable
to calibration errors that introduce spectral structures on the observed foreground
spectra.

After subtraction of diffuse foregrounds, residual errors may still be present and, at present,
power spectra from observations are hardly ever compatible with thermal noise, indicating a
dominating foreground contamination (e.g., Morales and Hewitt 2004; Morales et al. 2006). In
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Figure 3.7 Pictorial representation of delay spectra of a flat spectrum source measured by two
antennas separated by a baseline b. The source has different delays τ when is at different positions in
the sky. Note that at the zenith τ = 0. The bottom part of the cartoon shows the delay response of
the antenna pair, where vertical dashed lines denote the horizon limit and the solid lines are the delay
transforms of the source at each position, centered at the corresponding delay.

order to remove residual errors, Morales (2005) suggests to simulate power spectra coming
from subtraction errors and then subtracting the template that best fits the residuals. This
method may be promising to statistically remove the residual contamination but it requires
extensive and realistic simulations (Morales et al. 2006) and has not been applied to data so
far.

A middle way between subtraction and avoidance methods is represented by mode weighting :
rather than removing foreground emission, modes with high foreground contamination are
downweighted (e.g., Liu and Tegmark 2011; Trott et al. 2016). Indeed, in these modes the
cosmological signal is not exactly zero. This method is based on the optimal quadratic
estimator formalism, where the covariance matrix describing the various sky components
is inverted to downweight foreground emission (Liu and Tegmark 2012; Dillon et al. 2013).
The power spectrum is then estimated over all k-modes, each mode weighted by the inverse
covariance matrix, such that foreground dominated ones are negligible but not completely
zero. This is particularly important in those k-space regions where foreground and EoR
signal can be comparable, i.e. near the wedge (see §3.3.2), which are instead rejected in the
avoidance method. The challenge with the mode weighting method is related to the modelling
of foreground covariance, which is difficult at low-frequencies due to incompleteness of current
surveys (Liu and Shaw 2019). However, the current best power spectrum values at z < 8
have been obtained by Trott et al. (2020) using the mode weightning technique (see §2.5 and
Figure 5.7).

3.3.2 Foreground Avoidance

The avoidance method is based on the fact that foregrounds and the cosmological 21 cm signal
have different spectral behaviours, which leave different footprints in the power spectrum
domain. In order to illustrate the basics of avoidance, we consider two antennas separated
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Figure 3.8 Amplitude of delay transformed visibilities as a function of time and delay for a simulated
sky, including power-law spectra point sources for a 32m (top left), 64m (top right), 128m (bottom
left) and 256m (bottom right) baseline (see Parsons et al. 2012a, for further details). Light blue colour
refers to a 21 cm toy model. Color scale is logarithmic, ranging from 1 in blue to 5 in red. Black dashed
lines mark the horizon limits for each baseline length. Note that smooth spectrum sources are confined
inside the horizon, whereas the 21 cm signal spread to high delay values. From Parsons et al. (2012a).

by a baseline of length b and observing a point source (Figure 3.7). The signal observed
from a flat spectrum source is a delta function centered at a given geometrical delay τ . As
the source moves across the sky, it will appear at different locations in delay space (Parsons
et al. 2012a). The maximum delay allowed, however, is always bound by a physical limit that
corresponds to the separation between the two antennas, τmax = b/c, which occurs when the
source is at the horizon and is, therefore, named horizon limit (Vedantham et al. 2012; Parsons
et al. 2012b). This simple scenario holds as long as the sky emission remains frequency smooth:
a power-law emission will still remain bound in delay space, although extending a little beyond
the horizon limit. Conversely, unsmooth emission is not bound to any specific delay limit, but
has power across the whole delay range (Figure 3.8). In other words, the EoR signal varies
on a few MHz scales (see §2.4) and, therefore, has non negligible power beyond the horizon
limit where smooth spectrum foregrounds are confined. This region is referred to as the EoR
region because the 21 cm signal is expected to be stronger than foregrounds and, in principle,
detectable without subtraction.

The boundaries of the EoR window depend upon the instrumental configuration and are
highlighted in the two dimensional, cylindrical (k‖, k⊥) power spectrum – as k⊥ ∝ b and k‖ ∝ τ
(Eq. 3.23) – shown in Figure 3.9. The boundaries of this plane are (Vedantham et al. 2012;
Chapman et al. 2014):

k⊥,max =
2πν21bmax

c(1 + z)Dc
; k⊥,min =

2πν21bmin

c(1 + z)Dc
(3.27)

k‖,max =
2πν21H0E(z)

c(1 + z)2∆ν
; k‖,min =

2πν21H0E(z)

c(1 + z)2B
, (3.28)
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Figure 3.9 Cartoon representation of the two dimensional, cylindrical (k‖, k⊥) power spectrum relevant
for the avoidance method. Smooth spectrum foreground emission should be contained in the horizontal
band at small k‖ values, but the intrinsic chromaticity of interferometers leaks power at higher k‖,
in the region known as wedge. The blue remaining region is the EoR window, where foreground is
suppressed because of their smooth spectra. From Liu and Shaw (2019).

where ∆ν is the channel width, and bmin and bmax are the minimum and maximum baseline of
the array, respectively. Note that bmin cannot be smaller than the antenna size, so that k⊥,min

is associated to the FOV. The lower boundary of the EoR region corresponds to the maximum
delay τmax:

τmax =
b

c
=

Dc

2πν
k⊥ =

Dc(1 + z)

2πν21
k⊥ (3.29)

and, substituting it in the definition of k‖ (Eq. 3.23), we obtain the horizon limit relation in
k-space (e.g., Thyagarajan et al. 2013):

k‖ =
2πν21H0E(z)

c(1 + z)2
τmax =

H0E(z)Dc

c(1 + z)
k⊥. (3.30)

The horizon limit marks the boundary of the foreground wedge (Datta et al. 2010; Liu et
al. 2014a; 2014b). The foreground wedge is due to the intrinsic chromaticity of interferometers,
because its (u, v) sampling changes with frequency, i.e. u = bν/c. Eq. (3.30) shows that
the extension of the foreground dominated region is larger for longer baselines (Parsons et
al. 2012a; Morales et al. 2012). Observations often show emission that bleeds outside the
horizon limit, likely due to the instrument primary beam, calibration errors and intrinsic
unsmooth foreground emission (e.g., Pober et al. 2013).

Unlike foreground subtraction, the avoidance method does not require foreground imaging
and modeling. If no imaging is needed, then deploying baselines on a regular grid is advanta-
geous as it boosts the power spectrum sensitivity on a number of limited k⊥ modes (Parsons
et al. 2012a). This was the rationale behind the construction of several arrays, including
PAPER, whose data analysis was the topic of this thesis and will be described in the next
chapters.
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PAPER observations

In this chapter, we describe the Donald C. Backer Precision Array to Probe the Epoch
of Reionization (PAPER; Parsons et al. 2010) and the data taken with the 128-element
configuration. In particular, we derive the noise statistics of our data and describe the method
used to estimate the 21 cm power spectrum, validating it with simulations. For our analysis
we develop Python scripts and make use of the Common Astronomy Software Applications
(CASA) environment.

4.1 Observations and data analysis

PAPER was a low-frequency radio interferometer built to observe the power spectrum of the
21 cm line. It was located in the Karoo Desert, in the Northern Cape of South Africa, and
was deployed in stages. The first deployment consisted of 8 antennas (Parsons et al. 2010),
augmented to 32 elements (Pober et al. 2013; Parsons et al. 2014; Jacobs et al. 2015; Moore
et al. 2017), 64 (Ali et al. 2015; Cheng et al. 2018; Kolopanis et al. 2019) and finally to 128
(Zhang et al. 2018). The configuration of the 128-element array (PAPER-128 henceforth),
which we used in this Thesis work, is shown in Figure 4.1. It consists of 112 elements distributed
on a 16× 7 regular grid, in order to maximize the redundancy (see also Figure 4.2a), and 16
outrigger elements, placed outside the grid on a perimeter of about 300m, in order to improve
the uv-coverage.

The PAPER receiver consists of two crossed sleeved dipoles (Johnson 1993) between two
aluminium disks, and mounted in a ground screen with planar wire-mesh reflectors positioned
at an angle of 45◦ outward (Figure 4.2b). The resulting antenna has a collecting area of
approximately 4 m2. The two dipoles measure two orthogonal polarization, i.e. x and y. In this
Thesis work we analyse only the xx visibility data. PAPER operates at frequencies between
100MHz and 200MHz, divided in 203 channels with a spectral resolution of ∼ 0.5 MHz.

The data used in this Thesis were taken during the longest observing season, between
November 2013 and March 2014. This season is divided in two epochs, where the difference
between them is is due to the number of available antennas, as reported in Table 4.1 (see also
Figure 4.1). Visibilities are recorded with an integration time tint = 31.65 s and written to
disk in a single visibility file 10 minutes long that we will refer to as a snapshot. Although
the PAPER correlator does not perform any fringe stopping, the visibilities in each snapshot
were phased offline to the coordinates corresponding to the last observing time sample of the
snapshot. The monochromatic uv-coverage for a 10 minutes snapshot at 150MHz is shown
in the left panel of Figure 4.3. At a given time, each antenna pair marks two point in the
uv-plane, one with (u, v) coordinates and its Hermitian conjugate with (−u,−v) coordinates.
Figure 4.3 also shows the uv-coverage for a 10MHz sub-band, which is used for the power
spectrum analysis (see §4.1.1). The sampled uv-cell changes linearly with frequency for each
baseline, resulting in a net increase in the uv-coverage.
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Figure 4.1 Antenna positions of PAPER-128. All antennas were working during epoch 2, while only
the blue ones were functioning during epoch 1 (i.e., orange ones were off). Red crosses denote flagged
antennas during the calibration and analysis process (see §4.1.2).

(a) (b)

Figure 4.2 (a) Aerial view of array in the Karoo region (South Africa from https://www.astro.
phy.cam.ac.uk/research/research-projects/paper-and-hera. (b) Zoom into a single PAPER
antenna, where we can see the crossed sleeved dipole between two aluminium disks (from http:
//eor.berkeley.edu).

Epoch Calendar Date Julian Date (JD) Days N

1 22/11/2013− 12/12/2013 2456617− 2456639 16 112
2 24/01/2014− 22/02/2014 2456682− 2456711 26 128

Table 4.1 Details of the observations analyzed in this work. We have 16 and 26 days from epoch 1
and 2, respectively, corresponding to the reported calendar and Julian dates (JD2000). The difference
between the two epochs is due to the number of available antennas, indicated with N .

https://www.astro.phy.cam.ac.uk/research/research-projects/paper-and-hera
https://www.astro.phy.cam.ac.uk/research/research-projects/paper-and-hera
http://eor.berkeley.edu
http://eor.berkeley.edu
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Figure 4.3 Monochromatic uv-coverage of a 10 minutes snapshot at 150MHz (left panel) and over a
10MHz bandwidth (right panel). Note that in the wide-band coverage the coordinates are in units of
wavelength.

Figure 4.4 Representation of the baseline types used in the analysis: East-West (EW, blue solid arrow),
East-West-North (EWN, green solid arrow), East-West-South (EWS, red solid arrow), West-East (WE,
blue dashed arrow), West-East-South (WES, green dashed arrow) and West-East-North (WEN, red
dashed arrow) baselines. Note that baselines plotted with arrows of the same color sample the same
Fourier k-mode, but with inverted delay τ .

The redundant layout of PAPER-128 allows multiple measurements of few Fourier k-modes.
The shortest North-South separation between two antennas is 4m, while it is 15m East-West.
Although the 15m baselines are the most numerous and would offer the greatest power spectrum
sensitivity, in this Thesis we used the 30m baselines which were always used in previous works
(e.g., Ali et al. 2015; Kolopanis et al. 2019). The use of the 30m baselines provides a more
straightforward comparison with previous works and minimizes mutual coupling effects that
are more prominent in shortest spacings (Kohn and Aguirre 2015).

We considered three types of 30 m baselines: East-West (EW), i.e. baselines from antennas
with no row separation (e.g., 64-49, Figure 4.1), East-West-North (EWN), i.e. baselines from
antennas with one row separation such that u and v have the same sign (e.g., 64-66), and
East-West-South (EWS), i.e. baselines from antennas with one row separation such that u and
v have the opposite sign (e.g., 22-58). EWN and EWS are diagonal baselines whose length is
only 1% greater than the 30m EW baselines and, therefore, can be included in the analysis as
they essentially measure the same Fourier mode on the sky. Each type has a corresponding
group, where the baseline orientation is inverted and the baseline is the complex conjugate
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Figure 4.5 Number of days in each Local Sidereal Time (LST) bin, where days are selected based
on their phase center coordinates. The light blue bars are the all 42 days, whereas the dark blue
bars are the ones used for the analysis. We have re-phased visibilities in a common phase center at
RA = 5h25m, keeping the 39 days with a maximum pointing distance of 10 minutes from the new
phase center, in order to avoid visibility decorrelation. The LST range considered is represented with
vertical dashed red lines. Furthermore, six observations contained bad data (see text), so that only 33
days were retained in the analysis.

of itself1 (Figure 4.4). In terms of power spectrum, the other three groups with the inverted
baseline orientation still sample the same |k| mode (they just have an opposite delay) and
were included in the power spectrum analysis too.

4.1.1 Data selection

PAPER is a drift scan interferometer, i.e. it points at zenith while the sky drifts overhead
as the Earth rotates. Although PAPER observes continuously over 24 hours, our analysis is
limited to the 0h < RA < 8h range, which is the coldest sky patch available as the Galactic
center is below the horizon (e.g., Ali et al. 2015). In a drift scan array like PAPER pointing
direction can be expressed in terms of local sidereal time (LST), which are observed over
multiple days. Our analysis includes 42 days centered at LST ≈ 5h, around Pictor A transit
(RA = 5h19m49.72s, Dec = −45◦46′43.78′′; Evans et al. 2010) that is used as a calibration
source (see §4.1.2), for a total of ∼ 7 hours of observations. The LST distribution of the
snapshots is reported in Figure 4.5.

We re-phased all snapshots from all days to a common phase center, in order to be able to
image all the days and average the visibilities coherently (see §4.4). As data are distributed
preferentially around LST ≈ 5h25m, we chose this LST as the RA of the new phase center for
all the snapshots. The re-phasing operation changes the uv-coverage, therefore it is important
that the projected length of the 30 m baselines does not vary too much across each snapshots,
in order to still measure the same k⊥ mode. We found that the projected baselines changes less
than 0.1% from the nominal 30 m length across 10 minutes. We excluded the three snapshots
that are farthest away from LST ≈ 5h25m ad other six snapshots that suffered from calibration
errors (see §4.1.2), leaving us with 33 days, for a total of 5.5 hours of observation.

1The reason for this lies in the baselines ordering required by CASA, where the first antenna needs to have
an identifying number smaller than the second one. In principle the ordering could be inverted, but this would
break the CASA convention and it would not be able to make images. We kept the current ordering for the
purpose of this work.
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Figure 4.6 The relative fraction, i.e. occupancy, of unflagged days in each frequency channel (blue
line). The four 10MHz sub-bands selected for our analysis are shown with green areas, whose shape
is the Blackman-Harris function used as a window function during the delay transform in order to
decrease foreground leakages to large delays (e.g., Vedantham et al. 2012). The sub-band are chosen
following Kolopanis et al. (2019) and their center was slightly shifted if necessary to avoid flagged
channels. The top axis reports the redshift corresponding to each frequency.

A further data selection was carried out along frequency. The 21 cm power spectrum
estimation is always made in sub-bands that are 8− 10MHz wide, where the evolution of the
cosmological 21 cm signal is negligible (Wyithe and Loeb 2004; Furlanetto et al. 2006). Here
we followed Kolopanis et al. (2019) and selected four 10MHz-wide spectral windows centered
at 130.0 MHz, 144.3 MHz, 155.6 MHz and 167.5 MHz, corresponding to z = 9.93, 8.84, 8.13
and 7.48, respectively (Figure 4.6). The spectral windows were carefully chosen in order to
avoid to have any channel permanently flagged, which can generate extended sidelobes in the
delay space when the Fourier transform is applied to data along the frequency axis (Parsons
and Backer 2009; Parsons et al. 2012a).

4.1.2 Flagging and calibration of data

Data used in this Thesis work were previously flagged and calibrated by Nunhokee (2018) and
we will review the details in this section. Indeed, the first step of the data analysis is flagging
bad data. Examples of data to be discarded include:

• malfunctioning antennas (red crosses in Figure 4.1) or corrupted baselines;

• scan edges;

• bad weather or pointing;

• sub-band edges (i.e., bandpass filter);

• radio frequency interference (RFI, due to satellites or airplanes, for instance).

RFI often appears as narrow-frequency spikes in the visibility data, with an amplitude that is
a few orders of magnitude higher than the average visibility. Nunhokee (2018) flagged these
bad data with the tfcrop algorithm implemented in the CASA software.

After flagging, interferometric calibration is needed because observed visibilities are cor-
rupted by the instrumental response, which is mathematically expressed in terms of antenna
based gains g (e.g., Hamaker et al. 1996; Smirnov 2011). Calibrated visibilities Vij,cal are
obtained as

Vij,cal(ν) = [gi(ν)]−1[g∗j (ν)]−1Vij,obs(ν), (4.1)

where ij is the baseline between antenna i and j, and Vij,obs(ν) are the observed visibilities.
The calibration process aims to determine the complex gains normally by observing a source
with known properties, point-like and isolated, a so-called calibrator. Given the wide field
of view, PAPER observations cannot effectively isolate sources. However, Nunhokee (2018)
obtained a good calibration by considering a simple sky model, consisting only of Pictor A,
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Figure 4.7 Visibility amplitudes as a function of time and frequency, averaged over all the 30m
baselines, from JD2456639 (left panel) and JD2456702 (right panel). The two data sets present an
evident difference in the amplitude, which varies smoothly along channels in the former day but not
in the latter. Here there are narrow peaks with amplitudes one order of magnitude larger than the
maximum value observed in the left panel. Moreover, we expect negligible spectral variation across
integration times. This is true for JD2456639 but not for JD2456702. These spectral differences
between the two data sets may results from unflagged residual RFI or calibration errors in the latter
day. Data sets with behaviours similar to JD2456702 are classified as bad data and discarded in the
power spectrum analysis.

which is unresolved at the PAPER angular resolution of ∼ 15 arcmin. When Pictor A is near
the transit, it is the brightest sources and its visibilities dominate over the rest of the sky,
allowing to be treated, in first approximation, as an individual calibrator (Nunhokee 2018).
Absolute calibration was obtained by assuming a model for the primary beam and Pictor A
to have a flux density S0 = 382 Jy at ν0 = 150 MHz and a spectral index α = −0.76 (Jacobs
et al. 2013).

Despite a careful procedure, residual calibration errors are still present in six snapshots. In
Figure 4.7 we see different spectral behaviours between data with (right panel) and without
(left panel) calibration errors: bad data present narrow peaks along the frequency axis in
almost all integration times, strongly affecting power spectrum estimates. These six snapshots
are then discarded in the following analysis, as already mentioned in §4.1.1.

4.2 Sky images

After re-phasing, we combined the all the observing days into a single image for each sub-band
of interest (Figure 4.8) using the CASA software. Images were made with the multi-frequency
synthesis algorithm to improve the uv-coverage and uniform weights in order to suppress
sidelobes over the whole field of view. Images were deconvolved using the Clark algorithm
(Clark 1980). As we described in §3.1.1, a reconstruction of the sky brightness distribution
needs deconvolution from the point spread function. Initially, the deconvolution process
identifies the peak of the dirty image and assumes it to be intrinsic sky emission. A fraction of
the peak intensity, set by the loop gain, convolved with the dirty beam in the peak position is
subtracted at the peak position:

ID = γ[CC(δD) ∗ PSF] = IR, (4.2)

where CC(δD) is the clean component, i.e. an ideal delta function, γ is the loop gain and IR is
the residual dirty map. This operation is repeated several times, using IR as the new dirty
image ID, until minimum flux density is reached in the residual image. The ensemble of the
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Figure 4.8 Images centered at RA = 5h25m0.0s, Dec = −30◦46′17.5′′, obtained combining all the
snapshot observations (5.5 hours) and using a 10 MHz bandwidth. Top left panel: image at 130.0 MHz,
with σrms = 4.3 Jy beam−1 noise and 53.7×18.1 arcmin2 angular resolution. Sidelobes due to Fornax A
and Taurus A are indicated with red and cyan circles, respectively. Top right panel: image at 144.3 MHz,
with σrms = 2.5 Jy beam−1 noise and 48.0× 16.3 arcmin2 angular resolution. Bottom left panel: image
at 155.6 MHz, with σrms = 1.9 Jy beam−1 noise and 44.3× 15.0 arcmin2 angular resolution. Bottom
right panel: image at 167.5 MHz, with σrms = 1.4 Jy beam−1 noise and 41.5× 13.9 arcmin2.
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clean components form the model visibilities. The next step is the “restoring”, which convolves
each CC(δD) with the cleaned beam. The latter is obtained with a Gaussian fit on the main
lobe of the dirty beam, discarding sidelobes. The cleaned map is then obtained. The Clark
algorithm we used applies the subtraction described by Eq. (4.2) in the uv-plane rather than
in the image plane. We set the loop at γ = 0.2 and terminated deconvolution once the peak of
the residual image was less than 10 Jy.

Images at the four frequencies are fairly consistent with each other and mostly show point
source-like emission, with Pictor A being the brightest source. No specific diffuse emission
is noticeable down to the sensitivity level, which is indicated with σrms (i.e., the root mean
square). We note that the image quality remains limited due to the poor uv-coverage. A few
artifacts remain visible in the maps, mostly at 130.0 MHz (top left panel): sidelobes from
Fornax A and Taurus A (RA = 5h34m31.97s, Dec = +22◦00′52.06′′; McNamara 1971), which
are outside the field of view, are left in the image. To avoid their improper deconvolution
we stopped the cleaning in this sub-band at a threshold of 70 Jy, which however left residual
sidelobes around Pictor A too.

4.3 System Noise

An accurate knowledge of the system noise is relevant in our analysis as it establish a reference
baseline for the residual power spectrum. In other words, it allows us to quantify whether the
power spectrum modes measured in the EoR region are noise or systematic limited.

In the Rayleigh-Jeans domain, the signal power is generally expressed as an equivalent
temperature T – i.e., the physical temperature of the matched load on the feed input – through
the approximation of the black-body radiation law (Wrobel and Walker 1999):

P = kBT∆ν, (4.3)

where ∆ν is the observing bandwidth. After the antenna, the power is amplified by a gain
factor G (Thompson et al. 2017):

P = Pa + PN = GkB∆ν(Ta + Tsys), (4.4)

where Ta is the antenna temperature associated to the power Pa of an observed source,
and Tsys is the system temperature associated to the power PN of the system noise. The
system temperature is given by the internal thermal noise of the receiver, referred as receiver
temperature Trcvr, plus the atmospheric and sky emission. In the frequency range of interest,
the atmospheric emission is negligible, and we are left with the sky term, which is the sum of
Galactic Tgal and cosmic T0,γ backgrounds (Rogers and Bowman 2008):

Tsky = Tgal + T0,γ = T150

( ν

150 MHz

)−β
+ T0,γ , (4.5)

where T150 is the Galactic synchrotron temperature at 150MHz and β = α+2 is the brightness
temperature spectral index. According to the most recent results from EDGES, at RA = 5h30m

we can assume a model with T150 ≈ 280 K and β ≈ 2.60 (Mozdzen et al. 2017), such that
Tgal � T0,γ and the system temperature can be written as

Tsys = 280 K
( ν

150 MHz

)−2.60
+ Trcvr, (4.6)

where the PAPER receiver temperature is assumed frequency independent, with a value of
Trcvr = 144 K (Kolopanis et al. 2019).

The power from the source can be expressed also as a function of the flux density S:

Pa =
1

2
GAeffS∆ν = GkBKS∆ν, (4.7)
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Sub-band Adiff V diff σdiff SEFD Tsys

(MHz) - (Jy) (Jy) (Jy) (K)

130.0 1.13 · 104 −6.73 82 3.2 · 105 470
144.3 1.13 · 104 −3.72 74 2.9 · 105 420
155.6 1.75 · 104 −5.58 65 2.5 · 105 370
167.5 1.47 · 104 6.63 72 2.8 · 105 410

Table 4.2 Second, third and fourth columns report best fit values to the Gaussian profile (Eq. 4.10)
from the distributions in Figure 4.9 as a function of sub-band. SEFD and Tsys are reported in the last
two columns.

where K = Aeff/(2kB) is a measure of the antenna sensitivity in units of K Jy−1, and the factor
of 1/2 takes into account the fact that a single dipole receives only half of the total power
from an unpolarized source (Thompson et al. 2017). Since Pa = GkB∆νTa, from Eq. (4.7)
we obtain Ta = KS. Using this expression for the system noise, we can define the system
equivalent flux density SEFD as

SEFD =
Tsys

K
=

2kB

Aeff
Tsys. (4.8)

While K and Tsys give information about antenna and receiver, respectively, the system
equivalent flux density is a global measure of the system performance. The SEFD is related to
the standard deviation σv of the fluctuations in the correlator output signal, i.e. the visibility
noise. For two identical antennas, the visibility noise (in Jy) is given by the radiometer equation
(Wrobel and Walker 1999):

σv =
SEFD√
2∆νtint

, (4.9)

where tint is the integration time. Eq. (4.9) describes the noise of the real and imaginary parts
of a visibility.

We aim to estimate the visibility noise in our observations. Following Carilli (2017), we
computed the difference per channel and baseline between two adjacent integration times in
each sub-band. This operation is based on the assumption that baselines of the same length, at
a given LST, observe the same sky signal but have a different thermal noise realization. This
is particularly true if we consider adjacent integration times, where the time interval covering
two integration times is ∼ 1 minute and the sky changes only by ∼ 0.07%. The difference is
therefore expected to cancel out the sky signal and leave residual visibilities with only the
difference between the two noise realizations. The distribution of the real and imaginary parts
of these residual visibilities Vdiff should follow a Gaussian distribution:

Ndiff = Adiff exp

[
−(Vdiff − V diff)2

2σ2
diff

]
, (4.10)

where Adiff is a normalization factor, V is the mean – expected to be zero – and σdiff is the
standard deviation of residual visibilities. Figure 4.9 displays the distribution of the real part
of the residual visibilities Re{Vdiff} for 30m EW baselines2. Eq. (4.10) is then used to fit the
distributions, with Adiff , V diff and σdiff as free parameters. Best fit profiles are plotted with
red lines, whose parameter values are reported in Table 4.2. We found a good agreement
between the Gaussian profiles and the distribution in each sub-band.

The relationship between the standard deviation σdiff and the visibility noise σv is given
by the standard propagation error:

σdiff =
√
σ2
v,i + σ2

v,i+1 ≈
√

2σv, (4.11)

2We considered only EW baselines in order to reduce the computing load.
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Figure 4.9 Distribution of the real part of the residual visibilities in the sub-bands centered at
130.0 MHz (top left), 144.3 MHz (top right), 155.6 MHz (bottom left) and 167.5 MHz (bottom left) for
30m EW baselines. Red curves are the Gaussian best fit (Eq. 4.10) to the distributions. Best fit values
are reported in Table 4.2. The analysis of the imaginary part of the residual visibilities gave consistent
results.
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Figure 4.10 Estimated system temperatures as a function of frequency (black points). Error bars
are calculated as twice the propagated errors associated to the absolute calibration, which is ∼ 5%
(Jacobs et al. 2013). The system temperature expected from Eq. (4.6) is plotted in red. We note the
fair agreement between estimates and model predictions.
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where i indicates the integration time. Eq. 4.11 holds because the thermal noise in each
integration time is a realization from the same zero-mean Gaussian distribution with standard
deviation σv, i.e. σv = σv,i = σv,i+1 (Eq. 4.9).

Finally, we estimated the SEFD and the system temperature for each sub-band from
Eq. (4.9) and Eq. (4.8), respectively, approximating the antenna effective area Aeff to the
geometrical area, i.e. ∼ 4 m2 (Table 4.2). Figure 4.10 shows a fair agreement between our
system temperature estimates and the model predictions (Eq. 4.6), supporting our assumptions
and methodology.

4.4 Power spectrum estimation methodology

In §3.1.2 we introduced the delay transform in order to estimate the power spectrum for a
single baseline at a given time, as described by Eq. (3.24). That expression is a good estimator
if the delay transform measures only the cosmological signal, but it no longer holds in presence
of a dominant noise component. Generally, interferometric measurements take advantages
of long observations to reduce the noise. This is obtained through imaging, where all the
visibilities are gridded in the uv-plane. In particular, visibilities are combined within a uv-cell
where the averaging is coherent, i.e. it preserves phases, and the noise is reduced by 1/

√
Nt

(Eq. 4.9). As the power spectrum is proportional to the square of the signal, coherent averaging
reduces the power spectrum noise by 1/Nt. On the other hand, the average of Nt power spectra
is incoherent, i.e. original phase information is not retained and only the power is averaged,
therefore the resulting noise decreases by the usual number of independent measurements,
i.e. 1/

√
Nt. In other words, coherent averaging reduces the noise level faster than incoherent

averaging and should be preferred, when possible. Traditional imaging coherently combines
the visibilities, then it is an optimal estimator of the power spectrum and it is used by
interferometers who can combine many different baselines, like LOFAR and MWA (e.g., Patil
et al. 2017; Barry et al. 2019).

In redundant arrays like PAPER, however, the bulk of the sensitivity comes from one or
two (short) baselines and their combination with longer ones does not actually increase the
sensitivity but, conversely, reduces the size of the EoR window available for a detection (see
§3.3.2). The standard approach used with PAPER observations is to adopt a single baseline
(i.e., a 30m baseline length) power spectrum estimator, and we will follow this approach here
too. Our power spectrum methodology reduces, then, to the question of how long we can
coherently integrate a 30m baseline before estimating the power spectrum using Eq. (3.24).
In other words, we need to estimate how long we can integrate that baseline before its time
average decorrelates the signal and degrades the SNR. Ideally, we would like to coherently
average each baseline within each snapshot (i.e., over 10 minutes) and over the 33 days. The
latter is possible because we have re-phased the visibilities to a common center and we have
verified that this operation does not modify the k⊥ value over the snapshot length (see §4.1.1).

In order to verify that visibilities do not decorrelate once averaged over 10 minutes, we
performed a simple simulation where a 1 Jy, flat spectrum source is placed at increasing
distance from the phase center. We calculated the visibility corresponding to the source for a
30m EW baseline and for each integration time within a snapshot. Then, we averaged the
visibilities over time. We considered distances up to 6 hours in LST, in steps of 30 minutes.
The result is shown in the left panel of Figure 4.11: there is no decorrelation - i.e., the visibility
amplitude remain constant, equal to the input model - until the offset is less than one hour
and decreases rapidly beyond two hours. When the source is three hours away from the phase
center, the amplitude is decorrelated by ∼ 10%. The right panel of Figure 4.11 is a simulation
where we increased the time resolution to 5 minutes, up to a one hour maximum displacement.

Our simulations show that a 30m baseline can be averaged over time up to one hour with
a decorrelation of only 0.1%, which becomes negligible over 10 minutes. This confirms that we
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Figure 4.11 Amplitude of the time averaged, 30m baseline visibility as a function of the source
distance from the phase center, where the source has a flux density of 1 Jy (marked with the red line).
Decorrelation starts to become significant beyond two hours (left panel) and completely negligible
within one hour (right panel). Ali et al. (2015) found similar conclusions based on an analytic estimate
of the decorrelation rate.

can average each baseline coherently over time and days and we will follow this approach in
estimating the power spectrum.

4.4.1 Power spectrum validation through sky simulations

After visibilities were coherently averaged in time and across days, power spectra can be
obtained from Eq. (3.24), i.e. essentially squaring the visibility of each baseline, and then
averaging power spectra over all the baselines with the same length. Power spectra obtained
following this procedure are also called auto-spectra. If we consider the visibility corresponding
to a sky signal VS and its noise contribution VN, the corresponding delay transform for the
baseline b becomes

Ṽb = ṼS + ṼN. (4.12)

The auto-spectrum averaged over all baselines of the same redundant group then becomes

Pauto ∝ 〈(ṼS + ṼN)(Ṽ ∗S + Ṽ ∗N)〉 = 〈|ṼS|2 + ṼSṼ
∗

N + Ṽ ∗S ṼN + |ṼN|2〉 ≈ PS + PN, (4.13)

where the ensemble average of the cross-terms tends to zero under the assumption that sky
and noise are not correlated and in the limit of an infinite number of realizations. The average
of a number of auto-spectra is then, generally, a biased estimator, because it is a positive
defined quantity and the noise power spectrum is added to the sky power spectrum. Such bias
is especially relevant in the EoR window, where SNR� 1.

One way to mitigate the noise bias is to estimate the power spectrum as the average of
cross-power spectra (i.e., Parsons et al. 2012b). Let us consider two baseline bi and bj of
same length and orientation, such that the measured delay transforms are Ṽbi = ṼS + ṼNi and
Ṽbj = ṼS + ṼNj , respectively. The cross-spectrum is obtained as

Pcross ∝ 〈Ṽbi Ṽ
∗
bj
〉 = 〈|ṼS|2 + ṼSṼ

∗
Ni + Ṽ ∗S ṼNj + ṼNi Ṽ

∗
Nj 〉 ≈ PS + 〈ṼNi Ṽ

∗
Nj 〉, (4.14)

where the average is made on Nb(Nb − 1)/2 terms, given Nb redundant baselines, with j > i
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to ensure that only unique baselines are considered and auto-spectra are discarded3. The term
〈ṼNi Ṽ

∗
Nj
〉 averages to zero in the limit of an infinite ensemble average, i.e. the cross-spectrum

is an unbiased estimator.
Thus, we can rewrite Eq. (3.24) as

P (k) = 〈Ṽbi Ṽ
∗
bj
〉
(
λ2

2kB

)2(
D2
c∆Dc

Beff

)(
1

ΩBeff

)
, (4.16)

where Ω ≈ 1.70 sr is the solid angle subtended by the PAPER primary beam (Parsons et
al. 2014). We substituted the bandwidth with an effective bandwidth as we included a window
function W (ν) in the delay transform (e.g., Parsons et al. 2012a):

Ṽb(τ) =

∫
B
Vb(u, v, ν)W (ν) e−2πiντ dν, (4.17)

where we took a Blackman-Harris window function (Blackman et al. 1960; Harris 1978). The
purpose of introducing a window function is to further reduce foreground spectral leakage at
high delays (Vedantham et al. 2012; Parsons et al. 2014; Ali et al. 2015; Kolopanis et al. 2019).
This means that the effective width of each sub-band is no longer 10MHz but

Beff =

∫
B
W (ν) dν ≈ 3.6 MHz. (4.18)

We validated our power spectrum methodology through a set of simple simulations. First,
we simulated noiseless visibilities for 30m baselines from a 380 Jy point source (Pictor A-
like, Jacobs et al. 2013) at the phase center. We considered only the two days that, before
re-phasing, had the phase center at the edges of the selected LST range (see §4.1.1), i.e.
JD2456638 (RA = 5h19m46.37s) and JD2456631 (RA = 5h32m26.44s). This choice is driven
by the fact that, in the re-phasing procedure, the maximum change in the uv-coverages and
visibilities occurs in these two days, which are then the worst cases to test our method. If it is
valid for them, we are sure that it is also valid for all intermediate days. Then, we added a
noise realization drawn by a complex Gaussian distribution CN (0, σv), where σv are reported
in Table 4.2, generating a data set of random noise with same shape and flags of our observed
data. This is a fundamental difference from previous works, like that of Kolopanis et al. (2019),
where σv is estimated assuming a system temperature model. In this Thesis, instead, we
derived the noise level from data themselves, with no assumptions.

Power spectra per redshift bin and per baseline redundant group are then obtained in the
following way:

1. visibilities for each baseline were coherently averaged within each snapshot and over
days, in order to have one visibility per channel and baseline [Vbi(ν, t)→ Vbi(ν)];

2. visibilities were delay transformed using the Fast Fourier Transforms (FFT) algorithm
[Vbi(ν)→ Ṽbi(τ)];

3. auto-spectra and cross-spectra were computed per baseline pair (selected with the above
explained criterion) within a redundant group [Ṽbi(τ)→ Pbibj (k) with j > i];

4. incoherent averaging of all the power spectra (i.e., over considered baselines pairs), in
order to obtain one estimate per redshift bin and redundant group (Pbi,bj (k)→ Pb(k)).

3We want the power spectrum estimator to be a complex value, with both real and imaginary parts. Consider
two complex number X = a+ ib and Y = a′ + ib′, such that the average of their cross-products is

1

2
(XY ∗ + Y X∗) =

1

2
[aa′ + bb′ + i(ba′ − ab′) + a′a+ b′b− i(a′b− b′a)] = aa′ + bb′. (4.15)

The imaginary part cancels out, resulting in a real number.
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Figure 4.12 Simulated power spectrum at z = 7.48 (167.5MHz) for 30m baselines of the WE
redundant group – see text for details. The vertical dotted lines denote the horizon limit for a
30m baseline. The left panel shows the comparison between the auto-spectrum (blue dots) and the
cross-spectrum (black dots, linked with gray line), obtained from Eq. (3.24) and Eq. (4.16), respectively,
for the noiseless case. As expected, the two quantities correspond perfectly. This is no longer true in
the right panel, where noise is included (green line). Error bars are twice the noise power averaged
over the sampled k‖.

The procedure is repeated for the simulations that included noise.
Figure 4.12 shows the resulting power spectra for the WE redundant group and the sub-

band centered at 167.5MHz, corresponding to z = 7.48 (similar results were obtained for the
others baseline groups and sub-bands). The window function broadens the signal beyond the
horizon limit: there is, however, a 10 orders of magnitude foreground suppression between the
wedge and the EoR window (|k‖| > 0.2hMpc−1). In absence of noise, the auto-spectrum (blue
dots) coincides with the cross-spectrum (black dots, linked with the gray line). This is no
longer true when noise is added to data, as shown in the right panel. As explained in §3.3.2,
the power of a flat-spectrum source, such as the simulated one, is confined inside the wedge,
where its power is five order of magnitude larger than the noise (i.e., SNR� 1). This is why
auto-spectra and cross-spectra have the same value inside the foreground dominated region.
At higher

∣∣k‖∣∣ the source power decreases and the noise power (green curve) dominates. In
the regime of SNR� 1 the difference between the two estimators is clear: the auto-spectrum
is higher than the cross-spectrum because of the noise bias which does not cancel out in the
average. At |k‖| > 0.2hMpc−1, instead, the cross-spectrum is fully compatible with noise,
confirming that the cross-spectrum is an unbiased estimator. The error bars associated to the
cross-spectrum data are calculated as twice the noise power averaged over the sampled k‖.
This is possible in simulations because the visibility noise corresponds exactly to the variance
of the underlying distribution.

Finally, we combined cross-spectra of different redundant groups in order to obtain a single
power spectrum estimate for each sub-bands [Pb(k)→ P (k)]. The results of this average are
plotted in Figure 4.13, where all redshift bins are shown for completeness. In particular, the
real and imaginary components were plotted separately. As the source is simulated at the
phase center, the imaginary part of its visibilities should be zero. However, we note that the
imaginary part is significantly different from zero inside the wedge. This seems to be due to
the limited statistics that leads the cross terms in Eq. (4.14) not to cancel out completely. In
particular, the remaining imaginary components are the product of signal and noise real parts.
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Figure 4.13 Real (black dots) and imaginary (red dots) parts of cross-spectra averaged over redundant
groups. All four sub-bands are shown with the corresponding redshift. The green curve represents
the real part of the noise power spectrum. Error bars are estimated as in Figure 4.12. The horizon
limits are represented with vertical dotted lines. Note that inside and near the wedge the imaginary
part of the power spectrum is higher than the noise, even if orders of magnitude lower than the real
component.
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Eventually, the power of the imaginary part is more than three orders of magnitude lower
than the real part – i.e., < 0.01% of the real part –, and the power spectrum amplitude is not
affected. Indeed, a comparison with Figure 4.12 immediately shows that the power spectrum
amplitude has values similar to the real component. As expected, at k‖ > 0.2hMpc−1 the
two components are consistent with the noise level.



Chapter 5

Power spectrum results

In this chapter, we apply the power spectrum method outlined in §4.4.1 to our data. We derive
upper limits on the 21 cm power spectrum that, in turn, we converted into lower limits on the
IGM temperature during the Epoch of Reionization.

5.1 Multi-redshift power spectrum

Sky simulations described in §4.4.1 validate our power spectrum methodology. We then used
Eq. (4.16) to calculate cross-products between 30m baselines within the same redundant group.
The resulting cross-spectra are then averaged in order to have one estimate per group and per
redshift bin. These results are shown in Figure 5.1-5.4, where we plot both real (black dots)
and imaginary (red dots) components of the power spectrum. The green line is a realization of
the noise power, derived as described in §4.4.1.

The overall power spectrum behaviour is consistent across all the redundant groups – as
one would qualitatively expect from the redundancy argument. Modes inside the horizon (i.e.,
|k‖| < 0.05hMpc−1) are dominated by foreground emission, although a significant foreground
power bleeds outside the horizon, up to |k‖| ≈ 0.2hMpc−1. At higher |k‖| values, the power
spectrum starts flatten, which is the behaviours expected when thermal noise dominates –
although features are present in a few cases. The foreground power spectrum is effectively
suppressed by 6 − 7 orders of magnitude outside the wedge. These results are in broad
qualitative agreement with all the previously published results from PAPER observations (e.g.,
Parsons et al. 2014; Jacobs et al. 2015; Ali et al. 2015; Kolopanis et al. 2019).

We note two peculiar features of our results.

• The imaginary component of the power spectrum is fairly consistent with the real
component at high k-modes. Within the wedge, however, the imaginary part remains
significantly higher than the thermal noise power spectrum, whereas we would to cancel
it out for redundant baselines. This may suggest that we are witnessing a (not unlikely)
deviation from redundancy, as it was already suggested by Kolopanis et al. (2019). This
means that nominally redundant baselines can be non-redundant (e.g., with slightly
different antenna positions), introducing small differences in visibility phases, i.e. in
the imaginary parts. However, we note that the imaginary component remains more
than three orders of magnitude fainter than the real part everywhere in the wedge, not
affecting the power spectrum amplitude.

• Cross-spectra at z = 7.48 (Figure 5.4) show a dip at k‖ = 0 (i.e., τ = 0) and the average
power inside the horizon is lower compared to other redundant groups. We do not have
an obvious explanation for this effect, that requires further investigation. However, as
the power spectrum wings are in agreement with other groups, we still retain EW and
WE baselines for the following analysis.
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Figure 5.1 Cross-power spectra (Eq. 4.16) from our data at z = 9.93 (130.0MHz) for all redundant
groups of 30m baselines. Real and imaginary components are denoted with black and red dots,
respectively. The green line represents the noise power spectrum. Horizon limits are marked by vertical
dotted lines.
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Figure 5.2 Same as Figure 5.1, but at z = 8.84 (144.3MHz).
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Figure 5.3 Same as Figure 5.1, but at z = 8.13 (155.6MHz).
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Figure 5.4 Same as Figure 5.1, but at z = 7.48 (167.5MHz). Note that power spectra from EW and
WE redundant groups have maximum power on horizons and a dip at k‖ = 0 (i.e., τ = 0) – see text
for details.
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Figure 5.5 Final cross-power spectra obtained averaging over redundant groups within each sub-bands
(same color scheme of Figure 5.1). Error bars at the 2σ confidence level for both real and imaginary
parts (see text for more details). Errors of imaginary components are plotted for |k‖| < 0.2hMpc−1

only, for clarity. However, the imaginary component of the power spectrum is consistent with noise
values at any k value. The uncertainty on the real part of the power spectrum is smaller than the dot
size within the wedge.
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Final power spectra for each sub-band were obtained by averaging cross-power spectra over
the different redundant groups, resulting in one power spectrum per redshift bin (Figure 5.5).

Estimates of power spectrum errors bars are an active research field (i.e., Trott et al. 2016;
Barry et al. 2019; Mertens et al. 2018; Morales et al. 2019). The pure thermal noise contribution
to the uncertainties is estimated through our propagation method, resulting in the green line
in Figure 5.5. We note, however, that both the real and imaginary parts of or power spectra
remain systematically above the simulated noise level in each redshift bin. This suggests that
some residual, systematic errors are present at high k-modes, most likely in the combined
form of foreground leakage and calibration errors (e.g., Barry et al. 2016; Byrne et al. 2019).
Taking into account the effect of calibration errors and systematic effects on power spectrum
uncertainties is not trivial and, for example, Kolopanis et al. (2019) adopts a bootstrapping
technique for the purpose of re-sampling the actual, underlying statistics of the data. Here
we took a simplified approach and estimated error bars as the standard deviation of the
distribution of cross-spectra within each redundant group (Figure 5.1-5.4). Thus, if δPi is the
power spectrum uncertainty (real or imaginary part) of the redundant group i, the uncertainty
associated to the averaged cross-spectrum is given by

δP =
1

Nrg

Nrg∑
i=1

(δPi)
2

1/2

, (5.1)

where Nrg = 6 is the number of redundant groups for 30m baselines. Both δPi and δP are
calculated for each k‖ independently.

The broad features of the final power spectra are similar to what is seen in the individual
groups – as expected. The overall power within the wedge increases with redshift (i.e., decreases
with frequency), which is the expectation if it were due to synchrotron foreground. Outside the
wedge, the power remains fairly flat, with a minimum at z = 7.48. The power spectrum in the
EoR region (|k‖| > 0.2hMpc−1) remains systematically above the thermal noise expectations,
but not inconsistent with it, given the relatively large error bars.

5.1.1 21 cm upper limits

The last step in our analysis is to compute the spherically averaged power spectrum. By
invoking the isotropy argument (see §1.1), we first average the power spectrum over constant
|k‖| values, operation known as folding, and then compute the dimensionless power spectrum

using Eq. (2.22), with k =
√
k2
⊥ + k2

‖. We note that k⊥ < 0.01hMpc−1 (Eq. 3.23) for all
sub-bands and hence k is essentially given by k‖. The amplitude power spectrum uncertainty
is given by a combination of real and imaginary part errors:

δ∆2(k) =
k3

2π2P

√
Re{P}2 Re{δP}2 + Im{P}2 Im{δP}2, (5.2)

where P = P (k). Results are reported in Table 5.1 and plotted in Figure 5.6. The power
spectrum within the horizon is a clear detection of foreground emission. However, even the
power spectrum values up to k = 0.2hMpc−1 are inconsistent with the noise power spectrum
(apart from the k = 0.15hMpc−1 value at z = 9.93 which is consistent with noise). We
consider these points as detections of foreground power that bled outside the horizon limit.
Conversely, we used the power spectrum values that are noise-compatible to set upper limits
on the 21 cm signal,computed as ∆2

up(k) = ∆2(k) + 2δ∆2(k).
Current lowest upper limits (including the ones computed here) are reported in Figure 5.7.

The best estimate per redshift bin from this Thesis work is at k > 0.2hMpc−1, which is
bold-faced in Table 5.1 and plotted as red square. Thus, we obtain (35 000 mK)2, (11 000 mK)2,
(51 000 mK)2 and (3200 mK)2 at z = 9.93, 8.84, 8.13 and 7.48, respectively.
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Redshift Frequency k ∆2(k) 2δ∆2(k) ∆2
up(k)

- (MHz) (hMpc−1) (mK2) (mK2) (mK2)

9.93 130.0 0.01 5.6 · 108 9.7 · 107 -
0.05 5.8 · 1010 8.2 · 109 -
0.10 6.3 · 1010 1.4 · 1010 -
0.15 4.7 · 109 5.5 · 109 1.0 · 1010

0.19 1.4 · 108 2.2 · 109 2.3 · 109

0.24 7.5 · 107 1.1 · 109 1.2 · 109

0.29 3.8 · 108 1.2 · 109 1.6 · 109

0.34 3.2 · 108 1.0 · 109 1.3 · 109

0.39 1.3 · 108 2.1 · 109 2.2 · 109

0.44 2.8 · 108 2.6 · 109 2.9 · 109

0.49 4.1 · 108 2.9 · 109 3.4 · 109

8.84 144.3 0.01 2.6 · 108 4.1 · 107 -
0.05 2.2 · 1010 2.8 · 109 -
0.10 2.5 · 1010 4.9 · 109 -
0.15 2.6 · 109 1.6 · 109 -
0.20 7.0 · 107 3.9 · 108 4.6 · 108

0.26 3.0 · 107 1.1 · 108 1.4 · 108

0.31 2.9 · 107 9.3 · 107 1.2 · 108

0.36 4.8 · 107 3.4 · 108 3.9 · 108

0.41 2.5 · 107 8.0 · 108 8.3 · 108

0.46 2.2 · 107 7.7 · 108 8.0 · 108

0.51 4.2 · 107 7.5 · 108 8.0 · 108

8.13 155.6 0.01 2.5 · 108 4.2 · 107 -
0.05 1.7 · 1010 2.2 · 109 -
0.11 1.7 · 1010 2.9 · 109 -
0.16 1.2 · 109 4.9 · 108 -
0.21 8.5 · 106 1.2 · 108 1.2 · 108

0.27 1.2 · 106 3.8 · 107 4.0 · 107

0.32 1.5 · 106 2.4 · 107 2.6 · 107

0.37 1.7 · 106 6.4 · 107 6.6 · 107

0.42 4.9 · 106 1.6 · 108 1.6 · 108

0.48 2.0 · 107 2.0 · 108 2.2 · 108

0.53 2.4 · 107 2.0 · 108 2.3 · 108

7.48 167.5 0.01 5.6 · 107 8.4 · 106 -
0.06 3.5 · 109 3.7 · 108 -
0.11 4.3 · 109 5.2 · 108 -
0.17 5.2 · 108 1.4 · 108 -
0.22 7.6 · 106 2.7 · 107 3.4 · 107

0.28 7.2 · 105 1.2 · 107 1.2 · 107

0.33 6.5 · 104 1.0 · 107 1.0 · 107

0.39 6.0 · 105 2.7 · 107 2.7 · 107

0.44 1.4 · 106 6.0 · 107 6.1 · 107

0.50 2.1 · 106 8.2 · 107 8.4 · 107

0.55 7.9 · 106 1.1 · 108 1.2 · 108

Table 5.1 Dimensionless power spectra and 2σ error bars per redshift bin and per k-mode. For the
sake of completeness, we report also the central frequencies of the four sub-bands. When the error is
larger than the expected value, we also include upper limits ∆2

up in the last column. The most sensitive
limit for k > 0.2hMpc−1, where foreground leakage should be zero, is bold-faced, as the corresponding
k value.
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Figure 5.6 Dimensionless power spectra (Eq. 2.22) and 2σ error bars for each redshift bin in our
observations (values in Table 5.1). The green line is the simulated thermal noise power spectrum. The
horizon limit is denoted by the vertical dotted line.
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Figure 5.7 Comparison amongst current upper limits on the 21 cm power spectrum from different
observations. Results from this Thesis are reported as red squares (bold-faced values of Table 5.1).
Other upper limits are the best estimates from PAPER-64 (black squares; Kolopanis et al. 2019),
MWA (stars; Trott et al. 2020; Barry et al. 2019) and LOFAR (diamonds; Patil et al. 2017; Mertens
et al. 2020).

In the same figure, current upper limits on the 21 cm power spectrum from different
observations are reported. In particular, consider the estimates from Kolopanis et al. (2019),
which are indeed the best values from the PAPER experiments, coming however from the
64-elements deployment. This means that they had a number of baselines available four
times lower than ours. On the other hand, their upper limits come from a much longer
observation than ours, about a factor 200. If we scaled down by the relative observing time,
their results would be consistent (to first approximation) with ours. In other words, the
complete analysis of the two seasons of PAPER-128 data could improve the upper limits from
Kolopanis et al. (2019).

5.2 Spin temperature constraints

Although our upper limits on the 21 cm signal are high, we still go through the exercise of
using them to constrain the model parameters space. The most important constrain from
multi-redshift upper limits would likely be on the HI neutral fraction which, however, requires
sensitivities at the few (mK)2 level. Conversely, the most extreme models (i.e., with the
brightest power spectrum) are the cold reionization scenarios, where the spin temperature is
not saturated (see §2.3). Here we attempt to constrain this models.

We considered our best upper limit at z = 7.48 and, following Ali et al. (2015), used a
simple, analytic model of the 21 cm emission. Using cosmological parameters from Planck
Collaboration et al. (2018a), reported in Table 1.1, we can rewrite the 21 cm brightness
temperature (Eq. 2.10) as

δTb(z) ≈ T0(z)xHI(z)[1 + δ(z)]ξ(z), (5.3)
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Figure 5.8 Constraints on the 21 cm spin temperature at z = 7.48 in the patchy reionization scenario
(e.g., McQuinn et al. 2007). The red triangle corresponds to kmin = 0.1hMpc−1 and kmax = 30hMpc−1,
which are representative scales in fiducial simulations (e.g., Zahn et al. 2007; Lidz et al. 2008).

where

T0(z) ≈ 27

[
1 + z

10

]1/2

mK ; ξ(z) = 1− Tγ(z)

Ts(z)
. (5.4)

The maximum contrast between the spin temperature and CMB temperature happens if Ts

is instantaneously coupled to Tk through the WF effect at z ≈ 30 and when there are no
sources that heat the IGM. In this case, the gas temperature keeps cooling adiabatically since
decoupling, which occurs at zdec ≈ 200. This assumption is obviously extreme and somewhat
unrealistic, but is resembles the cold reionization scenario, where ionized regions are produced
faster with respect to the hot reionization one (see Figure 2.3). With a negligible heating,
we can assume the gas temperature spatially constant, so that ξ has no spatial dependency
(Parsons et al. 2014). The dimensionless 21 cm power spectrum can therefore be written as

∆2(k) = T 2
0 ξ

2(z)∆2
i , (5.5)

where ∆2
i (k) is the dimensionless HI power spectrum. Assuming a patchy reionization model

(e.g., McQuinn et al. 2007; Zahn et al. 2007), we have

∆2
i (k) ≡

xHI − x2
HI

ln(kmax/kmin)
, (5.6)

where kmin and kmax are the minimum and maximum size of the ionized bubbles, respectively.
Substituting in Eq. (5.5), we obtain an analytic model for the 21 cm power spectrum:

∆(k) = 730

(
1− Tγ

Ts

)2(1 + z

10

)
[]

xHI − x2
HI

ln(kmax/kmin)
] mK2. (5.7)

If we replace the left hand side of Eq. (5.7) with our upper limit, we can derive a lower
limit on the spin temperature as a function of the typical bubble sizes and the HI fraction.
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Figure 5.8 shows the spin temperature constraints as a function of the kmin and kmax, assuming
a neutral fraction xHI ≈ 0.3 (Greig and Mesinger 2017). The most optimistic lower limit to the
spin temperature is Ts = Tk > 70 mK. If we assume that the characteristic size of the ionized
bubbles is between 0.03 and 10h−1 Mpc (corresponding to 0.1 < k < 30hMpc−1) (Zahn
et al. 2007; Lidz et al. 2008; Ghara et al. 2020), the spin temperature constraints weakens to
Ts = Tk > 14 mK.

Our upper limits are well within the range allowed by standard models. If we compute
the gas temperature (Eq. 2.19) at z = 7.48 in the case of adiabatic cooling only, we find
Tk = Ts ≈ 1 K. In other words, our upper limits do not allow to significantly constrain the
IGM temperature unless non standard physics is invoked (e.g., Barkana 2018; Fialkov and
Barkana 2019).



Conclusion and future perspectives

In this Thesis work we analysed 5.5 hours of PAPER-128 data and estimated the 21 cm power
spectra in four redshift intervals (z = 7.48, 8.13, 8.84 and 9.93). These results were obtained
with custom developed Python scripts that average data over time, delay transform them and
calculate cross-spectra of different 30m baselines that are, in the end, averaged. Although
this approach follows previous methods (e.g., Parsons et al. 2014; Kolopanis et al. 2019), we
focused on an optimal data averaging and a simple approach that is free of possible signal
losses (e.g., Cheng et al. 2018; Liu and Shaw 2019).

The delay transform is the basis of the foreground avoidance method that separates the
Galactic and extragalactic foreground emission from the cosmological 21 cm signal. Indeed,
foregrounds are confined to low k-modes due to their smooth spectra, therefore the EoR can
be measured without foreground contamination at higher k-modes, in principle. In practice,
current observations are still sensitivity limited at high k values.

We tested our methodology through sky and noise simulations, where the noise power
was derived from the data themselves. This differs from previous works, such as Kolopanis
et al. (2019), where a noise model was assumed.

We found power spectra dominated by foreground emission at k < 0.2hMpc−1 and
consistent with noise at k > 0.2hMpc−1 at any redshift interval, from which we derived upper
limits to the 21 cm power spectrum. Our lowest upper limits are (35 000 mK)2, (11 000 mK)2,
(51 000 mK)2 and (3200 mK)2 at z = 9.93, 8.84, 8.13 and 7.48, respectively.

We used our upper limit at z = 7.48 to estimate a lower limit on the IGM temperature.
We assumed a simple, analytic model for the distribution of the ionized bubbles (McQuinn
et al. 2007; Zahn et al. 2007), a fiducial xHI = 0.3 (Greig and Mesinger 2017) and found that
Ts = Tk > 70mK.

The work presented can be extended in a few direction in the near future. It will be
relatively straightforward to include the whole PAPER-128 observing season and to extend
the analysis to include the 15 m baselines and both polarizations (i.e. xx and yy. In this way,
our upper limits will become competitive with Kolopanis et al. (2019). Second, we noticed
that our upper limits are broadly consistent with noise, but show a persistent power excess in
the k range of interest. Future work will be dedicated to investigate this issue and its possible
connection with foreground leakage and calibration errors. Alternative methods to estimate
the power spectrum uncertainties will also be investigated as a cross check against the presence
of systematic errors (e.g., Cheng et al. 2018). An increased sensitivity and solid control over
systematic will allow us to place better constraints on the IGM temperature. Conversely,
assuming complete gas heating before z = 10, we would be able to place initial constraints on
the evolution of the IGM neutral fraction and, possibly, the characteristic size of the largest
ionized regions (Zaroubi 2013; Ghara et al. 2020).

Next generation experiments will likely provide sufficient sensitivity to fully characterize
the cosmic evolution of the IGM.
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